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Abstract Key properties of inferior temporal cortex neu-
rons are described, and then, the biological plausibility of two
leading approaches to invariant visual object recognition in
the ventral visual system is assessed to investigate whether
they account for these properties. Experiment 1 shows that
VisNet performs object classificationwith randomexemplars
comparably to HMAX, except that the final layer C neurons
of HMAX have a very non-sparse representation (unlike that
in the brain) that provides little information in the single-
neuron responses about the object class. Experiment 2 shows
thatVisNet forms invariant representationswhen trainedwith
different views of each object, whereas HMAX performs
poorly when assessed with a biologically plausible pattern
association network, as HMAX has no mechanism to learn
view invariance. Experiment 3 shows that VisNet neurons do
not respond to scrambled images of faces, and thus encode
shape information. HMAXneurons respondedwith similarly
high rates to the unscrambled and scrambled faces, indicat-
ing that low-level features including texture may be relevant
to HMAXperformance. Experiment 4 shows that VisNet can
learn to recognize objects even when the view provided by
the object changes catastrophically as it transforms, whereas
HMAX has no learning mechanism in its S–C hierarchy that
provides for view-invariant learning. This highlights some
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requirements for the neurobiological mechanisms of high-
level vision, and how some different approaches perform, in
order to help understand the fundamental underlying princi-
ples of invariant visual object recognition in the ventral visual
stream.
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1 Introduction

The aim of this research is to assess the biological plausi-
bility of two models that aim to be biologically plausible
or at least biologically inspired by performing investigations
of how biologically plausible they are and comparing them
to the known responses of inferior temporal cortex neurons.
Four key experiments are performed tomeasure the firing rate
representations provided by neurons in the models: whether
the neuronal representations are of individual objects or faces
as well as classes; whether the neuronal representations are
transform invariant; whether whole objects with the parts in
the correct spatial configuration are represented; andwhether
the systems can correctly represent individual objects that
undergo catastrophic view transforms. In all these cases, the
performance of the models is compared to that of neurons
in the inferior temporal visual cortex. The overall aim is
to provide insight into what must be accounted for more
generally by biologically plausible models of object recog-
nition by the brain, and in this sense, the research described
here goes beyond these two models. We do not consider
non-biologically plausible models here as our aim is neu-
roscience, how the brain works, but we do consider in the
Discussion some of the factors that make some other models
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not biologically plausible, in the context of guiding future
investigations of biologically plausible models of how the
brain solves invariant visual object recognition. We note that
these biologically inspired models are intended to provide
elucidation of some of the key properties of the cortical
implementation of invariant visual object recognition, and
of course as models the aim is to include some modelling
simplifications, which are referred to below, in order to pro-
vide a useful and tractable model.

One of the major problems that are solved by the visual
system in the primate including human cerebral cortex is the
building of a representation of visual information that allows
object and face recognition to occur relatively independently
of size, contrast, spatial frequency, position on the retina,
angle of view, lighting, etc. These invariant representations
of objects, provided by the inferior temporal visual cortex
(Rolls 2008, 2012a), are extremely important for the oper-
ation of many other systems in the brain, for if there is an
invariant representation, it is possible to learn on a single
trial about reward/punishment associations of the object, the
place where that object is located, and whether the object has
been seen recently, and then to correctly generalize to other
views, etc., of the same object (Rolls 2008, 2014). In order to
understand how the invariant representations are built, com-
putational models provide a fundamental approach, for they
allow hypotheses to be developed, explored and tested, and
are essential for understanding how the cerebral cortex solves
this major computation.

We next summarize some of the key and fundamental
properties of the responses of primate inferior temporal cor-
tex (IT) neurons (Rolls 2008, 2012a; Rolls and Treves 2011)
that need to be addressed by biologically plausible models
of invariant visual object recognition. Then we illustrate how
models of invariant visual object recognition can be tested
to reveal whether they account for these properties. The two
leading approaches to visual object recognition by the cere-
bral cortex that are used to highlight whether these generic
biological issues are addressed are VisNet (Rolls 2012a,
2008; Wallis and Rolls 1997; Rolls and Webb 2014; Webb
and Rolls 2014) and HMAX (Serre et al. 2007c,a,b; Mutch
and Lowe 2008). By comparing these models, and how they
perform on invariant visual object recognition, we aim to
make advances in the understanding of the cortical mech-
anisms underlying this key problem in the neuroscience of
vision. The architecture and operation of these two classes
of network are described below.

Some of the key properties of IT neurons that need to be
addressed, and that are tested in this paper, include:

1. Inferior temporal visual cortex neurons show responses to
objects that are typically translation, size, contrast, rota-
tion, and in many cases view invariant, that is, they show
transform invariance (Hasselmo et al. 1989; Tovee et al.

1994; Logothetis et al. 1995; Booth andRolls 1998; Rolls
2012a; Trappenberg et al. 2002; Rolls and Baylis 1986;
Rolls et al. 1985, 1987, 2003; Aggelopoulos and Rolls
2005).

2. Inferior temporal cortex neurons show sparse distributed
representations, in which individual neurons have high
firing rates to a few stimuli and lower firing rates to more
stimuli, in which much information can be read from the
responses of a single neuron from its firing rates (because
they are high to relatively few stimuli), and in which
neurons encode independent information about a set of
stimuli, as least up to tens of neurons (Tovee et al. 1993;
Rolls and Tovee 1995; Rolls et al. 1997a,b; Abbott et al.
1996; Baddeley et al. 1997; Rolls 2008, 2012a; Rolls and
Treves 2011).

3. Inferior temporal cortex neurons often respond to objects
and not to low-level features, in that many respond to
whole objects, but not to the parts presented individually
nor to the parts presented with a scrambled configuration
(Perrett et al. 1982; Rolls et al. 1994).

4. Inferior temporal cortex neurons convey information
about the individual object or face, not just about a class
such as face versus non-face, or animal versus non-animal
(Rolls and Tovee 1995; Rolls et al. 1997a,b; Abbott et al.
1996; Baddeley et al. 1997; Rolls 2008, 2012a; Rolls and
Treves 2011). This key property is essential for recog-
nizing a particular person or object and is frequently
not addressed in models of invariant object recognition,
which still focus on classification into, e.g. animal versus
non-animal, hats versus bears versus beer mugs (Serre
et al. 2007c,a,b; Mutch and Lowe 2008; Yamins et al.
2014).

5. The learning mechanism needs to be physiologically
plausible, that is, likely to include a local synaptic learn-
ing rule (Rolls 2008). We note that lateral propagation of
weights, as used in the neocognitron (Fukushima 1980),
HMAX (Riesenhuber and Poggio 1999;Mutch andLowe
2008; Serre et al. 2007a), and convolution nets (LeCun
et al. 2010), is not biologically plausible.

2 Methods

2.1 Overview of the architecture of the ventral visual
stream model, VisNet

The architecture of VisNet (Rolls 2008, 2012a) is summa-
rized briefly next, with a full description provided after this.

Fundamental elements of Rolls’ (1992) theory for how
cortical networks might implement invariant object recogni-
tion are described in detail elsewhere (Rolls 2008, 2012a).
They provide the basis for the design of VisNet, which can
be summarized as:
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Fig. 1 Convergence in the visual system.Right as it occurs in the brain.
V1, visual cortex area V1; TEO, posterior inferior temporal cortex; TE,
inferior temporal cortex (IT). Left as implemented in VisNet. Conver-

gence through the network is designed to provide fourth layer neurons
with information from across the entire input retina

• A series of competitive networks organized in hierarchi-
cal layers, exhibiting mutual inhibition over a short range
within each layer. These networks allow combinations
of features or inputs occurring in a given spatial arrange-
ment to be learned by neurons using competitive learning
(Rolls 2008), ensuring that higher-order spatial proper-
ties of the input stimuli are represented in the network.
In VisNet, layer 1 corresponds to V2, layer 2 to V4, layer
3 to posterior inferior temporal visual cortex, and layer
4 to anterior inferior temporal cortex. Layer one is pre-
ceded by a simulation of theGabor-like receptive fields of
V1 neurons produced by each image presented to VisNet
(Rolls 2012a).

• A convergent series of connections from a localized pop-
ulation of neurons in the preceding layer to each neuron
of the following layer, thus allowing the receptive field
size of neurons to increase through the visual processing
areas or layers, as illustrated in Fig. 1.

• Amodified associative (Hebb-like) learning rule incorpo-
rating a temporal trace of each neuron’s previous activity,
which, it has been shown (Földiák 1991; Rolls 1992,
2012a; Wallis et al. 1993; Wallis and Rolls 1997; Rolls
and Milward 2000), enables the neurons to learn trans-
form invariances.

The learning rates for each of the four layers were 0.05,
0.03, 0.005, and 0.005, as these rates were shown to produce
convergence of the synaptic weights after 15–50 training
epochs. Fifty training epochs were run.

2.2 VisNet trace learning rule

The learning rule implemented in the VisNet simulations
utilizes the spatio-temporal constraints placed upon the

behaviour of ‘real-world’ objects to learn about natural object
transformations.Bypresenting consistent sequences of trans-
forming objects, the cells in the network can learn to respond
to the same object through all of its naturally transformed
states, as described by Földiák (1991), Rolls (1992, 2012a),
Wallis et al. (1993), and Wallis and Rolls (1997). The learn-
ing rule incorporates a decaying trace of previous cell activity
and is henceforth referred to simply as the ‘trace’ learning
rule. The learning paradigm we describe here is intended in
principle to enable learning of any of the transforms toler-
ated by inferior temporal cortex neurons, including position,
size, view, lighting, and spatial frequency (Rolls 1992, 2000,
2008, 2012a; Rolls and Deco 2002).

Various biological bases for this temporal trace have been
advanced as follows: The precise mechanisms involved may
alter the precise form of the trace rule which should be used.
Földiák (1992) describes an alternative trace rulewhichmod-
els individualNMDAchannels. Equally, a trace implemented
by temporally extended cell firing in a local cortical attractor
could implement a short-term memory of previous neuronal
firing (Rolls 2008).

• The persistent firing of neurons for as long as 100–
400ms observed after presentations of stimuli for 16ms
(Rolls and Tovee 1994) could provide a time window
within which to associate subsequent images. Main-
tained activity may potentially be implemented by recur-
rent connections between as well as within cortical
areas (Rolls and Treves 1998; Rolls and Deco 2002;
Rolls 2008). The prolonged firing of anterior ventral
temporal / perirhinal cortex neurons during memory
delay periods of several seconds and associative links
reported to develop between stimuli presented several
seconds apart (Miyashita 1988) are on too long a time
scale to be immediately relevant to the present theory. In
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fact, associations between visual events occurring several
seconds apart would, under normal environmental condi-
tions, be detrimental to the operation of a network of the
type described here, because they would probably arise
from different objects. In contrast, the system described
benefits from associations between visual events which
occur close in time (typicallywithin 1 s), as they are likely
to be from the same object.

• The binding period of glutamate in the NMDA channels,
which may last for 100ms or more, may implement a
trace rule by producing a narrow timewindowoverwhich
the average activity at each presynaptic site affects learn-
ing (Rolls 1992; Rhodes 1992; Földiák 1992; Spruston
et al. 1995; Hestrin et al. 1990).

• Chemicals such as nitric oxide may be released during
high neural activity and gradually decay in concentration
over a short time window during which learning could be
enhanced (Földiák 1992; Montague et al. 1991; Garth-
waite 2008).

The trace update rule used in the baseline simulations
of VisNet (Wallis and Rolls 1997) is equivalent to both
Földiák’s used in the context of translation invariance (Wallis
et al. 1993) and the earlier rule of Sutton and Barto (1981)
explored in the context of modelling the temporal prop-
erties of classical conditioning and can be summarized as
follows:

δw j = αyτ x j (1)

where

yτ = (1 − η)yτ + ηyτ−1 (2)

and x j : j th input to the neuron; yτ : Trace value of the output
of the neuron at time step τ ; w j : Synaptic weight between
j th input and the neuron; y: Output from the neuron; α:
Learning rate; η: Trace value. The optimal value varies with
presentation sequence length.

At the start of a series of investigations of different forms
of the trace learning rule, Rolls and Milward (2000) demon-
strated that VisNet’s performance could be greatly enhanced
with amodifiedHebbian trace learning rule (Eq. 3) that incor-
porated a trace of activity from the preceding time steps,
with no contribution from the activity being produced by
the stimulus at the current time step. This rule took the
form

δw j = αyτ−1xτ
j . (3)

The trace shown in Eq. 3 is in the postsynaptic term.
The crucial difference from the earlier rule (see Eq. 1) was
that the trace should be calculated up to only the preceding

timestep. This has the effect of updating the weights based
on the preceding activity of the neuron, which is likely given
the spatio-temporal statistics of the visual world to be from
previous transforms of the same object (Rolls and Milward
2000; Rolls and Stringer 2001). This is biologically not at all
implausible, as considered in more detail elsewhere (Rolls
2008, 2012a), and this version of the trace rule was used in
this investigation.

The optimal value of η in the trace rule is likely to be
different for different layers of VisNet. For early layers with
small receptive fields, few successive transforms are likely
to contain similar information within the receptive field, so
the value for η might be low to produce a short trace. In
later layers of VisNet, successive transforms may be in the
receptive field for longer, and invariance may be develop-
ing in earlier layers, so a longer trace may be beneficial. In
practice, after exploration we used η values of 0.6 for layer
2, and 0.8 for layers 3 and 4. In addition, it is important to
form feature combinations with high spatial precision before
invariance learning supported by a temporal trace starts, in
order that the feature combinations and not the individual
features have invariant representations (Rolls 2008, 2012a).
For this reason, purely associative learning with no tempo-
ral trace was used in layer 1 of VisNet (Rolls and Milward
2000).

The following principled method was introduced to
choose the value of the learning rate α for each layer. The
mean weight change from all the neurons in that layer for
each epoch of training was measured and was set so that with
slow learning over 15–50 trials, theweight changes per epoch
would gradually decrease and asymptote with that number
of epochs, reflecting convergence. Slow learning rates are
useful in competitive nets, for if the learning rates are too
high, previous learning in the synaptic weights will be over-
written by large weight changes later within the same epoch
produced if a neuron starts to respond to another stimulus
(Rolls 2008). If the learning rates are too low, then no use-
ful learning or convergence will occur. It was found that
the following learning rates enabled good operation with
the 100 transforms of each of 4 stimuli used in each epoch
in the present investigation: Layer 1 α = 0.05; Layer 2
α = 0.03 (this is relatively high to allow for the sparse
representations in layer 1); Layer 3 α = 0.005; Layer 4
α = 0.005.

Tobound the growth of each neuron’s synapticweight vec-
tor, wi for the i th neuron, its length is explicitly normalized
[a method similarly employed by Malsburg (1973) which is
commonly used in competitive networks (Rolls 2008)]. An
alternative,more biologically relevant implementation, using
a local weight bounding operation which utilizes a form of
heterosynaptic long-term depression (Rolls 2008), has in part
been explored using a version of theOja (1982) rule (seeWal-
lis and Rolls 1997).
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2.3 Network implemented in VisNet

The network itself is designed as a series of hierarchical,
convergent, competitive networks, in accordance with the
hypotheses advanced above. The actual network consists of
a series of four layers, constructed such that the convergence
of information from the most disparate parts of the network’s
input layer can potentially influence firing in a single neuron
in the final layer—see Fig. 1. This corresponds to the scheme
described by many researchers (Van Essen et al. 1992; Rolls
1992, 2008, for example) as present in the primate visual
system—see Fig. 1. The forward connections to a cell in one
layer are derived from a topologically related and confined
region of the preceding layer. The choice of whether a con-
nection between neurons in adjacent layers exists or not is
based upon a Gaussian distribution of connection probabili-
tieswhich roll-off radially from the focal point of connections
for each neuron. (A minor extra constraint precludes the
repeated connection of any pair of cells.) In particular, the
forward connections to a cell in one layer come from a small
region of the preceding layer defined by the radius in Table 1
which will contain approximately 67% of the connections
from the preceding layer. Table 1 shows the dimensions for
the research described here, a (16×) larger version than the
version ofVisNet used inmost of our previous investigations,
which utilized 32 × 32 neurons per layer. For the research
on view and translation invariance learning described here,
we decreased the number of connections to layer 1 neurons
to 100 (from 272), in order to increase the selectivity of the
network between objects. We increased the number of con-
nections to each neuron in layers 2–4 to 400 (from 100),
because this helped layer 4 neurons to reflect evidence from
neurons in previous layers about the large number of trans-
forms (typically 100 transforms, from 4 views of each object
and 25 locations) each of which corresponded to a particular
object.

Figure 1 shows the general convergent network architec-
ture used. Localization and limitation of connectivity in the
network are intended tomimic cortical connectivity, partially
because of the clear retention of retinal topology through
regions of visual cortex. This architecture also encourages
the gradual combination of features from layer to layer which

Table 1 VisNet dimensions

Dimensions No. of connections Radius

Layer 4 128 × 128 400 48

Layer 3 128 × 128 400 36

Layer 2 128 × 128 400 24

Layer 1 128 × 128 100 24

Input layer 256 × 256 × 16 – –

has relevance to the binding problem, as described elsewhere
(Rolls 2008, 2012a).

2.4 Competition and lateral inhibition in VisNet

In order to act as a competitive network some form of mutual
inhibition is required within each layer, which should help
to ensure that all stimuli presented are evenly represented by
the neurons in each layer. This is implemented in VisNet by a
form of lateral inhibition. The idea behind the lateral inhibi-
tion, apart from this being a property of cortical architecture
in the brain, was to prevent too many neurons that received
inputs from a similar part of the preceding layer responding
to the same activity patterns. The purpose of the lateral inhi-
bition was to ensure that different receiving neurons coded
for different inputs. This is important in reducing redundancy
(Rolls 2008). The lateral inhibition is conceived as operat-
ing within a radius that was similar to that of the region
within which a neuron received converging inputs from the
preceding layer (because activity in one zone of topologi-
cally organized processing within a layer should not inhibit
processing in another zone in the same layer, concerned per-
haps with another part of the image). The lateral inhibition
in this investigation used the parameters for σ as shown in
Table 3.

The lateral inhibition and contrast enhancement just
described are actually implemented in VisNet2 (Rolls and
Milward 2000) and VisNet (Perry et al. 2010) in two stages,
to produce filtering of the type illustrated elsewhere (Rolls
2008, 2012a). The lateral inhibitionwas implementedby con-
volving the activation of the neurons in a layer with a spatial
filter, I , where δ controls the contrast and σ controls the
width, and a and b index the distance away from the centre
of the filter

Ia,b =

⎧
⎪⎨

⎪⎩

−δe− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑

a �=0,b �=0
Ia,b if a = 0 and b = 0.

(4)

The second stage involves contrast enhancement. A sig-
moid activation function was used in the way described
previously (Rolls and Milward 2000):

y = fsigmoid(r) = 1

1 + e−2β(r−α)
(5)

where r is the activation (or firing rate) of the neuron after
the lateral inhibition, y is the firing rate after the contrast
enhancement produced by the activation function, and β is
the slope or gain and α is the threshold or bias of the activa-
tion function. The sigmoid bounds the firing rate between 0
and 1 so global normalization is not required. The slope and
threshold are held constant within each layer. The slope is
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Table 2 Sigmoid parameters

Layer 1 2 3 4

Percentile 99.2 98 88 95

Slope β 190 40 75 26

Table 3 Lateral inhibition parameters

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4

constant throughout training, whereas the threshold is used
to control the sparseness of firing rates within each layer. The
(population) sparseness of the firing within a layer is defined
(Rolls and Treves 1998, 2011; Franco et al. 2007; Rolls 2008)
as:

a =
(∑

i yi/n
)2

∑
i y

2
i /n

(6)

where n is the number of neurons in the layer. To set the
sparseness to a given value, e.g. 5%, the threshold is set to
the value of the 95th percentile point of the activations within
the layer.

The sigmoid activation functionwas usedwith parameters
(selected after a number of optimization runs) as shown in
Table 2.

In addition, the lateral inhibition parameters are as shown
in Table 3.

2.5 Input to VisNet

VisNet is provided with a set of input filters which can be
applied to an image to produce inputs to the network which
correspond to those provided by simple cells in visual corti-
cal area 1 (V1). The purpose of this is to enable withinVisNet
the more complicated response properties of cells between
V1 and the inferior temporal cortex (IT) to be investigated,
using as inputs natural stimuli such as those that could be
applied to the retina of the real visual system. This is to facil-
itate comparisons between the activity of neurons in VisNet
and those in the real visual system, to the same stimuli. In
VisNet no attempt is made to train the response properties
of simple cells, but instead we start with a defined series of
filters to perform fixed feature extraction to a level equivalent
to that of simple cells in V1, as have other researchers in the
field (Hummel and Biederman 1992; Buhmann et al. 1991;
Fukushima 1980), because we wish to simulate the more
complicated response properties of cells between V1 and
the inferior temporal cortex (IT). The elongated orientation-

Table 4 VisNet layer 1 connectivity

Frequency 0.5 0.25 0.125 0.0625

No. of connections 74 19 5 2

The frequency is in cycles per pixel

tuned input filters used in accord with the general tuning
profiles of simple cells in V1 (Hawken and Parker 1987)
and were computed by Gabor filters. Each individual filter is
tuned to spatial frequency (0.0626–0.5cycles/pixel over four
octaves); orientation (0◦ to 135◦ in steps of 45◦); and sign
(±1). Of the 100 layer 1 connections, the number to each
group in VisNet is shown in Table 4. Any zero D.C. filter can
of course produce a negative as well as positive output, which
would mean that this simulation of a simple cell would per-
mit negative as well as positive firing. The response of each
filter is zero thresholded and the negative results used to form
a separate anti-phase input to the network. The filter outputs
are also normalized across scales to compensate for the low-
frequency bias in the images of natural objects.

The Gabor filters used were similar to those used previ-
ously (Deco and Rolls 2004; Rolls 2012a; Rolls and Webb
2014; Webb and Rolls 2014). Following Daugman (1988)
the receptive fields of the simple cell-like input neurons are
modelled by 2D Gabor functions. The Gabor receptive fields
have five degrees of freedom given essentially by the product
of an elliptical Gaussian and a complex plane wave. The first
two degrees of freedom are the 2D locations of the receptive
field’s centre; the third is the size of the receptive field; the
fourth is the orientation of the boundaries separating exci-
tatory and inhibitory regions; and the fifth is the symmetry.
This fifth degree of freedom is given in the standard Gabor
transform by the real and imaginary part, i.e. by the phase of
the complex function representing it, whereas in a biologi-
cal context this can be done by combining pairs of neurons
with even and odd receptive fields. This design is supported
by the experimental work of Pollen and Ronner (1981), who
found simple cells in quadrature-phase pairs. Even more,
Daugman (1988) proposed that an ensemble of simple cells
is best modelled as a family of 2D Gabor wavelets sampling
the frequency domain in a log-polar manner as a function of
eccentricity. Experimental neurophysiological evidence con-
strains the relation between the free parameters that define
a 2D Gabor receptive field (De Valois and De Valois 1988).
There are three constraints fixing the relation between the
width, height, orientation, and spatial frequency (Lee 1996).
The first constraint posits that the aspect ratio of the elliptical
Gaussian envelope is 2:1. The second constraint postulates
that the plane wave tends to have its propagating direction
along the short axis of the elliptical Gaussian. The third
constraint assumes that the half-amplitude bandwidth of the
frequency response is about 1–1.5 octaves along the opti-
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mal orientation. Further, we assume that the mean is zero in
order to have an admissiblewavelet basis (Lee 1996). Cells of
layer 1 receive a topologically consistent, localized, random
selection of the filter responses in the input layer, under the
constraint that each cell samples every filter spatial frequency
and receives a constant number of inputs. The mathematical
details of the Gabor filtering are described elsewhere (Rolls
2012a; Rolls and Webb 2014; Webb and Rolls 2014).

2.6 Recent developments in VisNet implemented in the
research described here

The version of VisNet used in this paper differed from the
versions used for most of the research published with VisNet
before 2012 (Rolls 2012a) in the followingways. First, Gabor
filtering was used here, with a full mathematical description
provided here, as compared to the difference of Gaussian
filters used earlier. Second, the size of VisNet was increased
from the previous 32×32 neurons per layer to the 128×128
neurons per layer described here. Third, the steps described
in the Method to set the learning rates α to values for each
layer that encouraged convergence in 20–50 learning epochs
were utilized here. Fourth, the method of pattern association
decoding described in Sect. 2.8.2 to provide a biologically
plausible way of decoding the outputs of VisNet neurons
was used in the research described here. Fuller descriptions
of the rationale for the design of VisNet, and of alternative
more powerful learning rules not used here, are provided
elsewhere (Rolls 2008, 2012a; Rolls and Stringer 2001).

2.7 HMAX models used for comparison with VisNet

The performance of VisNet was compared against a standard
HMAXmodel (Mutch and Lowe 2008; Serre et al. 2007a,b).
We note that an HMAX family model has in the order of
10 million computational units (Serre et al. 2007a), which is
at least 100 times the number contained within the current
implementation of VisNet (which uses 128×128 neurons in
each of 4 layers, i.e. 65,536 neurons).HMAXhas as an ances-
tor the neocognitron (Fukushima 1980, 1988), which is also a
hierarchical network that uses lateral copying of filter analy-
sers within each layer. Both approaches select filter analysers
using feedforward processing without a teacher, in contrast
to convolutional and deep learning networks (LeCun et al.
2010) which typically use errors from a teacher backpropa-
gated through multiple layers that do not aim for biological
plausibility (Rolls 2008, 2016).

HMAX is a multiple layer system with simple and com-
plex cell layers alternating that sets up connections to simple
cells based on randomly chosen exemplars, and aMAX func-
tion performed by the complex cells of their simple cell
inputs. The inspiration for this architecture Riesenhuber and
Poggio (1999) may have come from the simple and complex
cells found in V1 by Hubel and Wiesel (1968). A diagram of
the model as described by Riesenhuber and Poggio (1999) is
shown in Fig. 2. The final complex cell layer is then typically
used as an input to a non-biologically plausible support vector
machine or least squares computation to perform classifica-
tion of the representations into object classes. The inputs to

Fig. 2 Sketch of Riesenhuber
and Poggio (1999) HMAX
model of invariant object
recognition. The model includes
layers of ‘S’ cells, which
perform template matching
(solid lines), and ‘C’ cells (solid
lines), which pool information
by a non-linear MAX function
to achieve invariance (see text)
(After Riesenhuber and Poggio
1999.)
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both HMAX and VisNet are Gabor-filtered images intended
to approximate V1. One difference is that VisNet is normally
trained on images generated by objects as they transform in
the world, so that view, translation, size, rotation, etc., invari-
ant representations of objects can be learned by the network.
In contrast, HMAX is typically trained with large databases
of pictures of different exemplars of, for example, hats and
beer mugs as in the Caltech databases, which do not pro-
vide the basis for invariant representations of objects to be
learned, but are aimed at object classification.

When assessing the biological plausibility of the output
representations of HMAX, we used the implementation of
the HMAX model described by Mutch and Lowe (2008)
using the code available at http://cbcl.mit.edu/jmutch/cns/
index.html#hmax. In this instantiation of HMAXwith 2 lay-
ers of S–Cunits, the assessment of performancewas typically
made using a support vector machine applied to the top layer
C neurons. However, that way of measuring performance
is not biologically plausible. However, Serre et al. (2007a)
took the C2 neurons as corresponding to V4 and following
earlier work in which view-tuned units were implemented
(Riesenhuber and Poggio 1999) added a set of view-tuned
units (VTU) which might be termed an S3 layer which they
suggest corresponds to the posterior inferior temporal visual
cortex. We implemented these VTUs in the way described
by Riesenhuber and Poggio (1999) and Serre et al. (2007a)
with an S3 VTU layer, by setting up a moderate number of
view-tuned units, each one of which is set to have connection
weights to all neurons in the C2 layer that reflect the firing
rate of each C2 unit to one exemplar of a class. (This will pro-
duce the firing for anyVTU that would be produced by one of
the training views or exemplars of a class.) The S3 units that
we implemented can thus be thought of as representing pos-
terior inferior temporal cortex neurons (Serre et al. 2007a).
The VTU output is classified by a one-layer error minimiza-
tion network, i.e. a perceptron with one neuron for each
class.

To ensure that the particular implementation of HMAX
that we used for the experiments described in the main text,
that of Mutch and Lowe (2008), was not different generi-
cally in the results obtained from other implementations of
HMAX,we performed further investigationswith the version
of HMAX described by Serre et al. (2007a), which has 3 S–C
layers. The S3 layer is supposed to correspond to posterior
inferior temporal visual cortex, and theC3 layer, which is fol-
lowed by S4 view-tuned units, to anterior inferior temporal
visual cortex. The results with this version of HMAX were
found to be generically similar in our investigations to those
with the version implemented by Mutch and Lowe (2008),
and the results with the version described by Serre et al.
(2007a) are described in the Supplementary Material. We
note that for both these versions of HMAX, the code is avail-
able at http://cbcl.mit.edu/jmutch/cns/index.html#hmax and

that code defines the details of the architecture and the para-
meters, which were used unless otherwise stated, and for that
reason the details of theHMAX implementations are not con-
sidered in great detail here. In the Supplementary Material,
we do provide some further information about the HMAX
version implemented by Serre et al. (2007a) which we used
for the additional investigations reported in the Supplemen-
tary Material.

2.8 Measures for network performance

2.8.1 Information theory measures

The performance of VisNet was measured by Shannon
information-theoretic measures that are identical to those
used to quantify the specificity and selectiveness of the rep-
resentations provided by neurons in the brain (Rolls and
Milward 2000; Rolls 2012a; Rolls and Treves 2011). A single
cell information measure indicated how much information
was conveyed by the firing rates of a single neuron about the
most effective stimulus. Amultiple cell information measure
indicated how much information about every stimulus was
conveyed by the firing rates of small populations of neurons
and was used to ensure that all stimuli had some neurons
conveying information about them.

A neuron can be said to have learnt an invariant repre-
sentation if it discriminates one set of stimuli from another
set, across all transforms. For example, a neuron’s response
is translation invariant if its response to one set of stimuli
irrespective of presentation is consistently higher than for all
other stimuli irrespective of presentation location. Note that
we state ‘set of stimuli’ since neurons in the inferior tempo-
ral cortex are not generally selective for a single stimulus but
rather a subpopulation of stimuli (Baylis et al. 1985; Abbott
et al. 1996; Rolls et al. 1997a; Rolls and Treves 1998, 2011;
Rolls and Deco 2002; Rolls 2007; Franco et al. 2007; Rolls
2008). We used measures of network performance (Rolls
and Milward 2000) based on information theory and simi-
lar to those used in the analysis of the firing of real neurons
in the brain (Rolls 2008; Rolls and Treves 2011). A single
cell information measure was introduced which is the maxi-
mum amount of information the cell has about any one object
independently ofwhich transform (here position on the retina
and view) is shown. Because the competitive algorithm used
in VisNet tends to produce local representations (in which
single cells become tuned to one stimulus or object), this
information measure can approach log2 NS bits, where NS

is the number of different stimuli. Indeed, it is an advantage
of this measure that it has a defined maximal value, which
enables how well the network is performing to be quanti-
fied. Rolls and Milward (2000) also introduced a multiple
cell information measure used here, which has the advantage
that it provides a measure of whether all stimuli are encoded
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by different neurons in the network. Again, a high value of
this measure indicates good performance.

For completeness, we provide further specification of the
two information-theoretic measures, which are described in
detail by Rolls andMilward (2000) (see Rolls 2008 and Rolls
and Treves 2011 for an introduction to the concepts). The
measures assess the extent to which either a single cell or
a population of cells responds to the same stimulus invari-
antly with respect to its location, yet responds differently
to different stimuli. The measures effectively show what one
learns about which stimulus was presented from a single pre-
sentation of the stimulus at any randomly chosen transform.
Results for top (4th) layer cells are shown. High information
measures thus show that cells fire similarly to the different
transforms of a given stimulus (object) and differently to the
other stimuli. The single cell stimulus-specific information,
I (s, R), is the amount of information the set of responses, R,
has about a specific stimulus, s (see Rolls et al. 1997b and
Rolls and Milward 2000). I (s, R) is given by

I (s, R) =
∑

r∈R

P(r |s) log2
P(r |s)
P(r)

(7)

where r is an individual response from the set of responses
R of the neuron. For each cell the performance measure
used was the maximum amount of information a cell con-
veyed about any one stimulus. This (rather than the mutual
information, I (S, R) where S is the whole set of stimuli s)
is appropriate for a competitive network in which the cells
tend to become tuned to one stimulus. (I (s, R) has more
recently been called the stimulus-specific surprise (DeWeese
andMeister 1999; Rolls and Treves 2011). Its average across
stimuli is the mutual information I (S, R).)

If all the output cells of VisNet learned to respond to the
same stimulus, then the information about the set of stimuli
S would be very poor and would not reach its maximal value
of log2 of the number of stimuli (in bits). The second mea-
sure that is used here is the information provided by a set of
cells about the stimulus set, using the procedures described
by Rolls et al. (1997a) and Rolls and Milward (2000). The
multiple cell information is the mutual information between
thewhole set of stimuli S and of responses R calculated using
a decoding procedure in which the stimulus s′ that gave rise
to the particular firing rate response vector on each trial is
estimated. (The decoding step is needed because the high
dimensionality of the response space would lead to an inac-
curate estimate of the information if the responses were used
directly, as described by Rolls et al. 1997a and Rolls and
Treves 1998.) A probability table is then constructed of the
real stimuli s and the decoded stimuli s′. From this proba-
bility table, the mutual information between the set of actual
stimuli S and the decoded estimates S′ is calculated as

I (S, S′) =
∑

s,s′
P(s, s′) log2

P(s, s′)
P(s)P(s′)

(8)

This was calculated for the subset of cells which had as single
cells the most information about which stimulus was shown.
In particular, in Rolls and Milward (2000) and subsequent
papers, the multiple cell information was calculated from the
first five cells for each stimulus that had maximal single cell
information about that stimulus, that is, from a population
of 35 cells if there were seven stimuli (each of which might
have been shown in, for example, 9 or 25 positions on the
retina).

2.8.2 Pattern association decoding

In addition, the performance was measured by a biologi-
cally plausible one-layer pattern association network using
an associative synaptic modification rule. There was one out-
put neuron for each class (which was set to a firing rate of
1.0 during training of that class but was otherwise 0.0) and
10 input neurons per class to the pattern associator. These 10
neurons for each class were the most selective neurons in the
output layer of VisNet or HMAX to each object. The most
selective output neurons of VisNet and HMAX were identi-
fied as thosewith the highestmeanfiring rate to all transforms
of an object relative to the firing rates across all transforms of
all objects and a high corresponding stimulus-specific infor-
mation value for that class. Performance was measured as
the per cent correct object classification measured across all
views of all objects.

The output of the inferior temporal visual cortex reaches
structures such as the orbitofrontal cortex and amygdala,
where associations to other stimuli are learned by a pattern
association network with an associative (Hebbian) learning
rule (Rolls 2008, 2014).We therefore used a one-layer pattern
association network (Rolls 2008) to measure how well the
output of VisNet could be classified into one of the objects.
The pattern association network had one output neuron for
each object or class. The inputs were the 10 neurons from
layer 4 of VisNet for each of the objects with the best sin-
gle cell information and high firing rates. For HMAX, the
inputs were the 10 neurons from the C2 layer (or from 5 of
the view-tuned units) for each of the objects with the highest
mean firing rate for the class when compared to the firing
rates over all the classes. The network was trained with the
Hebb rule:

δwi j = αyi x j (9)

where δwi j is the change of the synaptic weight wi j that
results from the simultaneous (or conjunctive) presence of
presynaptic firing x j and postsynaptic firing or activation yi ,
and α is a learning rate constant that specifies how much
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the synapses alter on any one pairing. The pattern associator
was trained for one trial on the output of VisNet produced by
every transform of each object.

Performance on the training or test images was tested by
presenting an image to VisNet and then measuring the classi-
fication produced by the pattern associator. Performance was
measured by the percentage of the correct classifications of
an image as the correct object.

This approach to measuring the performance is very bio-
logically appropriate, for it models the type of learning
thought to be implemented in structures that receive infor-
mation from the inferior temporal visual cortex such as the
orbitofrontal cortex and amygdala (Rolls 2008, 2014). The
small number of neurons selected from layer 4 of VisNet
might correspond to the most selective for this stimulus set
in a sparse distributed representation (Rolls 2008; Rolls and
Treves 2011). The method would measure whether neurons
of the type recorded in the inferior temporal visual cortexwith
good view and position invariance are developed in VisNet.
In fact, an appropriate neuron for an input to such a decod-
ing mechanism might have high firing rates to all or most
of the view and position transforms of one of the stimuli,
and smaller or no responses to any of the transforms of other
objects, as found in the inferior temporal cortex for some
neurons (Hasselmo et al. 1989; Perrett et al. 1991; Booth
and Rolls 1998), and as found for VisNet layer 4 neurons
(Rolls andWebb 2014). Moreover, it would be inappropriate
to train a device such as a support vector machine or even an
error correction perceptron on the outputs of all the neurons
in layer 4 of VisNet to produce 4 classifications, for such
learning procedures, not biologically plausible (Rolls 2008),
could map the responses produced by a multilayer network
with untrained randomweights to obtain good classifications.

3 Results

3.1 Categorization of objects from benchmark object
image sets: Experiment 1

The performance of HMAX and VisNet was compared on
a test that has been used to measure the performance of
HMAX (Mutch and Lowe 2008; Serre et al. 2007a,b) and
indeed typical of many approaches in computer vision, the
use of standard datasets such as the CalTech-256 (Griffin
et al. 2007) in which sets of images from different object
classes are to be classified into the correct object class.

3.1.1 Object benchmark database

The Caltech-256 dataset (Griffin et al. 2007) is comprised of
256 object classes made up of images that have many aspect
ratios and sizes and differ quite significantly in quality (hav-

ing being manually collated fromweb searches). The objects
within the images show significant intra-class variation and
have a variety of poses, illumination, scale, and occlusion as
expected from natural images (see examples in Fig. 3). In this
sense, the Caltech-256 database has been considered to be a
difficult challenge to object recognition systems.We come to
the conclusion below that the benchmarking approach with
this type of dataset is not useful for training a system thatmust
learn invariant object representations. The reason for this is
that the exemplars of each object class in the CalTech-256
dataset are too discontinuous to provide a basis for learning
transform-invariant object representations. For example, the
image exemplars within an object class in these datasets may
be very different indeed.

3.1.2 Performance on a Caltech-256 test

VisNet and the HMAX model were trained to discriminate
between two object classes from the Caltech-256 database,
the beer mugs and cowboy-hat (see examples in Fig. 3). The
images in each classwere rescaled to 256×256 and converted
to grayscale, so that shape recognition was being investi-
gated. The images from each classwere randomly partitioned
into training and testing sets with performance measured in
this cross-validation design over multiple random partitions.
Figure 4 shows the performance of the VisNet and HMAX
models when performing the task with these exemplars of
the Caltech-256 dataset. Performance of HMAX and VisNet
on the classification task was measured by the proportion
of images classified correctly using a linear support vector
machine (SVM) on all the C2 cells in HMAX [chosen as the
way often used to test the performance ofHMAX (Mutch and
Lowe 2008; Serre et al. 2007a,b)] and on all the layer 4 (out-
put layer) cells of VisNet. The error bars show the standard
deviation of the means over three cross-validation trials with
different images chosen at random for the training set and test
set on each trial. The number of training exemplars is shown
on the abscissa. There were 30 test examples of each object
class. Chance performance at 50% is indicated. Performance
of HMAX and VisNet was similar, but was poor, probably
reflecting the fact that there is considerable variation of the
images within each object class, making the cross-validation
test quite difficult. The nature of the performance of HMAX
and VisNet on this task is assessed in the next section.

3.1.3 Biological plausibility of the neuronal representations
of objects that are produced

In the temporal lobe visual cortical areas, neurons represent
which object is present using a sparse distributed repre-
sentation (Rolls and Treves 2011). Neurons typically have
spontaneous firing rates of a few spikes/s and increase their
firing rates to 30–100 spikes/s for effective stimuli. Each neu-
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Fig. 3 Example images from the Caltech256 database for two object classes, hats and beer mugs
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Fig. 4 Performance of HMAX and VisNet on the classification task
(measured by the proportion of images classified correctly) using the
Caltech-256 dataset and linear support vector machine (SVM) classifi-
cation. The error bars show the standard deviation of the means over
three cross-validation trials with different images chosen at random
for the training set on each trial. There were two object classes, hats
and beer mugs, with the number of training exemplars shown on the
abscissa. There were 30 test examples of each object class. All cells in
the C2 layer of HMAX and layer 4 of Visnet were used to measure the
performance. Chance performance at 50% is indicated

ron responds with a graded range of firing rates to a small
proportion of the stimuli in what is therefore a sparse rep-
resentation (Rolls and Tovee 1995; Rolls et al. 1997b). The
information can be read from the firing of single neurons
about which stimulus was shown, with often 2–3 bits of
stimulus-specific information about the most effective stim-
ulus (Rolls et al. 1997b; Tovee et al. 1993). The information
from different neurons increases approximately linearly with
the number of neurons recorded (up to approximately 20 neu-

rons), indicating independent encoding by different neurons
(Rolls et al. 1997a). The information from such groups of
responsive neurons can be easily decoded (using, for exam-
ple, dot product decoding utilizing the vector of firing rates
of the neurons) by a pattern association network (Rolls et al.
1997a; Rolls 2008, 2012a; Rolls and Treves 2011). This is
very important for biological plausibility, for the next stage
of processing, in brain regions such as the orbitofrontal cor-
tex and amygdala, contains pattern association networks that
associate the outputs of the temporal cortex visual areas with
stimuli such as taste (Rolls 2008, 2014).

We therefore compared VisNet and HMAX in the repre-
sentations that they produce of objects, to analyse whether
they produce these types of representation, which are needed
for biological plausibility.We note that the usual form of test-
ing for VisNet does involve the identical measures used to
measure the information present in the firing of temporal cor-
tex neurons with visual responses (Rolls and Milward 2000;
Rolls 2012a; Rolls et al. 1997a,b). On the other hand, the
output of HMAX is typically read and classified by a pow-
erful and artificial support vector machine (Mutch and Lowe
2008; Serre et al. 2007a,b), so it is necessary to test its output
with the same type of biologically plausible neuronal fir-
ing rate decoding used by VisNet. Indeed, the results shown
in Sect. 3.1.2 were obtained with support vector machine
decoding used for both HMAX and VisNet. In this section,
we analyse the firing rate representations produced by Vis-
Net and HMAX, to assess the biological plausibility of their
output representations. The informationmeasurement proce-
dures are described in Sect. 2.8, and in more detail elsewhere
(Rolls and Milward 2000; Rolls 2012a; Rolls et al. 1997a,b).

Figure 5 Upper shows the firing rates of two VisNet neu-
rons for the test set, in the experiment with the Caltech-256
dataset using two object classes, beer mugs and hats, when
trained on 50 exemplars of each class, and then tested in a
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cross-validation design with 10 test exemplars of each class
that had not been seen during training.

For the testing (untrained, cross validation) set of exem-
plars, one of the neurons responded with a high rate to 8 of
the 10 untrained exemplars of one class (hats) and to 1 of
the exemplars of the other class (beer mugs). The single cell
information was 0.38 bits. The other neuron responded to 5
exemplars of the beer mugs class and to no exemplars of the
hats class, and its single cell information was 0.21 bits. The
mean stimulus-specific single cell information across the 5
most informative cells for each class was 0.28 bits.

The results for the cross-validation testing mode shown
in Fig. 5(upper) thus show that VisNet can learn about
object classes and can perform reasonable classification of
untrained exemplars. Moreover, these results show that Vis-
Net can do this using simple firing rate encoding of its
outputs, which might potentially be decoded by a pattern
associator. To test this, we trained a pattern association net-
work on the output of VisNet to compare with the support
vector machine results shown in Fig. 4. With 30 training
exemplars, classification using the best 10 neurons for each
class was 61.7% correct, compared to chance performance
of 50% correct.

Figure 5 (middle) shows two neurons in the C2 and (bot-
tom) two neurons in the view-tuned unit layer of HMAX
on the test set of 10 exemplars of each class in the same
task. It is clear that the C2 neurons both responded to all 10
untrained exemplars of both classes, with high firing rates to
almost presented images. The normalized mean firing rate
of one of the neurons was 0.905 to the beer mugs and 0.900
to the hats. We again used a pattern association network on
the output of HMAX C2 neurons to compare with the sup-
port vector machine results shown in Fig. 4. With 30 training
exemplars, classification using the best 10 neurons for each
class was 63% correct, compared to chance performance
of 50% correct. When biologically plausible decoding by
an associative pattern association network is used, the per-
formance of HMAX is poorer than when the performance
of HMAX is measured with powerful least squares classi-
fication. The mean stimulus-specific single cell information
across the 5 most informative cells for each class was 0.07
bits. This emphasizes that the output of HMAX is not in a
biologically plausible form.

The relatively poor performance of VisNet (which pro-
duces a biologically plausible output), and of HMAX when
its performance is measured in a biologically plausible way,
raises the point that training with a diverse sets of exem-
plars of an object class as in the Caltech dataset is not a
very useful way to test object recognition networks of the
type found in the brain. Instead, the brain produces view-
invariant representations of objects, using information about
view invariance simply not present in the Caltech type of
dataset, because it does not provide training exemplars shown
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Fig. 5 Top firing rate of two output layer neurons of VisNet, when
tested on two of the classes, hats and beer mugs, from the Caltech 256.
The firing rates to 10 untrained (i.e. testing) exemplars of each of the two
classes are shown. One of the neurons responded more to hats than to
beer mugs (solid line). The other neuron responded more to beer mugs
than to hats (dashed line). Middle firing rate of two C2 tuned units of
HMAXwhen tested on two of the classes, beer mugs and hats, from the
Caltech 256. Bottom firing rate of a view-tuned unit of HMAX when
tested on two of the classes, hats (solid line) and beer mugs (dashed
line), from the Caltech 256. The neurons chosen were those with the
highest single cell information that could be decoded from the responses
of a neuron to 10 exemplars of each of the two objects (as well as a high
firing rate) in the cross-validation design
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with different systematic transforms (position over up to 70◦,
size, rotation and view) for transform invariance learning.
In the next experiment, we therefore investigated the perfor-
mance ofHMAXandVisNetwith a dataset inwhich different
views of each object class are provided, to compare how
HMAX and VisNet perform on this type of problem.

Figure 5 (bottom) shows the firing rates of two view-tuned
layer units of HMAX. It is clear that the view-tuned neurons
had lower firing rates (and this is just a simple function of
the value chosen for σ , which in this case was 1), but that
again the firing rates differed little between the classes. For
example, the mean firing rate of one of the VTU neurons to
the beer mugs was 0.3 and to the hats was 0.35. The single
cell stimulus-specific information measures were 0.28 bits
for the hats neuron and 0.24 bits for the beer mugs neuron.
Themean stimulus-specific single cell information across the
5 most informative VTUs for each class was 0.10 bits.

We note that if the VTU layer was classified with a least
squares classifier (i.e. a perceptron, which is not biologi-
cally plausible, but is how the VTU neurons were decoded
by Serre et al. 2007a), then performance was at 67%. (With a
pattern associator, the performance was 66% correct.) Thus
the performance of the VTU outputs (introduced to make
the HMAX outputs otherwise of C neuron appear more bio-
logically plausible) was poor on this type of CalTech-256
problem when measured both by a linear classifier and by a
pattern association network.

Figure 1 of the Supplementary Material shows that simi-
lar results were obtained for the HMAX implementation by
Serre et al. (2007a).

3.1.4 Evaluation of categorization when tested with large
numbers of images presented randomly

The benchmark type of test using large numbers of images
of different object classes presented in random sequence has
limitations, in that an object can look quite different from dif-
ferent views. Catastrophic changes in the image properties of
objects can occur as they are rotated through different views
(Koenderink 1990). One example is that any view from above
a cup into the cup that does not show the sides of the cup may
look completely different from any view where some of the
sides or bottom of the cup are shown. In this situation, train-
ing any networkwith images presented in a random sequence
(i.e. without a classification label for each image) is doomed
to failure in view-invariant object recognition. This applies
to all such approaches that are unsupervised and that attempt
to categorize images into objects based on image statistics. If
a label for its object category is used for each image during
training, this may help to produce good classification, but is
very subject to over-fitting, in which small pixel changes in
an image that do not affect which object it is interpreted as by

humans may lead to it being misclassified (Krizhevsky et al.
2012; Szegedy et al. 2014).

In contrast, the training of VisNet is based on the concept
that the transforms of an object viewed from different angles
in the natural world provide the information required about
the different views of an object to build a view-invariant rep-
resentation and that this information can be linked together
by the continuity of this process in time. Temporal continu-
ity (Rolls 2012a) or even spatial continuity (Stringer et al.
2006; Perry et al. 2010) and typically both (Perry et al. 2006)
provide the information that enables different images of an
object to be associated together. Thus two factors, continuity
of the image transforms as the object transforms through dif-
ferent views, and a principle of spatio-temporal closeness to
provide a label of the object based on its property of spatio-
temporal continuity, provide a principledway forVisNet, and
it is proposed for the real visual system of primates including
humans, to build invariant representations of objects (Rolls
1992, 2008, 2012a). This led to Experiment 2.

3.2 Performance with the Amsterdam library of images:
Experiment 2

Partly because of the limitations of the Caltech-256 database
for training in invariant object recognition, we also investi-
gated trainingwith theAmsterdamLibrary of Images (ALOI)
database (Geusebroek et al. 2005) (http://staff.science.uva.
nl/~aloi/). The ALOI database takes a different approach to
the Caltech-256 and instead of focussing on a set of natural
images within an object category or class, provides images
of objects with a systematic variation of pose and illumi-
nation for 1000 small objects. Each object is placed onto
a turntable and photographed in consistent conditions at 5◦
increments, resulting in a set of images that not only show
the whole object (with regard to out of plane rotations), but
does so with some continuity from one image to the next (see
examples in Fig. 6).

Eight classes of object (with designations 156, 203, 234,
293, 299, 364, 674, 688) from the dataset were chosen (see
Fig. 6 for examples). Each class or object comprises of 72
images taken at 5◦ increments through the full 360◦ hori-
zontal plane of rotation. Three sets of training images were
used as follows. The training set consisted of 4 views of
each object spaced 90◦ apart; 9 views spaced 40◦ apart; or
18 views spaced 20◦ apart. The test set of images was in
all cases a cross-validation set of 18 views of each object
spaced 20◦ apart and offset by 10◦ from the training set with
18 views and not including any training view. The aim of
using the different training sets was to investigate how close
in viewing angle the training images need to be and also to
investigate the effects of using different numbers of training
images. The performance was measured with a pattern asso-
ciation network with one neuron per object and 10 inputs for
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Fig. 6 Example images from the two object classes within the ALOI database, a 293 (light bulb) and b 156 (clock). Only the 45◦ increments are
shown
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Fig. 7 Performance of VisNet and HMAX C2 units measured by the
percentage of images classified correctly on the classification task with
8 objects using the Amsterdam Library of Images dataset and mea-
surement of performance using a pattern association network with one
output neuron for each class. The training set consisted of 4 views
of each object spaced 90◦ apart; or 9 views spaced 40◦ apart; or 18
views spaced 20◦ apart. The test set of images was in all cases a cross-
validation set of 18 views of each object spaced 20◦ apart and offset
by 10◦ from the training set with 18 views and not including any train-
ing view. The 10 best cells from each class were used to measure the
performance. Chance performance was 12.5% correct

each class that were the most selective neurons for an object
in the output layer of VisNet or the C2 layer of HMAX. The
best cells of VisNet or HMAX for a class were selected as
those with the highest mean rate across views to the mem-
bers of that class relative to the firing rate to all views of all
objects and with a high stimulus-specific information for that
class.

Figure 7 shows (measuring performance with a pattern
associator trained on the 10 best cells for each of the 8
classes) that VisNet performed moderately well as soon as

there were even a few training images, with the coding of its
outputs thus shown to be suitable for learning by a pattern
association network. In a statistical control, we found that
an untrained VisNet performed at 18% correct when mea-
suredwith the pattern association network comparedwith the
73% correct after training with 9 exemplars that is shown in
Fig. 7. HMAX performed less well than VisNet. There was
some information in the output of theHMAXC2 neurons, for
if a powerful linear support vector machine (SVM) was used
across all output layer neurons, the performance in particular
for HMAX improved, with 78% correct for 4 training views
and 93% correct for 9 training views and 92% correct for
18 training views (which in this case was also achieved by
VisNet).

What VisNet can do here is to learn view-invariant rep-
resentations using its trace learning rule to build feature
analysers that reflect the similarity across at least adjacent
views of the training set. Very interestingly, with 9 training
images, the view spacing of the training images was 40◦, and
the test images in the cross-validation design were the inter-
mediate views, 20◦ away from the nearest trained view. This
is promising, for it shows that enormous numbers of train-
ing images with many different closely spaced views are not
necessary for VisNet. Even 9 training views spaced 40◦ apart
produced reasonable training.

We next compared the outputs produced by VisNet and
HMAX, in order to assess their biological plausibility. Fig-
ure 8 Upper shows the firing rate of one output layer neuron
of VisNet, when trained on 8 objects from the Amsterdam
Library of Images, with 9 exemplars of each object with
views spaced 40◦ apart (set 2 described above). The firing
rates on the training set are shown. The neuron responded to
all 9 views of object 4 (a light bulb) and to no views of any
other object. The neuron illustrated was chosen to have the
highest single cell stimulus-specific information about object
4 that could be decoded from the responses of a neuron to
the 9 exemplars of object 4 (as well as a high firing rate).
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Fig. 8 Top firing rate of one output layer neuron of VisNet, when
trained on 8 objects from the Amsterdam Library of Images, with 9
views of each object spaced 40◦ apart. The firing rates on the train-
ing set are shown. The neuron responded to all 9 views of object 4 (a
light bulb) and to no views of any other object. The neuron illustrated
was chosen to have the highest single cell stimulus-specific information
about object 4 that could be decoded from the responses of the neurons
to all 72 exemplars shown, as well as a high firing rate to object 4.
Middle firing rate of one C2 unit of HMAX when trained on the same
set of images. The unit illustrated was that the highest mean firing rate
across views to object 4 relative to the firing rates across all stimuli
and views. Bottom firing rate of one view-tuned unit (VTU) of HMAX
when trained on the same set of images. The unit illustrated was that
the highest firing rate to one view of object 4

That information was 3 bits. The mean stimulus-specific sin-
gle cell information across the 5 most informative cells for
each class was 2.2 bits. Figure 8 Middle shows the firing rate
of one C2 unit of HMAX when trained on the same set of
images. The unit illustrated was that with the highest mean
firing rate across views to object 4 relative to the firing rates
across all stimuli and views. The neuron responded mainly
to one of the 9 views of object 4, with a small response to 2
nearby views. The neuron provided little information about
object 4, even though it was the most selective unit for object
4. Indeed, the single cell stimulus-specific information for
this C2 unit was 0.68 bits. The mean stimulus-specific single
cell information across the 5 most informative C2 units for
each class was 0.28 bits. Figure 8 Bottom shows the firing
rate of one VTU of HMAX when trained on the same set of
images. The unit illustrated was that with the highest firing
rate to one view of object 4. Small responses can also be seen
to view 2 of object 4 and to view 9 of object 4, but apart from
this, most views of object 4 were not discriminated from the
other objects. The single cell stimulus-specific information
for this VTU was 0.28 bits. The mean stimulus-specific sin-
gle cell information across the 5 most informative VTUs for
each class was 0.67 bits.

The stimulus-specific single unit information measures
show that the neurons of VisNet have much information in
their firing rates about which object has been shown, whereas
there is much less information in the firing rates of HMAX
C2 units or view-tuned units. The firing rates for different
views of an object are highly correlated for VisNet, but not
for HMAX. This is further illustrated in Fig. 10, which shows
the similarity between the outputs of the networks between
the 9 different views of 8 objects produced by VisNet (top),
HMAX C2 (middle), and HMAX VTUs (bottom) for the
Amsterdam Library of Images test. Each panel shows a sim-
ilarity matrix (based on the cosine of the angle between the
vectors of firing rates produced by each object) between the 8
stimuli for all output neurons of each network. Themaximum
similarity is 1, and the minimal similarity is 0. The results are
from the simulations with 9 views of each object spaced 40◦
apart during training, with the testing results illustrated for
the 9 intermediate views 20◦ from the nearest trained view.
For VisNet (top), it is shown that the correlations measured
across the firing rates of all output neurons are very similar
for all views of each object (apart from 2 views of object
1) and that the correlations with all views of every other
object are close to 0.0. For HMAX C2 units, the situation
is very different, with the outputs to all views of all objects
being rather highly correlated, with a minimum correlation
of 0.975. In addition, the similarity of the outputs produced
by the different views of any given object is little more than
the similarity with the views of other objects. This helps to
emphasize the point that the firing within HMAX does not
reflect well even a view of one object as being very different

123



520 Biol Cybern (2015) 109:505–535

from the views of another object, let alone that different views
of the same object produce similar outputs. This emphasizes
that for HMAX to produce measurably reasonable perfor-
mance, most of the classification needs to be performed by
a powerful classifier connected to the outputs of HMAX,
not by HMAX itself. The HMAX VTU firing (bottom) was
more sparse (σ was 1.0), but again the similarities between
objects are frequently as great as the similarities within
objects.

Figure 2 of the Supplementary Material shows that simi-
lar results were obtained for the HMAX implementation by
Serre et al. (2007a).

Experiment 2 thus shows that with the ALOI training
set, VisNet can form separate neuronal representations that
respond to all exemplars of each of 8 objects seen in differ-
ent view transforms and that single cells can provide perfect
information from their firing rates to any exemplar about
which object is being presented. The code can be read in
a biologically plausible way with a pattern association net-
work, which achieved 77% correct on the cross-validation
set. Moreover, with training views spaced 40◦ apart, VisNet
performs moderately well (72% correct) on the intermediate
views (20◦ away from the nearest training view) (Fig. 9 Top).
In contrast, C2 output units of HMAX discriminate poorly
between the object classes (Fig. 9 Middle), view-tuned units
of HMAX respond only to test views that are 20◦ away from
the training view, and the performance of HMAX tested with
a pattern associator is correspondingly poor.

3.3 Effects of rearranging the parts of an object:
Experiment 3

Rearrangingparts of anobject candisrupt identificationof the
object, while leaving low-level features still present. Some
face-selective neurons in the inferior temporal visual cortex
do not respond to a face if its parts (e.g. eyes, nose, and
mouth) are rearranged, showing that these neurons encode
the whole object and do not respond just to the features or
parts (Rolls et al. 1994; Perrett et al. 1982). Moreover, these
neurons encode identity in that they responddifferently to dif-
ferent faces (Baylis et al. 1985; Rolls et al. 1997a,b; Rolls and
Treves 2011).We note that some other neurons in the inferior
temporal visual cortex respond to parts of faces such as eyes
or mouth (Perrett et al. 1982; Issa and DiCarlo 2012), con-
sistent with the hypothesis that the inferior temporal visual
cortex builds configuration-specific whole face or object rep-
resentations from their parts, helped by feature combination
neurons learned at earlier stages of the ventral visual system
hierarchy (Rolls 1992, 2008, 2012a, 2016) (Fig. 1).

To investigate whether neurons in the output layers of Vis-
Net and HMAX can encode the identity of whole objects and
faces (as distinct from their parts, low-level features, etc.),
we tested VisNet and HMAX with normal faces and with
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Fig. 9 Top firing rate during cross-validation testing of one output
layer neuron of VisNet, when trained on 8 objects from the Amster-
dam Library of Images, with 9 exemplars of each object with views
spaced 40◦ apart. The firing rates on the cross-validation testing set are
shown. The neuron was selected to respond to all views of object 4 of
the training set, and as shown responded to 7 views of object 4 in the
test set each of which was 20◦ from the nearest training view and to no
views of any other object. Middle firing rate of one C2 unit of HMAX
when tested on the same set of images. The neuron illustrated was that
the highest mean firing rate across training views to object 4 relative to
the firing rates across all stimuli and views. The test images were 20◦
away from the test images. Bottom firing rate of one view-tuned unit
(VTU) of HMAX when tested on the same set of images. The neuron
illustrated was that the highest firing rate to one view of object 4 during
training. It can be seen that the neuron responded with a rate of 0.8 to
the two training images (1 and 9) of object 4 that were 20◦ away from
the image for which the VTU had been selected
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Fig. 10 Similarity between the outputs of the networks between the
9 different views of 8 objects produced by VisNet (top), HMAX C2
(middle), and HMAX VTUs (bottom) for the Amsterdam Library of
Images test. Each panel shows a similarity matrix (based on the cosine
of the angle between the vectors of firing rates produced by each object)
between the 8 stimuli for all output neurons of each type. Themaximum
similarity is 1, and the minimal similarity is 0

faces with their parts scrambled. We used 8 faces from the
ORL database of faces (http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html) each with 5 exemplars of
different views, as illustrated in Fig. 11. The scrambling was
performed by taking quarters of each face and making 5
random permutations of the positions of each quarter. The
procedure was to train on the set of unscrambled faces and
then to test how the neurons that responded best to each face
then responded when the scrambled versions of the faces
were shown, using randomly scrambled versions of the same
eight faces each with the same set of 5 view exemplars.

VisNet was trained for 20 epochs and performed 100%
correct on the training set. When tested with the scrambled
faces, performance was at chance, 12.5% correct, with 0.0
bits ofmultiple cell information using the 5 best cells for each
class. An example of a VisNet layer 4 neuron that responded
to one of the faces after training is shown in Fig. 12 top. The
neuron responded to all the different view exemplars of the
unscrambled face (and to no other faces in the training set).
When the same neuron was then tested with the randomly
scrambled versions of the same face stimuli, the firing rate
was zero. In contrast, HMAX neurons did not show a reduc-
tion in their activity when tested with the same scrambled
versions of the stimuli. This is illustrated in Fig. 12 bottom,
inwhich the responses of a view-tunedneuron (selected as the
neuron with most selectivity between faces, and a response
to exemplar 1 of one of the non-scrambled faces) were with
similarly high firing rates to the scrambled versions of the
same set of exemplars. Similar results were obtained for the
HMAX implementation by Serre et al. (2007a) as shown in
the Supplementary Material.

This experiment provides evidence that VisNet learns
shape-selective responses that do not occur when the shape
information is disrupted by scrambling. In contrast, HMAX
must have been performing its discrimination between the
faces based not on the shape information about the face that
was present in the images, but instead on some lower-level
property such as texture or feature information that was still
present in the scrambled images. Thus VisNet performs with
scrambled images in a way analogous to that of neurons in
the inferior temporal visual cortex (Rolls et al. 1994).

The present result with HMAX is a little different from
that reported by Riesenhuber and Poggio (1999) where some
decrease in the responses of neurons in HMAX was found
after scrambling. We suggest that the difference is that in the
study by Riesenhuber and Poggio (1999), the responses were
not of natural objects or faces, but were simplified paper-clip
types of image, inwhich the degree of scrambling usedwould
(in contrast to scrambling natural objects) leave little feature
or texture information that may normally have a considerable
effect on the responses of neurons in HMAX.

123

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


522 Biol Cybern (2015) 109:505–535

Fig. 11 Examples of images used in the scrambled faces experiment. Top two of the 8 faces in 2 of the 5 views of each. Bottom examples of the
scrambled versions of the faces

3.4 View-invariant object recognition: Experiment 4

Some objects look different from different views (i.e. the
images are quite different from different views), yet we can
recognize the object as being the same from the different
views. Further, some inferior temporal visual cortex neu-
rons respond with view-invariant object representations, in
that they respond selectively to some objects or faces inde-
pendently of view using a sparse distributed representation
(Hasselmo et al. 1989; Booth and Rolls 1998; Logothetis
et al. 1995; Rolls 2012a; Rolls and Treves 2011). An exper-
iment was designed to compare how VisNet and HMAX
operate in view-invariant object recognition, by testing both
on a problem in which objects had different image prop-
erties in different views. The prediction is that VisNet will
be able to form by learning neurons in its output layer that
respond to all the different views of one object and to none
of the different views of another object, whereas HMAX
will not form neurons that encode objects, but instead will
have its outputs dominated by the statistics of the individual
images.

The objects used in the experiment are shown in Fig. 13.
There were two objects, two cups, each with four views, con-
structedwith Blender. VisNet was trained for 10 epochs, with
all views of one object shown in random permuted sequence,
then all views of the other object shown in random permuted
sequence, to enable VisNet to use its temporal trace learn-
ing rule to learn about the different images that occurring
together in time were likely to be different views of the same
object. VisNet performed 100% correct in this task by form-
ing neurons in its layer 4 that responded either to all views

of one cup (labelled ‘Bill’) and to no views of the other cup
(labelled ‘Jane’), or vice versa, as illustrated in Fig. 14 top.

Typical most highly discriminating C2 layer neurons of
HMAX are illustrated in Fig. 14 middle. The neurons did
not discriminate between the objects, but instead responded
more to the images of each object that contained text. This
dominance by text is consistent with the fact that HMAX is
up to this stage operating to a considerable extent as a set of
image filters, the activity in which included much produced
by the text. The performance of the C2 layer when decoded
by the information analysis routines (using the 5 most object
selective neurons for each class of object) was 50% correct
(where chance was 50%), with 0.0 bits of information about
which stimulus had been presented.

Typical most highly discriminating VTU (view-trained
unit) layer neurons of HMAX are illustrated in Fig. 14 bot-
tom. (Two VTUs were set up for each object during the
analysis stage, one for a view of an object without text and
one for a view of an object with text. σ was set to 1.0.)
The neurons did not discriminate between the objects, but
instead responded much more to the images of an object
that contained text. The performance of the VTU layer when
decoded by the information analysis routines (using the 5
most object selective neurons for each class of object) was
50% correct (where chance was 50%), with 0.0 bits of
information about which stimulus had been presented. A
similarity matrix (based on the cosine of the angle between
the vectors of firing rates produced by each stimulus) for
the VTU neurons indicated that there were high correlations
between the images that contained text, and high correla-
tions between the images that did not contain text, but no
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Fig. 12 Top effect of scrambling on the responses of a neuron in Vis-
Net. This VisNet layer 4 neuron responded to one of the faces after
training and to none of the other 7 faces. The neuron responded to all
the different view exemplars 1–5 of the unscrambled face (exemplar
normal). When the same neuron was then tested with the randomly
scrambled versions of the same face stimuli (exemplar scrambled), the
firing rate was zero. Bottom effect of scrambling on the responses of a
neuron in HMAX. This view-tuned neuron of HMAXwas chosen to be
as discriminating between the 8 face identities as possible. The neuron
responded to all the different view exemplars 1–5 of the unscram-
bled face. When the same neuron was then tested with the randomly
scrambled versions of the same face stimuli, the neuron responded with
similarly high rates to the scrambled stimuli

correlations reflecting similar firing to all views of either
object.

This experiment draws out a fundamental difference
betweenVisNet andHMAX.Theoutput layer neurons ofVis-
Net can represent transform-invariant properties of objects
and can form single neurons that respond to the different
views of objects even when the images of the different views
may be quite different, as is the case for many real-world
objects when they transform in the world. Thus basing object

recognition on image statistics, and categorization based on
these, is insufficient for transform-invariant object recogni-
tion. VisNet can learn to respond to the different transforms
of objects using the trace learning rule to capture the prop-
erties of objects as they transform in the world. In contrast,
HMAXup to the C2 layer sets some of its neurons to respond
to exemplars in the set of images, but has no way of knowing
which exemplars may be of the same object, and no way
therefore to learn about the properties of objects as they
transform in the real world, showing catastrophic changes
in the image as they transform (Koenderink 1990), exempli-
fied in the example in this experiment by the new views as
the objects transform from not showing to showingwriting in
the base of the cup.Moreover, because the C2 neurons reflect
mainly theway inwhich all theGabor filters respond to image
exemplars, the firing of C2 neurons is typically very simi-
lar and non-sparse to different images, though if the images
have very different statistics in terms of, for example, text or
not, it is these properties that dominate the firing of the C2
neurons.

Similarly, the VTU neurons of HMAX are set to have
synaptic strengths proportional to the firing of the C2 neu-
rons that provide inputs to the VTUs when one view of one
object is shown (Serre et al. 2007a). Because there is little
invariance in the C units, many different VTUs are needed,
with one for each training view or exemplar. Because the
VTUs are different to each other for the different views of
the same object or class, a further stage of training is then
needed to classify the VTUs into object classes, and the type
of learning is least squares error minimization (Serre et al.
2007a), equivalent to a delta-rule one-layer perceptronwhich
again is not biologically plausible for neocortex (Rolls 2008).
Thus HMAX does not generate invariant representations in
its S–C hierarchy, and in the VTU approach uses two layers
of learning after the S–Chierarchy, the second involving least
squares learning, to produce classification. The representa-
tion can bemore sparse than that of theC2neurons depending
on the value of σ , but nevertheless represents properties of
an image and not of objects. The output of HMAX thus does
not provide in general transform-invariant representations,
but instead reflects statistical properties of images. There-
fore, the output of HMAX must be classified by a powerful
classifier such as a support vector machine, which then has
to learn the whole set of outputs of the visual processing
that correspond to any one object in all its transforms and
views. This is biologically implausible, with pattern associ-
ators being the most typical known classifier in the cerebral
cortex (Rolls 2008). In any case, because the output of C2 is
so difficult to interpret by a brain-like decoder such as a pat-
tern associator, and because VTUs by definition respond to
one of perhaps many views of an object, VTUs are not gen-
erally used in more recent work with HMAX, and instead
the final C layer of firing is sent directly to a support vector

123



524 Biol Cybern (2015) 109:505–535

Fig. 13 View-invariant representations of cups. The two objects, each with four views

machine classifier (Serre et al. 2007c,a,b; Mutch and Lowe
2008).

4 Discussion

4.1 Overview of the findings on how well the properties
of inferior temporal cortex neurons were met, and
discussion of their significance

At the beginning of this paper, we listed some of the key prop-
erties of inferior temporal cortex (IT) neurons that need to be
addressed by models of invariant visual object recognition
in the ventral visual stream of the cerebral cortex. We now
assess to what extent these two models account for these
fundamental properties of IT neurons. This assessment is
provided for these two models provided as examples and to
illustrate how it may be useful for those who work with other
models (e.g. Yamins et al. 2014) to assess the performance of
their models against the neurophysiological data. We make
these comparisons in the interest of contributing to the fur-
ther development of models of how the brain solves invariant
visual object recognition.

The first property is that inferior temporal visual cortex
neurons show responses to objects that are typically trans-
lation, size, contrast, rotation, and in a proportion of cases
view invariant, that is, they show transform invariance (Has-
selmo et al. 1989; Tovee et al. 1994; Logothetis et al. 1995;
Booth and Rolls 1998; Rolls 2012a). Experiment 4 with the
different views of different cups shows that VisNet can solve
view-invariant object recognition and that HMAX does not.
VisNet solves this object recognition problem because it has
a learning mechanism involving associations across time to
learn that quite different views may be of the same object.
HMAX has no such learning mechanism, and indeed, its per-

formance on this task was dominated by the presence or
absence of low-level image features such as whether text
was visible or not. The remark might be made that HMAX
is not intended to display view-invariant object recognition.
But that is perhaps an important point: By having no such
mechanism, HMAX does not account for a key feature of the
tuning of many neurons in the inferior temporal visual cor-
tex. In fact, VisNet uses temporo-spatial continuity to learn
about all the different types of invariance and thus provides
a generic approach to producing invariant representations.

The second property is that inferior temporal cortex
neurons show sparse distributed representations, in which
individual neurons have high firing rates to a few stimuli
(e.g. objects or faces) and lower firing rates to more stimuli,
in which much information can be read from the responses
of a single neuron from its firing rates using, for example, dot
product decoding (because the neuronal responses are high to
relatively few stimuli), and inwhich neurons encode indepen-
dent information about a set of stimuli, as least up to tens of
neurons (Rolls and Tovee 1995; Rolls et al. 1997a,b; Abbott
et al. 1996; Baddeley et al. 1997; Rolls 2008, 2012a; Rolls
and Treves 2011). Experiment 2 shows that VisNet produces
single neurons with sparse representations, in which a single
neuron can respond tomanyexemplars of oneobject and to no
exemplars of many other objects (Figs. 8, 9). (Although these
representations are relatively binary, with the most selec-
tive neurons for an object having high firing rates to only
one object and low firing rates to all other objects, other
neurons that are less selective have more graded firing rate
representations, and the representations can be made more
graded by reducing the value of the sigmoid activation func-
tion parameter β specified in Eq. (5)) In contrast HMAX
produces neurons in its final C layer that have highly dis-
tributed representations, with even the most selective single
neurons having high firing rates to almost all the stimuli (see
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Fig. 14 Top view-invariant representations of cups. Single cells in the
output representation of VisNet. The two neurons illustrated responded
either to all views of one cup (labelled ‘Bill’) and to no views of the
other cup (labelled ‘Jane’), or vice versa. Middle single cells in the C2
representation of HMAX. Bottom single cells in the view-tuned unit
output representation of HMAX

Figs. 8, 9) for the C2 top layer neurons with the Mutch and
Lowe (2008) implementation of HMAX, and Figs. 1 and 2 of
the Supplementary Material for the top layer C3 neurons of
the Serre et al. (2007a) version of HMAX. Consistent with
this, the information could not be read from these final C
layers of HMAX by a biologically plausible pattern asso-
ciation network using dot product decoding, but required a
much more powerful support vector machine or linear least
squares regressor equivalent to a delta-rule perceptron to clas-
sify these outputs of HMAX. If view-tuned units were used
to read the outputs of HMAX, then these units did have a
more sparse representation, but again had some responses to
all the exemplars of all objects as shown in the same Figures,
and as noted for the first property, did not have view-invariant
representations and so again required powerful decoding to
read the VTUs to classify an image as a particular object.
That is, most of the work for the classification was done by
the external system reading the activity of the output neu-
rons, rather than being present in the firing of the HMAX
neurons themselves. Similar conclusions about the represen-
tations produced by HMAX follow from Experiment 1 with
the CalTech stimuli, though as noted below under property
4, the use of such datasets and classification into a class of
object such as animal versus non-animal does not capture
the fundamental property 4 of encoding information about
individual faces or objects, as contrasted with classes.

A third property is that inferior temporal cortex neurons
often respond to objects and not to low-level features, in that
many respond to whole objects, but not to the parts presented
individually, nor to the parts presented with a scrambled con-
figuration (Perrett et al. 1982;Rolls et al. 1994). Experiment 3
showed that rearranging the parts of an object (‘scrambling’)
led to no responses from VisNet neurons that responded to
the whole object, showing that it implemented whole object
recognition, rather than just having responses to features.
This follows up with images of objects what was shown pre-
viously for VisNet with more abstract stimuli, combinations
of up to four lines in different spatial arrangements to specify
different shapes (Elliffe et al. 2002). In contrast, HMAXfinal
layer neurons responded also to the scrambled images, pro-
viding an indication that HMAX does not implement shape
representations of whole objects in which the parts are in
the correct spatial arrangement, but instead allows features
to pass from its Gabor filters to the output on the basis of
which a powerful classifier might be able to specify because
of the types of low-level features what class of object may
be present. This may be satisfactory for low-level feature
identification that might then be used to classify objects into
classes using e.g. a SVM, but is hardly a basis for shape
recognition, which is a key property of IT neurons. VisNet
solves the shape problem by implementing a feature hierar-
chy in which combinations of features in the correct spatial
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relationship become learned at every stage of the processing,
resulting in shape not low-level feature recognition (Rolls
1992, 2008, 2012a; Elliffe et al. 2002).

A fourth property is that inferior temporal cortex neu-
rons convey information about the individual object or face,
not just about a class such as face versus non-face, or ani-
mal versus non-animal (Rolls and Tovee 1995; Rolls et al.
1997a,b;Abbott et al. 1996; Baddeley et al. 1997; Rolls 2008,
2011, 2012a; Rolls and Treves 2011). This key property is
essential for recognizing a particular person or object and is
frequently not addressed in models of invariant object recog-
nition, which still focus on classification into, e.g. animal
versus non-animal, or classes such as hats and bears from
databases such as the CalTech (Serre et al. 2007a,b; Mutch
and Lowe 2008; Serre et al. 2007c; Yamins et al. 2014). It is
clear that VisNet has this key property of representing indi-
vidual objects, faces, etc., as is illustrated in Experiments 2,
3, and 4, and previously (Rolls and Milward 2000; Stringer
and Rolls 2000, 2002; Rolls and Webb 2014; Webb and
Rolls 2014; Stringer et al. 2006; Perry et al. 2006, 2010;
Rolls 2012a). VisNet achieves this by virtue of its compet-
itive learning, in combination with its trace learning rule to
learn that different images are of the sameobject. It is unfortu-
nate that we know little about this from previous publications
with HMAX, but the results shown in Experiment 4 provide
evidence that HMAX may categorize together images with
similar low-level feature properties (such as the presence of
text), and not perform shape recognition relevant to the iden-
tification of an individual in which the spatial arrangements
of the parts are important, as shown in Experiment 3.

A fifth property is that the learning mechanism involved
in invariant object recognition needs to be biologically plau-
sible and that is likely to include a local synaptic learning
rule (Rolls 2008). This is implemented in VisNet, in that the
information present to alter the strength of the synapse is
present in the firing of the presynaptic and postsynaptic neu-
ron, as is shown in Eq. (1). We note that lateral propagation
of weights, as used in the neocognitron (Fukushima 1980),
HMAX (Riesenhuber and Poggio 1999; Mutch and Lowe
2008; Serre et al. 2007a), and convolution nets (LeCun et al.
2010), is not biologically plausible (Rolls 2008).

4.2 Training method

One difference highlighted by these investigations is that
VisNet is normally trained on images generated by objects
as they transform in the world, so that view, translation,
size, rotation, etc., invariant representations of objects can
be learned by the network. In contrast, HMAX is typically
trained with large databases of pictures of different exem-
plars of, for example, hats and beer mugs as in the CalTech
databases, which do not provide the basis for invariant rep-
resentations of objects to be learned, but are aimed at object

classification. However, it is shown in Experiment 1 that Vis-
Net can perform this object classification in a way that is
comparable to HMAX. In Experiment 1, it is also shown that
the activity of the output of the last layer of HMAX C neu-
rons is very non-sparse, provides very little information in
the single-neuron responses about the object class, cannot
be read by biologically plausible decoding such as might be
performed in the brain by a pattern association network, and
requires a support vector machine (or view-tuned neurons
followed by least squares learning) to learn the classification.
In contrast, because of the invariance learning in VisNet, the
single neurons in the sparse representation at the output pro-
vide information about which class of object was shown, and
the population can be read by a biologically plausible pattern
association network. VisNet thus provides a representation
similar to that of neurons in the inferior temporal visual cor-
tex (Rolls and Treves 2011; Rolls 2012a), and HMAX does
not produce representations that are like those found in the
inferior temporal visual cortex.

In Experiment 2, it is shown that VisNet performs well
with sets of images (from the ALOI set) that provide exem-
plars that allow view-invariant representations to be formed.
HMAX performs poorly at this type of task when assessed
with biologically plausible measures, in that the C2 neurons
discriminate poorly between the classes, and in that the VTU
neurons generalize only to adjacent views, as there is no
mechanism in HMAX to enable it to learn that quite dif-
ferent images may be different views of the same object.
HMAX thus has to rely on powerful pattern classification
mechanisms such as a support vector machine to make sense
of its output representation. The difference of the output
representations is alsomarked. Single neurons in VisNet pro-
vide considerable stimulus-specific information about which
object was shown (e.g. 3 bits depending on the set size, with
the maximum information being log2 S where S is the num-
ber of objects in the set), in a way that is similar to that of
neurons in the inferior temporal visual cortex (Tovee et al.
1993; Rolls et al. 1997b). In contrast, individual neurons in
the HMAX C2 layer are poorly tuned to the stimuli and
contain little stimulus-specific information about views let
alone about objects. The same point applies to many other
computer-based object recognition systems, including deep
convolutional neural networks, namely that they have noway
of learning transform invariances from systematically trans-
formed sets of training exemplars of objects.

4.3 Representations of the spatial configurations of the
parts

In Experiment 3, it is shown that VisNet neurons do not
respond to scrambled images of faces, providing evidence
that they respond to the shape information about faces, and
objects, and not to low-level features or parts. In contrast,
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HMAX neurons responded with similarly high rates to both
the unscrambled and scrambled faces, indicating that low-
level features including texture may be very relevant to the
performance and classification produced by HMAX.

4.4 Object representations invariant with respect to
catastrophic view transformations

In Experiment 4, it is shown that VisNet can learn to recog-
nize objects even when the view provided by the object
changes catastrophically as it transforms, whereas HMAX
has no learning mechanism in its S–C hierarchy that pro-
vides for this type of view-invariant learning.

Thus the approach taken by VisNet provides a model of
ventral visual stream processing that produces neurons at its
output layer that are very similar in their invariant represen-
tations to those found in the inferior temporal visual and that
can be read by pattern association networks in brain regions
such as the orbitofrontal cortex and amygdala. In contrast,
the approach taken in HMAX does not lead to neurons in
the output C layer that provide view-invariant representa-
tions of objects, are very non-sparse and unlike those found
in visual cortical areas, and needs themajor part of any object
classification required to be performed by an artificial neural
network such as a support vector machine. These investiga-
tions of different approaches to how the ventral visual stream
can produce firing like that of neurons in the inferior tem-
poral visual cortex that can be easily read by biologically
plausible networks such as pattern associators have impli-
cations for future research and provide interesting contrasts
of approaches used in biologically plausible object recog-
nition networks with transform-invariant representations of
objects and artificial neural networks required to perform
pattern classification. Our main aim here of comparing these
two networks is that the comparison helps highlight what a
biologically plausible model of the ventral visual system in
invariant visual object recognition needs to account for.

4.5 How VisNet solves the computational problems of
view-invariant representations

Weprovide now an account of howVisNet is able to solve the
type of invariant object recognition problem described here
when an image is presented to it, withmore detailed accounts
available elsewhere (Rolls 2008, 2012a; Wallis and Rolls
1997). VisNet is a 4-layer network with feedforward conver-
gence from stage to stage that enables the small receptive
fields present in its V1-like Gabor filter inputs of approxi-
mately 1◦ to increase in size so that by the fourth layer a single
neuron can potentially receive input fromall parts of the input
space (Fig. 1). The feedforward connections between layers
are trained by competitive learning, which is an unsuper-
vised form of learning (Rolls 2008), that allows neurons to

learn to respond to feature combinations. As one proceeds up
though the hierarchy, the feature combinations become com-
binations of feature combinations (see Rolls 2008 Fig. 4.20
and Elliffe et al. 2002). Local lateral inhibition within each
layer allows each local area within a layer to respond to and
learn whatever is present in that local region independently
of how much information and contrast there may be in other
parts of a layer, and this, together with the non-linear acti-
vation function of the neurons, enables a sparse distributed
representation to be produced. In the sparse distributed rep-
resentation, a small proportion of neurons is active at a high
rate for the input being presented, andmost of the neurons are
close to their spontaneous rate, and this makes the neurons
of VisNet (Rolls 2008, 2012a) very similar to those recorded
in the visual system (Rolls and Treves 2011; Rolls 2008;
Tovee et al. 1993; Rolls et al. 1997a,b; Abbott et al. 1996).
A key property of VisNet is the way that it learns whatever
can be learned at every stage of the network that is invari-
ant as an image transforms in the natural world, using the
temporal trace learning rule. This learning rule enables the
firing from the preceding few items to be maintained, and
given the temporal statistics of visual inputs, these inputs
are likely to be from the same object. (Typically primates
including humans look at one object for a short period dur-
ing which it may transform by translation, size, isomorphic
rotation, and/or view, and all these types of transform can
therefore be learned by VisNet.) Effectively, VisNet uses
as a teacher the temporal and spatial continuity of objects
as they transform in the world to learn invariant represen-
tations. (An interesting example is that representations of
individual people or objects invariant with respect to pose
(e.g. standing, sitting, walking) can be learned by VisNet, or
representations of pose invariant with respect to the individ-
ual person or object can be learned by VisNet depending on
the order in which the identical images are presented during
training (Webb and Rolls 2014).) Indeed, we developed these
hypotheses (Rolls 1992, 1995, 2012a; Wallis et al. 1993)
into a model of the ventral visual system that can account
for translation, size, view, lighting, and rotation invariance
(Wallis and Rolls 1997; Rolls and Milward 2000; Stringer
and Rolls 2000, 2002, 2008; Rolls and Stringer 2001, 2006,
2007; Elliffe et al. 2002; Stringer et al. 2006, 2007; Perry
et al. 2006, 2010; Rolls 2008, 2012a). Consistent with the
hypothesis, we have demonstrated these types of invariance
(and spatial frequency invariance) in the responses of neu-
rons in themacaque inferior temporal visual cortex (Rolls and
Baylis 1986; Rolls et al. 1985, 1987, 2003; Hasselmo et al.
1989; Tovee et al. 1994; Booth and Rolls 1998). Moreover,
we have tested the hypothesis by placing small 3D objects
in the macaque’s home environment and showing that in the
absence of any specific rewards being delivered, this type of
visual experience in which objects can be seen from differ-
ent views as they transform continuously in time to reveal
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different views leads to single neurons in the inferior tempo-
ral visual cortex that respond to individual objects from any
one of the several different views, demonstrating the devel-
opment of view-invariance learning (Booth and Rolls 1998).
(In control experiments, view-invariant representations were
not found for objects that had not been viewed in this way.)
The learning shownby neurons in the inferior temporal visual
cortex can take just a small number of trials (Rolls et al. 1989).
The finding that temporal contiguity in the absence of reward
is sufficient to lead to view-invariant object representations
in the inferior temporal visual cortex has been confirmed (Li
and DiCarlo 2008, 2010, 2012). The importance of temporal
continuity in learning invariant representations has also been
demonstrated in human psychophysics experiments (Perry
et al. 2006; Wallis 2013). Some other simulation models are
also adopting the use of temporal continuity as a guiding
principle for developing invariant representations by learning
(Wiskott and Sejnowski 2002; Wiskott 2003; Franzius et al.
2007; Einhauser et al. 2005; Wyss et al. 2006) (see review
by Rolls 2012a), and the temporal trace learning principle
has also been applied recently (Isik et al. 2012) to HMAX
(Riesenhuber and Poggio 2000; Serre et al. 2007b) and to V1
(Lies et al. 2014).

VisNet is also well adapted to deal with real-world object
recognition. If different backgrounds are present during test-
ing, this does not disrupt the identification of particular
objects previously trained, because the different backgrounds
are not associated with the object to be recognized. This
process is helped by the fact that the responses of inferior
temporal cortex neurons shrink from approximately 78◦ in
diameter in a scene with one object on a blank background,
to approximately 22◦ in a complex natural scene (Rolls et al.
2003). This greatly facilitates processing in the ventral visual
cortical stream object recognition system, for it means that
it is much more likely that there is only one object or a few
objects to be dealt with at the fovea that need to be recognized
(Rolls et al. 2003; Rolls and Deco 2006). The mechanism
for the shrinking of the receptive fields of inferior temporal
cortex neurons in complex natural scenes is probably lateral
inhibition from nearby visual features and objects, which
effectively leave a neuron sensitive to only the peak of the
receptive field, which typically includes the fovea because of
its greater cortical magnification factor for inferior temporal
cortex neurons (Trappenberg et al. 2002). Moreover, for sim-
ilar reasons, VisNet can learn to recognize individual objects
if they presented simultaneously with other objects chosen
randomly (Stringer and Rolls 2008; Stringer et al. 2007).

4.6 Approach taken by HMAX

We now compare this VisNet approach to invariant object
recognition to the approach of HMAX, another approach that
seeks to be biologically plausible (Riesenhuber and Poggio

2000; Serre et al. 2007c,a,b; Mutch and Lowe 2008), which
is a hierarchical feedforward network with alternating sim-
ple cell-like (S) and complex cell-like (C) layers inspired by
the architecture of the primary visual cortex, V1. The sim-
ple cell-like layers respond to a similarity function of the
firing rates of the input neuron to the synaptic weights of the
receiving neuron (used as an alternative to the more usual
dot product) and the complex cells to the maximum input
that they receive from a particular class of simple cell in the
preceding layer. The classes of simple cell are set to respond
maximally to a random patch of a training image (by pre-
senting the image, and setting the synaptic weights of the
S cells to be the firing rates of the cells from it receives),
and are propagated laterally, that is, there are exact copies
throughout a layer, which is of course a non-local operation
and not biologically plausible. The hierarchy receives inputs
from Gabor-like filters (which is like VisNet). The result of
this in HMAX is that in the hierarchy, there is no learning of
invariant representations of objects and that the output firing
in the final C layer (for example the second C layer in a four-
layer S1–C1–S2–C2 hierarchy) is high for almost all neurons
to most stimuli, with almost no invariance represented in the
output layer of the hierarchy, in that two different views of
the same object may be as different as a view of another
object, measured using the responses of a single neuron or
of all the neurons. The neurons in the output C layer are thus
quite unlike those inVisNet or in the inferior temporal cortex,
where there is a sparse distributed representation, and where
single cells conveymuch information in their firing rates, and
populations of single cells convey much information that can
be decoded by biologically plausible dot product decoding
(Rolls and Treves 2011; Rolls 2008; Tovee et al. 1993; Rolls
et al. 1997a,b; Abbott et al. 1996) such asmight be performed
by a pattern association network in the areas that receive from
the inferior temporal visual cortex, such as the orbitofrontal
cortex and amygdala (Rolls 2008, 2012a, 2014; Rolls and
Treves 2011). HMAX therefore must resort to a powerful
classification algorithm, in practice typically a support vec-
tor machine (SVM), which is not biologically plausible, to
learn to classify all the outputs of the final layer that are pro-
duced by the different transforms of one object to be of the
same object, and different to those of other objects. Thus
HMAX does not learn invariant representations by its output
layer of the S–Chierarchy, but instead uses a SVM to perform
the classification that the SVM is taught. This is completely
unlike the output of VisNet and of inferior temporal cortex
neuron firing, which by responding very similarly in terms
of firing rate to the different transforms of an object show
that the invariance has been learned in the hierarchy (Rolls
2008, 2012a; Hasselmo et al. 1989; Booth and Rolls 1998).

Another way that the output of HMAX may be assessed
is by the use of view-tuned units (VTUs), each of which is
set to respond to one view of a class or object by setting its
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synaptic weights from each C unit to the value of the firing
of the C unit to one view or exemplar of the object or class
(Serre et al. 2007a). We note that this itself is not a biolog-
ically plausible operation, for it implies a teacher for each
VTU to inform it how to respond, and then adjustment of the
synaptic weights to the VTU to achieve this. Because there
is little invariance in the C units, many different VTUs are
needed, with one for each training view or exemplar. Because
the VTUs are different to each other for the different views
of the same object or class, a further stage of training is
then needed to classify the VTUs into object classes, and the
type of learning is least squares error minimization (Serre
et al. 2007a), equivalent to a delta-rule one-layer perceptron
which again is not biologically plausible for neocortex (Rolls
2008). Thus HMAX does not generate invariant representa-
tions in its S–C hierarchy, and in the VTU approach uses two
layers of learning after the S–C hierarchy, the second involv-
ing least squares learning, to produce classification. This is
unlike VisNet, which learns invariant representations in its
hierarchy by self-organization, and produces view-invariant
neurons (similar to those for faces (Hasselmo et al. 1989)
and objects (Booth and Rolls 1998) in the inferior temporal
visual cortex) that can be read by a biologically plausible
pattern associator (Rolls 2008, 2012a). In another approach,
Biederman and colleagues have shown that HMAX does not
show the advantage in psychophysical performance and in
the activations of area LO that is related to viewpoint invari-
ant or nonaccidental properties (e.g. straight vs. curved),
than metric properties (e.g. degree of curvature) of simple
shapes.

Another difference of HMAX from VisNet is in the way
that VisNet is trained, which is a fundamental aspect of
the VisNet approach. HMAX has traditionally been tested
with benchmarking databases such as the CalTech-101 and
CalTech-256 (Griffin et al. 2007) in which sets of images
fromdifferent categories are to be classified.TheCaltech-256
dataset is comprised of 256 object classes made up of images
that have many aspect ratios and sizes and differ quite signif-
icantly in quality (having being manually collated from web
searches). The objects within the images show significant
intra-class variation and have a variety of poses, illumina-
tion, scale, and occlusion as expected from natural images.
A network is supposed to classify these correctly into classes
such as hats and beermugs (Rolls 2012a). The problem is that
examples of each class of object transforming continuously
thoughdifferent positions on the retina, size, isomorphic rota-
tion, and view are not provided to help the system learn about
how a given type of object transforms in the world. The sys-
tem just has to try to classify based on a set of often quite
different exemplars that are not transforms of each other.
Thus a system trained in this way is greatly hindered in gen-
erating transform-invariant representations by the end of the
hierarchy, and such a system has to rely on a powerful classi-

fier such as a SVM to perform a classification that is not based
on transform invariance learned in the hierarchical network.
In contrast, VisNet is provided during training with system-
atic transforms of objects of the type that would be seen as
objects transform in the world and has a well-posed basis for
learning invariant representations. It is important that with
VisNet, the early layers may learn what types of transform
can be produced in small parts of the visual field by different
classes of object, so that when a new class of object is intro-
duced, rapid learning in the last layer and generalization to
untrained views can occur without the need for further train-
ing of the early layers (Stringer and Rolls 2002).

4.7 Some other approaches to invariant visual object
recognition

Some other approaches to biologically plausible invariant
object recognition are being developed with hierarchies that
may be allowed unsupervised learning (Pinto et al. 2009;
DiCarlo et al. 2012; Yamins et al. 2014). For example, a hier-
archical network has been trainedwith unsupervised learning
and with many transforms of each object to help the sys-
tem to learn invariant representations in an analogous way
to that in which VisNet is trained, but the details of the net-
work architecture are selected by finding parameter values
for the specification of the network structure that produce
good results on a benchmark classification task (Pinto et al.
2009). However, formally these are convolutional networks,
so that the neuronal filters for one local region are replicated
over thewhole of visual space, which is computationally effi-
cient but biologically implausible. Further, a general linear
model is used to decode the firing in the output level of the
model to assess performance, so it is not clear whether the
firing rate representations of objects in the output layer of the
model are very similar to that of the inferior temporal visual
cortex. In contrast, with VisNet (Rolls and Milward 2000;
Rolls 2012a) the information measurement procedures that
we use (Rolls et al. 1997a,b) are the same as those used to
measure the representation that is present in the inferior tem-
poral visual cortex (Rolls and Treves 2011; Tovee et al. 1993;
Rolls and Tovee 1995; Tovee and Rolls 1995; Abbott et al.
1996; Rolls et al. 1997a,b, 2004, 2006; Baddeley et al. 1997;
Treves et al. 1999; Panzeri et al. 1999; Franco et al. 2004,
2007; Aggelopoulos et al. 2005).

4.8 Properties of inferior temporal cortex neurons that
need to be addressed by models in visual invariant
object recognition

One of the important points made here is that there are a
number of crucial properties of inferior temporal cortex (IT)
neurons that need to be accounted for by biologically plau-
sible models. These properties include the sparse distributed
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coding in which individual neurons have high firing rates to a
few objects and gradually smaller responses to other stimuli.
This allows much information to be read from the responses
of a single neuron, or from several neurons with the infor-
mation represented approximately independently for at least
a limited number of neurons (Rolls and Treves 2011; Rolls
2012a; Tovee et al. 1993; Rolls and Tovee 1995; Abbott et al.
1996; Rolls et al. 1997a,b; Treves et al. 1999). This is a gen-
eral property of cortical encoding and is important in the
operation of associative neural networks that receive from
structures such as the inferior temporal visual cortex (Rolls
2008, 2016; Rolls and Treves 2011). This is shown here to
be a property of VisNet, but not of HMAX. Another prop-
erty is that some IT neurons respond to parts of objects, and
some only to the whole object (Perrett et al. 1982). The latter
was shown here to be a property of VisNet but not HMAX.
Another property is view invariance, shown by some but not
all neurons in IT (Hasselmo et al. 1989; Booth and Rolls
1998), which was shown to be a property of VisNet but not
HMAX. Indeed, much more transform invariance than this
must be shown by a model to account for the properties of IT
neurons, including translation invariance (with 70◦ receptive
fields shrinking to approximately 15◦ in complex scenes),
size, contrast, and spatial frequency invariance, all properties
of VisNet (Rolls 2012a; Rolls and Baylis 1986; Rolls et al.
1985, 1987, 2003; Tovee et al. 1994; Logothetis et al. 1995;
Booth and Rolls 1998; Trappenberg et al. 2002; Aggelopou-
los and Rolls 2005). An implication is that there is verymuch
more to testing and assessing a goodmodel of ITperformance
than measuring the similarity structure of the representations
of images of objects, human faces, animal faces, body parts,
etc., produced by different including non-biologically plau-
sible approaches to object recognition including deep neural
networks (Khaligh-Razavi and Kriegeskorte 2014; Cadieu
et al. 2014, 2013). Indeed, these measures of similarity are
likely to benefit from supervised training, as has been found
(Khaligh-Razavi and Kriegeskorte 2014), whereas the sim-
ilarity structure of models such as VisNet that utilizes a
temporal trace rule will depend on the exact similarity struc-
ture of the input across time, which needs to be taken into
account in such assessments. Moreover, analysing the sim-
ilarity structure of model and IT representations for classes
of object does not address fundamental issues of IT encod-
ing that IT neurons convey much information about which
particular face is being shown (Rolls and Treves 2011; Rolls
2012a; Tovee et al. 1993; Rolls and Tovee 1995; Abbott et al.
1996; Rolls et al. 1997a,b; Treves et al. 1999) not just about
whether it is a human or animal face or another category
(Khaligh-Razavi and Kriegeskorte 2014; Cadieu et al. 2014,
2013). The present research thus emphasizes that there are a
number of key properties of IT neurons that need to be taken
into account in assessing how well a model accounts for the
properties of IT neurons.

4.9 Comparison with computer vision approaches to not
only classification of objects but also identification of
the individual

We turn next to compare the operation of VisNet, as a model
of cerebral cortical mechanisms involved in view-invariant
object identification, with artificial, computer vision, approa-
ches to object identification. However, we do emphasize
that our aim in the present research is to investigate how
the cerebral cortex operates in vision, not how computer
vision attempts to solve similar problems. Within computer
vision, we note that many approaches start with using inde-
pendent component analysis (ICA) (Kanan 2013), principal
component analysis (PCA) (Cottrell and Hsaio 2011), sparse
coding (Kanan and Cottrell 2010), and other mathematical
approaches (Larochelle and Hinton 2010) to derive what
may be suitable ‘feature analysers,’ which are frequently
compared to the responses of V1 neurons. Computer vision
approaches to object identification then may take combi-
nations of these feature analysers and perform statistical
analyses using computer-based algorithms that are not bio-
logically plausible such as Restricted Boltzmann Machines
(RBMs) on these primitives to statistically discriminate dif-
ferent objects (Larochelle and Hinton 2010). Such a system
does not learn view-invariant object recognition, for the dif-
ferent views of an object may have completely different
statistics of the visual primitives, yet are the different views
of the same object. (Examples might include frontal and pro-
file views of faces, which are well tolerated for individual
recognition by some inferior temporal cortex neurons (Has-
selmo et al. 1989); very different views of 3D object which
are identified correctly as the same object by IT neurons after
visual experience with the objects to allow for view-invariant
learning (Booth and Rolls 1998); and many man-made tools
and objects which may appear quite different in 2D image
properties fromdifferent views.) Part of the difficulty of com-
puter vision lay in attempts to parse a whole scene at one time
(Marr 1982). However, the biological approach is to place the
fovea on one part of a scene, perform image analysis / object
identification there, and then move the eyes to fixate a dif-
ferent location in a scene (Rolls et al. 2003; Trappenberg
et al. 2002; Rolls and Webb 2014). This is a divide-and-
conquer strategy used by the real visual system, to simplify
the computational problem into smaller parts performed suc-
cessively, to simplify the representation of multiple objects
in a scene, and to facilitate passing the coordinates of a tar-
get object for action by using the coordinates of the object
being fixated (Ballard 1990; Rolls et al. 2003; Rolls andDeco
2002; Aggelopoulos and Rolls 2005; Rolls 2008, 2012a).
This approach has now been adopted by some computer
vision approaches (Denil et al. 2012; Kanan 2013; Kanan
and Cottrell 2010). We note that non-biologically plausible
approaches to object vision are important in assessing how
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different types of system operate with large numbers of train-
ing and test images (Khaligh-Razavi and Kriegeskorte 2014;
Cadieu et al. 2014), and that there are attempts to make mul-
tilayer error correction networks more biologically plausible
(O’Reilly andMunakata 2000; Balduzzi et al. 2014), but that
many of these systems are far from being biological plau-
sible. Biologically plausible systems for object recognition
need to have not only the properties described here, but also
mechanisms that use a local learning rule, no separate teacher
for each output neuron in a supervised learning scheme, and
no lateral copying of weights (Rolls 2016). Moreover, under-
standing how the brain operates is important not only in its
own right, but also for its implications for understanding dis-
orders of brain function (Rolls 2008, 2012b, 2016).

4.10 Outlook: some properties of inferior temporal
cortex neurons that need to be addressed by models
of ventral visual stream visual invariant object
recognition

The analyses described in this paper are intended to high-
light some properties thatmodels of visual object recognition
in the brain in the ventral visual stream need to achieve if
they are to provide an account of its functions in invariant
visual object recognition, with the criteria being identified
by the responses of neurons with transform-invariant rep-
resentations that are found in the inferior temporal visual
cortex (Rolls 2008, 2012a, 2016). First, the formation of sin-
gle neurons with translation, view and rotation invariance
needs to be accounted for. It is not sufficient to use a power-
ful decoder after the model network to achieve the required
performance, instead of invariance being represented by the
neurons themselves in the model of the ventral visual sys-
tem. An important implication for future research is that the
training set of stimuli needs to include different views of the
same object and not collections of images of objects in the
same class. Indeed, an important distinction is that much of
what is represented in the inferior temporal visual cortex is
about the invariant representation of different objects, so that
individual objects or faces can be recognized from different
views (Booth and Rolls 1998; Hasselmo et al. 1989), rather
than just knowing that the object is a face as in a classifica-
tion task. Second, the neuronal representation should be in
a sparse distributed form in which much information can be
read from the responses of single neurons (Rolls et al. 1997b).
Third, the information should be represented approximately
independently by different neurons, as least up to tens of neu-
rons (Rolls et al. 1997a). Fourth, the neuronal representation
needs to be decodable by a biologically plausible network
such as a pattern association network that uses dot product
decoding, which is biologically plausible for neurons (Rolls
2008; Rolls et al. 1997a; Rolls and Treves 2011). The reason
why the representation is in this form in the inferior tem-

poral visual cortex is, it is postulated, because the inferior
temporal visual cortex projects directly to brain areas such
as the orbitofrontal cortex and amygdala that perform pattern
associations of these representations with, for example, rein-
forcers such as taste and touch (Rolls 2008, 2014). Fifth, the
network of ventral visual stream processing needs to imple-
ment learning, for different views of an object may look very
different, yet single neurons do respond to these different
views (Booth and Rolls 1998; Hasselmo et al. 1989), as is
required for the appropriate associations to be output by the
next stages of pattern association processing (Rolls 2008,
2014). This paper has highlighted these properties. Further
properties include how top-down selective attention can use-
fully bias the object recognition system (with amodel of how
this has been implemented for VisNet described previously
by Deco and Rolls 2004); how cortico-cortical backprojec-
tions implement recall [with models described previously
(Rolls 1989; Treves and Rolls 1994; Rolls 2008; Kesner and
Rolls 2015; Rolls 2015)] [and this has implications for other
possible functions thatmight be proposed inmodels of vision
for backprojections (Rolls 2008, 2016)]; and how different
systems scale up to deal with large numbers of objects.

4.11 Conclusions

In conclusion, in this paper we have compared for the first
time two leading approaches to object identification in the
ventral visual system. We have shown how producing bio-
logically plausible representations that are similar to those
of primate inferior temporal cortex neurons is an important
criterion for whether a model is successful as a model of the
process. By this criterion, VisNet is biologically plausible,
and HMAX is not (Experiment 1). The findings have impor-
tant implications for future research, for this criterion will
be important to bear in mind in developing models and the-
ories of how the ventral visual system operates in invariant
visual object recognition in future. Moreover, it is important
to emphasize that neurons in the inferior temporal visual cor-
tex provide representations suitable for the identification of
individual objects, such as the face of a single individual seen
from different views, and not just classification of objects
such as hats, beer mugs, and umbrellas. We have also shown
(Experiment 2) that there are advantages to training with
training sets that provide the information for view-invariant
representations of objects to be learned, rather than trying
to perform classification of images as certain types of object
just by seeing random exemplars of the objects in random
views, which invites pattern classification based on features
relevant to a class, instead of facilitating invariant represen-
tations of objects to be learned. The latter, as implemented
in VisNet, provides a foundation for objects to be recognized
correctly when they are shown in what can be quite different
views, which is a property reflected by the responses of some

123



532 Biol Cybern (2015) 109:505–535

neurons in the primate ventral visual pathways, in regions
that include the inferior temporal visual cortex (Rolls 2008,
2012a). Another important implication is that a theory and
model of the ventral visual system must be able to account
for object shape recognition, not just recognition based on
features or parts, as tested by scrambling the parts of objects
(Experiment 3). Finally, in Experiment 4 we showed that
some objects that undergo catastrophic feature changes as
they transform into different views cannot be correctly cat-
egorized by systems that depend on features in an image,
such as HMAX, but can be correctly identified by systems
such as VisNet that can learn associations across time as
objects transform naturally in time by using a synaptic learn-
ing rule with a short-term temporal trace. These findings and
the conceptual points that we make have clear implications
for what needs to be solved by future models of invariant
visual object recognition in the ventral cortical visual stream.
Moreover, the research described has clear implications for
ways in which these computational problems may be solved
in the ventral visual stream cortical areas.
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