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Abstract

Many diseases can be prevented or mitigated through behaviour change, but
we lack a quantitative model that can accurately predict these changes and inform
policies designed to promote them. Here we introduce a quantitative model of health
behaviour that takes into account individual-level barriers, the health system, and
spread between individuals. We investigate limits of the model where each of these
determining factors is dominant, and use them to predict behaviour from data.

We apply the model to individual-level geographic barriers to mothers giving
birth in a health facility, and find evidence that ease-of-access is a major determinant
of delivery location. The geographic barriers allow us to explain the observed spatial
distribution of this behaviour, and to accurately predict low prevalence regions.

We then apply the model to the role of the health system in determining
health facility usage by mothers of sick children. We show that local health facility
quality does predict usage, but that this predictive power is significantly less than
that gained by including unaccounted-for spatial correlation such as social influence.
We also show evidence that results-based funding, rather than traditional input-
based funding, increases usage.

We develop a psychologically-motivated ‘complex contagion’ model for social
influence and incorporate it into a general model of behaviour spread. We apply this
model to short-lived behavioural fads, and show that ‘nudges’ can be very effective
in systems with social influence. We successfully fit the model to data for the online
spread of real-world behaviour, and use it to predict the peak time and duration of
a fad before the peak occurred.

Finally, we discuss ways to incorporate disease state into the model, and to
relax the limits used in the rest of the thesis. We consider a model which links
health behaviour to disease, and show that complex contagion leads to a feature
that is not present in traditional models of disease: the survival of an epidemic de-
pends non-trivially on the initial fraction of the population that is infected. We then
introduce two possible models that include both social influence and an inhomoge-
neous population, and discuss the type of data that might be required to use them
predictively.

The model introduced here can be used to understand and predict health
behaviours, and we therefore believe that it provides a valuable tool for informing
policies to combat disease.
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Chapter 1

Introduction

1.1 Motivation

Disease is a far larger cause of death than injury and war, causing around 71% of
the 55 million global deaths worldwide in 2013 [6]. Of these deaths, 22% were due to
communicable diseases such as HIV/AIDS, tuberculosis, and diarrhoea, and 49% due
to non-communicable diseases such as cancers and cardiovascular diseases. Although
life expectancy is increasing globally [6], there are still large disparities between the
developed and developing worlds and in some countries death rates due to particular
diseases are also increasing. This increase is despite the fact that many diseases
are known to be prevented or mitigated by changes to an individual’s behaviour.
Almost all of the major and increasing causes of death specifically noted in the
Global Burden of Disease (GBD) Study 2013 [6] can be prevented or mitigated by
known behaviour changes: using a condom to prevent HIV/AIDS transmission [7],
using a condom and avoiding needle-sharing to reduce the risk of liver cancer-causing
Hepatitis C [8], not misusing drugs to avoid drug use disorders, avoiding smoking to
reduce the risk of pancreatic cancer [9], and dietary changes to reduce the risk and
severity of diabetes [10], chronic kidney disease [11], and atrial fibrillation or flutter
[12]. The other major and increasing cause of death specifically noted in the GBD
Study, sickle-cell anaemia, is a genetic disease, but taking medication to mitigate
this disease could still be considered a health behaviour.

For the purposes of this thesis we consider a change in behaviour to be the
action an individual completes, and does not include situations where an individual
is willing but unable to complete the change; if clean needles are not available to a
needle-sharing individual then we will still consider the individual’s behaviour to be
sharing needles. It is the individual’s action which affects the risk of disease, and so
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by understanding these actions we may be able to reverse these increases and further
reduce the global burden of disease.

There are four main causal mechanisms for an individual’s risk of contracting
a disease. To use Type 2 diabetes as an example: genetic factors mean that some
individuals are more likely to contract Type 2 diabetes than others [13]; direct en-
vironmental risk factors such as the uterine environment can lead to a higher risk
of Type 2 diabetes in a child whose mother has contracted the disease [14]; and
behaviours such as a healthy diet and physical exercise can help to prevent diabetes
[10]. For communicable diseases, the disease state of other individuals in the popu-
lation is also an important risk factor [15]. We can describe the risk of an individual
contracting a disease, taking into account these types of factors, as

P (Zi(t) = 1|Bi(t),Z(t), Gi, Ei(t), t) ,

where Zi(t) is an individual’s disease state at time t, Gi are the individual’s
genetic traits, Ei(t) are risk factors in the individual’s environment, Z(t) is the
disease state of the whole population, and Bi(t) is the behaviour of the individual.

Genetic information is increasingly easy to obtain, and its effects on disease
can be assessed through, for example, genome-wide association studies [13]. Envi-
ronmental factors, such as air pollution, are also generally easy to measure directly
[16], because they do not have the ethical and practical problems associated with
observing human behaviour. The effect of the disease state of others on disease state
is the focus of much of infectious disease epidemiology, which has developed many
techniques to approach this problem [15]. There is a similar difficulty with under-
standing the behavioural risk factors Bi(t), in that they are likely to be influenced
by the behaviour of others in the population [17], which introduces a feedback loop
not present for environmental or genetic factors. To increase the complexity still
further, individual behaviour could also depend on the disease state Z(t) of the rest
of the population [18, 19, 20], and on environmental factors such as the ability to
find cheap and healthy food in a ‘food desert’ [21]. This complexity could explain
why there is as yet no quantitative general model of health behaviour, and why the
burden of diseases preventable by behavioural intervention is still increasing [6].

The aim of this thesis is to develop a general quantitative model of health
behaviour that can be fitted to data and used predictively to understand how to en-
courage good health behaviours. In this chapter we discuss a qualitative model from
the psychology literature and use it to motivate our quantitative model. Chapters
2-4 investigate specific limits of the general model, and chapter 5 discusses initial
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approaches to combining these limiting cases into a general model.

1.2 The Health Belief Model

There are several qualitative psychological models for an individual’s decision to
take part in a health behaviour [22], but one of the most widely-accepted is the
Health Belief Model (HBM) [23]. The model was originally developed in the 1950s
to explain conceptually the failure of individuals in the United States to take part
in programs to prevent and detect disease. The HBM defines key concepts that are
believed to influence health behaviour:

• Perceived susceptibility: an individual’s belief in the likelihood of contracting
a disease

• Perceived severity: their belief in the severity of the disease

• Perceived benefits: their belief that the behaviour in question will reduce the
risk or severity of the disease

• Perceived barriers: their belief in the physical and psychological costs of the
behaviour

• Cues to action: the awareness that an individual has about the behaviour, such
as from public health information campaigns, or from social contacts

• Self-efficacy: the individual’s confidence in their own ability to take action

Estimates of each of these concepts applied to individuals have been used to pre-
dict health behaviours. A major synthesis of evidence for the HBM, conducted by
Janz and Becker [23], concluded that susceptibility, severity, benefits, and barriers
were statistically significant predictors of preventative health behaviours, sick-role
behaviours, and health centre utilisation in most of the studies examined. The HBM
has also been used successfully to design interventions to prevent risky sexual be-
haviours and to promote cancer-screening uptake [22]. The HBM therefore provides
a useful qualitative framework for understanding health behaviours, and can help to
inform the quantitative and predictive model of health behaviours that is the goal
of this thesis.

1.3 Definitions for a general model of health behaviour

Throughout this thesis, health behaviours will be treated as being discrete: each
individual may only be in one behavioural state at a time. For our general health
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behaviour model, an individual i’s behaviour at time t is given by an integer random
variable Bi(t), with each integer refering to a different behavioural state. Possible
states could be, for example, Bi(t) 2 {0, 1}, with 1 corresponding to individual i
taking part in the behaviour and 0 to not taking part. The behaviour of the entire
population at time t is given by the vector B(t).

Not all individuals are the same: each will have characteristics such as age
and level of education. We label these covariates ⇥(t). Individuals may also live
in different environments, such as urban or rural, and have different levels of access
to their local health system. These environmental factors we label E(t). For conve-
nience, we combine the individual and environmental covariates into one variable:

X(t) = {⇥(t),E(t)}.

Individuals may be influenced by others in their social contact network, and
the effect of this influence will be labelled f(B(t)).

There may be an additional dynamic process occuring at the same time as
the behavioural process, Z(B(t), t), which depends on the behavioural state. In
particular, this could be an infectious disease spreading in the same population as a
preventative behaviour which reduces the spread of the disease.

Finally, in some chapters we consider survey data, in which the behaviour of
only a small sample of the population is observed. In this case, we define the survey
sample Y(t) ⇢ B(t), which is the behaviour of individuals in the sample at time t.

All of the variables defined above are relevant to behaviour, according to the
HBM:

• Perceived susceptibility: behaviour depends on the disease state of other in-
dividuals in the population, Z(B(t), t), which in turn depends on their be-
havioural states.

• Perceived severity: behaviour depends on both the disease state of others,
Z(B(t), t), and on covariates such as an individual’s level of education given in
⇥(t).

• Perceived benefits: behaviour depends on covariates such as an individual’s
level of education given in ⇥(t).

• Perceived barriers: some behaviours depend on ease of access or costs of taking
part in the behaviour. This could act through the individual’s environment,
E(t), such as the local health system.
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Figure 1.1: Illustration of the general model for health behaviour presented in this
thesis. The individual-level factors will be investigated in chapter 2, environmental
factors in chapter 3, social factors in chapter 4, and disease risk in chapter 5.

• Cues to action: behaviour depends on the behaviour of social contacts, f(B(t))

• Self-efficacy: may depend on many individual, ⇥(t), and environmental, E(t),
factors.

If these are the important variables for understanding behaviour, then

B(t) ! B (t, f(B(t)),X(t),Z(t,B(t))) .

The general model is illustrated schematically in Figure 1.1.
We will use two main assumptions to make the model tractable. First, we as-

sume that changes in behaviour are Markovian, which means that the probability of
B(t) transitioning to another state B(t+�t) depends, at O(�t), only on B(t), X(t),
and Z(B(t), t). This ‘memoryless’ property allows us to model the time each individ-
ual spends in a particular behavioural state as following an exponential distribution,
with a rate depending on B(t), X(t), and Z(B(t), t). We refer to the component
of the rate that depends on B(t) as the ‘social influence’ component, since it arises
from individuals observing and being influenced by the behaviours of those around
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them; the component that depends on X(t) we refer to as the ‘covariate’ component,
which arises from external factors that influence an individual’s behaviour.

The second assumption is that the covariates X(t) have a linear effect on the
log-odds of an individual taking part in a behaviour:

logit(P (Bi(t) = 1)) = �T
⇥+ �TE. (1.1)

The log-odds of a probability p are defined as:

logit(p) = log
✓

p

1� p

◆
.

This assumption is the key one behind the statistical method Logistic Re-
gression, described in chapter 2 and used throughout the thesis.

In the following chapters, we consider three limits:

• Covariate-only, chapter 2 and chapter 3: consider a timescale much slower than
that on which social influence operates, so B(t) ! B(X(t),↵) where ↵ is a
constant ‘average’ social influence effect on each individual.

• Homogeneous population, chapter 4: consider populations in which the covari-
ates are the same for all individuals and are constant over time, so B(t) !
B(t, f(B(t))).

• Homogeneous population with disease, chapter 5: consider social influence
in an homogeneous population with a separate dynamical process influencing
behaviour, so

B(t) ! B (t, f(B(t)),Z(t,B(t))) .

The general model which includes all of the aspects mentioned above is:

B(t) ! B (t, f(B(t)),X(t),Z(t,B(t))) .

In chapter 5 we discuss the data required to fit such a model, and discuss
how this model might be approached based on the insights gained from the other
work in this thesis.
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Chapter 2

Understanding individual-level

factors

2.1 Introduction

Many individual-level factors can influence health behaviour. Age, for example, has
been shown to be important in determining whether an ill person will visit a health
worker or just stay at home [24]; education may mean the difference between someone
using a condom instead of having unprotected sex [25]. An individual’s surroundings
also affect their behaviour: if the roads in their area are rough then they may be less
likely to go to a hospital [26].

Most studies of health behaviour concentrate on a few behavours and a small
number of factors, such as age and education, or wealth, or proximity to health
centres [27, 28, 29, 30, 31, 32]; however, they do not combine these into an overall
model that takes into account interactions between factors. Due to the difficulty in
collecting sufficient data covering a large area, previous studies also tend to ignore the
spatial distribution of behaviours. Most data come from expensive surveys, carried
out infrequently, and hence cannot be used to investigate time trends. Recently,
however, a sampling methodology called Lot Quality Assurance Sampling (LQAS)
has been applied to survey collection. It allows smaller samples sizes to be collected
at each survey site while maintaining statistical power, and thus the cost of sampling
is sufficiently low that surveys may be carried out more frequently and in more areas
[33].

In this section I will develop a framework for using LQAS data to visualise the
distribution of a health behaviour across a country, understand the demographic and
geographic factors influencing that behaviour, and finally predict which areas of the
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country are likely to require intervention in future. I will illustrate this framework
by applying it to one particular health behaviour: mothers choosing to give birth in
a health centre, using LQAS data from Uganda.

2.1.1 Background

There is clear evidence that the prevalence of particular health behaviours varies
between socioeconomic groups: Rani et al. [34], for example, show that in India
the prevalence of tobacco consumption, a health behaviour strongly associated with
mortality [35], was significantly higher in poorer, less educated, or older individuals.
The correlation of socioeconomic status and education with an individual’s health
behaviour has been studied in much more depth than the relationship with the local
environment: the limited availability of healthy and affordable food in a ‘food desert’
[21], for example, acts as a barrier to healthy eating in these areas. Under the HBM
framework this would relate to the ‘perceived barriers’ concept, but in previous
empirical HBM studies this component has been measured by self-reporting rather
than geographic data. These barriers in the local environment are important to
consider because they may prevent an individual from taking part in a behaviour
even if they are aware of its health benefits. It is the goal of this chapter to add these
environmental aspects to our current understanding of health behaviours, allowing
us to better predict which individuals will take part in a health behaviour and which
geographical regions have high and lower prevalence of the behaviour.

The biggest impacts that understanding health behaviours can have on reduc-
ing disease are in developing countries, where the risk of preventable disease is high
and basic positive health behaviours are not being followed due to a combination
of availability of health services and individual willingness. More than 10 million
children die each year, most from preventable diseases in developing countries [36].
Jones et al. [37] estimate that currently known interventions could prevent around
63% of these deaths, but that these interventions are not being delivered to the
mothers and children who need them. Three of the Millennium Development Goals
(MDG) have components directly related to health behaviours [38]:

• Goal 4: Reducing the under-5 mortality rate

• Goal 5: Proportion of births attended by a skilled health worker

• Goal 6: Proportion of children under 5 sleeping under insecticide-treated bed
nets
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The Millennium Development Goals Report 2014 [38] has identified both child mor-
tality and maternal mortality as areas where much more effort is needed to reach set
targets. Understanding which children and mothers are least likely to take part in
basic positive health behaviours, and which regions have low prevalence of these be-
haviours, could be an important tool for reaching the MDG targets in future. In this
chapter we therefore investigate behaviours relating to maternal and child health in
developing countries and, as called for in the MDG Report 2014, use statistical mod-
elling to identify problems in local areas and specific population groups to suggest
effective interventions.

The risk of maternal and neonatal mortality is highest around the time of
labour [39], and this risk can be significantly reduced if skilled health personnel
attend the delivery [40, 41, 42, 43]. In low-income countries, newborns delivered by
a skilled birth attendant in a health facility stand a greater chance of survival than
newborns delivered elsewhere [40]. Campbell and Graham [44] strongly recommend
a policy of encouraging facility-based delivery (FBD) to reduce maternal mortality,
due to the higher likelihood of skilled attendance and the provision of emergency
obstetric care that would not be available at home. In many developing countries,
however, many mothers give birth at home without skilled attendance.

2.1.2 Previous studies

Previous studies of delivery in a health facility have included the following factors:
maternal characteristics, index pregnancy characteristics, access, socio-cultural be-
liefs and past experiences of the mother. Maternal characteristics such as young
maternal age, high levels of education and increased autonomy are positively asso-
ciated with FBD [27, 28, 29, 30, 45]. Parity, or the number of times a woman has
given birth, is negatively associated with FBD use [29, 46], and several traits relating
directly to the pregnancy in question also affect safe delivery practices: labour onset
late at night or short duration of labour can inhibit a mother from accessing a health
facility for delivery services [46]. The number of ANC visits a mother has undertaken
is positively associated with the use of health facilities for delivery, possibly because
ANC staff are more likely to advise in favour of FBD [47].

Ease of physical and financial access to health facilities is positively associated
with FBD [29, 47, 48]. Increased distance to facilities or facilities located in difficult
terrain, as well as high costs, both formal and informal, are negatively associated
with FBD [27, 28, 31, 32]. Most of the studies of FBD mentioned above use data
from countrywide cross-section surveys, such as Demographic and Health Survey,
at one time point. These studies do not provide information on time trends or on
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the spatial distribution of FBD prevalence, because these surveys select clusters of
households from across a wide spatial area [49].

2.1.3 Survey sampling methods

Most previous studies investigating facility-based delivery and other health behaviours
in developing countries use data from clustered random sampling. A common survey
design for estimating level of use of health services is the ‘30 ⇥ 7’ method [50], in
which 30 clusters are selected across a country and 7 individuals are interviewed
in each cluster [51]. A greater numbers of clusters can be chosen to provide better
regional coverage: the MEASURE DHS household survey in Uganda in 2011, for
example, selected 404 clusters and 25 households from each cluster [45] to obtain
confident estimates for the 10 sub-regions in Uganda. This method is practical for
estimating health behaviour prevalence across a country or in large spatial regions
within it, but to resolve finer spatial differences would require more clusters and
hence more expense.

An alternative to cluster sampling which estimates prevalence on finer spatial
scales and is cheaper to implement at the local level is LQAS sampling. LQAS is a
sampling method that is increasingly being used to monitor health systems across
the world [33] because it is requires smaller sample sizes than traditional clustered
sampling to identify spatial regions that are not reaching a particular target; it
is also easy to incorporate into local Monitoring and Evaluation systems and can
therefore be carried out more frequently and ensure higher coverage [33]. The LQAS
method splits large spatial regions into sub-regions, and calculates the probability
that a particular sub-region, or ‘supervision area’ (SA), has met a specified prevalence
target, based on a random sample from that supervision area. The sample size n

is chosen such that there is acceptably low probability of misclassification [50]; that
is, classifying a supervision area that meets the target prevalence as having failed to
meet it and vice versa.

All supervision areas within the larger spatial region are surveyed during
LQAS, so in addition to providing information on target achievement, the data
from these individual supervision areas can be aggregated to provide a stratified
random sample of the aggregated area [52]. This is an advantage for this application
because some of the supervision areas within a region may be different from each
other: some may be urban and others rural, or some may be closer to health centres
than others. By obtaining a stratified sample we can be more confident that the
aggregated estimate is representative of the whole larger region [53], and obtain
an estimate with higher precision than that obtained by clustered sampling [54].
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The 95% confidence interval for the aggregate prevalence estimate can be calculated
based on the sample size for different values of the true prevalence in a region. The
worst-case scenario for the confidence interval occurs for a true prevalence of 50%,
and the interval width decreases with sample size. For sample sizes above 95 even
this worst-case scenario has a 95% confidence interval of less than ±10%, so most
LQAS surveys choose supervision area sample sizes such that when aggregrated to
regions of interest the total sample size is above 95 [52].

The LQAS method’s improved spatial information and lower cost for repeated
surveys makes it a practical tool for investigating the spatial distribution and tem-
poral trends of health behaviour prevalence in developing countries.

2.2 Data

Uganda, being a Countdown Country, is one of 75 countries where >95% of maternal
and child deaths take place, and these mortality rates are high nationwide. The
World Health Organisation and UNICEF recommend that countries analyse data
at both national and subnational levels to identify gaps and inequities in health
services [55]. They urge improved data collection and analysis methods to decrease
the amount of missing data and ensure that timely results are made available to
policymakers [55].

It is also important to uncover factors influencing facility-based delivery and
take into account potential confounders. The studies mentioned above did not inves-
tigate interactions between variables, which are essential to understanding situations
where two or more explanatory variables enhance or reduce each other. They gener-
ally included at most one geographic covariate, and did not try to explain or predict
spatial variations in FBD. In this chapter, we assess variations over time and space
in FBD in Uganda, and fit a statistical model to identify factors associated with
FBD. We apply this model to 2003-11 data to identify areas expected to have low
indicator coverage in 2012, and validate this prediction with the actual data. This
approach can therefore inform policy-makers and program managers on the status of
FBD, trends and variations occurring over time, and can identify locations needing
further investigation.

We analyse a collection of LQAS surveys, in which a set of Ugandan districts
were chosen for each year in which a survey took place. Trained district health
managers collected data with household surveys conducted in 19-64 districts at 7
time-points during 2003-2011, using standard LQAS methodology [56]. The District
Health Management Team divided each district into 4-6 administrative sub-district
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strata or supervision areas (SA), and selected 19 mothers (or 24 if 4 SAs) randomly
from communities within each SA. Each SA had a similar population to the others
in its district, but exact weights for each supervision area were not available. Using
the definitions in chapter 1, the behaviour of respondents Y can be partitioned into
Y ={Y⇤

1, . . . ,Y
⇤
Nsa

}, where Y

⇤
j ⇢ B

⇤
j is the behaviour of the respondents from one

supervision area j, B⇤
j is the behaviour of the whole population in supervision area

j, and Nsa is the total number of supervision areas in the data.
The SA sample size was selected so that when sub-district data (the SA) are

aggregated, the resulting district-level coverage proportion estimates for key indica-
tors are calculated with a 95% confidence interval not exceeding ±10%. Communi-
ties were selected using Probability Proportionate to Size (PPS) sampling, wherein a
comprehensive community population list supplied by each district was the sampling
frame to select communities from which the individual samples are taken. PPS sam-
pling ensures that sample communities are selected based upon their proportional
representation of the entire population. Individual respondents were then randomly
selected from the PPS-selected communities using random sampling techniques [56].

A total of 11,723 randomly selected mothers of children aged 0-11 months
were interviewed. Each maternal questionnaire included demographic characteristics
and various health-related behaviours. Respondents with missing responses were
removed, leaving a total of 11,414 (97%) records with complete information. These
data were integrated into a superset and analysed.

For geographic variables we made use of geospatial road and population data
from 2009 [57] and 2010 Geographical Information System (GIS) locations of health
centres. We calculated the number of health facilities per capita based on the number
of health facilities with in-patient beds (Level III and above), since mothers are
referred to these higher-level facilities for FBD. A wealth index based on household
assets data and calculated in DHS 2011 [45] was used to calculate an mean wealth
index for each district. Altitude data was obtained from the US Geological Survey
[58].

2.3 Methods

2.3.1 Logistic Regression

In this chapter we will use the model equation (1.1) introduced in chapter 1. We
assume that the timescales on which the social effect f(B(t)) changes are much faster
than a year, the timescale present in this data. We also assume that mothers are
only influenced by others within their supervision area, so social effect for individual
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i, fi(B(t)), is given by fi(B(t)) = fi(B⇤
SA(i)

(t)), where SA(i) is the supervision area
of individual i. Combined, these two assumptions lead to the following social effect
term for each individual:

fi(B(t), t) = fi(B
⇤
SA(i)

) = ↵SA(i).

In addition to the social effect, there will also be unknown factors that lead
to individuals in the same supervision area having correlated behaviours. It is not
possible to separate these factors from the social effect, so we combine both into a
general ‘supervision area effect’, ⇠.

If we assume that the log-odds of taking part in a behaviour are a linear
combination of the individual-level, environmental, and social influence effects, then
we are left with the following statistical model:

Y ⇠ Binomial(p)

logit(p) = �T
⇥+ �TE+ ⇠.

This model takes the form of a random-intercept logistic regression. The
parameters for this model, �k and �k, can be interpreted as the increase in the
log-odds of the outcome associated with a unit increase in the covariate Xk. The
parameters therefore measure the strength of association between a covariate and
the outcome. In this chapter we do not try to estimate the supervision area effect ⇠,
but we account for it using the clustered bootstrap method described below.

The logistic regression model can also include interactions between covariates
by adding multiplicative terms to the linear predictor, like so:

logit(pi) = �01 +Xi,1�1 +Xi,2�2 +Xi,1Xi,2�3.

Interaction terms in the model represent the possibility that the effect of one
covariate depends on the value of another.

In this chapter we only consider behaviours that are binary, so Yi 2 {0, 1}.
The log-likelihood function for binary logistic regression is given by:

l(�, �|Y,X) /
NX

i=1

(Yilogpi + (1� Yi)log(1� pi)) . (2.1)

This function is numerically maximized with respect to � to provide the
maximum-likelihood estimate for the covariate coefficients. We calculated 95% con-

13



fidence intervals for the � and � parameters in a robust way that takes into account
the additional correlations due to the supervision area effect ⇠, using the clustered
bootstrap.

2.3.2 Clustered bootstrap

We calculated 95% confidence intervals for prevalence estimates in each surveyed
district, and for logistic regression coefficients, using a clustered bootstrap [59]. The
clustered bootstrap procedure is as follows [60]:

1. Original data consists g clusters, G = (x1, . . . ,xg)

2. Repeat:

(a) Create a new data set G⇤
i by sampling g clusters with replacement from

G

(b) Estimate the parameter of interest, µ̂i, based on this new sample

3. Calculate the [2.5, 97.5]th percentiles of µ̂. This corresponds to the 95% con-
fidence interval for the estimate of population parameter µ.

When estimating district prevalence, the original clusters for district d are Y

†
d =

{Y⇤
j8j 2 D(d)}, where D(d) are the supervision areas in district d. The parameter

of interest is µ̂d =
P

Yi2Y†
d
I{Yi=1}. When estimating logistic regression coefficients,

the original clusters are (Y,X) ={(Y⇤
1,X

⇤
1), . . . , (Y

⇤
Nsa

,X⇤
1)}, and the parameters of

interest are � and �. The logistic regression model is fitted during each iteration of
the bootstrap, and the values for the � and � parameters used for µ̂i.

We used a clustered bootstrap for this model because a simple bootstrap
method would ignore the supervision area effect by assuming that the data originate
from independent random samples, leading to incorrect inference [61].

2.3.3 Model selection

In this chapter we chose interactions to include in the model using stepwise forward
selection [62] based on the Akaike Information Criterion (AIC) [63]. The AIC is a
quantity which describes the relative quality of a statistical model, finding a balance
between the goodness-of-fit of the model and the number of parameters in the model.
It as calculated as follows:

AIC = 2k � 2l⇤,
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where l⇤ is the maximum value of the log-likelihood function for the statistical model,
in this case calculated in equation (2.1). Lower values of the AIC indicate a better
model. During stepwise forward selection a base model with no interactions was
compared with models including each plausible interaction term, and the interaction
model with the lowest AIC was then selected. The process was then repeated with
the new selected model as the base model, until no additional interaction term model
has a lower AIC.

2.3.4 Model validation

We used an receiver operating characteristic (ROC) curve to summarize the pre-
dictive power of our model. The ROC curve is defined as a piecewise linear curve
plotting the relationship between the true positive rate (the probability that a true
outcome is correctly predicted to be true) and the false positive rate (the probability
that a false outcome is predicted to be true) for different classification cutoffs [64].
The true positive and false positive rates for a classification cutoff � is given by:

TPR(�) =
1

N

NX

i

I{Yi=1}I{pi��}

FPR(�) =
1

N

NX

i

I{Yi=0}I{pi��}.

This is repeated for �i = pi 8i, where p is the vector of probabilities predicted by
the model.

The predictive power can be summarised by the area under the ROC curve
(AUC):

AUC =
1

mn

mX

i=1

nX

j=1

I{p+i �p�j >0},

where
�
p+1 , . . . , p

+
m

 
are the predicted probabilities for the m positive (Yi = 1) dat-

apoints and
�
p�1 , . . . , p

�
n

 
are the probabilities predicted for the n negative (Yi = 0)

datapoints. The AUC represents the probability that a randomly-selected positive
datapoint will have a higher predicted probability than a randomly-selected nega-
tive datapoint. An AUC of 1.0 indicates a perfect prediction: all datapoints were
correctly classified. An AUC of 0.5 indicates a random test, which allocates positive
outcomes at random for half of the datapoints [65]. We calculate the AUC nonpara-
metrically, using the trapezoidal rule to calculate the area under the ROC curve.
Both the ROC curve and AUC were calculated using the scikit-learn package in the
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Python programming language [66]. We calculated 95% confidence intervals for the
AUC by using predictions from the models fitted during the clustered bootstrap
process and then taking the [2.5, 97.5]th percentiles.

Although ROC curves provide a measure of within-sample predictive power,
they do not measure the accuracy of the model when applied to data that was not in
the original sample. We used two-fold Monte Carlo cross-validation [67] to estimate
the out-of-sample prediction error for the logistic regression model. This process
proceeds as follows:

1. Randomly split data into two halves: a training set and a test set.

2. Fit the model to the training set

3. Use this fitted model to predict outcomes for the test set

4. Store the difference between the true test set outcomes and those predicted by
the model

5. Return to step 1.

Once this process has been repeated a sufficient number of times the root-mean-
square error between the true and predicted outcomes can be calculated as follows:

MSE =

vuut
N⇤X

i=1

(Y ⇤
i � µ⇤

i )
2,

where Y

⇤ are the outcome variables of the test dataset and µ⇤ are the model predic-
tions for the test dataset. The MSE provides an estimate of the average prediction
error for unseen data.

2.4 Analysis

The aim of our study is to identify the simultaneous correlates of FBD, in order to
provide a framework for classifying districts in different priority levels. Our analysis
consists of 3 phases: FBD mapping, model construction, and prediction of priority
groups. All analysis was done using the statistical software R version 2.15 [68], and
we used the R-package ‘maptools’ [69] to construct the maps.

2.4.1 FBD mapping

We classified mothers as giving birth either at home or in a health facility and
plotted on a map the percentage of mothers with FBD for each district surveyed.
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We constructed the maps by colouring the districts in a map of Uganda based on
the percentage of mothers surveyed in each district who had given birth in a health
facility. One map was produced for each cluster of survey years: 2003-04, 2006,
2009-10, and 2011. Survey years were combined so that a similar number of districts
were surveyed in each cluster.

One complication for producing these maps was that the number of districts
in Uganda increased between 2004 and 2006, and between 2006 and 2009. The
indicator for each district was calculated based on the boundaries used at the time
of the survey, but to aid comparison between survey years we plotted the indicator
for all survey years on the post-2009 district map. For the older districts that were
divided in subsequent years, we applied the value of the indicator for the old district
to each of the districts in 2009 that it had been divided into. For example, the 2006
district in the Western region of Uganda called ‘Bushenyi’ was subsequently divided
into five districts. When plotting a map of the 2006 survey results, we assigned
the indicator value of the 2006 ‘Bushenyi’ district to all of the five districts that it
became in the 2009 map. We calculated 95% confidence intervals for the prevalence
in each district using clustered bootstrapping, as described in section 2.3.2.

2.4.2 Model construction

Using all 2003-2011 data, we fitted a logistic regression model to investigate what
and how factors were associated with FBD simultaneously. The individual-level
factors included in the model were age, education and the year that the mother
was surveyed. Marital status was removed from the model since it did not have
a statistically significant effect. The number of mothers in each group of survey
years with each level of educations, and with each age group (ages are grouped for
conciseness), are given in Table 2.1.

We also included district-level covariates: each mother was assigned a value
for the number of health facilities per capita, population density, road density, wealth
index, and mean and standard deviation of the altitude of her district. The mean
value and range of these covariates across all districts is given in Table 2.2.

These covariates showed significant nonlinearity. We reduced this by applying
a base-2 logarithm transformation and checking if the AIC for the fitted model was
improved. Four covariates—health facilities per capita, population density, road
density, and standard deviation of altitude—were transformed in this way (shown in
Figure 2.1). Two covariates—mean altitude and wealth index—were not improved
by the transformation and were thus left untransformed (Figure 2.2).

Correlations between covariates are shown in Figure 2.3, and correlation co-
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Characteristic Levels Sample Size per Survey Year
2003-04 2006 2009-10 2011

Education None 623 180 1542 2506
Primary 1929 727 729 1110
Secondary 507 239 319 644
Post-secondary 63 33 83 180
Total 3122 1179 2673 4440

Age <20 724 265 530 843
20-30 1765 645 1507 2522
30-40 580 251 567 965
>40 53 18 69 110
Total 3122 1179 2673 4440

Table 2.1: Characteristics of Ugandan mothers of children 0-11 months for each
surveyed year.

Covariate Mean value Range
across all districts

Wealth index 0.0 (-2.0 to 3.6)
Health centres per 100,000 capita 4.9 (0.2 to 36.7)
Road density (metres per km2) 133.8 (0.0 to 358.6)
Standard deviation of altitude (metres) 146 (10 to 956)
Mean altitude (metres) 1221 (701 to 2428)
Population density (per km2) 279 (4 to 8647)

Table 2.2: Characteristics of district-level covariates
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Figure 2.1: Covariates with significant nonlinearity showing untransformed (left)
and log2 transformed (right).
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Figure 2.2: Covariates that were not improved by the log2 transformation.

hcpc roaddens popdens wealth topo_std topo_mean
hcpc - 0.33 0.63 0.32 0.16 0.36
roaddens - 0.39 0.24 -0.29 -0.13
popdens - 0.21 -0.22 -0.01
wealth - 0.05 0.21
topo_std - 0.70
topo_mean -

Table 2.3: Spearman correlation coefficients between pairs of district-level covariates.
Population density and health centres per capita, and mean altitude and standard
deviation of altitude, showed the highest correlation.

efficients are given in Table 2.3. The biggest correlations are between the mean
altitude in a district and the standard deviation of altitude, and between health
centres per capita and population density.

All covariates were included as continuous variables, except for education
which was categorical. We used forward selection [62] based on the Akaike Infor-
mation Criterion (AIC) [63] to include significant interaction terms between the
covariates. Our selected model gave an estimate of the odds ratio (OR) for FBD
for each covariate. For our model, the OR for a covariate is the ratio between the
odds of FBD for two mothers, both of whom, for the covariate being examined, have
all other covariates set to their mean values. If the covariate is categorical, such
as education level, then the ratio is between each level and the lowest level which,
in this example, is ‘no formal education’. If a base-2-log-transformed covariate was
used in the model, then the ratio is between the odds calculated for the covariate
and double the covariate. For the other continuous covariates, the ratio is between
the odds calculated for the covariate and the covariate plus a unit increase. The OR
therefore provides an estimate for how strongly each covariate is associated with the
odds of FBD.

We validated our selected model by comparing it to a null spatial model, for
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Figure 2.3: Scatter plots between pairs of district-level covariates to show the rela-
tionship between each pair.
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which the probability of FBD for a mother is predicted to be the average value for her
district. This null model represents a situation where each district is totally separate,
and the differences between the indicators in each district are due to unknown spatial
factors. If this null model has a better AIC then the unknown spatial factors are more
important than the covariates we identified. As a second stage of model validation
we looked for spatial correlation in the residuals of our selected model: we plotted
the difference between the residual for each pair of districts against the distance
between the two districts. Significant correlation between the distance between two
districts and the difference in their residuals would imply that some spatial patterns
in the indicator have not been captured by the model. As a third stage of model
validation we constructed an ROC curve and calculated the area under it as a test
of the model’s accuracy. Finally, as a fourth stage, we used two-fold Monte Carlo
cross-validation [67] to estimate the prediction error for unseen data; the model was
repeatedly fitted to a randomly chosen half of the 2003-2011 data and then used
to predict the FBD values of the other half. For each iteration, we calculated the
squared error between the observed and predicted district-level FBD indicator, and
took the mean over all 1000 iterations. The resulting mean squared error measured
how well the model predicted the indicator for unseen data.

2.4.3 Prediction of priority groups

Finally, we used the model to classify unsurveyed districts into ‘priority’ groups
to flag districts predicted to have particularly low indicator values. Our selected
unsurveyed districts are those which were actually surveyed in 2012. Since we do
not know the distribution of age and education in these unsurveyed districts, we
decided to predict an upper and lower limit for the indicator in each district rather
than an average value. We chose the values for age and education most strongly
associated with FBD and then the values with the strongest negative association,
and then we used the model to predict the probability of FBD for a mother with
her age and education set to these values and the survey year set to 2012. To obtain
a reasonable upper limit for the indicator in each district, we applied the model to
the strongly associated age and education values chosen above. To account for any
uncertainty in the model parameters we took the upper part of 95% CI obtained
from the model as a conservative estimate of the upper limit. For the lower limit,
the same procedure was carried out with the negatively associated values and taking
the lower part of the 95% CI. The lower and upper limit form the predicted range
of each district. The priority groups were assigned on the basis of these limits.
The low-priority group, defined as districts with lower limits between 50-100% FBD
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and upper limits between 80-100% FBD, contained districts that were likely to have
high indicator values. The mild-priority group, defined as districts with lower limits
between 0-30% and upper limits between 60-80%, contained districts likely to have
fairly low indicator values. The high-priority group, defined as districts with lower
limits between 0-30% and upper limits between 30-60%, contained districts likely
to have very low indicator values. All other scenarios were classified as an unclear-
priority group. We then validated the projections by checking that the 2012 values
lay within their predicted ranges.

2.5 Results

We plotted spatially the percentage of mothers of children aged 0-11 months with
FBD for different time points (Figure 2.6). During the time-period over which the
data were collected, some districts subdivided; so we plotted the indicator on the
2011 district map to aid comparison across time.

For early survey years (2003 to 2006) most districts have <60% of mothers
of infants with FBD, except around the capital, Kampala. For later years (2009 to
2011), >60% of mothers had FBD in most surveyed districts. Although much of
northern Uganda was not sampled in the more recent time-points, the one district
sampled in both 2003-04 and 2011 increased from 20-30% to 70-80%. This progress
is not replicated everywhere. Surveys conducted in eastern Uganda in later years,
for example, still reported <50% FBD.

We give the distribution of ages and educational categories for mothers with
complete data in Table 2.1. Table 2.4 shows the logistic regression coefficients, and
Table 2.5 shows the odds ratio for each covariate in the model for an ‘average’ mother.
An ‘average’ mother has secondary-level education, is 25-years old, was surveyed in
2007, and lives in a district with average values of all district-level covariates. The
results show that the odds of FBD were significantly lower for each one-year increase
in maternal age (OR=0.98 [0.97, 0.99]), whereas they were significantly increased
for each additional level of maternal education (Primary: OR=1.59 [1.42, 1.78],
Secondary: OR=3.37 [2.88, 3.94], Post-secondary: OR=10.4 [6.28, 18.1]). The odds
of FBD were significantly greater in districts with double the health facility density
(OR=1.12 [1.02, 1.23]), or road density (OR=1.13 [1, 1.26]), or in districts with
a unit increase in the wealth index (OR=1.38 [1.24, 1.53]). Living in the capital,
Kampala, was strongly associated with FBD (OR=8.38 [2.24, 23]). Districts with
double the standard deviation of altitude (a proxy for the roughness and difficulty of
the terrain) were strongly associated with a decrease in the odds of FBD (OR=0.89
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[0.84, 0.94]). Finally, there was a significant time trend: mothers surveyed in later
years were more likely to have FBDs (OR=1.08 [1.04, 1.13]).

Our model had a significantly lower AIC (AIC = 13383) than the null spatial
model (AIC = 13690). It also performed better under cross-validation: the indicator
predicted for each district based on unseen data was within 20% of the observed
indicator for 95% of the districts, whereas the null spatial model predicted the in-
dicator of only 75% of districts within 20% of the observed value. Our model is
therefore a significantly better explanation of the observed prevalence than a model
with separate unknown spatial covariates for each district.

Figure 2.4 shows the spatial correlation of the indicator and of the resid-
uals from our model. The indicator shows significant correlation of the indicator
differences for pairs of districts against the distance between them, whereas this cor-
relation is not present in the model residuals. This result suggests that the model is
capturing much of the spatial patterns present in the data. The area under the ROC
curve, shown in Figure 2.5, was 0.71 [0.70, 0.72], which is significantly higher than
that expected for a random classifier, and is similar to good epidemiological models
of disease [70] [71].

Using the 2003-2011 fitted logistic regression model, we predicted for all Ugan-
dan districts the reasonable lower and upper limits for FBD during 2012, without
requiring LQAS data for that year. We categorise districts into different priority
levels using these predicted values. We validate these predicted priority levels by
comparing them with indicator values calculated from a subsequent 2012 LQAS sur-
vey covering 61 districts (Figure 2.7). The priority map identifies many north-eastern
districts as being mild or high priority – classifications that agree with the low values
for these districts seen in the observed data. In addition, all but four (6.6%) of the
observed indicator values fall within the confidence range predicted by the model.

2.6 Discussion

Our results show the percentage of mothers with FBD increasing over time, but
varying among surveyed districts (Figure 2.6). This variation is strongly correlated
with geographic and demographic factors. Initiatives meant to increase the uptake
of services, including maternal services, have been introduced in Uganda in the past
several years [72]. Although this analysis cannot prove causation, the trend over
time displays a progressively greater uptake of maternity services in most areas.
Despite this pattern, some districts display low FBD, particularly in northeastern
Uganda. The logistic regression model provides possible explanations; specifically,
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Covariate Coefficient and 95% CIs §
(Intercept) 0.107 [-0.303,0.503]
Age -0.0285 [-0.0406,-0.0162] *
Education (primary) 0.408 [0.215,0.607] *
Education (secondary) 1.42 [1.14,1.7] *
Education (post) 2.72 [1.98,3.94] *
Health facility density † -0.036 [-0.314,0.254]
Road density † 0.0824 [0.002,0.156] *
Population density † 0.297 [0.0743,0.525] *
Living in Kampala 1.9 [0.808,3.14] *
District wealth index 0.307 [0.208,0.415] *
Standard deviation of altitude † -0.176 [-0.26,-0.0921] *
Mean altitude 0.325 [0.072,0.566] *
Year of survey 0.0777 [0.0164,0.142] *
Interaction Term
Standard deviation of altitude : Mean altitude -0.191 [-0.28,-0.0998] *
Health facility density : Year 0.0538 [0.0134,0.0956] *
Road density : Population density -0.253 [-0.372,-0.145] *
Mean altitude : Year -0.0696 [-0.105,-0.0329] *
Population density : Year -0.0854 [-0.119,-0.0506] *
Health facility density : Mean altitude -0.0962 [-0.333,0.122]
Education (primary) : Year 0.0133 [-0.0183,0.0441]
Education (secondary) : Year -0.052 [-0.0977,-0.00668] *
Education (post) : Year -0.119 [-0.281,-0.00558] *
Age : Year 0.00213 [0.000132,0.0041] *
Health facility density : Mean altitude : Year 0.0446 [0.0149,0.0765] *

* A 95%-significant positive or negative effect
† Results for a doubling of this variable, rather than a unit increase

Table 2.4: The coefficient for each covariate and interaction term in this predictive
model of delivery in a health facility in Uganda. Confidence intervals were calculated
using clustered bootstrapping with 1,000 iterations.
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Covariate Odds ratio and 95% CIs
Age 0.98 [0.974,0.987] *
Education (primary) 1.59 [1.42,1.78] *
Education (secondary) 3.37 [2.88,3.94] *
Education (post) 10.4 [6.28,18.1] *
Health facility density † 1.12 [1.02,1.23] *
Road density † 1.13 [1,1.26] *
Population density † 0.97 [0.892,1.06]
Living in Kampala 8.38 [2.24,23] *
District wealth index 1.38 [1.24,1.53] *
Standard deviation of altitude † 0.89 [0.842,0.941] *
Mean altitude 1 [0.9997,1.001]
Year of survey 1.08 [1.04,1.13] *

* A 95%-significant positive or negative effect
† Results for a doubling of this variable, rather than a unit increase

Table 2.5: The odds ratio for each term included in the model. The odds ratio
is given for a unit increase in the (possibly transformed) covariate, for a mother
aged 25 and with secondary-level education, surveyed in 2007, and all district-level
covariates set to their average. Confidence intervals were calculated using clustered
bootstrapping with 1,000 iterations.
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Figure 2.4: Difference in observed indicator (left) and model residuals (right) against
distance for all survey years. Distance between districts is significantly negatively
correlated (p = 0.026) with the difference in indicator values, but once the model
prediction has been subtracted the residuals are no longer significantly correlated
(p = 0.386).
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Figure 2.5: The ROC curve for this model, showing the true positive rate against false
positive rate for various thresholds. The area under this curve is 0.71 [0.70, 0.72],
where a perfect classifier would have an AUC of 1.0 and a random classifier would
have an AUC of 0.5.

low uptake is associated with low health facility density, low road density, moun-
tainous terrain, and lack of geographical access to health facilities due to few roads.
In other countries, these same factors have been shown to have the same impact
on uptake of maternal services [28, 31, 32, 73, 74, 75, 76]. Furthermore, previous
research in Uganda shows that “difficult-to-access” areas also suffer acute staffing
shortages, high rates of absenteeism, and poor quality of care [77, 78], potentially
reducing demand by women in labour.

We also found that age, level of education and wealth status also influence
FBD. Younger women and those with higher levels of education are more likely to
practice FBD. Our findings are consistent with the 2011 Uganda DHS, which reports
that older mothers are less likely to give birth in a health facility [45]. However, this
result is inconsistent with a meta-analysis of socio-geographic factors in numerous
countries which found age to have no statistical significance in determining FBD; it
did find, however, that high parity is negatively associated with FBD [79, 29, 46].
Studies controlling for parity have found either no effect of maternal age on FBD
or that increased age was positively related to increased use of delivery services
[75]. We were unable to control for parity in our study. As parity is often linked
to maternal age, it may be the influence of parity, rather than age, which we have
vicariously detected. In our study, increased maternal education was positively as-
sociated with FBD, a finding consistent with other studies [73, 74, 79, 80, 81, 45].
We also determined that with increasing wealth index in her district a mother was
more likely to use FBD. This finding is consistent with the results of numerous other
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Figure 2.6: Percentage of mothers of children aged 0-11 months that gave birth in
a health facility for A) 2003-04, B) 2006, C) 2009-10, D) 2011. 95% confidence
intervals for the indicator are ±11% or lower. Data for 2003 and 2004, and for 2009
and 2010 have been combined for these maps due to the small number of districts
surveyed in 2004 and 2010. In the rest of the analysis they are separated.
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Figure 2.7: (A) Priority Map for districts in 2012. Districts are assigned high, mild,
low, or unclear priority based on the confidence interval predicted by the model.
Kampala, for example, has a predicted indicator confidence interval between 50%
and 100%, and is therefore assigned a low priority. (B) Indicator for 2012 as observed
in a subsequent LQAS survey. The model was not fitted using this data, and so this
map provides an independent test of the predicted confidence interval. All surveyed
districts in 2012 have indicator values within the predicted confidence interval, and
districts in Eastern Uganda that were predicted to be mild or high priority are
observed to have very low values for the indicator.
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Figure 2.8: Predicted 95% confidence range of district indicators for 2012, compared
with the observed value. Priority levels are given by the same colour scheme as in
Figure 2.7. Only 4 out of 61 (6.6%) of the observed values were outside the predicted
range.
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studies reporting wealth and economic access to health care as facilitators behind
FBD [27, 28, 31].

This data cannot tell us the mechanism by which the significant covariates
we identified in this chapter influence FBD, or indeed if FBD and the significant
covariates are caused by some unidentified extra factor. Some covariates are plausible
as direct causes: more local health facilities, more roads, and easier terrain, for
example. Others, such as education level and wealth index, could be proxies for the
ease of accessing facilities (by paying for transport and healthcare fees), but it could
also be the case that wealthy and highly educated individuals influence each other
and establish a social norm of FBD. The argument could also apply to age: given
the improvement in FBD seen over time, the norm among older mothers may have
become fixed in previous years when fewer mothers gave birth in health facilities.
Although difficult to collect, data on FBD that includes information a mothers’ social
networks may help to investigate these hypotheses.

The difference between national and subnational results indicated gaps in
equitable access to health services. In 2011, for example, the Eastern region district
prevalence ranged from 23% in Bukwa district to 82% in Kumi district. Although
these two districts contribute to regional and national prevalence, the district preva-
lence is indicative of the inequitable occurrence of FBD in the districts. A study
in Ghana found similar variations, further highlighting the importance of detecting
subregional variation when planning health programs and allocating resources to de-
crease the gaps [82]. To achieve equitable access to services, subregional variation
must be detected and addressed [83, 55].

Our study also examined an additional practical use of logistic regression,
namely, assigning predicted priorities to districts based on the lowest expected value
for FBD. By using the model to construct the predicted range of FBD in each district,
we can flag districts, prior to a survey, most likely to need intervention. Such an
approach could help lessen the gaps and inequities in maternal health care and help
Uganda identify health system changes needed to decrease both maternal and child
mortality [55]. This feature of logistic regression suggests it can be used as an early
warning system to detect priority districts in need of special attention.

2.7 Summary

Maternal mortality is still very high in certain countries, despite attempts to improve
maternal health services. One explanation for this is the lack of health service
uptake by mothers in developing countries. In this chapter, we have shown that
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LQAS surveys can provide data on the spatial prevalence of health behaviours at
regular timepoints. Modelling the association of geographical variables with these
health behaviours shows that ease of access is positively correlated with uptake,
and allows us to accurately predict poorly performing regions. Through mapping
and modelling the areas where the prevalence of positive health behaviours is low,
policymakers will have more information available to concentrate resources where
they are needed most.
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Chapter 3

The role of the health system

3.1 Introduction

In chapter 2 we investigated how individual-level and geographical factors influenced
health behaviours. If the goal is to change health behaviours, these types of factors
are likely to be hard for policymakers to influence; economic and educational changes,
for example, are likely to take many years before influencing behaviour.

Another approach is to study the health systems that individuals interact
with, as called for in a paper by Travis et al. [84] which suggests that improving
health systems are the only way to meet the Millennium Development Goals. They
argue that health systems tend to be neglected by stakeholders, who are drawn
more to specific disease interventions such as providing malaria nets and vaccina-
tions. They identify some of the potential problems within poorly performing health
systems: the cost of health care, physical inaccessibility, poor quality of care, and the
perception of care quality. Removing these barriers should lead to stronger health
systems and healthier populations.

3.1.1 Seeking appropriate healthcare

In this chapter, we will investigate health systems as they relate to care seeking for
children aged 1-59 months. Roughly 3.7 million of these children die each year [6]: a
third are caused by lower respiratory infections and malaria, and diarrhoeal disease
accounts for a significant fraction of the rest. The suggested treatments are Oral
Rehydration Salts for diarrhoea [1], an antibiotic such as cotrimoxazole, amoxicillin
or ampicillin for pneumonia [2], Artemisinin-based Combination Therapies (ACT)
for uncomplicated P. falciparum malaria [3], and Quinine for complicated or severe
malaria [3]. If drugs are available then these diseases are treatable at home [85], but
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often parents do not consult with trained professionals to assess the severity of the
disease and to ensure the correct medication is prescribed [86]. Parents who do not
seek appropriate help often use incorrect dosages or misdiagnose [87]. Underdosing
can lead to the spread of drug-resistant P. falciparum malaria [88] and antibiotic-
resistant respiratory and diarrhoeal diseases [89]. A study by Rutebemberwa et al.
in Uganda in 2009 suggests that many parents seek initial treatment from drug shops
[87], which often have severe breaches of regulations on the storage and labelling of
drugs [90] and provide inappropriate treatment [91, 92].

Community health workers or health facilities are considered to be appropri-
ate places to seek health advice by medical professionals. If parents seek help at a
health facility they are not guaranteed to receive correct treatment advice [93], but
policymakers have more direct control over the quality of health facilities through
staff training, which can lead to better prescription practices [94, 95]. They also have
access to Rapid Diagnostic Tests for malaria, which are starting to be recommended
over presumptive treatment [96]. There is evidence that seeking treatment at health
facilities leads to correct usage of anti-malarials [97], and seeking appropriate help
is associated with positive outcome in the case of diarrhoea [98]. Increasing the
fraction of individuals who seek initial help at a health facility is therefore likely to
improve diagnosis and prescription, and to reduce mortality.

3.1.2 Barriers to access

Previous studies have identified many potential health system barriers to seeking
appropriate care. Greater distances to a health facility are strongly associated with
treatment at home [99, 100, 101, 102, 103], as are greater costs [104, 105, 106, 101,
102].

When interviewed, parents often identified low health facility quality as a
psychological barrier [107, 108, 101], and the lack of availability of drugs [109, 108].
Some studies have shown evidence that higher quality health facilities are more likely
to be used [110, 111, 102], where quality is measured either by services offered or
perceived quality. Work by Mugisha et al [112] identified a difference between the
factors governing patient initiation, or where patients initially seek treatment, and
patient retention, or where they seek treatment for subsequent episodes of an illness.
Initiation was mainly associated with lower barriers to access, such as cost, whereas
retention was associated with higher perceived quality of care. Parents often perceive
drug shops and private clinics to be closer, cheaper, and to allow payment by credit,
compared with government- or NGO-run facilities [113, 114], despite evidence that
objective quality is often worse [115, 116]. It is clear that this difference between
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perceived and objective quality, and the link with health facility usage, requires
further study.

The studies related to quality mentioned above tend to use descriptive statis-
tics rather than predictive models, and most interview households without linking
them to specific health facilities. Akin and Hutchinson [102] did consider both house-
holds and the health facilities they visited, and investigated the factors affecting the
bypassing health facilities. They found that health facilities with lower quality rat-
ings, higher prices, and more beds were more likely to be bypassed in favour of other
facilities, and that closer health facilities were less likely to be bypassed. This study
did not address the question of which individuals visit a health facility at all, how-
ever, which they identify as being a more complex statistical problem due to the
difficulty in linking home-treating individuals with the health facilities they could
have visited.

3.1.3 Interventions to improve access

Various interventions have been proposed to lift the major potential barriers identi-
fied above, but one of the most comprehensive approaches is Results-based Funding
(RBF). RBF is new funding mechanism for health facilities in which facilities are
given funds based on meeting certain targets. Traditionally, funding is centrally ad-
ministered and centrally funded. Meessen et al. [117] claim that this leads to a lack
of accountability, does not meet user needs and demands, and may have been partly
responsible for the lack of progress made on some Millennium Development Goals.
Instead, RBF aims to give local health facilities more direct control of administra-
tion and community health by paying a facility for each ‘heath unit’, such as a fully
immunized child, it produces [118]. Payments are often dependent on quality, as
measured using a checklist [117]. RBF is controversial, with some claiming that it
is a donor fad that encourages side effects such as false reporting, is inefficient, and
is not generalizable to every developing country [119]. There is some evidence that
RBF improves healthcare quality and usage, particularly the cluster-randomised trial
undertaken by Basinga et al. [111] in Rwanda, but more evidence is required before
the debate on RBF can be settled [119, 120].

3.1.4 Evaluating complex interventions

Complex public health interventions are hard to evaluate experimentally, even using
Randomised Controlled Trials (RCTs) [121, 122, 123]. Currently, however, this type
of trial provides the strongest evidence about interventions. Previous studies of RBF
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were observational, with no control group without RBF to compare against. Only
one study, by Basinga et al. in 2011 [111], used the RCT method to compare the
improvement in quality with and without RBF. This study took into account the
clustered nature of the data by calculating robust standard errors in a frequentist
framework.

3.1.5 Summary

The prevalence of appropriate treatment-seeking behaviour is still low in many de-
veloping countries, often leading to incorrect diagnosis, inappropriate drug dosing,
and drug-resistant disease. Policy-makers can have direct impact on this behaviour
through improvements to the health system, by reducing barriers to access.

One barrier that has not been fully investigated is the quality of health fa-
cilities; both subjective, as perceived by users, and objective, as measured through
quality assessments. In particular, a caregiver’s seeking of appropriate treatment
has not previously been linked to the quality of health facilities in their local area.
This can have important implications for choosing number and location of health
facilities: will providing many health facilities with low quality improve access, or is
it better to provide fewer with high quality?

Policy proposals to improve access must be evaluated, and currently one of the
best ways to achieve this is through a Randomised Controlled Trial. These are often
analysed in a frequentist framework, which can be difficult to extend to complex
study designs. In this chapter we concentrate on one particular policy proposal,
Results Based Financing, which is controversial and is lacking in strong evidence.
We will use a Bayesian framework to analyse data from an RBF trial in Uganda and
compare it to a similar trial in Rwanda that used frequentist methods.

3.2 Methods

3.2.1 Approximate string matching

Throughout this chapter it was necessary to link names given in interview data to
names in GIS shapefiles. Due to the lack of consistent local administrative informa-
tion, the names of geographical regions and health facilities often did not exactly
match names provided in interview data. Some examples of the types of discrepan-
cies that occurred are:

• Abbreviations, such as ‘TC’ instead of ‘Town Centre’
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• Additional words added to the name, such as ‘GOMA DIVISION’ instead of
‘GOMA’

• Spelling differences, for example ‘KANSHENSHERO’ rather than ‘KASHEN-
SHERO’

• Name changes which are not reflected in the GIS shapefile.

This last source of discrepancy could not be corrected without significant data col-
lection on subcounty name changes, but the discrepancy due to the other sources
was reduced using approximate string matching. Rather than remove data where the
name provided in the interview does not match names in the GIS shapefile exactly,
we instead compute a similarity score between each name provided by interview
to names in the GIS. Two names are considered ‘matched’ if their similarity score
is above a threshold. If a name from interview is similar to more than one GIS
name then the GIS name with the highest similarity is chosen. If no GIS names are
sufficiently similar then the row is removed from the data.

The similarity between two names was calculated using the token set ratio
of the two words. The token set ratio is calculated by first splitting each name
into words, removing duplicated words in each name, sorting the words, and finding
the intersection of words between the two names. This forms a sorted set of words
common to both strings. Two further test strings are created by combining the
common words with those that are unique to each of the two names. The similarity
score is then the maximum similarity ratio between each of the test strings and set
of common words, where similarity ratio is calculated by combining the total length
of both strings, T , and the total number of matches, M :

ratio(s0, s1) =
2M

T
.

An example helps to illustrate this process:

1. The ‘names’ to be compared are “ABC DEF GHI” and “ABC XYZ DEF”.

2. The sorted common unique set is s0 =“ABC DEF” (see Figure 3.1)

3. The two further test strings are s1 =“ABC DEF GHI” and s2 = “ABC DEF
XYZ”

4. The token set ratio is given by max(ratio(s0, s1), ratio(s0, s2), ratio(s1, s2)),
which in this case is 78%.
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GHI XYZ

ABC DEF GHI ABC XYZ DEF

Figure 3.1: Overlap of the token sets for two example ‘names’: “ABC DEF GHI”
and “ABC XYZ DEF”. These two names share the tokens “ABC” and “DEF” as a
common unique set.

5. Assuming a threshold of 95%, these two ‘names’ would not be considered as
being matched.

3.2.2 Hierarchical models

In chapter 2 we have treated data as applying to the same level of the general be-
havioural model. In this chapter, however, data will be collected at multiple levels:
for example, a study which collected data about individuals and the country in which
they live. Flat models such as standard logistic regression ignore this extra infor-
mation about the structure of the data and are thus prone to either underfitting or
overfitting. Hierarchical models, by contrast, take this known structure into account,
and can therefore lead to better inferences about the data [124]

Hierarchical models are often constructed in a Bayesian framework, in which
the parameters ✓ in the model are random variables and have pre-specified ‘prior’
distributions p(✓) which represent prior knowledge about their value before data is
observed [124]. The model is constructed by specifying the distribution for each
parameter conditional on other parameters, and by specifying the likelihood of ob-
served data conditional on the parameters, p(y|✓) [124]. The priors and likelihood
are combined to form a ‘posterior’ distribution for the parameters, which represents
the joint probability density function for the value of the parameters [124]:

p(✓|y) = p(✓)p(y|✓)´
p(✓)p(y|✓)d✓

. (3.1)

Choosing appropriate prior distributions is an important part of Bayesian analysis:
priors that are too vague can lead to numerical issues, whereas assuming strong
prior data can bias the inference if the prior data is not correct [124]. A general
approach to choosing prior distributions when there is little prior knowledge is to
use weakly-informative priors, which concentrate parameters around reasonable val-
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Figure 3.2: Comparison of two weakly-informative priors for logistic regression.

ues without strongly restricting them. For logistic regression parameters, Gelman
et al. [125] recommend using a Cauchy distribution with centre 0 and scale 2.5 as a
weakly-informative prior distribution, and in this chapter we also use a Normal(0, 10)
(i.e. standard deviation 10) distribution for some parameters to improve numerical
stability. These two weakly-informative priors are compared in Figure 3.2, show-
ing that the Normal(0, 10) prior distribution is less concentrated in the tails of the
distribution.

3.2.3 Computational tools

3.2.3.1 MCMC

The posterior density of a hierarchical model is generally a high-dimensional proba-
bility distribution without an easily-calculable normalising factor (the denominator
in equation (3.1)). This posterior density must therefore be evaluated approximately
using computational tools. A popular general computational technique for approx-
imating a posterior density is Markov Chain Monte Carlo (MCMC), which draws
values from a distribution approximating the target posterior and gradually corrects
those draws after successive iterations to improve the approximation. One particular
MCMC algorithm, the Metropolis-Hastings algorithm, is commonly used to sample
from posterior distributions; it requires evaluating only the unnormalised posterior
density. The algorithm is as follows [124]:

1. Draw initial parameter values ✓0, preferably in a region of high posterior density

2. Repeat:
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(a) Draw a proposed new value of the parameters, ✓⇤, from a proposal distri-
bution:

✓⇤ ⇠ q(✓⇤|✓t�1)

(b) Calculate the ratio of the posterior density at ✓t�1 and ✓⇤ as follows:

r =
p(✓⇤|y)q(✓t�1|✓⇤)
p(✓t�1|y)q(✓⇤|✓t�1)

(c) Set

✓t =

8
<

:
✓⇤ with probability ↵ = min(r, 1)

✓t�1 with probability1� ↵

The algorithm is constructed so that the simulated sequence is a Markov chain with
a unique stationary distribution, and that this stationary distribution is the same as
the target posterior distribution. Therefore, once the sequence has converged to its
stationary distribution, the following samples generated from the sequence have the
same distribution as the posterior.

3.2.3.2 Hamiltonian Monte Carlo

Although the Metropolis-Hastings algorithm has advantages over other methods of
sampling from the posterior, such as importance sampling or Gibbs sampling, it
suffers from the problem that highly correlated parameters can lead to slow conver-
gence to the target distribution. This means that the sampler must be run for many
iterations and may take a prohibitively long time to perform inference. There has
therefore been much recent research on samplers with faster convergence rates for
correlated parameters, such as Adaptive Metropolis, Slice Sampling, and Hamilto-
nian Monte Carlo (HMC). This latter method has been implemented in the conve-
nient software package ‘STAN’ [126], and often provides better convergence than the
Metropolis algorithm.

HMC improves on the performance of the Metropolis-Hastings algorithm by
modifying its random walk behaviour to move more rapidly through the target dis-
tribution, using ideas from dynamics in physics. In HMC, each dimension in the
posterior parameter space ✓j has an associated momentum variable �j which de-
termines the direction and size of the next proposed parameter. Just as in the
Metropolis-Hastings algorithm HMC requires the unnormalised posterior density,
but HMC also requires the gradient of the log-posterior density in order to calculate
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the momentum variable. One iteration of the HMC algorithm is shown below, and
is repeated until the sequence has reached its stationary distribution [124]:

1. Draw � from its prior distribution, which can be any distribution but is often
a multivariate normal with mean 0 and covariance set to a prespecified ‘mass
matrix’ M :

� ⇠ MVN(0,M).

Often, choosing M to scale with the inverse covariance matrix of the posterior
distribution (var(✓|y))�1, leads to more efficient computation.

2. Repeat L ‘leapfrog’ steps:

(a) Update � to make a half-step, based on the log-posterior logp(✓|y) defined
in equation (3.1):

� �+
1

2

dlogp(✓|y)
d✓

(b) Update ✓ based on the new value of � and a ‘mass matrix’ M :

✓  ✓ + ✏M�1�

3. Calculate the posterior density ratio between the parameters at the start of
the leapfrog process, (✓t�1,�t�1), and those at the end, (✓⇤,�⇤):

r =
p(✓⇤|y)p(�⇤)

p(✓t�1|y)p(�t�1)

4. Set

✓t =

8
<

:
✓⇤ probability min(r, 1)

✓t�1 otherwise

The parameters L, ✏, and M , are chosen by tuning during a warmup period. In this
warmup period, the parameters are gradually changed until the percentage of steps
accepted by the algorithm is near the theoretically-optimal percentage of 65% [127].
The samples generated during the warmup period are then discarded and the tuned
parameters used to generate subsequent samples.

We use HMC to sample from the hierarchical models in this chapter because
of its superior convergence properties and the convenience of the ‘STAN’ software
package.
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3.2.3.3 MCMC Diagnostics

An MCMC algorithm provides samples from the posterior distribution once it has
converged to its stationary distribution. There are several methods for assessing
convergence, but one suggested approach [128] is to use the Gelman-Rubin statistic
[129]. This statistic requires multiple independent markov chains to be run from
different initial points, and then analyses the variance of samples between chains
(B) and within the chains (W ). If B and W are sufficiently similar then the chains
are likely to have converged. The variances are calculated as follows:

B =
n

m� 1

mX

j=1

(✓̄.j � ✓̄..)
2

W =
1

m

mX

j=1

"
1

n� 1

nX

i=1

(✓ij � ✓̄.j)
2

#
.

These variances can be combined to form an estimate of the marginal poste-
rior variance of ✓ as follows:

V̂ar(✓|y) = n� 1

n
W +

1

n
B.

The Gelman-Rubin statistic is then defined as:

R̂ =

s
V̂ar(✓|y)

W
.

As the chain approaches convergence, W and V̂ar(✓|y) will converge to the
true variance of ✓. As such, the Gelman-Rubin statistic will approach R̂! 1 as the
chain reaches convergence.

Another important consideration for MCMC sampling is the autocorrelation
of the samples, defined as:

A(⌧) =
E [(Xt � µ)(Xt+⌧ � µ)]

�2
.

If the autocorrelation is significant at lags greater than 1 then the samples
can be ‘thinned’ by taking only every k-th sample, thus reducing the autocorrelation.
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3.2.3.4 Model comparison

AIC, as described in chapter 2, is appropriate for comparing flat models, such as
Logistic Regression, which satisfy asymptotic normality [130]. For these models,
the AIC equals the average generalisation error [131]. Hierarchical models, however,
generally do not satisfy the asymptotic normality condition and as such the AIC
for these models does not equal the average generalisation error. For Bayesian hi-
erarchical models, Gelman et al. [132] suggest the Widely Applicable Information
Criterion (WAIC) [133] as a reasonable and convenient estimate of generalisation
error. The WAIC for a posterior distribution is calculated by combining the log
pointwise predictive density, i.e. the log of the mean likelihood of the data under
the posterior distribution for the parameters, with a penalty term specific to WAIC.
The log pointwise predictive density is given by:

lppd =
nX

i=1

log

 
1

S

SX

s=1

p (yi|✓s)
!
,

where ✓s is the value of ✓ for the s-th MCMC sample and yi is the i-th data
point. The penalty term, or the effective number of parameters, is calculated as:

pWAIC =
nX

i=1

V S
s=1 (logp(yi|✓s)) .

WAIC is then given by:

WAIC = �2llpd + 2pWAIC.

As with AIC, lower values of WAIC indicate lower generalisation error and
hence a better model.

3.2.3.5 Summarising posterior distributions

Throughout this chapter we summarise the marginal posterior distributions for pa-
rameters of various Bayesian models using the probability that the sign of the pa-
rameter is positive, given the data observed y:

P (✓i > 0|y) =

ˆ
I{✓i>0}p(✓i|y)d✓i

p(✓i|y) =

ˆ
p(✓|y)d✓�i,

where p(✓|y) is the joint posterior distribution from equation (3.1) and ✓�i
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Figure 3.3: Comparison of exponential and Gaussian spatial kernels for the same
value of the kernel width parameter � = 0.1.

are all parameters in the model except ✓i. We use the samples from a Monte Carlo
method to estimate this probability as follows:

P (✓i > 0|y) =
NsX

s=1

I{✓i,s>0}, (3.2)

where ✓i,s is the s-th sample of parameter ✓i, and Ns is the total number of
samples drawn for this model.

3.2.4 Spatial modelling

Some of the models considered in this chapter include the effect of distance, such as
the distance to a health facility, on an outcome. Spatial effects are unlikely to be
linear, since after a certain large cutoff distance a spatial effect is likely to be zero.
Instead, the effect of distance is assumed to follow a parametric function, which for
most spatial applications is large at small distances and decreases with distance. In
this chapter we consider a negative exponential distance kernel, which is commonly
used to model utilisation rates [100]:

Fexp(d) = e�
d
� .

The shape of this kernel is given in Figure 3.3, compared to a Gaussian spatial kernel.
Health behaviour outcomes may also be spatially correlated with each other:

individuals living near to each other may have similar health behaviours due to the
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social influence described in chapter 4, whereas individuals far from each other may
have independent outcomes. This is the last aspect of the general behavioural model,
and can be included as follows:

µspatial ⇠ MVN(0,�2H(d,�)).

H is a spatial correlation function which captures the way in which the corre-
lation between the outcome at two spatial locations varies with the distance between
them. One method for investigating the spatial correlation in data is the empirical
semivariogram [134], which estimates the difference between the covariance of the
data at zero distance and the covariance at other distances. An estimator for the
semivariogram at a representative distance lag hu is as follows:

�̂(hu) =
1

2N(Hu)

X

si�sj2Hu

{ê(si)� ê(sj)} (u = 1, . . . , k),

where ê(si) is the value of the datapoint at location si, Hu is the u’th bin of distances
represented by hu, and N(Hu) is the number of datapoints that fall within bin Hu.
Figure 3.4 (left) plots an example semivariogram against hu for multivariate normal
data generated with an exponential distance kernel. This figure shows that closer
points have lower semivariance, and that after a certain distance (around hu = 0.5

for this case) the semivariance saturates and does not increase further. This is
a general feature of the semivariograms for spatially-correlated data. Figure 3.4
(right) shows the semivariogram for example data without any spatial correlation.
The semivariance does not depend on distance, so the semivariogram is flat.

3.3 The relationship between health centre quality and
usage

3.3.1 Data

The data consist of two sets of surveys: Household LQAS surveys and Health Fa-
cility Assessment (HFA) surveys. The household surveys, performed in 2012 and
2013 across 78 Ugandan districts, were conducted using the same methodology as
described in chapter 2. The HFA surveys assessed 181 health facilities across south-
west Uganda in 2012 and 2013, using the methodology described above. In this
section we focussed on two HFA modules: Exit Interview and Sick Child Obser-
vation. During the Exit Interview six consecutive pharmacy clients at the health
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Figure 3.4: Example semivariograms for an exponential distance kernel with � = 0.1
(left), and no spatial correlation (right).

facility were asked whether they ‘Strongly agree’, ‘Agree’, ‘Not sure’, ‘Disagree’, or
‘Strongly disagree’ with the following statements:

1. All the health workers who reviewed you today carefully listened to you

2. You were given the chance by all the health workers you met during this visit
to clearly state your problems and ask questions

3. The health workers who reviewed you today explained well to you about your
illness

4. It was easy for you today to get all the drugs that were prescribed for your
illness

5. You were handled with respect during this visit

6. You feel you can trust the health workers with your private information

7. You are confident with the privacy you received during review and/or counsel-
ing session with the health workers

8. You have no problem today with the sanitation state at this health facility

During the Sick Child Observation the consultations with a health worker were
observed for six consecutive sick children from 2-59 months who presented with
fever, cough or difficult breathing, or diarrhoea. The health worker’s diagnosis and
prescription for each child was recorded and checked using Table 3.1.
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Diagnosis Correct prescription
Malaria or fever ACT
Severe Malaria Quinine
Malaria or fever ACT + antibiotics

+ other infection (not diarrhoea or ARI)
ARI / pneumonia cotrimoxazole or amoxicillin

Diarrhoea without blood ORS without other antibiotics
Diarrhoea with blood ORS + antibiotics

No malaria, pneumonia or diarrhoea No antibiotics or ACT or ORS

Table 3.1: Appropriate prescriptions to treat each diagnosis identified in the Sick
Child Observation module [1, 2, 3].

Education level Classification
Never attended None

Incomplete primary None
Complete primary Primary

Functional adult literacy Primary
O-level Secondary

Vocational training Secondary
A-level Secondary

Post-secondary Secondary

Table 3.2: Classification of ‘education level’ based on survey response.

3.3.2 Analysis

In this analysis the study population was limited to mothers with children aged 12-23
months whose child had experienced fever, pneumonia, or diarrhoea in the past two
weeks. The outcome variable was a combination of the responses to two questions
from the LQAS survey:

1. “Did you seek any advice or treatment for the sickness from any source”

2. “Where did you seek advice or treatment”

Mothers were considered to have used a health facility if they answered ‘Yes’ to
question 1 and ‘Hospital/Clinic’ or ‘Pharmacy/drug shop’ to question 2, and assigned
an outcome value of 1; otherwise, the outcome value was 0.

The individual-level covariates included in the model were age, education,
and whether or not the individual had a regular partner; ‘education level’ is defined
in Table 3.2 and ‘regular partner’ is defined in Table 3.3.

In a slight modification from the analysis in chapter 2, we used a mother’s
subcounty, rather than supervision area, to identify which cluster she belonged to.
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Relationship status Classified as regular partner?
Single, no partner No

Single, no regular partner No
Single, regular partner Yes

Cohabiting Yes
Married Yes

Divorced/Separated No
Widowed No

Table 3.3: Classification of ‘regular partner’ based on survey response.

Subcounties, unlike supervision areas, have a direct administrative meaning; we
could therefore give a mother an approximate spatial location and hence identify
her local health facility. Unfortunately the subcounty names provided in the house-
hold survey did not necessarily match the names the GIS data which provided the
GPS coordinates of subcounties in Uganda. We therefore used approximate string
matching, as described in section 3.2.1, to link the mother’s subcounty name to
known subcounties in the GIS: a subcounty in the data was ‘matched’ to a known
subcounty if the similarity score between the two strings was greater than 95%. Of
the 8232 mothers in the original sample, 6082 were matched to known subcounties.
Mothers were linked to health facilities by assuming an exponential spatial kernel
based on the distance from the centroid of their subcounty to the location of each
health facility. Models were fitted with several values of the kernel width parameter,
� = 0.01, 0.025, 0.075, 0.1, 0.2, and 0.5, and compared using WAIC.

There were also discrepancies between the names of health facilities in the
HFA data and those provided in the GIS data for health facility locations, so we
again used approximate string matching, with a similarity score cutoff of 95%, to
match health facility names between the two datasets. Of the 181 health facilities in
the original HFA data, 164 were matched to a known GIS health facility. There were
303 health facilities in the GIS dataset which were not matched to an HFA facility,
either because they were not assessed or because their was too large a discrepancy
between the name in the HFA dataset and that in the GIS dataset.

The subjective quality of a health facility was estimated from the pharmacy
exit interview component of the HFA. A client was considered to agree with a state-
ment in the exit interview if they answered ‘Agree’ or ‘Strongly agree’; otherwise,
they were considered to disagree. The total fraction of agreement for all statements
and clients at each health facility was then calculated, and each health facility was
given a subjective quality of ‘good’ or ‘bad’ based on whether this total agreement
fraction reached a certain threshold. Since a large fraction of health facility clients
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agreed with all statements, the threshold in this case was set to 0.9. For this thresh-
old, 49% of health facilities were classified as ‘bad’. The objective quality of a health
facility was estimated by calculating the percentage of correct treatments prescribed
by the health worker during the Sick Child Observation module, as described above.
A health facility was classified as ‘bad’ if this percentage was less than 70% and
‘good’ otherwise, leading to 60% of health facilities being classified as ‘bad’. The
quality covariates included in the model were grade (level II, level III, level IV or
Hospital), distance to nearest main road, bed capacity, and ownership.

In this section we again used the framework of random-intercept logistic re-
gression, introduced in section 2.3.1. There were the additional complications, how-
ever, that the data did not specify which health facility a mother visited, and that
not all facilities were assessed for quality. These complications were addressed by
building a hierarchical Bayesian model which specified the probability that a mother
would have gone to a particular health facility and which imputed the quality of
unassessed health facilities based on health facility covariates. A quality estimate
was thus obtained for all health facilities, whether or not they were part of the origi-
nal HFA study. Unlike chapter 2, the additional spatial correlation between mothers
within a subcounty, captured by the ⇠ random intercept, was estimated explicitly.
The model is as follows:

yi ⇠ Bernoulli(pi)

Qj ⇠ Bernoulli(µj)

logit(pi) = (�T
⇥)i +

NhcX

j=1

⇡k,j(�
TQ)j + ⇠k

⇠k ⇠ Normal (0,�sc)

logit(µj) = (!T
 )j

⇡k,j =
e�

dk,j
�

Idk,jdc

PNhc
j=1 Idk,jdce

�
dk,j
�

�,! ⇠ Cauchy(0, 2.5)

�sc ⇠ Cauchy(0, 25)

� ⇠ Normal(0, 10), (3.3)

where yi is the i-th outcome datapoint, Qj is the j-th health facility’s quality
(either subjective or objective), ⇥ is the matrix of household-level covariates, dk,j
is the distance between the k-th subcounty and the j-th health facility, ⇡k,j is the
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Figure 3.5: Spatial kernel shown in the context of South-West Uganda. The map
shows the spatial extent of 75% of the mass of the kernel function evaluated at
� = 0.1 and � = 0.2, overlaid on a map of the subcounties included in this study.
The health facilities and LQAS centroids (where mothers are assumed to be located)
are also shown.

probability that health facility j is the local facility of mothers in subcounty k,  
is the matrix of covariates for predicting health facility quality, � is the width of
the spatial kernel, dc is the distance cutoff, ⇠k is the unknown random intercept
for subcounty k, and �, �, and ! are the coefficients for household-level covariates,
quality covariates, and covariates for predicting health facility quality respectively.
�sc is the standard deviation of the subcounty random intercept.

The spatial extent of the kernel function for two values of the spatial param-
eter � = 0.1 and � = 0.2 is shown in Figure 3.5, overlaid on a map of the study area.
This suggests that appropriate values for the spatial parameter should be near these
values: much larger values of � will cover a significant portion of the study area and
are therefore unlikely to be informative about which health facilities mothers choose.
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This general model can be reduced to specific models by setting the value of
�, setting � = 0 or ⇠k = 0. This leads to the following specific models:

• Flat model, No quality: (� = 0, ⇠k = 0)

• Flat model, with subjective quality �: (� ⇠ Normal(0, 10), ⇠k = 0)

• Flat model, with objective quality �: (� ⇠ Normal(0, 10), ⇠k = 0)

• Hierarchical model, No quality: (� = 0)

• Hierarchical model, with subjective quality �: (� ⇠ Normal(0, 10))

• Hierarchical model, with objective quality �: (� ⇠ Normal(0, 10))

HMC was used to obtain 4 chains of 3000 samples each (excluding a warmup period
of 1000 samples for each chain) from the posterior of these models, for different
values of � 2 [0.01, 0.5]. The autocorrelation was plotted and a level of thinning
chosen to reduce the autocorrelation. Using the thinned samples the Gelman-Rubin
statistic was calculated for each parameter to check convergence diagnostics, and the
WAIC calculated to identify the best models for no quality, objective, and subjective
quality. The best model for each type of quality was then sampled from again to
obtain four chains of 9000 samples each. We then compared the predictive power of
the three models by calculating pi in equation (3.3) for each sample of the parameters
and using these to construct a posterior predictive distribution of ROC curves and
AUC values, described in section 2.3.4. These distributions were then summarised
using the mean and 95% credible interval (given by the [2.5th, 97.5th] percentile
range).

3.3.3 Results

Neither the subjective nor the objective quality variable showed significant spatial
correlation, since the semivariograms shown in Figure 3.6 are flat for both. We
therefore fit models without spatial correlation in these variables.

Three types of model were fitted: no quality covariate, a subjective quality
covariate, and an objective quality covariate. The latter two model types were
compared for several values of the spatial kernel parameter �. The WAIC values
for all models are shown in Figure 3.7. All of the flat models performed worse than
all of the hierarchical models, even though WAIC takes into account the additional
parameters included in the hierarchical models. Most flat models which include
quality were worse or as bad as the flat model without quality, and there was no
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Figure 3.6: Semivariograms for subjective quality (left) and objective quality (right).
Neither variable shows a clear semivariance increase with spatial lag, so these vari-
ables do not seem to have strong spatial correlation.

clear trend in which values of � provided better models except that models with
� < 0.075 were worse for both subjective and objective quality. For the hierarchical
models, almost all of those that included quality were better than the model that did
not. For both subjective and objective quality there was a minimum in the WAIC
between � = 0.1 and � = 0.2, and models below this range performed worse than
models above it.

The best performing models with subjective and objective quality, in this
case the hierarchical models with � = 0.1 and � = 0.2 respectively, were then
investigated in more detail. The Gelman-Rubin statistic was calculated for each
covariate coefficient parameter in each model and shown in Table 3.4; all were close
to 1, consistent with convergence.

An autocorrelation plot for the scalar parameters in the best subjective qual-
ity model is given in Figure 3.8, and suggests a thinning of 10 is appropriate. The
autocorrelation at this level of thinning is then shown in Figure 3.9.

The marginal posterior distributions for the coefficients of individual-level
covariates for the model with subjective quality are shown in Figure 3.10. The
strongest association is that older mothers are less likely to seek treatment at a health
facility, with P (�age < 0|y) = 0.95. The other covariates are less strongly associated
with this outcome, but mothers with regular partners or with secondary education
may be more likely to seek health facility treatment (P (�regular partner > 0|y) =
0.80 and P (�secondary > 0|y) = 0.76). Health facility-level coefficient distributions
are shown in Figure 3.11: NGO ownership is strongly positively associated with
subjective quality (P (!NGO > 0|y) = 0.98), while health facilities of grade III
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Figure 3.7: WAIC values for models of health facility use including subjective and
objective quality, for flat models (left) and for hierarchical models (right). The
hierarchical models all perform better than the flat models, and most hierarchical
models including quality were better than the model that did not. Hierarchical
models below � = 0.1 all performed worse than those with higher values of �, as did
those with values higher than � = 0.2. There therefore appears to be an optimal
value of � between 0.1 and 0.2. Finally, hierarchical models which included subjective
quality were almost all better than those including objective quality.

Parameter R̂ for no-quality R̂ for subjective R̂ for objective
grade_HC III - 1.0 1.0
grade_HC IV - 1.0 1.0

grade_HOSPITAL - 1.0 1.0
road_distance - 1.0 1.0

capacity - 1.0 1.0
ownership_NGO - 1.0 1.0

ownership_PRIVATE - 1.0 1.0
Intercept - 1.0 1.0

regular_partner 1.0 1.0 1.0
age 1.0 1.0 1.0

education_primary 1.0 1.0 1.0
education_secondary 1.0 1.0 1.0

Intercept 1.0 1.0 1.0
gamma - 1.0 1.0

sc_sigma 1.0 1.0 1.0

Table 3.4: Gelman-Rubin statistics for the parameters of the best of the three types
of model. R̂! 1 at convergence, so the fact that all of these values are close to 1 is
consistent with the models having converged.
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Figure 3.8: Autocorrelations for the subjective (left) and objective (right) model
parameters. These plots show that a thinning of 5 to 10 is appropriate.
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Figure 3.9: Autocorrelations for subjective (left) and objective (right) model param-
eters with a thinning of 10.
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Figure 3.10: Marginal posterior distributions for household-level parameters in the
best subjective model. Age is strongly negatively-associated with seeking treatment
at a health facility, whereas having a regular partner and secondary eduction are
both weakly positively associated with health facility treatment seeking.

are likely to have a lower subjective quality (P (!grade III < 0|y) = 0.95). None
of the other covariates appeared to predict subjective quality. Finally, Figure 3.13
(left) shows the marginal posterior distribution for the quality parameter; higher
subjective quality is strongly associated with seeking treatment at a health facility,
with P (� > 0|y) = 1.0.

For the best-performing model with objective quality, distributions of coeffi-
cients for the individual-level covariates were very similar to those in the subjective
model. Distributions for health facility-level coefficients are shown in Figure 3.12:
health facilities of grade IV may be more likely to have a higher objective qual-
ity (P (!grade IV < 0|y) = 0.20), as may health facilities with lower capacity
(P (!capacity < 0|y) = 0.87). NGO ownership does not seem to be associated
with objective quality (P (!NGO < 0|y) = 0.52). Figure 3.13 (right) shows that
objective quality is also associated with seeking treatment in a health facility, with
P (� > 0|y) = 0.99. The standard deviation of the subcounty random intercept for
the subjective and objective models are shown in Figure 3.14.

ROC curves were used to compare the specificity and sensitivity of the best-
performing models to the model with no quality. Figure 3.15 shows the ROC
curves for the best of the three types of model. The area under curve for the
three models are AUCnoqual = 0.73[0.64, 0.80], AUCsubj = 0.76[0.66, 0.82], and
AUCobj = 0.74[0.64, 0.81]. All credible intervals overlap significantly, with the sub-
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Figure 3.11: Marginal posterior distributions for health facility-level parameters in
the subjective quality model. NGO ownership is strongly positively associated with
subjective quality, while health facilities of grade III are likely to have a lower sub-
jective quality. None of the other covariates appeared to predict subjective quality.
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Figure 3.12: Marginal posterior distributions for health facility-level parameters in
the objective quality model. NGO ownership is not strongly predictive of objective
quality, but health facilities of grade IV are more likely to have higher objective
quality as are facilities with lower capacity.
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Figure 3.13: Marginal posterior distributions for the subjective (left) and objective
(right) quality parameters. Both parameters appear to be strongly associated with
seeking treatment in a health facility.
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Figure 3.14: Marginal posterior distributions for the standard deviation of the sub-
county effect ⇠, for the best subjective (left) and objective (right) models.
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Figure 3.15: ROC curves for the model without quality and the best models
with subjective and objective quality. The area under curve for the three mod-
els are AUCnoqual = 0.73[0.64, 0.80], AUCsubj = 0.76[0.66, 0.82], and AUCobj =
0.74[0.64, 0.81]. All credible intervals overlap significantly, with the subjective model
being slightly better than the others as measured by the area under the curve.

jective model being slightly better than the others using this metric.

3.3.4 Discussion

There are several limitations to this dataset and analysis. Although the match
threshold for approximate string matching was set to a high level (95%), and the
matches were found on a district-by-district, there is no guarantee that the GIS data
has been correctly matched to the HFA and household surveys. In future studies
could use a GPS device to record locations for the health facilities and the households,
as is the case for the DHS surveys [49]. Privacy could be assured by adding a small
amount of noise to household locations. The measures of objective and subjective
quality are crude: a cut-off on a percentage score. Further work would investigate
the robustness of these results to changes in the cut-off. Distance should also be
included in the model, perhaps by including a covariate ‘distance to closest health
facility’.

Visiting a pharmacy was included as ‘seeking professional help’ because the
subjective quality variable is calculated from a pharmacy exit interview. Although
the training of pharmacy staff is likely to be lower than other health facilities, the
pharmacy is being recognised as an important healthcare provider [135]. The cate-
gory in the data indicating a pharmacy, ‘Pharmacy/drug shop’, also includes drug
shops; staff at these shops are much less likely to be well-trained and so should not
be classified as ‘seeking professional help’. In future studies, separation of these two
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distinct types of treatment provider would provide better classification and might
lead to stronger results.

The current model is random-intercept: it assumes that the effect of any
predictor is the same for each subcounty. There are many reasons why this might
not be true in practice, such as a very low-income subcounty containing individuals
who cannot afford to visit a health facility even if it is of high quality, but the
random-intercept model provides a simple starting point which can be expanded in
further work.

The AUC is very high, given the quality of the data. This might indicate some
overfitting: the AUC for new data is likely to be lower. Some subcounties contained
only one surveyed mother, due to the name discrepancies discussed above, but there
is some evidence from other studies that these ‘singletons’ do not significantly affect
the results of hierarchical models [136, 137].

A postive outcome for this study is the identification of the spatial range
within which mothers in Uganda are likely to visit health facilities: this range (around
� = 0.1) corresponds to visiting neighbouring subcounties but not much further. The
average travel speed in Uganda is around 13km/h [138], so converting the spatial
kernel parameter into km (where 1 decimal degree corresponds to ⇠ 110km at the
latitude of Uganda) the probability of selecting a health facility one hour/13km away
is 31% lower than selecting one that is very close.

The negligible difference between the ROC curves for the subjective model
and the model without quality, implies that although the model with subjective
quality is statistically better, it is not practically better. It is also interesting to note
that the WAIC difference between the flat model without quality and the hierarchical
model without quality is almost twice that between the hierarchical subjective and
no-quality models. This implies that the subcounty effect, which includes social
influence, is much more important for predicting usage than quality.

3.4 The effect of funding mechanism on health facility
usage

3.4.1 Background

In July 2012, the Liverpool School Tropical Medicine initiated a project in Northern
Uganda to evaluate the impact of a novel mechanism for funding health facilities.
This new mechanism, Results-Based Financing (RBF), provides funding to health
facilities based on measurable improvements in the service they provide. For this
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trial, funding is provided by the Department for International Development (DFID)
to Private Not-For-Profit (PFNP) health facilities in two seriously deprived regions
in Northern Uganda, Acholi and Lango. In 2012, all 31 PNFP facilities in these two
regions were funded using traditional input-based financing; then, the 21 facilities
in Acholi were funded under RBF while the 10 Lango facilities remained under the
traditional mechanism. Of the 31 PNFP facilities in the trial, 29 were evaluated
by LSTM before the intervention (in 2012) and two years after it had begun (in
2014). One of the remaining facilities was excluded because it only offered HIV/AIDS
services and no maternal or child health services, and the other (Lacor Hospital)
provides a greater range of services than normal facilities of its type.

The effect of the funding change was evaluated using two methods. Health
facilities were evaluated using a Health Facility Assessment (HFA), which consists of
a series of modules assessing quality of care, infrastructure and staff training. The
effect on the local community was evaulated using Lot Quality Assurance Sampling
(LQAS) for households in catchment areas around each health facility. The LQAS
questionnaire provides demographic information such as the age and education of
members of the household, health behaviour information such as whether mothers
of children with fevers took their child to a health facility, and wealth information
such as the average annual income of the household.

The HFA and household data are rich sources, so this analysis was limited to
investigating the effect of the intervention on the behaviour of mothers whose child
is under 5 years old had a fever in the last two weeks. In particular, we investigated
whether changing the funding mechanism of a health facility to RBF leads to a
significant increase in the odds of these mothers taking their febrile child to a health
facility.

3.4.2 Data

The data consist of Health Facility Assessments (HFA) for 29 Private-Not-For-Profit
health facilities and household-level data sampled from the catchment areas of these
facilities. The health facilities are located in two northern regions of Uganda: Acholi
and Lango. The data was collected before (in 2012) and after (in 2014) a change in
the funding mechanism for the facilities in Acholi, with facilities in Lango unchanged
and used as a control group.

Catchment areas around each health facility were chosen based on the level
of the health facility and the population density around it, such that the majority of
users of the health facility would come from this catchment area. Each catchment
area was split into four supervision areas (SAs), and within each of those SAs villages
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were selected by Probability-Proportional-to-Size (PPS) sampling. This ensured that
all households in a SA had the same probability of being sampled.

The HFA data was obtained only for PNFPs, and due to the difficulty of
obtaining information in Northern Uganda, data on government health facilities
other than their location was very sparse. In addition, some of the PNFP catchment
areas overlapped, and mothers did not necessarily go to their local PNFP. These
limitations are addressed by the modelling in the analysis stage.

3.4.3 Analysis

The outcome variable was a combination of two questions: “Did you seek advice or
treatment for [child name]’s fever from any source?”, and “Where did you first seek
advice or treatment?”. If the mother answered ‘Yes’ to the first question and one
of ‘Government Health facility, ‘Government Hospital’, ‘Private Hospital/Clinic’, or
‘PFNP’ to the second then the outcome was set to ‘True’. If she answered ‘No’ to
the first question or answered ‘Private Pharmacy’, ‘Private drug shop’, ‘Relative or
friend’, or ‘Traditional healer’ the outcome was set to ‘False’. Overall, 69% of the
mothers interviewed in 2012 took their child to a health facility compared with 74%

in 2014.
The covariates considered can be split into those affecting the household and

those affecting the local health facility. The household-level covariates included were
the age of the mother, whether she was literate, whether she had a regular partner,
and the year she was surveyed. Health facility-level covariates were the average cost
paid by six mothers with sick children who were interviewed as part of the HFA,
the distance to the nearest level-III or higher government health facility, and the
treatment effect (True for health facilities in Acholi in 2014, False otherwise).

The outcome was modelled as a hierarchical Bayesian logistic regression, with
covariates included at the household and health facility levels and a random effect
introduced at the level of the supervision area. The SA-level random effect was
introduced to control for heterogenity within a catchment area: for example, some
parts of the catchment area may be wealthier or further away from the health facility
than others. The treatment variable was set to 1 for all health facilities in Acholi
district in 2014, and zero otherwise. All coefficient parameters were given weakly-
informative priors: Cauchy distributions with centre 0 and scale 2.5. The random
effect for each supervision area was drawn from Normal distribution wiith mean 0

and standard deviation �sa, with a Cauchy(0,10) prior on �sa.
The model is shown graphically in Figure 3.16 is specified as follows:
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yi,t ⇠ Binomial(pi,t)

logit(pi,t) = �0 + �timet+ (�T
⇥)i + (�E)k + �treatI{treated:k,t} + ⇠j

⇠j ⇠ Normal (0,�sa)

�0,�time,� ⇠ Cauchy(0, 2.5)

�, �treat ⇠ Cauchy(0, 2.5)

�sa ⇠ Cauchy(0, 25). (3.4)

Here, yi,t is the outcome value for household i surveyed at time t (0 for 2012,
1 for 2014), which is in the catchment area of health facility k and is in supervision
area j. ⇥ is the matrix of covariates for households, ⇠j is the supervision area-
level effect. E is the matrix of covariates associated with the health facility, and
1treated:k,t is an indicator function with value 1 if health facility k was part of the
treatment group and t = 1.

HMC was used to obtain 4 chains of 9000 samples each (excluding a warmup
period of 1000 samples for each chain) from the posterior of this model. The auto-
correlation was plotted and a level of thinning chosen to reduce the autocorrelation.
Using the thinned samples the Gelman-Rubin statistic was calculated for each pa-
rameter to check convergence diagnostics. We estimated the predictive power of
the model by calculating pi,t in equation (3.4) for each sample of the parameters
and using these to construct a posterior predictive distribution of ROC curves and
AUC values, as described in section 2.3.4. The distribution of the AUC was then
summarised using the mean and [2.5th, 97.5th] percentiles. Marginal posterior dis-
tributions for the parameters were summarised using the probability that they were
positive given the data, P (� > 0|y), estimated from the HMC samples using equa-
tion (3.2).

Finally, we used a hierarchical linear regression model to identify any signifi-
cant differences in the price or the objective quality of the health facilities between
the RBF and non-RBF groups. A significant difference could suggest that part of
any observed treatment effect may act through these two variables. The model is as
follows:
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1:Nhc

1:4
1:Nhh

tbefore, tafter

logit-1(p)

Figure 3.16: Graphical representation of model. Nhh is the number of households
surveyed in a supervision area (usually 24), Nsa is the number of supervision areas
per health facility catchment area (always 4 for this data), Nhc is the number of
health facilities (30 for this data), and tbefore, tafter indicate times before and after
the intervention (2012 and 2014) respectively.
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Parameter Gelman-Rubin Statistic
regular_partner 1.00

age 1.00
is_literate 1.00

time 1.00
Intercept 1.00
hfa_price 1.00

nearest_govt 1.00
treatment 1.00
sa_sigma 1.00

Table 3.5: Gelman-Rubin convergence diagnostics for each parameter. A value of 1
indicates convergence.

xk,t ⇠ Normal(µk,t,�)

µk,t = �0 + �treatI{treated:k,t} + �timet+ ↵k

↵k ⇠ Normal(0,�hf )

�0,�treat,�time ⇠ Cauchy(0, 25)

� ⇠ Cauchy(0, 25)

�hf ⇠ Cauchy(0, 25), (3.5)

where xk,t is either the standardised price or standardised objective quality of health
facility k at time t. The treatment term I{treated:k,t} is an indicator function with
value 1 if the health facility k is in Acholi region and t = 1, and value 0 otherwise. ↵k

is a random-intercept term to take into account differences between health facilities
that are present at both times. The price and quality models were both sampled
from using HMC, with 4 chains of 30000 samples each (excluding 2000 warmup
samples for each chain). As before, an autocorrelation plot was used to choose an
appropriate level of thinning and Gelman-Rubin convergence diagnostics calculated
using the thinned samples.

3.4.4 Results

The autocorrelation shown in Figure 3.17, and implies that a thinning of 8 is appro-
priate. The Gelman-Rubin statistics for each variable are given in Table 3.5.

The marginal posterior distributions for various parameters are shown in
Figs 3.18, 3.19, and 3.20. Figure 3.18 shows the posterior for the coefficients on
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Figure 3.17: Autocorrelation of all household-level covariates (left), and the auto-
correlation after a thinning of 8 (right).

health facility-level covariates and the effect of treatment. The mean price paid for
taking a child to the local PNFP health facility appears to be weakly negatively
associated with the probability of a mother taking her child to a health facility
(P (�price < 0|y) = 0.82). Mothers with local PNFP facilities that are further away
from government health facilities are significantly less likely to seek treatment in a
health facility (P (�nearest govt. < 0|y) = 1.0). Finally, mothers in 2014 who live
close to a health facility in the treatment group are significantly more likely to seek
treatment from a health facility (P (�treat > 0|y) = 1.0).

Figure 3.19 shows the posterior for household-level covariate coefficients.
Older mothers are significantly less likely to seek treatment in a health facility
(P (�age < 0|y) = 0.99). Literate and illiterate mothers do not have significantly dif-
ferent probabilities of seeking health facility treatment (P (�literate < 0|y) = 0.56),
but mothers with a regular partner have significantly higher probability (P (�regular partner >

0|y) = 0.98). Mothers surveyed before and after the intervention do not have signif-
icantly different probabilities after controlling for other factors (P (�time < 0|y) =
0.98).

Figure 3.20 (left) shows posterior distributions for the random effect of se-
lected supervision areas. SA 118, with the lowest mean random effect ⇠118 = �0.99,
is in the catchment area of Minakulu Health facility: a small, rural health facility.
SA 101, on the other hand, has the highest mean random effect ⇠101 = 0.85; it is lo-
cated in the catchment area of Boroboro Health facility, on the outskirts of the main
town of Lira district, and is close to many government health facilities. Figure 3.20
(right) shows the posterior distribution for the standard deviation of these random
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Figure 3.18: Marginal posterior density for coefficents on HFA covariates, showing
the parameters for mean price paid by mothers visiting that health facility with sick
children, distance to the nearest government health facility of level III or above, and
the effect of a health facility being in the treatment group in 2014.

regular_partner
age

is_literate
tiPe

Intercept

−0.5

0.0

0.5

1.0

P
o
st

e
ri

o
r 

d
is

tr
ib

u
ti

o
n

Figure 3.19: Marginal posterior density for coefficients on household-level covari-
ates, showing parameters for regular partner, age, literacy, year surveyed, and the
intercept.
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Figure 3.20: (Left) Selected marginal posterior density for Supervision Area-level
random effect. Shown are the largest and smallest effects and a middle-range effect.
(Right) Marginal posterior density for the standard deviation of supervision area
random effects

Parameter R̂ for cost R̂ for objective quality
�0 1.00 1.00

�treat 1.00 1.00
�time 1.00 1.00
� 1.00 1.00
�hf 1.00 1.00

Table 3.6: Gelman-Rubin diagnostics for parameters in the two health facility dif-
ference models„ consistent with convergence.

intercepts, and shows that these random effects are similar in size to the treatment
effect.

The ROC curve for this model is shown in Figure 3.21, with posterior predic-
tive mean and 95% posterior predictive credible interval for the AUC = 0.691 [0.685, 0.697],
which again is similar to good epidemiological models of disease [70, 71].

Autocorrelation plots of the two health facility difference models are shown
in Figure 3.22 for a thinning of 25. There is no significant autocorrelation at this
level of thinning. The Gelman-Rubin statistics for the parameters of both models
are given in Table 3.6, and are consistent with convergence.

The marginal posterior distributions for the regression parameters are shown
in Figure 3.23. Treatment (i.e. converting to RBF funding) is associated with a
significant decrease in cost, with P (�treat < 0|xcost) = 0.98, but not with a change
in quality, with P (�treat < 0|xquality) = 0.41. There was a significant increasing
time trend for cost, with P (�time > 0|xcost) = 0.96, but there is slightly less
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Figure 3.21: ROC curve for this model, with posterior predictive mean and
95% posterior predictive credible interval for the Area Under Curve AUC =
0.691 [0.685, 0.697]
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Figure 3.22: Autocorrelation of the beta parameters for the health facility difference
models of cost (left) and objective quality (right) at a thinning of 25.

67



beta_0
beta_treat

beta_tiPe

−3

−2

−1

0

1

2

3

3
o
st

e
ri

o
r 

d
is

tr
ib

u
ti

o
n

beta_0
beta_treat

beta_tiPe

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

P
o
st

e
ri

o
r 

d
is

tr
ib

u
ti

o
n

Figure 3.23: Marginal posterior distributions of the regression parameters for the
two health facility difference models of cost (left) and objective quality (right).

evidence for an increasing time trend for quality with P (�time > 0|xquality) = 0.94.
The marginal posterior distributions for the standard deviation parameters

are shown in Figure 3.24. There is more health-facility-level variation compared to
time variation for quality, whereas the two sources of variation are similar for cost.

3.4.5 Discussion

These data take the form of a partially-controlled trial. By measuring the same
health facilities and supervision areas before and after an intervention, we control for
heterogeneities between facilities. One concern with this data is that the treatment
and control groups were not picked at random - instead, health facilities were assigned
based on their geographic region. Using a hierarchical model, however, controls for
unknown factors between the two regions by including them in the supervision area
effect ⇠k. The other potentially confounding factor is the interaction between time
and geographic region: perhaps an unrelated change in Acholi region caused the
observed increase in health facility use. This possibility is unlikely, since each PNFP
health facility is administered separately; a regional time effect would require PNFPs
to act together in each region but separately across regions. To rule it out would
require further studies of a similar type but with treatment and control groups
randomised across regions. Another limitation with this data is that the difference
in total funding between input-based and RBF was not measured. This means that
the RBF catchment areas could be performing better because they recieved more
total funding than the input-based ones. The Basinga et al study [111] isolated the
effect of RBF incentives from the effect of a general increase in resources and still
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Figure 3.24: Marginal posterior distributions of the standard deviation parameters
for the two health facility difference models of cost (left) and objective quality (right).

found a significant effect, so RBF does appear to have a real benefit over input-based
funding.

For this section, unlike the previous section, visiting a pharmacy was not
considered as visiting a health facility. This is because the funding change applied
only to health facilities, not pharmacies. This is unlikely to make a significant
difference to the results because only 24 out of 5760 (0.004%) of mothers took their
child to a pharmacy in this dataset.

At the health facility level, these results show that distance to the nearest
government health facility is strongly predictive of health facility usage. Many of
the mothers surveyed took their children to a government health facility rather than
their local PNFP, which may explain this result. In addition, this covariate may be
a proxy for the size of the local PNFP’s catchment area, and hence the distance of
each household to their local PNFP.

The random-intercept effect appears to capture the additional variability in
access to health facilities not already captured by the covariates explicitly included in
the model, and will also include any social influence effect for each supervision area.
Interestingly, the largest and smallest of the random effects are of similar magnitude
to the treatment effect; although the effects of RBF are significant, it is clear that
other factors such as social influence play an equally important role in determining
usage.

The results from the health facility difference models show that health facili-
ties had lower costs after a funding change to RBF, whereas health facilities without
a funding change did not show a significant change. This may be one of the reasons
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for the positive treatment effect of RBF, with lower costs allowing more mothers to
take sick children to a health facility. There was no observable difference in the objec-
tive quality (percentage of correctly treated children) between RBF and non-RBF
funded facilities, which provides more evidence for the conclusions of section §3.3
that objective quality does not seem to strongly influence health facility use. This
highlights a possible weakness in the RBF method: although more sick children are
being taken to health facilities in RBF catchment areas, if they are recieving poor
quality treatment then disease outcomes may not be improving. Further work should
investigate the direct effect of RBF on child mortality.

Even if cost does not have a strong influence on health facility usage, there is
evidence from other studies that healthcare costs can put low-income families into
debt and poverty [139, 140]; the strong evidence that overall costs had increased
between 2012 and 2014 is therefore a worrying sign and highlights the need for
health system interventions such as RBF which seem to reduce healthcare costs.

3.5 Summary

Understanding the health system barriers to positive health behaviours such as
health facility usage, and how to remove these barriers through policy changes, could
lead to significant improvements to health in developing countries. In this chapter
we investigated a barrier that has previously been difficult to analyse: the qual-
ity of local health facilities. By using a Bayesian hierarchical framework we linked
households to local health facilities, imputed the objective and subjective qualities of
these health facilities, and investigated the association between local health facility
quality and usage. We found that NGO-run health facilities were signficantly more
likely to be rated better by users, but were not significantly better when measured
objectively. We also found that both higher objective and higher subjective quality
was predictive of higher usage, but that this predictive power was only half that of
including other unknown local factors such as social influence in the model. The
poor quality of the data means that further studies of health facility quality and
usage are required.

We also investigated the effect of a policy change on health facility usage
behaviour, using quasi-experimental data collected before and after a change in the
funding mechanism of health facilities. We show evidence that changing the funding
mechanism of a health facility to results-based funding, in which health facilities
recieve extra funding for reaching specific targets, causes an increase in health facility
usage for mothers of sick children who live in the catchment area of that health
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facility. Other factors associated with higher usage were having a regular partner,
lower age, and living nearer to a government facility. There was evidence that RBF
caused a decrease in the average price paid by users of a health facility, but there was
no evidence of a change in the quality of a health facility after RBF was introduced.

The Bayesian hierarchical modelling framework allows us to investigate health
behaviours at both the individual and health system level. It is also extendable, and
in future could include data from other levels such as local communities or between
countries. This multi-level approach makes it possible to evaluate the complex in-
terventions required to understand behaviour-changing policies.
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Chapter 4

The spread of health behaviours

4.1 Introduction

Social influence, or the impact of others on our behaviour, plays an important role in
understanding health behaviours. So far, in chapters 2 and 3, we assumed that social
influence took place on a much faster timescale than the timescales of individual
factors, such as education, and health system changes. In this chapter we take a
different limit and assume that it is only social influence that affects the dynamics,
and that the population is homogeneous. This allows the effect of covariates on
behavioural change to be combined into a single rate which applies to all individuals.
Using the definitions in chapter 1, we are considering:

B(t, f(B(t)),X(t)) ! B(t,X, f(B(t)))

Xi = X0 8i 2 1..N.

The aim of this section is to develop a model for the social influence term
f(B(t)) based on the mechanism of ‘complex contagion’, and from there build a gen-
eral model of the spread of behaviour through a homogeneous population. Various
models of social influence have been proposed, but the difficulty of collecting data
on behaviours outside the lab has means that these models have not been tested
statstically. After investigating the complex contagion model and its deterministic
limit, we statistically compare it to the popular ‘simple contagion’ model that is
commonly used to model behaviour, using data on the spread of behavioural fads.
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4.1.1 Social Influence

There is clear evidence that other people have an influence on our behaviour [141,
142, 143, 144], and health behaviours are no exception [145, 146, 147]. In the Health
Belief Model (HBM) introduced in chapter 2, all the dimensions in the model are
based on an individual’s perceptions of the susceptibility to disease, the severity of
the disease, the benefits of a health behaviour, and the barriers to taking part in
the behaviour [23]. Since the beliefs of others influence our own perceptions [148],
it is likely that social influence plays a role in changing health behaviours. Social
influence may also help to understand the “cue to action” required by the HBM to
trigger a decision to change behaviour [23]. By understanding how social influence
affects behaviours in a population, we can better predict how health interventions
will improve health on a population level. We can also use ideas such as ‘nudges’ to
encourage the spread of good health behaviours and reduce the spread of bad ones.

Not all health behaviours seem to be affected by social influence: Keating
et al. [149] investigated cancer screening behaviour and found minimal evidence
for social influence. There are many studies of other health behaviours, however,
which do provide evidence for the importance of social influence on health behaviour.
In particular, the work of Christakis and Fowler [147] analysed longitudinal social
network and health data from the Framingham Heart Study and showed that if an
individual had a friend, sibling, or spouse who had become obese in a given time
interval then that individual was significantly more likely to also become obese.
Similar results were also found when studying the cessation of smoking [146].

The work of Christakis and Fowler has proved controversial; it has been shown
that social influence cannot be distinguished from homophily, or the clustering of
individuals who are similar, in observational studies [150]. Aral et al. [151] try to de-
termine an upper bound for the importance of social influence for behaviour spread,
and find that for the adoption of a particular social media app at least half of the
observed adoption events can be attributed to homophily. This discussion highlights
the difficulty of using observational data to distinguish the effect of individual-level
factors, in the form of homophily, from social influence. This same difficulty is not
present in experimental data, however. Bond et al. performed a randomised con-
trolled trial over Facebook to find evidence for social influence on the decision to
vote. By sending direct messages to ‘seed’ nodes in a network, and then tracking
the behaviour of their contacts, the experimenters showed that individuals were sig-
nificantly more likely to vote if one of their close friends had received a message. In
a study more closely related to health behaviour, Centola [145] placed individuals in
an artificially-structured online community in which users were informed about the
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health activities of their assigned contacts. This experiment showed that social sig-
nals significantly increased the likelihood of an individual taking part in a behaviour,
and that up to three additional social signals significantly increased this likelihood
even further. Taken together, these studies show that while individual-level fac-
tors are significant, as discussed in chapter 2, social influence is also important in
determining health behaviours.

4.1.2 Previous models

Models of social influence have taken three main forms: experimental generalisations,
agent-based models, and compartmental models. Experimental generalisations take
historical data on the spread of a behaviour and try to find functional forms which
match that data. One of the first examples of this approach was by Bass [152], who
created a model of product adoption based on the idea of innovators and imitators.
More recent attempts include fitting a variety of statistical distributions to the pop-
ularity of Internet memes [153]. The main disadvantage to this approach is that it
does not provide a mechanistic model for social influence, and hence does not provide
much insight into individual-level processes.

Agent-based models take almost the opposite approach to the experimental
generalisations mentioned above, in that they simulate all of the individual- (or
‘agent-’) level processes occurring and then try to calibrate the model by matching
the aggregate behaviour to data [154, 155]. Agent-based models are useful tools for
reproducing the complex phenomena observed in real systems, but it is extremely
difficult to fit their parameters to data well.

Compartmental models put each individual in the population into one of a
certain number of states, or compartments. Only the number of individuals in each
compartment and the transitions between them are tracked, and hence the num-
ber of dimensions of the system can be much less than an equivalent agent-based
model. This in turn allows a compartmental model to be fitted to data more easily
than agent-based models, while remaining a mechanistic description of the underly-
ing system. Treating social influence in this compartmental way has a long history,
an example being Dietz in 1967 [156] who developed a model for the spreading of
rumours similar to models from epidemiology. In fact, much of the social influence
literature using compartmental models has been based on the SIRS model of an
epidemic. In the SIRS model there are three compartments: susceptible (S), in-
fectious (I), and recovered (R). Susceptible individuals have not yet been infected
with the disease, infected individuals currently have the disease and are spreading
it, and recovered individuals have had the disease but are no longer spreading it. In
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the canonical SIRS model, individuals move between these compartments with the
following rates:

(S, I)! (S � 1, I + 1) rate �I

(S, I)! (S, I � 1) rate �

(S, I)! (S + 1, I) rate �. (4.1)

This canonical model can be modified by changing the functions for the
rates, and by adding or removing compartments. For models of social influence
on behaviour, the ‘infectious’ compartment represents individuals taking part in a
behaviour and spreading it, and ‘recovered’ means the individual is no longer influ-
encing others to take part in the behaviour. Many previous studies of social influence
modify the canonical model by changing the rates at which at which individuals move
between compartments. Isham et al. [157], for example, developed a model for ru-
mours on a network based on the SIR model modified to include ‘stiflers’ who cause
infectious individuals to recover at a faster rate.

Very few compartmental models for social influence modify the form of the
infection term in the canonical model. However, as shown in experimental studies
[145], there is significant evidence that the form of ‘infection’ in social influence is
different to that in a biological epidemic. The important difference is the number of
exposures to infection that an individual must receive before becoming infected: in
biological infection only one source of infection is required for a non-zero probability
of infection, whereas in social influence multiple sources are required. Dodds and
Watts [158], for example, generalise the SIS model to allow for infection processes
that require multiple exposures.

4.1.3 Population models

Modelling every individual in a population can lead to models with a large number
of parameters, which real world datasets on behaviour generally cannot support.
Instead, here we consider groups of individuals that are all in a particular state. In-
dividuals change state with a certain rate. This is called ‘compartmental modelling’.
A common application of this approach is to epidemic modelling, where individuals
are grouped by their infection status. Perhaps the simplest example from epidemiol-
ogy is the SIR model, which has three compartments: S, or susceptible, containing
people who have never caught the disease; I, or infected, containing people who have
caught the disease and are infectious; and R, or recovered, who caught the disease
in the past but are no longer infectious and cannot catch the disease again. This

75



model, and extensions to it, have been very successful in capturing the dynamics
of real epidemics [15]. One of the advantages of compartmental modelling is that
additional compartments can be added to models in order to capture higher levels
of detail. The SEIR model, for example, is an extension to SIR which gives an im-
proved description of some diseases by including an ‘exposed’ period during which
an individual is infected but is not infectious.

Compartmental models can be treated stochastically or deterministically. For
small populations, randomness will have a large effect, and so we have to model the
movement of individuals between each compartment using probability distributions.
Individual changes of state are assumed to follow a Poisson Process, which means
that the waiting time between moves follows an Exponential distribution.

4.1.4 Analysis methods

4.1.4.1 Gillespie Algorithm

One method for simulating these stochastic models is the Gillespie Algorithm [159],
which is as follows:

Algorithm 4.1 The Gillespie Algorithm for simulating from a compartmental model
1. Add up the rates of all possible transitions from the current state, R =

P
iRi

2. Draw time �t from an Exponential distribution with mean R�1

3. Calculate the fraction of each transition rate to the total rate, ri = Ri
R

4. Pick one transition to occur by drawing randomly from the possible transitions
weighted by their rates.

5. Update the states based on the picked transition, and set the time that this
transition occured to be at time �t after the last transition.

This is a general technique for simulating the time dynamics of continuous-
time Markov chains, which we are considering in this chapter.

4.1.4.2 Bailey’s Method

Bailey’s method calculates the exact final size distribution for the SIR model [160].
Neuts and Li’s implementation [161] of it has been shown to be numerically stable
and computationally efficient [160]. This method is convienient as it removes the
noise in estimating final size distributions that comes from simulating using the
Gillespie Algorithm. It can also be extended to systems with more compartments
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and different transition rate functions [162], as long as the system has an absorbing
state. The method relies on using the transition matrix to calculate the probability
that the system will pass through a particular state, and performing this calculation
in an order such that the probability of each state depends only on quantities that
have already been calculated. Figure 4.1 explains this process diagrammatically.
Figure 4.1 (left) shows one particular realisation of an SIR stochastic process with
population size 9, showing the states visited in order and ending with 7 recovered
individuals. Since this is an SIR process, infected individuals can never return to the
susceptible state. As such, the only allowed transitions in this system are those that
increase I by 1 and leave R unchanged, or those that decrease I by 1 and increase R

by 1. This allows the calculation order shown in Figure 4.1 (right), which starts from
the initial state with probability 1. For the canonical SIR model, the probability of
states (I0 + 1, R0), (I0 + 2, R0), ... ,(N,R0) are as follows:

P (I0, R0) = 1

P (I0 + 1, R0) =
�P (I0, R0)

�P (I0, R0) + �P (I0, R0)

P (I0 + 2, R0) =
�P (I0 + 1, R0)

�P (I0 + 1, R0) + �P (I0 + 1, R0)
... .

Once the probabilities of visiting each state in column R0 have been calcu-
lated, there is enough information to determine the probability of state (I0�1, R0+1).
From this, values in column R0 + 1 can be calculated:

P (I0 � 1, R0 + 1) =
�P (I0, R0)

�P (I0, R0) + �P (I0, R0)

P (I0, R0 + 1) =
�P (I0 + 1, R0)

�P (I0 + 1, R0) + �P (I0 + 1, R0)
+

�P (I0 � 1, R0 + 1)

�P (I0 � 1, R0 + 1) + �P (I0 � 1, R0)

P (I0 + 1, R0 + 1) =
�P (I0 + 2, R0)

�P (I0 + 2, R0) + �P (I0 + 2, R0)
+

�P (I0, R0 + 1)

�P (I0, R0 + 1) + �P (I0, R0)
... .
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Figure 4.1: One realisation of an SIR stochastic process with population size 9,
showing the states visited in order (left). Calculation order such that the probability
of visiting each state depends only on previously-calculated states (right).

The calculation then proceeds along columns of R until R = N , and the prob-
ability of visiting all allowed states has been calculated. The final size distribution
is then given by:

P (Z) = P (I = 0, R = Z).

4.2 General complex contagion model

4.2.1 Introduction

We will treat the change in the population’s behaviour over time as an infectious
process, with individuals becoming ‘infected’ with the behaviour of their social con-
tacts. An individual’s behavioural state can be one of the following: S (susceptible),
not taking part in the behaviour; I (newly infectious), recently converted to the
behaviour and is currently trying to spread the it; J (infectious), still spreading
the behaviour and has been doing so for some time; and R (recovered), previously
taking part in the behaviour but is no longer spreading it. By ignoring individual
covariates, we can split the whole population into compartments depending on their
behavioural state. Within each compartment individuals are interchangeable and
are not separately tracked. The numbers of individuals in each compartment are
defined as follows:
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S =
X

i

I{Bi(t)=S}

I =
X

i

I{Bi(t)=I}

J =
X

i

I{Bi(t)=J}

R =
X

i

I{Bi(t)=R}.

We can model behaviour at the population level by specifying the rates at
which individuals move between these compartments. In this section we extend the
work of House [163], who introduced a population-level form of complex contagion, to
include multiple infectious compartments with different thresholds. We then insert
this form of complex contagion into a general stochastic compartmental model based
on an SIRS epidemic to create a general model of social contagion applicable to many
spreading situations.

Using the Gillespie Algorithm to simulate realisations and an implementation
of Bailey’s Method to calculate the final size distribution, we study a special case
of the general model that represents the spreading of ‘fads’: short-lived behaviours
which rapidly take over a large fraction of the population and eventually die out.
We find that, for complex contagion, chance is very important in determining the
success of a fad. We also find that a small ‘nudge’ (convincing a small number of
individuals to take part in a fad who would not otherwise have done so) is sufficient
to signficiantly change the success of the fad.

4.2.2 Social influence term

For this work we use a simple model for complex contagion that captures the nonlin-
ear response to the number infected contacts while remaining analytically tractable.
Each individual canvasses C contacts, and if the number of these contacts taking
part in a behaviour is greater than some threshold ⌧ then the individual becomes
infected with some rate:

D(k|⌧) =

8
<

:
0 k < ⌧

� k � ⌧,

where k is the number of infected contacts and ⌧ is the threshold for behavioural
spread.
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Figure 4.2: Individual infection rate for simple and complex contagion with � = 1,
⌧ = 5, and C = 10. Simple contagion increases linearly with number of infected
contacts, whereas this complex contagion model is a step function with threshold ⌧ .

Figure 4.2 compares the transmission rates for simple and complex contagion
as a function of the number of infected contacts. For simple contagion, each ad-
ditional infected contact gives the same increase to the transmission rate, whereas
complex contagion does not spread until the threshold is reached.

We follow House [163], and treat this mechanism at the population level. For
simplicity we assume an all-to-all contact network, and that all individuals have the
same values for C and ⌧ . Repeated exposures to the same infected individual each
count towards reaching the threshold for infection, and as such the C contacts are
chosen randomly with replacement from the population. Under these conditions, the
probability p of an individual having k infectious contacts is given by a Binomial
distribution:

p(k|I,N,C) = Bin
✓
k| I
N

,C

◆
,

where I is the number of infectious individuals in the population and N is the total
population size.

The infection rate is therefore given by the total probability that there are
at least ⌧ infected individuals in the canvas group:

f(I) = �
CX

k=⌧

Bin
✓
k| I
N

,C

◆
. (4.2)

Figure 4.3 shows the population-level behaviour of the infection rate. Whereas
for simple contagion the infection rate increases linearly with the fraction of infected
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Figure 4.3: Population-level infection rate for simple contagion and four complex
contagions with different parameters. The simple contagion term is again linear, but
each complex contagion has a sigmoidal infection function which is steeper as C is
increased.

contacts, complex contagion has sigmoidal infection rate with the point of inflection
at the position of the threshold. Increasing C creates a sharper transition at the
threshold point.

The Binomial model given above sufficient for a single complex contagion
compartment, but if there are two or more of these compartments then the thresholds
must be combined in some way. The simplest model is to treat the contribution of
each compartment to its threshold separately, and then calculate the total probability
of either of the compartments reaching its threshold. If there are two infectious
compartments, the total probability that at least one of the thresholds is reached is
given by the following:

f(I, J) = �
CX

k=⌧i

CX

l=0

Multi(k, l| I
N

,
J

N
,C)

+�
⌧iX

k=0

CX

l=⌧j

Multi(k, l| I
N

,
J

N
,C). (4.3)

The probability surface for this model is shown in Figure 4.4 for C = 10 and
C = 100, and with ⌧i =

2
10C and ⌧j = 4

10C. As with the single-threshold model,
higher values of C lead to sharper transitions between high and low probabilty. This
figure also compares the Multinomial model with an alternative model for multiple
compartments with the same threshold, which sums the fraction of the population
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in all complex contagion compartments and uses this total infectious fraction in
equation (4.2). This model is not easily generalisable to multiple thresholds. Other
models for the contributions of the infectious compartments to the threshold could
be developed, but the model given in equation (4.3) provides an initial approach.

Much of the analysis for this chapter fixes the number of contacts an indi-
vidual canvasses to C = 10. In part, this number was chosen for computational
reasons: higher values of C increase the time taken to calculate the social influence
term. This value is also within the range of 10-15 ‘sympathy’ contacts identified
by Hill and Dunbar in real human social networks [164]; these contacts are outside
immediate family but nonetheless have a strong connection with the individual.

4.2.3 Stochastic Model

The complex contagion term given above was inserted into a compartmental model
framework to provide a general model of behaviour spread through a population. We
based this general model on the SJIRS model of epidemic spread, and then applied
it to specific spreading situations by by setting particular parameters to 0 or taking
them to infinity.

We consider a fixed population size N = S + I + J +R. The transition rates
for state (S, I, J) are given by:

(S, I, J)! (S � 1, I + 1, J) rate f(S, I, J)

(S, I, J)! (S, I � 1, J + 1) rate g(S, I, J)

(S, I, J)! (S, I, J � 1) rate h(S, I, J)

(S, I, J)! (S + 1, I, J) rate r(S, I, J). (4.4)

This model is ‘SIRS-like’, but if r !1 it becomes ‘SIS-like’, and if r ! 0 it
becomes ‘SIR-like’. The general model can therefore be tailored to fit many spreading
situations.

The infection rate and decay rates have the following general forms:

f(S, I, J) =
CX

x=0

CX

y=0

p(x, y, z|S, I, J,N,C)F (x, y, z|✓)

h(S, I, J) =
CX

x=0

CX

y=0

p(x, y, z|S, I, J,N,C)G(x, y, z|✓⇤), (4.5)

where p(x, y|...) is the probability that of the C contacts, x are in state S, y are in
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Figure 4.4: Comparison of Multinomial and Binomial social term for two values of C.
The Multinomial term can include multiple types with different thresholds. For the
Multinomial model, there is an extra region of low probability in the region where
the total infected fraction (I+J) is above the lowest threshold, but neither theshold
individually has been reached. Parameters are C = 10, ⌧I = 2, ⌧J = 4 (left) and
C = 100, ⌧I = 20, ⌧J = 40 (right).
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state I, and z are in state J . F (x, y, z|✓) is the social influence term which models
the probability of taking part in a behaviour if x contacts are in state S, y are in state
I, and z are in state J . G(x, y|✓⇤) models the probability of stopping a behaviour if
x contacts are in state S, y are in state I, and z are in state J .

In this chapter we concentrate on one specific spreading situation: behavioural
‘fads’ that briefly flourish and then die out. In this situation, fads are guaranteed to
eventually cease to spread in any closed population. We therefore set rate r = 0 in
equation (4.4), which prevents recovered individuals from becoming reinfected. Later
in this chapter we consider the behaviour spreading to separate sub-populations.

In this model, both the infection rate and the recovery rate are complex
contagions. Individuals may be infected by canvassed individuals in either of the
infectious compartments (I or J), but are more strongly influenced by newly in-
fectious contacts; the number of I contacts required for infection is therefore lower
than the required number of J contacts. The existence of two different thresholds
requires us to use the Multinomial form of the complex contagion mechanism, so the
infectious transition rate is given by equation (4.3). The recovery complex contagion
rate depends on only one compartment, the number of infectious individuals, and
is therefore given by equation (4.2). Individuals are assumed to transition from the
newly-infectious state to the infectious state at a constant rate, ✏.

Substituting these rates into the general spreading model gives the following
system:

(S, I, J)! (S � 1, I + 1, J) rate �
CX

k=⌧i

CX

l=0

Multi
✓
k, l| I

N
,
J

N
,C

◆

+�
⌧iX

k=0

CX

l=⌧j

Multi
✓
k, l| I

N
,
J

N
,C

◆
;

(S, I, J)! (S, I � 1, J + 1) rate ✏ ;

(S, I, J)! (S, I, J � 1) rate �
CX

y=⌧�

Bin
✓
y| J
N

,C

◆
. (4.6)

This system was simulated using the Gillespie algorithm, and the final size
probability distribution (number of recovered individuals when the epidemic dies
out) calculated to machine precision using an implementation of Bailey’s method.
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4.2.4 Stochastic results

The fad model was simulated for a population size of N = 500. Multiple realisa-
tions for the same set of parameters are shown in Figure 4.5a with ⌧j = 5, and in
Figure 4.5b with ⌧j = 3. Several of the realisations died out without infecting a
significant fraction of the population. Others infected a large fraction, and all of
these had very similar timeseries once they had reached a particular threshold. If
shifted so that the peak times of each realisation coincided, the timeseries of all
the successful fads were extremely similar. The timeseries for each successful fad is
characterised by a slow initial increase until a certain threshold is reached, followed
by a sharp spike in the number of infected individuals. There is then a fast decay
just after the peak which gradually slows until the fad has died out. The effect of
decreasing ⌧j is to allow more fads which do not spread significantly at the beginning
of the fad to eventually reach the threshold for the infectious state and eventually
spread to a large fraction of the population.

4.2.5 Analysis using Bailey’s method

Although the Gillespie Algorithm be used to simulate realisations from the social
influence compartmental model, it is inefficient for investigating ensemble properties
of the model such as the final size distribution. The Gillespie method scales poorly
with population size, and many realisations are required to estimate ensemble prop-
erties with sufficiently low Monte Carlo error. Instead, we investigated the effect of
different parameter values and of ‘nudges’ on the final size distribution of the fad
model using an implementation of Bailey’s method.

We extended Neuts and Li’s implementation of Bailey’s method [161] to in-
clude the extra newly-infectious compartment and modified the infection and re-
covery rates to represent complex contagion. Figure 4.6 compares the final size
distribution calculated using the new implementation of Bailey’s method with that
estimated from 105 realisations simulated using the Gillespie Algorithm. Both esti-
mates are very similar, but small differences due to noise can still be observed even
with a large number of iterations. Figure 4.7 shows how the time taken to calculate
the final size distribution using Bailey’s method scales with population size for this
model. Many steps in the calculation involve the same quantities, so this implemen-
tation uses caching to store previous function evaulations and avoid recalculating
the same value multiple times.

Figure 4.8 shows the relationship between � and ✏ in determining the extent
of the fad. It plots the probability that more than half the population take part in
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Figure 4.5: Realisations of the stochastic fad system (left) and the same realisations
shifted on the time axis to have the same peak time (right), for different values of
⌧j : a) ⌧j = 5 b) ⌧j = 3. Other parameters are: N = 500, � = 1.2, ✏ = 1, ⌧i = 2,
⌧r = 2, I(0) = 5. All successful fads have very similar shape and timescale
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Figure 4.8: Probability of more than 50% of the population taking part in the fad
for each value of � and ✏. Other parameter values are: N = 100, ⌧i = 2, ⌧j = 5,
⌧r = 3, I(0) = 2.

the fad based on the value of � and ✏. As ✏ increases, a higher value of � is required
for the fad to spread to more than half the population. The boundary (�, ✏) line
below which the fad does not spread appears to be almost linear. Figure 4.9 is a
similar plot showing the relationship between � and I(0). Below a certain value of
�, in this case around � < 0.5, the fad will die out whatever the initial value of I.
As � increases, a lower initial value of I is required for the fad to spread to most of
the population.

Figure 4.10 shows the effect of moving one individual from the S compartment
to the I compartment, by comparing the final size probability with and without this
‘nudge’ at the beginning of the fad. Without the nudge, the fad is guaranteed to die
out. With the nudge, however, there is a small but non-zero probability that almost
the whole population will be affected by the fad. This abrupt change from die-out
to widespread uptake is not present in systems with simple contagion.
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4.2.6 Discussion

Using the social influence terms given in equation (4.2) and equation (4.3), we can
capture the mechanism of complex contagion within a compartmental model. The
multinomial form given in equation (4.3) allows for multiple infectious compart-
ments with different thresholds. This form relies on each compartment reaching its
threshold separately, with individuals in one compartment not contributing towards
reaching the threshold of another. This may be an unrealistic assumption: it is more
likely that the total number of infectious individuals also has a threshold. The gen-
eral features, however, are robust to changes in the form of the complex contagion
term if it has a threshold property. Further work is required to investigate the effect
of canvas size C on the spread of fads, but the ratio of the thresholds ⌧i, ⌧j and ⌧r

to C seems to be more important in determining the general form of the spread.
We have also introduced a general compartmental model which can include a

variety of social influence terms, including complex contagion. By taking the limit of
the system as some parameters go to either zero or infinity, the model can be used to
represent a range of situations in which social influence is important. In particular,
we investigate the limit in which ‘recovered’ individuals cannot become re-infected;
this corresponds to a ‘fad’, which is briefly popular before eventually dying out. The
presence of an absorbing state allows us to implement Bailey’s Method for the fad
system, providing additional insight into the social contagion process.

Simulating the fad system using the Gillespie Algorithm showed that a fad’s
popularity not only depends on the parameters of the system (such as the ‘infectious-
ness’ of the fad), but also strongly depends on chance. Realisations of the stochastic
system demonstrate high variability and low predictability. Another feature of the
model is that those fads which do affect the majority of the population have very
similar timeseries shapes, but take become popular at different times. This implies
that certain features of fads are predictable once they have been identified as pop-
ular; in particular, the time before the fad dies out should be very similar for fads
with the same parameters.

Stochastic simulations provide insight into the timeseries of fads, but the
stochasticity makes this method inefficient for investigating the effect of each pa-
rameter on the fad. Instead, an implementation of Bailey’s method was used to
efficiently calculate the final size probability distribution for given parameters. In
particular, in Figure 4.8 there appears to be an almost linear boundary between the
infectivity (�) and the loss of enthusiasm parameter (✏) below which the trend does
not spread. There is also a fast transition in the probability of spread for values of
� and I(0), shown in Figure 4.9: a small change in either can lead to a large change
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in the probability.
Bailey’s method was also used to investigate the effect of a small nudge to

the system on the final size distribution. A nudge of one individual moved from the
susceptible to the infectious state is sufficient to turn a fad that was guaranteed to
die out to one that has a non-zero probability of spreading to the whole population.

In summary, the general social influence model explains the main character-
istics of social influence identified by Salganik et al. [141]: unpredictability of which
behaviours will succeed, and large variability in the number of people affected by the
behaviour. One version of this model, the fad model, also captures the phenomenon
of ‘boredom’ with a fad observed by Denrell and Kovacs [165]. Finally, we can use
Bailey’s method to understand control measures for behaviour spread; specifically,
that only a small ‘nudge’ is required to make a behaviour either die out or take over
the population.

4.3 Deterministic limit

4.3.1 Introduction

The stochastic model described in the previous section is important for understand-
ing the effect of chance on the spread of behaviours. A full stochastic model, however,
has three main disadvantages: simulation is computationally intensive, many real-
isations are required to reduce noise, and methods for fitting these models to data
are advanced and experimental. In this section we consider the general model, equa-
tion (4.4), in the limit of large population size N . This allows us to treat the model
as a system of ODEs, and apply methods of analysis that would not be available for
the stochastic system. For many real-world situations the population size is large
enough to make this a valid approximation.

4.3.2 Model

The stochastic model equation (4.5) can be approximated by the following system
of ODEs [166, 167], with error O

⇣
N� 1

2

⌘
where N is the population size:
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dS

dt
= �f(S, I, J)S + r(S, I, J)R

dI

dt
= f(S, I, J)S � g(S, I, J)I

dJ

dt
= g(S, I, J)I � h(S, I, J)J

R = 1� S � I � J , (4.7)

where we have redefined S
N ! S, IN ! I, J

N ! J , and R
N ! R when converting from

the stochastic model to the ODE model.
For the fad model, this system is reduced to the following:

dS

dt
= �f(I, J)S

dI

dt
= f(I, J)S � ✏I

dJ

dt
= ✏I � h(J)J

R = 1� S � I � J, (4.8)

where

f(I, J) = �
CX

k=⌧i

CX

l=0

Multi (k, l|I, J, C)

+�
⌧iX

k=0

CX

l=⌧j

Multi (k, l|I, J, C) (4.9)

and

h(J) =
CX

y=⌧�

Bin
✓
y| J
N

,C

◆
. (4.10)

4.3.3 Results

We confirm that this ODE system approximates the stochastic system in Figure 4.11.
If N is large enough (typically N & 104), then the mean of an ensemble of stochastic
realisations lies very close to the timeseries predicted by the ODE model. Interest-
ingly, due to the property of the stochastic fad model that realisations which spread
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Figure 4.11: Comparison of stochastic and deterministic models for two values of
⌧j . Stochastic model is averaged over 100 realisations. Stochastic parameters are
N = 2 ⇥ 105 and I(0) = 0.01N . The other parameters are� = 2.7, ✏ = 1, ⌧i = 2,
I(0) = 1. ⌧j = 5 (left) ⌧j = 3 (right).

all share a similar shape, individual realisations of the fad model which survive are
also very close to the ODE timeseries.

Figure 4.12 explores the effect of parameters �, ✏, ⌧i and ⌧r on the time course
of the behavioural fad, with all other parameters held constant. There is a sharp
threshold for �, below which fads die out and above which they take over a significant
part of the population. For fads which do take off, the effect of � is to make the
peak in the fad occur faster and die quicker. Increasing the rate of enthusiasm decay
parameter, ✏, has the effect of compressing the width of the peak. Above a certain
threshold it also stops the spread of the fad to the majority of the population. The
effect of increasing ⌧i is to increase the time before the fad spreads to a majority of
the population, until reaching a value at which the fad dies out immediately. The
effect of increasing ⌧r is to increase the time it takes for the fad to die out after the
peak has been reached; it does not have an effect on the start of the fad.

The initial number of infectives, I(0), is very important for determining
whether the fad will spread. In the example given in Figure 4.13, a difference of
0.001 is sufficient to make one fad take over the population and the other to die out.
For simple contagion, however, significant spreading is determined by the parame-
ters rather than by the fraction of initial infectives, and the final size of the epidemic
increases smoothly with this initial fraction.
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Figure 4.12: Effect of a) �, b) ✏, c) ⌧i, and d) ⌧r on the solution to the ODE system.
The two continous parameters, � and ✏, both exhibit a sharp threshold between fads
that are successful and those that are not. The thresholds ⌧i and ⌧r control the
beginning and end of the fad respectively.
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Figure 4.13: The effect of initial infected fraction on complex contagion (left) and
simple contagion (right). For complex contagion, I(0) is very important for deter-
mining the success of the fad; for simple contagion I(0) does not affect the success
of the fad.

4.3.4 Discussion

Approximating the general stochastic social influence model as an ODE system is
appropriate when considering population sizes N & 104, and it provides additional
tools to analyse the spread of behaviours. In particular, it shows the effect of the
parameters on the timeseries of the spread more efficiently than in the stochastic
system. The continuous parameters �, ✏ and I(0) have critical values which separate
fads which spread and those which immediately die out, and the threshold parameters
control either the start or the tail of the fad.

While the general ODE model captures the average behaviour of the general
stochastic model, in the case of the fad model even the behaviour of individual
realisations of the process are captured by the ODE. This is encouraging, as it implies
that if it is known that a fad is starting to become popular in a large population
then the ODE model will predict its behaviour.

4.4 Evidence for complex contagion

4.4.1 Introduction

The ODE model introduced in the previous section has the advantage that it allows
us to fit to data. We used the fad version of the model to compare simple and complex
contagion to real-world behaviours, and statistically decide which was better. We
then tested the model’s predictive power by using it to predict the spread of a fad
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before it had reached its peak.

4.4.2 Data

The data chosen was Google search volumes for a particular category of Internet
meme: photo fads. These fads consist of users uploading photos of themselves
in a particular pose; for example, the photo fad ‘planking’ involved participants
uploading photos of themselves lying face-down in public places. Photo fads were
chosen because they tended to have distinctive names, allowing them to be clearly
identified in search data; they involved real-world behaviours that were spread by
and reported on the Internet; and they were undertaken for no ostensive reason
beyond their online popularity. These photo fads tended to be global phenomena,
and hence took place in a population large enough to satisfy the assumptions of the
ODE model.

We avoided selection bias by taking all 37 Photo Fads listed on the website
KnowYourMeme.com (a comprehensive source of information on internet memes).
The search data was obtained from Google Trends, and consisted of search volumes
quoted in terms of a percentage of the peak value, and aggregated weekly. We fitted
models to the 26 fads with sufficient (greater than 15) non-zero datapoints.

4.4.3 Statistical model

The data take the form of a set of real-valued Google Trends at discrete time points
y := (yt)Tt=1. Search data was assumed to be a proxy for the number of people
taking part in the trend: infected individuals search for information about these
fads at a constant rate. The noise in the data was therefore modelled as arising
from overdispersed sampling with mean µ(t) := I(t) + J(t), where I(t) and J(t)

are solutions to the ODE fad model in equation (4.8). For known count data the
Negative Binomial distribution would be appropriate to model this overdispersed
sampling, but the data provided by Google Trends is instead given as a percentage
of the peak and is therefore real-valued. As such we use the Gamma distribution,
which approximates the Negative Binomial in the limit of large population size and
is defined on the positive real numbers, to model the noise around the mean. This
gives the following likelihood function:

L(y|✓) =
TY

t=1

Gamma(yt|Aµ(t+�t), r),
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AIC difference Evidence
0 - 2 Weak
2 - 6 Positive
6 - 10 Strong
> 10 Very strong

Table 4.1: Grades of evidence provided by the AIC difference between two models,
based on Stylianou et al. [4].

where we use the ‘mean-shape’ parameterisation of the Gamma distribution. This
likelihood contains three additional ‘nuisance’ parameters: A is the relative ampli-
tude term to adjust for the fact that Google Trends data is quoted in terms of the
fraction of the peak; �t is an additive time shift to match model time with real time;
and r is the Gamma shape parameter to capture overdispersal.

To fit the model, L was maximized with respect to all parameters. For each
set of fad data we calculated the Akaike Information Criterion (AIC), as described
in chapter 2, for the simple and complex contagion models:

AIC = 2k � 2lnL⇤,

where k is the number of parameters for each model (8 for simple contagion
and 9 for complex contagion) and L⇤ is the maximum value of the likelihood. We
then classified the difference in AIC between the two models into different grades of
evidence, based on the suggestions of Stylianou et al. [4], as shown in Table 4.1.

Some fads showed two clear peaks in the data. We therefore fitted a model in
which two separate sub-populations become infected, with the total infected fraction
being the sum of infected in the sub-populations. The parameters for each popula-
tion were fitted independently, except for the thresholds in the complex contagion
model that were assumed constant. The AIC was again used to select between
one-population and two-population versions of both contagion mechanisms.

4.4.4 Results

Of these fads, 22 of 26 showed significant evidence that complex contagion was a
better model for the data than simple contagion. The fitted timeseries for all fads
are provided in Figure 4.14, ordered by log-likelihood difference. Most fads showed
similar characteristics: a fast uptake, a drop in interest after the peak that was
almost as fast, and then a long tail of activity taking a long time to die out.

The complex contagion model’s threshold for social influence allows it to
capture the fast increase in popularity seen in most of the trends. The linear force
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of influence in the simple contagion model, however, means that it is slower to build
to peak popularity. After the peak, the simple contagion model has a constant
rate for individuals leaving the fad, leading to exponential decay in popularity. The
complex contagion initially shows a fast drop in popularity as individuals see that
their contacts are already taking part in the fad, but once most of the population
has stopped taking part the few individuals remaining take longer to give it up. This
correctly captures the ‘long tail’ of popularity seen in the data.

For a minority of fads, the simple contagion model was also adequate, but
this was typically linked to few datapoints and / or poor signal quality.

Table 4.2 shows the log-likelihood difference, �L = lnL⇤
c � lnL⇤

s, between
the complex contagion and the simple contagion models (the difference in number of
parameters is constant for the single population models and for the double population
models) and the AIC evidence grade for each fad. For 22 out of 26 fads the complex
contagion model is significantly better than simple contagion. The three fads with
no positive evidence for either model were noisier and had higher background search
volumes than the other fads. The names of these fads (‘caught me sleeping’, ‘people
eating money’, ‘playing dead’) are phrases that could appear in searches unrelated to
photo fads, leading to higher noise. It is interesting that the one case where simple
contagion was a significantly better model, ‘horsemanning’, was the only one started
by the Internet news site ‘BuzzFeed’ in an attempt to create a fad artificially. This
suggests that a strong external driver not included in the model, such as mass media
influence, can have a significant effect on the spread of a fad.

4.4.5 Prediction

The complex contagion model was used to predict the future spread of another
fad, ‘ALS Icebucket Challenge’. This was a charity campaign that spread in a
viral manner, with friends nominating each other to take part. A previous fad,
‘Neknomination’, had spread in a similar way, and so we used the parameters fitted
from that fad to predict the future spread of ‘ALS Icebucket Challenge’. We made a
verifiable prediction at the start of the campaign, shown in Figure 4.16, and overlaid
the final data when the campaign had finished. The data are generally within the
95% prediction interval of the model, and the time and duration of interest in the
campaign were predicted well: the peak occurred in the week predicted by the model,
and the campaign was popular for the same length of time as the model.
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Figure 4.14: Simple and complex contagion model fits for all fads with sufficient
data, ordered by log-likelihood difference. (continued on next page)
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Figure 4.15: (Continued) Simple and complex contagion model fits for all fads with
sufficient data, ordered by log-likelihood difference.
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Photo Fad Log-likelihood difference AIC Evidence
Sneaky Hat 47.4 ***
Cat Beard 44.0 ***
Owling 39.3 ***
Cat Breading 38.9 ***
Lynndie England 27.3 ***
Bradying 26.6 ***
Vadering 24.6 ***
Hadokening 24.2 ***
Batmanning 24.2 ***
Lying Down Game 17.8 ***
Leisure Diving 16.8 ***
Sleeveface 12.1 ***
241543903 11.7 *** †
Perfect Splits 11.7 ***
Mamming 10.2 ***
Pottering 9.5 ***
Planking 8.5 *** †
Skywalking 7.1 *** †
Tebowing 6.9 *** †
Teapotting 6.0 ***
Dufnering 4.7 **
Stocking Planking 2.0 *
Caught Me Sleeping -0.0 . †
People Eating Money -1.7 . †
Playing Dead -1.9 . †
Horsemanning -3.2 -

Table 4.2: The log-likelihood difference between the simple and complex contagion
models. (***) is very strong evidence, (**) is strong evidence, (*) is positive evidence,
(.) is no significant evidence for either model, (-) is strong evidence against.
† AIC selected models with two peaks.
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Figure 4.16: Prediction for the ‘Icebucket Challenge’ fad, using a model fitted to a
similar fad. The plot shows the data available when the prediction was made, and
the subsequent course of the fad. The model successfully predicts the timing of the
peak and the duration of the fad.

4.4.6 Discussion

The general social influence model provides a framework in which we can test com-
peting models of social influence. In this case we used data on real-world behaviours
driven by online spreading to compare simple contagion and complex contagion sta-
tistically. For all but one fad the complex contagion model before at least as well as
simple contagion, and in most cases was significantly better. The complex contagion
was also cabable of predicting the peak time and duration of a fad that had not yet
reaced its peak. This demonstrates that complex contagion provides a predictive
modelling framework for real-world behaviours which spread online.

4.5 Summary

In this chapter we have developed a general model of behaviour spread based on
the psychologically motivated and experimentally confirmed mechanism of complex
contagion. This general model can be simplified to suit a variety of spreading sit-
uations, including behavioural fads which are briefly popular and then die out. A
convenient feature of the fad model is that it can be analysed using Bailey’s method,
a computationally efficient technique for calculating the final size distribution of a
fad to machine precision. This in turn highlighted an interesting feature of complex
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contagion models: that a small ‘nudge’ of a few individuals can mean the difference
between a behaviour that spreads or one that dies out, even for behaviours with the
same parameter values.

We then investigated the deterministic limit of the general spread model, and
used it to investigate the effect of the parameters on the mean behaviour of the model.
The deterministic limit also allowed a statistical comparison of complex contagion
with the simple contagion model that is currently used in most other studies, using
observational data for the online spread of real-world behaviours. The predictive
power of the complex contagion model was then demonstrated by predicting the
spread of a fad before it had reached its peak.

103



Chapter 5

Towards a combined social

influence and covariate model

5.1 Introduction

So far in this thesis we have separately tackled each health behaviour component
identified in chapter 1. An ideal model for health behaviour, however, would combine
all of these components into a predictive model that could be statistically fitted if
given appropriate data. It might also attempt to model a disease spreading at the
same time as the behaviour, each influencing the other. In this overall model defined
in chapter 1, the behaviour of the population B(t) is a function of time, covariates
X(t), and a separate dynamic process, such as a disease, Z(t,B(t)). This is an
ambitious goal, which will not be reached in this thesis. Instead, in this Chapter we
discuss some possible approaches which could lead to this ideal model.

5.2 Coupling behaviour and disease spread

5.2.1 Background

We will use the complex contagion model described above to investigate the dynam-
ics of health behaviours that spread through a homogeneous population while an
epidemic is taking place:

B(t)! B(t,Z(t,B(t))).

Using a condom during sex, for example, can greatly reduce the chance of contracting
HIV [7], and individuals are more likely to use a condom if they know that an
HIV epidemic is occuring [18]. Other preventative health behaviours have also been
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shown to become more prevalent during an epidemic, such as vaccinations during a
measles outbreak [19] and avoiding infectious contact [20]. Some studies of disease
outbreak data use behavioural changes to explain sudden decreases in transmission
rate [168, 169], but there are few studies which model this mechanism directly. Funk
et al. [170] review and classify recent theoretical attempts to investigate human
behaviour and disease. They identify the properties as ways to group models of
behaviour-disease dynamics: if information about the disease is transmitted globally
to the whole population, or locally through word of mouth; if individuals change their
behaviour due to the prevalence of the disease, or the prevalence of the behaviour;
and if the effect of the behaviour is to change the disease state, the model parameters,
or the contact structure of the population. Developing a general model of health
behaviour linked to disease is beyond the scope of this thesis, but an aspect lacking
in the studies reviewed by Funk et al. is the principled social influence term we
introduced in chapter 4. In this section we will investigate a model linking disease
to a complex behavioural contagion.

5.2.2 Model

We chose to base our approach on the work of Funk et al. [5], which considers both
the spread of a disease and an awareness of the disease, with aware individuals taking
part in a behaviour which changes their infection rate and recovery rate. Awareness
is transmitted locally, by word of mouth, and individuals change their behaviour
based on the prevalence of behaviour around them rather than the prevalence of
the disease. The effect of behaviour is to modify the model parameters. The model
consists of six compartments: Su, Iu, Ru, representing unaware individuals who are
Susceptible, Infected or Recovered respectively, and Sa, Ia, Ra, representing aware
individuals in the corresponding states. Both disease and awareness are treated as
simple SIRS contagions with the rates between each compartment given in Figure 5.1.

Four mean-field equilibria are identified: disease and awareness both spread,
only awareness spreads, only disease spreads, and nothing spreads. Each of these
equilibria are determined by the parameters of the model, for all non-trivial initial
conditions.

We simplified the structure of the Funk model by removing the Recovered
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Figure 5.1: Diagram showing the rates between the compartments in the Funk model
[5]. Arrows represent possible transitions between the compartments

states and setting ! = 0. The states are defined in terms of B(t) and Z(t) as follows:

Su =
X

i

I{Bi(t)=u}I{Zi(t)=S}

Iu =
X

i

I{Bi(t)=u}I{Zi(t)=I}

Sa =
X

i

I{Bi(t)=a}I{Zi(t)=S}

Ia =
X

i

I{Bi(t)=a}I{Zi(t)=I},

where Bi(t) 2 {u, a} and Zi(t) 2 {S, I}.
We separated the rate ↵ into a rate ↵I for infected individuals and a rate

↵S for susceptible individuals, and similarly for �. We concentrated on a situation
where information about the risks of certain behaviours are less important than peer
pressure/social norms. In our model, equation (5.1), there is no direct interaction
between the disease and the rate of becoming aware of the behaviour; instead, aware-
ness spreads through the population as a complex contagion (‘peer pressure’) with
rates dependent on whether an individual’s contacts are infected or susceptible.
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dSu

dt
= ��u(Iu + Ia)Su + �uIu � ↵SD(Su, Ia, Iu)Su + �SSa

dIu
dt

= �u(Iu + Ia)Su � �uIu � ↵ID(Su, Ia, Iu)Iu

dIa
dt

= �a(Iu + Ia)Sa � �aIa + ↵ID(Su, Ia, Iu)Iu

Sa = 1� Su � Iu � Ia. (5.1)

In this model, susceptible individuals take steps to change their probability of
becoming infected if they are ‘aware’ of the behaviour. Unaware individuals become
infected with rate �u, and aware individuals with rate �a. Individuals stop being
infectious at rates �u and �a if they are unaware or aware respectively, at which
point unaware individuals return to the Su state and aware return to the Sa state.
Awareness spreads through the mechanism of complex contagion, with individuals
canvassing C contacts and becoming aware with a particular rate if the number of
aware infectious individuals around them is greater than a threshold ⌧i, or if the
number of aware susceptible individuals around them is greater than a threshold
⌧s. The rate of awareness spreading if one of these thresholds is reached depends on
whether the individual itself is susceptible or infected: susceptible individuals become
aware at rate ↵S and infectious individuals at rate ↵I . The loss of awareness happens
at constant rate �S for susceptible individuals, but aware infectious individuals are
assumed not to lose their awareness (�I = 0).

5.2.3 Methods

We analyse the system of ODEs given in equation (5.1) using Linear Stability Anal-
ysis [171]. This is a method for investigating the local behavoiur of an ODE system
around its fixed points. First the fixed points are found by solving:

f (S⇤
u, I

⇤
u, I

⇤
a) =

dSu

dt
(S⇤

u, I
⇤
u, I

⇤
a) = 0

g (S⇤
u, I

⇤
u, I

⇤
a) =

dIu
dt

(S⇤
u, I

⇤
u, I

⇤
a) = 0

h (S⇤
u, I

⇤
u, I

⇤
a) =

dIa
dt

(S⇤
u, I

⇤
u, I

⇤
a) = 0.

To find the local behaviour around the fixed point, we consider a small per-
turbation from the fixed point:
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(S⇤
u +�Su, I

⇤
u +�Iu, I

⇤
a +�Ia) .

Using a Taylor series expansion and linearizing (removing all O(�S2
u) etc

terms), we arrive at the following linear system of equations for the dynamics of a
small perturbation:

0

B@

�Su
dt

�Iu
dt
�Ia
dt

1

CA =

0

B@

df
dSu

df
dIu

df
dIa

dg
dSu

dg
dIu

dg
dIa

dh
dSu

dh
dIu

dh
dIa

1

CA

0

B@
�Su

�Iu

�Ia

1

CA . (5.2)

The matrix in equation (5.2) is the Jacobian matrix for the model, and its
eigenvalues determine the local behaviour of the perturbations: if any of the eigen-
values have real part greater than 1 then perturbations grow and the system is
unstable, otherwise perturbations shrink and any small perturbation from the fixed
point will return to it [171]. If some of the eigenvalues are greater than one and
others less then the fixed point is a ‘saddle point’, with some directions unstable and
others stable. The stability of fixed points can change as the values of the model
parameters change.

5.2.4 Results

For this model, the parameter values can be grouped into two categories: parameter
values for which all fixed points have endemic disease, and values for which there
is a stable disease-free fixed point. Both of these categories have one endemic fixed
point with low awareness, and a second fixed point with higher awareness. Figure 5.2
shows the system reaching both fixed points for the case where there is a disease-
free fixed point. These parameter values have R0 < 1 among aware individuals.
Figure 5.3 shows the system reaching both fixed points for the case with no non-
trivial disease-free fixed point. For parameter values in this first category, R0 > 1

even among aware individuals.
We used linear stability analysis to investigate the fixed points of this sys-

tem. Fixed points were found numerically, and the Jacobian matrix calculated using
numerical differentiation. We explored the behaviour of the system away from these
fixed points by plotting

�
dSu
dt ,

dIu
dt ,

dIa
dt

�
as a function of (Su, Iu, Ia) in the form of a

flow diagram. Figure 5.4 shows a 2d cross-section of this diagram for (Su, Iu, 0) in
the case where there is a stable disease-free fixed point. In this system there are two
fixed points, corresponding to a state with high awareness and one with low aware-
ness. The high awareness state has no infected individuals, and is thus disease-free,
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Figure 5.2: Timeseries of disease and awareness for the parameter regime with a sta-
ble disease-free fixed point, approaching the low-awareness (left) and high-awareness
(right) states. In this case the parameter values were: �u = 1.5, �u = 1.0, �a =
0.2, �a = 1.0, �S = 1.0, ↵S = 1.0, ↵I = 1.0, ⌧S = 3, ⌧I = 3. The initial con-
dition for low awareness was (Su(0) = 0.98, Iu(0) = 0.01, Ia(0) = 0.0), and for high
awareness was (Su(0) = 0.19, Iu(0) = 0.01, Ia(0) = 0.0).

and the low awareness state has no aware individuals: awareness has totally died
out. The other two fixed points are the saddle points at (1, 0, 0), corresponding
to the case where there are no infected or aware individuals in the system, and at
(0.67, 0.3, 0.01). This second saddle point separates trajectories that lead to the high
awareness fixed point and those that lead to the low-awareness fixed point.

Figure 5.5 gives the same flow diagram for the case without any stable disease-
free fixed points. At the stable low-awareness fixed point awareness has again com-
pletely died out, but the disease-free fixed point has become a saddle node and a
new stable fixed point with endemic disease has appeared. There is again a saddle
point separating low-awareness and high-awareness trajectories.

The relationship between the infectivity of aware and unaware individuals in
determining whether there is a stable disease-free fixed point is shown in Figure 5.6.
In this figure, the total infected fraction at the lowest infected stable fixed point
is shown for each combination of �a and �u. It is clear that for each value of �u

there is a critical value of �a below which there is a stable disease-free fixed point.
Plotting this critical value �⇤

a against �u, as shown in Figure 5.7, displays a linear
relationship. The critical value of �⇤

a for these parameters is given by

�⇤
a = �1.1�u + 2.1.
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Figure 5.3: Timeseries of disease and awareness for the parameter regime with no sta-
ble disease-free fixed point, approaching the low-awareness (left) and high-awareness
(right) states. In this case the parameter values were: �u = 3.0 , �u = 1.0 ,�a =
0.2, �a = 1.0, �S = 1.0, ↵S = 1.0, ↵I = 1.0, ⌧S = 3, ⌧I = 3. The initial con-
dition for low awareness was (Su(0) = 0.98, Iu(0) = 0.01, Ia(0) = 0.0), and for high
awareness was (Su(0) = 0.19, Iu(0) = 0.01, Ia(0) = 0.0).

For unaware infectivity greater than 1.91, even behaviours with �a = 0 will
have no disease-free stable fixed point. This linear relationship defines a basic re-
production number for the low-disease state:

R0 =
I⇤a

�a
�a

+ I⇤u
�u
�u

I⇤u + I⇤a
,

where I⇤a is the fraction of infected aware individuals at the fixed point, and
I⇤uis the number of infected unaware individuals at the fixed point. If R0 > 1 then
there is no stable disease-free fixed point.

5.2.5 Discussion

By coupling disease dynamics with behaviour we can include an aspect of disease
spreading which is lacking in many epidemic models. In particular, we studied a
simple SIS disease coupled with a peer pressure complex social contagion. This
model could be applicable to the study of gonorrhea prevention in adolescents, for
example, since gonorrhea does not confer significant immunity to future gonorrhea
infections [172] and adolescents may be hesitant to take part in a behaviour unless
a significant number of their friends are also taking part.

The coupled disease-behaviour model has important implications for the con-
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Figure 5.4: Vector flow diagram cross-section of
�
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parameter regime with a stable disease-free fixed point. Stable fixed points are shown
as filled circles, and unstable points with open circles.
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Figure 5.6: Lowest stable endemic disease for parameters �a and �u. There is a
linear boundary between combinations of �a and �u that lead to disease-free states
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trol of disease. Even a behaviour which reduces infectivity to zero will still lead to
endemic disease if the number of individuals taking part in the behaviour is not suffi-
cient for the behaviour to spread to a significant fraction of the population. As with
the fad model in the previous section, there is a sharp threshold in the number of
aware individuals required for the behaviour to spread to enough of the population
to ensure a disease-free state. This is due to a saddle-point which is not present in
an SIS model with simple contagion. The saddle-point dynamics of this model may
help to explain the sharp decline in the rates of some sexually transmitted diseases in
certain Western countries in recent decades. Hiltunen-Back et al. [173], for example,
could not find an explanation for the rapid decrease of endemic gonorrhea in Finland
from 1990 to 1995, which occurred despite a constant rate of imported gonorrhea.
A possible explanation based on this coupled model would suggest that the number
of aware individuals taking part in preventative behaviour became sufficiently large
that a threshold was reached and the population quickly reached a high-awareness
state with an associated drop in endemic disease.

The assumption that infected individuals do not lose awareness is unlikely
to be correct, but is motivated by research suggesting that individuals who are
diagnosed with HIV often do take steps to reduce their risk of infecting others [174,
175, 176], particularly if counseled to do so [177], and often stop having intercourse
with uninfected partners [178]. These studies continued from three months to a year
after diagnosis, so if the disease and spreading of awareness acts on much faster
timescales than this then the rate of awareness loss for infected individuals can be
ignored.

The high-awareness and low-awareness states are associated with different
values for the basic reproduction number of the disease. The R0 value is given by
the average of R0,a and R0,u (the basic reproduction numbers for the aware and
unaware categories respectively) weighted by the fraction of the population in each
category. This feature, where the basic reproduction number depends on the initial
state of the system, did not occur in the model of Funk et al. [5].

5.3 Towards a combined social and spatial model

5.3.1 Background

In chapter 4 we investigated various versions of a general model for social influence.
This general model assumed all-to-all contact network connectivity, with each indi-
vidual having the same potential social influence as any other. This is an unrealistic
assumption when modelling health behaviours across a large spatial area, since in
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real human contact networks individuals are more likely to be connected if they are
geographically closer [179, 180]. We now suggest a model which includes a very
simple heterogeneity in the population.

5.3.2 Social model with a spatial component

We consider each individual to have two spatial regimes: ‘near’ and ‘far’. Individuals
canvas Cn ‘near’ contacts and Cf ‘far’ contacts, with social influence thresholds ⌧n

and ⌧f respectively. A simple model for ‘SIS’-like behavioural spread could therefore
be:

dI

dt
= �D(I, J, ⌧n, ⌧f , Cn, Cf )SI � �I

dJ

dt
= �D(J, I, ⌧n, ⌧f , Cn, Cf )SJ � �J

dSI

dt
= ��D(I, J, ⌧n, ⌧f , Cn, Cf )SI + �I

dSJ

dt
= ��D(J, I, ⌧n, ⌧f , Cn, Cf )SJ + �J,

where I and J are the fraction of individuals taking part in the behaviour in two
distinct spatial areas, D(I, J, ⌧n, ⌧f , Cn, Cf ) is the multinomial form of the social
influence term given in equation (4.3), and other parameters have the same meanings
as in section §4.2.

5.3.3 Statistical model with spatial social influence

Approaching the problem from the statistical side, one way to include a more accu-
rate social influence term than that used in chapters 2 and 3 is to take into account
social influence between spatial regions. This can be achieved by adding a spatially-
correlated random effect to a Bayesian hierarchical model with individual- and health
system-level covariates; a technique suggested by Gelfand [181]. An example of such
a model, where data is collected within supervision areas as in chapters 2 and 3, is
as follows:

Y(X(t)) ⇠ Binomial(p)

logit(p) = �T
⇥+ �TE+ µspatial

µspatial ⇠ MVN(0,�2
SAH(d,�)),

where �SA is the within-supervision area standard deviation, H(d,�) is a covari-
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ance matrix which specifies the covariance between supervision areas given distance
matrix d between them and with spatial scale parameters �. The spatial scale pa-
rameters can be estimated, and this will provide information about the spatial extent
of factors such as social influence that might act between supervision areas.

5.3.4 Data

The weak link in connecting these two regimes is the absence of high spatial- and
temporal- resolution data. The lack of spatial resolution is easier to remedy: better
spatial data collection, such as using GPS devices during household surveys, would
allow more exact measurement of the distances between sites, and hence allow more
precise fitting of the spatial kernel parameters �.

Temporal data is more difficult to obtain. Even LQAS surveys are too ex-
pensive to run more than once per year, and social influence is likely to act on faster
timescales than this. There have been studies on contact networks in small commu-
nities [182] in which contacts are tracked between individuals over the course of each
day; perhaps a health behaviour intervention could be introduced to some individuals
and the resulting spread analysed. The internet provides high temporal-resolution
data, as described in chapter 4, but it often lacks spatial data. As increasing numbers
of people use smartphones with inbuilt GPS, however, it is likely that high-quality
data with both dimensions will become easier to obtain.

5.3.5 Discussion

The two models above represent attempts to approach the problem of social influence
in heterogeneous populations from the dynamical and the statistical side. The first
contains very simple heterogeneity, in which the population is split into two spatial
components with strong social interactions within them and weak interactions be-
tween them. This could then be generalised to include further spatial components,
some of which do not interact at all, by adding additional compartments to the
model. The second captures social influence between spatial regions, an effect that
was previously ignored. In principle, including many additional spatial components
in the first model and reducing the effect of the � parameters in the second model
should lead to the two models corresponding.

High quality data is required to fit these combined models. Including GPS
locations for households, and combining these with detailed geographic covariates,
could allow us to control for the spatial variation due to geography and be more
confident in isolating the residual correlation due to social influence. In principle this
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could be used to construct a continuous ‘social influence surface’ across a country,
using techniques such as latent spatial Gaussian Processes [183, 184, 134]. Such
a surface could highlight areas of a country that have unexpectedly poor health
behaviours due to social influence; these areas may be more susceptible to nudges.

5.4 Summary

In this chapter we have suggested some ways of relaxing the limits of the model
discussed in previous chapters, by linking behaviour with disease and by moving to-
wards a combined social influence and covariate model. The linked behaviour-disease
model shows a phenomenon not present in traditional models of disease: a basic re-
production number that depends non-trivially on the fraction of the population that
is infected. We approached the problem of combining social influence dynamics and
a heterogeneous population from both the dynamic and statistical sides, in the hope
that they can be fitted to high quality data as it becomes available.
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Chapter 6

Conclusions and Further Work

In chapter 2, we explained and predicted local variations in health behaviour by tak-
ing into account geographical and demographic factors. Our results are consistent
with the claims of the Health Belief Model that ease of access plays a role in under-
standing which individuals take part in certain health behaviours. The predictive
power of this model means that it could become a useful policy tool for prioritis-
ing poorly-performing areas of a country. Possible extensions for this model include
treating it in the Bayesian framework introduced in chapter 3: this would allow es-
timation of regional effects such as social influence that are not currently modelled.
The surveys used in chapter 2 provide rich data on many health behaviours, and
futher work is needed to apply the model to these.

In chapter 3, we showed that Bayesian hierarchical modelling can provide new
ways of studying the health systems that shape individual behaviour. We showed
that one aspect of the health system that had previously been difficult to study,
health facility quality, is associated with health facility usage, but that including
quality in a model of health facility usage behaviour did not provide as much predic-
tive benefit as taking into account unknown regional effects such as social influence.
The Bayesian framework also aided the evaluation of a complex policy intervention
to improve health behaviours. The evaluation provided evidence that funding a
health facility based on its results, rather than its inputs, led to lower costs for users
and an increase in health facility usage in its catchment area. This was despite there
being no evidence for an increase in the objective quality of facilities provided with
results-based funding. This was again a very rich dataset, and it would be interesting
to study the wealth and transport data available from the household surveys.

In chapter 4, we developed a psychologically motivated model for behavioural
spread. The model captured an important feature of systems with social influence:
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success was highly unpredictable for individual realisations, and small nudges could
mean the difference between a successful behaviour and one that died out. The
deterministic limit of the model allowed us to compare complex contagion with
simple contagion using data for the online spread of real-world behavioural fads,
and showed that the complex contagion model performed at least as well as simple
contagion for all but one of the datasets studied. The deterministic limit model was
also used to predict the timing and duration of another fad before it had peaked, with
implications for predicting health behaviours such as fad diets and other behaviours
such as charity campign donations. Applying this model to data other than Google
Trends, and using it to predict more fads, would give more confidence in the model’s
general applicability.

Finally, in chapter 5, we introduced some ways of combining these limits into
a general model, and to link behaviour to the spread of communicable disease. In
particular, we investigated a model in which peer pressure is the driving force be-
hind a positive health behaviour change which reduces the infectivity of a disease.
The complex contagion mechanism of social spread leads to two equilibrium states
depending on the initial fraction of infected: a high disease state and a low disease
state. For some parameter values the disease can be eradicated, whereas for oth-
ers even the low disease state is above zero; the basic reproduction number of the
system is dependent on the initial fraction of infected individuals. Even this basic
model shows phenomena not present in disease models that do not take into account
complex contagion.

As more health behaviour data becomes available from online interactions,
and from public health Monitoring and Evaluation projects in developing countries,
more complex limiting cases of the general health behaviour model can be fitted and
used predictively. We believe, however, that the limiting cases we consider in this
thesis apply well to the data currently available and provide insight into important
real-world situations.

By considering individual barriers to health behaviour, the role of the health
system in allowing and promoting those behaviours, and the spread of those be-
haviours in the population, we believe that this model has the potential to inform
policies that encourage good health behaviours, and through this fight disease.
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