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Preface

The theory of cluster algebras, which has recently made its appearance on
the mathematical scene, is developing rapidly and finding application in many
different areas of mathematics. In view of the potential importance of this theory,
developed primarily by S. Fomin and A. Zelevinsky, it may be useful to give a
rather straightforward exposition of some of the basic ideas on cluster algebras.
This is the aim of the present volume. Although the foundational paper on
cluster algebras appeared as recently as 2002 the literature on this subject is
now becoming extensive. We have provided only a very basic introduction to
this literature in the present article.

In July 2003 I was invited to give a short course of three lectures in the
Mathematics Department of the University of Coimbra on the subject of cluster
algebras. The present exposition is an expanded version of these lectures.

I would like to thank the Centre of Mathematics of the University of Coim-
bra for their financial support, and to express my appreciation of the kind hos-
pitality and assistance given by Dr. Ana Paula Santana and other colleagues at
Coimbra.

R. W. Carter





Chapter 1

Clusters of finite type

1.1 Some background on root systems

We begin by recalling some basic properties of the root system of a finite
dimensional semisimple Lie algebra over the complex field, as this will be rele-
vant to the understanding of clusters of finite type. Let g be such a Lie algebra
and Φ be the root system of g. Φ is a set of vectors in a Euclidean space V
which span V but which are not linearly independent. A subset Π of funda-
mental roots may be chosen in Φ which form a basis for V and which has the
property that, if Π = {α1, ..., αl}, then each α ∈ Φ can be written in the form
α = n1α1 + ... + nlαl with each ni ∈ Z satisfying ni ≥ 0 for all i or ni ≤ 0 for
all i. Elements of Φ satisfying the former condition are called positive roots and
those satisfying the latter condition are negative roots. We have

Φ = Φ+ ∪ Φ−

where Φ+, Φ− are the positive and negative roots respectively.
Let si : V → V be the reflection in the hyperplane orthogonal to αi. Then

we have

si(αj) = αj −Aijαi

where

Aij =
2〈αi, αj〉
〈αi, αi〉

.

The numbers Aij lie in Z and satisfy Aii = 2 for all i and Aij ≤ 0 for all i 6= j.
The matrix

A = (Aij)

is an l× l matrix over Z called the Cartan matrix of g. Each of the fundamental
reflections si satisfies si(Φ) = Φ.

1



2 Chapter 1. Clusters of finite type

The group W of orthogonal transformations of V generated by s1, ..., sl is
called the Weyl group. W is a finite group which is generated by s1, ..., sl as a
Coxeter group. This means that, if nij is the order of sisj when i 6= j, W can
be described as an abstract group by generators and relations

W = 〈s1, ..., sl; s
2
i = 1, (sisj)

nij = 1 for i 6= j〉.

We have w(Φ) = Φ for each w ∈ W . Let n(w) be the number of α ∈ Φ+ such
that w(α) ∈ Φ−. Then it is known that n(w) = l(w), where l(w) is the shortest
length of any expression of w as a product of fundamental reflections si.

These basic properties of root systems can be found in any systematic
exposition of the theory of semisimple Lie algebras. We shall introduce further
properties of the root system and Weyl group as we need them in connection
with the properties of clusters.

1.2 The PL-reflections σi

Fomin and Zelevinsky modified the classical theory of roots, reflections and
the Weyl group by replacing the linear map si by a piecewise-linear map σi. We
define the subset Φ≥−1 of Φ by

Φ≥−1 = Φ+ ∪ {−Π}.

We then define σi : Φ≥−1 → Φ≥−1 as follows. For each α ∈ Φ≥−1 we define
σi(α) by

σi(α) =

{
si(α) if si(α) ∈ Φ≥−1

α otherwise.

We note that if α ∈ Φ+ then si(α) ∈ Φ≥−1. On the other hand

si(−αi) = αi ∈ Φ≥−1

si(−αj) = −αj ∈ Φ≥−1 if Aij = 0
si(−αj) 6∈ Φ≥−1 if j 6= i and Aij 6= 0.

Now the map σi : Φ≥−1 → Φ≥−1 is an involution. To see this we check
σi(σi(α)) = α for all α ∈ Φ≥−1. If si(α) ∈ Φ≥−1 we have

σi(σi(α)) = σi(si(α)) = si(si(α)) = α.

On the other hand, if si(α) 6∈ Φ≥−1 then

σi(σi(α)) = σi(α) = α.

Thus we have σ2
i = 1.
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We also note that if Aij = 0 then σiσj = σjσi. This follows from the
relations

σiσj(α) = sisj(α) if α ∈ Φ+

σiσj(−αi) = αi
σiσj(−αj) = αj
σiσj(−αk) = −αk if k 6= i, j.

1.3 A dihedral group of PL-transformations

We now recall the definition of the Dynkin diagram attached to the Cartan
matrix A = (Aij). This is a graph with vertices 1, ..., l corresponding to the
simple roots Π = {α1, ..., αl}. For i 6= j the vertices i, j are joined by nij edges
where nij is the non-negative integer defined by

nij = AijAji.

In fact nij always takes one of the values 0, 1, 2, 3.
Let ∆ be the Dynkin diagram of the Cartan matrix A. Then the semisimple

Lie algebra g with Cartan matrix A is simple if and only if ∆ is connected.
Moreover there is a bijection between simple non-trivial Lie algebras of finite
dimension over C and the possible connected Dynkin diagrams. This is a very
useful parametrisation of the simple Lie algebras. The theory of simple Lie
algebras, due to E. Cartan and W. Killing, shows that the possible connected
Dynkin diagrams are the following:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
A1 A2 A3 A4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
B2 B3 B4

> > >

◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
C3 C4

< <

◦ ◦
◦

◦
◦ ◦ ◦

◦

◦
◦ ◦ ◦ ◦

◦

◦
· · ·

D4 D5 D6

◦ ◦ ◦ ◦◦ ◦
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦E6 E7 E8

◦ ◦ ◦ ◦<
F4

◦ ◦<
G2

The meaning of the arrows on the double and triple edges is as follows. If nij = 2
or 3 we have {Aij , Aji} = {−1,−2} or {−1,−3} respectively. Suppose we are
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in the former case. Then we either have Aij = −1, Aji = −2 or Aij = −2,
Aji = −1. Since

Aij = 2
〈αi, αj〉
〈αi, αi〉

the former case gives

2
〈αi, αj〉
〈αi, αi〉

= −1 2
〈αj , αi〉
〈αj , αj〉

= −2

and so
〈αi, αi〉 = 2〈αj , αj〉.

The latter case gives
〈αj , αj〉 = 2〈αi, αi〉.

We place an arrow on the edge joining i, j pointing from the longer root toward
the shorter root. Thus in the former case above we have an arrow ◦ ◦>

i j
and in the latter case we have ◦ ◦<

i j
The arrow can then be considered as

an inequality sign relating the lengths of the roots αi, αj , viz |αi| > |αj | or

|αi| < |αj | where |αi| =
√
〈αi, αi〉. In general the arrow points from i towards

j when |Aij | < |Aji|.
Now each connected Dynkin diagram ∆ can be decomposed into the dis-

joint union of two subsets
∆ = I+ ∪ I−

with the property that Aij = 0 for all i, j ∈ I+ with i 6= j and Aij = 0 for all
i, j ∈ I− with i 6= j. For example the Dynkin diagram of type E8 has such a
decomposition

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

+ − + − + − +

−
where I+ is the set of vertices marked + and I− the set marked −.

We have sisj = sjsi for all i, j ∈ I+ and so we may define an element
t+ ∈W by

t+ =
∏
i∈I+

si.

The fact that the si for i ∈ I+ commute shows that t+ is uniquely determined
by I+. Also we have (t+)2 = 1. Similarly we may define t− ∈W by

t− =
∏
i∈I−

si.

t− is uniquely determined by I−, and satisfies (t−)2 = 1. Thus the subgroup
〈t+, t−〉 of W generated by t+ and t− is a dihedral group, being generated by
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two involutions. The product t+t− is an example of a Coxeter element of the
Weyl group W , i.e a product of a complete set of fundamental reflections. All
Coxeter elements of W have the same order h, given by

h = |Φ|/|Π|.

h is called the Coxeter number of W . The dihedral group 〈t+, t−〉 = 〈t+t−, t−〉
has order 2h since

(t−)−1(t+t−)(t−) = t−t+ = (t+t−)−1.

Now Fomin and Zelevinsky introduced a PL-analogue of the linear trans-
formations t+ and t−. Let

τ+ : Φ≥−1 → Φ≥−1 , τ− : Φ≥−1 → Φ≥−1

be defined by

τ+ =
∏
i∈I+

σi , τ− =
∏
i∈I−

σi.

Since the factors σi of τ+ all commute with one another we have τ2
+ = 1.

Similarly we have τ2
− = 1. Thus τ+ and τ− are permutations of Φ≥−1 which are

both involutions. Let

D = 〈τ+, τ−〉

be the subgroup of the group of permutations of Φ≥−1 generated by τ+ and
τ−. D is a dihedral group, being generated by two involutions. The order of the
group D is twice the order of the element τ+τ−.

In order to describe the order of this element we recall a further idea from
Lie theory. The Weyl group W contains a unique element w0 with the property
that w0(Φ+) = Φ−. We have l(w0) = |Φ+| and w0 is the unique element of W
of maximal length. We have w2

0 = 1. In fact w0(Π) = −Π and so there is a map
Π → Π given by αi → −w0(αi) which induces a graph automorphism on the
Dynkin diagram ∆. This automorphism has order either 1 or 2, and is called
the opposition involution on ∆.

It was shown by Fomin and Zelevinsky that the order of τ+τ− is

h+ 2 if −w0 6= 1
(h+ 2)/2 if −w0 = 1.

Here h is the Coxeter number of W defined above. Fomin and Zelevinsky also
show that each D-orbit of Φ≥−1 intersects −Π and that the intersection of a
D-orbit with −Π is a (−w0)-orbit on −Π, i.e an orbit on −Π of the opposition
involution −w0.
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1.4 The compatibility degree

Following Fomin and Zelevinsky we now define a map

Φ≥−1 × Φ≥−1 −→ Z≥0

α , β −→ (α‖β)

called the compatibility degree. Let Q = ZΠ be the root lattice, i.e the set of
linear combinations

∑
miαi with mi ∈ Z. If α =

∑
miαi we write [α : αi] = mi.

This is the multiplicity of αi in α.
It is possible, given α, β ∈ Φ≥−1, to define (α‖β) by the following rules.

(i) (−αi‖β) =

{
[β : αi] if [β : αi] ≥ 0

0 otherwise.
In fact the only element β ∈ Φ≥0 for which [β : αi] is negative is β = −αi.

(ii) (τ+α‖τ+β) = (α‖β) for all α, β ∈ Φ≥−1 .

(iii) (τ−α‖τ−β) = (α‖β) for all α, β ∈ Φ≥−1 .

Rules (i), (ii), (iii) will determine (α‖β) uniquely since each α ∈ Φ≥−1 lies in
the same D-orbit as some −αi ∈ −Π. Moreover if −αi and −αi both lie in
this D-orbit then we have −w0(αi) = αi, as above. Thus αi, αi are images
under the opposition involution and the values of (α‖β) obtained by using these
alternatives will agree. Thus the compatibility degree (α‖β) of α and β is well
defined. It is shown by Fomin and Zelevinsky, but is not obvious, that

(α‖β) = (β∨‖α∨) for all α, β ∈ Φ≥−1 ,

where α∨ denotes the root α∨ = 2α
〈α,α〉 in the dual root system.

1.5 Clusters in the set Φ≥−1

A subset of Φ≥−1 is called compatible if any pair α, β of its elements satisfy
(α‖β) = 0. A maximal compatible subset of Φ≥−1 is called a cluster. We shall
state a number of basic properties on clusters proved by Fomin and Zelevinsky.

Cluster property 1. Any two clusters in Φ≥−1 have the same number of elements.
This number is l = |Π|. Each cluster is a Z-basis for the root lattice Q = ZΠ.
{−α1, ...,−αl} is an example of a cluster.

Cluster property 2. There is a bijective correspondence between clusters for
Φ≥−1 containing −αi and clusters for Φ≥−1(∆− {i}).

In the latter set we are considering clusters for the root system whose
Dynkin diagram is obtained from ∆ by omitting vertex i. The remaining graph
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may be disconnected, but all the concepts we have used based on connected
Dynkin diagrams can be extended in a rather obvious way to disconnected
diagrams. The bijection in the above result removes −αi from C, i.e maps C to
C − {−αi}.

The next result gives us the total number of clusters in Φ≥−1. In order
to describe this we need some further ideas from the theory of Weyl groups
and root systems. Suppose W is a Weyl group acting on the Euclidean space V
spanned by the root system Φ. Thus W acts on the space P (V ) of all polynomial
functions on V , and the subspace P (V )W of W -invariant polynomials turns out
to be isomorphic, by a theorem of Chevalley, to a polynomial ring R[I1, ..., Il] in l
variables. The generators I1, ..., Il may all be chosen as homogeneous polynomial
invariants of degrees d1, d2, ..., dl respectively. Although the basic polynomial in-
variants I1, ..., Il are not uniquely determined, their degrees d1, ..., dl are unique.
They are called the degrees of the basic polynomial invariants of W .

Cluster property 3. The number of clusters in Φ≥−1 is∏l
i=1(di + h)

|W |
.

Note. It is known that

l∏
i=1

di = |W |, thus the above formula could also be written

l∏
i=1

di + h

di
.

In the papers published so far by Fomin and Zelevinsky only a case by case
proof of this result is available.

Cluster property 4. Given any cluster C in Φ≥−1 and any α ∈ C there exists a
unique cluster C ′ with C ∩ C ′ = C − {α}.

This property is called the replacement property of clusters. It enables us
to define a graph called the exchange graph for clusters. The vertices are the
clusters and two vertices are joined by an edge if and only if their corresponding
clusters C, C ′ satisfy

|C ∩ C ′| = |C| − 1.

Finally we describe a result giving rise to what is called the cluster expan-
sion of any element of the root lattice Q = ZΠ.

Cluster property 5. Each element y of the root lattice Q has a unique expansion

y =
∑

α∈Φ≥−1

mαα
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with mα ≥ 0 in Z, such that all α with mα > 0 are compatible.
Thus the clusters in Φ≥0 have some very striking properties. In the next

section we shall illustrate these results by considering the example of a root
system of type A2.

1.6 Clusters in type A2

The Cartan matrix of type A2 is

A =

(
2 −1
−1 2

)
and the Dynkin diagram is ◦ ◦

1 2
. We shall write ∆ = I+ ∪ I− where I+ =

{1}, I− = {2}. Then τ+ and τ− give the following involutary permutations of
Φ≥−1:

τ+ = (−α1 α1)(−α2)(α2 α1 + α2)
τ− = (−α1)(−α2 α2)(α1 α1 + α2)

where
Φ≥−1 = {−α1,−α2, α1, α2, α1 + α2}.

The product τ+τ− (in which τ+ is performed first) is given by

τ+τ− = (−α1 α1 + α2 − α2 α2 α1).

Thus τ+τ− has order 5 and the group D = 〈τ+, τ−〉 is a dihedral group of order
10.

The compatibility degree (α‖β) is given by the following symmetric matrix,
where α describes the row and β the column of the matrix.

−α1 − α2 α1 α2 α1 + α2

−α1

−α2

α1

α2

α1 + α2


0 0 1 0 1

0 0 0 1 1

1 0 0 1 0

0 1 1 0 0

1 1 0 0 0


The clusters may be identified by inspecting this matrix. They are

{−α1,−α2} {−α1, α2} {−α2, α1} {α1, α1 + α2} {α2, α1 + α2}.

The Weyl group W is isomorphic to S3, and its basic polynomial invariants
have degrees 2 and 3. The Coxeter number is given by h = 3. Thus the Fomin-
Zelevinsky formula for the number of clusters is

(2 + 3)(3 + 3)

2.3
= 5.
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The exchange graph for clusters is a pentagon, given below.

◦

◦

◦

◦ ◦

{α1,−α2}

{α1, α1 + α2} {α1 + α2, α2}

{−α1,−α2}

{−α1, α2}

Finally the cluster expansion in the root lattice can be described with the help
of the following figure.

−α1 α1

α1 + α2

−α2

α2

These five half-lines through the origin divide the set of points not lying on
any half-line into five chambers. Points in such a chamber can be expressed as
positive combinations of the roots on the two walls of the chamber concerned.
Points on a half-line are positive multiples of the root along that half-line. Finally
the zero vector gives the empty sum. Thus any y ∈ Q is a non-zero positive
combination of one of the following sets of vectors:

{−α1,−α2}
{−α1, α2}
{α2, α1 + α2}
{α1 + α2, α1}
{α1,−α2}
{−α1}
{−α2}
{α1}

{α1 + α2}
{α2}
∅
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1.7 Clusters in type Al

There is a pleasant geometrical description of the clusters of type Al. We
begin with a regular (l+ 3)-gon. We draw a chord in this figure joining a pair of
vertices which have a common neighbouring vertex, and label this chord by the
root −α1. We then draw a succession of chords labelled by −α2,−α3, ...,−αl
such that consecutive chords have a common vertex, as shown in the figures.

◦

◦

◦

◦
◦

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦

◦ ◦

◦

A1 A2 A3 A4

−α1

−α1

−α2

−α1

−α2

−α3

−α1

−α2

−α3

−α4

This set of chords {−α1, ...,−αl} of the regular (l + 3)-gon is called the snake.
We now consider the additional chords of the (l+ 3)-gon, not in the snake.

Each such chord will cross certain chords in the snake. In fact each such chord
can be labelled by one of the positive roots αi + αi+1 + ... + αj of Al, where
i ≤ j, such that the given chord crosses the chord −αk in the snake if and only
if i ≤ k ≤ j. In this way the chords of the (l + 3)-gon can be parametrised by
elements of Φ≥−1 = Φ+ ∪ (−Π). For example the chords of a regular pentagon
can be parametrised by elements of Φ≥−1 of type A2 as shown.

◦

◦

◦

◦ ◦

−α1

α1

−α2α2

α1+α2

The clusters then correspond to the maximal sets of non-crossing chords. For
example the 5 clusters in A2 correspond to the 5 non-crossing pairs of chords

{−α1,−α2} {−α1, α2} {α1 + α2, α2} {α1 + α2, α1} {−α2, α1}.

We shall now describe how the clusters in A3 can be obtained in this way.
The Weyl group of A3 is isomorphic to the symmetric group S4, and the degrees
of the 3 basic polynomial invariants are 2, 3, 4. The Coxeter number of A3 is 4.
Thus the number of clusters is

6.7.8

2.3.4
= 14.

For each of the 14 clusters we shall describe the cluster in the form w(−Π) for
some w which is a word in σ1, σ2, σ3. We shall also give the geometrical figure
consisting of 3 non-crossing chords of a regular hexagon corresponding to the
cluster.
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Cluster w(−Π) Hexagon

1. {−α1,−α2,−α3} −Π
◦

◦
◦

◦
◦
◦

2. {α1,−α2,−α3} σ1(−Π)
◦

◦
◦

◦
◦
◦

3. {−α1, α2,−α3} σ2(−Π)
◦

◦
◦

◦
◦
◦

4. {−α1,−α2, α3} σ3(−Π)
◦

◦
◦

◦
◦
◦

5. {α1 + α2, α2,−α3} σ2σ1(−Π)
◦

◦
◦

◦
◦
◦

6. {α1, α1 + α2,−α3} σ1σ2(−Π)
◦

◦
◦

◦
◦
◦

7. {α1,−α2, α3} σ3σ1(−Π)
◦

◦
◦

◦
◦
◦

8. {−α1, α2 + α3, α3} σ3σ2(−Π)
◦

◦
◦

◦
◦
◦

9. {−α1, α2, α2 + α3} σ2σ3(−Π)
◦

◦
◦

◦
◦
◦

10. {α1, α1 + α2, α1 + α2 + α3} σ1σ2σ3(−Π)
◦

◦
◦

◦
◦
◦

11. {α1 + α2, α2, α2 + α3} σ2σ3σ1(−Π)
◦

◦
◦

◦
◦
◦

12. {α1, α1 + α2 + α3, α3} σ3σ1σ2(−Π)
◦

◦
◦

◦
◦
◦

13. {α1 + α2 + α3, α2 + α3, α3} σ3σ2σ1(−Π)
◦

◦
◦

◦
◦
◦

14. {α1 + α2, α1 + α2 + α3, α2 + α3} σ2σ3σ1σ2(−Π)
◦

◦
◦

◦
◦
◦
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The exchange graph for the clusters in A3 is as shown below. The vertices are
labelled 1− 14 as in the above table.

◦6

◦2

◦
1

◦

◦ ◦8

◦4

◦
7

◦

◦
10

◦
14

◦
13

◦12

◦
11

5 9

3

1.8 Clusters in type Cl

We recall that the Dynkin diagram of Cl is

◦ ◦ ◦ ◦ ◦
1 2 3 l − 1 l

<

In order to describe the clusters of type Cl we begin with a regular (2l + 2)-
gon. We distinguish between two different types of chord of this figure - those
which are diameters and those which are not. We note that the chords which
are non-diameters occur in symmetric pairs. We begin, as in type Al, with a
set of chords which form a snake. This involves 2l − 1 chords, one of which is
a diameter and the remaining 2l − 2 give l − 1 pairs of symmetric chords. We
give the non-diameters in a symmetric pair the same label −αi, i = 1, ..., l − 1,
and label the diameter by −αl. We illustrate this in the diagram for the snake
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of type C3.

−α1

−α2

−α3

−α2

−α1

Each chord not in the snake is labelled by a positive root of Cl corresponding
to the chords −αi it crosses. Pairs of symmetric non-diameters will be labelled
by the same positive root of Cl. For example the four diameters of the figure
for C3 are labelled by the roots −α3, α3, 2α2 + α3, 2α1 + 2α2 + α3 and the 8
pairs of symmetric non-diameters are labelled by the roots

−α1, −α2, α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3, α1 + 2α2 + α3.

In this way we obtain a bijection between Φ≥−1 and the set which is the union
of the diameters and the pairs of symmetric non-diameters. Then each triangu-
lation of the given figure by non-crossing chords gives rise to a cluster, just as
in type Al.

We illustrate this procedure in type C2.

◦ ◦<
1 2

We begin with a regular hexagon, and have a snake

−α1

−α1

−α2

The remaining chords are labelled by the positive roots α1, α2, α1 +α2, 2α1 +
α2.
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The clusters are given in the following table.

Cluster Triangulation

{−α1,−α2}

{α1,−α2}

{α1, 2α1 + α2}

{α1 + α2, 2α1 + α2}

{α1 + α2, α2}

{−α1, α2}

We note that the long roots in Cl correspond to the diameters in the (2l+2)-gon
and the short roots in Cl correspond to the symmetric pairs of non-diameters.

1.9 Clusters in type Bl

The Dynkin diagram of Bl is

◦ ◦ ◦ ◦ ◦
1 2 3 l − 1 l

>

which differs from that of Cl only in the direction of the arrow joining l− 1 and
l. The clusters of type Bl are obtained from a regular (2l + 2)-gon, as in type
Cl. The difference is that the diameters of the (2l + 2)-gon correspond to the
short roots of Bl and the symmetric pairs of non-diameters correspond to the
long roots of Bl. Every positive long root of Cl has form

l−1∑
i=1

miαi + αl

where each mi is divisible by 2. This gives rise to a positive short root of Bl

l−1∑
i=1

1

2
miαi + αl.
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On the other hand each positive short root of Cl has form

l−1∑
i=1

miαi +mlαl,

and gives a positive long root of Bl

l−1∑
i=1

miαi + 2mlαl.

When we apply this map from long roots of Cl to short roots of Bl and short
roots of Cl to long roots of Bl the clusters of type Cl are transformed into
clusters of type Bl.

For example the clusters of B2 which arise from the 6 clusters of C2 listed
in Section 1.8 are

{−α1,−α2} {α1,−α2} {α1, α1 + α2} {α1 + 2α2, α1 + α2}

{α1 + 2α2, α2} {−α1, α2}.

1.10 Clusters in type Dl

We recall that the Dynkin diagram of Dl is

◦ ◦ ◦ ◦
◦

1 2 3 l−2

l

l−1

◦

The clusters of type Dl are obtained from a regular 2l-gon. We have diameters
and symmetric pairs of non-diameters, just as in Sections 1.8 and 1.9, but this
time we take two diameters joining each pair of opposite points. These diameters
could be distinguished by drawing them in different colours. We shall find it
convenient to represent one by a continuous line and the other by a dotted line.
One diameter involves the fundamental root αl−1 and the other involves αl.
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We begin as before with a snake, which we illustrate in type D4.

−P1P3

−P2P2

−P3P1

P4

−P4

−α4

−α3

−α1

−α1

−α2

−α2

The snake contains both diameters joining P2 and its opposite vertex −P2. The
positive roots corresponding to the remaining diameters and symmetric pairs of
chords are as follows.

Diameter or symmetric pair Root

(P1,−P3) (−P1, P3) −α1

(P2,−P3) (−P2, P3) −α2

(P2,−P4) (−P2, P4) α1

(P1,−P2) (−P1, P2) α2

(P2, P4) (−P2,−P4) α1 + α2

(P1, P3) (−P1,−P3) α2 + α3 + α4

(P3,−P4) (−P3, P4) α1 + α2 + α3 + α4

(P1, P4) (−P1,−P4) α1 + 2α2 + α3 + α4

(P2,−P2) −α4

(P2,−P2)′ −α3

(P3,−P3) α3

(P3,−P3)′ α4

(P1,−P1) α2 + α3

(P1,−P1)′ α2 + α4

(P4,−P4) α1 + α2 + α3

(P4,−P4)′ α1 + α2 + α4

Diameters (Pi,−Pi) are represented by a continuous line and (Pi,−Pi)′ by a
dotted line. Two diameters of the same type are not regarded as crossing. This
is why (P3,−P3) corresponds to the root α3 as it crosses diameter (P2,−P2)′

but not diameter (P2,−P2). When a diameter crosses a symmetric pair of non-
diameters the corresponding root is only taken once. This is why (P1,−P1)
corresponds to the root α2 + α3 rather than 2α2 + α3.

In order to obtain the clusters we again take triangulations of the regular
2l-gon by non-crossing chords. We recall that two diameters of the same type
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are not regarded as crossing, so can both be taken, and we may also take both
diameters joining a given pair of opposite vertices, as these are not regarded as
crossing. We give as an example the triangulations giving the 14 clusters of type
D3. (We must of course get 14 since A3 has 14 clusters and D3 = A3).

14 triangulations of a hexagon, giving clusters of D3
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1.11 The number of clusters in each type

To conclude Chapter 1 we give the number of clusters in Φ≥−1 for each
type of simple root system. This may be derived from the general formula for
the number of clusters given in Section 1.5, which depends on the degrees of the
basic polynomial invariants of the Weyl group.

Type Number of clusters

Al
1

l + 2

(
2l + 2
l + 1

)
Bl

(
2l
l

)
Cl

(
2l
l

)
Dl

3l − 2

l

(
2l − 2
l − 1

)
G2 8
F4 105

E6 833

E7 4160

E8 25080

We note that the numbers of clusters in the Al series are the Catalan numbers

2, 5, 14, 42, 132, ...



Chapter 2

Cluster algebras

In this chapter we shall describe how clusters can be defined in a more
general context, following Fomin and Zelevinsky, and how one can define a
corresponding family of commutative algebras called cluster algebras.

2.1 Exchange patterns

We begin with a graph Tl called the l-regular tree. This graph has l edges
issuing from each vertex. We illustrate the examples T1, T2, T3.

T1 ◦ ◦1

T2

T3

◦ ◦ ◦ ◦ ◦ ◦1 2 1 2 1

◦ ◦
◦◦

◦ ◦

1
2

3

2

3

The edges of Tl will be labelled 1, 2, ..., l with one edge of each of these types
coming from each vertex.

For each vertex t of Tl we suppose we are given indeterminates x1(t), x2(t),
..., xl(t). The l-tuple x1(t), ..., xl(t) is called a cluster. Clusters at neighbouring

19
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vertices are related. We suppose that for each t ∈ Tl and each j = 1, ..., l a
monomial

Mj(t) = x1(t)b1 ... xl(t)
bl

is given, with bi ∈ Z and bi ≥ 0 for each i. If t, t′ are vertices of Tl joined by an
edge of type j the clusters at t and t′ are related by the conditions

xi(t) = xi(t
′) if i 6= j

xj(t)xj(t
′) = Mj(t) +Mj(t

′).

Thus if we know the monomials Mj(t) for all pairs (t, j) we may obtain the
cluster at each point of Tl starting from the cluster at the initial point t.

The family of monomialsMj(t) is called an exchange pattern if the following
four axioms are satisfied.

(i) Mj(t) does not involve xj(t), i.e bj = 0.

(ii) If t, t′ are vertices of Tl joined by an edge of type j then Mj(t) and Mj(t
′)

cannot both involve xi for any i = 1, ..., l.

(A consequence of this axiom is that Mj(t)/Mj(t
′) determines both Mj(t)

and Mj(t
′).)

(iii) Suppose t, t′, t′′ are vertices of Tl such that t, t′ are joined by an edge of
type i and t′, t′′ are joined by an edge of type j where i 6= j. Then Mi(t)
involves xj if and only if Mj(t

′) involves xi.

(iv) Suppose t, t′ are vertices of Tl joined by an edge of type j and let i ∈
{1, ..., l} with i 6= j. Let u be the vertex of Tl joined to t by an edge of
type i and u′ be joined to t′ by an edge of type i. Then Mi(t

′)/Mi(u
′)

is obtained from Mi(t)/Mi(u) by replacing xj by M0/xj , where M0 is
obtained from Mj(t) +Mj(t

′) by replacing xi by 0.

◦ ◦ ◦ ◦
u i t j t′ i u′

(The following comment on axiom (iv) turns out to be useful. We know
that the monomials Mj(t),Mj(t

′) do not both involve xi. If one of them involves
xi then xj is replaced by Mj(v)/xj where Mj(v) is the other one. If neither of
Mj(t),Mj(t

′) involve xi then neither of Mi(t),Mi(u) involve xj , by axiom (iii).
So in this case we have

Mi(t
′)/Mi(u

′) = Mi(t)/Mi(u)

hence Mi(t
′) = Mi(t) and Mi(u

′) = Mi(u).)
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The significance of these four axioms is as follows. Suppose we are given
a single vertex t of Tl, the monomials Mj(t) for j = 1, ..., l and, for each j, the
monomial Mj(t

′) where t′ is the vertex of Tl joined to t by an edge of type j.
Thus we are given 2l monomials associated with the vertex t. For example in
the case l = 3 we have the 6 monomials

M1(t) , M2(t) , M3(t) , M1(t1) , M2(t2) , M3(t3)

where t1, t2, t3 are as shown in the figure

◦ ◦

◦

◦

t1 1 t

M1(t1) M1(t)

M2(t)

M2(t2)2

M3(t)

M3(t3)

3

t2

t3

Then the axioms for an exchange pattern enable us to obtain these 2l monomials
associated with any neighbouring vertex t′. For suppose t′ is joined to t by
an edge of type j. Then Mj(t

′) and Mj(t) are already known. Thus suppose
i ∈ {1, ..., l} satisfies i 6= j. Suppose u is the vertex joined to t by an edge of
type i and u′ is the vertex joined to t′ by an edge of type i. Then Mi(t

′)/Mi(u
′)

can be obtained from Mi(t)/Mi(u) by axiom (iv). This implies that Mi(t
′) and

Mi(u
′) are known. Thus the 2l monomials associated with t′ are determined.
Also the cluster at t′ is determined by the cluster at t and the given set of

2l monomials associated with t. For we have

xj(t
′) =

Mj(t) +Mj(t
′)

xj(t)

xi(t
′) = xi(t) for i 6= j.

Thus information can be propagated around the graph Tl starting from infor-
mation associated with just one vertex of Tl.

2.2 Matrix mutation

We now describe the propagation of information around the graph Tl in
terms of matrices. We define an l × l matrix B(t) associated with a vertex t of
Tl. For each edge t t′j

involving t let

Mj(t)

Mj(t′)
=

l∏
i=1

x
bij(t)
i
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Then bjj(t) = 0 and we have

Mj(t) =
∏
i

bij(t)>0

x
bij(t)
i

Mj(t
′) =

∏
i

bij(t)<0

x
−bij(t)
i

Let B(t) be the l × l matrix over Z given by B(t) = (bij(t)). Then we have

bii(t) = 0 for all i
bij(t) > 0 if and only if bji(t) < 0.

These conditions are given by axioms (i) and (iii) for an exchange pattern. A
matrix satisfying these two conditions will be called sign skew-symmetric. Thus
for each vertex t of Tl we have a sign skew-symmetric matrix B(t). We consider
the relation between B(t) and B(t′) where t′ is a neighbouring vertex of Tl
joined to t by an edge of type j. We shall write, for convenience,

B(t) = (bij) B(t′) = (b′ij).

Suppose i ∈ {1, ..., l} satisfies i 6= j and let u be the vertex joined to t by an
edge of type i and u′ be the vertex joined to t′ by an edge of type i. Thus we
have a diagram

u t t′ u′
i j i

We have
Mi(t

′)

Mi(u′)
=

∏
k

x
b′ki

k

Mi(t)

Mi(u)
=

∏
k

xbki

k

In axiom (iv) for an exchange pattern we replace xj in Mi(t)/Mi(u). We have

xj(t)xj(t
′) =

∏
k

bkj>0

x
bkj

k +
∏
k

bkj<0

x
−bkj

k

Suppose bij 6= 0. Then xj is replaced in axiom (iv) by M/xj where M is the
monomial not involving xi. If bij > 0 then

M =
∏
k

bkj<0

x
−bkj

k
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and if bij < 0 then

M =
∏
k

bkj>0

x
bkj

k .

In either case we have
M =

∏
k

bkjbij<0

x
|bkj |
k

We now apply axiom (iv) and replace xj by M/xj in Mi(t)/Mi(u). The result
is equal to Mi(t

′)/Mi(u
′). Hence

∏
k

k 6=i,j

x
b′ki

k · x
b′ji
j =

∏
k

k 6=i,j

xbki

k

∏
k

bkjbij<0

x
|bkj |bji
k

x
bji
j

Comparing exponents we get
b′ji = −bji.

If k 6= i, j, then

b′ki =

{
bki if bkjbij ≥ 0
bki + |bkj |bji if bkjbij < 0

The latter equation can be expressed as follows without a split into two cases:

b′ki = bki +
|bkj |bji + bkj |bji|

2
if k 6= i, j.

For if bkjbij ≥ 0 then bkj and bij have the same sign so bkj and bji have opposite
signs and the terms |bkj |bji and bkj |bji| cancel. If bkjbij < 0 then bkj , bji have
the same sign and so the terms |bkj |bji and bkj |bji| are equal.

Thus we have obtained the following rule for matrix mutation.

b′ki = −bki if k = j or i = j

b′ki = bki +
|bkj |bji + bkj |bji|

2
if k 6= j and i 6= j.

Although we have assumed bij 6= 0 we note that this relation holds when bij = 0
also. For axiom (iv) becomes particularly simple in this case and gives

Mi(t
′)

Mi(u′)
=
Mi(t)

Mi(u)
.

This implies that b′ki = bki if k 6= j and i 6= j. We say that B(t′) is obtained
from B(t) by matrix mutation.

It is evident that if, conversely, we are given l× l matrices B(t) over Z for
each t ∈ Tl satisfying:
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(a) B(t) is sign skew-symmetric for each t ∈ Tl,

(b) the B(t) satisfy the rule for matrix mutation,

then these matrices determine an exchange pattern.

2.3 Some examples

Let Φ be a root system with Cartan matrix A = (aij). Let B = (bij) be
any matrix satisfying:

B is sign skew-symmetric,

|bij | = −aij if i 6= j.

If we put B(t) = B for some vertex t ∈ Tl and obtain B(t′) for all other vertices
by matrix mutation then the B(t′) are sign skew-symmetric also, and so we
have an exchange pattern. This follows from the fact that the Cartan matrix A
is symmetrisable, i.e there exists a diagonal matrix D with positive coefficients
such that DA is symmetric. Then DB is skew-symmetric. It follows from the
mutation rules that DB(t′) is skew-symmetric for all t′ ∈ Tl, and so B(t′) is
sign skew-symmetric.

Type A2.

The Cartan matrix is

A =

(
2 −1
−1 2

)
.

We choose

B =

(
0 1
−1 0

)
.

Then B is sign skew-symmetric with |bij | = −aij for i 6= j. We begin with a
vertex t = t0 with cluster (x1, x2). Let t1 be the vertex joined to t by an edge
of type 1. Then the cluster at t1 is (x3, x2) where x1x3 = 1 + x2. The mutated
matrix is

B(t1) =

(
0 −1
1 0

)
.

Let t2 be the vertex joined to t1 by an edge of type 2. Then the cluster at t2 is
(x3, x4) where x2x4 = 1 + x3. Continuing in this way, using vertices

t = t0, t1, t2, t3, ...

related by

t = t0 t1 t2 t3 t4
1 2 1 2
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we have clusters

x(t0) = (x1, x2)

x(t1) =

(
1 + x2

x1
, x2

)
x(t2) =

(
1 + x2

x1
,

1 + x1 + x2

x1x2

)
x(t3) =

(
1 + x1

x2
,

1 + x1 + x2

x1x2

)
x(t4) =

(
1 + x1

x2
, x1

)
x(t5) = (x2, x1)

Thus the cluster (x1, x2), regarded as an unordered set, is the same at t5 as at
t0.

◦ ◦ ◦ ◦ ◦ ◦
t0 t1 t2 t3 t4 t5

(x1, x2) (
1+x2
x1

, x2) (
1+x2
x1

,
1+x1+x2

x1x2
) (

1+x1
x2

,
1+x1+x2

x1x2
) (

1+x1
x2

, x1) (x2, x1)

The clusters may therefore be regarded as sets defined on the quotient graph of
T2 which is a pentagon.

◦◦

◦

◦

◦

t1t5 = t0

t4

t3

t2

The mutated matrices are

B(t0) =

(
0 −1
1 0

)
, B(t1) =

(
0 1
−1 0

)
, B(t2) =

(
0 −1
1 0

)
,

B(t3) =

(
0 1
−1 0

)
, B(t4) =

(
0 −1
1 0

)
, B(t5) =

(
0 1
−1 0

)
etc.

Type B2

◦ ◦>
1 2
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The Cartan matrix in this case is

A =

(
2 −1
−2 2

)
.

We choose

B =

(
0 1
−2 0

)
.

This has the required properties. We take vertices t = t0, t1, t2, t3, t4, ... joined
by edges 1 and 2 alternately.

◦ ◦ ◦ ◦ ◦
t0 t1 t2 t3 t4

1 2 1 2

We begin with a cluster (x1, x2) at t0. Then the clusters at subsequent vertices
are

x(t0) = (x1, x2)

x(t1) = (x3, x2)

x(t2) = (x3, x4)

x(t3) = (x5, x4)

x(t4) = (x5, x6)

x(t5) = (x7, x6)

x(t6) = (x7, x8)

where

x1x3 = 1 + x2
2

x2x4 = 1 + x3

x3x5 = 1 + x2
4

x4x6 = 1 + x5

x5x7 = 1 + x2
6

x6x8 = 1 + x7.
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Thus we obtain

x(t0) = (x1, x2)

x(t1) =

(
1 + x2

2

x1
, x2

)
x(t2) =

(
1 + x2

2

x1
,

1 + x2
2 + x1

x1x2

)
x(t3) =

(
1 + x2

1 + 2x1 + x2
2

x1x2
2

,
1 + x2

2 + x1

x1x2

)
x(t4) =

(
1 + x2

1 + 2x1 + x2
2

x1x2
2

,
1 + x1

x2

)
x(t5) =

(
x1 ,

1 + x1

x2

)
x(t6) = (x1, x2)

Thus the cluster at t6 is the same as the cluster at t0. The clusters may thus be
regarded as being defined on the quotient graph of T2 which is a hexagon.

◦◦

◦

◦ ◦

◦

t11t6 = t0

t5

2

1

t4 t32

t2

2

1

The mutated matrices are

B(t0) = B(t2) = B(t4) =

(
0 1
−2 0

)
B(t1) = B(t3) = B(t5) =

(
0 −1
2 0

)
.

Type C2

◦ ◦<
1 2

The Cartan matrix is

A =

(
2 −2
−1 2

)
.
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We choose

B =

(
0 2
−1 0

)
.

We take vertices t = t0, t1, t2, t3, t4, ... joined by edges 1 and 2 alternately.

◦ ◦ ◦ ◦ ◦
t0 t1 t2 t3 t4

1 2 1 2

We begin with a cluster (x1, x2) at t0. Then the clusters at subsequent vertices
are

x(t0) = (x1, x2)

x(t1) = (x3, x2)

x(t2) = (x3, x4)

x(t3) = (x5, x4)

x(t4) = (x5, x6)

x(t5) = (x7, x6)

x(t6) = (x7, x8)

where
x1x3 = 1 + x2

x2x4 = 1 + x2
3

x3x5 = 1 + x4

x4x6 = 1 + x2
5

x5x7 = 1 + x6

x6x8 = 1 + x2
7

Thus we obtain

x(t0) = (x1, x2)

x(t1) =

(
1 + x2

x1
, x2

)
x(t2) =

(
1 + x2

x1
,

1 + 2x2 + x2
2 + x2

1

x2
1x2

)
x(t3) =

(
1 + x2 + x2

1

x1x2
,

1 + 2x2 + x2
2 + x2

1

x2
1x2

)
x(t4) =

(
1 + x2 + x2

1

x1x2
,

1 + x2
1

x2

)
x(t5) =

(
x1 ,

1 + x2
1

x2

)
x(t6) = (x1, x2)
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Thus the cluster at t6 is the same as that at t0. The clusters may therefore be
regarded as being defined on the quotient graph of T2 in which t0 and t6 are
identified, which is a hexagon.

The mutated matrices are

B(t0) = B(t2) = B(t4) =

(
0 2
−1 0

)
B(t1) = B(t3) = B(t5) =

(
0 −2
1 0

)
.

Type G2

◦ ◦<
1 2

The Cartan matrix is

A =

(
2 −3
−1 2

)
.

We choose

B =

(
0 3
−1 0

)
.

We take vertices t = t0, t1, t2, t3, t4, ... joined by edges 1 and 2 alternately.

◦ ◦ ◦ ◦ ◦
t0 t1 t2 t3 t4

1 2 1 2

We begin with a cluster (x1, x2) at t0. Then the clusters at subsequent vertices
are

x(t0) = (x1, x2)

x(t1) = (x3, x2)

x(t2) = (x3, x4)

x(t3) = (x5, x4)

x(t4) = (x5, x6)

x(t5) = (x7, x6)

x(t6) = (x7, x8)

x(t7) = (x9, x8)

x(t8) = (x9, x10)
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where
x1x3 = 1 + x2

x2x4 = 1 + x3
3

x3x5 = 1 + x4

x4x6 = 1 + x3
5

x5x7 = 1 + x6

x6x8 = 1 + x3
7

x7x9 = 1 + x8

x8x10 = 1 + x3
9

Thus we obtain

x(t0) = (x1, x2)

x(t1) =

(
x2 + 1

x1
, x2

)
x(t2) =

(
x2 + 1

x1
,

(x2 + 1)3 + x3
1

x3
1x2

)
x(t3) =

(
(x2 + 1)2 + x3

1

x2
1x2

,
(x2 + 1)3 + x3

1

x3
1x2

)
x(t4) =

(
(x2 + 1)2 + x3

1

x2
1x2

,
(x2 + 1)3 + x3

1(x3
1 + 3x2 + 2)

x3
1x

2
2

)
x(t5) =

(
x3

1 + 1 + x2

x1x2
,

(x2 + 1)3 + x3
1(x3

1 + 3x2 + 2)

x3
1x

2
2

)
x(t6) =

(
x3

1 + 1 + x2

x1x2
,

x3
1 + 1

x2

)
x(t7) =

(
x1 ,

x3
1 + 1

x2

)
x(t8) = (x1, x2)

Thus the cluster at t8 is the same as that at t0. The clusters may therefore be
regarded as being defined on the quotient graph of T2 in which t0 and t8 are
identified, which is an octagon.

The mutated matrices are

B(t0) = B(t2) = B(t4) = B(t6) =

(
0 3
−1 0

)
B(t1) = B(t3) = B(t5) = B(t7) =

(
0 −3
1 0

)
.



2.4. The Laurent phenomenon 31

2.4 The Laurent phenomenon

Let {Mj(t); t ∈ Tl, j = 1, ..., l} be an exchange pattern. We pick an initial
point t ∈ Tl. Then each point in Tl can be joined to t by a unique sequence
of edges. Thus for any t′ ∈ Tl and any j = 1, ..., l xj(t

′) can be expressed as
a natural function of x1, ..., xl where xi = xi(t), using the relations described
earlier. Now it was proved by Fomin and Zelevinsky that each xj(t

′) is in fact a
Laurent polynomial in x1, ..., xl, i.e its denominator is a monomial in x1, ..., xl.
This is clearly illustrated by the examples A2, B2, C2, G2 which we described
in Section 2.3. We call this property the Laurent phenomenon. The subring of
the ring of all Laurent polynomials in x1, ..., xl over Z generated by the cluster
variables xj(t

′) for all t′ ∈ Tl and all j = 1, ..., l is called the cluster algebra
associated with the given exchange pattern.

Now there may be finitely or infinitely many distinct cluster variables
xj(t

′). For example in the cases A2, B2, C2, G2 there are only finitely many
distinct elements xj(t

′). This is a special case of the following more general re-
sult. Suppose we have an exchange pattern described by a sign skew-symmetric
matrix B = B(t). Let B = (bij) and let A = (aij) be the l× l matrix defined by

aii = 2 for all i,
aij = −|bij | when i 6= j.

Then A is a generalized Cartan matrix in the sense of the theory of Kac-Moody
algebras. Suppose that A is in fact the Cartan matrix of a finite dimensional
semisimple Lie algebra. It was then shown by Fomin and Zelevinsky that there
are only finitely many distinct cluster variables xj(t

′). Cluster algebras with
only finitely many cluster variables are said to be of finite type. Fomin and
Zelevinsky also proved conversely that if the cluster algebra arising from the
matrix B = B(t) has finite type then the matrix A associated to B(t′) for some
point t′ is the Cartan matrix of a finite dimensional semisimple Lie algebra.
Thus the classification of the cluster algebras of finite type is the same as the
Cartan-Killing classification of Cartan matrices.

Given a cluster algebra of finite type its distinct cluster variables are in
bijective correspondence with Φ+ ∪ (−Π) where Φ is the root system of the
Cartan matrix and Π is the fundamental system contained in Φ+. The clusters
arising in this way are those described in Part 1 of this article. The correspon-
dence between cluster variables and the set Φ+ ∪ (−Π) is obtained by consid-
ering the monomial in the denominator when a cluster variable is expressed as
a Laurent polynomial in x1, ..., xl. We illustrate this correspondence in types
A2, B2, C2, G2.



32 Chapter 2. Cluster algebras

Type A2

Cluster variable Root in Φ+ ∪ (−Π)

x1 −α1

x2 −α2

1+x2

x1
α1

1+x1

x2
α2

1+x1+x2

x1x2
α1 + α2

Type B2

Cluster variable Root in Φ+ ∪ (−Π)

x1 −α1

x2 −α2

1 + x2
2

x1
α1

1 + x1

x2
α2

1 + x2
2 + x1

x1x2
α1 + α2

1 + x2
1 + 2x1 + x2

2

x1x2
2

α1 + 2α2

Type C2

Cluster variable Root in Φ+ ∪ (−Π)

x1 −α1

x2 −α2

1 + x2

x1
α1

1 + x2
1

x2
α2

1 + x2 + x2
1

x1x2
α1 + α2

1 + 2x2 + x2
2 + x2

1

x2
1x2

2α1 + α2
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Type G2

Cluster variable Root in Φ+ ∪ (−Π)

x1 −α1

x2 −α2

x2 + 1

x1
α1

x3
1 + 1

x2
α2

x3
1 + 1 + x2

x1x2
α1 + α2

(x2 + 1)2 + x3
1

x2
1x2

2α1 + α2

(x2 + 1)3 + x3
1

x3
1x2

3α1 + α2

(x2 + 1)3 + x3
1(x3

1 + 3x2 + 2)

x3
1x

2
2

3α1 + 2α2

In general a positive root α = m1α1 + ... + mlαl corresponds to a Laurent
polynomial of form

f(x1, ..., xl)

xm1
1 xm2

2 ...xml

l

, where f(x1, ..., xl) ∈ Z[x1, ..., xl]

and the roots −α1, ...,−αl correspond to x1, ..., xl respectively (xi may be
regarded as 1/x−1

i ).
Although we have concentrated on cluster algebras of finite type it should

be pointed out that cluster algebras of infinite type are also important and
appear frequently in applications.

2.5 Cluster algebras with constants

There is a more general theory of cluster algebras than the one we have
so far outlined, in which various constants make an appearance. Such clus-
ter algebras with constants appear frequently in applications to other areas of
mathematics.

We shall develop the theory of exchange patterns, outlined in Section 2.1,
in a more general context.

Let P be a free abelian group, written multiplicatively, with generators
pi, i ∈ I ′, for some finite index set I ′. Suppose we are given, for each t ∈ Tl, a
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|I ′| × l matrix C(t) over Z with

C(t) = (cij(t)), i ∈ I ′, j ∈ I,

where I = {1, ..., l} and cij(t) ∈ Z.

For each j ∈ I we define pj(t) ∈ P by

pj(t) =
∏
i∈I′

cij(t)>0

p
cij(t)
i .

We now define

Mj(t) = pj(t)
∏
i

bij(t)>0

xi(t)
bij(t).

This is the analogue of the monomial Mj(t) defined in Section 2.1. Mj(t) orig-
inally depended on a matrix B(t). It now depends on the matrices B(t) and
C(t).

If t, t′ are neighbouring vertices of Tl joined by an edge of type j then
their cluster variables are related by

xi(t) = xi(t
′) if i 6= j

xj(t)xj(t
′) = Mj(t) +Mj(t

′).

We assume that the exchange axioms (i), (ii), (iii), (iv) hold just as in Section 2.1.
This implies that, if C(t) = C, C(t′) = C ′ with

C = (cij), C
′ = (c′ij), B(t) = B = (bij)

then
c′ki = −cki if i = j ,

cki +
|ckj |bji + ckj |bji|

2
if i 6= j .

Thus the rules for matrix mutation of the C ′s look very similar to those we
previously obtained for the B′s.

In fact, if we define B̃(t) to be the (l + |I ′|)× l matrix

B̃(t) =

(
B(t)
C(t)

)
then the rules for matrix mutation of the B̃(t) look precisely the same as those
previously obtained for the B(t).

The square matrix B(t) is called the principal part of B̃(t).



2.6. The example Gr2,5 35

2.6 The example Gr2,5

We illustrate these general ideas by taking the example

B(t) =

(
0 −1
1 0

)
, C(t) =


0 −1
1 0
0 1
−1 1
−1 0

 .

Then B̃(t) =



0 −1
1 0
0 −1
1 0
0 1
−1 1
−1 0


.

We begin with vertex t = t0 and consider vertices t1, t2, t3, ... joined to t0
by edges of type 1, 2 alternately. Thus we have

◦ ◦ ◦ ◦ ◦
t = t0 t1 t2 t3 t4

1 2 1 2

We begin with a cluster (x1, x2) at t0. Then the clusters at subsequent vertices
are

x(t0) = (x1, x2)

x(t1) = (x3, x2)

x(t2) = (x3, x4)

x(t3) = (x5, x4)

x(t4) = (x5, x6)

x(t5) = (x7, x6)

where

x1x3 = p2x2 + p4p5

x2x4 = p3x3 + p5p1

x3x5 = p4x4 + p1p2

x4x6 = p5x5 + p2p3

x5x7 = p1x6 + p3p4
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Thus

x3 =
p2x2 + p4p5

x1

x4 =
p1p5x1 + p2p3x2 + p3p4p5

x1x2

x5 =
p1x1 + p3p4

x2

x6 = x1

x7 = x2.

By interchanging the order (x7, x6) → (x6, x7) we obtain (x6, x7) = (x1, x2)
with the same matrix B̃ as originally. The mutation of matrices is as shown:

◦ ◦ ◦ ◦ ◦ ◦
(x1, x2) (x3, x2) (x3, x4) (x5, x4) (x5, x6) (x7, x6)



0 −1
1 0

0 −1
1 0
0 1
−1 1
−1 0





0 1
−1 0

0 −1
−1 0
0 1
1 0
1 −1





0 −1
1 0

−1 1
−1 0
0 −1
1 0
0 1





0 1
−1 0

1 0
1 −1
0 −1
−1 0
0 1





0 −1
1 0

1 0
0 1
−1 1
−1 0
0 −1





0 1
−1 0

−1 0
0 1
1 0
1 −1
0 −1



Thus we have periodicity and the clusters are defined on the quotient graph
which is finite. The quotient graph of Tl is the exchange graph of the cluster,
and is a pentagon.

◦◦

◦

◦

◦

(x3, x2)(x1, x2)

(x5, x6)

(x5, x4)

(x3, x4)

This example is related to the Grassmann variety Gr2,5. The set of all
2-dimensional subspaces in a 5-dimensional space C5 forms a projective variety
Gr2,5. Such a 2-dimensional subspace may be described by a 2× 5 matrix(

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
.

For i < j let ∆ij be defined by

∆ij =

∣∣∣∣ a1i a1j

a2i a2j

∣∣∣∣ .
∆ij lies in the homogeneous coordinate ring C[Gr2,5] of the Grassmann variety.
These 2×2 minors are connected by certain quadratic relations. If i < j < k < l
we have

∆ik∆jl = ∆ij∆kl + ∆il∆jk



2.6. The example Gr2,5 37

In particular we have

∆24∆35 = ∆23∆45 + ∆25∆34

∆14∆25 = ∆12∆45 + ∆15∆24

∆13∆24 = ∆12∆34 + ∆14∆23

∆14∆35 = ∆13∆45 + ∆15∆34

∆13∆25 = ∆12∆35 + ∆15∆23

Suppose we write

x1 = ∆35 , x2 = ∆25 , x3 = ∆24 , x4 = ∆14 , x5 = ∆13

p1 = ∆12 , p2 = ∆34 , p3 = ∆15 , p4 = ∆23 , p5 = ∆45.

Then the quadratic relations become

x1x3 = p2x2 + p4p5

x2x4 = p3x3 + p5p1

x3x5 = p4x4 + p1p2

x4x1 = p5x5 + p2p3

x5x2 = p1x1 + p3p4

These are precisely the relations we had earlier! Thus the propagation relations
become the Plücker relations between the 2× 2 minors.

These 2 × 2 minors correspond to the chords of the pentagon giving the
cluster variables.

◦◦

◦

◦

◦

2p1

5

p3

p5

1

4

3

p4

p2

x1

x2

x4 x3

x5

The minors corresponding to the chords of the pentagon give the cluster vari-
ables x1, x2, x3, x4, x5 and the minors corresponding to the boundary edges give
the constants p1, p2, p3, p4, p5.

Let F be the field of rational functions in x1(t), ..., xl(t) with coefficients
in the group ring CP . The propagation relations show that F is independent of
the choice of vertex t ∈ Tl. The CP -subalgebra of F generated by x1(t), ..., xl(t)
for all t ∈ Tl is called the cluster algebra associated with the matrix B̃.
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In the above example the cluster algebra is the coordinate ring C[Gr2,5] of
the Grassmannian Gr2,5.

This is only one of a number of similar examples. It has been shown by
Fomin and Zelevinsky that

C[Gr2,6] is a cluster algebra, with constants, of type A3 ;

C[Gr2,l+3] is a cluster algebra, with constants, of type Al ;

C[Gr3,6] is a cluster algebra, with constants, of type D4 ;

C[Gr3,7] is a cluster algebra, with constants, of type E6 ;

C[Gr3,8] is a cluster algebra, with constants, of type E8 .



Chapter 3

Applications of clusters and
cluster algebras

3.1 Canonical bases of quantized enveloping algebras

Let g be a finite dimensional simple Lie algebra over C and U(g) be its
universal enveloping algebra. We recall that g has a triangular decomposition

g = n− ⊕ h⊕ n+

where h is a Cartan subalgebra of g, n+ is the sum of the root spaces for a set
of positive roots and n− the sum of the root spaces for the negative roots. This
triangular decomposition gives rise to a triangular tensor product decomposition
of U(g)

U(g) = U(n−)⊗ U(h)⊗ U(n+).

Now let U(g) be the corresponding quantised enveloping algebra. U(g) has a
corresponding tensor product decomposition

U(g) = U− ⊗ U0 ⊗ U+.

G. Lusztig discovered a basis B of U− called the canonical basis which has
remarkable and important properties. For example we have finite dimensional
irreducible U(g)-modules V (λ) corresponding to the dominant integral weights
λ. V (λ) has a highest weight vector vλ. The canonical basis has the property
that the vectors bvλ ∈ V (λ) for b ∈ B which are non-zero form a basis for V (λ).
Thus the canonical basis for U− gives rise to bases for all finite dimensional
highest weight modules V (λ) simultaneously. For this and other reasons the
canonical basis has been the topic of much recent investigation.

39
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The Lie algebra g has a natural system of generators e1, ..., el, h1, ..., hl,
f1, ..., fl where

n− = 〈f1, ..., fl〉 h = 〈h1, ..., hl〉 n+ = 〈e1, ..., el〉

and the quantised enveloping algebra has a corresponding set of generators. In
particular we have

U− = 〈F1, ..., Fl〉 .

It is therefore natural to ask how the canonical basis elements are expressed in
terms of the generators F1, ..., Fl of U−. The answer to this question turns out
to be difficult but very intriguing.

The elements of the canonical basis are parametrised by (Z≥0)N where
N = |Φ+| = |Φ−|. If g has type A1 the canonical basis is given by

B = {Fn1 /[n]! ; n ∈ Z, n ≥ 0}

where [n]! = [1][2]...[n] and

[i] =
qi − q−i

q − q−1
= qi−1 + qi−3 + ...+ q−(i−3) + q−(i−1)

is the quantum integer corresponding to i ∈ Z.
However if g has type A2 we have

B =

{
F c11

[c1]!

F c22

[c2]!

F c31

[c3]!
, c2 ≥ c1 + c3;

F c12

[c1]!

F c21

[c2]!

F c32

[c3]!
, c2 ≥ c1 + c3

}
Thus in this case there are two different types of canonical basis element. This
means that the parameter space (Z≥0)3 is divided into two by its intersection
with a hyperplane, such that the canonical basis elements on one side are those
of the first type above, and those on the other side are those of the second type.

We now suppose that g has type A3. There then turn out to be 14 different
types of canonical basis element as regards the way in which the basis elements
are expressed in terms of the generators F1, F2, F3. The parameters describing
each of these 14 subsets of canonical basis elements are those which are Z≥0-
combinations of certain primitive parameters, and these primitive parameters
have a cluster structure of type A3. Thus the existence of such a cluster structure
explains how the canonical basis splits into 14 subsets in the required way. This
result showing that there are 14 types of canonical basis vectors in type A3 is
due to N. H. Xi and an analogous result for vectors in the dual canonical basis
is due to A. Berenstein and A. Zelevinsky.

When the Lie algebra g is simple of type A4 there again appears to be
a cluster structure which determines the behaviour of the canonical basis. The
situation here has been investigated by various authors and is very interesting.
Let ∆ be a Dynkin diagram and Q be a quiver of type ∆ and arbitrary orien-
tation. A representation of Q is given by a finite dimensional vector space Vi at
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each vertex i together with a homomorphism φµ : Vi → Vj for each edge µ with

an arrow from i to j. Let CQ be the path algebra of Q over C. Let Q̃ be the
quiver obtained from Q by adding a new edge µ with an arrow from j to i for
each edge µ in Q with an arrow from i to j.

We consider the preprojective algebra CQ of Q. This is the quotient of CQ̃
with additional relations ∑

τ
τ begins at i

ττ =
∑
τ

τ ends at i

ττ

one for each vertex i, summed over all edges τ of the quiver Q. By Gabriel’s
theorem the CQ-indecomposable modules correspond to the positive roots Φ+.
However CQ may have more indecomposables than CQ since a CQ-module may
decompose on restriction to CQ.

For example if ∆ has type A4 then CQ has 10 indecomposable modules,
one for each positive root, but CQ has 40 indecomposable modules, of which 4
are projective. We define a clique to be a set of indecomposable modules which
is maximal with respect to

Ext(M,N) = 0 , Ext(N,M) = 0

for all modules in the given set.
Now Marsh and Reineke have conjectured that there is a bijective corre-

spondence between types of canonical basis elements in U−(g) for types A1−A4

and cliques of indecomposable modules for CQ. This is so for the 14 types of
canonical basis element in type A3, as there are 14 cliques of indecomposable
modules for CQ in this case.

If ∆ has type A4 there are 4 indecomposable projective CQ-modules and
these lie in all the cliques. There are 672 cliques altogether, each containing 10
indecomposable modules. These are the 4 projective indecomposable modules
together with 6 others. Thus Marsh and Reineke’s conjecture would imply that
there are 672 types of canonical basis elements in type A4. The way in which
subsets of 6 non-projective indecomposable modules are chosen from the 36 such
modules which exist is in accordance with the cluster structure of type D6, in
which |Φ+| = 30, |Π| = 6, |Φ+∪{−Π}| = 36. Thus it appears that the behaviour
of the canonical basis in type A4 is governed by a cluster structure of type D6!
(Zelevinsky has indicated that this is the case.) See also [5,2.24] and recent work
of Geiss, Leclerc and Schröer for information on research in this direction.

It seems quite likely that in type An for n ≥ 5 the behaviour of the
canonical basis is governed by a cluster structure of infinite type.

3.2 The cluster category

Let Q be a Dynkin quiver with an alternating orientation. (This means
that each vertex of Q is either a source or a sink). Let CQ be the path algebra
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of Q over C and consider the category of finite dimensional CQ-modules. The
indecomposable modules are in bijective correspondence with the set Φ+ of
positive roots, by Gabriel’s theorem.

Let D = Db(CQ) be the bounded derived category of this category of finite
dimensional CQ-modules. The objects of D are bounded complexes of finite di-
mensional CQ-modules modulo the equivalence relation of quasi-isomorphism.
Each CQ-module M determines a complex M in which M appears in degree 0
and 0 appears elsewhere, and M can be regarded as an object in D. The inde-
composable objects of D then have the form M [i] where M is an indecomposable
CQ-module, i ∈ Z, and M [i] is M with the ith degree shift applied.

The Auslander-Reiten quiver of D is a graph whose objects are inde-
composable modules for D. This graph admits a well-known map τ called the
Auslander-Reiten translate.

We define the cluster category C by C = D/F where F : D → D is the
auto equivalence τ−1 ◦ [1]. Then the objects of C are the objects of D and the
morphisms of C are given by

HomC(X,Y ) =
⊕
i∈Z

Hom (F iX,Y ).

The indecomposable modules in the category C are given by

IndC = {M ; M an indecomposable CQ-module}⋃
{Pi[1] ; Pi is the projective indecomposable module at vertex i of Q} .

There is thus a bijection

Φ≥−1 −→ IndC
φ

given by

α ∈ Φ −→ Mα ,

−αi −→ Pi[1] ,

between cluster variables and indecomposable modules for C.
We obtain a natural interpretation of the compatibility degree in this con-

text. Given α, β ∈ Φ≥−1 we have

(α‖β) = dim Ext1
C(φ(α), φ(β)).

The clusters in Φ≥−1 correspond to what are called tilting objects in C. An
object T of C is called a tilting object if it satisfies the conditions

Ext1
C(T, T ) = 0

and T =

l⊕
i=1

Ti



3.3. Geometry associated to algebraic groups 43

is a decomposition into non-isomorphic indecomposables, where l is maximal (in
the sense that no further component could be added to preserve the conditions).
In fact l is the number of vertices of Q.

We then have a bijection between clusters in Φ≥−1 and tilting objects in
the cluster category C. It seems therefore that there is a fundamental connection
between clusters and the concepts of tilting. This work on the cluster category
is due to a group of mathematicians Buan, Marsh, Reineke, Reiten, Todorov. A
graphical approach has also been developed by Caldero, Chapoton and Schiffler
in type A. This whole area of work is undergoing a rapid development.

3.3 Geometry associated to algebraic groups

It has been conjectured by Zelevinsky that the coordinate rings of a number
of algebraic varieties which arise naturally in the study of algebraic groups have a
cluster algebra structure. For example, if G is a semisimple algebraic group with
Borel subgroup B, U the unipotent radical of B, B− an opposite Borel subgroup
to B, and Weyl group W , Zelevinsky has conjectured that the coordinate rings
C[G], C[B], C[U ], C[G/U ] might all have cluster algebra structures. For example
it is known that the coordinate ring C[SL3/U ] has a cluster algebra structure
of type A1, C[SL4/U ] has such a structure of type A3, C[SL5/U ] has such a
structure of type D6, and C[Sp4/U ] has such a structure of type B2.

In addition, Berenstein, Fomin and Zelevinsky have studied the coordinate
ring

C[BuB ∩B−vB−]

of a double Bruhat cell BuB ∩B−vB− where u, v are arbitrary elements of W .
A great deal of information has been obtained about this coordinate ring, and it
is conjectured that it might have the structure of a cluster algebra for arbitrary
u, v ∈ W . If this is so it would be of considerable interest to know for which
pairs u, v ∈W this cluster algebra has finite type.

It appears then that the theory of cluster algebras, still at quite an early
stage of development but advancing rapidly, may give a powerful new technique
for investigating the geometry and representation theory of algebraic groups.
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