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Abstract Maintenance of energy homeostasis depends on the highly regulated storage and

release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common

metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting

the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral

lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which

facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs

are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-

terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with

the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting

LD fusion by transference of lipids. This physiological process is essential in adipocyte

differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in

activated brown fat.

DOI: 10.7554/eLife.07485.001

Introduction
Evolutionary pressures for survival in fluctuating environments that expose organisms to times of

both feast and famine have selected for the ability to efficiently store and release energy in the form

of triacylglycerol (TAG). However, excessive or defective lipid storage is a key feature of common

diseases such as diabetes, atherosclerosis, and the metabolic syndrome (Greenberg et al., 2011).

The organelles that are essential for storing and mobilizing intracellular fat are lipid droplets (LDs)

(Walther and Farese, 2012). They constitute a unique cellular structure where a core of neutral lip-

ids is stabilized in the hydrophilic cytosol by a phospholipid monolayer embedding LD proteins.

While most mammalian cells present small LDs (<1 mm) (Suzuki et al., 2011), white (unilocular)
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adipocytes contain a single giant LD that occupies most of their cell volume. In contrast, brown (mul-

tilocular) adipocytes hold multiple LDs of smaller size that increase the LD surface/volume ratio,

which facilitates the rapid consumption of lipids for adaptive thermogenesis (Cinti, 2012).

The exploration of new approaches for the treatment of metabolic disorders has been stimulated

by the rediscovery of active brown adipose tissue (BAT) in adult humans (Virtanen et al., 2009;

Cypess and Kahn, 2010) and by the induction of multilocular brown-like cells in white adipose tissue

(WAT) (Harms and Seale, 2013). The multilocular morphology of brown adipocytes is a defining

characteristic of these cells along with expression of genes such as Ucp1. The acquisition of a uniloc-

ular or multilocular phenotype is likely to be controlled by the regulation of LD growth. Two related

proteins, CIDEA and CIDEC, promote LD enlargement in adipocytes (Wu et al., 2014; Puri et al.,

2007; 2008), with CIDEA being specifically found in BAT. Together with CIDEB, they form the CIDE

(cell death-inducing DFF45-like effector) family of LD proteins, which have emerged as important

metabolic regulators (Xu et al., 2012).

Different mechanisms have been proposed for LD enlargement, including in situ neutral lipid syn-

thesis, lipid uptake, and LD–LD coalescence (Kuerschner et al., 2008; Wilfling et al., 2013;

Boström et al., 2007). The study of CIDE proteins has revealed a critical role in the LD fusion pro-

cess in which a donor LD progressively transfers its content to an acceptor LD until it is completely

absorbed (Gong et al., 2011). However, the underlying mechanism by which CIDEC and CIDEA

facilitate the interchange of TAG molecules between LDs is not understood. In the present study, we

have obtained a detailed picture of the different steps driving this LD enlargement process, which

involves the stabilization of LD pairs, phospholipid binding, and the permeabilization of the LD

monolayer to allow the transference of lipids.

Results

CIDEA expression mimics the LD dynamics observed during the
differentiation of brown adipocytes
To examine the processes controlling LD enlargement in brown adipocytes, we followed LD dynam-

ics using time-lapse microscopy. During differentiation of immortalized brown pre-adipocytes, large

eLife digest If other energy sources become unavailable, cells fall back on stores of fatty

molecules called lipids. These are held in membrane-enclosed compartments in the cell called lipid

droplets, which in mammals are particularly abundant in fat cells called adipocytes. There are two

main types of adipocytes: white adipocytes have a single giant lipid droplet, whereas brown

adipocytes contain many smaller droplets.

Proteins embedded in the membrane that surrounds a lipid droplet help to control the droplet’s

growth and when it releases lipids. For example, a protein called CIDEA, which is only found in

brown adipocytes, helps lipid droplets to grow by enabling one droplet to transfer its contents to

another droplet. However, little is known about how this occurs.

By combining cell biology, biophysical and computer modelling approaches, Barneda et al.

investigated how normal and mutant forms of CIDEA affect the growth of lipid droplets. These

experiments identified a helix in the structure of CIDEA that embeds it in the membrane, from

where it can then interact with CIDEA proteins on other lipid droplets to hold the droplets together.

In addition, the helix interacts with a molecule in the lipid droplet membrane called phosphatidic

acid. Barneda et al. suggest that this interaction helps to transfer the contents of one droplet to

another by making it easier for lipids to move through the droplets’ membranes.

The next challenge is to characterize the mechanisms that control CIDEA activity to influence the

formation of the multiple lipid droplets that distinguish brown and BRITE (brown-in-white)

adipocytes from white adipocytes. The lipid droplets in brown adipocytes are an important target

for research to combat obesity, due to the ’burning’ rather than storing of lipids that occurs in these

cells.

DOI: 10.7554/eLife.07485.002
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LDs were formed by the fusion of pre-existing LDs (Video 1). This fusion process was characterized

by a slow and progressive reduction in the volume of a donor LD until it was completely absorbed

by an acceptor LD (Figure 1A), which is characteristic of CIDE activity. As CIDEA is selectively

expressed in brown adipocytes and could have a prominent role in the acquisition of their multilocu-

lar morphology, we explored the effects of its expression in undifferentiated pre-adipocytes. After

inducing CIDEA, LDs in pre-adipocytes showed an equivalent dynamic pattern to that observed in

differentiating brown cells, with the progressive fusion of the initial LDs until a few large LDs

remained in the cell (Video 2). LD fusion was achieved by the slow transference of lipids between

LDs, and was preceded by the formation of small clusters of interacting LDs (Figure 1B). Given the

importance of this process in adipocyte dynamics, we decided to undertake a comprehensive molec-

ular analysis.

Phases of CIDEA activity: LD targeting, LD–LD docking, and LD growth
The ectopic expression of full-length CIDEA induced the formation of large LDs through LD fusion

by lipid transfer (Figure 1C,D). Control cells, which lacked expression of CIDEA, did not show LD

enlargement (Figure 1C). As many proteins are constructed of domains, which are conserved across

families and serve as their main structural and functional units, we assessed the conserved regions

within the CIDE proteins. By comparing the 217 amino acid (aa) sequence of CIDEA with that of

CIDEB and CIDEC, four highly conserved regions could be identified (Figure 2A and Figure 2—fig-

ure supplement 1). The N-terminal (N-term) domain of CIDEA is composed of a basic region (2–72

aa) followed by an acidic sequence (73–110 aa). These distinctly differently charged regions are indi-

cated by protein crystallography studies to be important for the dimerization of CIDE domain pro-

teins (Lugovskoy et al., 1999; Wang et al., 2012; Sun et al., 2013; Lee et al., 2013). The CIDEA C-

terminal (C-term) is rich in basic aas and contains a highly conserved region (126–155 aa) and a basic

and hydrophobic sequence (162–197 aa). Based on this sequence analysis, we created an extensive

collection of v5-tagged CIDE point and deletion mutants to test their effects on LDs (Figure 2).

Interestingly, certain mutations such as R171E/R175E promoted the aggregation of the cellular LDs

in a few ’bunch of grapes’-like LD clusters, but were unable to induce the transference of lipids

between them (Figure 2B). In other cases, as with the expression of CIDEA-(116–217)-v5, the LDs

remained small and dispersed throughout the cytoplasm despite the protein being normally local-

ized at their surface. Finally, some versions of CIDEA, such as CIDEA-(1–118)-v5, showed no LD local-

ization and did not affect their size, number, or

distribution. Together with the time-lapse

results, this indicates that the molecular mecha-

nism of CIDEA is composed of three discrete

phases: LD targeting, LD–LD docking, and LD

growth.

A cationic amphipathic helix in C-
term drives LD targeting
All the CIDEA constructs that showed impaired

LD localization contained deletions or mutations

in the C-term hydrophobic and basic region

(162–197 aa) (Figure 2C). In fact, the last 66 aas

of CIDEA were sufficient for LD localization, as

shown with the expression of CIDEA-(152–217)-

v5, whereas it lacked the ability to facilitate the

docking of LDs (Figures 2C and 4A). Although it

is known that the C-term domain of CIDE pro-

teins is essential for LD localization and enlarge-

ment (Liu et al., 2009; Christianson et al.,

2010), only the structure of the N-term domain

has been solved (Lugovskoy et al., 1999;

Wang et al., 2012; Sun et al., 2013; Lee et al.,

2013). The CIDE-N domain (Pfam reference

Video 1. Lipid droplet (LD) enlargement in

differentiating immortalized brown adipose tissue

(imBAT) cells. Immortalized brown pre-adipocytes were

induced to differentiate by incubation for 48 hr + 6 hr

with the described differentiation cocktails. The cell

displays the characteristic LD enlargement pattern

triggered by CIDE proteins, defined by the progressive

fusion by lipid transference of the pre-existing LDs.

DOI: 10.7554/eLife.07485.003
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PF02017) has been determined in members of the CIDE family (PBD Codes: 2eel (hCIDEA), 1D4B

(hCIDEB), 4MAC (mCIDEC), 4ikg (mCIDEC)) to aas 40–117, 34–100, and 41–118 in hCIDEA, hCIDEB,

and mCIDEC, respectively. Thus, the sequence 163–180 that we found essential for LD targeting

(Figure 2C) lacks direct structural information to date. We therefore predicted its structure using in

silico approaches. The region displayed high probability of a helical conformation with a strongly

amphipathic character (Figure 3A,B, and Figure 3—figure supplement 1). To experimentally con-

firm the presence of an amphipathic helix in the LD-targeting domain of CIDEA, circular dichroism

(CD) spectroscopy was used to estimate the secondary structure of a synthetic peptide correspond-

ing to residues 158–185 in CIDEA. The CD spectra in the presence of 0.1% n-dodecyl-b-D-maltopyr-

anoside confirmed the presence of a-helical structure (Figure 3C).

As some LD proteins are known to be bound to the LD membrane through amphipathic helices

(Hinson and Cresswell, 2009; Krahmer et al., 2011), we tested if this short sequence was sufficient

for LD targeting. While HA-(1–120)-CIDEA showed no LD localization and had no effect on LD distri-

bution or size, HA-CIDEA-(1–117)-(163–180) was partially localized on the LD surface and promoted

LD clustering (Figure 3D). Furthermore, the deletion of this C-term sequence in CIDEA-4(163–179)-

Figure 1. CIDEA promotes lipid droplet (LD) enlargement by transference of lipids. (A) Live imaging of the LD

dynamics during the differentiation of a brown pre-adipocyte, showing the characteristic CIDE-triggered LD

enlargement, characterized by the progressive transference of lipids from a donor to an acceptor LD until it is

completely absorbed. (B) Live imaging of the LD dynamics in an undifferentiated 3T3-L1 cell 6 hr after infection

with adenoviral particles carrying the Cidea gene. Red arrows highlight the transient formation of irregularly

shaped LD clusters, while yellow arrows mark the fusion of two droplets by transference of lipids. (C) CIDEA-v5

expression in Hela cells induces LD enlargement. An enrichment in CIDEA-v5 (red) can be observed in the contact

site between two LDs (green). (D) Detail of LD fusion by slow transference of lipids in a 3T3-L1 cell stably

expressing CIDEA-v5.

DOI: 10.7554/eLife.07485.004
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v5 completely eliminated LD localization in most

of the cells (Figure 2B,C), confirming its role in

LD targeting. However, partial LD localization

could be observed in a small percentage of cells,

together with the presence of LD clusters. This

was also observed in CIDEA-4(162–197)-v5 and

was particularly frequent in CIDEA-(N172X)-v5,

which contains a deletion in the middle of the

helix. In contrast, no LD targeting could be

observed for the N-term fragment alone (1–

118 aa) (Figure 2C). This may indicate that other

regions in C-term may contribute to LD localiza-

tion either by directly binding the LD membrane

or by interacting with other LD proteins. Simi-

larly, LD targeting was compromised when the

amphipathic character of the helix was disrupted

in CIDEA-(F166R/V169R/L170R)-v5 by introduc-

ing cationic aas in its hydrophobic face.

Although LD localization was only lost in a small

percentage of cells, in the remaining cells the LD

staining was accompanied by a predominantly

cytosolic localization (Figures 2C and 3E). In

contrast, the predominant LD localization of wild

type (wt) CIDEA was maintained in CIDEA-

(K167E/R171E/R175E)-v5, which presents a

charge inversion of the helix but maintains its

amphipathic properties (Figures 2C and 3E).

The amphipathic helix is essential for LD enlargement
In addition to its role in LD targeting, our data indicate that the cationic amphipathic helix in the C-

term participates in the TAG transference step of CIDEA activity, as the charge inversion (K167E/

R171E/R175E) did not affect LD targeting but completely blocked LD enlargement (Figure 2C).

Despite not being essential for LD targeting, the cationic aas in the helix are highly conserved in ver-

tebrates Figure 3—figure supplement 1A. K167 is 100% conserved across all vertebrate species

examined. R171 was conserved across vertebrates including birds, snakes, lizards, crocodiles, turtles,

marsupials, placental mammals, and monotremes, although not in fish. R175 is also highly conserved,

with only birds, dolphins, and the Nile Tilapia (a fish) lacking this residue. Remarkably, an amphi-

pathic helix is predicted in CIDEA of all the vertebrate species examined (Figure 3—figure supple-

ment 1B).

The absence of negative charges in the helix appeared to be an essential condition to permit

TAG transference, as a single inverted charge mutation such as R171E or R175E was sufficient to

block LD enlargement (Figure 2C). In contrast, conservative substitutions such as R171K or K167R

did not affect CIDEA activity, and even the substitution of the three basic aas with histidine in

(K167H/R171H/R175H)-CIDEA-v5 was compatible with the formation of large LDs, strongly support-

ing the conclusion from sequence comparison that positive charges are required at these positions.

As histidine has a lower pKa value than arginine and lysine, it can carry a positive charge depending

on the pH and local environment, which could explain the activity retained by this protein.

LD–LD docking is induced by the formation of CIDEA complexes
Deletions in the N-term domain of CIDEA impaired LD–LD docking, as shown by the increase in cells

displaying isolated LDs (Figure 2C). Furthermore, LD clustering could be induced by forcing the LD

localization of the N-term fragment through conjugation with the 18-aa amphipathic helix (HA-

CIDEA-(1–117)-(162–180)) (Figure 3C).

As the N-term of CIDEA forms a highly polarized structure that is prone to dimerize

(Lugovskoy et al., 1999), we hypothesized that LD–LD docking was induced by the N-term–N-term

Video 2. Lipid droplet (LD) enlargement induced by

CIDEA. LD dynamics in undifferentiated 3T3-L1 cells

6 hr after infection with adenoviral particles carrying the

mouse Cidea gene. After CIDEA induction, the initial

individual LDs form stable contacts reflected by small

irregularly shaped clusters of LDs. These interacting

LDs undergo an enlargement process by lipid

transference, characterized by the progressive

enlargement of the acceptor LD and shrinkage of the

donor LD until only a few large LDs remain in the cell.

DOI: 10.7554/eLife.07485.005

Barneda et al. eLife 2015;4:e07485. DOI: 10.7554/eLife.07485 5 of 24

Research article Biophysics and structural biology Cell biology

http://dx.doi.org/10.7554/eLife.07485.005
http://dx.doi.org/10.7554/eLife.07485


Figure 2. Mapping the functional domains of CIDEA. (A) Amino acid (aa) sequence of murine CIDEA highlighting the residues conserved in either

CIDEB or CIDEC (grey underline), or in both proteins (black underline). The substituted aa in mutant constructs appear in red, and a positively charged

sequence necessary for the TAG transfer step is encircled in orange. Four highly conserved regions are defined and symbolized by colour boxes in a

linear representation of CIDEA-v5. The theoretical isoelectric point of each fragment is indicated inside the boxes. (B) Representative images of the

different phenotypes observed in Hela cells overexpressing mutated forms of CIDEA-v5 24 hr after transfection cells were treated with oleic acid and

incubated for further 18 hr prior to fixation. Cells were classified into six major phenotypes. Cells expressing fully active forms of CIDEA had few and

large LDs (Type I). In some mutants, the large LDs remained attached to many small LDs, indicating that lipid transfer was inefficient or inactive for

some LDs (Type II). When CIDEA alterations blocked the lipid transfer process, the LDs remained small and grouped in a few large clusters (Type III). If

this was accompanied by inefficient LD–LD docking, the cells contained a number of small LD clusters combined with isolated LDs (Type IV). The CIDEA

forms that could not stabilize LD–LD interactions displayed a phenotype similar to the mock transfected cells, with most of the LDs dispersed through

Figure 2 continued on next page
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interaction of CIDEA molecules in adjacent LDs (trans complexes). However, the C-term fragment

(116–217) retained some degree of LD–LD docking activity (Figure 2C), indicating that an additional

interaction site could be present in this region. In fact, a complete blocking of LD clustering was only

observed with the shorter fragment 152–217, which lacks the N-term and a section of the C-term

(Figure 4A).

The formation of CIDEA–CIDEA complexes was confirmed by co-immunoprecipitation (co-IP) of

CIDEA-v5 with CIDEA-HA. Surprisingly, co-IP was observed with CIDEA-(116–217)-v5 but not

CIDEA-(1–118)-v5, indicating that the C-term was responsible for that interaction (Figure 4B). Inter-

estingly, a similar percentage of the input was co-immunoprecipitated for constructs producing

highly clustered LDs (CIDEA-(R171E/R175E)-v5) and constructs showing few LD–LD contacts (CIDEA-

v5 or CIDEA-(116–217)-v5). Hence, this C-term interaction is largely independent of the presence of

LD–LD contacts, indicating that it may also occur in cis.

Within the C-term region, the deletion of the 162–197 sequence did not affect the co-IP whereas

the signal was largely reduced in CIDEA-4(126–155)-v5 (Figure 4B), indicating that this conserved

region was involved in the C-term interaction. However, the residual interaction still detectable by

co-IP could sustain the LD-docking activity, as cells expressing this construct displayed normal LD

clustering (Figure 4A,B). CIDEA-(152–217)-v5 (Figures 2 and 4A), which showed no LD clustering

and lacked both the 126–155 interaction site and the N-term domain, displayed a further reduction

on the co-IP signal (Figure 4B). Therefore, trans complexes through N-term dimerization would be

responsible for the LD clusters and weak co-IP signal observed in CIDEA-(126–155)-v5. The lack of

co-IP between the N-term fragment and the full-length CIDEA could be due to conformational and

positional factors favouring the interaction between the HA-tagged full-length proteins in the LD or

between the cytosolic v5-tagged N-term fragments. In fact, co-IP between N-term fragments of

CIDEC was previously reported (Sun et al., 2013). This interaction could be disrupted with the point

mutations E87Q/D88N or R55E as predicted by the crystal structure of the N-term fragment, which

reveals the formation of homodimers in which the positively charged R46, R55, and R56 in one mole-

cule interact with negative residues in the other (E87 and D88) (Sun et al., 2013). Interestingly, we

found that the equivalent mutations in CIDEA (E79Q/D80N and R47E) impaired LD docking, while

R47Q and R47A, which would not create repulsions between the interacting domains, did not affect

CIDEA activity (Figure 2C). Taken together, these results suggest that both the C-term dimerization

site (126–155) and the N-term domain of CIDEA can contribute to LD–LD docking by forming com-

plexes with its counterparts on the adjacent LD.

CIDEC differs from CIDEA in its dependence on the N-term domain
The differential expression of CIDEA and CIDEC in BAT and WAT could be related to the acquisition

of multilocular or unilocular morphologies in brown and white adipocytes (Barneda et al., 2013).

While the ectopic expression of both CIDEA and CIDEC produce LD enlargement in a similar man-

ner, specific differences in their activity and regulation could achieve discrete outcomes. In fact,

whereas deletion of the N-term domain of CIDEA blocks LD enlargement (Figure 2C), it has been

described that the C-term fragment of CIDEC retains its activity (Gong et al., 2011;

Jambunathan et al., 2011). Here we show that similar to CIDEA, the N-term of CIDEC is involved in

LD–LD docking, as its deletion increases the fraction of cells displaying isolated LDs (Figure 2C).

However, in the cells where the C-term of CIDEC could effectively induce LD–LD docking, large LDs

were observed instead of LD clusters, showing that although its docking efficiency is reduced, this

region of CIDEC is sufficient for docking and enlarging the LDs. This differs from CIDEA, in which

the C-term fragment cannot induce LD enlargement despite retaining a partial LD docking activity.

Figure 2 continued

the cytoplasm (Type V). Finally, some CIDEA constructs were unable to target the LDs, indicating an alteration of the LD-binding domain (Type VI). (C)

Morphologic distribution of cells expressing each of the studied CIDE constructs. The phenotypic distribution was performed in a minimum of three

independent experiments for every construct (n>50 cells).

DOI: 10.7554/eLife.07485.006

The following figure supplement is available for figure 2:

Figure supplement 1. Alignment of amino acid sequences of CIDEA, CIDEB, and CIDEC.

DOI: 10.7554/eLife.07485.007
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Figure 3. CIDEA targets the LD monolayer through a cationic amphipathic helix. (A) Secondary structure of CIDEA predicted by SWISS-MODEL server.

(B) Helical wheel representation of the putative amphipathic a-helix (163–180) generated at http://heliquest.ipmc.cnrs.fr/. (C) Circular dichroism (CD)

spectra of a 28-aa peptide corresponding to the 158–185 sequence of CIDEA (41 mM) solubilized in 50 mM potassium phosphate, pH 6.2 plus 0.1% n-

dodecyl-b-D-maltopyranoside. (D) A Hela cell expressing HA-CIDEA-(1–120)-v5 (red) or HA-CIDEA-(1–117)-(163–180) (red), showing the inclusion of aas

163–180 enhances LD localization and the ability to promote LD docking. The phenotypic distribution was performed in a minimum of three

independent experiments for every construct (n>50 cells). HA signal in LDs was only detected in a proportion of the cells where HA-CIDEA constructs

had induced LD enlargement or clustering, possibly due to the formation of CIDEA complexes reducing antibody accessibility to the HA epitope at the

N-term. (E) A Hela cell expressing CIDEA-(F166R/V169R/L170R)-v5 (red) showing aa substitutions to compromise amphipathicity of the helix disrupt LD

targeting, and a Hela cell expressing CIDEA-(K167E/R171E/R175/E)-v5 (red) showing amino acid (aa) substitutions to invert the charge of the helix but

maintaining amphipathicity retains predominantly LD localization.

DOI: 10.7554/eLife.07485.008

The following figure supplement is available for figure 3:

Figure 3 continued on next page
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In addition to the intrinsic differences between CIDEC and CIDEA, their activity could be affected by

the interaction with additional proteins. While PLIN1 interacts with CIDEC, but not CIDEA, and

potentiates its activity (Sun et al., 2013; Grahn et al., 2013), we have observed that CIDEA interacts

with PLIN5 (Figure 4D), which is rich in BAT (Harms and Seale, 2013; Zhou et al., 2003). In addition

to PLIN5, CIDEA showed high affinity for both CIDEB and CIDEC, while it did not co-IP with DFF40

or DFF45, which share homology with the N-term domain of CIDE proteins (Figure 4C). As BAT cells

express high levels of both CIDEA and CIDEC, the formation of CIDE heterocomplexes could be

involved in the regulation of LD enlargement to retain the multilocular state.

CIDEA interacts with phosphatidic acid
To further characterize the interaction of CIDEA with the LD membrane, we utilized lipid strips to

investigate the affinity of CIDEA for different lipids present in mammalian cell membranes and found

that it selectively bound a set of anionic phospholipids (Figure 5A). The interaction with phospha-

tidic acid (PA) was of particular interest, as increased levels of this phospholipid have been linked

with LD fusion (Fei et al., 2011) and the identification of enzymes such as AGPAT3 and LIPIN-1g in

LDs supports the existence of in situ generation and consumption of PA (Wilfling et al., 2013;

Wang et al., 2011). PA binding was confirmed by the strong affinity of CIDEA-v5 for PA beads

(Figure 5B), which was greatly reduced by pre-incubation of the lysate with soluble PA, but not

phosphatidylcholine (PC). Although the N-term fragment showed some residual affinity, the main

PA-binding site of CIDEA was in the C-term region containing the amphipathic helix (163–180)

(Figure 5C). The charge inversion of its three cationic amino acids resulted in the loss of affinity for

PA beads in the inactive mutant (K167E/R171E/R175E)-CIDEA-v5 without affecting its LD localization

(Figure 5C), linking PA binding with the TAG-transference step (Figure 5D).

To investigate if PA affects the structure of the amphipathic helix, we repeated the CD analyses

in phosphate buffer in the presence and absence of DLPC lipid vesicles with and without DLPA. Fit-

ting of the CD data suggested a low (~5%) helical content for the wt peptide when analysed in phos-

phate buffer alone, and indicated a predominantly sheet/coil structure in the absence of detergent

or liposomes. The presence of DLPC liposomes stabilized a sharp increase in a-helical structure (up

to 40%) and an equivalent reduction of sheet content (Figure 5E and Figure 5—figure supplement

1), yielding higher helical content than that observed in n-dodecyl-b-D-maltopyranoside micelles

(~25%, Figure 3C). In contrast, the induction of helix formation by DLPC was not observed in a

mutant peptide carrying the substitutions impairing LD targeting in CIDEA-(F166R/V169R/L170R)-v5

(Figure 5E). This mutant peptide remained predominantly random coil in the absence and presence

of DLPC liposomes. Interestingly, fitting of the CD data indicated significant helical content for both

the wt and mutant peptides in the presence of DLPC:DLPA (9:1) vesicles (Figure 5E and Figure 5—

figure supplement 1). This indicates that the interaction with the negatively charged phospholipid

PA can compensate for the excess of positive charges in CIDEA-(F166R/V169R/L170R)-v5.

To obtain more detailed insight into the interaction of the amphipathic helix with phospholipids

and the role of PA in this process, the interaction of the amphipathic helix with LDs was modelled

using coarse-grained molecular dynamics (CG-MD) simulations (Figure 5F–H). CG-MD simulations

are well established for lipid-containing systems (Marrink et al., 2007), including LDs

(Mohammadyani et al., 2014), and have the advantage over full atomistic simulations in that the

time scales required are much smaller allowing us to compare different LD compositions and helix

mutants in the large multimolecular LD system. The wt (163–180) helix (CTSFKAVLRNLLRFMSYA) dif-

fused towards the LD containing 400 palmitoyl-oleoyl-glycero-phosphocholine (POPC) and 200 TAG

molecules where it interacted at its full length with the LD surface and penetrated into the hydro-

phobic region of the phospholipid monolayer covering the TAG core (Figure 5F, G). A similar

behaviour was observed by the charge-inverted mutant K167E/R171E/R175E (Figure 5G and Fig-

ure 5—figure supplement 2), supporting the experimental result that these mutations do not affect

LD localization in CIDEA (Figures 2C and 3E). In contrast, no interaction with the LD was observed

with the non-amphipathic F166R/L169R/V169R (Figure 5G), which also impairs LD binding in CIDEA

Figure 3 continued

Figure supplement 1. Conservation of amino acids (aas) for CIDEA amphipathic helix across vertebrate species.

DOI: 10.7554/eLife.07485.009
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Figure 4. Liquid droplet (LD)–LD docking and CIDEA interactions. (A) A Hela cell expressing CIDEA-(152–217)-v5

showing normal recruitment to LDs, but no LD docking. A Hela cell expressing CIDEA-4(126–155)-v5 showing

normal LD–LD docking but inefficient LD enlargement as revealed by the presence of clusters of small and large

LDs. Representative images are shown of experiments performed in a minimum of three independent experiments

for every construct (n>50 cells). (B) Co-immunoprecipitation (co-IP) assays between CIDEA-HA and different

CIDEA-v5 constructs. The observed CIDEA–CIDEA interaction was driven by the C-term domain and required the

presence of the 126–155 aa sequence. (C, D) Co-IP assays showing CIDEA interactions with CIDEB, CIDEC, and

PLIN5. Each co-IP assay was performed at least in triplicate, producing similar results in each experiment.

DOI: 10.7554/eLife.07485.010
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Figure 5. CIDEA is a phosphatidic acid (PA)-binding protein. (A) Lipid strip assay showing the affinity of CIDEA-v5 for certain anionic phospholipids. (B)

Interaction of CIDEA-v5 with PA beads. Binding was reduced by pre-incubation of the lysate with soluble PA, but not phosphatidylcholine (PC). (C) The

affinity for PA beads was highly reduced in CIDEA-v5 constructs with alterations in its C-term hydrophobic and basic region (162–197). (D) CIDEA-

(K167E/R171E/R175E)-v5 localizes to LDs and induces their clustering but cannot promote their enlargement by lipid transfer. Representative images

are shown of experiments performed in a minimum of three independent experiments for every construct (n>50 cells). (E) Circular dichroism spectra of

the synthetic wild type (wt) or mutant (F166R/V169R/L170R) CIDEA peptides encompassing aas 158–185 solubilized in 25 mM sodium phosphate (pH

7.2) at concentrations of 70 mM (wt) and 47 mM (mutant). Peptide samples were prepared in the absence and presence of increasing amounts of DPLC

or DLPC:DLPA (9:1 molar ratio). (F–H) Coarse-grained molecular dynamics (CG-MD) simulations of peptide interactions with LDs (PC: hydrophobic

chains, transparent blue, polar heads, opaque blue; TAG: hydrophobic chains, dark brown, glycerol chain, light brown; PA: hydrophobic chains,

transparent red, polar heads, opaque red; peptides: yellow, with cationic aa in blue and anionic in red). (F) Selected time points of the wt helix

simulation with PC-LDs. At 124 ns the helix initiates the contact through its hydrophobic face, being rapidly embedded in the phospholipid monolayer.

TAG molecules can abandon the neutral lipid core and are integrated in the hydrophobic region of the phospholipid monolayer. (G) Distance between

the peptide and LD centre of mass (COM) versus time for the different helices with a PC-LD and a PC:PA-LD. The dashed line represents the

approximate location of LD phospholipid head groups. (H) Different views of the configuration of the LD helix at the end of the simulations. Interaction

Figure 5 continued on next page
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(Figures 2C and 3E) and which was unable to attain stable secondary structure as evidenced by CD

(Figure 5E). Similarly, a non-amphipathic a-helix in N-term (SSLQELISKTLDVLVITT) also showed no

interaction with the LD (Figure 5G).

To study the effect of PA on LD structure and interaction with the CIDEA helix, we replaced 10%

of the PC molecules with PA. The equilibration of the system resulted in a slight deformation of the

spherical shape of the LD (Figure 5—figure supplement 2). The wt helix made a stable complex

with this LD at even earlier simulation times than with the PC-only containing LDs (Figure 5G and

Figure 5—figure supplement 2). The triple-E replacement mutant was also able to bind this LD,

and even the F166R/L169R/V169R mutant was now able to interact with the membrane (Figure 5G).

This result fits well with the CD results where the addition of PA also rescued the helix induction in

this mutant peptide through interaction with the liposomes (Figure 5E). Interestingly, while the pres-

ence of PA permitted the accommodation of the F166R/L169R/V169R helix in the LD monolayer, it

could not penetrate as deep towards the TAG core as the wt or helix. The average distance of the

peptide to the centre of the LD ( ± SEM) was 5.6 ± 0.04 nm and 5.7 ± 0.03 nm for wt and K167E/

R171E/R175E, respectively. In the presence of PA, the distance was 5.6 ± 0.02 nm, 5.7 ± 0.02 nm,

and 6.1 ± 0.02 for wt, K167E/R171E/R175E, and F166R/L169R/V169R, respectively (also see

Figure 5G, H). This result confirms that the presence of the hydrophobic face was necessary for

proper helix insertion in the LD monolayer.

The CG-MD simulations not only shed light on the interaction between the helix and the LD, but

also provided an indication of the mechanism by which this process could lead to LD enlargement

by TAG transference. We observed that TAG molecules were able to escape the LD core and were

integrated in the hydrophobic section of the membrane (Figure 5H). This TAG infiltration was

increased after the docking of the wt helix in the membrane (Figure 5—figure supplement 3), sug-

gesting that CIDEA could promote the migration of TAG into the membrane as an intermediate

state prior to the transference to the acceptor LD. To complete the transference, the hydrophobic

TAG molecules should overcome the energy barrier constituted by the phospholipid polar heads

and water molecules in the LD–LD interface. Interestingly, we observed that the wt helix could

attract PA molecules in its vicinity by the interaction of its cationic residues with the negatively

charged polar head of PA (Figure 5H). A direct interaction of the amphipathic helix with PA was

also indicated by molecular docking using Autodock Vina, which supported the role of the K167,

R171, and R175 residues in the interaction (Figure 5—figure supplement 4). Remarkably, CG-MD

simulations showed that whereas the non-amphipathic cationic helix F166R/L169R/V169R also inter-

acted with PA molecules from its superficial docking position in the LD membrane, the anionic

amphipathic mutant K167E/R171E/R175E was docked in a PA-depleted area and avoided the PA

molecules (Figure 5H). Although TAG infiltration was also observed in this simulation and the helix

was well embedded in the membrane, its inability to attract PA molecules could be responsible for

the lack of TAG transference activity in CIDEA-(K167E/R171E/R175)-v5 (Figure 5D). Taken together,

these results indicate that CIDEA binds the LD by embedding a cationic amphipathic helix into the

Figure 5 continued

between the polar head of PA and the helix can be observed for the wt and F166R/V169R/L170R but not K167E/R171E/R175E. (I–K) Comparison of full-

length hCIDEC-v5 and the lipodystrophy-associated truncation hCIDEC-(E186X)-v5, including LD localization and morphology (I), co-IP with CIDEA-HA

(J), and affinity for PA beads (K). Each co-IP, PA-binding assay, and lipid strip assay was performed at least in triplicate, producing similar results in each

experiment.

DOI: 10.7554/eLife.07485.011

The following figure supplements are available for figure 5:

Figure supplement 1. Secondary structure determination of CIDEA amino acids 158–185 (wild type and F166R/V169R/L170R) by CDPro DATABASE 4

(43 soluble proteins) using the CONTINLL program.

DOI: 10.7554/eLife.07485.012

Figure supplement 2. Computational prediction of the amphipathic helix and LD interactions.

DOI: 10.7554/eLife.07485.013

Figure supplement 3. TAG infiltration into the phospholipid monolayer.

DOI: 10.7554/eLife.07485.014

Figure supplement 4. Computational prediction of PA docking to the amphipathic helix structure of CIDEA.

DOI: 10.7554/eLife.07485.015
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LD monolayer and that once there, it can interact with PA molecules, which could facilitate TAG

transference.

We found that PA binding was a feature common to all three members of the CIDE protein family

(Figure 5C). Intriguingly, we determined that an inactive CIDEC identified in a patient with lipodys-

trophy (Rubio-Cabezas et al., 2009) contained a truncation (E186X) in the predicted PA-binding

site. Although hCIDEC-(E186X)-v5 and the equivalent mCIDEA-(N172X)-v5 were localized in LDs in a

high percentage of cells, they were completely unable to induce LD enlargement (Figures 2C and

5I). LD clustering activity and its ability to interact with CIDE proteins was not altered in hCIDEC-

(E186X)-v5 (Figure 5I, J), but it showed no affinity for PA (Figure 5K). Thus, PA binding could be

involved in the lipid transfer phase of CIDE activity.

PA is required for LD enlargement
To confirm the requirement of PA binding, we examined the effect of PA depletion on CIDEA activ-

ity. While substantial alterations in the phospholipid composition of mammalian cells often compro-

mise their viability, yeast cells offer a wide range of genetically modified strains with well-

characterized alterations in phospholipid metabolism (Figure 6A) (Henry et al., 2012). Thus, despite

the absence of CIDE homologues in yeast (Wu et al., 2008), we explored the functionality of CIDEA

in wt and genetically modified strains of Saccharomyces cerevisiae (Figure 6—source data 1).

Murine CIDEA could be stably expressed in yeast cells (Figure 6B), producing an increase in the

size of their LDs (Figure 6C). Yeast cells expressing wt CIDEA, but not the inactive R171E/R175E

mutant, contained fewer and larger LDs than the control (Figure 6D–F), indicating that murine

CIDEA was functional in these cells. By measuring the frequency of supersized LDs (diameter above

0.5 mm) and the total number of LDs in strains with altered lipid metabolism, we could determine

the yeast strains in which CIDEA was able to induce LD enlargement (Figure 6E, F). CIDEA was inac-

tive in cells defective in phospholipase D (pld14) (Rose et al., 1995), which catalyzes the production

of PA from PC. CIDEA activity was also abrogated in cells expressing a hyperactive form of the PA

phosphohydrolase (PAH1-7A) (Choi et al., 2010; Choi et al., 2012). These results indicate that PA is

necessary for CIDEA activity. In addition, we observed that total cellular PA levels were increased by

CIDEA, an effect that was prevented by the expression of PAH1-7A (Figure 6G). As the PA synthesis

rate was not affected (Figure 6H), CIDEA could be protecting a pool of PA from degradation.

The deletion of diacylglycerol kinase (dgk14) (Han et al., 2008) did not affect CIDEA activity.

DGK1 is important for the generation of phospholipids from TAG as cells exit from stasis

(Fakas et al., 2010), but its deletion has not been shown to have a great effect on PA levels under

normal growth conditions. Regarding PAH1, its deletion produces dramatic cellular effects (Santos-

Rosa et al., 2005), including defective LD formation (Adeyo et al., 2011; Fakas et al., 2011). As

this alteration in LDs can be compensated by the deletion of DGK1, we chose to use the

dgk14pah14 strain, observing normal LD enlargement by CIDEA (Figure 6E, F). CIDEA was also

able to further increase the LD size in the cho24 strain, which lacks the phosphatidylethanolamine

(PE) methylation pathway for PC synthesis, and has been shown to present supersized LDs and high

levels of PA and PE (Fei et al., 2011). The CIDEA-induced LD enlargement in yeast was not due to a

mere coating effect protecting LDs against lipases, as it was functional in the tgl34tgl44tgl54

strain, which lacks lipase activity. As expected, CIDEA could not induce the appearance of LDs in

dga14lro14are14are24 cells (Figure 6D), which are deficient in the enzymes required for TAG and

steryl ester synthesis and contain no LDs (Sandager et al., 2002).

To study the role of PA-dependent CIDEA action in mammalian cells without compromising other

PA-dependent cellular processes, we specifically degraded this phospholipid in LDs by overexpress-

ing a LD-localized isoform of PA phosphohydrolase (LIPIN-1g) (Wang et al., 2011; Han and Carman,

2010). While CIDEA-HA displayed normal activity in cells co-transfected with an empty vector, it was

unable to promote LD enlargement in cells expressing LIPIN-1g-v5 (Figure 6I, J). LIPIN-1g-v5

showed affinity for PA but it did not co-IP with CIDEA, indicating that its inhibitory effects were not

due to a direct interaction between these proteins (Figure 6K, L). Taken together, these results

reveal that the mechanism of action of CIDEA involves direct interaction with PA molecules in the LD

monolayer.
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Figure 6. CIDEA is functional in yeast and requires PA. (A) Pathway showing the reactions catalyzed by the enzymes altered in the studied yeast strains.

(B) Stable expression of mCIDEA-v5 in three transformed yeast clones. (C) Frequency distribution of the diameter of the largest LD per cell. (D) LD

staining in the studied yeast strains transformed with pRS316-CYC1p-Cidea or the empty vector. (E, F) Quantification of LD size and number per cell in

randomly acquired images (100–200 cells/condition). CIDEA activity in yeast was measured by its ability to increase the percentage of cells with

supersized LDs (E) and reduce the total number of LDs per cell (F). (G, H) Effect of CIDEA and PAH1-7A expression in the cellular levels of PA (G) and

its synthesis rate (H). Three different yeast clones per condition were analysed, and results are shown as the mean ± SEM. One-way ANOVA with

Bonferroni post-test was performed to determine significant differences due to the presence of CIDEA (*p<0.05; ***p<0.001). (I–L) Coexpression of

hLIPIN-1g-v5 and CIDEA-HA in Hela cells. (I) Representative immunofluorescence images showing LD staining (blue) in Hela cells expressing CIDEA-HA

(green) in the presence or absence of hLIPIN-1g-v5 (red). Twenty-four hours after overexpression of hLIPIN-1g-v5, cells were transfected with pcDNA3.1/

Cidea-HA and incubated for a further 24 hr. (J) Phenotypic distribution in randomly selected cells (n>50) showing the average values for three

independent experiments. (K) Co-IP assay in lysates of transfected Hela cells. (L) PA beads binding assay for hLIPIN-1g-v5. Each co-IP and PA-binding

assay was performed at least in triplicate, producing similar results in each experiment.

DOI: 10.7554/eLife.07485.016

Figure 6 continued on next page
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Discussion
The Cidea gene is highly expressed in BAT, induced in WAT following cold exposure (Rosell et al.,

2014), and is widely used by researchers as a defining marker to discriminate brown or brite adipo-

cytes from white adipocytes (Harms and Seale, 2013; Zhou et al., 2003). As evidence indicated a

key role in the LD biology (Hallberg et al., 2008), we have characterized the mechanism by which

CIDEA promotes LD enlargement, which involves the targeting of LDs, the docking of LD pairs, and

the transference of lipids between them. The lipid transfer step requires the interaction of CIDEA

and PA through a cationic amphipathic helix. Independently of PA binding, this helix is also responsi-

ble for anchoring CIDEA in the LD membrane. Finally, we demonstrate that the docking of LD pairs

is driven by the formation of CIDEA complexes involving the N-term domain and a C-term interac-

tion site.

CIDE proteins appeared during vertebrate evolution by the combination of an ancestor N-term

domain and a LD-binding C-term domain (Wu et al., 2008). In spite of this, the full process of LD

enlargement can be induced in yeast by the sole exogenous expression of CIDEA, indicating that in

contrast to SNARE-triggered vesicle fusion, LD fusion by lipid transference does not require the

coordination of multiple specific proteins (Risselada and Grubmuller, 2012). While vesicle fusion

implies an intricate restructuring of the phospholipid bilayers, LD fusion is a spontaneous process

that the cell has to prevent by tightly controlling their phospholipid composition (Krahmer et al.,

2011). However, although phospholipid-modifying enzymes have been linked with the biogenesis of

LDs (Gubern et al., 2008; Andersson et al., 2006), the implication of phospholipids in physiologic

LD fusion processes has not been previously described.

Complete LD fusion by lipid transfer can last several hours, during which the participating LDs

remain in contact. Our results indicate that both the N-term domain and a C-term dimerization site

(aa 126–155) independently participate in the docking of LD pairs by forming trans interactions (Fig-

ure 7). Certain mutations in the dimerization sites that do not eliminate the interaction result in a

decrease of the TAG transference efficiency, reflected by the presence of small LDs docked to

enlarged LDs. This suggests that in addition to stabilizing the LD–LD interaction, the correct confor-

mation of the CIDEA complexes is necessary for optimal TAG transfer. Furthermore, the formation

of stable LD pairs is not sufficient to trigger LD fusion by lipid transfer. In fact, although LDs can be

tightly packed in cultured adipocytes, no TAG transference across neighbour LDs is observed in the

absence of CIDE proteins (Gong et al., 2011), showing that the phospholipid monolayer acts as a

barrier impermeable to TAG. Our CG-MD simulations indicate that certain TAG molecules can

escape the neutral lipid core of the LD and be integrated within the aliphatic chains of the phospho-

lipid monolayer. This could be a transition state prior to the TAG transference, and our data indicate

that the docking of the amphipathic helix in the LD membrane could facilitate this process. However,

the infiltrated TAGs in LD membranes in the presence of mutant helices, or even in the absence of

docking, suggests that this is not enough to complete the TAG transference.

To be transferred to the adjacent LD, the TAGs integrated in the hydrophobic region of the LD

membrane should cross the energy barrier defined by the phospholipid polar heads, and the interac-

tion of CIDEA with PA could play a role in this process, as suggested by the disruption of LD

enlargement by the mutations preventing PA binding (K167E/R171E/R175E) and the inhibition of

CIDEA after PA depletion. The minor effects observed with more conservative substitutions in the

helix suggest that the presence of positive charges is sufficient to induce TAG transference by

attracting anionic phospholipids present in the LD membrane. PA, whose requirement is indicated

by our PA-depletion experiments, is a cone-shaped anionic phospholipid that could locally destabi-

lize the LD monolayer by favouring a negative membrane curvature that is incompatible with the

spherical LD morphology (Kooijman et al., 2005). Interestingly, while the zwitterion PC, the main

component of the monolayer, stabilizes the LD structure (Krahmer et al., 2011), the negatively

charged PA promotes their coalescence (Fei et al., 2011). This is supported by our CG-MD results

Figure 6 continued

The following source data is available for figure 6:

Source data 1. List of yeast strains used in this study.

DOI: 10.7554/eLife.07485.017
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which resulted in a deformation of the LD shape by the addition of PA. We propose a model in

which the C-term amphipathic helix positions itself in the LD monolayer and interacts with PA mole-

cules in its vicinity, which might include trans interactions with PA in the adjacent LD. The interaction

with PA disturbs the integrity of the phospholipid barrier at the LD–LD interface, allowing the LD to

LD transference of TAG molecules integrated in the LD membrane (Figure 7). Additional alterations

in the LD composition could facilitate TAG transference, as differentiating adipocytes experience a

reduction in saturated fatty acids in the LD phospholipids (Arisawa et al., 2013), and in their PC/PE

ratio (Hörl et al., 2011), which could increase the permeability of the LD membranes; we previously

observed that a change in the molecular structures of TAG results in an altered migration pattern to

the LD surface (Mohammadyani et al., 2014).

During LD fusion by lipid transfer, the pressure gradient experienced by LDs favours TAG flux

from small to large LDs (Gong et al., 2011). However, the implication of PA, a minor component of

the LD membrane, could represent a control mechanism, as it is plausible that the cell could actively

influence the TAG flux direction by differently regulating the levels of PA in large and small LDs,

which could be controlled by the activity of enzymes such as AGPAT3 and LIPIN-1g (Wilfling et al.,

2013; Wang et al., 2011). This is a remarkable possibility, as a switch in the favoured TAG flux direc-

tion could promote the acquisition of a multilocular phenotype and facilitate the browning of WAT

(Barneda et al., 2013). Interestingly, Cidea mRNA is the LD protein-encoding transcript that experi-

ences the greatest increase during the cold-induced process by which multilocular BAT-like cells

appear in WAT (Barneda et al., 2013). Furthermore, in BAT, cold exposure instigates a profound

increase in CIDEA protein levels that is independent of transcriptional regulation (Yu et al., 2015).

The profound increase in CIDEA is coincident with elevated lipolysis and de novo lipogenesis that

occurs in both brown and white adipose tissues after b-adrenergic receptor activation

(Mottillo et al., 2014). It is likely that CIDEA has a central role in coupling these processes to pack-

age newly synthesized TAG in LDs for subsequent lipolysis and fatty acid oxidation. Importantly,

Figure 7. Proposed molecular mechanism. (A) CIDEA targets the LD through its C-term amphipathic helix and once diffused to the LD surface, it forms

cis CIDEA complexes by interacting through the C-term (126–155) region. When two CIDEA-containing LDs make contact, trans interactions between

CIDEA molecules in each droplet can be established, which will facilitate the docking of the LDs. Both the N-term and the C-term would contribute by

dimerizing with their counterparts of the neighbour LD. This trans interaction will anchor the CIDEA complexes in the LD–LD contact site, promoting a

local enrichment of CIDEA. The monolayers of the two LDs will be maintained at short distance by the CIDEA complex. The amphipathic helices,

embedded in the hydrophobic region of the membrane, will interact with the cone-shaped PA, creating a local perturbation in the phospholipid barrier

that will increase its permeability to TAG. (B) The docking of the amphipathic helix to the membrane could facilitate the integration of TAG molecules

within the phospholipid hydrophobic tails. Although the helix will be stabilized with its cationic residues pointing outwards, it will interact with PA

molecules in its vicinity, which could be pulled out of the monolayer by the helix molecular dynamics. This could create a transitory discontinuity in the

polar barrier that will reduce the energy required to transfer the TAG molecules present in the membrane. This alteration, together with the

microenvironment created by the CIDEA complex, will reduce the energy barrier necessary to transfer TAG molecules between LDs, allowing the LD

growth by lipid transference.

DOI: 10.7554/eLife.07485.018
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BAT displays high levels of glycerol kinase activity (Bertin, 1976; Bertin et al., 1984) that facilitates

glycerol recycling rather than release into the blood stream, following induction of lipolysis

(Portet et al., 1974), which occurs in WAT. Hence, the reported elevated glycerol released from

cells depleted of CIDEA (Zhou et al., 2003) is likely to be a result of decoupling lipolysis from the

ability to efficiently store the products of lipogenesis in LDs, therefore producing a net increase in

detected extracellular glycerol. This important role of CIDEA is supported by the marked depletion

of TAG in the BAT of Cidea-null mice following overnight exposure to a temperature of 4˚C
(Zhou et al., 2003) and by our finding that CIDEA-dependent LD enlargement is maintained in a

lipase-negative yeast strain.

Cidea and the genes that are required to facilitate high rates of lipolysis and lipogenesis are asso-

ciated with the ’browning’ of white fat either following cold exposure (Rosell et al., 2014) or in

genetic models such as RIP140 knockout WAT (Kiskinis et al., 2014). The induction of a brown-like

phenotype in WAT has potential benefits in the treatment and prevention of metabolic disorders

(Whittle et al., 2013). Differences in the activity and regulation of CIDEC and CIDEA could also be

responsible for the adoption of unilocular or multilocular phenotypes. In addition to their differential

interaction with PLIN1 and 5, we have observed that CIDEC is more resilient to the deletion of the

N-term than CIDEA, indicating that it may be less sensitive to regulatory post-translational modifica-

tions of this domain. This robustness of CIDEC activity together with its potentiation by PLIN1 could

facilitate the continuity of the LD enlargement in white adipocytes until the unilocular phenotype is

achieved. In contrast, in brown adipocytes expressing CIDEA the process would be stopped at the

multilocular stage, for example, due to post-translational modifications that modulate the function

or stability of the protein or alteration of the PA levels in LDs.

Further work will be required to characterize the physiological differences between CIDEC and

CIDEA, and determine the influence of their interacting partners and the role of proteins that are

able to alter the LD PA levels, such as Lipin-1g . Abnormal accumulation of large LDs have also been

observed in non-adipocyte cells under other pathological conditions such as liver steatosis and ath-

erosclerosis (Krahmer and Walther, 2013). As enhanced expression of CIDE proteins have been

linked to these conditions (Li et al., 2010; Zhou et al., 2012; Matsusue et al., 2008), the modula-

tion of CIDE-triggered LD enlargement represents a potential therapeutic strategy that requires the

elucidation of its molecular mechanism.

In summary, we found that during LD fusion by lipid transference, CIDEA ensures the close prox-

imity of the LD membranes by forming trans complexes through its N-term and C-term dimerization

sites. This protein complex will be anchored in the LD–LD interface, forming the molecular environ-

ment necessary for TAG transport across the membrane. Finally, the amphipathic helix embedded in

the LD membrane interacts with the cone-shaped phospholipid PA, generating a local perturbation

of the monolayer integrity that would increase its permeability to TAG and enable its exportation to

the acceptor LD. The new mechanistic insight into the molecular events underpinning LD dynamics

revealed by this study highlights CIDEA and PA production as targets for therapeutic modulation of

LD accumulation.

Materials and methods

Plasmids and antibodies
The coding region of murine Cidea, Cideb, Cidec, Dff40, and Dff45 were cloned into the vector

pcDNA3.1D/V5-His-TOPO (Invitrogen, Paisley, UK) to obtain the v5-tagged versions of the proteins

(Hallberg et al., 2008). The human full-length and truncated forms of Cidec were subcloned into

pcDNA3.1D/V5-His-TOPO from their GFP constructs (Rubio-Cabezas et al., 2009) and Lipin-1g-v5

was constructed from pGH321 (Han and Carman, 2010). Mutations and deletions were generated

with the QuikChange Lightning Kit (Agilent). Tagged proteins were detected by using antibodies

against v5 (R96025; Invitrogen), HA (H6908; Sigma), or GFP (ab1218; Abcam).

Cell culture and transfection
3T3-L1 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 4.5 g/l glu-

cose and L-glutamine supplemented with 10% newborn calf serum (NCS; Invitrogen) and penicillin/

streptomycin at 37˚C and 5% CO2. Hela cells were cultured in similar conditions but with 10% FBS
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(Invitrogen). Transfections were performed using Lipofectamine 2000 (Invitrogen). Stable cell lines

expressing CIDEA-v5 were generated by transfection of 3T3-L1 cells with pcDNA3.1/Cidea-v5, fol-

lowed by selection with G418 (Invitrogen). The imBAT cell line was generated by the retroviral trans-

duction of primary brown adipocytes with SV40 large-T antigen tsA58 mutant and differentiated as

previously described (Hallberg et al., 2008).

4D live cell imaging
Cells in gelatin-coated glass bottom dishes were stained with 0.1–0.5 mg/ml BODIPY 493/503 in the

appropriate culture medium with 20 mM HEPES in the absence of serum. After 10 min at 37˚C, 10%
FBS was restored and the dish was equilibrated at 37˚C in a Leica SP5 confocal microscope. Time-

lapse Z-stacks were acquired every 2 min and represented as their maximum projection. 3T3-L1 cells

were analysed 6 hr after infection with an adenovirus vector expressing CIDEA (Hallberg et al.,

2008). For the imBAT differentiation experiments, pre-adipocytes were incubated for 48 hr with dif-

ferentiation cocktail (Hallberg et al., 2008), and medium was changed to DMEM:F12 with 10% FBS,

1nM T3, and 170 nM insulin for 6 hr before staining.

Immunofluorescence
Cells on glass coverslips were fixed in 4% paraformaldehyde and permeabilized with blocking solu-

tion (BS: 0.5% BSA, 0.05% Saponin, 50 mM NH4Cl in PBS). Cells were incubated overnight at 4˚C
with primary antibodies diluted in BS, and for 1 hr at room temperature with secondary antibodies

(conjugated to Alexa488 and Alexa555, Invitrogen). Cells were stained in PBS with 2 mg/ml BODIPY

493/503 or 1:200 dilution of LipidTox Deep Red for 15 min and mounted in ProLong Gold antifade

reagent (all from Invitrogen). Images were acquired in a Leica TCS SP5 microscope. For the pheno-

typic distribution of Hela cells expressing modified CIDEA-v5 constructs, cells were treated with oleic

acid 24 hr after transfection and incubated for a further 18 hr prior to fixation. Phenotype classifica-

tion was performed by visual analysis of randomized samples in a minimum of three independent

experiments for each construct (n>50 cells)

Liposome preparation
Liposomes were prepared by dissolving lipid (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC),

12:0 PC) or a mixture of DLPC and DLPA (1,2-dilauroyl-sn-glycero-3-phosphate, 12:0 PA; at a 9:1

DLPC:DLPA molar ratio) (Echelon Biosciences, USA) in 3:1 chloroform:MeOH and drying under vac-

uum using rotary evaporation. The resulting thin films were left to dry under vacuum overnight to

remove all residual solvent, reconstituted in 25 mM sodium phosphate buffer (pH 7.2) to a final lipid

concentration of 3.3 mg/mL, and subjected to four times freeze-thaw-sonicate cycles. The vesicles

were incubated at 37˚C for 20 min prior to CD measurements.

Circular dichroism
CD experiments were undertaken with a synthetic wt (SYDIRCTSFKAVLRNLLRFMSYAAQMTG)

CIDEA peptide (Pepmic, Suzhou, China) encompassing aas 158–185 solubilized at a concentration of

41 mM (based on absorbance at 280 nm) in 50 mM potassium phosphate, pH 6.2 plus 0.1% n-

dodecyl-b-D-maltopyranoside and analysed by CD in a Jasco J-815 spectrometer (Jasco UK, Great

Dunmow, UK).

Additional CD experiments with the same wt peptide and a mutant (F166R/V169R/L170R) (SYDIR-

CTSRKARRRNLLRFMSYAAQMTG) were carried out using a Jasco J-1500 spectropolarimeter (Jasco

UK) equipped with a Peltier thermally controlled cuvette holder and 1 mm path-length quartz cuv-

ettes (Starna; Optiglass, Hainault, UK). Spectra were recorded between 190 and 300 nm with a data

pitch of 0.2 nm, a bandwidth of 2 nm, a scanning speed of 100 nm min–1 and a response time of 1

second. Peptides were solubilized in 25 mM sodium phosphate (pH 7.2) at concentrations of 70 mM

(wt) and 47 mM (mutant). Peptide samples were prepared in the absence and presence of DPLC and

DLPC:DLPA (9:1 molar ratio) vesicles and CD spectra were acquired at 37˚C. Data shown were aver-

aged from four individual spectra after subtraction of the appropriate buffer/vesicle CD spectrum.

All CD data were analysed using the CDPro suite of programs. The output of the individual pro-

grams CDSSTR and CONTINLL provided the estimated percentages of a-helix, b-sheet, turn, and
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unstructured regions, using the IB = 4 database of 43 soluble proteins with CD data from 190–250

nm.

Structure prediction and molecular docking
Secondary structure propensity of full-length CIDEA was predicted using DSSP (Arnold et al.,

2006). The amphipathic helix sequence CTSFKAVLRNLLRFMSYA (163–180 aa) was submitted to the

PEP-FOLD online de novo peptide structure prediction server using default settings

(Maupetit et al., 2009). PA was docked to the PEP-FOLD predicted structure using default settings

in a single simulation by AutoDock Vina53 (http://vina.scripps.edu) (Trott et al., 2009). Lipid and

protein structures were converted from pdb into pdbqt format using MGL Tools54. A grid box was

centred at coordinates 35.651, 35.471, 35.569 with 34 Å units in x, y, and z directions to cover the

entire helix. AutoDock Vina reports the nine lowest energy conformations, which were inspected

using PyMOL software (www.pymol.org). According to binding affinity and visual inspection, without

RMSD clustering, the best-fit model has been selected.

CG-MD simulations
CG-MD simulations were used to predict the structure of a LD and its putative interaction with the

amphipathic helix using a 4 to 1 atom mapping for both, lipids and protein (Marrink et al., 2007;

Monticelli et al., 2008). A LD composed of a hydrophobic core containing 200 glyceryl trioleate or

TAG molecules surrounded by a phospholipid monolayer containing 400 POPC molecules previously

reported was used as the starting configuration (Mohammadyani et al., 2014). A second LD con-

taining PA consisting of a hydrophobic core of 200 TAG molecules, and a phospholipid monolayer

with 364 POPC molecules and 36 palmitoyl-oleoyl-glycero-phosphatidic acid (POPA) was compiled

using the same procedure. A rectangular simulation box including LD, amphipathic helix, water, and

ions was energy minimized and pre-equilibrated. All MD runs were carried out for 200 ns under NPT

conditions. The CG-MD simulation of the LD–helix interaction was carried out using the MARTINI

CG force field developed by Marrink et al. (version 2.0) (Marrink et al., 2007). All simulations were

performed using the GROMACS simulation package version 4.6.5 (http://www.gromacs.org/). The

system was weakly coupled to an external temperature bath at 310 K (Berendsen et al., 1984). The

pressure was weakly coupled to an external bath at 1 bar using an isotropic pressure scheme

(Berendsen et al., 1984). Visualization and analysis was performed using the VMD v.1.9 visualization

software (Humphrey et al., 1996). Distances and density maps were computed using analysis tools

(g_dist and g_densmap) in the GROMACS package (http://www.gromacs.org) (Van Der Spoel

et al., 2005).

Immunoprecipitation
Cells were lysed in 50 mM Tris (pH 8.0), 150 mM NaCl, 1% TRITON X-100 with protease inhibitor

cocktail (Roche). Anti-HA antibody (H6908; Sigma) or anti-V5 antibody (R96025; Invitrogen) was

bound to Dynabeads Protein G (Invitrogen) and incubated with the lysate to immunoprecipitate the

tagged proteins following manufacturer’s instructions. Cell lysates or IP fractions in Laemmli buffer

were analysed by Western blot. Each co-IP experiment was performed at least in triplicate, produc-

ing similar results in each experiment with a representative image presented.

Lipid binding assays
In vitro translated CIDEA-v5 was synthesized from pcDNA3.1/Cidea-v5 using the TnT Coupled

Wheat Germ Extract System (Promega) and verified by Western blot. The cell-free preparation of

CIDEA-v5 was probed with Membrane Lipid Strips (Echelon Biosciences) following the manufac-

turer’s instructions. Protein affinity for PA was examined in pull-down assays using PA covalently

linked to agarose beads (PA beads) (Manifava et al., 2001). Cells were lysed in 50 mM Tris-HCl pH

8.0, 50 mM KCl, 10 mM EDTA, 0.5% Nonidet P-40, and protease inhibitors. Lysates were sonicated

and centrifuged at 14000g prior to incubation with the PA beads as previously described

(Manifava et al., 2001). Competition experiments with soluble phospholipids were performed by

supplementing the cell lysate with 1,2-dilauroyl-sn-glycero-3-phosphate 12:0 PC (DLPA) or 1,2-

dilauroyl-sn-glycero-3-phosphocholine (DLPC) (Echelon Biosciences). Each PA-binding experiment
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was performed at least in triplicate, producing similar results in each experiment with a representa-

tive image presented.

CIDEA expression in yeast
The S. cerevisiae strains used in this study are listed in Supplementary file 1. To express CIDEA in

yeast, a codon-optimized version of the mouse Cidea gene was generated by artificial gene synthe-

sis (GeneOracle), and subcloned into pRS316-CYC1p. Wt BY4742 (Brachmann et al., 1998) and

genetically modified yeast strains were transformed with pRS316-CYC1p-Cidea and stable trans-

formants were selected in synthetic media minus uracil. Leucine selection was used for the expres-

sion of PAH1-7A with pHC204 (Choi et al., 2010).

Microscopy analysis of yeast lipid droplets and image processing
Yeast cells in synthetic media cultured overnight at 30˚C were diluted to OD600 = 0.1 and allowed

to grow until mid-logarithmic phase (OD600 = 0.5) before fixation with 4% formaldehyde and LD

staining with 2 mg/ml BODIPY 493/503. For the automatic quantification of LDs, random microscopy

images were acquired using a Delta Vision RT system (Applied Precision). Maximum intensity and

integrated intensity projections were created from the deconvolved image stacks using ImageJ. A

custom written CellProfiler pipeline (Carpenter et al., 2006) automatically identified individual yeast

cells and measured their number and size of circle shaped LDs. Supersized LDs were defined as the

LDs with a diameter above 0.5 mm.

Steady state and pulse labelling of phospholipids
To measure the total levels of phospholipids in yeast, cells were grown overnight in synthetic

medium at 30˚C in the presence of 20 mCi/mL [32P]-orthophosphate. Cultures were then diluted to

OD600 = 0.1 maintaining the label and were allowed to grow until OD600 = 0.5. To analyse de

novo synthesis of glycerophospholipids, cells were grown to OD600 = 0.5 in synthetic medium and

incubated with 100 mCi/mL [32P]-for 20 min. Lipids were extracted and quantified by two-dimen-

sional chromatography, as described by (Gaspar et al., 2006).
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