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Abstract

Motivation: Brain and central nervous system tumours form the second most
common group of cancers in children in the UK, accounting for 27% of all child-
hood cancers. Despite current advances in magnetic resonance imaging (MRI),
non-invasive characterisation of paediatric brain tumours remains challenging.
Radiomics, the high-throughput extraction and analysis of quantitative image
features (e.g. texture), offers potential solutions for tumour characterisation and
decision support.

Aim and Methods: In search for diagnostic and prognostic oncological markers,
the aim of this thesis was to study the application of MRI texture analysis (TA)
for the characterisation of paediatric brain tumours. To this end, single and multi-
centre experiments were carried out, within a supervised classification framework,
on clinical MR imaging datasets of common brain tumour types.

Results: TA of conventional MRI was successfully used for diagnostic classifi-
cation of common paediatric brain tumours. A key contribution of this thesis was
to provide evidence that diagnostic classification could be optimised by extend-
ing the analysis to include three-dimensional features obtained from multiple MR
imaging slices. In addition to this, TA was shown to have a good cross-centre
transferability, which is essential for long-term clinical adoption of the technique.
Finally, fifteen textural features extracted from T2-weighted MRI were identified
to be of significant prognostic value for paediatric medulloblastoma.

Conclusion: It was shown that MRI TA provides valuable quantifiable infor-
mation that can supplement qualitative assessments conducted by radiologists,
for the characterisation of paediatric brain tumours. TA can potentially have
a large clinical impact, since MR imaging is routinely used in the brain cancer
clinical work-flow worldwide, providing an opportunity to improve personalised
healthcare and decision-support at low cost.

Keywords: Texture analysis, MRI, brain tumours, paediatrics, machine learning.
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Chapter 1. Introduction

In preparing this work, I am reminded of the inspiring comment from Galileo

Galilei: “measure what is measurable, and make measurable what is not so”. This

thesis aims to push the limit to what can be measured from magnetic resonance

images, by capturing information that may be below human vision but of potential

value to the clinically important area of paediatric oncology. To this end, the

material presented in this chapter provides an introduction to the problem domain

and outlines the aim, objectives and contributions of this work.

1.1 Motivation

Figure 1.1: A figure showing three T2-weighted MR images of (a)Medulloblastoma
(b) Pilocytic Astrocytoma and (c) Ependymoma, the three most common brain
tumours occurring in childhood. Tumour regions are marked in red. Besides
variation in size, the tumours do not show clear differences in visual appearance.
Original images were obtained from the CCLG database [4].

Cancer is a leading cause of mortality in children, with the latest available

statistics in the UK showing that between 2009 and 2011, an average of 1,574

children per year were diagnosed with cancer, of which 16% had died [74]. Brain

and central nervous system (CNS) tumours form the second most common group

of cancers in children, accounting for 27% of all childhood cancers [74]. In order

to tailor surgery and drug-based therapy, a brain tumour must be classified as one

of 37 types, as outlined by the World Health Organisation (WHO) [75], [84].
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Chapter 1. Introduction

Magnetic resonance imaging (MRI) is the key imaging technique used for visu-

alising and managing brain tumours [76], [77]. Initial characterisation of tumours

from MRI scans is usually performed via radiologists′ visual assessment [78]. How-

ever, different brain tumour types do not always demonstrate clear differences in

visual appearance [37]. Using only conventional MRI to provide a definite diagno-

sis could potentially lead to inaccurate results, so histopathological examination

of biopsy samples are currently considered the gold standard for obtaining definite

diagnoses [77].

Figure 1.2: Example biopsy micrographs for (a) Medulloblastoma (b) Pilocytic
Astrocytoma and (c) Ependymoma. One can see how different paediatric brain tu-
mours demonstrate clear differences in visual characteristics on a microscopic scale.
For example, medulloblastoma is characterised by its solid, well-circumscribed ap-
pearance, whereas pilocytic astrocytoma micrographs tend to show characteristic
bipolar cells with long hair-like structures.

By inspecting Figure 1.1, one could see how different tumour types could

demonstrate similar visual characteristics on MR images. On a microscopic scale,

however, biopsies of different paediatric brain tumours demonstrate clear differ-

ences in visual characteristics. For example, medulloblastoma is characterised by

its solid, well-circumscribed appearance, whereas pilocytic astrocytoma biopsy mi-

crographs tend to show characteristic bipolar cells with long hair-like structures,

as can be seen in Figure 1.2. It is likely that such microscopic patterns translate

to small dissimilarities and subtle visual differences on MR images. The avail-
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Chapter 1. Introduction

ability of non-invasive diagnostic aids that could capture such patterns from MR

images would be very beneficial. Benefits of such tools would include reducing

surgical procedures, improving surgery and therapy planning and the possibility

to support more informed discussions with the patient’s family.

The emerging field of radiomics provides a potential solution for non-invasive

tumour characterisation by converting medical images into mineable data, through

the extraction of a large number of quantitative imaging features [83], [88]. When

developing quantitative medical image analysis techniques, it is usual to consider

attributes which radiologists explicitly or implicitly use in their assessment of

a specified tissue appearance. Intensity, morphology and texture are common

examples of such important image attributes [39], [79]. Image texture can be

defined as the spatial variation of pixel intensities within an image [18], and is

known to be particularly sensitive for the assessment of pathology [39]. Visual

assessment of texture is, however, particularly subjective. Additionally, it is known

that human observers possess limited sensitivity to textural patterns, whereas

computational texture analysis (TA) techniques can be significantly more sensitive

to changes [39], [79].

MRI TA has been recently used with success, within machine learning frame-

works, to discriminate between childhood brain tumours, as reported by Rodriguez

Guiterrez et al [36] and Orphanidou-Vlachou et al [37]. There exists, therefore,

considerable motivation for further research into maximising the value of computa-

tional TA as a predictive biomarker in paediatric oncology, and the establishment

of its role in clinical practice.

Whilst most of the MRI TA experiments reported in the cancer literature

focused on the analysis of textural features derived from a 2D image slice, there

have been recent efforts to extend analysis to multiple MR image slices. The
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processing of multi-slice volumetric features may offer additional information that

will improve classification performance [26], [33], [34]. Using only one 2D slice, as

representative of the entire tumour, might not be sufficient for building a reliable

classification model, as capturing any heterogeneities present across the tumour

volume would not be possible. In addition to this, 3D TA has the advantage of

capturing inter-slice features that are completely ignored in the traditional 2D

approach. When characterising brain MRI scans, radiologists base their decisions

on multi-slice imaging information and do not analyse individual slices in isolation.

None of the work available in the childhood brain cancer literature, however, looked

into the use of 3D TA of MR images, at the time of writing and to the best of the

author’s knowledge.

The reported diagnostic success of MRI TA raises an interesting question: If

textural features could capture powerful patterns that aid the diagnosis of tumours,

can they also be used to predict patients’ survival prognosis? Following diagnosis,

determination of prognosis is an important step in brain tumour management,

with implications that determine treatment options. Therefore, accurate non-

invasive predictors of prognosis have the potential to advance clinical management

of patients for therapy and the possibility to support more informed discussions

with the patient’s family.

This thesis makes use of MRI datasets obtained from ongoing studies at Birm-

ingham Children′s Hospital. In addition to this, some aspects of this work make

use of multicenter datasets obtained from Great Ormond Street Hospital and Uni-

versity Hospital Nottingham1.

1All images were anonymised and held at a secure e-repository provided by Children′ Cancer
and Leukaemia Group (CCLG) Functional Imaging Group [4]. Approval was obtained from the
research ethics committee and informed consent was taken from patients′ guardians.
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1.2 Aim and Objectives

On the basis of the previous section’s discussion, the aim of this thesis is to study

the application of MRI TA for the characterisation of childhood brain tumours.

The problem of tumour characterisation can be divided into two parts: diagnosis

and prognosis. To this end, three specific objectives are defined as follows.

The first objective of this thesis is to carry out a practical investigation using

clinical datasets in order to assess the efficacy of MRI TA in classifying childhood

brain tumour types. To ensure long-term clinical adoption of TA as a diagnostic

tool, maximising its classification performance is crucial. Hence, and in light of

recent efforts towards carrying out 3D TA in the adult literature, the investigation

would require rigorous analysis into whether 3D TA could capture more discrimi-

native tumour patterns than the traditional 2D approach.

Despite the positive results reported in the adult and childhood MRI literature,

TA has not yet found its way into routine clinical practice. This is perhaps due to

the sensitivity of TA to variations in MR acquisition parameters, which may im-

pede the transfer of results across various imaging centres. Therefore, the second

objective of this thesis is to determine, on a multicentre level, the efficacy and

transferability of 3D TA for diagnostic classification of childhood brain tumours.

The final objective is to study the application of TA in the problem of predicting

patients′ survival prognosis. If such application could be proven possible, this will

have potential long-term benefits of supporting the determination of treatment

options and advancing clinical management of patients for therapy.

6
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1.3 Contributions to Knowledge

The thesis offers three novel contributions to the area of non-invasive, computa-

tional characterisation of childhood brain tumours from textural features of MR

images.

The first is the application of a 3D TA framework specifically designed to clas-

sify the three most frequently occurring types of brain tumours in children: medul-

loblastoma, pilocytic astrocytoma and ependymoma. This was done through ex-

perimental analysis that used clinical MRI datasets obtained from currently ongo-

ing studies at Birmingham Children′s Hospital. The analysis included a rigorous

comparison of 3D TA to the traditional 2D approach, which is the current state-

of-the-art in the paediatric literature.

Building on the first contribution of the work, the second contribution is the

multicenter investigation of the efficacy and transferability of 3D MRI TA using

datasets obtained from three different hospitals: Birmingham Children′s Hospital,

Nottingham University Hospital and Great Ormond Street Hospital. An essential

outcome of this study is that, despite the variations in textural information among

MR images from different centres, feature-sets acquired from one centre can be

used for successful tumour classification in unseen data from other centres. This

analysis also included an investigation on the nature of features that are most

likely to train classifiers, which can generalise well with the 3D textural data.

Additionally, the issue of class imbalance, which arises because some tumour types

do not occur as frequently as others, was investigated.

The third contribution of this thesis is the investigation of the efficacy of 3D TA

as a means of predicting the survival prognosis of paediatric medulloblastoma: the

most common malignant brain tumour occurring in children. To the best of my

knowledge at the time of writing, there has been no published work on investigating
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brain tumour survival predictors based on image analysis of conventional MRI,

such as T1 and T2-weighted scans.

1.4 Thesis Structure

The chapters of this thesis are, to a large extent, self-contained and can be read

independently. Chapters 2 to 4 present the context of the work and theoriti-

cal background that is of direct relevance; as well as the current state-of-the-art.

Chapters 5 to 7 are experimental and offer the main contributions of this thesis.

A summary of the thesis is discussed below:

Chapter 2: Background on MR Imaging of Paediatric Brain Tumours

This chapter gives a background on the neuroimaging of paediatric brain tumours.

This begins with an introduction to the principles behind magnetic resonance

imaging (MRI), followed by a discussion of important MR imaging parameters and

how they are linked to brain tumour visualisation. This includes a review of the

characteristics of the most common childhood brain tumours: medulloblastoma,

pilocytic astrocytoma and ependymoma, and how they appear on conventional

MR imaging.

Chapter 3: Background on Machine Learning

Since the diagnostic and prognostic classification of brain tumours from MR im-

ages is a classical machine learning problem, this chapter reviews relevant concepts

from the field of machine learning. The emphasis of the chapter is on discussing

supervised learning methods. In particular, it reviews common feature selection

algorithms, classifiers and ways of validating the performance of classification mod-

els.
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Chapter 4: TA of MR Images: Theory and State-of-the-Art

Here, an explanation of texture analysis (TA) methods, currently available in the

literature, is presented, with a focus on statistical TA methods. Next, an extensive

literature review of how TA was previously applied on MR imaging for the diag-

nostic classification of tumours is included, with a particular emphasis on brain

tumours in children and adults. Whilst the MRI literature does not include any

work on the application of TA for predicting survival prognosis in paediatric on-

cology, there have been recent efforts in other problem domains, such as computed

tomography (CT) imaging of breast cancer. Such work is therefore reviewed at

the end of the chapter for completeness.

Chapter 5: A Single Centre Study on 3D TA

This chapter is experimental and investigates the efficacy of 3D TA, within a su-

pervised learning framework, to diagnostically classify the three most common

types of brain tumours in children: medulloblastoma, pilocytic astrocytoma and

ependymoma. As part of this study, a comparison of 3D TA to the traditional

2D approach is included. Additionally, the performance of six different classifiers

was studied, in order to determine whether the choice of learning algorithm has

a significant effect on diagnostic tumour classification performance. This study

offers the first novel contribution of the thesis.

Chapter 6: A Multicentre Investigation on the Transferability of TA

This chapter is experimental and offers the second contribution of the thesis. The

chapter presents a multicenter study on the efficacy and cross-center transferability

of 3D TA as a diagnostic characterisation method, using MRI datasets obtained

9
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from three different hospitals. This analysis also included a comparison of the

performance of different feature selection methods as well as an investigation on

the nature of features that are most likely to train classifiers that can generalise

well with the 3D textural data.

Chapter 7: Predicting Survival in Paediatric Medulloblastomna

This chapter offers the third contribution of the thesis. Here, we look into the

problem of predicting survival prognosis of brain tumours, and discuss an experi-

ment that aims to establish the value of MRI TA as a potential prognostic marker.

To this end, the study made use of clinical MRI datasets of patients diagnosed

with medulloblastoma: the most common brain tumour occurring in children.

This is clinically important, as long-term benefits of such prognostic marker could

include personalised determination of treatment options and advancing clinical

management of patients for therapy.

Chapter 8 presents a summary of achievements and overall conclusion, followed

by suggestions for future work.

Appendix A: A Preliminary Study

During the early stages of this research, a preliminary classification experiment

was conducted to explore the feasibility and efficacy of carrying out MRI TA in

paediatric settings, using the conventional 2D approach. Due to the preliminary

nature of this study, and the succinctness in its statistical analysis, it was not in-

cluded in the main body of the thesis. The positive findings of the study, however,

motiavted rigorious analysis of MRI TA for tumour characterisation.
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Appendix B: Non-Statistical TA Techniques

Although the technical work presented in chapters 5-7 of this thesis is based on sta-

tistical TA techniques, two common non-statistical methods are introduced here

as they had been used in a number of relevant studies in the literature. They were

also used in the preliminary study presented in Appendix A.
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Chapter 2. Background on MR Imaging of Paediatric Brain Tumours

2.1 Introduction

This chapter gives a background on the MR imaging of paediatric brain tumours.

The first section introduces the principles on which MRI is based, using the clas-

sical physics description of the nuclear magnetic resonance (NMR) phenomenon.

The material presented here is an outline of basic theory; for a more in-depth

discussion, please refer to the excellent textbooks on the subject by ZP Liang and

PC Leuterbur [1] and R Freeman [2]. The second section follows by providing an

overview of the most common brain tumours in children, with a focus on their

MR imaging characteristics.

2.2 Background on MR Imaging

2.2.1 Nuclear Magnetic Resonance

The principles on which magnetic resonance imaging (MRI) is based can be un-

derstood by appreciating the NMR phenomenon. In order to understand the

mechanisms underlying NMR, it is necessary to start from the very centre of the

atom: the nucleus. For a nucleus to generate an NMR signal, it must have nuclear

spin: a fundamental property present in nuclei with odd atomic weights or odd

atomic numbers. For the context of this thesis, our focus will be on Hydrogen

atoms (1H nuclei), since over 70% of the human body is constituted of water. A

spinning proton creates an electric current, and therefore a magnetic field, causing

it to behave like a microscopic bar magnet (hence the use of the term magnetic in

NMR). In other words, a spinning nucleus possesses angular momentum ~J and a

charge, which give rise to an associated magnetic moment ~µ [1]. Angular momen-
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Figure 2.1: A diagram showing spin orientations when placed in an external mag-
netic field ~B0.

Figure 2.2: A diagram showing how spins precess around the axis of an applied
magnetic field ~B0.

tum and magnetic moment are related to each other by:

~µ = γ ~J (2.1)

where γ is a characteristic constant of the nucleus, known as the gyromagnetic

ratio.

When placed in a magnetic field ~B0, the magnetic moment of a nucleus will

orient relative to the field. The number of possible orientations is determined by

the spin quantum number I. For a nucleus with spin number I, there are 2I+I

possible spin states [2]. 1H has a spin number of 1
2

and therefore has two possible

spin states, denoted as +1
2

and -1
2
. As shown in Figure 2.1, nuclei aligned parallel to

the external field are in a lower energy state (+1
2
′spin-up′), whereas those aligned

anti-parallel to the external field are in a higher energy state (-1
2
′spin-down′).
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Figure 2.3: A vector model of NMR representing spin orientations and magneti-
sation vector ~M0.

1H nuclei precess around the axis of the applied static magnetic field ~B0, as

depicted in Figure 2.2. The frequency (ω), at which the nucleus precesses is

determined by the strength of the applied magnetic field B0 and the nucleus′

gyromagnetic ratio γ. The frequency of precession is called the Larmor frequency

and is mathematically described in Equation 2.2:

ω = γ ~B0 (2.2)

In NMR experiments, we are not interested in the behaviour of individual spins,

but rather in the collective behaviour of the overall spin system. There is an excess

of a very small fraction of spin-up nuclei; this is because a spin is more likely to

take the lower-energy state (with higher stability) than the higher energy state. By

summing over the spin orientations, an overall macroscopic magnetisation vector

~M0 is produced and is aligned along the direction of the applied magnetic field

(Equation 2.3), as depicted in Figure 2.3. It is the manipulation of ~M0 that forms

the basis of all MRI scans.

~M =
Ns∑
i=1

~µi (2.3)

Where Ns is the total number of spins.
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2.2.2 Radio Frequency Pulses

Since the magnetisation vector ~M0 is very small (on the order of microtesla),

it is difficult to measure at its equilibrium state while aligned with the applied

magnetic field ~B0. The magnetisation vector needs to precess orthogonally to the

applied magnetic field; the generated current can then be detected by the receiver

coil, which can be placed at right angles to the axis of the applied magnetic field.

In order to achieve this, radio frequency (RF) pulses are applied at the Larmor

frequency.

Figure 2.4: A diagram showing a 90 degree RF pulse being used to manipulate
~M0 into the XY plane.

The intensity and duration of the applied RF pulse are chosen so that ~M0

rotates by 90 degrees, being flipped from its equilibrium state at the z-axis to the

XY plane. In this position, the magnetisation vector can induce maximum signal

in the receiver coil. Figure 2.4 shows the manipulation of ~M0 into the XY plane.

The degree by which ~M0 is flipped (θ) can be calculated as shown in Equation 2.4:

θ = γ ~B1tp (2.4)

Where ~B1 is the generated RF field and tp is the time period during which the

pulse is applied.
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2.2.3 Rotating Frame of Reference

In NMR, a rotating frame of reference is used to simplify the complex motion of

precessing spins. In this frame of reference, the XY plane is assumed to rotate

around the z-axis, at the Larmor frequency, causing the magnetisation vector and

~B1 to appear stationary.

Figure 2.5: A diagram depicting how, after the 90 degree excitation pulse, the
magnetisation vector gradually returns to its equilibrium state.

Figure 2.6: A plot showing how the free induction decay (FID) signal decays with
time as the system returns to equilibrium.

While the magnetisation vector is in the XY plane, it rotates and consequently

induces a weak, oscillating voltage in the receiver coil. This observed voltage

corresponds to the detected MR signal and is proportional to the transverse mag-

netisation ~MXY , as characterised by the following equation:

V (t) ∝
∫
δ ~MXY (t)

δt
δr (2.5)
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Where δr is the volume element given by δxδyδz.

The signal, after processing, can be given in the following generalised form:

S(t) =

∫
~MX′Y ′(t)δt (2.6)

This magnetisation does not remain in the XY plane, however, but gradually

returns to its original equilibrium state (Figure 2.5). The detected NMR response

is referred to as the free induction decay (FID), which is depicted in Figure 2.6.

FID is caused by two distinct mechanisms, namely longitudinal and transverse

relaxation. The two processes are explained in the next section.
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2.2.4 Longitudinal (T1) Relaxation

Longitudinal relaxation is the recovery of the magnetisation vector in the z-axis

( ~Mz) back to its equilibrium value ( ~M0) following perturbation, and is caused by

the loss of energy from spins to the surrounding environment. T1 is the time

constant used to represent this process and can be defined as the time taken for

a signal to recover back to 63% of its original value. This process is exponential

and can be mathematically described as shown in Equation 2.7:

~Mz = ~M0(1− exp(−t/T1)) (2.7)

where t is a time delay that is used to allow some longitudinal relaxation to

occur, as explained in the next paragraph.

Figure 2.7: A diagram showing the pulse sequence timings for an inversion recovery
experiment to measure longitudinal relaxation (T1).

T1 can be measured using an inversion recovery pulse sequence. In inversion

recovery, a 180 degree pulse is initially applied, causing the magnetisation vector

to be inverted onto the negative z-axis. A time delay, t, is then introduced, during

which some magnetisation is returned back to the positive z-axis. After t, a 90

degree pulse is applied, leading to the rotation of the magnetisation vector onto
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Figure 2.8: A plot depicting the relationship between the recovery of longitudinal
magnetisation and time delay in an inversion recovery experiment.

the XY plane. At this point, the signal amplitude of the FID can be recorded, as

depicted in Figure 2.7. Finding T1 involves measurements of the signal amplitude

for several different t intervals, as depicted in Figure 2.8. Performing the curve

fitting according to Equation 2.7 will give T1.

2.2.5 Transverse (T2) Relaxation

T2 is the relaxation of spins in the transverse (XY) plane. Upon applying a 90

degree pulse, the spins initially align in the XY plane and have phase coherence.

However, for this phase coherence to be maintained, all spins need to experience

the same magnetic field. The presence of static magnetic field heterogeneities

and interactions with neighbouring molecules lead to loss in phase coherence.

This process is exponential in behaviour, as shown in Equation 2.8, and is always

shorter than T1 .

~MXY = ~M0 exp(−t/T2) (2.8)

One way T2 can be measured is through the use of Spin Echo (SE) pulse

sequence [3]. Here, a 90 degree RF pulse is first applied, bringing the magnetisation

vector into the XY plane. While in the XY plane, the spins start to de-phase. A
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Figure 2.9: A diagram showing the pulse sequence timings for a spin echo (SE)
experiment. The time to echo formation is referred to as echo time (TE), while
the time between successive excitations is referred to as repetition time (TR).

Figure 2.10: A diagram showing the de-phasing and refocusing of the magneti-
sation vector during a spin echo pulse sequence.
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Figure 2.11: A diagram showing the formation of spin echoes by multiple 180
degree pulses (the pulse sequence and the resulting echo signals). .

180 degree pulse is then applied, causing the de-phasing spins to rotate around

the XY plane. Although they continue to de-phase, the direction in which these

spins do so now acts to refocus the magnetisation, thereby forming an ′echo′. The

time to echo formation of the spin-echo signal is referred to as echo time (TE),

while time between successive excitations is referred to as repetition time (TR).

The formation of an echo in a SE experiment is depicted in Figures 2.9 and 2.10.

When a spin system is excited by a 90 degree pulse followed by a sequence of

180 degree pulses, a train of spin echoes will be generated. Suppose that the 90

degree pulse is applied at t=0 and the 180 degree pulses at (2n-1)t for n=1,2,..N. A

train of N echoes will be formed at time 2nt. The echo amplitudes are characterised

by Equation 2.9, below:

En = exp(−2nt/T2) (2.9)

Because of the straightforward relationship for the echo amplitudes, as per

Equation 2.9, this multiple-echo sequence is an efficient way to measure T2 values.

This sequence is known as the CPMG (Carr-Purcell-Meiboom-Gill) sequence and
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is widely used in practice (Figure 2.11).

2.2.6 Magnetic Field Gradients

So far, it has been explained how an NMR signal can be induced through the

application of a static ~B0 and an RF pulse, in order to flip the magnetisation

into the XY-plane. However, for the signal to be useful for large inhomogeneous

samples (such as the human brain), it has to be manipulated so that a signal from

a particular region of the sample has properties that distinguish it. To illustrate

how this is achieved in MR, the concept of magnetic field gradients needs to be

introduced.

Figure 2.12: A diagram showing three test tubes filled with water and how the
use of an external magnetic field affects the resonant frequencies across the tubes
(a) The use of a uniform magnetic field yields only one frequency (b) the use of
a magnetic field gradient causes the resonant frequencies to be different across
the tubes. Signals obtained from different test tubes have therefore been spatially
localised by the field gradient.

Consider an example where we have three test tubes filled with water, as shown

in Figure 2.12. Now introduce three different magnetic field strengths and arrange

the test tubes so that the strength of the applied magnetic field increases from

one sample to the next (that is, apply a field gradient). Because of the variations

on the strengths of the applied magnetic field, the Larmor frequencies across the
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test tubes become different. In other words, the NMR signal was made spatially

dependent.

Similarly, in MR imaging, spins at different spatial locations would be excited

in the same way if they resonate at the same frequency. However, if each of the

regions of spins was to experience a unique magnetic field, it would be possible

to spatially localise them and image their positions. Hence, the key to producing

an MR image is the fact that the NMR frequency is strictly proportional to the

strength of the magnetic field experienced by the spins. Gradients are produced

using coils through which an electric current is passed to induce a particular local

magnetic field. By applying a magnetic field gradient, the Larmor frequency at

position r becomes dependant on ~G, the pulsed field gradient component parallel

to ~B0, as shown in Equation 2.10:

ω(r) = ~γB0 + γ ~G · r (2.10)

In MRI, the concept of field gradients is exploited in three successive steps:

slice selection, frequency encoding and phase encoding, which are explained below.

2.2.7 Slice Selection

As discussed before, magnetic field gradients are used as a means of encoding

spatial information in MRI. Consider an example where we apply a field gradient

along the main axis of the human body (in this discussion, this axis is referred

to as the z-direction). The gradient causes the spins to have different frequencies

across the axis of the body, thus “dividing” the body into a number of “parallel

slices”, each having a unique Larmor frequency. A slice of interest can then be

chosen for further examination, as detailed in the next paragraph.

An MRI slice needs to have a certain thickness that is enough to provide a suf-
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Figure 2.13: A diagram showing slice selection being carried out on a patient using
a magnetic field gradient and an RF pulse.

ficient MRI signal, but not so thick that the tissue structure changes significantly

across the limited dimension [2]. Slice selection involves the use of an RF pulse

that has low intensity and long duration. We can select just one slice by adjusting

the frequency-band of the selective RF pulse, so that only these spins are excited.

Figure 2.13 illustrates the use of a field gradient and an RF pulse for selecting a

slice from the patient’s body. Outside the chosen slice, spins are far enough from

the transmitter frequency that any excitation they experience becomes negligible.

Figure 2.14: A diagram showing the time and frequency excitation profiles of the
desired RF excitation pulse..

Ideally, the RF pulse needs to be a Sinc function (Equation 2.11) in the time
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domain and a rectangular pattern in the frequency domain.

Sinc(x) = Sin(x)/x (2.11)

The use of a rectangular pattern with steep edges in the frequency domain

makes it straightforward to choose a well-defined frequency-band to excite spins

in the desired slice. It is worth noting that in practice, the achieved profile of the

RF pulse is a rough approximation of the ideal pulse (Figure 2.14). Nevertheless,

the edges are reasonably steep, and there is only weak excitation of signals from

adjacent regions.

The thickness of the slice is determined by the effective bandwidth of the RF

pulse and the strength of the applied gradient. The relationship between slice

thickness (δz), RF frequency bandwidth (δF) and the slice-select gradient ~G is

characterised by Equation 2.12. Stronger gradients produce thinner slices, and

vice versa.

δF = γ · ~G · δz (2.12)

2.2.8 Frequency and Phase Encoding

Suppose that slice selection has been carried out by applying a field gradient along

the z-axis; the next step is to determine the spin density within the selected two-

dimensional sample with respect to the two remaining axes (referred to here as x

and y directions). This is done via frequency and phase encoding. In frequency

encoding (also known as “readout”), a gradient is switched on during acquisition

and the signal is acquired at fixed time intervals. As long as the gradient is on,

the nuclei experiencing different field strengths will precess at different frequencies.

Hence, their location in the x-direction can be encoded in terms of the frequency
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Figure 2.15: A diagram illustrating the use of a field gradient for carrying out
phase encoding. Prior to applying a gradient, the spins precess with the same
phase. When a gradient is applied, the spins will have different energies and
hence get out of phase. Removal of the gradient brings the spinning frequency
back to the original value, however, the phase different is reserved.

of the acquired signal.

In phase encoding, a magnetic field gradient is applied in the y-direction during

a fixed time period, but is switched off prior to signal acquisition. Switching off the

gradient means that the frequencies of all spins become very similar; however, their

phases remain different. The use of a field gradient to carry out phase encoding

is depicted in Figure 2.15. By combining frequency and phase encoding, we are

able to acquire the signal for all voxels in the selected slice. The obtained signal

is comprised of a number of sinusoids at different frequencies and phases, each

representing signal obtained from a unique location. Thus, Fourier Transform can

be used to convert the signal in terms of the unique sinusoids it comprises.
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2.2.9 K-Space

As mentioned earlier, an imaging sequence can be made up of three stages: 1.

Slice selection in a constant z-gradient. 2. Frequency encoding (readout) in a

constant x-gradient. 3. Phase encoding in a stepped y-gradient.

The collected raw data is stored in a matrix known as k-space. The original

formulation of k-space is given by the following equation [62].

k =

∫ t

0

γ ~G(t)δt (2.13)

where ~G(t) is a time-dependent gradient applied after slice selection.

Figure 2.16: A diagram showing how the overall k-space trajectory may be a set
of horizontal traces stacked one above the other.

Whilst three dimensions are involved, we simplify the discussion by focusing

on on the kx and ky axes of k-space, with the assumption that slice selection was

carried out. The way data gathering is organised to explore k-space is called tra-

jectory. In the simplest case, the readout information is acquired as a function of

real time along the kx axis. The ky information, however, is acquired through a se-

ries of separate measurements. This involves varying the phase-encoding strength,

causing each line to assume different ky locations, which results in a rectilinear
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Figure 2.17: A diagram showing how 2D Fourier Transform can change MR data of
a human brain in k-space to image space. Original image space data was obtained
from the CCLG database [4]

sampling as shown in Fig 2.16.

K-space data can finally be converted to image space via two-dimensional

Fourier transform. An example of data in k and image space is shown in Fig-

ure 2.17. Note that each individual point in k-space represents one measurement

of the entire NMR signal. Hence, each point in k-space contributes information

to all the pixels in image space.

2.2.10 Imaging Planes

Using the aforementioned practices of slice selection, frequency encoding and phase

encoding, MRI can create images in different anatomical planes, enabling study of

structures from different viewpoints. The three primary imaging planes that are

utilised in MR imaging are axial, sagittal and coronal. Axial sections form a series

of slices that run top (superior) to bottom (inferior). Sagittal sections run from

one side of the body to the other: left to right or right to left. Coronal slices follow

front (anterior) to back (posterior), as though cutting through a halo around the
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Figure 2.18: A diagram showing a number of brain MR image slices in three
different planes: (a) axial, (b) sagittal and (c) coronal. Original images were
obtained from CCLG database [4]

structure being visualised. Figure 2.18 shows a number of brain MR images that

belong to the same subject in the three different planes.
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2.2.11 Image Contrast

Since an important application of MR imaging is to distinguish between regions

of different compositions (e.g. different biological tissues), the concept of contrast

needs to be introduced. Contrast is produced when there is variation in signal

intensity between image pixels and can be created in an image using a number

of ways, including: 1. Spin density. 2. T1 or T2 relaxation times. In a sample,

regions with large numbers of excited spins have high signal intensities. For MRI,

images produced using spin density contrast can be referred to as proton density

maps ; such images appear brighter in regions with higher spin density and darker

in regions with lower spin density. However, the contrast of the image is not fixed

and can be manipulated in order to favour important clinical features.

In order to illustrate how image contrast can be manipulated using T1 and

T2 relaxation time parameters, consider the example of cerebrospinal fluid (CSF),

which has T1 relaxation time that is longer than average: between 2 and 4 seconds.

The average white matter T1 relaxation time is about 0.4 seconds; if consecutive

measurements are carried out with a repetition time (TR) = 0.4, a steady-state sys-

tem will be established1, with CSF 1H spins not completely recovering and thereby

producing weak CSF signal. CSF will therefore appear dark on T1- weighted. Re-

gions that appear brighter on T1- weighted images (e.g. fat) have relatively short

T1 relaxation times.

For an image to be T2-weighted, the TR time used would need to be signif-

icantly long to remove T1-weighting; and the echo time (TE) used would also

need to be long to introduce T2 contrast. Regions with bright intensities on T2-

weighted images represent high relaxation times, which means that signal arising

from CSF would appear brighter on T2 images. Example T1 and T2-weighted

1If a system is in steady state, then the recently observed behaviour of the system will continue
into the future
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Figure 2.19: (a) T1 and (b) T2-weighted brain MR images demonstrating how
image contrast can be manipulated using T1 and T2 relaxation times. TR=414
ms and TE=17ms for T1, whereas TR=6980ms and TE=77ms for T2. A 1.5
T scanner was used to acquire the images. Original images were obtained from
CCLG database [4].
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brain MR images are shown in Figure 2.19.

Figure 2.20: (a) T1 and (b) T2-weighted brain MR images demonstrating how
image contrast can be manipulated using T1 and T2 relaxation times. A 1.5
T scanner was used to acquire the images. Original images were obtained from
CCLG database [4].

Figure 2.20 shows T1 and T2-weighted MR images of a child diagnosed with

brain cancer. For the T1-weighted image, the TR and TE values used were 500ms

and 8.7ms respectively, whereas for T2-weighted image, the TR and TE values

used were 4585ms and 103ms respectively. One can see how different tumour

regions (marked in red in Figure 2.20) can be visualised with different contrasts

characteristics on both images. For instance, the large cystic mass of the tumour

appears brighter than the solid region on the T2-weighted image, whereas the

opposite is true for the T1-weighted image. This illustrates how varying scanning

parameters can manipulate the contrast of different brain tumour components,

which can aid the visualisation for clinical decision-making. The next section

of this chapter elaborates on how common childhood brain tumours appear on

conventional MR imaging.

Note that in some occasions it can be advantageous to enhance image contrast

by injecting the patient with contrast agents. Examples of such chemicals include
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complexes that contain paramagnetic ions, which accelerate T1 relaxation by pro-

viding local magnetic fields that fluctuate near the Larmor frequency. The most

commonly used agents are those containing gadolinium Gd+3 ions, but the uptake

of contrast agents is generally specific to a particular tissue type or pathology.
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2.3 MR Imaging Characteristics of Brain Tu-

mours in Children

This section provides an overview of the most common brain tumours in children,

with a focus on their MR imaging characteristics. It starts by introducing basic

brain anatomy and then moves on to present commonly occurring brain tumours

and how they appear on T1 and T2-weighted images.

2.3.1 Basic Brain Anatomy

The main parts of the brain are:

• Cerebrum: This forms the largest part of the brain and is located at the

top. It comprises two hemispheres and controls higher functions: thinking,

learning, problem solving and emotions.

• Cerebellum: This is the back of the brain and controls balance, movement

and coordination.

• Brainstem: This controls automatic functions, i.e. breathing, body tempera-

ture, heart rate, blood pressure, eye movement and swallowing. It is located

in the lower part of the brain and provides a connection to the spinal cord [5].

The cerebrum has a folded surface called the cortex, which contains about 70%

of the 100 billion nerve cells. The cortex contains neuron cell bodies (grey-matter),

which are interconnected to other brain regions by axons (white-matter).

The brain has fluid-filled cavities called ventricles. These contain a ribbon-like

structure, choroid plexus, which produces the cerebrospinal fluid (CSF). CSF flows

within the brain and spinal cord to help cushion it from injury.
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Figure 2.21: MR scan of a child showing brain structure. Original image was
obtained from Siemens Healthcare webpage on Paediatric MRI [82] .

The area near the base of the skull is divided into three regions: posterior,

middle and anterior fossae. Posterior fossa is the largest and contains the cere-

bellum and the brainstem. Tumours that arise here are of special interest because

the posterior fossa is near critical brain structures, making any tumours present

difficult to treat. Around 55% of childhood brain tumours arise in the posterior

fossa, compared with 15% to 20% of adult tumours. Tumours occurring in child-

hood are more likely to be primary rather than secondary tumours, meaning that

they originate from brain tissues rather than metastatic tumours that spread from

a different body part [6].

2.3.2 Paediatric Brain Tumours

As previously discussed in Chapter 1, brain tumours are the second most common

cancer in children. Brain tumours can be classified to over 30 classes, as per the

WHO classification system [75]. The three most common posterior fossa tumours

are medulloblastoma (MB), pilocytic astrocytoma (PA) and ependymoma (EP);

the three types that are of particular interest within the context of this thesis. It
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is worth noting that these tumour classes are grouped into broad histopathological

categories. Under this classification, MBs are classed as embryonal, PAs are classed

as astrocytic and EPs are classed as ependymal tumours. In this section, an

overview of MB, PA and EP is given, together with a summary of how they

manifest on conventional MR images.

Medulloblastoma

MB is the most commonly occurring posterior fossa tumour in children, accounting

for up to 40% of the cases [7]. The peak ages for MB presentation are 3 and 7 years

of age [8]. They are highly malignant tumours (WHO Grade IV) and are twice as

likely to occur in male as female children [7]. There exists different pathological

subtypes of MB: classic, demoplastic, nodular, large cell and anaplastic, with the

classic subtype being the most common [9].

On T1-weighted scans, MBs are isointense2 to hyperintese 3 compared to white-

matter. On T2-weighted scans, however, their appearance is variable, depending

on tumour cellularity. Tumour components that are more cellular appear hy-

pointense4, whereas less cellular components appear iso- (or mildly hyper-) intense

[9]. Although MB usually grow in circumferential patterns and maintain round

borders, more aggressive forms may penetrate regions, such as the fourth ventricle

or the brainstem [10]. Figure 2.22 shows T1 and T2-weighted MR images of a

child diagnosed with medulloblastoma.

In terms of prognosis, MB survival depends on a number of factors that include

age at the time of presentation. Presence of CSF dissemination and presence of

any residual tumour after surgery are also prognostic factors. The best prognosis

2Of a similar intensity to a reference structure.
3Of a higher intensity to a reference structure.
4Of a lower intensity to a reference structure.
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Figure 2.22: (a) T1- and (b) T2-weighted MR images of a child diagnosed with
medulloblastoma. Images are shown in the axial and coronal planes. The red
regions of interest indicate areas affected by the tumour. Original images were
obtained from CCLG database [4] .
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is about 80% for 5-year survival 5 and is found to be the case with children who

are older than 3 years of age at the time of presentation [10], [11].

Pilocytic Astrocytoma

PA can affect different brain regions including the cerebellum, optic pathway and

hypothalamus. Cerebellar PA account for one third of posterior fossa tumours in

children, second to MB. The peak age of PA presentation is between 5 and 16

years of age. They are considered low-grade tumours (WHO Grade I); and boys

and girls are equally likely to be affected by PA [10].

PAs are usually well confined and have a large cystic component 6 with a mural

nodule 7. On T1-weighted scans, both solid and cystic components appear as

hypointense (similar to CSF signal intensity), while on T2-weighted scans, both

components appear as hyperintense. Upon administering a contrast agent, the

solid nodular component gets enhanced and enhancement of the cyst wall may

occasionally be seen too. Figure 2.23 shows T1 and T2-weighted MR images of a

child diagnosed with pilocytic astrocytoma. PA has an excellent prognosis of over

90% for 25-year survival [12]. In general, complete resection through surgery is

considered curative [10] [11].

55-year survival rate is used for estimating the prognosis of a particular disease by describing
the percentage of patients that are alive 5 years after their disease was diagnosed.

6A cyst is an abnormal sac that may contain air, fluids or semi-solid material.
7A mural nodule is a small lump of solid tissue on a cysts inner wall.
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Figure 2.23: (a) T1- and (b) T2-weighted MR images of a child diagnosed with
pilocytic astrocytoma. Images are shown in the axial and coronal planes. The red
regions of interest indicate areas affected by the tumour. Images were obtained
from CCLG database [4].
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Ependymoma

Following MB and PA, EP is third most common childhood posterior fossa tumour,

which usually occurs along the floor or roof of the fourth ventricle [10]. Most EPs

are WHO Grade II with an average time of presentation at 6 years of age [13].

EPs appear iso- to hypointense on T1-weighted MRI and hyperintense on T2-

weighted MRI. The solid components of EP demonstrate more heterogeneous sig-

nal characteristics compared to MB. After treatment, EP recurrence tends to be

common due to tumour adherence to adjacent structures, which makes complete

resection difficult [10]. Figure 2.24 shows T1 and T2-weighted MR images of a

child diagnosed with pilocytic astrocytoma.

With regards to prognosis, the survival of posterior fossa EP is generally de-

pendant on age, degree of initial surgical resection, presence of any dissemination

and recurrence. EP′s survival rate is between 50% and 70% for 5-year survival

[10] [11].
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Figure 2.24: (a) T1- and (b) T2-weighted MR images of a child diagnosed with
ependymoma. Images are shown in the axial and coronal planes. The red regions
of interest indicate areas affected by the tumour. Images were obtained from
CCLG database [4] .
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2.3.3 Comparison to Adult Brain Tumours

It is worth noting that a number of differences exist between paediatric and adult

brain tumours, in terms of their biology, occurrence and sensitivity to treatment.

For instance, in childhood, cancer is related to tissue development and may initiate

during the development of the embryo, as in the case of embryonal tumours like

MB [91]. However, in adults, cancer is linked to the interaction of cells with

environmental carcinogens. In addition to this, commonly occuring paediatric

brain tumours include MB and PA, while in adults, glioblastoma and meningioma

are the most common primary brain tumours [92]. Moreover, most paediatric

brain tumours are primary, while those occurring in adults are more likely to have

metastasised from other parts of the body as a result of other types of cancer,

such as lung, breast and kidney cancer. In terms of treatment, children are more

sensitive to radiotherapy and chemotherapy, and consequently their treatment has

more potential side effects [93].

It may be argued that whilst tumours like MB occur at significantly different

rates in the adult and paediatric populations, they exhibit the same morphology

and hence the distinction between adult and paediatric research is not important.

However, findings from translattional oncological research have shown that tumour

types with the same morphological characteristics can often have a diverse set of

genetic profiles [113]. For the particular example of paediatric MB, it has been

recently shown that they are genetically distinct from their adult forms [113].

Consequently, response to anticancer therapy is likely to be different between

adults and children. In terms of relevance to this thesis, such variations that occur

on a genetic level are likely to translate to variations in textural characteristics;

hence, paediatric brain cancer is considered as a separate problem throughout this

thesis.
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2.4 Summary

This chapter outlined the basic principles and concepts of MR imaging used

throughout this thesis. Whilst the technical work presented in this thesis in-

volves the analysis of already acquired data in image space, understanding the

physical processes underlying MRI is important. It is particularly important to

understand how the choice of certain parameters, such as echo time, affects the

contrast characteristics of the imaging data that will be used in our analysis.

Medulloblastoma, pilocytic astrocytoma and ependymoma tumours were then

introduced later in the chapter. The focus is on these three types, as they are the

most commonly occurring brain tumours affecting childhood. Since the technical

aspects of this thesis are based on the analysis of conventional MR data of pa-

tients diagnosed with these three tumour types, understanding their MR imaging

appearance is of particular importance. Hence, an overview of the manifestation

of these tumours on T1 and T2-weighted images was presented.
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3.1 Introduction

Machine learning is defined as a set of methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data [109].

It is an on-going area of development in computer science and blends with parallel

developments in statistics, in particular, statistical learning. Accoring to Abu-

Mostafa et al [51], the essence of a machine learning problem can be captured in

three important components:

• Presence of a pattern.

• Lack of a mathematical means of modelling such pattern.

• Availability of data.

The problem of computer-based classification of brain tumours, using MRI

TA, satisfies these three conditions and therefore represents a classical machine

learning scenario. In this regard, the primary aim of this chapter is to provide

an overview of popular machine learning tools and techniques, particularly those

that were needed to achieve the contributions of this thesis.

The chapter starts by providing an overview of different types of learning

paradigms. The chapter then provides a discussion on dimensionality reduction,

classification algorithms and model evaluation techniques. Since the technical as-

pects of this thesis are carried out within a supervised classification framework,

the focus of this chapter is on this type of learning problems.
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3.2 The Learning Problem

3.2.1 Aim of a Learning Task

In mathematical terms, the aim of a machine learning task is to use available data

to estimate some target function:

Y = f(X) + ε (3.1)

where:

• X is a member of the feature variables set X1, .., Xp

• Y is an output variable

• ε is the random error term

A data sample can be described by the sample pair (X, Y). A feature can be de-

fined as “an individual measurable property of a phenomenon being observed” [54].

Within the context of this thesis, an example feature would be a textural property

that can be measured from an MR image of a tumour, such as histogram’s mean

grey-level value. An example output variable would be the true diagnosis to which

a tumour belongs, for example: medulloblastoma. A tumour sample can therefore

be represented by a set of textural features and true diagnosis class.

3.2.2 Types of Learning

Most learning problems fall into one of two categories: supervised or unsuper-

vised. In supervised learning, for each observation of the feature value(s) xi, where

i=1,....,n, there is an associated output response measurement yi. We wish to fit

a model that relates the response to the features, with the aim of predicting the

47



Chapter 3. Background on Machine Learning

response in the future, or to better comprehend the relationship between the re-

sponse and the features [51], [52]. Many classical learning methods such as logistic

regression and support vector machines operate in a supervised fashion.

Unsupervised learning is the more challenging situation where every observa-

tion i has a vector of feature values xi but no associated response label yi [51], [52].

One technique that can be used in this setting is clustering, where the goal is to

establish, on the basis of available features, whether the observation falls into one

of relatively distinct groups. Unsupervised learning is, however, beyond the scope

of this thesis, and the rest of this chapter is focused on supervised settings.

A machine learning task could either be a classification or a regression learning

problem. In order to understand the difference between classification and regres-

sion learning problems, it is important to appreciate quantitative and qualitative

variables. Quantitative variables assume numerical values, for example, a person’s

age, height or income. Within the context of this thesis, quantitative variables are

textural parameters extractable from MR images of brain tumours e.g, histogram

statistics and grey-level co-occurrence matrix features, which will be explained in

detail in the next chapter. In contrast, qualitative variables assume values that

fall in one of K different classes, such as a person’s gender. Tumour diagnosis

(e.g, medulloblastoma, pilocytic astrocytoma, ependymoma) is a qualitative vari-

able. The machine learning community tends to refer to learning problems with

a qualitative response as classification problems, while those involving a quanti-

tative response as regression problems. Whether the response is quantitative or

qualitative forms the basis of selecting learning methods, however, whether the

features used are qualitative or quantitative is a less important question.

In this regard, the problem of computational classification of brain tumours

from MRI textural features can be described as a supervised classification problem.
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The rest of this chapter discusses some of the most important techniques and

concepts that arise in carrying out a supervised classification task.

3.2.3 The Supervised Classification Framework

There are four main steps that comprise a supervised classification experiment:

• First, feature extraction is carried out on a set of measured data and builds

derived values that aim to capture representative patterns of the data. Such

features should ideally be informative and non redundant. In this thesis,

features are extracted from MR imaging data using texture analysis (TA)

techniques. Such techniques are explained in Chapter 4.

• Secondly, feature selection and dimensionality reduction can be car-

ried out with the aim of identifying and removing as many irrelevant and

redundant features as possible from the dataset. An irrelevant feature does

not affect the target concept in any way, and a redundant feature does not

add anything new to the target concept [58]. Irrelevant and redundant fea-

tures are problematic because they may confuse the learning algorithm, by

helping to obscure the distributions of the subset that holds influential fea-

tures [58],[59].

• A learning algorithm is then trained using labelled data in order to build

a model that aims to capture patterns, which can accurately classify future

unseen data points.

• Finally, the model needs to be validated and evaluated using appropriate

evaluation metrics and techniques to ensure efficacy and robustness.

The rest of this chapter provides a discussion on feature selection, classification

and validation techniques that are used in the technical aspects of this thesis.
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3.3 Feature Selection and Dimensionality Reduc-

tion

Feature selection is a data pre-processing stage generally carried out prior to the

application of learning algorithms, with the aim of identifying and removing as

many irrelevant and redundant features as possible from the dataset [58], [59]. In

addition to this, another motivation for carrying out feature selection tends to be

interoperability. Within the context of this thesis, looking for reasons why partic-

ular features train certain algorithm well, and analysing their biological meaning,

would be a rather challenging task to be performed on the entire feature set. Re-

ducing the required number of features to a manageable number would enable

better analysis and understanding of the model’s behaviour.

Taking the example of features extractable via texture analysis, which will be

thoroughly discussed in Chapter 4, the use of all possible combinations from all

techniques, modalities and datasets would give a very large number of features:

over 560 for 3D features! To address this, the technical aspects of this thesis make

use of a number of feature selection techniques, which are explained below.

One method that can be used for feature selection is ReliefF [56]. The idea

behind this technique is to estimate the effectiveness of a feature based on how well

its value compares to its neighbours. This is done by searching for an instance’s

nearest neighbours and finding an instance from the same class (nearest hit) and

another one from a different class (nearest miss). The algorithm then uses a

weighting approach to estimate the quality for each feature. Good features are

assumed to have the same value for instances from the same class and should

differentiate between instances that belong to different classes.

Another technique that can be used for feature selection is entropy minimum
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descriptive length (MDL) [57]. Entropy-MDL is conventionally a feature discreti-

sation technique that works by finding a splitting value (cut-off point) which yields

the best gain in entropy, allowing continuous feature values to be discretised. This

is repeated recursively with a stopping criteria that is based on the minimal de-

scription length (MDL) principle 1 [103],[104]. The basic idea behind MDL prin-

ciple is to equate data compression with finding regularities in the data. The use

of entropy MDL technique as a feature selection method is based on the assump-

tion that since a feature’s entropy can be used as a measure of its discriminative

power, those features that were rejected by the algorithm can be assumed to be

redundant. A feature would not be discretised if no appropriate cut-off points are

found [58].

Feature selection falls under a broader category referred to as dimensionality

reduction. While feature selection methods work by deciding on a limited number

of features to be included in the final sub-set, other dimensionality reduction

techniques work by mathematically transforming the data to a new space of fewer

dimensions. A popular example is principal component analysis (PCA).

PCA aims to reduce the dimensions of a n×p data matrix X by linearly trans-

forming the data to identify dimensions of maximum variation within the matrix.

The data is transformed into a space spanned by a set of orthogonal vectors called

the principal components (PCs), which are aligned along the axes of maximum

variation [86],[105]. The first PC is the dimension with maximum variation and

each further PC corresponds to less variation than the previous. In classification

settings, a common assumption is that the dimensions of maximum variation, the

PCs, are also the dimensions which are most important for classification [86]. If

1The minimum description length (MDL) principle is a formalisation of Occam’s razor, in
which the best hypothesis for a given set of data is the one that leads to the best compression
of the data.
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this assumption is true, discarding the PCs that correspond to the smallest vari-

ance should not cause any degradation in classification performance. This is the

basis of using PCA for dimensionality reduction.

3.4 Classification Methods

In this section, we discuss common classification techniques that are used in the

technical aspects of this thesis.

3.4.1 The Bayes Classifier

One method that can be trained very efficiently in a supervised learning setting

is the Bayes classifier. This classifier works by simply assigning each observation

to the most likely class j, given a particular feature x0, as per its conditional

probability [52], [99]. In this context, conditional probability is the probability

that Y=j, given x0 , as per :

Pr(Y = j|X = x0) (3.2)

The Bayes classifier will always choose the class for which the conditional

probability is largest, hence, the error rate at X = x0 will be:

1−max
j
Pr(Y = j|X = x0) (3.3)

This is called the Bayes error rate, and is probability that the classifier incor-

rectly classifies an instance.

The above description assumes the need to predict an outcome given only one

piece of evidence (i.e. one feature). In practice, classification is done on the basis
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of values of multiple features. One approach this could be tackled is by uncoupling

the available features. In other words, all features are assumed to be conditionally

independent given the class label. Even though this is usually false, the resulting

model is easy to fit and works surprisingly well [99]. This approach is referred to

as the naive Bayes classifier.

Within the context of this thesis, the probabilistic nature of Bayesian classifiers

is particularly advantageous for implementation in computer-aided decision sup-

port settings. Using probability distributions, it is straightforward to charatcerise

confidence in classifier predictions, allowing predictions with low confidence to be

rejected and passed on to human experts.

3.4.2 k-Nearest Neighbours Classifier

The k-Nearest Neighbours (kNN) classifier is intuitively very attractive: assign to

the data point that is to be classified the class label of the nearest k known data

points, where nearest is some distance metric such as Euclidean distance [100].

Given

• a positive integer k, and

• a test observation x0.

kNN first identifies the k points in the training data that are closest to x0,

represented by N. kNN then estimates the conditional probability for class j, as

the fraction of points in N, whose response values equal j [52]:

Pr(Y = j|X = x0) = 1/k
∑
iεN

I(yi = j) (3.4)

Where I is an indicator variable that assumes the value of 1 if yi = j is true,

and zero if it is false, for the ith data point.
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Finally, kNN applies Bayes rule and classifies the data point to the class with

the largest probability.

It is important to note that the choice of k can have serious effects on the

classification performance. With very small k values, such as 1, the classifier’s

decision boundary is overly flexible, yielding a classifier that has low bias but very

high variance [52]. As k grows, flexibility decreases and the decision boundary

becomes so close to linear. This yields a low-variance but high-bias classifier [52]

In machine learning, variance gives an indication to the amount by which f̂ would

change if it was estimated using a different data set. Ideally, the estimate for f

should not vary too much between training sets. However, a high variance method

means that a small change in the training data can result in large changes in f̂ .

On the other hand, bias refers to the error that is introduced by approximating a

complicated problem by a much simple model [52], [108].

Contrary to other learning methods such as SVM, which will be introduced

later in this section, kNN uses all available training data for classifier construction

once k is defined; there is no summarisation or discard of data points [84]. This can

be an advantage, as less frequently occurring classes with unusual characteristics

are not ignored. On the other hand, this can be disadvantageous if the training

data is noisy or falsely labelled. Hence, it might be expected that a kNN classifier

can perform well for relatively rare brain tumour types, such as ependymoma.

3.4.3 Classification Tree

Classification tree algorithms, in their simplest form, are hierarchal If-Else state-

ments that can be applied to predict a result based on available data. When

building learning models, classification trees are a good choice when the goal is

to generate classification rules that can be easily comprehended [52]. Within the
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context of this thesis, the use of a tree-based classifier to diagnose tumour classes

from MR images may be appealing to clinicians as it would be a straightforward

approach for translating unclear textural patterns to logical structures. Trees can

be built through a process known as binary recursive partitioning. This is an it-

erative task that requires categorising the data into partitions, and then splitting

the partitions further on each of the branches.

In broad terms, the process initiates at a single node, followed by looking for

the binary distinction which gives us the most information about the classes, as

measured by information gain [101]. The same is done on each of the resulting

nodes, in a recursive manner, until a pre-defined stopping criterion is reached

[101]. This is detailed in Algorithm 1. To calculate information gain, entropy - a

measure of uncertainty of a random variable - is calculated first [107]:

H(X) = −
∑
i

Pr(xi) logPr(xi) (3.5)

and the entropy of X after observing the values of another variable Y is defined

as:

H(X|Y ) = −
∑
i

Pr(xi)
∑
i

Pr(xi|yi) logPr(xi|yi) (3.6)

where:

• Pr(xi) is the prior probabilities for all values of X

• Pr(xi|yi) is the posterior probabilities of X given the values of Y.

Information gain can finally be calculated as follows:
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InformationGain(X|Y ) = H(X)−H(X|Y ) (3.7)

Algorithm 1 An algorithm describing the recursive process of building a decision
tree [101].

T ← EmptyTree
if all instances in D have the same class c then

label(T )← c return T
else

if features = 0, or no feature has positive information gain then
label(T )←MostCommonClassInD return T

end if
A← FeatureWithHighestInformationGain
label(T )← A
for each value a of A do

Da ← InstancesInDwithA = a
if Da = 0 then

Ta ← EmptyTree
label(Ta)←MostCommonClassInD

elseAddBranchFromTtoTaLabelled(a)
end if

end for
end if

3.4.4 Logistic Regression

Logistic regression2 models the probability of outcome Y given a certain feature X,

Pr(Y = 1|X). Then, for any given value of X, one might predict whether a given

class label Y is positive or negative (assuming a binary classification problem).

For example, for any data point where Pr(X) ≥ 0.5, Y gets classified as positive.

This probability can be estimated using the logistic function:

Pr(X) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
(3.8)

2This is called logistic regression due to its similarity to linear regression; although it is a
form of classification, not regression.
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where β0 and β1 are the model parameters.

By manipulating Eq 3.8, we find that:

Pr(X)/(1− Pr(X)) = exp(β0 + β1X) (3.9)

By taking the logarithm of both sides of Eq 3.9, we arrive at

log(Pr(X)/(1− Pr(X))) = β0 + β1X (3.10)

The left-hand side of this relationship is referred to as the log-odds, or logit.

One can estimate β0 and β1 using a technique called maximum likelihood [52].

The basic intuition behind using maximum likelihood to fit a logistic regression

model is as follows: we try to find estimates for β0 and β1 such that the predicted

probability Pr(X) yields a number close to one, for all data points that fall into

the positive class, and a number close to zero for all data points that fall into

the negative class. This intuition can be mathematically formalised using the

maximum likelihood function l, as shown in Eq 3.14:

l(β0, β1) =
∏
i:yi=1

Pr(xi)
∏
i′:y′i=1

1− Pr(x′i) (3.11)
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3.4.5 Artificial Neural Network

Artificial Neural Network ′s (ANN) name has its origins in attempts to find math-

ematical representations of information processing in biological systems [54]. In

biology, a neural network consists of a large number of nerve cells, neurons, which

are basic signalling units with several inputs but one output. Depending on the

neuron’s location, its inputs and outputs may be from/to sensory organs/motor

nerves, or other neurones within the network. In broad terms, each input to the

neuron connects through a synapse, which controls the gain of the signal from

each source.

When designing an ANN, the basic unit that mimics the behaviour of a neuron

is a perceptron. The perceptron works by taking several inputs with their asso-

ciated weights, and depending on whether the combined input weight exceeds a

pre-defined threshold, a certain output signal will be activated (Fig 3.1 (a)). The

perceptron can be mathematically described as shown in Equation 3.15:

y = φ{
n∑
i=1

wixi + b} (3.12)

Where:

• y is the output signal,

• φ is the activation function, which translates the input signals to output

signals. Common types include unit step, sigmoid and Gaussian [102].

• n is the number of connections to the perceptron,

• xi is the value of the ith connection,

• b represents the threshold.
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Figure 3.1: A figure showing (a)the idealisation of a perceptron. Each activity
is multiplied by a weight and the weighted inputs are then added. The output
activity is computed using an activation function (b) an ANN consisting of three
layers that are fully connected.
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Whilst the design of a single perceptron is simple, its strength can be shown

when several perceptrons are combined to work together to form an ANN. A single

perceptron is only capable of describing linear separations between data classes,

whereas an ANN can describe non-linear regions.

In an ANN, perceptrons are organised in layers, where each layer takes input

from the previous, applies weights and then signals to the next layer if appropriate.

The use of hidden layers within an ANN alleviates the limitations of using an

individual perceptron for learning [86]. To train an ANN to perform some task,

the weights of each node must be adjusted in a way that the error between the

desired output and the actual output is reduced. This process requires the ANN to

compute the error derivative of the weights [87]. In other words, it must calculate

how the error changes as each weight is increased or decreased slightly. There are

several ways of doing this, most of which involve initialising the weight and feeding

the network with an example. The error made by the network at the output nodes

is calculated, and fed backwards through a process called back-propagation. By

repeating this process, the network can update the weights and learn to accurately

distinguish between different classes. An example ANN is shown in Figure 3.1 (b).
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3.4.6 Support Vector Machines

Support vector machine (SVM) is a classification method that has grown in popu-

larity within the machine learning community since the 1990s. In order to appreci-

ate the mechanisms underlying SVMs, a number of concepts, such as hyperplanes,

maximal margin classifiers and support vector classifiers are introduced below.

Figure 3.2: A graph showing a one-dimensional hyperplane 1 + 2X1 + 3X2 = 0.
Region a is the set of points for which 1 + 2X1 + 3X2 > 0, whereas region b is the
set of points for which 1 + 2X1 + 3X2 < 0.

Hyperplanes : In a p-dimensional space, a hyperplane is a flat subspace of

dimension p-1. For instance, in two dimensions, a hyperplane is a flat one-

dimensional subspace, i.e. a line, as shown in Fig 3.2. A hyperplane is math-

ematically defined using the simple Equation:

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (3.13)

For parameters β0, β1, ..., βp

Consider Figure 3.3 , which shows a number of data points that fall into one

of two possible classes. Three separating hyperplanes, out of many possible, are

shown as straight black lines in the figure. The situation depicted raises an inter-

esting question: given a number of possible separating hyperplanes that can per-
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Figure 3.3: A graph showing a number of data points that fall into one of two
possible classes, illustrated here in blue and red. Thee separating hyperplanes,
out of many possible, are shown as straight black lines.

fectly separate our data points that belong to different classes, is there a reasonable

way to decide on only one hyperplane to use?

Maximal Margin Classifier : An intuitive choice is the maximal margin hyper-

plane, which is the separating hyperplane that is furthest away from the training

data points. This can be determined by calculating the perpendicular distance

from each training point to a given hyperplane; the smallest of which is the min-

imal distance from the data points to the hyperplane, and is referred to as the

margin. This is the basis of the maximal margin classifier: a technique that simply

classifies a data point based on which side of the maximal margin hyperplane it

lies. By inspecting Fig 3.4, one can see that two data points are equidistant from

the maximal margin hyperplane and lie along the dotted lines that indicate the

margins width. Such data points are referred to as support vectors, as they are

vectors that support the maximal margin hyperplane, meaning that a slight shift

in their position would cause a shift in the hyperplane.
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Figure 3.4: A plot illustrating a maximal margin hyperplane separating data points
that belong to two classes. The two points that lie on the dashed lines are the
support vectors. The arrows indicate the distance from the support vectors to the
hyperplanes margins.

Support Vector Classifier : Whilst the maximal margin classifier is a straight-

forward way of classifying data when a separating hyperplane is present, in many

cases, it is not possible to construct such hyperplane. This motivates the extension

to a concept called soft margin, which almost separates the classes by misclassify-

ing a few training observations with the aim of performing better when grouping

the remaining data points (figure 3.5). The soft margin forms the basis of a sup-

port vector classifier : a technique that works by allowing some data points to be

on the incorrect side of the margin, instead of seeking the largest possible margin

that separates all available training points. Not only can a data point be on the

incorrect side of the margin, but also on the incorrect side of the hyperplane.
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Figure 3.5: A plot illustrating the construction of a soft margin that allows two
data points to be on the incorrect side of the hyperplane and margin, but performs
well when separating the rest of the data points. The two points on the incorrect
side of the hyperplane are plotted as triangles.

In mathematical terms, the support vector classifier is the solution to the

optimisation problem:

Maximise M

Subject to
∑p

j=1 β
2
j = 1

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) >= M(1− εi)

εi >= 0,
∑n

i=1 εi <= C,

where:

• M is the width of the margin.

• C, the cost coefficient, is a non-negative tuning parameter that bounds the

sum of the ε′is and hence determines the severity of margin and hyperplane

violations.

• ε1,..,εn are called slack variables.

• x1,..,xn are training observations.
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• y1,..,yn are the associated class labels observations, which are of a binary

outcome.

• p is the number of dimensions in the space.

Slack variables allow data points to be on the wrong side of the margin or

hyperplane. The slack variable εi indicates where the ith data point is located,

with respect to the hyperplane and the margin. If εn=0 , then the data point is

on the correct side of the margin, whereas if εn > 0, then it is on the wrong side

of the margin (that is, the data point has violated the margin). If εn > 1 , then it

is on the wrong side of the hyperplane.

Figure 3.6: A plot illustrating two classes of data that are not linearly-separable.

Support Vector Machines : Thus far, the use of hyperplanes has been discussed

within the specific context of classes that are linearly separable. However, datasets

used in practice often include non-linearly separable observations (example Figure

3.6). This is certainly the case for textural features extracted from the clinical

MR datasets used in the technical aspects of this thesis [37]. SVM addresses this

problem by extending the aforementioned support vector classifier to manipulate
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Figure 3.7: A plot illustrating thow polynomial (left) and radial (right) kernels
perform on data.

the feature space in a certain way, using kernels, as detailed below.

A kernel is a function K that quantifies the similarity between two data points,

xi and x′i, in a p-dimensional space. For instance, we could take:

K(xi, xi′) =

p∑
j=1

xijxi′j (3.14)

which characterises the classic support vector classifier. Eq 3.14 is a linear kernel

due to the linear nature of the support vector classifier. This kernel essentially

uses Pearson correlation to quantify the similarity between a pair of data points.

This could be extended as:

K(xi, xi′) = (1 +

p∑
j=1

xijxi′j)
d (3.15)

which yields a polynomial kernel of degree d. The use of a kernel with a degree
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higher than 1 essentially leads to fitting a support vector classifier in a higher-

dimensional space of degree d, rather than in the original feature space. This

yields a more flexible decision boundary when fitting the data points. When a

support vector classifier is combined with non-linear kernels such as Eq 3.15, the

resulting classifier is an SVM. Another popular kernel is the radial kernel, which

is characterised as:

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2) (3.16)

where γ is a positive constant. Figure 3.7 shows SVMs with a polynomial kernel

(left) and a radial kernel (right) applied to non-linear features and resulting with

highly flexible decision boundaries.

SVMs with Multiple Classes: Thus far, the discussion of SVM assumed binary-

class situations. Given that this thesis concerns the classification of more than two

tumour types, extending SVM to work under such settings is important. However,

the concept of hyperplanes does not naturally lend itself to multi-class problems.

The two most popular ways to address this are one-versus-all and one-versus-one

classification schemes. Given the problem of classifying MB, PA and EP, one-

versus-all assumes that the class of interest (say, MB) is positive while the rest of

the classes collectively represent a negative class. This is then repeated for the rest

of the classes (PA versus non-PA; EP versus non-EP). Under the one-versus-one

scheme, a series of SVMs is constructed, each comparing a pair of original classes

(e.g. MB versus PA, MB versus EP, PA versus EP). We then separately classify

each test observation using each classifier. The final classification is performed by

assigning the test observation to the class to which it was most frequently assigned

in these pairwise classifications.

67



Chapter 3. Background on Machine Learning

3.5 Model Validation and Evaluation

3.5.1 Measures of Classification Performance

Suppose that we seek to estimate f on the basis of data points that can be used

to train, or teach, a learning method. The data points can be represented as (x1,

y1),.., (xn, yn), where y1, ..., yn are qualitative class labels. The most straight-

forward metric for assessing the performance of our estimate is the training error

rate, which is proportion of mistakes that are made if we apply our estimate f

on the same data points used to train the classifier. This can be mathematically

described as follows:

1/n
n∑
i=1

I(y 6= ŷ) (3.17)

where:

• ŷ is the predicted class label for a particular data point using f̂ .

• I(y 6= ŷ) is an indicator variable that assumes the value of 1, if y 6= ŷ is true,

and zero, if it is false for the ith data point [52].

We are, however, not interested in how the classifier performs on seen data,

but rather in the error rate that results from testing our classifier on unseen data

points that were not used in the training. A basic rule in classification experiments

is that class predictions are not made for data samples that are used for training,

because that would lead to an over-optimistic bias of classification performance

[100]. The test error is therefore calculated as follows:

Ave(y 6= ŷ) (3.18)
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Where ŷ is the predicted class label that results from applying the classifier

to an unseen data point. Instead of computing the error rate, an alternative is to

calculate the classification accuracy, which is the fraction of correct, rather than

incorrect, classifications. In the technical parts of this thesis, the classification

accuracy metric is extensively used, alongside other measures of classification per-

formance, to assess our learning models. However, accuracy is not always adequate

when evaluating classifiers, so other measures that are commonly used in practice

are introduced next.

Figure 3.8: A diagram showing an example confusion matrix.

Assuming a binary classification problem, and given a classifier and a data

point, the point can either be positive or negative. That is, if we are predicting

the presence of a particular type of cancer (say, Medulloblastoma), positive would

indicate the presence of Medulloblastoma, while negative would indicate otherwise.

Hence, there are four possible outcomes upon classification. If the data point is

positive and it is classified as positive, it is counted as a true positive (TP); if it

is classified as negative, it is counted as a false negative (FN). If the data point

is negative and it is classified as positive, it is counted as a false positive (FP);

if it is classified as negative, it is counted as a true negative (TN). A two-by-two

confusion matrix can be constructed (Figure 3.8) to summarise these outcomes;

this matrix forms the basis of popular classifier evaluation measures [55].
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Figure 3.9: A diagram showing an example receiver operator characteristics (ROC)
curve.
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One measure that can be calculated from a confusion matrix is sensitivity. This

is the proportion of actual positives that are correctly identified as such. In other

words, it is the ratio between true positives and the sum of true positives and false

negatives. Another statistical measure that can be calculated is specificity, which is

the proportion of negatives that are correctly identified, as such. Specificity is the

ratio between true negatives and the sum of false positives and true negatives [55].

One way of visually depicting a classifier’s performance is the receiver operator

characteristics (ROC) curve. To plot an ROC curve, one must first calculate the

true positive rate (ratio between true positives and all positives) and false positive

rate (ratio between false positives and all negatives) for different discrimination

thresholds used by the classifier. An example ROC curve is illustrated in Fig 3.9.

The lower left point (0,0) represents the strategy of never issuing a positive clas-

sification, whereas the top right point (1,1) represents the opposite strategy of

unconditionally issuing positive classifications, in terms of true positive and false

positive rates. A perfect classification would be identified in point (0,1). The

diagonal line y=x represents the strategy of randomly guessing a class. Generally

speaking, one point is considered better than another in ROC space if it is to the

northwest of the first (higher TP rate, lower FP rate, or both) [55].

Although the ROC curve is a visual depiction of classification performance, it is

possible to reduce ROC performance to a single scalar value summarising expected

performance, namely area under the ROC curve (AUC). AUC is a portion of the

area in unit square, and will therefore have a value between 0 and 1. Note that

since random guessing (line y=x) produces an area of 0.5, a successful classifier

must have an AUC value greater than 0.5.
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3.5.2 Model Validation Schemes

Due to limited cohort sizes, having an independent testing set is not always pos-

sible, which motivates the need to use other means for measuring a classifier’s

generalisation performance. This is particularly relevant to this thesis due to the

limited cohort sizes, typical in paediatric neuro-oncology.

k-fold cross-validation (CV) provides an easy way evaluate a classifier’s per-

formance. Here, the dataset is partitioned into k folds, and each cross-validation

loop involves the use of k-1 folds for training and the remaining data for testing.

This process is repeated k times, which ensures that each of the subsets is used

once for testing, and the results are averaged over the folds [100],[106].

A variant of k-fold CV is stratified CV. This approach makes sure that folds

are selected so that the mean response value is approximately equal in all of

them. This ensures that each fold contains roughly the same proportions of the

available class labels, and is known to produce results with a lower variance than

the conventional approach. Another variant of k-fold cross-validation, and perhaps

the most popular one, is the leave-one-out cross-validation (LOOCV) scheme.

Here, k is equal to the number of observations, and the test fold has only one

element [100],[106].

Alternatively, one could use the repeated random sampling approach. This

requires random partitioning of the dataset into a training and a testing set of

fixed sizes (say 75% for training and the remaining for testing). The partitioning

is then repeated and the results are averaged over all repetitions [106].

3.5.3 The Problem of Over-fitting

When training a learning algorithm in a supervised classification experiment, the

aim is to use the available features to build a classification model that can gener-
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alise well with the data, i.e. apply to the larger population from which the training

sample was drawn [110]. The over-fitting problem arises when the model incorpo-

rates error or noise from the training sample and consequently does not generalise

well to the overall population [110]. In other words, the chosen model may have

a large out-of-sample error, despite demonstrating a low in-sample error [51].

Over-fitting is likely to occur when the number of features in the model is

larger relative to the size of the training set [110]. The rarity of paediatric brain

tumours and the abundance of available textural features that can be extracted

from MR images means that over-fitting will be a potential problem in the ex-

perimental parts of this thesis. This can, however, be mitigated through the use

of dimensionality reduction techniques to reduce the feature to sample size ratio.

Additionally, the use of cross-validation can address the lack of sufficient training

sets.

3.5.4 The Problem of Class-Imbalance

Another potential problem that is likely to arise in the technical aspects of this

work, and is linked to the rarity of paediatric brain tumours, is the issue of class-

imbalance. Imbalanced data usually refers to classification problems where avail-

able data points that belong to different classes are not equally represented. Given

that some tumour types are a lot more frequently occuring than others (e.g. MB

versus EP), our cohort is likely going to exhibit this issue. The machine learning

community has tackled the class imbalance issue in two ways. One is to assign

costs to training examples, and the other is through sampling the data (by over-

sampling minorities or under-sampling majorities)[73]. Given the already limited

cohort sizes in paediatric oncology, under-sampling majority classes is an unlikely

choice for addressing this issue, within the context of this thesis.
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3.6 Summary

Since much of this thesis is devoted to the use of textural features within a su-

pervised classification framework, it was necessary to review common machine

learning techniques that were applied as part of the work presented. An overview

of different types of learning paradigms was presented. This was followed by an

explanation of a number of feature selection and dimensionality reduction tech-

niques. A review of common classification algorithms (Naive Bayes, Classification

Tree, Logistic Regression, kNN, ANN and SVM), which were used in the tech-

nical parts of this thesis, was then given. Finally, the chapter concluded with a

summary of techniques and metrics that can be used to assess the performance of

learning models. The next chapter follows by introducing TA techniques that will

be used to extract features from MR imaging datasets.
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4.1 Introduction

This chapter gives a background on texture analysis of MR images, with a par-

ticular focus on its application as a tool for brain tumour characterisation. The

first section of the chapter introduces theoretical concepts behind texture analysis,

with an emphasis on statistical methods that aim to analyse grey-scale images.

MRI scans are grey-scale, hence the focus on this category of digital images in

this chapter. The material presented in the second section provides an extensive

literature review of the current state-of the-art for characterising paediatric and

adult brain tumours.

4.2 Background on Texture Analysis

4.2.1 Introduction

Figure 4.1: Different types of image textures that human vision processes on a
daily basis. Original image was obtained from [15].

The concept of texture is generally regarded as a broad one, with no standard

definition that is universally agreed upon. This is perhaps due to the numerous

interpretations in which humans perceive texture [16]. The Oxford dictionary

defines texture as: “the feel, appearance or consistency of a surface or a sub-
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stance” [17]. In this thesis, the main focus is on visually sensed textures. Figure

4.1 shows examples of different types of textures that human vision can encounter

on a daily basis. The figure is illustrative of the level of sophistication that the

human brain deals with when processing visually sensed textural patterns. The

difference in textural properties, for instance, defines the borders between clear sky

and clouds; such variations in textural patterns allows us to visually distinguish

between different objects.

In the field of medical image analysis, texture is defined as “the spatial variation

of pixel intensities within an image” [18]. Textural features are mathematically

defined parameters computed from pixel distributions and intensities, and can be

used to characterise the surface of a given object. This means that textural features

can provide a quantitative description of the spatial information contained within

an image, and can therefore be useful in a variety of applications [18],[19]. Texture

analysis (TA) is the term used for methods that can compute such features [20].

Although research in TA has been of interest since the 1970s, the performance

of TA-based techniques was greatly hindered in the past by the difficulty of acquir-

ing high-quality imaging data. It is due to the recent advances in digital imaging

that TA has become of great potential across a range of applications [21], such as

MRI. Early work on TA focused on ways of quantifying geographical information

obtained from aerial photographs and satellite images [22]. With improvements

in digital imaging, TA found its way to a variety of applications that ranged from

biometric identification systems [23] to content-based image retrieval [24]. MR

imaging is potentially one of the most exciting imaging technologies where TA

can be applied, because MRI offers good soft tissue contrast and provides pow-

erful experimental control of the spatial resolution and signal intensity changes

during the imaging experiment [21]. With regards to the medical MR imaging
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literature, TA was successfully used for image characterisation in a wide range of

disorders and diseases, including brain cancer [25], breast cancer [26] and multiple

sclerosis [27].

According to Castellano et al [28], TA methods can be divided into four main

categories: statistical, structural, model-based and transform. Statistical methods

aim to represent textures using pixel intensities, distributions and relationships.

These are particularly common in medical image analysis applications. Struc-

tural methods aim to represent textures using well-defined primitive objects e.g.

straight lines can be used to represent a square object. Model-based techniques

exploit complex mathematical models (e.g. stochastic) to carry out TA, whereas

transform methods use techniques such as Fourier Transform or Wavelet Analysis

to extract textural features. This thesis is focused on the use of statistical TA

methods, the most common of which are detailed below1.

4.2.2 Common Statistical TA Methods

The techniques discussed below are those used in the technical aspects of this

thesis (chapters 5-7).

(a) Histogram Statistics

In grey-scale images, pixel values range between 0 and 2b − 1, where b is the disk

memory (in bits) occupied by each image pixel. Generally, 8 bits are sufficient,

giving grey-level values that range between 0 and 255. However, medical MR

images tend to use 12 bits in order to enhance tissue visualisation, giving grey-

level values that range between 0 and 4095. Low pixel values are attributed to

1Whilst auto-regressive model is extensively used in statistics, particularly time-series anal-
ysis, it is considered as a model-based technique in this thesis, as per Castellano et al, for
simplicity.
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Figure 4.2: Four regions of interest (ROIs) and their corresponding histograms
extracted from an axial T1-weighted MR image. The ROI marked in green includes
a tumour lesion. Original image was obtained from CCLG database [4].

darker grey-levels and high pixel values are attributed to lighter grey-levels [28].

A grey-scale image histogram is the count of how many pixels in the image pos-

sess a certain value. The shape of a histogram provides many clues to the visual

characteristics of the corresponding image. For instance, a narrowly distributed

histogram indicates that the image is low-contrast and a bimodal histogram sug-

gests that that the image may contain an object with a narrow intensity range

against a background of differing intensity [80]. Figure 4.2 shows the histograms

of four regions of interest (ROIs) obtained from a T1-weighted MR brain scan.

In order to quantify image properties, a number of features can be extracted

from a histogram, namely mean, variance, skewness and kurtosis. Equations 4.1

to 4.4 list the features extractable from a grey-level histogram, together with their

importance and formulae. Histogram analysis is considered a first-order statisti-

cal TA technique, as it does not take into account spatial pixel neighbourhood
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relationships or dependencies [80].

Assuming that Ng is the number of distinct grey-levels in an image (i =

1, 2, ..., Ng), and that p(i) is the normalised histogram vector (entries are divided

by total number of pixels), histogram features can be calculated as follows:

• Mean: Measures the average grey-level value of the image

µ =

Ng∑
i=1

ip(i) (4.1)

• Variance: Shows how far from the mean the grey-levels are distributed. This

gives an idea about how homogeneous the pixel distribution is.

σ2 =

Ng∑
i=1

(i− µ)2p(i) (4.2)

• Skewness : Measure of the datas lack of symmetry. Data can be described

as symmetric if it looks the same to the left and right of the distributions

centre point.

µ3 = σ−3
Ng∑
i=1

(i− µ)3p(i) (4.3)

• Kurtosis : Measure of whether the data is peaked or flat relative to the

normal distribution. Data with high kurtosis tends to have distinct peaks

near the mean, decline rapidly and have heavy tails.

µ4 = σ−4
Ng∑
i=1

(i− µ)4p(i)− 3 (4.4)
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(b) Absolute Gradient

The gradient of an image is a measure of the local spatial variation of grey-level

intensities across the image. For instance, if at a point in an image the grey-level

intensity varies rapidly from black to white, the resulting gradient would be high.

If the intensity varies from, say, light grey to dark grey, the resulting gradient

would be low at that point. Whilst the gradient may be positive or negative, we

generally discard the sign, as we are mainly interested in whether the variation is

abrupt or smooth. In other words, the main interest is in the gradient’s absolute

value [28]. Figure 4.3 shows a T1-weighted brain MR image and its corresponding

gradient image.

Figure 4.3: (a) An axial T1-weighted MR image and (b) its corresponding gradient
image. Original image was obtained from the CCLG database [4].
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Figure 4.4: A grey-level image showing a hypothetical pixel neighbourhood.

Assuming the hypothetical neighbourhood for point x(i,j) as per Fig 4.4, the

absolute gradient value can be calculated for each pixel as shown in Equation 4.5:

AbsGr =
√

(R−H)2 + (N − L)2 (4.5)

Quantitative features that could be extracted using this technique are mean,

variance, skweness and kurtosis, which are estimated from the histogram of the ab-

solute gradient image. Absolute gradient is also considered a first-order statistical

technique.
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(c) Grey-Level Co-Occurence Matrix

Grey-level co-occurrence matrix (GLCM) is a second-order TA technique that was

introduced by Haralick et al [22] and allows for the extraction of statistical infor-

mation about pixel pairs distribution. In particular, GLCM computes how often

a pixel with value i, occurs either horizontally, vertically or diagonally to adjacent

pixel with value j.

In order to compute the GLCM of an image, it is necessary to define a dis-

tance (d) and a direction (θ) of analysis first (Figure 4.5 (a)). Pixel pairs separated

by this distance are then analysed across the specified direction, which is done by

counting the number of pixel pairs that assume a certain grey-level sequence. To

illustrate how GLCM is computed, assume that we define the direction to be hor-

izontal and the distance to be one pixel. The GLCM element denoted by p(1,2)

will correspond to the number of pixel pairs that were found in the image which

have the values 1 and 2 respectively, and are horizontally separated by one pixel.

Figure 4.5(b) shows a hypothetical image and its corresponding GLCM, assuming

a horizontal direction of analysis and a one-pixel distance.

Note that it is common to calculate multiple GLCMs for a single image; one for

each pair of distances and directions defined. It is usual to use distances that range

from 1 to 4 pixels in the horizontal (0o), vertical (90o) and two diagonal directions

(45o and 135o). Several textural features can be derived from the GLCM, most

of which aim to quantify the image’s homogeneity (smoothness) or heterogeneity

(coarseness) levels. A summary of the features extractable from a GLCM, together

with their importance and formulae, is shown in equations 4.6 to 4.14.

Assuming that:

• Ng is the number of distinct grey-levels in the image (i, j = 1, 2, ..., Ng), and

item p(i, j) is the (i, j)th entry in a normalised GLCM
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• mx, my , σx , σy are the mean and standard deviation values of rows and

column sums of the GLCM respectively, related to the marginal distributions

px(i) and py(j)

• px(i) =
∑Nrows

i=1 p(i, j)

• py(j) =
∑Ncolumn

j=1 p(i, j)

Then GLCM features can be extracted as follows:

• Angular Second Moment (ASM): Measure of local homogeneity; high ASM

values indicate good homogeneity due to the presence of only a few grey-

levels, giving a GLCM with only a few but relatively high values of p(i,j).

ASM =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2 (4.6)

• Contrast (CON): Estimates local variation; high CON values indicate low

homogeneity.

CON =

Ng−1∑
n=0

n2

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2 , where n = |i− j| (4.7)

• Inverse Different Moment (IDM): Additional measure of homogeneity; high

IDM indicates a smooth texture.

IDM =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2/{1 + (i− j)2} (4.8)

• Entropy (ENT): Measure of randomness within the image; high ENT indi-

cates low homogeneity.
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ENT =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) log p(i, j) (4.9)

• Correlation (COR): Measure of the level of spatial dependencies of grey-

levels within the image.

COR =

∑Ng−1
i=0

∑Ng−1
j=0 (ij)p(i, j)−mxmy

σxσy
(4.10)

• Sum of Squares (SSQ): SSQ is the variance computed from the GLCM. It

is similar to ENT in terms of measuring scatter from the mean.

SSQ =

Ng−1∑
i=0

Ng−1∑
j=0

(1−m)2p(i, j) (4.11)

• Sum Average (SumAvg): SumAvg measures the mean of px+y

SumAvg =

2Ng∑
i=0

i px+y(i) (4.12)

• Sum Variance (SumVar): SumVar measures the variance of px+y

SumV ar =

2Ng∑
i=0

(i− SumAvg)2px+y(i) (4.13)

• Sum Entropy (SumEnt): SumEnt measures the entropy of px+y

SumEnt = −
2Ng∑
i=0

i log px+y(i) (4.14)

Additional features also include Difference Variance (DifVar) and Difference

Entropy (DifEnt).
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Figure 4.6: Two T1-weighted MR images of a (a) medulloblastoma and a (b)
pilocytic astrocytoma. Tumour regions are marked in red. A close-up of each
tumour site is shown beneath the MR images. The values of four GLCM features
calculated from the tumour regions are shown below their corresponding images
(GLCM direction: vertical; distance: 1 pixel). Original images were obtained from
CCLG database [4].

To illustrate how GLCM features can quantify imaging patterns that could

potentially aid the diagnosis of tumours, consider Figure 4.6. The figure shows

two T1-weighted MR images of a MB and a PA. A GLCM was calculated for

the tumour regions using a vertical direction of analysis (θ = 90o) and a distance

of one pixel. The values obtained for four features (contrast, correlation, inverse

difference moment and difference variance) are listed below their corresponding

images. By inspecting the calculated feature values, one could see how the PA

tumour site had considerably higher contrast and difference variance values than

the MB site, suggesting that the former has a coarser, more heterogeneous texture.
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(d) Grey-Level Run-Length Matrix

Shortly after GLCM was introduced as a means of quantifying textural patterns,

Galloway [30] proposed the use of grey-level run-length matrix (GLRLM), a higher-

order statistical technique. GLRLMs aim to capture information about the run2

of a particular grey-level value or range of values, in a particular direction. Coarse

textures are generally characterised by having short runs, whereas relatively longer

runs populate fine textures. Similar to GLCMs, GLRLMs are commonly calcu-

lated for multiple combinations of directions (d) and distances (θ) of analyses (1 to

4 pixels along the 0o, 45o, 90oand135o directions). The number of runs r with grey-

level i, of run-length j, in a direction can be denoted by R(α) = [r′(i, j|α)] [30].

Figure 4.7 shows a hypothetical image and its corresponding GLRLM.

2 The number of pixels contained within the run is the run-length.
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Assuming that

• p(i, j) is the number of times there is a run of length j having a grey-level i.

• Ng is the number of distinct grey-levels in the image (i, j = 1, 2, ..., Ng).

• Nr is the number of runs and P is the number of points in the image.

• Coefficient C is defined as
∑Ng

i=1

∑Nr

j=1 p(i, j), i.e. the total number of runs

in the image.

Then features extractable from a GLRLM can be computed as follows (Equa-

tions 4.15 to 4.19):

• Short Run Emphasis (SRE): Measure of the proportions of runs that have

short lengths. Expected to have large values in coarse textures.

SRE =

∑Ng

i=1

∑Nr

j=1 p(i, j)/j
2

C
(4.15)

• Long Run Emphasis (LRE): Measure of distributions of long runs. Assumes

high values for smooth textures.

LRE =

∑Ng

i=1

∑Nr

j=1 p(i, j)j
2

C
(4.16)

• Grey-Level Non-Uniformity(GLNU): Measure that takes low values when

runs are uniformly distributed along grey-levels.

GLNU =

∑Ng

i=1

(∑Nr

j=1 p(i, j)
2)

C
(4.17)

• Run-Length Non-Uniformity (RLNU): Measure of the degree of non-uniformity
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within run-lengths.

RLNU =

∑Nr

i=1

(∑Ng

j=1 p(i, j)
2)

C
(4.18)

• Run Percentage(RP): This is the ratio of the total number of calculated runs

to the total number of possible runs.

RLNU =

∑Ng

i=1

(∑Nr

j=1 p(i, j)
2)

P
(4.19)
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Figure 4.8: Two T1-weighted MR images of a (a) medulloblastoma and a (b)
pilocytic astrocytoma. Tumour regions are marked in red. A close-up of each
tumour site is shown beneath the MR images. The values of four GLRLM features
calculated from the tumour regions are shown below their corresponding images
(GLRLM direction: horizontal; distance: 1 pixel). Original images were obtained
from CCLG database [4].

Figure 4.8 shows two T1-weighted MR images of a medulloblastoma and a

pilocytic astrocytoma (the same scans used in Fig 4.6). A GLRLM was calculated

for the tumour regions using a vertical direction of analysis (θ = 90o) and a dis-

tance of 1 pixel. The values obtained for four features (grey-level non-uniformity,

run-length non-uniformity, long run emphasis and short run emphasis) are listed

below their corresponding images. The differences in the obtained feature val-

ues between the two tumours demonstrates how quantitative TA techniques can

potentially provide decision support tools for tumour characterisation.
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4.2.3 Three-dimensional Texture Analysis

Whilst most of the MRI TA experiments reported in the cancer literature focus

on the analysis of textural features derived from a limited tumour area (a single

2D image slice) [20], there have been recent efforts to extend analysis to mul-

tiple MR image slices, as the processing of multi-slice volumetric features may

offer additional information [33], [34], [35]. Intratumoural heterogeneity is likely

to be greater in the whole tumour as compared to a limited region; hence, the

use of the conventional 2D approach could dilute the diagnostic and prognostic

value of TA [35]. In 2D TA, each particular voxel of interest has a maximum

of 8 immediate neighbouring voxels that can be analysed in four independent di-

rections (0o, 90o, 45o, 135o). In 3D, each voxel of interest has up to 26 immediate

neighbours, which increase the number of potential analysis directions to 13 [12].

This spatial relationship is illustrated in Figure 4.9, where the voxels of interest

are visualised in red. Deciding which slice to include in the analysis is another

limitation of conventional 2D TA.

Figure 4.9: An illustration of the spatial relationship between voxels on a sin-
gle two-dimensional image slice (left) and a three-dimensional multi-slice volume
(right).
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Figure 4.10: Multiple axial T2-weighted MR slices for one child diagnosed with
medulloblastoma. Tumour regions are marked in red. Original images were ob-
tained from CCLG database [4].

Figure 4.10 shows multiple T2-weighted axial slices for one child diagnosed

with medulloblastoma (the images were obtained from the CCLG database). By

inspecting the tumour regions, it becomes clear how appearance and texture can

vary across multiple slices. Using only one MR slice might not be sufficient for

building a reliable computational model, as capturing any heterogeneities present

across the tumour volume would not be possible. In addition to this, 3D TA has

the advantage of capturing inter-slice features that are completely ignored in the

traditional 2D approach.

Figure 4.11: A figure illustrating θ and φ, which are used to spatially characterise
directions of analysis in 3D GLCMs [111].

Grey-Level Co-Occurence Matrices (GLCMs), which were described in section

4.2.2, can be extended to capture the spacial dependencies of grey-level values
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Table 4.1: Offsets describing 13 possible directions of analysis when computing 3D
GLCMs and GLRLMs. d is the chosen distance of analysis, in number of pixels.

Offset Degree Direction (θ and φ)

1 0,-d,0 0o,0o

2 d,-d,0 45o,0o

3 d,0,0 90o,0o

4 d,d,0 135o,0o

5 0,-d,d 0o, 45o

6 0,0,d 0o,90o

7 0,d,d 0o,135o

8 d,0,d 90o,45o

9 -d,0,d 90o, 135o

10 d,-d,d 45o,45o

11 -d,d,d 45o, 135o

12 d,d,d 135o,45o

13 -d,-d,d 135o,135o

across multiple slices. Like the conventional 2D GLCMs, this matrix also acts as

an accumulator, where p[i,j] counts the number of pixel pairs having intensities

i and j. The presence of a third dimension, however, means that GLCM is no

longer computed using the conventional 4 directions of analysis. In the volumetric

case, there are up to 13 unique directions of analysis. To spatially characterise

them, two angles are used: θ and φ [111], as depicted in Figure 4.11. The 13 pos-

sible directions can be described using unique offsets, as summarised in Table 4.1.

Directions 1-4 are those computed using the conventional 2D GLCM approach.

It is worth noting that, using the same principles, Grey-Level Run-Length

Matrices (GLRLMs) can be extended to capture multi-slice, volumetric pixel pat-

terns. The same 13 directions summarised in Table 4.1 can be used to construct

the matrix. When calculating 3D GLCM and GLRLM, each slides does not need

to be processed individually, but all slices are processed at once, producing only

one matrix for all consecutive slices forming the 3D images [112].
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4.2.4 Practical Limitations of MRI Texture Analysis

It is clear from the discussion above that 3D TA would ideally require minimal

MR image slice gaps, for volumetric features to capture characteristics of maximal

value. This introduces a fundamental limitation within the context of this thesis,

where clinical data used is retrospective multi-slice MR scans that had been ac-

quired using conventional Spin-Echo sequences (i.e. the images are not true 3D ;

Chapters 5 -7).

Additionally, the use of slices for image acquisiton means that each slice sum-

marises potentially many different elements of the underlying pathological struc-

ture over its width [21]. This leads to the interesting question of whether selecting

thinner slices during acquisition might lead to imaging data that can build more ro-

bust TA predictive models3. In this regard, it is likely that between-plane textural

attributes that will be calculated via 3D TA are going to be lacking in robustness;

and if 3D TA is able to yield better classification then it will likely arise due to

the inclusion of more representative data than those obtained via a single slice.

Another related limitation is the issue of resolution dependency. In practical

clinical settings, an image with dimensions 256 by 256 pixels is commonly used

due to reasonable collection time (i.e. 256 times TR, approximately 6-14 minutes).

If image dimensions are increased to 512 by 512 pixels or 1024 by 1024 pixels, the

data collection time will become considerably longer, possibly reaching 28 minutes

[21]. With a field of view 230-240 mm, which is usually used in whole body scan-

ners, pixel size will be around 1mm, 0.5mm or 0.25mm respectively. Thus, subtle

variations in imaging characteristics are likely to arise between images of vari-

ous pixel sizes, introducing a practical limitation for implementing TA in clinical

settings, as feature meaning would not be consistent across various resolutions.

3The use of thinner slices, however, will result in a worsened signal-to-noise ratio, thus con-
cealing the true texture [21].
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4.3 Review of the Current State-of-the-Art

The material presented in this section provides an extensive review that covers

TA work available in the adult and childhood cancer literatures.

4.3.1 Applications of TA in Diagnostic Classification of

Paediatric Brain Tumours

Below is an up-to-date review that summarises studies that looked into using MRI

TA for diagnostic classification of childhood brain tumours, to the best of my

knowledge at the time of writing the thesis. The reviewed articles are summarised

in Table 4.2 at the end of this section.

Rodriguez Guiterrez et al [36] recently studied the performance of a support

vector machine (SVM) classifier that was trained with 2D textural features in order

to classify paediatric posterior fossa tumours. Features consisted of conventional

histogram statistics as well as second order GLCM features, which extracted from

T1, T2 and diffusion-weighted MR images. Besides aiming to classify tumours into

one of three main classes (medulloblastoma, pilocytic astrocytoma and ependy-

moma), the study also looked into the classification of tumour sub-types. A cohort

of 40 patients was used. Encouraging tumour type classification rates that ranged

between 71% and 84% using T1 and T2-weighted images were obtained. An im-

proved tumour type classification performance was obtained when diffusion data

was used, yielding up to 91% accuracy. The study reported a classification ac-

curacy of up to 89% with regards to the tumour-subtype classifier. Nevertheless,

one should note that the tumour subtypes included in the study were highly im-

balanced (e.g. 14 classic vs. 3 anaplastic medulloblastoma), yet no statistical

measures (e.g. minority over-sampling) were implemented to mitigate this. The
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reported results are therefore unlikely to resemble the real-world tumour subtype

classification performance. In addition to this, the study did not report on other

evaluation metrics, particularly sensitivity, specificity or area under the curve,

which can give a more realistic insight of the obtained results.

A similar study was conducted by Orphanidou-Vlachou et al [37], where an

artificial neural network (ANN) was trained with 2D textural features in order

to classify paediatric posterior fossa tumours. The textural features used were

based on histogram statistics, absolute gradient, GLCM, GLRLM, autoregressive

model and Haar wavelets. Both T1 and T2-weighted MR images were included

in the analysis. In order to reduce feature dimensionality, principal component

analysis (PCA) was performed prior to evaluating classifier performance. Since a

small cohort of 40 patients was used, model validation was performed using leave-

one-out cross validation (LOOCV); and ten-fold cross validation (CV) was also

carried out in order to provide additional reassurance. On both LOOCV and ten-

fold CV, ANN was able to achieve 90% classification accuracy. In order to obtain

a radiological benchmark, the authors reviewed conventional radiological reports

of the cases included in the study. The review showed that the correct diagnosis

was specified in only 45% of the reports. Even in cases in which the correct

diagnosis was specified, 22% of them had an alternative proposed. Nonetheless, the

review also showed that incorrect diagnosis was only specified in 5% of the cases,

which suggests a large degree of diagnostic uncertainty in conventional radiological

reporting. It is worth noting that it is not the job of the radiologist to diagnose

the tumours - another likely explaination for limited number of cases where a

correct diagnosis was specified. In terms of limitations of the reported model,

carrying out data-driven pre-processing (PCA) on the entire dataset prior to, and

not within, the cross-validation loop means that the reported results are perhaps
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not indicative of the overall process. To get a more representative estimate of the

final model, PCA would ideally need to be carried out on the surrogate training-

set, separately for each corresponding model. Nevertheless, the overall findings

of the study suggest that the use of a non-invasive diagnostic aid like TA can

potentially improve radiological diagnostic confidence and performance.

In an effort to apply TA on multi-modal and multicentric datasets, Tantisati-

rapong et al [38] analysed T1, T2, FLAIR, diffusion-weighted and diffusion-tensor

images obtained from four different hospitals. Two types of tumours were consid-

ered in this study: medulloblastoma and pilocytic astrocytoma. Unlike the work

by Rodriguez Guiterrez et al [36] and Orphanidou-Vlachou et al [37], the included

cases were not restricted only to tumours of the posterior fossa. Although the total

number of cases was 50 (25 MB and 25 PA), complete datasets were only available

for conventional T2-weighted images as not all patients had images available from

all modalities. Similar to the work reported in [36], an SVM was designed to carry

out tumour type classification. Supervised feature selection was carried out using

the sure independence screening technique, followed by LOOCV, which was used

for model performance evaluation. Classification results showed that TA on diffu-

sion data yielded higher performance compared to when conventional MRI data

was used. For instance, a classification accuracy of up to 97% was obtained when

diffusion-weighted images were used, compared to 77% with T2-weighted images.

However, the heterogeneity of the dataset meant that only 25 cases were available

for diffusion-weighted images, compared to 50 T2-weighted images. Such hetero-

geneity impedes the interpretation of the study’s findings and makes it difficult to

agree that TA on certain modalities is superior to others. It is also worth noting

that the feature selection technique used (sure independence screening) requires

knowledge of class labels to provide a rank of feature importance. Thus, including
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it before, and not within, the cross-validation loop is likely to have introduced an

element of over-optimistic bias to the evaluated model. Nonetheless, the study’s

findings generally support the use of MRI TA as a non-invasive aid for diagnosing

childhood tumours. Additionally, the multicentric nature of the data used sug-

gests that TA is possibly a scalable technique that allows transfer of results across

centres.

Table 4.2: TA articles available in the literature that look into classifying childhood
brain tumours from MR images.
Author Modalities Cohort Size Multicentric? 2D/3D Methods Accuracy Study Limitations

Rodriguez
Guiterrez et al (2014)

T1, T2
and Diffusion-weighted.

40 No 2D
SVM to classify
MB, PA and EP.

71% to 84% on
T1 and T2.

Only looked into
posterior fossa tumours.

Orphanidou
Vlachou et al (2014)

T1 and T2-weighted. 40 No 2D
ANN and LDA to
classify MB, PA
and EP.

MB (94%), PA (81%)
and EP (63%)

Only looked into
posterior fossa tumours.

Tantisatirapong
et al (2013)

T1, T2,
diffusion-weighted,
FLAIR and DTI.

50 Yes 2D
SVM to classify
MB and PA.

77% on T2.
Large amounts
of missing data.

4.3.2 Applications of TA in Diagnostic Classification of

Adult Brain Tumours

This section reviews articles available in the literature that look into the classifi-

cation of adult brain tumours using TA of MR images. At the end of the section,

a summary of the reviewed articles is provided in Table 4.3.

The problem of brain tumour classification has been of interest in the adult

literature since the nineties. Early work reported by Lerski et al [39] did not

look into classifying tumour types, but rather into the more generic problem of

classifying brain tissue types (e.g. oedema, white-matter, grey-matter). In this

prospective study, 12 patients with brain tumours were examined. A total of

78 ROIs were defined from T1 and T2 parameter images of the selected slices:

8 tumour, 11 oedema, 12 liquor, 24 white-matter and 23 grey-matter. Using a

hierarchical decision tree, a classification system that uses textural features was
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developed in order to discriminate between the tissue types. The study reported

classification accuracies that ranged between 74% and 100%, demonstrating the

existing potential of using TA of MR imaging as a tool for brain tissue charac-

terisation. However, one may question the statistical reliability of the reported

results, since using 78 ROIs to represent data from 12 patients might have lead to

an overoptimistic classification performance.

Ten years later, Mahmoud-Ghoneim et al [34] looked into the problem of classi-

fying different tumour regions (e.g. edema and necrosis) using TA. The study was

a preliminary evaluation that only considered gliomas. Using a linear discriminant

analysis (LDA) classifier, 2D and 3D GLCMs were compared in characterising be-

tween necrosis, solid tumour and edema from T1-weighted scans. This was one

of the first articles to propose the use of 3D TA of MRI in brain cancer, by ex-

tending the analysis to include the tumour volume, rather than a single 2D slice.

The primary conclusion of the study was that the use of 3D GLCM outperformed

the conventional 2D approach. Nevertheless, since only 7 cases were included,

practical applications of the reported findings are perhaps not immediate.

An interesting approach was followed in the study by Glotsos et al [40], where

TA was used for tumour grade classification using digitised biopsy images, rather

than MR or CT scans. A large cohort of 140 astrocytoma biopsies was included

in the study, and an SVM classifier was used to identify the grade of the images

(Grades II, III or IV). Although long-term clinical benefits of such tool might

not include reduction of surgery, as the analysis was done on biopsy images, the

proposed methodology might be a great aid that can be used in parallel with con-

ventional histopathological grading to support the regular diagnostic procedure.

Georgiadis et al reported a number of studies that looked into classifying adult

brain tumours from MR images using TA methods. The first study [41] evaluated
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the performance of a software system designed to discriminate between metastatic

and primary brain tumours (gliomas and meningiomas) using textural features of

contrast-enhanced T1-weighted images. 67 patients were included in the study.

Using a least square feature transformation probabilistic neural network (LSFT-

PNN), a two-level classification system was designed. The system worked by

separating primary and secondary brain tumours at the first level, followed by

further classification between gliomas and meningiomas if the tumour was classi-

fied as primary. Using an external cross-validation scheme, the system was able to

yield classification rates that ranged between 74% and 89%. Demonstrating the

feasibility of using TA to discriminate between primary and metastatic tumours

is of clinical value because metastatic tumours require specific treatment proto-

cols (e.g. radiation therapy), whereas primary tumours may also require surgical

intervention [89], [90].

Georgiadis et al [33] carried out a second TA study on brain MR images of

adult patients, using histogram statistics, GLCM and GLRLM. The included co-

hort consisted of 67 post-contrast, T1-weighted scans. An SVM-based classifica-

tion system, which was trained with textural features, was able to discriminate

metastatic, malignant and benign tumours with 77%, 89% and 93% classification

accuracies respectively. Note that a sub-objective of the study was to compare

the performance of conventional 2D TA to 3D TA, which involves extending the

analysis to include the full tumour volume. The study showed that 3D TA was

able to outperform the conventional 2D approach when discriminating primary

from metastatic tumours (94% vs. 89% accuracy).

In an effort to fuse information obtained from different MR modalities for the

characterisation of brain cancer, the third study carried out by Georgiadis et al [42]

combined 3D textural features of T1-weighted images with MR spectroscopy. The
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textural features were based on histogram statistics, GLCM and GLRLM. From

the spectroscopic data, three metabolites were considered: choline (Ch), N-acetyl

aspartate (NAA) and creatine (Cr), and the following ratios were used as features:

Cho/NAA, Cho/Cr and NAA/Cr. Using a cohort of 40 patients, the use of an

SVM classifier trained with the combined features was able to yield a classification

accuracy of 91% when discriminating between meningiomas and metastatic brain

tumours.

Another interesting study that used multimodal imaging information was car-

ried out by Zacharaki et al [25], with the aim of designing a classification system

that could distinguish different brain tumour types, and also grade gliomas. 98

patients were included in the analysis. In terms of MR modalities, the following

imaging types were used: T1, contrast-enhanced T1, T2, FLAIR and rCBV maps.

The classification system was based on a large number of features (161), which

included age, tumour shape characteristics, image intensity characteristics within

some of the ROIs, as well as features extracted using TA. Three classification

algorithms were considered: SVM, LDA and k-Nearest Neighbours (KNN). The

best performance was achieved using SVM in the binary classification scenario,

with accuracies that ranged between 72% and 96%.
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4.3.3 Other Diagnostic Applications of MRI TA

Although the focus of this thesis is on brain tumour characterisation, it is worth

noting that TA of MRI was shown to be of value in other clinical applications.

For example, Chen et al [26] investigated the efficacy of 3D GLCM for the char-

acterisation of breast MR lesions. Using T1-weighted data of 121 lesions, it was

shown that 3D textural features can significantly outperform those based on 2D

analysis.

In another breast cancer classification study, Holli et al [43] successfully used

TA to distinguish between healthy and cancerous breast tissues from contrast-

enhanced T1-weighted images. Additionally, different histological types of breast

cancer (lobular and ductal) were successfully discriminated using textural features.

TA of multimodal MR images (T1, T2 and diffusion-weighted) was also shown

effective in discriminating between healthy and cancerous prostatic tissues [44].

With regards to applications in other pathological conditions, the potential value

of TA was demonstrated in Alzheimers disease [45], multiple sclerosis [46] and

epilepsy [47].

4.3.4 TA for Estimating Survival Prognosis

To the best of my knowledge at the time of writing, there has been no published

work on investigating brain tumour survival predictors based on image analysis of

conventional MRI, such as T1 and T2-weighted scans. Such scans are routinely

acquired when a patient is presented with a suspected brain tumour, and their

reported success in diagnostic TA applications suggests a possibility that valuable

but complex prognostic patterns may exist undiscovered in the data.

However, TA was used successfully for estimating survival prognosis in a dif-

ferent problem domain, namely lung cancer, as per Ganeshan et al [48]. The
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study reported the use of textural features that measure tumour heterogeneity

as a way of quantifying computed tomography (CT) scans pixel distributions.

These features were based on the Laplacian of Gaussian filters technique, and

ranged between fineness (homogeneity) and roughness (heterogeneity) attributes.

The authors argued that heterogeneity is a good measure for estimating progno-

sis because it is a well-recognised feature of malignancy that is associated with

adverse tumour biology. For instance, heterogeneity of the tumour blood supply

is associated with lack of sufficient oxygen supply and genomic instability. Based

on this, the authors hypothesised that biological heterogeneity can be reflected

on CT scans and can consequently be measured using textural features. The re-

sults of the study supported the primary hypothesis, with heterogeneous tumours

demonstrating significantly poor survival patterns.

TA of CT scans was also successfully employed as part of other studies that in-

vestigated potential markers for oesophageal cancer [49] and colorectal cancer [51].

Both studies employed a similar methodology to that reported in [35], where the

extracted features were based on the Laplacian of Gaussian filter technique and

ranged between fineness (homogeneity) and roughness (heterogeneity) features.

Such results support the use of TA as a means of capturing imaging patterns that

have the potential to predict survival prognosis, and encourage its adoption in the

paediatric neuro-oncology domain.

4.4 Summary

This chapter provided a review of TA methods and studies available in the MRI lit-

erature. The first section reviewed commonly used statistical methods, namely his-

togram analysis, absolute gradient, GLCM and GLRLM. The features extractable

from these techniques were also explained, together with mathematical formulae
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that can compute them. 3D (multi-slice) texture analysis, which aims to maximise

information extractable from MR images, was also explained.

The second section provided a critical review of MRI texture analysis articles

available in the literature. The covered work included studies that looked into

diagnostic classification of paediatric and adult brain tumours from MR images.

Three studies reported success in using conventional 2D TA to diagnose different

childhood brain tumours. The adult literature reported a number of studies that

showed improved performance when 3D TA was used. There exists, therefore,

considerable motivation for further research into maximising the value of TA as a

predictive biomarker in paediatric oncology using the 3D approach. Whether the

value of TA can be maximised in paediatric settings is as yet largely untested, but

will be needed to translate the role of TA in clinical practice.

A key finding of the literature review was that none of the studies available

in the paediatric and adult MRI literature looked into analysing the survival of

patients diagnosed with brain tumours. Nevertheless, TA was successfully applied

on CT scans to estimate the survival in different problem domains, namely lung,

oesophageal and colorectal cancer.
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Some aspects of the work presented here were published in [P01] and [P03].

Publication details can be found on Page xx.

5.1 Introduction

This chapter presents a thorough investigation into the diagnostic efficay of MRI

TA in paediatric settings.

As concluded from the literature review, to the best of the author’s knowledge

at the time of writing, the current state-of-the-art in the paediatric literature is

the conventional 2D TA approach, which can potentially dilute the diagnostic

value of textural attributes. None of the 3D MRI TA work reported in the current

literature was carried out on paediatric brain tumours. In this regard, the primary

aim of the study presented here was to investigate the effectiveness of carrying

out 3D TA on T1 and T2-weighted MR images for classifying paediatric brain

tumours. This was done by testing the performance of six different supervised

classification algorithms trained with 3D textural information in differentiating

between medulloblastoma, pilocytic astrocytoma and ependymoma - the most

common types of brain tumours occuring in childhood. It was hypothesised that

carrying out the analysis in three dimensions would yield more discriminative

information about the tumours than the traditional 2D approach.

In addition to this and in light of the No Free Lunch theorem, which states

that there is no universal classification model that works best for every problem

domain, it is sensible to explore different classifiers in order to identify the ones

most likely to generalise well with our data. Therefore, a sub-objective of this

study was to compare the performance of several models that represent typical

implementations of supervised classifiers. Studying different classifiers is a fair

way of determining whether any improvements due to use of 3D textural features
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would be consistent throughout different models.

5.2 Materials and Methods

5.2.1 Cohort Details and Image Acquisition

The datasets used in this study were obtained from a secure e-repository pro-

vided by the Childrens Cancer and Leukaemia Group (CCLG) Functional Imaging

Group [4]. The dataset consisted of pre-contrast T1 and T2-weighted MR images

of 48 children (31 male, 17 female) with untreated brain tumours, of which 21

were medulloblastomas (MB), 20 were pilocytic astrocytomas (PA) and 7 were

ependymomas (EP). In terms of tumour characteristics, all MBs were located in

the vermis of the posterior fossa, and ranged between 20 and 46 mm in size. Four

PAs were located in the middle fossa (28-69 mm), and the rest were in various

locations of the posterior fossa (23-78mm). Two EPs were located in the middle

fossa (42 and 48mm), while the rest were in the posterior fossa (32-45mm).

Image acquisition was carried out at a single centre1, using a spin-echo sequence

on a GE Signa 1.5 T scanner (GE Healthcare, Little Chalfont, UK) and a Siemens

Symphony 1.5 T scanner (Siemens Healthcare, Erlangen, Germany). For T1-

weighted images, echo time was 8.4-22 ms, repetition time was 360-819 ms, slice

thickness was 4-5 mm, slice gap was 0.8-1.5 mm and image resolution was 1.391-

2.560 pixels/mm. For T2-weighted images, echo time was 77-105 ms, repetition

time was 3940-7840 ms, slice thickness was 3-5 mm, slice gap was 0.6-1.5 mm and

image resolution was 1.948-2.560 pixels/mm.

Approval for the study was obtained from the research ethics committee, and

informed consent was taken from guardians. All data had been anonymised before

1Birmingham Children’s Hospital.
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uploading to the database. In order to obtain diagnoses in accordance with the

WHO classification, tumour samples were taken from all patients and underwent

histopathological examinations.

5.2.2 Image Pre-processing

Figure 5.1: A figure showing semi-automatic segmentation of a tumour region of
interest using the Snake GVF algorithm. Initial seeding points are shown on the
left and final contour movements are shown on the right. Original MR images
were obtained from the CCLG database [4].

Axial slices were manually chosen from each dataset using RadiAnt DICOM

viewer [61]. Semi-automatic segmentation was performed on MATLAB (Math-

Works, Massachusetts) using the snake gradient vector flow (Snake GVF) tech-

nique (Figure 5.1), as proposed by Xu and Prince [72], in order to extract the

regions of interest (ROIs) in which the tumour was present. The Snake: Active

Contour library was used for this [94]. The medical imaging literature contains a

plethora of work conducted on studying the effectiveness of automatic and semi-

automatic segmentation algorithms. Whilst the implementation of an effective

segmentation method is crucial for capturing tumour information, the details of

which approach yields optimal segmentation is not of immediate interest within

the context of this thesis. The Snake GVF technique works by relying on man-
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ually defined seeding points, which are initially outlined by the user [72] . The

segmentation boundary is then constructed by calculating an edge map of the in-

put image and progressing the contour towards a so-called force balance condition,

where an internal force that prevents contour stretching is balanced with an ex-

ternal force that pulls the snake towards the desired contour. After segmentation,

the ROIs were checked visually to ensure that the segmentation technique worked

sufficiently well.

The ROIs were imported to MaZda texture analysis software, which was de-

veloped by Materka and co-workers as a part of the European COST B11 and the

following COST B21 programs [31]. The choice of the software was quite deliberate

since it has been extensively used in the MRI TA literature [27],[37],[43],[95],[96],

[97],[98]. To mitigate the variations in parameter settings used while scanning dif-

ferent patients, the grey-level values within the identified ROIs were normalised.

In MaZda, normalisation is a two-step process that requires:

• Grey-level range selection.

• Image quantisation, by re-sampling to a certain number of bits per pixel.

The first step (range selection) was carried out using the limitation of dynamics

to µ + / − 3δ (where µ is the ROIs mean grey-level value and δ is the standard

deviation), which was shown by Collewet et al to achieve reliable results on MRI

texture classification [63]. This method works by computing the µ−3δ and µ+3δ

values from each ROIs histogram, and excluding any values that lie outside that

range. This step does not stretch out or compress the histogram, it simply decides

on which grey-levels to include and exclude from the range. The second step

involves quantising the resulting grey-level range between 1 to 2k , where k is the

number of bits per pixel. For instance, if our original range is between 1 and 1024,
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but we choose to use 8 bits per pixel, the dynamic range would be quantised to

the range 1 to 256. In this study, 6 bits were chosen for quantisation.

5.2.3 Textural Features Extraction

MaZda [31] was used to perform both 2D and 3D TA on the normalised ROIs

segmented from T1 and T2-weighted images. In traditional 2D analysis, one T1

and T2-weighted ROI was used for each patient to calculate intra-slice metrics

and their corresponding features, i.e. the features represent only the ROI of the

chosen slice. Calculations were carried out on the ROI from the slice that contains

the largest tumour area. For 3D analysis, multiple adjacent T1 and T2-weighted

ROIs were used to calculate metrics that hold intra-slice and inter-slice pixel rela-

tionships. The TA methods, together with the extracted features used, are listed

in Table 5.1.

Table 5.1: A table summarising the TA methods used and their corresponding
features.
TA Methods Calculated Features

Histogram statistics
Mean, variance, skewness, kurtosis, minimum,
maximum and percentiles (1%, 10%, 50%, 90% and 99%).

Absolute gradient statistics Absolute,gradient mean, variance, skewness and kurtosis.

Grey-level co-occurrence matrix (GLCM)
Ang. Second Moment, inverse difference moment, contrast,
correlation, entropy, sum of squares (variance), sum average, sum variance, difference
variance and difference entropy.

Grey-level run-length matrix (GLRLM)
Short run emphasis, long run emphasis, grey-level
non-uniformity, run length non-uniformity and run percentages.

5.2.4 Feature Selection and Analysis

The features that were computed using the above techniques were aggregated for

analysis, giving us two feature sets; one that holds 2D T1 and T2 textural features,

and a second one that holds 3D T1 and T2 textural features. A breakdown of the

number of features extractable from each technique is shown in Table 5.2. The

feature sets were imported to Orange, the python-based machine-learning library
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(version 2.7) [60], which was used to analyse and compare the two sets separately.

Table 5.2: A table showing a breakdown of the number of textural features for
each dataset.

2D
T1

2D
T2

3D
T1

3D
T2

GLCM 191 191 240 240
GLRLM 19 19 24 24
Histogram 12 12 13 13
Absolute Gradient 5 5 6 6

Feature Selection

As discussed in Chapter 3, testing all possible combinations from all techniques,

modalities and datasets would give a very large number of features (454 for 2D and

566 for 3D). Entropy-MDL discretisation was used to partition our textural fea-

tures to a discrete number of intervals. The discretised feature sub-set holds only

the features that the algorithm deduced to be the most relevant and discrimina-

tive; since a features entropy can be used as a measure of its discriminative power.

Given the supervised nature of this technique, where class-label information is

used to determine discretisation cut-off values, this method should ideally be im-

plemented within cross-validation loops; otherwise, an element of over-optimisim

would be introduced to the designed models.

Supervised Learning

The 2D and 3D sub-sets holding the selected features were separately analysed

using the six supervised machine-learning classifiers listed below, which were in-

troduced in Chapter 3. Python’s Orange library [60] was used to implement the

classifiers.
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• Naive Bayes (NB): Prior class probabilities based on: Relative frequency.

• K-Nearest Neighbour (kNN): Neighbours: 5, Distance metric: Euclidean.

• Classification Tree (CTr): Attribute selection based on: Information gain.

• Support Vector Machines (SVM): SVM Type: C-SVM, Kernel: RBF.

• Artificial Neural Network (ANN): Number of hidden layers: 1.

• Logistic Regression (Logreg).

Model Validation

Leave-one-out cross-validation (LOOCV) technique was used in order to evalu-

ate the classification performance. Using LOOCV, learning sets were created by

taking all the samples but one, which was used as the test set. This process was

looped 48 times, in order to cover the 48 possible ways of obtaining such a partition

in our dataset, and the results were then averaged. LOOCV was chosen because

the training sets always contain only one element less than the full feature set,

and hence the obtained predictive performance has, in theory, a good potential of

closely reflecting the real performance. Classification accuracy, sensitivity, speci-

ficity and area under the receiver-operator characteristics curve were measured by

calculating true positives (TP), false positives (FP), true negatives (TN) and false

negatives (FN). In addition to using LOOCV, stratified 10-fold cross-validation

(CV) was also performed for model validation in order to provide additional reas-

surance of the classifiers reliability. The stratified approach was chosen instead of

conventional 10-fold CV in order to make sure that all three tumour classes are

represented in the validation folds.
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Examining an Alternative Dimensionality Reduction Approach (PCA)

It may be argued that an alternative dimensionality reduction technique, namely

principal component analysis (PCA), needs to be considered. This method is

arguably more intuitive than the feature selection technique we implemented (En-

tropy MDL) and has been extensively used in the literature. The use of PCA,

within a supervised MRI TA investigation, to reduce the dimensionality of a 2D

textural feature set was recently reported by Orphanidou-Vlachou et al [37]. The

underlying principle behind PCA is based on building a new set of features (prin-

cipal components) in a way that maximises the variance of the original feature-set

and brings down its complexity. A PCA-based pipeline was therefore built and

tested on Orange, for classifying the same datasets and using the same classifiers

described above (Naive Bayes, Classification Tree, kNN, SVM, ANN and Logistic

Regression). For the purpose of analysis, the principal components (PCs) cov-

ering 98% of the variance were chosen. In keeping with the methodology used

throughout this experiment, PCA-based model validation was carried out using

the LOOCV approach.
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5.2.5 Statistical Analysis

Statistical Comparison between 3D and 2D Classification Results

Once the classifiers were trained and evaluated, the next logical step was to apply

a statistical test, such as McNemar’s test [64], in order to compare classification

performance obtained with 3D and 2D TA. For each of the six classifiers, McNe-

mar’s test was carried out to test whether any improvements obtained with 3D

TA were significantly different to the 2D results. The classification results used

in the test were those obtained from LOOCV. The first step to apply McNemar’s

test is to construct a contingency table as shown in Table 5.6. The table’s entries

provide a summary of the number of agreements and disagreements between 3D

and 2D-trained classifiers. For each of the six contingency tables that we con-

structed, we computed their corresponding chi-square value and tested the result

against the theoretical chi-square with one degree of freedom. A power analysis

calculation showed that 38 samples would be needed to achieve a high power of

0.90 for a two-tailed paired t-test at a significance level of 0.05. In doing this,

prior information on classification accuracies was obtained from the adult brain

cancer literature that compared 3D and 2D TA [33], [34], as the current study is

the first to investigate this in childhood.

Statistical Comparison between Individual Classifiers

Besides maximising the diagnostic value of TA using 3D features, a sub-objective

of this study was to determine whether the choice of classification algorithm has

substantial influence over the results. To this end, pairwise comparisons using

McNemar’s test were carried out to establish whether the performance of different

classifiers is significantly different. The test was carried out on the LOOCV results.
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Testing for Over-fitting using Bootstrapping

It may be argued that the use of a cohort of 48 subjects is rather small given the

number of textural features used, which can potentially lead to fitting instability

or over-fitting. We therefore calculated confidence intervals of classification accu-

racies by bootstrapping the subjects in the sampling, thus addressing any concerns

with regards to the use of a small cohort. The bootstrapping process was carried

out by sampling the subjects with replacement, followed by equally splitting the

sampled distribution into a training and a testing set. Upon applying feature se-

lection and the learning algorithms, the obtained classification accuracy was then

recorded for each tumour type. This was repeated 1,000 times in order to infer

a realistic distribution of classification accuracies. The lower and upper bounds

of the confidence intervals were chosen to be the accuracies at positions 2.5% and

97.5% of the sorted accuracies list, respectively. It remains noteworthy, however,

that any bias introduced by carrying out supervised feature selection outside the

cross-validation loop will not be corrected by bootstrapping.

5.2.6 Obtaining a Radiological Review Benchmark

For the cases included in the study, a review of corresponding radiological reports

was carried out in order to get an insight into the reliability of relying solely on

MR images for obtaining diagnoses. The reports were those used clinically. All

of them were made by five consultants who worked in Birmingham Children’s

Hospital.
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5.3 Results

5.3.1 Top ranked 2D features

108 out of the available 454 features were selected by entropy-MDL from the

2D dataset, as summarised in Table 5.3. It is worth noting that since GLCM

features were computed via different combinations of directions and distances,

each GLCM feature is represented using a unique 2-digit offset, which could be

summarised as follows: (00 = 0, D); (450 = D,−D); (900 = D, 0); (1350 = D,D),

where D represents the distance of analysis. For example, an offset [0, 1] would

be an analysis of 1 pixel distance in the horizontal direction. Features’ acronyms

were introduced in Chapter 4.

The selected T1-weighted sub-set included variations of only three GLCM-

based features: entropy, sum entropy and angular second moment. Selected T2-

weighted features, however, included a wider variety of measures based on GLCM

(such as contrast, correlation, inverse difference moment and difference variance).

Additionally, a number of T2-weighted GLRLM and histogram based features

were recognised as important.

5.3.2 Top ranked 3D features

122 out of the available 566 features were selected by entropy-MDL from the 3D

dataset, as summarised in Table 5.4. Note that 3D GLCM features are represented

using a three-digit offset rather than a two-digit one, where the third digit identifies

whether the analysis took place along the z-axis (between slices) [64]. Both T1

and T2-weighted sub-sets included variations of features based on GLCM (such

as entropy, sum variance and sum average), GLRLM and histogram statistics.

By inspecting tables 5.3 and 5.4 one can see that there was an element of
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directional sensitivity when choosing important features. For instance, the T2-

weighted 2D sub-set included angular second moment calculated in the directions

0, 2 and 2, 2, but not 2,0. It may be argued that feature selection should not

demonstrate such sensitivities for GLCM and GLRLM features measured across

different combinations of pixel distances and directions. We have therefore carried

out Pearson Correlation on a number of GLCM features to explore whether the

same features measured across different directions capture similar patterns. The

findings are plotted on distance maps, which can be found in Figure 5.2. The

findings suggest a very strong positive correlation between most of the tested

features’ variations across different distances, indicating that they capture strongly

correlated patterns. There are, however, small variations between these features

and so not all such highly correlated features will be selected, depending on the

cut-off, as detailed in the discussion section.
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Table 5.3: A table showing a summary of the T1 and T2-weighted 2D features
chosen by entropy-MDL during the feature selection stage. Each GLCM fea-
ture is represented using a unique 2-digit offset as follows: (00 = 0, D); (450 =
D,−D); (900 = D, 0); (1350 = D,D), where D represents the distance of analysis,
in terms of pixels.

T1-weighted 2D features

GLCM Entropy 0,2; 2,2; 2,-2; 3,0; 0,3; 3,3; 3,-3; 0,4; 4,0; 4,4; 4,-4;
Sum Entropy 1,0; 0,1; 1,1; 1,-1; 2,0; 0,2; 2,2; 2,-2; 3,0; 0,3; 0,4;
Ang. Sec. Moment 0,2; 2,2; 2,-2; 3,0; 0,3; 3,3; 3,-3; 4,0; 4,4; 4,-4;

T2-weighted 2D features

GLCM Entropy
1,0;,0,1;,1,1;,1,-1;,2,0;,0,2;,2,2;,2,-2;
3,0;,0,3;,3,3;,3,-3;,4,0;,0,4;,4,4;,4,-4;

Difference Entropy 0,1; 0,2; 0,3; 3,3; 0,4; 4,4;
Ang. Sec. Momen 0,2; 2,2; 0,3; 3,3; 3,-3; 4,0;
Difference Variance 0,1; 1,-1; 0,2; 2,-2; 0,3; 3,-3; 4,0; 0,4;
Contrast 0,1; 1,-1; 0,2; 2,-2; 0,3; 3,-3; 0,4; 4,4; 4,-4;
Correlation 0,1;1,-1; 0,2; 2,-2; 0,3; 3,-3; 4,0; 0,4;
Inverse Diff. Moment 0,1; 1,1; 1,-1; 0,2; 2,2; 2,-2; 3,3; 4,4;

GLRLM RL Non Uniformity Horizontal
Short Run Emphasis Horizontal; Vertical; 450

Long Run Emphasis Vertical; 450 ; 1350

Fraction Vertical; 450; 1350

Histogram Max, Variance, 90th Perc, 99th Perc
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Table 5.4: A table showing a summary of the T1 and T2-weighted 3D features
chosen by entropy-MDL during the feature selection stage. Note that 3D GLCM
features are represented using a three-digit offset rather than a two-digit one,
where the third digit identifies whether the analysis took place along the z-axis
(between slices).

T1-weighted 3D features

GLCM
Sum of
Squares

1,1,0; 1,-1,0; 1,0,0; 0,1,0; 2,0,0; 0,2,0;
0,0,2; 3,0,0; 0,3,0; 0,0,3; 0,4,0; 4,-4,0;

Sum Average 0,0,2;
Sum Variance 1,0,0; 0,1,0; 0,0,2;
Entropy 0,0,3;
Difference Entropy 0,0,3;

Volume
1,0,0; 0,1,0; 1,1,0; 1,-1,0; 0,0,1; 2,0,0; 0,2,0;
2,2,0; 2,-2,0; 3,0,0; 0,3,0; 3,3,0; 3,-3,0; 0; 0;3;
4,0,0; 0,4,0; 4,4,0; 4,-4,0;

GLRLM GL Non-Uniformity Horizontal; Vertical; 45 degrees
RL Non-Uniformity 45 degrees; 135 degrees

Histogram Kurtosis

T2-weighted 3D features

GLCM Correlation
0,1,0; 1,1,0; 1,-1,0; 0,0,1; 0,2,0; 2,2,0; 0,3,0;
3,3,0; 3,-3,0; 0,4,0; 4,4,0; 4,-4,0;

Contrast
0,1,0; 1,1,0; 0,0,1; 0,2,0; 2,2,0; 2,-2,0; 3,0,0; 0,3,0;
3,3,0; 3,-3,0; 4,0,0; 4,4,0; 4,-4,0; 0,4,0;

Inverse Difference
Moment

0,0,1; 2,0,0; 2,-2,0; 0,0,2; 3,0,0; 3,-3,0; 4,-4,0;

Entropy 1,0,0; 1,1,0, 1-,1,0; 0,0,1; 2,2,0; 2,-2,0; 3,3,0; 3,-3,0;
Sum Average 1,0,0; 0,0,2;
Sum Variance 0,1,0; 0,2,0; 0,3,0; 3,3,0; 0,4,0; 4,-4,0;

Difference Variance
0,1,0; 1,-1,0; 0,2,0; 2,2,0; 2,-2,0; 0,3,0;
3,-3,0; 0,4,0; 4,4,0; 4,-4,0;

Difference Entropy
0,1,0; 0,0,1; 0,2,0; 2,2,0; 0,3,0; 3,3,0;
3,-3,0; 4,0,0; 0,4,0; 4,4,0; 4,-4,0;

GLRLM Short Run Emphasis Vertical; 45 degrees

Histogram

Min, Max, Mean,
Variance, Kurtosis,
50th Perc, 90th Perc,
99th Perc, Gradient Kurtosis;
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5.3.3 Classification Results and Statistical Findings

AUC values obtained with 2D and 3D features on LOOCV are depicted for each of

the classifiers in Figure 5.3. The AUC has an important statistical property: it is

equivalent to the probability that the classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative instance. Thus, comparing the

obtained AUC values can give an insight to the overall classification performance

of classifiers. Table 5.5 gives detailed outcomes of the LOOCV results, in terms

of accuracy, sensitivity and specificity for each of the three tumour types.

By inspecting the results illustrated in Figure 5.3 and in Table 5.3, one can

see that the use of three-dimensional textural features generally enabled classi-

fiers to capture more information about the tumours and consequently lead to

improvements in classification accuracy, sensitivity and specificity. For instance,

SVMs overall AUC improved by 13% and it was able to classify MB, PA and EP

with a sensitivity increase of 14%, 20% and 28% respectively. SVM specificity

performance also increased for MB, PA and EP by 18%, 4% and 7% respectively.

It is worth noting that SVM classifier showed the most improvement in overall

performance when comparing 3D with 2D results (13% increase in AUC).

Figure 5.4 shows a scatter plot of two 3D features used to train SVM classifier,

namely T1 Sum of Squares (0,0,3) and T2 Sum Average (0,0,2). In order to depict

how SVM performed on each data point, actual tumour class was represented by

colour and predicted class was represented by point shape. By inspecting the

figure, one can see that two EPs, one MB and one PA were misclassified by SVM.

Figure 5.5 shows another scatter plot of the same data points, using a different

combination of 3D features (T2 Sum Variance (0,1,0) and T2 Skewness).

In terms of statistical significance, the results obtained by McNemar’s test sug-

gest that there were significant improvements in classification performance when
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Table 5.6: Contingency table constructed from 3D and 2D-trained SVM classifiers
for performing McNemar’s test.

2D-trained SVM Totals

Correctly
Classified

Incorrectly
Classified

3D
trained
SVM

Correctly
Classified

35 9 44

Incorrectly
Classified

0 4 4

Totals 35 13 48

Table 5.7: Table summarising results obtained by McNemar’s test to assess
whether 3D and 2D trained classifiers showed significant differences in perfor-
mance.

Classifier p

NB 0.5 (>0.05)
Tree 0.3 (>0.05)
SVM 0.004 (<0.01)
kNN 0.021 (<0.05)
ANN 0.004 (<0.01)
Logreg 0.015 (<0.05)

3D features were used by SVM, kNN, ANN and logistic regression. The obtained

two-tailed p values were <0.01, <0.05, <0.01 and <0.05 respectively. Whilst

there was an overall improvement demonstrated by Classification Tree (for e.g.

4% improvement in AUC), the results obtained by McNemar’s test suggest that

this improvement is not statistically significant (p = 0.3). Bayesian classifier did

not demonstrate improvements in performance when trained with 3D features.

A summary of the results obtained with McNemar’s test to compare 3D and 2D

performances on LOOCV is available in Table 5.7.

With regards to the performance of individual classifiers with 3D features,

the highest AUC values were obtained by logistic regression and neural network

classifiers (99%), and the lowest were obtained by classification tree (89%). An
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interesting finding was that pairwise comparisons carried out by McNemars test

did not show logistic regression and neural network to statistically outperform the

rest of the classifiers (p >0.05), thus suggesting that the choice of classification

algorithm is not of substantial importance.

Table 5.8: Confidence intervals for overall classification accuracies, obtained by
a bootstrapping of samples 1000 times. 2D and 3D textural features were used.
The lower and upper bounds were chosen to be the accuracies at positions 25 and
975 of the sorted accuracies list, respectively.

Algorithm 2D 3D

Lower % Upper % Lower % Upper %
NB 58 92 67 96
Tree 58 92 63 96
SVM 63 96 71 96
kNN 63 96 71 96
ANN 73 96 67 96
Logreg 58 96 71 96

The confidence intervals generated by bootstrapping are listed in Table 5.8.

Our overall classification accuracies reported in Table 5.5 fall within the calculated

confidence intervals, suggesting that there need not be reasons for concern with

regards to potential over-fitting.

T1 and T2-weighted features were analysed independently and tested with

neural network classifier using the LOOCV scheme. This was done to get an idea

to whether optimal performance can potentially be achieved using a single modal-

ity, thus simplifying model complexity and reducing computational costs. Whilst

the concatenation of 2D features did not yield improvements in performance, the

results obtained with 3D features suggest otherwise. 99% AUC was obtained with

concatenated 3D features, as opposed to 90% and 88% on T1 and T2 respectively.

A bar chart that summarises the obtained AUC values when T1 and T2-weighted

features were tested independently is shown in Figure 5.6. These findings sup-
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port the use of both T1 and T2-weighted 3D features for optimal classification

performance.

The classification results obtained by stratified ten-fold cross-validation on the

selected 2D and 3D features are summarised in Table 5.9. The results show very

similar patterns to those obtained with LOOCV and therefore provide additional

reassurance.
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5.3.4 PCA-based Results

The findings obtained with PCA-based pipeline show a poorer performance when

compared to Entropy-MDL, for Naive Bayes, Classification Tree, SVM and kNN

classifiers (AUC ranged between 61% and 84%). However, neural network and

logistic regression were able to yield comparable AUC values that ranged between

92% and 95%. PCA-based results are summarised in the form of a bar plot, as

per Figure 5.7.

Scatter plots of PC1 vs. PC2 are shown in Figures 5.8 and 5.9. Whilst PCA

tends to be used in a black box manner throughout the supervised learning lit-

erature [65], [66], it would be interesting to explore whether features deemed as

important by PCA match findings by Entropy-MDL. This could perhaps be done

by back-projecting PC weights to original feature values. This is, however, not

of immediate interest within the scope of this experiment, and thus we focus on

assessing whether reducing dimensionality using PCA would enable classifiers to

perform more accurately. Nevertheless, detailed comparison of PCA to the super-

vised approach implemented throughout this thesis would be an interesting future

extension of this research.
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Figure 5.8: A scatter plot of PC1 vs. PC2 using 2D features

Figure 5.9: A scatter plot of PC1 vs. PC2 using 3D features
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5.3.5 Radiological Reporting Benchmark

The total number of reports reviewed was 47, as one report was missing. The

diagnoses suggested by the radiologists were recorded and compared to the final

diagnoses that were confirmed by histopathological examinations. Reviewing the

cases included in the study showed that 22 of the 47 reports (47%) had the correct

diagnosis stated. Out of those 22 reports, 8 had an alternative diagnosis proposed.

In cases where an alternative tumour type was proposed, one report specifically

mentioned their order of likelihood. 17 out of the 47 reports (36%) did not have

any differential diagnosis proposed, while 6 out of the 47 reports (13%) had a

single incorrect diagnosis. Excluding cases where no diagnosis was proposed gives

20/30 (66%) where the only diagnosis given or the first diagnosis in a list was

correct. Overall, some level of uncertainty exists in 27/47 (57%) of the reports. It

is worth noting that, as discussed in Chapter 1, a radiologist’s job does not require

offering a final tumour diagnosis but rather to offer initial characterisation of its

appearance; a likely reason for such apparent uncertainty.
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5.4 Discussion

Classification results obtained with the conventional 2D TA approach are in line

with what the current state-of-the-art has achieved in the paediatric literature.

For the commonly reported classification task of separating MB, PA and EP, the

accuracies of 83% (SVM) and 87%(ANN) are comparable with the work reported

in [36] (71% with T1 and 74% with T2) and [37] (63% EP, 81% PA and 94% MB)

The primary aim of this study was to determine whether the inclusion of multi-

slice information obtained through 3D TA of conventional MRI could improve

diagnostic classification of childhood brain tumours. The obtained results suggest

that the value of TA can be maximised using 3D features in paediatric settings.

Statistical findings obtained with McNemar’s test indicate that this improvement

in performance was significant for four of the six classifiers that were tested. It is

worth noting, however, that all six classifiers showed relatively low EP sensitivity.

This is likely to be due to the highly imbalanced nature of the dataset, where only

7 EP samples were present in the cohort, leading to the three tumour classes not

being equally represented. In other words, the limited number of EP samples seems

to have caused the classifiers to categorise most cases as MB and PA. Another

possibility is that EP, being typically heterogeneous masses, might have textural

properties that are common with the other two tumour types, which could lead to

classifiers not being able to accurately discriminate it from the two other classes.

In terms of important features, most of the ones chosen during the feature

selection stage are attributes that were derived from GLCM and histogram statis-

tics techniques. An important point to keep in mind is that the feature selection

technique used is supervised, in the sense that it requires prior knowledge of the

class label. This means that an element of over-optimistic bias might have been

introduced during the classification model validation stage, as feature selection
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was carried out outside the leave-one-out loop. However, since the same method-

ology was used when analysing classifiers trained with both 2D and 3D, any bias

would have occurred to both sets of classifiers.

An interesting observation is the directional sensitivity of feature selection to-

wards GLCM and GLRLM features measured across different combinations of

pixel directions and distances. Entropy-MDL is a technique used to discretise

features by finding a splitting value that yields the best gain in entropy. This is

repeated recursively with a stopping criteria that is based on the Minimal Descrip-

tion Length principle. The use of this technique as a feature selection method is

based on the assumption that since a feature’s entropy can be used as a measure

of its discriminative power, those features that were rejected by the algorithm can

be assumed to be redundant. A feature would not be discretised if no appropriate

cut-off points are found. Therefore, whilst features measured across different direc-

tions compute strongly correlated patterns (as shown in Figure 5.2) some of them

do not have sufficient information in terms of gain in entropy. The inclusion of

these features will therefore not yield extra value to the classification performance.

Another interesting finding is that only twelve features in the highly ranked 3D

subset were a result of analysis along the z-axis (inter-slice information). Hence,

the addition of inter-slice patterns has contributed to improvements in classifica-

tion performance, but it is likely that improvements were mostly due to classifiers

being able to capture information from the whole volumetric ROI, compared to

just selecting a single slice and extracting features that are not representative

enough to classify tumours. The limited number of important through-plane fea-

tures maybe due to the presence of slice gaps, which ranged between 0.8-1.5 mm

for T1 and 0.6-1.5 mm for T2 in the dataset we used.

With regards to the results obtained with PCA, the reduced overall perfor-
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mance shown by four of the tested classifiers is likely due to the fact that PCA

computes new meta-features, namely principal components. These are linear com-

binations of the original attributes, which may be difficult for classifiers to gener-

alise well with, as the feature space significantly changes and the original features

may lose their original meaning. The fact that PCA is a dimensionality reduc-

tion and not a feature selection tool adds the additional limitation of not being

able to deduce a definite sub-set of important features, making it an impractical

option for understanding relationships between the original textural features and

classification performance.

The exact accuracy of radiological reporting is unknown and the study pre-

sented here suffers from the disadvantage that the radiologists did not have to

offer a diagnosis or even a differential diagnosis2. Despite this limitation, the re-

view has the advantage that it was contemporaneous and gives some insight into

the difficulties of radiological reporting. If only the reports where a single correct

diagnosis is offered are taken as correctly diagnosed, the overall success rate is

14/47 (30%). However, if we exclude cases where no diagnosis was proposed, the

accuracy is 14/30 (47%) and if the first diagnosis in a list is taken as the favoured

one, 20/30 (66%) are correct. Whilst the accuracy of diagnosis for cases where

no diagnosis was proposed could be greater than this, it would seem unlikely. In

reality, the most common reason for not offering a diagnosis is uncertainty and it

is an interesting observation that some level of uncertainty exists in 27/47 (57%)

of the reports. It may well be that a key role of a decision support system based

on texture analysis is to improve this uncertainty. To illustrate how the use of TA

can help achieve this, consider Figure 5.10, which shows a summary of probabili-

2Conventionally, radiologists produce an initial characterisation of the tumour’s appearance
on the basis of a combination of their training, experience and individual judgement. The
radiologist’s job is not to offer a final diagnosis as the current gold-standard is histopathological
examination.
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Figure 5.10: A bar plot summarising probabilities assigned to each individual
diagnosis by the neural network classifier during LOOCV. Actual class is (a)
Medulloblastoma (b) Pilocytic Astrocytoma and (c) Ependymoma. Note that
bars marked with an asterisk indicate a misclassification made by the classifier.
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ties assigned to each individual diagnosis by the neural network classifier. Taking

Figure 5.10(a) as an example, one can see how the two misclassified MB samples

(marked with an asterisk) had close likelihoods of being MB and PA, according to

the classifier; suggesting limited confidence in the final diagnosis. Such informa-

tion could be potentially valuable as diagnostic aids for radiologists in practical

settings.

5.5 Study Limitations and Future Work

In terms of study limitations, the use of a small cohort of 48 patients was the main

one. Whilst two cross-validation schemes were used, in addition to carrying out

bootstrapping in order to provide reassurance of results consistency, the use of a

large cohort would help confirm the robustness of TA. A multicentre study that

includes datasets obtained from different scanners is therefore the next step of this

research. A multicentre study would also be a robust way of assessing cross-centre

transferability of textural features. For instance, feature selection could be carried

out on data obtained from one centre, followed by testing those features that were

shown to be important on data from another centre.

Within the scope of this thesis, this limitation was adressed through a multi-

centre study, which is discussed in the next chapter.

5.6 Conclusion

In conclusion, the study presented in this chapter demonstrated how texture anal-

ysis of pre-contrast T1 and T2-weighted MR images and machine learning algo-

rithms could be used to design quantitative models for objective evaluation of

common paediatric brain tumours. An essential outcome of this study is that 3D
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features, combined with supervised classification methods, achieved improved clas-

sification performance compared to 2D features. Regarding feature importance,

those attributes derived from GLCM and histogram statistics have the highest

discriminating potential. The experiment presented here provides a foundation

for the use of 3D TA methods to build intelligent computational tools that can

help achieve early diagnosis in paediatric oncology. Benefits of such tools would

include reducing surgical procedures, improving surgery and therapy planning and

supporting discussions with the patients’ families. Future work will focus on ex-

amining the robustness of 3D TA by extending this study to multicentre cohorts.

Additionally, it will be interesting to look into appropriate class balancing tech-

niques in order to mitigate the lack of enough EP samples in the population used.

The work presented here meets the first objective of this thesis: to carry out a

practical investigation on the diagnostic efficacy of MRI TA.
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Some aspects of the work presented here were published in [P04] and [P05].

Publication details can be found on Page xx.

6.1 Introduction

Despite the positive results reported in the adult and childhood brain MRI liter-

ature, TA has not yet found its way into routine clinical practice. This is perhaps

due to the sensitivity of textural features to variations in MR acquisition parame-

ters, which may impede the transfer of results across various imaging centres [71].

In addition to this, the efficacy of TA is heavily dependent on the choice of textural

features used to capture imaging patterns, which is linked to the choice of feature-

selection methods used [71]. However, very little comparative work is available on

studying the aforementioned issues [71].

The study presented here expands the work discussed in Chapter 5 to include

multicentric datasets obtained from three different hospitals across the UK. The

primary aim of this study was to determine the efficacy and cross-centre transfer-

ability of 3D TA for non-invasive classification of childhood brain tumours from

MR images. The study also aimed to investigate, through the use of supervised

feature selection, the nature of features that are most likely to train classifiers

that can generalise well with the 3D textural data. Finally, the issue of class im-

balance, which arises due to some tumour types being more common than others,

was looked into. To the best of the author’s knowledge at the time of writing,

there are no published studies that used multicentre cohorts in order to assess the

effectiveness and transferability of 3D MRI TA in paediatric oncology.
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6.2 Materials and Methods

6.2.1 Cohort Details and Image Acquisition

The clinical material used in this retrospective study consisted of pre-contrast T1

and T2-weighted MR images of 134 children with verified and untreated brain

tumours. 45 were MB, 71 were PA and 18 were EP. Image acquisition was car-

ried out at three centres: Birmingham Children’s Hospital (BCH), Nottingham

University Hospital (NUH) and Great Ormond Street Hospital (GOSH).

The following scanners were used for image acquisition: 1.5 T Siemens Sym-

phony, 1.5 T Siemens Avanto (Siemens Healthcare, Erlangen, Germany), 1.5 T

General Electric Signa (GE Healthcare, Little Chalfont, UK), 1.5T Phillips Intera

and 3 T Phillips Achieva (Philips Healthcare, Amsterdam, Netherlands), follow-

ing a common protocol defined by the Children’s Cancer and Leukaemia Group

(CCLG) Functional Imaging Group. All images were anonymised and held at a

secure e-repository [4] provided by CCLG, from which the data was downloaded

for use in this study.

Table 6.1: A table summarising models and field strengths for the three centres.

BCH NUH GOSH

GE Signa 1.5 Tesla Phillips Achieva 3.0 Tesla Siemens Avanto 1.5 Tesla
Siemens Symphony 1.5 Tesla Phillips Intera 1.5 Tesla Siemens Symphony 1.5 Tesla

6.2.2 Image Pre-processing

In keeping with the methodology used in the single-centre study presented chapter

6, image pre-processing was carried out by manually selecting axial slices from the

dataset, segmenting the tumour using the Snake GVF algorithm, and normalising

the images using the µ+ /− 3σ technique.
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6.2.3 Extraction of Textural Features

MaZda software was used to carry out 3D TA based on the histogram statistics,

absolute gradient, GLCM and GLRLM techniques, extracting the same features

that were used in the single centre study.

6.2.4 Feature Selection

The efficacy of TA is heavily dependent on the choice of textural features used to

capture imaging patterns, which is linked to the choice of feature-selection methods

used. Hence, a number of feature selection algorithms were considered in study, the

first being ReliefF [56]. Entropy minimum descriptive length (MDL) discretisation

technique, which was used in the single-centre study reported in Chapter 5, was

also considered here [57]. Thirdly, we were also interested in studying the use

of a feature selection pipeline, comprising a hybrid of both algorithms: Entropy-

MDL and ReliefF, to see whether their combined use could provide additional

classification value.

6.2.5 Classification Model

Using python’s Orange library, a cost-based support vector machine (C-SVM)

classifier was used, using RBF kernel function and a cost coefficient (C) of 1, to

be trained with textural features.

6.2.6 Model Validation

Examining Transferability by Pairwise Testing on Unseen Data

To determine the practical influence of differences in textural feature-sets extracted

from different MRI centres, three different instances of the SVM classifier were
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created, each being trained on features extracted from one of the three hospitals.

Testing was carried out by assessing how each SVM performed on unseen datasets,

which were obtained from the other two hospitals. For example, the performance

of an SVM trained with Birmingham Children’s Hospital data was evaluated by

testing on datasets obtained from Great Ormond Street Hospital and Nottingham

University Hospital.

Evaluation of classification performance was carried out by measuring the area

under the ROC curve, or simply AUC. The training and testing process was per-

formed separately for Entropy-MDL, ReliefF and the hybrid pipeline. Note that

the reported results were obtained after the feature selection algorithms were opti-

mised, by steadily increasing the percentage of chosen ranked features until optimal

classification performance was yielded.

Estimating Overall Performance Using LOOCV

Testing the models on unseen data mainly aimed to examine the corss-centre trans-

ferrability of TA. In order to get an overall estimate of the models’ classification

performance, LOOCV was additionally carried out on an aggregated feature-set

comprising data from all three hospitals (all 134 samples).

Classification accuracy, sensitivity, specificity and AUC were measured from

the results. 95% confidence intervals of classification accuracies were calculated

using bootstrapping (1000 samples were generated). Since the aim of this step

was not to investigate optimal settings for classification, but to get an estimate of

the overall performance, only one feature selection method (Entropy-MDL) was

used.
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Figure 6.1: A flowchart showing methodological overview of the multicentre ex-
perimental set up.
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6.2.7 Addressing the Class Imbalance Problem

A dataset is considered imbalanced if the classes are not approximately equally

represented. Although the data used for this study had been acquired at three dif-

ferent hospitals, the classes represented are quite imbalanced in the sense that EP

forms only 13% of the overall dataset (18/134). This may be problematic because

the minority samples might be ignored by the classifier, which could potentially

lead to poor EP sensitivity. In order to investigate this, a separate analysis was

carried out where the synthetic minority over-sampling technique (SMOTE) was

applied to the extracted 3D features.

SMOTE was used to create 27 synthetic EP samples by operating in feature

space. This method works by taking each minority class sample and introducing

synthetic examples along the line segments joining any/ all of the k minority class

nearest neighbours. The neighbouring points are randomly chosen depending on

the amount of over-sampling required. Using an SVM classifier, LOOCV was car-

ried out on the new feature-set comprising 184 samples. Classification accuracy,

sensitivity, specificity and AUC were measured from the test results. 95% confi-

dence intervals of classification accuracies were calculated using a bootstrapping

of subjects in the sampling (1000 samples were generated).
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6.3 Results

6.3.1 Results from Pairwise Testing on Unseen Data

Table 6.2 and Figure 6.2 show a summary of AUC values obtained with SVM

classifier. The mean AUC values obtianed by Entropy-MDL, ReliefF and the

hybrid pipeline are 74.5%, 71.8% and 76% respectively. The highest AUC value

was obtained when SVM was trained on NUH data and tested on BCH data (86%

on ReliefF) - an interesting finding since one of the scanners in NUH uses magnetic

field strength of 3T, whereas both scanners used to acqiure BCH data are 1.5T.

For each feature selection method, the number of chosen features that were

required to yield optimum AUC are reported in Table 6.3. Whilst with entropy-

MDL no manual definition of feature percentages is performed for the algorithm

to operate, we reported the number of features that were discretised and hence

deemed important by the algorithm.

The optimal features identified for each of the six tests are reported in Tables

6.4 and 6.5. It is worth noting that there was a common set of attributes that

were deemed as optimal in all six tests (e.g. sum of squares, sum average and

difference entropy). However, the particular feature variation (i.e. the specific

pixel distance and direction) that was identified as important varied greatly across

the six tests. For instance, even though the sum of squares attribute was identified

as an important feature in both tests 1 and 2, test 1 showed that offsets (0,0,3)

and (0,0,3) were important, whereas test 2 showed that offsets (1,0,0),(0,1,0) and

(0,0,2) were important.
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Table 6.4: A table listing the optimal textural features identified in Tests 1 to 3.
Feature name Offset

Test 1 T1 T2
Angular Second Moment (0,1,0) (0,2,0)(0,0,2) (0,3,0) (0,4,0)
Contrast (0,0,4)
Difference Entropy (0,0,3) (0,0,4) (0,2,0)(2,-2,0) (3,-3,0) (0,3,0) (0,4,0)(4,-4,0)
Difference Variance (0,0,4) (0,1,0)(0,4,0)
Entropy (0,0,3) (0,0,4) (0,0,1)
Fraction 45, 135 degrees, Vertical
Histogram Skewness Skewness
Inverse Difference Moment (0,1,0) (0,2,0) (0,3,0) (0,4,0) (0,2,0) (0,3,0) (0,4,0)(4,-4,0)
Long Run Emphasis Vertical
Short Run Emphasis 135 degrees, Vertical, Horizontal
Sum Average (0,0,3) (0,0,4) (0,1,0)
Sum Entropy (0,0,3) (0,0,4) (0,0,1)
Sum Of Squares (0,0,3) (0,0,4)

Test 2 T1 T2
Angular Second Moment (0,0,3)
Difference Entropy (0,3,0)
Entropy (0,0,3)
Gradient NonZeros
Histogram Max, Min, 50%, 90%, 99%, Mean, Variance, Kurtosis
Inverse Difference Moment (3,-3,0) (4,-4,0)
Sum Average (1,0,0),(0,0,2)
Sum Of Squares (1,0,0), (0,1,0),(0,0,2)

Test 3 T1 T2
Angular Second Moment (0,0,4) (0,0,4)
Contrast (0,0,4) (0,0,4)
Correlation (0,0,4) (0,0,4)
Sum Of Squares (0,0,4) (1,0,0) (1,1,0) (0,1,0) (1,-1,0) (0,2,0) (0,0,4)
Inverse Difference Moment (0,0,4) (0,0,4)
Sum Average (0,0,4) (0,3,0) (0,1,0) (0,2,0) (0,0,4)
Sum Variance (0,0,4) (0,0,4)
Sum Entropy (0,0,4) (0,0,4)
Entropy (0,0,4) (0,0,4)
Difference Variance (0,0,4) (0,0,4)
Difference Entropy (0,0,4) (0,0,4)
Volume (0,0,4) (0,0,4)
Histogram Skewneess
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Table 6.5: A table listing the optimal textural features identified in Tests 4 to 6.

Feature name Offset

Test 4 T1 T2
Angular Second Moment (0,0,4) (0,0,4)
Contrast (0,0,4) (0,0,4)
Correlation (0,0,4) (0,0,4)
Sum Of Squares (0,0,4) (0,1,0) (1,0,0) (1,1,0) (1,-1,0) (0,2,0) (0,0,4)
Inverse Difference Moment (0,0,4) (0,0,4)
Sum Average (0,0,4) (0,1,0) (0,2,0) (0,3,0) (0,4,0) (0,0,4)
Sum Variance (0,0,4) (0,0,4)
Sum Entropy (0,0,4) (0,0,4)
Entropy (0,0,4) (0,0,4)
Difference Variance (0,0,4)
Difference Entropy (0,0,4) (0,0,4)
Volume (0,0,4) (0,0,4)
Histogram Skewness

Test 5 T1 T2
Correlation (0,0,1)
Sum Of Squares (0,0,2)
Inverse Difference Moment (2,2,0)(2,-2,0)(4,-4,0)
Sum Average (0,0,2)(0,1,0)(0,2,0)
Sum Variance (0,1,0)
Difference Entropy (0,0,1) (3,-3,0)(4,-4,0)
Histogram Kurtosis

Test 6 T1 T2
Correlation (0,0,1)
Difference Entropy (0,0,1) (4,-4,0)
Difference Entropy (3,-3,0)
Histogram Kurtosis
Inverse Difference Moment (2,2,0)(2,-2,0)(4,-4,0)
Sum Average (0,1,0)(0,2,0)(0,0,2)
Sum of Squares (0,0,2)
Sum Variance (0,1,0)
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6.3.2 LOOCV Results

Table 6.6 lists the results obtained when the entire feature-set, comprising all 134

samples, was tested with an SVM classifier using LOOCV. Results were generally

satisfying, with the overall AUC being 86%. However, it is worth noting that

similar to the results obtained with the single-centre study, EP demonstrated a

very low sensitivity value of 11% .

Table 6.6: A table listing the results obtained when the feature-set, comprising
data from all three hospitals (134 samples), was tested with an SVM classifier
on LOOCV. Entropy-MDL was used for feature selection. Accuracy, sensitivity
and specificty are referred to as Acc, Sens and Spec respectively. 95% confidence
intervals for the overall classification accuracies were obtained by bootstrapping.

MB PA EP
AUC Sens Spec Sens Spec Sens Spec Acc Variance 95% CI
86% 67% 82% 90% 71% 11% 97% 72% 0.0015 50%-84%
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Figure 6.4: ROC curves depicting SVM classifier performance using the LOOCV
scheme. All 134 samples obtained from three hospitals were used for the analysis.
(a) Medulloblastoma (b) Pilocytic Astrocytoma and (c) Ependymoma. Overall
AUC value is 86%.
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6.3.3 LOOCV Results After Minority-Oversampling

Table 6.7 lists the LOOCV results obtained when an SVM classifier was used

on the new feature-set that comprises an additional 27 (synthetic) EP samples.

The noticebale increase in EP sensitivity (from 11% to 87%) suggests that the

availability of equally represented classes has enabled SVM to better characterise

the data points.

Table 6.7: A table listing the classification results obtained with LOOCV, after
SMOTE was applied to generate 27 synthetic EP samples. Entropy-MDL was used
for feature selection. Accuracy, sensitivity and specificty are referred to as Acc,
Sens and Spec respectively. 95% confidence intervals for the overall classification
accuracies were obtained by bootstrapping.

MB PA EP
AUC Sens Spec Sens Spec Sens Spec Acc Variance 95% CI
92% 57% 91% 83% 83% 87% 91% 77% 0.0011 60% - 90%
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Figure 6.5: ROC curves depicting SVM classifier performance using the LOOCV
scheme, after SMOTE was used to generate 27 synthetic ependymoma samples.
(a) Medulloblastoma (b) Pilocytic Astrocytoma and (c) Ependymoma. Overall
AUC value is 92%.
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6.4 Discussion

This chapter presented a multicentre investigation on the efficacy and transferabil-

ity of using volumetric (3D) statistical textural features extracted from conven-

tional MR images, within a machine-learning framework, to discriminate between

the most frequently occurring paediatric brain tumours: medulloblastoma, pilo-

cytic astrocytoma and ependymoma. The study made use of standard pre-contrast

T1 and T2-weighted images, which are routinely acquired when children present

with suspected brain tumours. For the purpose of this discussion, the two main

areas of interest are:

1. Whether the classification results showed enough evidence that 3D TA is a

transferrable technique, allowing for its use across multiple centres.

2. The nature of features deduced to be optimal as per feature selection, and

how different feature selection methods performed on different tests.

With regards to feature selection, this study looked into comparing the per-

formance of ReliefF, Entropy-MDL and a pipeline comprising both methods. For

the three feature-selection methods used, the mean AUC values ranged between

71.8% and 76%. Note that the statistical meaning of AUC can be defined as

the probability that the classifier will rank a randomly chosen positive example

higher than a randomly chosen negative example. For each of the tests reported

in Table 6.2, optimal AUC ranged between 76% and 86%, which suggests that

the use of three-dimensional textural features generally enabled SVM to capture

transferable tumour information that could be used to successfully classify images

obtained from other imaging centres.

Feature selection results suggest that similar aspects of tumour texture are

enhanced by MR images obtained at different hospitals, since a common set of
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attributes was identified as important in all six pairwise-testing tests. Such at-

tributes include sum of squares, sum average and difference entropy. However, the

particular variation of distance and direction of analysis varied across the six tests

and was heavily reliant on the test-beds used, even when features were extracted

from the same centre. For instance, features obtained from the first centre (BCH)

showed an interesting pattern, where the ones that achieved optimal performance

on the two test-beds were completely different. By inspecting Table 6.4, one can

see that optimal feature-sets obtained from Tests 1 and 2 did not have any mutual

features that were measured across the same direction and distance.

The aforementioned pattern, however, was not consistent with the results ob-

tained with features acquired from the second centre (NUH). For instance, there

were 23 mutual optimal features identified in Tests 3 and 4. The mutual optimal

features identified in Tests 3 and 4 are mostly T2-weighted and are based on the

GLCM technique: Contrast, Entropy, Sum Entropy, Difference Entropy, Sum of

Squares, Sum Average, Angular Second Moment and Inverse Difference Moment.

Variations of these features concerning inter-pixel distances and directions were

present. The most frequent inter-pixel distance present in the mutual feature set

was 4 pixels.

With regards to the third centre (GOSH), 8 of the features were identified to

be optimal when tested on both test-beds (tests 5 and 6). These were mostly T2-

weighted and all based on the GLCM technique: (0,0,1) Correlation, (2,2,0) and

(2,-2,0) Inverse Difference Moment, (0,0,2) Sum Average, (0,1,0) Sum Variance,

(0,0,2) Sum Of Squares, (0,0,1)Difference Entropy, and 3D Kurtosis.

The above observations suggest that whilst TA is, in principle, a scalable tech-

nique that can be used to classify tumour patterns using data gathered from other

centres, there does not seem to be enough indication of any ’universal’ features

163



Chapter 6. A Multicentre Investigation on the Transferability of TA

that could be measured across specific directions and distances of analysis for

use across centres, without taking other factors into account. Whilst there was

a considerable number of attributes that were common across all six tests, none

of the exact variation of features identified as optimal were mutual for all tests.

The dependency of optimal performance on both acquisition centres and test-beds

suggests that for TA to be used in practice, there needs to be a robust means of

selecting the features for classifier training, which is likely to vary depending on

each individual scenario. One potential solution is to combine the attributes that

were identified as important across tests into a single score, perhaps through av-

eraging, as a means of decreasing any inherent noise, increasing robustness and

improving reliability. Additionally, meta-analysis of the performance of different

feature selection methods need to drive future efforts in this area.

In terms of what had been reported in the literature, the closest work to this

experiment is the multicentre study by Tantisatirapong et al [38], where conven-

tional 2D TA was used in a binary classification problem to diagnose paediatric

MB and PA, yielding an overall classification accuracy of 77% using T2-weighted

data. Whilst it is not possible to directly compare the findings of this experiment

to the current state-of-the-art, due to variations in primary aims and methodolo-

gies, the overall classification accuracies of 72% (before SMOTE) and 77% (after

SMOTE) are in line with what had been reported in [38].

Although 3D TA of MRI relies heavily on sophisticated mathematical proce-

dures, this study was entirely carried out using commercially available and open-

source software, which are provided with well documented manuals to support

their use by personnel with limited programming backgrounds.
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6.5 Study Limitations and Future Work

The study discussed in this chapter suffers from the limitation that the presented

pairwise testing results are a best case scenario, as the comparison looked into

optimal AUC values. To determine robustness of the obtained findings, it will be

necessary to further test the classifiers with the optimal settings identified in this

study. This can be done using a three-fold validation approach, where training

is done on one dataset, followed by a testing stage on another dataset where the

optimal classifier settings are identified, and finally a validation stage where the

identified optimal settings are tested for robustness.

Although the analysis was carried out on the three most frequently occurring

paediatric brain tumours (MB, PA and EP), this methodology can be extended to

other brain tumour types, provided enough data samples are available for use as

a test-bed. It will also be interesting to look into the use of 3D TA on diffusion-

weighted imaging (DWI), as work currently available in the literature has shown

promising results with 2D TA of DWI.

6.6 Conclusions

In conclusion, the results of the study presented in this chapter indicated that

despite the differences in textural information among MR images from different

hospitals, feature-sets from one hospital may be used for successful tumour type

classification when tested on data from other hospitals; an important finding for

future clinical adoption of TA. The findings of the study presented here support

the use of 3D TA on conventional MR images to aid diagnostic classification of

paediatric brain tumours.
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Some aspects of the work presented here were published in [P06]. Publication

details can be found on page xx.

7.1 Introduction

Although brain tumour characterisation using TA of MR images has received a

great deal of attention over the past decade, much of this work concentrated on the

diagnosis of tumour types and on the comparison of different algorithms, in order

to establish which combinations yield the best performances. The encouraging

results reported in Chapters 5 and 6 and in the literature, with regards to the

efficacy of MRI TA, raise an interesting question: If textural features could capture

powerful patterns that aid the diagnosis of childhood brain tumours, can they also

be used to predict patients’ survival prognosis?

Following diagnosis, determination of prognosis is an important step in brain

tumour management, with implications that determine treatment options. There-

fore, accurate non-invasive predictors of prognosis have the potential to advance

clinical management of patients for therapy and the possibility to support more

informed discussions with the patient’s family.

To the best of the author’s knowledge at the time of writing, there has been no

published work on investigating brain tumour survival predictors based on image

analysis of conventional MRI, such as T1 and T2-weighted scans. Such scans

are routinely acquired when a patient is presented with a suspected brain tumour,

and their reported success in diagnostic TA applications suggests a possibility that

valuable but complex prognostic patterns may exist undiscovered in the data.

In this regard, the primary aim of the study presented in this chapter was

to determine whether textural features extracted from conventional MR images

were able to predict the survival of paediatric medulloblastoma: the most common
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malignant brain tumour occurring in childhood. This was done by carrying out

3D TA on pre-contrast T1 and T2-weighted images using a number of different

statistical TA techniques: histogram, absolute gradient, grey-level co-occurrence

matrix (GLCM) and grey-level run-length matrix (GLRLM).

7.2 Materials and Methods

7.2.1 Cohort Details and Image Acquisition

The clinical material used in this retrospective study consisted of pre-contrast T1

and T2-weighted MR images of thirty-two children attending treatment at Birm-

ingham Children’s Hospital and subsequently diagnosed with medulloblastoma.

All images were anonymised and obtained from a secure e-repository provided by

CCLG [4]. The same acquistion protocols that were introduced in the single centre

study (Chapter 5) were used to obtain the images.

Out of the thirty-two patients, one did not have T1-weighted data and five

did not have T2-weighted data available on the e-repository, but they were still

included in the study. Approval for the study was obtained from the research

ethics committee, and informed consent was taken from guardians. In order to

obtain diagnoses in accordance with the WHO classification, tumour samples were

taken from all patients and underwent histopathological examinations.

7.2.2 Image Pre-processing

Similar to the studies presented in chapter 5 and 6, image pre-processing was

carried out by manually selecting axial slices from the dataset, segmenting the

tumour using the Snake GVF algorithm, and normalising the images using the

µ+ /− 3σ technique.
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7.2.3 Extraction of Textural Features

MaZda software was used to carry out 3D TA based on the histogram statistics,

absolute gradient, GLCM and GLRLM techniques, extracting the same features

that were used in chapters 5 and 6.

7.2.4 Identifying Textural Features with Potential Prog-

nostic Value

Including both imaging modalities and all four TA techniques in the analysis

would result in a very large number of 566 features. It was therefore sensible to

first investigate a sub-set of features that were likely to capture survival prognosis

patterns well, and then test the identified features using a suitable survival analysis

technique, such as Kaplan-Meier estimator. A supervised learning experiment was

therefore carried out, in order to identify potentially optimal features, as detailed

below. Python’s Orange machine learning library was used to carry out the work

explained in this section.

Step 1. Categorising the Feature-Set

The aim of this step was to organise the feature-set in a way that separates data

of patients with good prognosis from those with poor prognosis. This is, however,

complicated by two problems. Firstly, it is difficult to define what good prognosis

is, in the sense that there is no particular cut-off value in terms of survival time,

after which the patient is defined to have good survival. Secondly, assuming that

we define a cut-off value, for example 4 years, the analysis would be further com-

plicated by the fact that some patients are currently alive but their diagnosis date

was less than 4 years ago. If these patients were to be included in the analysis, it

would not be reasonable to categorise them as having good prognosis; because even
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though they are currently alive, the cut-off point has not been reached. Similarly,

including them under the poor prognosis category would have been problematic,

because whether they will survive till at least the cut-off point remains unknown

at the time of analysis.

In order to address the aforementioned issues, a cut-off value of 4 years was

chosen, and if patients had survived until at least this point, they were categorised

as having good prognosis. We proceeded by temporarily removing data of the 10

patients who are still alive but have not reached the cut-off point, which reduced

our cohort size to 22 patients. The small cohort was well spread-out, where 9

patients had survived for at least 4 years and 13 patients had died before the 4

years point, implying that 4 years was a fairly suitable choice of cut-off value.

Step 2. Identifying Optimal Features Using a Supervised Learning Ap-

proach

The aim of this step was to apply supervised learning techniques to the categorised

feature-set from Step 1, in order to identify a number of textural features that were

likely to have strong prognostic value. Entropy-MDL discretisation was used to

partition the textural features to a discrete number of intervals.The discretised

sub-set was then used to train a simple Naive Bayes classifier in a two-class prob-

lem, with the aim of classifying the data points as ’had died before 4 years’ or

’had survived for at least 4 years’. The purpose of doing this was to test whether

the selected features did in fact capture discriminative prognostic patterns that

enabled good classification rates across the two classes. Validation was carried out

by randomly sampling the data points into a 50% training set and a 50% testing

set. This process was repeated 5 times prior to calculating average classification

rates. Encouraging classification results were obtained by the Bayesian classifier,
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as detailed in the results section, which allowed us to proceed by testing individual

features using a Kaplan-Meier estimator.

7.2.5 Statistical Methods

After a sub-set of potentially valuable textural features has been identified, it was

necessary to examine its significance in a structured manner. Kaplan-Meier sur-

vival estimator was used to individually test each feature identified in the previous

step, by examining whether a high feature value is associated with significant dif-

ferences in survival time across the entire cohort of 32 patients. In order to estab-

lish whether a particular feature value was high or low, we used the cut-off values

determined by Entropy-MDL discretisation algorithm during the feature selection

step. Since these values lead to the training of an effective survival classification

model, it was assumed that they were suitable choices as cut-offs.

In order to test the study’s primary hypothesis, the log-rank test was used with

a chosen p value of 0.05. Both Kaplan-Meier and log-rank tests were performed

on MATLAB (version R2014b), using the KMPlot [68] and Logrank [67] libraries

available from MATLAB File Exchange. Following this, Pearson’s pairwise linear

correlation test was applied, in order to identify any inherent links between the

optimal features.

7.3 Results

The classification test used to identify potentially optimal features yielded a clas-

sification accuracy of 89% and an AUC value of 92%. Such results allowed us to

proceed by testing individual features using a Kaplan-Meier estimator. Out of the

566 available features, only 36 were initially identified by Entropy-MDL to be of
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Table 7.1: Summary of the textural features identified to be of significant prognos-
tic value by log-rank test. Note that all features were extracted from T2-weighted
images.

Feature p

Sum Variance (1,-1,0) 0.00635 (<0.01)
Sum Variance (1,0,0) 0.01070 (<0.05)
Sum Variance (2,-2,0) 0.00374 (<0.01)
Sum Variance (2,0,0) 0.00238 (<0.01)
Sum Variance (0,0,3) 0.00006 (<0.01)
Sum of Squares (1,1,0) 0.00462 (<0.01)
Sum of Squares (0,0,3) 0.01565 (<0.05)
Angular Second Moment (0,2,0) 0.02099 (<0.05)
Angular Second Moment (2,2,0) 0.00374 (<0.01)
Angular Second Moment (2,-2,0) 0.00374 (<0.01)
Angular Second Moment (3,0,0) 0.00628 (<0.01)
Angular Second Moment (0,3,0) 0.00734 (<0.01)
Angular Second Moment (3,3,0) 0.00374 (<0.01)
Angular Second Moment (4,0,0) 0.00016 (<0.01)
Angular Second Moment (4,4,0) 0.00006 (<0.01)

potential value. Upon carrying out Kaplan-Meier and log-rank analyses, 15 of the

36 features were identified to be significant. A summary of the significant features,

together with their associated p values, is shown in Table 7.1. An interesting ob-

servation is that all the features that we identified as significant were extracted

from T2-weighted images.

Corresponding Kaplan-Meier survival plots for the 15 features are shown in

Figures 7.1 to 7.4. Note that correlation coefficients, obtained from Pearson’s

pairwise linear correlation test, are available in Table 7.2.
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Figure 7.1: Kaplan-Meier survival curves for five of the fifteen features identified to
be of prognostic value: T2 Sum Variance (1,-1,0),(1,0,0), (2,-2,0),(2,0,0),(0,0,3).
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Figure 7.2: Kaplan-Meier survival curves for two of the fifteen features identified
to be of prognostic value: T2 Sum of Squares (1,1,0) ,(0,0,3).
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Figure 7.3: Kaplan-Meier survival curves for four of the fifteen features identified
to be of prognostic value: T2 Angular Second Moment (2,-2,0), (0,2,0), (2,2,0),
(3,0,0).
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Figure 7.4: Kaplan-Meier survival curves for four of the fifteen features
identified to be of prognostic value: T2-weighted Angular Second Mo-
ment(0,3,0),(3,3,0),(4,0,0),(4,4,0).
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7.4 Discussion

The results of this study have shown that 3D textural features, obtained non-

invasively by analysing T1 and T2-weighted MR images, predict survival in a

cohort of children diagnosed with medulloblastoma. Out of the initial feature-set

that comprised 566 textural features of the statistical type, we were able to identify

15 features that hold useful prognostic value (p <0.05). The 15 identified features

are GLCM-based and are variations of sum variance, sum of squares and angular

second moment, with different inter-pixel distances and directions of analysis.

An interesting finding was that variations of the same feature showed strong

positive correlations between each other. For example, variations of Sum Variance:

(1, -1,0), (1,0,0), (2, -2,0), (2,0,0), (0,0,3) had correlation coefficients above 0.9, as

shown in Table 7.2. This suggests that carrying out the analyses in these particular

combinations of directions and pixel distances could perhaps be measuring the

same underlying pattern. Since one barrier for applying TA methods in clinical

applications is the overabundance of techniques available for use, identifying such

inherent relationships between features is an important step for simplicity in long-

term clinical adoption.

Another interesting observation was the positive correlation between differ-

ent features. For instance, Sum of Squares (SSQ) and Angular Second Moment

(ASM) showed correlation coefficients that ranged between 0.53 and 0.60. This

is interesting because SSQ is a measure of textural heterogeneity as it represents

the spread around the central tendency; therefore it increases with the grey-level

values spreading away from the mean. However, ASM is a measure of how con-

stant or periodic the grey-level distribution is [20], [70]. A negative correlation

would therefore be expected between the two features. Studying the Kaplan-Meier

plots, which clearly show that high values of both features are associated with poor
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survival prognosis, can also reflect the aforementioned positive correlation.

To explore this observation, ASM, SSQ and SumVar features were visualised

on a number of tumour ROIs, as shown in Figure 7.5. This was done by generat-

ing feature maps on T2-weighted tumour ROIs, obtained by calculating textural

features in a small window sliding over the image. The window was defined to be

a 9x9 pixel mask, moving in steps of one pixel. Regions with high feature values

appear brighter on the feature maps. By inspecting the maps on Figure 7.5, one

could see how areas of relatively high ASM seem to be continuous tumour regions

with similar grey-level intensities, whereas areas with high SSQ and SumVar seem

to be edges where there is a sharp transition between grey-level values. Thus, it is

likely that with increasing tumour complexities, there tends to be large a number

of bulky regions, with similar grey-levels within each region (hence high ASM),

and consequently more edges between them (hence high SSQ and SumVar). To

aid with the illustration, the popular peppers image used in the image processing

literature was included, together with its corresponding feature maps. As can be

seen in the feature maps, there exists very high components of ASM, SSQ and

SumVar in the same image.

7.5 Study Limitations and Future Work

Many children with brain tumours are treated on sophisticated protocols that

stratify patients on an increasingly complex set of prgnostic markers that combine

clinical information, conventional imaging, histopathological markers and tumour

biology [69]. Thus, the prognostic role of TA within such protocols needs to

be determined by its inclusion in large multi-centre trials in the future. Recent

research efforts in the paediatric literature have identified glutamate as a biomarker

for paediatric medulloblastoma [69]. Hence, identifying any inherent links between
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Figure 7.5: Four T2-weighted medulloblastoma ROIs and their corresponding fea-
ture maps based on (b) angular second moment (ASM) (c) sum of squares (SSQ)
and (d) sum variance (SumVar). One could see how areas of relatively high ASM
seem to be continuous tumour regions with similar grey-level intensities, whereas
areas with high SSQ and SumVar seem to be edges where there is a sharp tran-
sition between grey-level values. To aid with the illustration, the popular peppers
image used in the image processing literature was included, together with its cor-
responding feature maps. Original MR images were obtained from the CCLG
database [4].
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texture features and glutamate is another important future task.

An additional limitation to the present study is the relatively small number of

medulloblastoma patients attending a single centre. Larger multicentre studies,

similar to the investigation discussed in Chapter 6, are required to confirm the

robustness of TA as a prognostic biomarker.

7.6 Conclusion

The third and final objective of this thesis, to investigate the prognostic value of

MRI TA, was met in this chapter. The features that were identified as significant

prognostic biomarkers for paediatric medulloblastoma were all T2-weighted and

GLCM-based. Following diagnosis, determination of prognosis is an important

step in tumour management, with implications that determine treatment options.

Therefore, the identified features have the potential to advance clinical manage-

ment of patients for therapy following cross-centre validation.
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This chapter aims to discuss a summary of the main points arising from the

research caried out as part of this thesis, and to identify the overall conclusions.

A number of recommendations for future work are finally discussed.

8.1 Summary

The primary aim of this thesis was to explore the effectiveness of texture analysis

of MR images in supporting clinicians with non-invasive characterisation of paedi-

atric brain tumours. The work presented here contributed to the body of knowl-

edge by addressing three major sub-problems that have received little attention

in the paediatric literature: diagnostic classification, cross-centre transferability,

and prognosis.

After identifying the primary aim and objectives of this thesis, it was essential

to review the technique of MRI, in order to identify the underlying physical pro-

cesses and to discuss how important MR imaging parameters, such as TE and TR,

are linked to visualisation of common paediatric brain tumours. The importance

of this was to understand the nature of the clinical data used in this thesis. This

was achieved in Chapter 2.

Since much of this thesis was devoted to the use of textural features within

a classification framework, it was necessary to review popular machine learning

methods and algorithms, particularly classification models, feature selection al-

gorithms, and ways of validating classifiers’ performance. This was addressed in

Chapter 3.

Thirdly, it was important to review popular texture analysis methods in order

to identify the nature of radiomic information they can provide, and to thoroughly

review the current state-of-the-art, particularly work available on brain cancer.

In Chapter 4, existing statistical texture analysis methods (histogram, absolute
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gradient, GLCM and GLRLM) were reviewed, and the nature of features they

provide was discussed. With regards to the literature review, an important finding

was the need for further research into maximising the value of textural features

as diagnostic biomarkers, through the use of 3D analysis. Another important

finding was the lack of studies that looked into the use of MRI textural features

as prognostic biomarkers.

The thesis went on to advance the field of non-invasive tumour characterisation

in paediatric neuro-oncology by exploring the effectiveness of textural features ob-

tained from conventional MR images as diagnostic biomarkers. This was achieved

through a single-centre study (Chapter 5). An important finding of the single-

centre study was the importance of carrying out multi-slice (3D) TA to ensure

that the diagnostic value of the technique is not diluted. Six machine learning

classifiers were tested with 3D and 2D features, and the statistical significance of

the obtained differences was rigorously analysed. It was also concluded that the

choice of machine learning classifier is a less important question, since the differ-

ences in performance between different classification algorithms were not statis-

tically significant. The experimental work presented in Chapter 5 met the first

objective of this thesis.

The second objective of this thesis was to determine the diagnostic efficacy

of TA on a multi-centric level. To this end, Chapter 6 introduced a classification

study that used datasets obtained from three different hospitals and using scanners

made by different manufacturers. With SVM yielding classification performances

of up to 85% AUC, the cross-centre transferability of TA was shown possible. One

issue that is commonly faced when designing such experiments is the issue of class

imbalance, where tumour types are not equally represented in the cohort. We

illustrated how the use of synthetic ependymoma samples can lead to a noticeable
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increase in sensitivity (11% to 87%), and we recommend the use of such over-

sampling techniques in future studies.

The final objective of this work was to determine whether textural features

could potentially be used as prognostic biomarkers. This is important because

following diagnosis, the determination of prognosis is an important step in brain

tumour management, with implications that determine treatment options. The

work presented in Chapter 7 met this objective through a survival analysis study,

where fifteen features extracted from T2-weighted images were identified to be of

significant prognostic value when tested on the cohort obtained from Birmingham

Children’s Hospital. This work was carried out on MR images of medulloblastoma;

the most commonly occurring brain tumour in childhood, and the obtained success

motivates further research into other tumour types.

8.2 Conclusion

The primary conclusion of this thesis is that MRI TA is valuable for the char-

acterisation of paediatric brain tumours, providing quantitative information that

can supplement visual inspections performed by radiologists. In recent years, it

has been recognised that medical images contain more useful information than

may be perceived with human vision, leading to the field of radiomics, whereby

additional features can be extracted by computational techniques. Evidence has

slowly accumulated showing that features obtained by TA of MR images can po-

tentially provide a set of useful tools for non-invasive characterisation of paediatric

brain tumours. In this thesis, the problem of tumour characterisation was divided

into two parts: diagnosis and prognosis. In terms of specific findings, this work

offers three novel contributions to knowledge. Firstly, it was shown, through ex-

perimental analysis, that TA can diagnostically classify common brain tumours
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with high accuracies; and that such classification could be optimised by extend-

ing the analysis to include multi-slice features. The second contribution of this

work was the analysis of the efficacy and cross-centre transferrability of TA, using

multicentric, heterogeneous datasets. The findings suggested that TA is highly

effective in diagnostic classification when tested on multicentre data. Thirdly, it

was shown, through the analysis of clinical medulloblastoma data, that TA can

be used to predict the survival prognosis of the patients, using features extracted

from conventional T2-weighted images. On the basis of the findings of this thesis’

experiments, it was shown that TA can potentially have a large clinical impact,

since MR imaging is routinely used in the brain cancer clinical work-flow world-

wide; providing an opportunity to improve decision-support at low cost.

8.3 Recommendations for Future Work

The work presented in Chapters 5 and 6 focused on diagnostic classification of MB,

PA and EP using textural features of conventional MRI. We looked at the three

most commonly occurring childhood brain tumours, which motivates the need to

include rarer tumour types into future work. Besides being an important step

towards clinical adoption of TA, including rarer types will ease comparisons with

radiological performance, since the identification or ruling out of rarer tumours

is likely to present radiologists with significant problems when trying to make a

provisional diagnosis.

Moreover, it remains noteworthy that the variety of acquisition parameters

used for the T1 and T2-weighted images may have affected the consistency of how

tumours appeared across different scans, and consequently affected the ability of

TA to characterise them. It is therefore possible that TA could perform better

if the input is more uniform. With regards to the directional sensitivity of the
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textural features used, the high correlation between them suggests that combining

them into a single score, perhaps through averaging, might decrease noise and

improve reliability. Exploring these two points is an important future extension

to this research.

Another important future extension to this work is the inclusion of additional

imaging types, such as post-contrast T1-weighted MRI. Although post-contrast

MRI is routinely acquired at the centres from which the clinical data was ob-

tained, it was not included in this study at this stage, due to a number of con-

cerns with regards to standardisation. There are many variables that affect the

images and make quantification difficult, particularly in children. For instance,

the contrast bolus is injected by hand, sometimes into a peripheral vein whilst in

others into a central line. Additionally, bolus duration is very variable, the time

from injection to image acquisition is not standardised and cardiovascular param-

eters vary greatly. Visual inspection of these images bears out the differences in

T1 post-contrast imaging between acquisitions. The method is useful for quali-

tative interpretation but further work is required before considering quantitative

analysis.

In the author’s opinion, the biggest limitation that MRI texture analysis stud-

ies presently suffer from is the lack of clear clinical meanings to the features iden-

tified as biomarkers. Establishing such meaning is a challenging task since TA,

in theory, captures underlying MR imaging patterns that are below human vi-

sion. One way this issue could perhaps be tackled in the future is by carrying

out TA on biopsy samples under different microscopic scales, where clinical at-

tributes can be easily correlated with important textural features. Assuming that

such meaning could be translated to MR imaging scales, this could potentially

provide radiologists with a number of textural patterns to look for when carrying
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out initial tumour characterisation. Good understanding of feature meanings will

ensure that the generated knowledge and the explanation of classifier decisions

will be transparent to the clinicians. This will support clinical acceptance of TA,

since according to Kononenko [85], transparency is an important requirement for

decision-support systems to be useful in solving medical diagnostic tasks.

The single-centre study discussed in Chapter 5 showed that whilst some clas-

sifiers might outperform others when tested on our cohort, such variations are

not statistically significant, suggesting that the choice of which classifier to use is

perhaps a less important question. Hence, an important factor to consider when

choosing which classifier to apply in future research is the classifier’s explana-

tion ability. For instance, Naive Bayes and Classification Tree classifiers might

be preferred by clinicians because of the nature of information they provide [85].

Alternatively, instead of selecting a single best classifier, combining their decisions

when classifying a data point might be a more robust option.

Among the reasons for slow acceptance of decision support systems in clinical

settings, perhaps the most reasonable one is that the introduction of such tech-

nologies will further increase the abundance of tools and instrumentation available

to clinicians [85]. The use of non-invasive TA would have has the undesirable side

effect of further increasing the complexity of the radiologist’s work, which is al-

ready sufficiently complicated. Therefore, TA and machine learning systems will

have to be integrated into the existing instrumentation that makes its adoption

as natural as possible.
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A.1 Introduction

The work presented here discusses a preliminary investigation that was conducted

during the early stages of this research with the aim of answering the following

question: can MRI TA potentially be used, within a machine learning framework,

to capture quantitative patterns for the characterisation of paediatric brain tu-

mours?

This preliminary study focused on two aspects: 1. the diagnostic potential

of TA, and 2. potential cross-centre transferrability of the technique. These as-

pects were investigated by carrying out conventional 2D TA on multicentric MR

imaging data. The datasets fell into the astrocytic, ependymal and embryonal

histopathological categories. Due to the preliminary nature of this study, it was

not included in the main body of this thesis. The positive findings of this study,

however, motiavted rigorious analysis of MRI TA for tumour characterisation, as

per Chapters 5 - 7.

Some aspects of the work presented here were published in [P02]. Publication

details can be found on page xx.

A.2 Materials and Methods

A.2.1 Clinical Materials

Table A.1: A table summarising the datasets included in this preliminary study.
Three histopathological tumour categories were included: astrocytic, ependymal
and embryonal. All images were obtained from the CCLG database [4].

Astrocytic (26) Ependymal (19) Embryonal (25)

Pilocytic Astrocytoma (21) Anaplastic Ependymoma (8) Medulloblastoma (21)
Glioblastoma (5) Ependymoma (11) Atypical Teratoid0Rhadoid (4)
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The dataset consisted of anonymised T2-weighted MR images of 70 children

with verified and untreated brain tumours. All the chosen records fell into the

astrocytic, ependymal or embryonal histopathological tumour categories. Im-

age acquisition was carried out at three centres 1 using the following scanners:

1.5T Siemens Symphony, 1.5T Siemens Avanto (Siemens Healthcare, Erlangen,

Germany), 1.5T General Electric Signa (GE Healthcare, Little Chalfont, UK),

1.5T Phillips Intera and 3T Phillips Achieva (Philips Healthcare, Amsterdam,

Netherlands), following a common protocol defined by the Childrens Cancer and

Leukaemia Group (CCLG) Functional Imaging Group.

All images were anonymised and held at a secure e-repository [4] provided by

CCLG, from which the data was downloaded for use in this study. Although this

experiment was a preliminary study, the decision to include datasets obtained from

different hospitals was made in order to get an idea of the cross-centre transferra-

bility of TA. Given the rarity of paediatric brain tumours, the included cohort of

70 patients was sufficiently large from a clinical perspective. In fact, the largest

cohort size that was used in the paediatric brain tumour MRI TA literature in-

cluded 50 patients, to the best of the author’s knowledge at the time of writing

[38]. Table A.1 shows the breakdown of the data used.

A.2.2 Image Pre-processing

The first pre-processing step was slice selection, where an axial slice containing

the largest tumour region was manually chosen from each dataset, using RadiAnt

DICOM viewer [61]. The selected axial slices were then imported to MaZda texture

analysis software, which was developed by Materka et al [31]. To identify regions of

interest (ROIs), equally sized square regions (30x30 pixels) were manually placed

1Birmingham Children’s Hospital, Nottingham University Hospital and Great Ormond Street
Hospital.
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Figure A.1: A figure showing the placing of a 30x30 pixel region of interest on
the tumour region of a T2-weighted image of a medulloblastoma (an embryonal
tumour), using the MaZda software [31]. The original MR image was obtained
from CCLG database [4].

inside the tumour areas. Since the data had been acquired from different imaging

centres and using scanners produced by different manufacturers, there are usually

variations in parameter settings that lead to the images having different grey-level

ranges.

To mitigate the variations in parameter settings used while scanning different

patients, the grey-level values within the identified ROIs were normalised through

a two-step process (range selection and quantisation). Due to the preliminary

nature of this study, grey-level range values were not manipulated. The second

step involves quantising the resulting grey-level range between 1 to 2k , where k is

the number of bits per pixel. For instance, if our original range is between 1 and

1024, but we choose to use 8 bits per pixel, the dynamic range would be quantised

to the range 1 to 256. In this study, 6 bits were chosen for quantisation.
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A.2.3 Textural Features Extraction

After the images were pre-processed, each ROI was represented by 302 textural fea-

tures computed using MaZda. The following techniques were used for feature ex-

traction: histogram, absolute gradient, grey-level co-occurrence matrix (GLCM),

grey-level run-length matrix (GLRLM), wavelets and autoregressive model. The

statistical techniques were discussed in Chapter 4, and the non-statistical ones

(wavelets and autoregressive model) are discussed in Appendix B. All the ex-

tracted features were based on the conventional 2D approach. In terms of GLCM

and GLRLM, features were extracted for distances of 1, 2, 3 and 4 pixels in the

horizontal, vertical and diagonal directions.

The feature sets that were computed from the ROIs were aggregated for anal-

ysis. The aggregated feature set was then re-organised into three separate groups,

based on tumour histopathological category:

• Group (a): embryonal and astrocytic.

• Group (b): embryonal and ependymal.

• Group (c): astrocytic and ependymal.

A.2.4 Feature Selection and Supervised Learning

If all 302 features were evaluated together, it was very likely that the classification

models would be over-fitted and poorly generalised. Irrelevant and redundant

features are problematic because they may confuse the learning algorithm, by

helping to obscure the distributions of the subset that holds influential features.

The number of features tested therefore needed be reduced.

Orange [60], the python-based machine learning library (version 2.6a1) was

used for feature selection. The entropy-MDL discretisation algorithm was em-
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ployed to partition the features to a discrete number of intervals. As discussed in

chapter 3, the entropy value of a feature can be a measure of its discriminative

power, hence entropy-based discretisation can also be used for feature selection.

Supervised learning was then carried out, in a binary classification problem,

on each of the three groups using the following algorithms:

• Naive Bayes (NB): Prior class probabilities based on: Relative frequency.

• K-Nearest Neighbour (kNN): Neighbours: 5, Distance metric: Euclidean.

• Classification Tree (CTr): Attribute selection based on: Information gain.

• Support Vector Machines (SVM): Type: C-SVM, Kernel: RBF.

which were introduced in Chapter 3. The performance of the learning algo-

rithms was evaluated using the random sampling strategy, with a relative training

set size of 51%. The training/testing process was repeated 20 times to ensure

realistic evaluation.

A.3 Preliminary Results

For each of the three groups, Table A.2 shows the classification accuracies obtained

and their corresponding area under the receiver operator characteristics curves

(AUC). Figures A.2-A.4 illustrate the ROC curves obtained with each group. The

results suggested that textural features are potentially highly effective discrim-

inants when comparing embryonal and astrocytic tumours, with kNN and NB

achieving classification accuracies of 91%. The embryonal and ependymal group

also yielded promising results, particularly with the Naive Bayes algorithm, which

achieved a classification accuracy of 85%. Naive Bayes technique was similarly

able to achieve the highest classification accuracy results for the astrocytic and

ependymal group (74%).
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Figure A.2: A figure showing the receiver operator characteristics (ROC) curves
for group (a): embryonal vs astrocytic.
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Figure A.3: A figure showing the receiver operator characteristics (ROC) curves
for group (b): embryonal vs ependymal.
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Figure A.4: A figure showing the receiver operator characteristics (ROC) curves
for group (c): ependymal vs astrocytic.
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Table A.2: A table summarising the classification accuracies and the corresponding
AUC values obtained with each of the four classifiers on all three datasets. Model
validation was carried out using random sampling, where the training/testing
process was repeated 20 times.

Dataset Classification accuracy% (AUC%)

SVM kNN NB CTr
(a) Embryonal and Astrocytic 87(96) 91(96) 91(96) 84(84)
(b) Embryonal and Ependymal 82(88) 64(77) 85(88) 66(69)
(c) Astrocytic and Ependymal 68(76) 67(70) 74(80) 67(70)

A.4 Discussion

The findings were encouraging and motivated thorough experimentation into the

efficacy of MRI texture analysis, within a machine learning framework, for diag-

nostic classification of childhood brain tumours. Additionally, the multicentric

nature of the dataset used suggested that TA is potentially a scalable technique

that could be used across multiple hospitals. Of course, the work described here

was preliminary and was therefore succinct in its statistical analysis. However,

a number of interesting points arised, some of which were mentioned in the In-

troduction section of this thesis. For instance: Would using multiple MR slices

and carrying 3D TA improve the classifiers’ generalisation ability? Would the use

of other modalities, such as T1-weighted images, add extra value to the classi-

fication? Can some of the included textural features be considered irrelevant or

redundant, thus obscuring classifiers performance? Does the choice of learning

algorithm significantly influence the classification results? And finally, is it feasi-

ble to characterise classifiers confidence when making diagnoses based on textural

features, thus making it a practical tool for clinical settings?

Additionally, the study suffered from a number of limitations, which were

addressed in the experimental chapters of this thesis. For instance, the use of

small-sized ROIs was certainly not sufficient for capturing enough information for
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tumour discrimination. In practice, ROI outlining is usually performed manually,

which is not only a time consuming task, but is also open to subjective interpre-

tation of the radiologist. Therefore, a need to carry out future experiments using

a robust segmentation technique that can capture ROIs that are representative of

tumour patterns was identified. Additionally, the only performance metrics that

were considered in this study were the classification accuracy and AUC measures,

which on their own, might not be sufficient for thourough evaluation of classi-

fication performance. Finally, and perhaps most importantly, it is necessary to

identify the nature of features that were selected during the dimensionality reduc-

tion stage in order to better understand the basis on which the learning models

carried out their classification tasks.

The aforementioned points were addressed in the experimental parts of this

thesis, particularly Chapter 5, which discusses a single-centre tumour classification

study; the first main contribution of this thesis.

A.5 Conclusion

This study presented a preliminary investigation that looked into the classifica-

tion of paediatric brain tumours into histopathological categories, using TA of

T2-weighted MR images. This work was carried out at the early stages of this

research with the aim of identifying whether textural patterns can potentially cap-

ture visual patterns that are beyond human vision, and subsequently be used for

diagnostic classification in paediatric settings. It was found that, despite the use of

limited textural patterns which were quantified using conventional 2D TA, it was

possible to discriminate between tumour histopathological categoies in a binary

classification problem. The encouraging preliminary findings motivated further

research into maximising the technique’s diagnostic value, which was addressed
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in Chapter 5. Additionally, the multicentric nature of the data used encouraged

rigurious analysis of TA’s cross-centre transferrability, as discussed in Chapter 6.
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Although the technical work presented in chapters 5-7 of this thesis is based

on statistical TA techniques, two common non-statistical methods are introduced

here as they had been used in a number of relevant studies in the literature, such as

[37] and [38]. They were also used in the preliminary study presented in Appendix

A.

(a) Autoregressive Model (Model-based Technique)

The autoregressive (AR) model is a linear prediction technique that aims to

estimate future values of a signal as a linear function of previous samples. In

TA, the AR modelling technique characterises statistical pixel dependencies by

representing fs, the grey-level intensity at location s, as a linear combination of

surrounding grey-levels and an additive noise [81]. A causal AR model can be

defined as:

fs =
∑
r∈Ns

θrfr + εs (B.1)

Where fs is the image intensity at site s, εs is noise, Ns is a neighbourhood

of s, and θ is a vector of AR model parameters. Features available from an AR

model are:

• The coefficients for the four neighbouring pixels (θ1, θ2, θ3, θ4). θ can be

calculated as {
∑

swsw
T
s }−1{

∑
swsfs}, where ws = col[fs, i ∈ Ns] [21].

• The standard deviation (σ) of the noise, where σ2 = R−1
∑

s{fs − θws}2. R

is the number of pixels inside the ROI such that for the point s is moved to

a pixel location, all the 4 immediate neighbours of s (Fig B.1) will be placed

inside the ROI as well [21].
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Figure B.1: A hypothetical pixel neighbourhood showing a pixel s and its sur-
rounding region (shaded in grey) where a casual AR model neighbourhood may
be located.

The AR modelling technique therefore assumes local interaction between lo-

cal image pixels and can give an indication on how smooth or coarse the texture

is. In other words, it is a way of describing shapes within an image by finding

relations between groups of neighbouring pixels. The coefficient θ can be inter-

preted as a measure of statistical similarity between intensities of pixel s and its

neighbours [21]. For coarse textures, the coefficients of neighbouring pixels will

be widely varied, while in smooth ones the coefficients will be similar to each

other [29]. Figure 4.9 shows an element s with the shaded area representing the

region where a causal half-plane AR model neighbourhood may be located.
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(b) Wavelet Analysis (Transform-based Technique)

In broad terms, Wavelet transform is a technique that can be used to separate data

into different frequency components. The motivation behind the use of wavelets

in TA is that features could be extracted at different imaging scales. To elaborate,

consider the example of a constant MR scanner field of view, say 12.8 x 12.8 cm.

If the slice thickness was changed from 1mm, through 0.5mm, to 0.25mm, one

obtains images that contain 128x128 pixels, 256x256 pixels and 512x512 pixels

respectively, leading to variations in textural pattern dimensions across these im-

ages [21]. Wavelet transform is performed through the use of a cascade of low (L)

and high (H) pass filters. A single line or column of an image can be treated as

a one-dimensional signal [21]. Wavelet transform is carried out on an image by

first transforming all image rows, followed by all image columns [32], yielding four

different sub-bands: LL, LH, HL and HH.

Figure B.2: An axial T2-weighted MR image (left) and its corresponding
wavelet transform sub-bands (right). Original image was obtained from CCLG
database [4].

The example brain MR image in Figure B.2 shows the general form of 2D

wavelet transform; one can see that most of the images information is compacted

in the LL sub-band. 1

1Note that the brightness of the sub-bands has been manipulated to aid visualisation.
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MR image inspection and slice selection were carried out using RadiANT DICOM

viewer. Extraction of textural features was carried out using MaZda. Implemen-

tation of machine learning algorithms was done in python, using Orange library.

MATLAB was used to segment the images using the Snake GVF algorithm and

to carry out KM survival analysis using the log-rank test.

Most plots were produced using MATLAB and Orange.
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