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Summary 

Stadia and structures which host crowd events often experience dynamic crowd loading. Of 

greatest concern is the loading from the actions of jumping and bobbing, especially if the 

action is regulated by an external stimulus. Gathered crowds of individuals will often 

synchronise their actions with one another exacerbating the jumping and bobbing load. Crowd 

and individual jumping and bobbing models are used to predict the dynamic forces 

experienced by a structure, however there is a lack of in-situ forces and experimental data 

from groups. To further the advancement of current crowd and individual models, this thesis 

provides an in depth study into the actions of jumping and bobbing. 

Experiments with eight test subjects (TS) and a range of activity frequencies were first 

conducted to study the loads generated by individuals. The properties of both actions were 

characterised and the variation within each TS’s ground reaction force (GRF) known as intra-

subject variability, and inter-subject variability (between TSs) was quantified. Weight, gender 

and height affected the jumping GRFs. For jumping a significant portion of the properties were 

found to have the largest inter-subject variation at a frequency of 2Hz, suggesting high 

diversity of jumping properties between TSs. Overall there was more inter and intra-subject 

variation in the activity of bobbing than jumping. 

A novel indirect force measurement method was sought to aid the data collection of in-situ 

individual and group jumping and bobbing GRFs, by monitoring a single point on individual’s 

bodies. It was found that the best monitoring point was the C7th Vertebrae which provided 

reliable force data for the 1st and 2nd harmonics of jumping and bobbing. 

Having verified the single body point methodology for force measurement, group experiments 

with 2, 4 and 8 TSs were conducted. Metronome, music and visual stimuli were used to dictate 

the target frequency which ranged between 1.5 and 3.5Hz. A large database comprising of 

4,794 individual GRFs was collected. The degree of individual and group synchronisation with 

the beat and with one another was quantified for the first two harmonics. Group size, 

stimulus, and stimulus frequency were found to affect synchronisation. Charts detailing the 

expected levels of synchronisation were produced. 

The responses of simulated single degree of freedom (SDOF) systems to the group GRFs were 

examined and compared to responses from a periodic signal. For resonance responses there is 

potential for crowd loads to be modelled as a half-sine periodic force. Structural responses 

from forces measured on rigid surfaces were compared to responses from forces measured on 

flexible surfaces and found to be larger, especially at resonance. Charts are presented detailing 

the likely levels of structural resonance response for each stimulus and group size. 
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1 Introduction 

1.1 Research Problem 

Crowd activity on structures can lead to large dynamic loads. To ensure safe yet economical 

design of event space, understanding of individual and crowd actions is required to allow 

adequate provision of the expected loading. Of special concern is the dynamic load from 

jumping and bobbing activities, especially when the action is regulated by an external stimulus 

such as music or a visual cue. The problem is exacerbated if other individuals join in, creating a 

dynamic group load. Inclusion within a group can further increase the motivation for action, 

the external stimulus and the dynamic load. 

There is a lack of in-situ jumping and bobbing force measurements from individuals and groups 

which limits the modelling capabilities of the force. Of particular concern is the shortage of 

group loads, which are limited by data collection difficulties especially outside of a laboratory 

environment. Conventional direct measurement techniques require a device such as a force 

plate to measure each individual’s ground reaction forces (GRF) (Sim, 2006; Ebrahimpour and 

Fitts, 1996). However for several individuals equipment constraints make this unfeasible. 

Indirect methods include measuring the structural response and back calculating the group 

dynamic load factors (DLFs) (Kasperski and Niemann, 1993; Ellis and Ji, 2002) however 

quantification of the group synchronisation is often neglected. Other indirect methods using 

motion capture are capable of accurately measuring the force but are limited to small numbers 

of individuals by the number of observation points required (Racic et al., 2010). A robust and 

simple indirect force measurement method is needed to quantity group forces, with the 

potential to be used in-situ on flexible real event structures. 

To advance the understanding and modelling of jumping and bobbing forces, more focus on 

the action’s properties is required. Consideration of the relationships between the properties, 
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and how they vary between individuals and within an individual’s GRF will improve current 

force models. 

Furthermore group interaction has not been studied on real crowds in enough depth, with 

sufficient thought to the synchronisation of individuals to one another and to a beat. The 

extrapolation of individual force time histories, or those from pairs forms a significant portion 

of the basis of current knowledge (Sim, 2006; Parkhouse and Ewins, 2006). Little thought is 

currently given to the type of stimuli present and the effect on individual and group 

synchronisation. 

1.2 Research Objectives and Thesis Scope 

The objectives of this research are outlined below: 

 To characterise the relationships and variation in the properties of jumping and bobbing 

activities. This will increase understanding and facilitate future stochastic force models. 

 To develop a novel indirect force measurement method using one monitoring point to 

enable the GRF measurement of groups whilst jumping and bobbing. 

 The quantification of individual and group synchronisation with a beat and one another, for 

groups of 2, 4 and 8 TSs for different target frequencies and stimuli. 

 To investigate the influence of synchronisation in groups on the structural response.  

The previous literature and investigations into jumping and bobbing forces of individuals and 

groups are examined in Chapter 2. The focus of the chapter is factors affecting individual and 

group synchronisation, such as external cues and crowd environments. Reviews of jumping 

and bobbing modelling techniques of both individuals and crowds are presented in Chapter 3. 

Models of varying complexity and focus are examined and compared. 

Jumping and bobbing force time histories are studied in Chapter 4. The purpose is to 

investigate the relationships between different characteristics of jumping and bobbing loads. 
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In addition the variation between test subjects (TS) known as the inter-subject variation (IESV), 

and the individual TS variation within their time history, known as the intra-subject variation 

(IASV) are observed for different properties of jumping and bobbing. This addresses the 

shortage of IASV knowledge in current literature. The properties which are the focus of the 

jumping study are frequency, peak force, dynamic load factor (DLF), impulse, contact ratio and 

displacement. Within the bobbing study the frequency, peak force, DLF and displacement are 

examined, in addition the variation between different styles of bobbing are studied and 

characterised (Zivanovic et al., 2016). 

To combat the lack of in-situ data, and the shortage of group loads, a novel indirect technique 

is proposed in Chapter 5 to measure the GRFs from the body kinematics of individuals and 

groups jumping. This technique is then expanded to the activity of bobbing in Chapter 6. The 

motion capture method detailed by previous authors (Racic et al., 2010) is adapted to require 

only one monitoring point per TS. Experiments using both this technique and a conventional 

force plate are conducted and the results compared. The development of this methodology is 

partially reported in a conference publication (McDonald and Zivanovic, 2013). The use of the 

indirect force technique is verified for both jumping and bobbing activities. 

Having established a technique which enables the simultaneous force measurements of 

multiple individuals this technique is utilised in Chapter 7 to measure the GRFs from groups of 

2, 4, and 8 TSs. Different activity frequencies are investigated and conveyed using a variety of 

audial and visual stimuli. A large database of GRFs are collected amounting to 1,275 trials and 

4,794 individual GRFs. This is the most extensive database of individual GRFs and group GRFs in 

response to different stimuli and group sizes. The database addresses the lack of real small and 

medium sized group loads in response to varied stimuli. To combat the limited knowledge 

regarding the achievable group and individual synchronisation, the synchronisation of 

individuals and groups with a beat and each other, for each stimulus is examined and 

quantified. The response of simulated single degree of freedom (SDOF) systems to the group 
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GRFs are examined and compared to responses from periodic signals. In addition structural 

responses from forces measured on a rigid surface are compared to responses from forces 

measured on a flexible surface. Charts are presented detailing the possible levels of structural 

resonance response for each stimulus and group size. 

The conclusions from this work and recommendations for further work are presented in 

Chapter 8. 
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2 Dynamic Crowd Activities  

2.1  Introduction 

When designing a building, one of the most challenging loads to design against are those 

induced by humans. Unlike furnishings, utilities and equipment, human occupants have the 

ability to move around and generate dynamic forces that are up to seven times larger than 

their body weight (Bachmann and Ammann, 1987). These dynamic loads are a result of a range 

of movements performed by humans such as: walking, running, rising up from sitting, sitting 

down from standing, swaying, jumping and bobbing. The review detailed here focuses on the 

vertical component of jumping and bobbing loads as they are considered the most critical for 

venue design (Jones et al., 2011). 

Psychological and physiological differences between individuals diversify the range of 

movements and applied forces for any particular human activity. The array and variation of 

activities can lead to difficulties adequately accounting for the dynamic loading within the 

design process. Tackling limited understanding of dynamic loads with unnecessarily 

conservative and uneconomical designs is no longer acceptable in the age of performance- 

based design and minimised use of natural resources. 

One-off activities, such as a single jump, can produce a significant force, and they are 

introduced in the first part of Section 2.2. The presence of a beat or other stimulus encourages 

sustained rhythmic activity coordinated to the beat, inducing cyclic loading upon the structure. 

Rhythmic activities are repetitive and therefore steady state vibrations can arise (Tuan and 

Saul, 1985; Ebrahimpour and Sack, 1989). The resulting vibrations may increase in magnitude if 

the dynamic loading matches a natural frequency of the structure, causing resonance. 

Therefore the most critical cases are rhythmic activities such as jumping and bobbing which 

are reviewed in the second part of Section 2.2 and Section 2.3, respectively. 
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To fully understand the dynamic loads generated by jumping and bobbing, the effects of 

various factors on the loading pattern must be investigated. One of the most important factors 

is the ability of individuals to synchronise to externally generated cues of different frequencies, 

and to other individuals. The influences of the crowd environment and various stimuli such as 

visual, tactile and proximity to others, on coordination, is discussed in Section 2.4. The findings 

of this review are summarised in Section 2.5. 

2.2 Jumping  

Jumping, which is characterised as ‘Launching one’s self in the vertical direction, removing the 

entire body from contact with the ground’ (Jones et al., 2011), is regarded as the most severe 

load case (Ellis and Ji, 1994; Tuan and Saul, 1985). Due to its high impact nature, the applied 

dynamic force is often several times larger than the weight of the individual. 

Standing vertical jumps are the most common form of jumping seen within a crowd, and they 

are therefore the focus of this section. There are several variations of standing vertical jumps 

such as squat, countermotion and rhythmic jumps. When participating in a squat jump, the 

subject’s initial position originates from a squat posture, with knees bent and the body centre 

of mass (CoM) lowered (Linthorne, 2001). This form of jumping is not regularly seen at public 

events and it is unlikely to be viewed within typical crowds. A countermotion jump initiates 

from an upright posture, followed by the bending of the knees, lowering of the body and an 

upwards launch. It is a common form of single jump. Rhythmic jumping is defined as jumping 

consecutively to a beat or rhythm for multiple jumping cycles, and is common crowd 

behaviour. Therefore countermotion and rhythmic jumping will be considered in this study, 

both the kinematics and kinetics will be analysed. 

2.2.1 Single Jump  

The most common single vertical standing jump is the countermotion jump. The subject’s 

initial stance is upright, the body is then lowered into a squat position and the leg muscles are 
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engaged (Linthorne, 2001). The legs are used to push the subject upwards, resulting in loss of 

contact with the ground.  

The dynamic loading from a single countermotion jump results in a peak force that is up to six 

times larger than the person’s weight, and potentially up to seven times for extremely high 

jumping (Bachmann and Ammann, 1987). A single countermotion jump is an one off activity 

that generates transient structural vibrations that die out shortly after the initial excitation 

(Racic, 2009). 

The phases of human motion during a countermotion jump and the corresponding force, 

displacement, velocity and acceleration time histories of the CoM are shown in Figure 2.1. The 

subject is initially at rest (point a in Figure 2.1) and the ground reaction force (GRF) is equal to 

the weight of the subject (750N in this case). As the subject lowers their body into the 

countermotion, the downwards acceleration acts as an upward force. The resultant force is 

less than the body weight. This is known as the unweighting phase (Linthorne, 2001) and it can 

be observed between points a and c on Figure 2.1b. The maximum take-off force is witnessed 

just after the lowest position in the counter-motion (point d), as the subject pushes off from 

the ground in preparation to take off at point f. During the flight phase there is no contact 

between the subject and the ground and therefore the GRF is zero (f-h). Upon landing (point h) 

the subject generates an impact force which is the largest GRF during the jump. As the subject 

regains their original position (h-k), the CoM reaches rest and the GRF is equivalent to the 

subject’s weight once more. A more detailed description of jumping phases is presented in 

Table 2.1.  

A single jump can produce a significant force, but the resulting vibrations are transient and die 

out relatively quickly. Rhythmic jumping is of more interest in structural engineering and is 

presented in the next section. 
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Figure 2.1 Countermotion jumping profile corresponding to a) phases of motion b) force, c) displacement, d) 

velocity and e) acceleration (adapted from Meghdari and Aryanpour, 2003). 
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Table 2.1 The description of a countermotion jump, corresponding to Figure 2.1 (after Meghdari and Aryanpour, 
2003; Sakka and Yokoi, 2005; Linthorne, 2001; Cross, 1999). 

Points  
Figure 2.1 

Jump Phase Description of jumping GRFs, kinematics and human actions 

a 
Initial 

position 
The test subject (TS) is at rest, maintaining an upright posture. The CoM is 
stationary. GRF=Weight (W). 

a-b Unweighting 
phase 

(GRF<W), the 
counter 

motion before 
the jump 

TS lowers the body CoM and flexes knees and hips. The downwards 
acceleration acts as an upwards force, GRF <W. 

b Maximum downwards acceleration (A) of CoM as the body moves down. 

b-c 
COM’s downwards acceleration reduces, the resultant force is downwards. 
The muscles in the legs are increasingly activated. 

c 
The resultant force on the TS is zero as GRF=W. A=0, the maximum 
downwards velocity (V) occurs. 

c-d 

The push off 
phase, the 

jumper rises 
out of the 

squat 

Resultant force and acceleration upwards, displacement is downwards. 

d 
CoM at lowest position, V=0, jumper at rest, leg muscles strongly activated. 
GRF close to maximum. 

d-e 
TS moves upwards, extends knees and hips, upwards velocity. 
Maximum GRF occurs during push off after squat in countermotion. 

e 
GRF=W, resultant force=0, A=0, maximum upwards velocity occurs prior to 
take off. 

e-f GRF <W, resultant force and acceleration downwards. 

f Take off 
Instant of take-off, GRF=0, A=-9.81ms

-2
, CoM is higher at take off than rest 

as ankle joints are extended. 

f-g 
Ascent 

TS projectile in free flight, CoM moves upwards, A=-9.81ms
-2

. 
g Peak height of jump, body CoM at rest. 

g-h Descent Descent, CoM and velocity downwards, A=-9.81ms
-2

. 

h 
Landing 

uncontrolled 
deceleration 

Sharp impact force peak, as the TS lands. CoM higher than initial position as 
TS lands on toes. 

h-i 

Large downwards acceleration as the TS is no longer in free flight. Double 
force peak as the toes hit the ground, the TS’s knees bend, then heels hit 
the ground. The TS’s CoM drops below standing height as knees continue to 
bend. 

i 
Controlled 

deceleration 

The TS’s muscles control the fall, the CoM displacement and velocity is 
downwards, acceleration is upwards and decreasing, GRF>W. 

i-j 
Initially the TS’s CoM is at the lowest position in the landing squat, the TS is 
at rest. V=0, GRF is constant, acceleration is upwards. The TS rises out of 
squat with increasing upwards velocity. 

j Returning to 
original 
position 

TS rises from squat, maximum upwards velocity, A=0, GRF=W. 

j-k 
TS’s CoM returns through the start position, TS rises on to toes. Velocity is 
upwards, acceleration is downwards, resulting in GRF<W. 

k Initial position 
The TS brings their heels down, CoM returns to original position. 
The TS is at rest; V=0, A=0, GRF=W. 

 

2.2.2 Rhythmic Jumping 

Rhythmic jumping is the process of consecutive jumping that could produce steady state 

vibrations of the supporting structure, usually leading to a larger vibration response compared 

to that induced by a single jump (Tuan and Saul, 1985; Ebrahimpour and Sack, 1989). 
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It is suggested that rhythmic jumping (Figure 2.2a) can be performed at frequencies between 

1.2-2.8Hz (Ginty et al., 2001) and it is often aided by a beat. The number of jumping cycles in a 

second is referred to as the jumping frequency fj. The reciprocal value of fj is the jumping 

period T (Figure 2.2b). Rhythmic jumping most often occurs in the presence of music or at 

events where crowds are encouraged to participate by moving, clapping or dancing. Music can 

motivate individuals to jump, and through its audio beat encourages a specific jumping 

rhythm. Due to this music led rhythmic jumping, dynamic loading at the frequency of the 

music can arise with potential for large structural vibrations (Parkhouse and Ewins, 2006; 

Littler, 2002). Sports venues hosting one off concerts are often most vulnerable to this (BBC, 

1999; ManchesterEveningNews, 2007). 

In design guidelines music was considered the only stimuli likely to cause crowd 

synchronisation and extreme dynamic loads (BSI, 1996). Recent case studies have shown that 

synchronised crowd movement can occur without music. For example, remedial work was 

required due to excessive stand movement caused by synchronised foot stamping in the 

absence of music at the Liverpool football ground Anfield (Rogers and Thompson, 2000). 

Vibrations at the CenturyLink Field in Seattle from fans celebrating a touchdown was 

registered as a magnitude 1-2 earthquake by the Pacific Northwest Seismic Network (BBC, 

2013). It is now acknowledged that other stimuli, such as foot stamping and chanting, can 

prompt synchronised movement and rhythmic jumping (Ginty et al., 2001). In addition, 

stadium managers and performers often encourage spectator participation by the use of visual 

cues (Salyards and Hanagan, 2007; Littler, 2002). Furthermore, recent experiments report 

some group synchronisation without any stimuli (Noormohammadi et al., 2011). Therefore, 

even venues which do not host events accompanied by music should be aware of the potential 

for synchronised crowd movement and jumping. 

If the crowd’s dynamic load matches a natural frequency of the structure resonance can 

ensue. This can lead to a large acceleration response. Vertical accelerations of 50%g, where g 
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is the acceleration due to gravity, have been recorded at a football stadium in Germany 

(Kasperski and Niemann, 1993). 

The phases of motion and resulting GRFs and body’s CoM displacement, velocity and 

accelerations from an individual rhythmically jumping at 2Hz are shown in Figure 2.2a-e. The 

Jumping GRF is normalised by the individual’s weight, typical values of normalised GRF are 

between 2.5*W and 4.5*W (Figure 2.2b). The peak to peak displacement of the CoM ranges 

between 10cm and 30cm. Peak velocities are generally between 0.8ms-1 and 1.70ms-1 and 

accelerations between 15ms-2 and 35ms-2. 

The ratio of the peak force Fp,max and the subject’s weight W, is referred to as the dynamic 

impact factor KP (Figure 2.2b). Comparing Figure 2.2 with Figure 2.1, it can be noticed that the 

take-off and landing impulses have merged and the profiles of the GRF and kinematic 

quantities are smoother. For both a single jump and rhythmic jumping, the mean value of the 

force time history is equal to the weight of the subject (Tuan and Saul, 1985). 

The jumping period T can be divided into the contact time tP when the TS is in contact with the 

structure, and flight time tf (Figure 2.2b). The proportion of contact time to jump duration is 

called the contact ratio α=tP/T.  

As well as characterising rhythmic jumping within the time domain, the frequency domain 

representation also can be used. The force spectrum in Figure 2.2f shows energy leaks around 

the main harmonics, signifying that jumping is a narrow band random process (Brownjohn et 

al., 2004; Racic, 2009). The main forcing harmonics are composed of a phase amplitude which 

is normalised by the subject’s weight and known as the dynamic load factors (DLFs) rn, and a 

phase lag φr.. 
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Figure 2.2 a) Phases of jumping motion b) normalised force, c) displacement, d) velocity and e) acceleration of the 

CoM for rhythmic jumping, f) normalised force spectrum. 
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Figure 2.3 shows that DLFs have typical values of between 1.2-1.8 for the 1st harmonic, for the 

frequency range of 1.2Hz to 4Hz (Pernica, 1990; Rainer et al., 1988). The maximum DLFs are for 

the 1st harmonic, and are typically around 1.75 and occur for jumping frequencies between 2 

and 3Hz (Rainer et al., 1988). The range of values of DLF for the 1st harmonic are marked by the 

error bars (Pernica, 1990) on Figure 2.3. The range in DLF values is narrowest at mid-jumping 

frequencies (2-3Hz). The DLFs decrease at higher harmonics, with the maximum values 

occurring at frequencies corresponding to multiples of the maximum 1st harmonic DLFs. 

 
Figure 2.3 The DLFs for the first four harmonics established from experimental work, for a range of jumping 

frequencies. The solid black markers are data from Pernica (1990), where the smallest and largest DLFs are noted by 
the accompanying error bars. The hollow markers are from Rainer et al. (1988) and solid grey from Ellis and Ji (1994) 

and Ji and Ellis (1994). 
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dominant spectral components, which have the potential to cause resonance, can be 

overlooked. 

The shape of the jumping force profile is frequency dependant, and potentially asymmetric, as 

demonstrated by the waveforms of the normalised dynamic load in Figure 2.5. Low frequency 

jumping (1Hz) has a similar force profile and action to countermotion jumping. Due to the slow 

nature, each jump is a separate action and the subject is briefly at rest in between jumps. This 
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causes two distinct landing and launching peaks, and a ‘stationary interval’ where the jumper 

pauses between the motions (Nhleko et al., 2008; Sim et al., 2005). The force spectrum is 

dominated by the 2nd forcing harmonic due to the two force peaks when jumping slowly (Yao 

et al., 2006). This is demonstrated in Figure 2.6 where 2Hz is the dominant harmonic for 

jumping at 1Hz. 

 
Figure 2.4 The contribution of the 1

st
 and 2

nd
 harmonics to a jumping signal. 

 
 
 

When jumping at higher frequencies (i.e. at or above 2Hz) the motion becomes quicker. The 

subject lands on their toes, and without pause or heel contact with the ground, re-launches 

into the next jump. Increasing the frequency encourages the two impulse peaks to merge into 

one peak, hence the 1st harmonic dominates the spectrum (Figure 2.6). Observing Figure 2.5 

for jumping at 1.5Hz, the peaks are shifted closer and the dominance is split between the 1st 

and 2nd harmonic for different subjects (Figure 2.6). Potentially the split in dominance occurs 

as the target frequency is between the two distinct jumping patterns and subjects may favour 

either of the jumping actions. This is consistent with the difficulty often expressed by subjects 

when jumping at mid frequencies, such as 1.5Hz (Yao et al., 2006). 
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Figure 2.5 Variation in jumping profiles, at six different frequencies by four individuals (after Sim et al., 2005). 

 
 
 

Comparison between the subjects’ force profiles (inter-subject variability) in Figure 2.5 shows 

that the waveforms follow a similar trend. However there were more differences between the 

force profiles at lower frequencies than high frequencies. Inter-subject variation is smaller for 

rhythmic jumping than for single jumping. It has been demonstrated that the introduction of a 

beat reduces the variability in DLFs. A beat, to some extent, dictates the contact time, resulting 

in more uniform jumping amongst individuals (Parkhouse and Ewins, 2004). 

Figure 2.5 also demonstrates the intra-subject variation in the jumping cycles by overlaying 

individual cycles from the time history. Intra-subject variation causes the frequency (and 

period) to change on a jump-by-jump basis. Less variation suggests that the subject can repeat 

the action more consistently. It appears the force patterns become more consistent at higher 

jumping frequencies (Figure 2.5). 
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Figure 2.6 The average DLF values for 4-10 subjects corresponding to the jumping profiles shown in Figure 2.5 (after 

Sim et al., 2005). 
 
 
 

2.3 Bobbing 

Bobbing is defined as “attempting to jump whilst the feet maintain contact with the ground” 

(Jones et al., 2011). It is more common at events than jumping as it requires less energy to be 

maintained (Racic et al., 2013; Dougill et al., 2006). A single bob is rare and the expected 

impact force is small only 1.5 to 3 times the subject’s weight (Yao, 2004), less than expected 

from a single jump. Hence only rhythmic bobbing will be introduced in this section. 

An example of bobbing motion at 2Hz and the corresponding GRFs and CoM kinematic profiles 

are shown in Figure 2.7a-e. Figure 2.7f shows the spectrum of the force, which, similar to 

jumping, demonstrates that bobbing is a narrow band activity (Racic, 2009). 
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Figure 2.7 a) Phases of bobbing motion b) normalised force, c) displacement, d) velocity and e) acceleration of the 

CoM for rhythmic bobbing, f) normalised force spectrum. 
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A typical bobbing force is presented in Figure 2.7b. Compared to rhythmic jumping, bobbing is 

characterised by smaller peak forces Fp,max. In Figure 2.7b the bobbing peak force is 

approximately 2*W, half that of the jumping example (Figure 2.2b). The GRF never drops to 

zero during bobbing, as contact with the structure is continuously maintained. The shape of 

the bobbing GRF is more irregular as the action is more complex than jumping, involving the 

raising and lowering of the CoM, whilst maintaining contact with the floor. The mean value of 

the force time history, as with jumping, is equal to the weight of the subject (Tuan and Saul, 

1985). The CoM displacements, velocities and accelerations are reduced compared to jumping. 

A peak to peak displacement of approximately 5cm is seen in Figure 2.7c, compared to 

approximately 20cm whilst jumping (Figure 2.2c). Likewise the peak velocity and accelerations 

in Figure 2.7d and e are approximately 0.4ms-1 and 10ms-2 compared to approximately 2ms-1 

and 30ms-2 in Figure 2.2d and e. These diminished values are due to the continuous contact 

with the floor, which restricts the height of the movement, and reduces the launching and 

landing forces as overcoming gravity is unnecessary. 

While a bobbing individual generates on average smaller forces than a jumping individual, a 

larger activity frequency range is possible. Bobbing frequencies as high as 6Hz are achievable, 

whilst the upper limit on comfortable bobbing is stated to be 4.5-5Hz (Yao et al., 2004). 

Therefore the harmonics of bobbing have the potential to excite resonance in a wider range of 

structures than jumping. In addition, continuous contact with the structure during bobbing 

allows the active person to feel the structural movement, and adjust their actions to match it. 

This feedback effect may increase the likelihood of resonance (Yao et al., 2004). 

Distinctions are often made between two different styles of bobbing known as bouncing and 

jouncing. Heel contact is maintained with the ground when bouncing, resulting in a more 

controlled motion. The majority of the movement is from the subject bending their knees (Sim 

et al., 2005). The more energetic alternative is referred to as jouncing, where the subject rises 

to their toes, breaking contact between their heels and the floor (Jones et al., 2011). It is 
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thought that the action of jouncing is more complex than bouncing. It is suggested that 

multiple muscles and joints, in addition to the knees, are required for body balance whilst the 

subject rises on to their toes. 

Examples of GRFs of different styles of bobbing are shown in Figure 2.8, where subjects seven 

and ten bounced while the other four jounced. Similarly to jumping, the shapes of the force 

profiles for bobbing are frequency dependant. At lower frequencies the force profiles of the 

bouncing subjects favour two peaks, merging into one peak at frequencies of 3Hz and above. 

At lower frequencies the jouncing subjects exhibit 2-3 peaks in their force profile, before 

merging into one peak at higher frequencies. Sim et al. (2005) reported that for slow bobbing, 

i.e. 1-1.5Hz, the force spectra were not dominated by a specific harmonic (Figure 2.9). At 

higher rates of bobbing (3-3.5Hz) the 1st harmonic was dominant (Figure 2.9), while at 2 and 

2.5Hz both cases were possible, depending on the subject. Interestingly, this phenomenon was 

not noted by Yao et al. (2004) during their bouncing experiments over 1-3.5Hz, where the 1st 

harmonic reportedly dominated the response. Yao et al’s experiments took place upon a 

flexible structure, rather than rigid ground, which may explain the discrepancies with Sim et 

al’s work. This observation highlights the importance of characterising bobbing (and in general, 

jumping) on surfaces of different flexibility. 

As in the case of jumping, Figure 2.8 demonstrates that the inter- and intra-subject variabilities 

are reduced at higher bobbing frequencies. Due to different bobbing styles the inter-subject 

variation in the GRF profiles and the DLFs are greater than for jumping (Sim et al., 2005). The 

range of possible bobbing DLFs are between 0 and 1 (Figure 2.9). As a consequence of the 

subject variability and the continuous contact with the floor, the lower bobbing DLF limit can 

approach zero. In theory to avoid lifting off from the ground, an upper DLF limit of one exists 

(Parkhouse and Ewins, 2004). In reality, however, enthusiastic bobbing can produce values 

slightly higher than one as demonstrated in Figure 2.9. 
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Figure 2.8 Variation in bobbing force profiles, between different frequencies and individuals. Subjects 7 and 10 

bounced, the remaining subjects jounced (after Sim et al., 2005). 
 
 
 

 
Figure 2.9 DLFs for the first five harmonics of bobbing subjects (after Sim et al., 2005). 
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2.4 Synchronisation 

At events where large groups of people assemble, it is common for their movements and 

actions to become coordinated with one another. This occurrence is exacerbated in the 

presence of a beat (especially music), which can act as a catalyst to synchronised jumping, 

bobbing and dancing. In this section, the ability of bobbing or jumping individuals to 

synchronise to external stimuli will be examined. Then the ability of individuals to synchronise 

within a group will be considered. 

2.4.1 Synchronisation with External Stimuli 

Knowledge of individuals’ coordination potential with an external cue is required for 

performing numerical simulations of human loading, necessary for reliable structural designs. 

The external cues considered in this section include aural, visual and tactile stimuli as well as 

the presence of another individual. 

2.4.1.1 Aural Stimuli 

Aural cues are the most common form of stimuli that individuals might encounter. The 

stimulus can be in the form of a metronome beat, music, or crowd initiated beats such as 

chanting, stamping and clapping (Rogers and Thompson, 2000; Parkhouse and Ewins, 2006). 

The synchronisation of subjects with a metronome beat at frequencies of 1.50, 2.00, 2.67 and 

3.50 Hz, was investigated for 40 participants jumping and bobbing individually on a force plate 

(Parkhouse and Ewins, 2004). The standard deviation (STD) of the phase lag between each 

jump or bob, and the beat, has been used to characterise the synchronisation with the beat. A 

subject having a STD of above 60° was deemed unsynchronised with the beat. The criterion 

was chosen as some jumping cycles would be separated by 180°. These cycles would therefore 

be out of phase with one another and cancel each other out (Parkhouse and Ewins, 2004). A 

phase angle STD of 60° corresponds to a time lag of 16.6% of the period. For jumping at 2.0Hz 

this is 0.083s. 
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The results are shown in Figure 2.10, the highest number of synchronised jumping individuals 

were recorded for 2.00Hz, where 33 out of 40 subjects had a STD below 60˚. The second 

highest was 28 synchronised individuals jumping at 2.67Hz. For bobbing the highest number of 

subjects synchronised with the beat were at frequencies of 1.50, 2.00 and 2.67Hz (35, 36 and 

29 individuals respectively). The greatest number of unsynchronised subjects was apparent for 

activity at 3.50Hz for both jumping and bobbing. In general, better synchronisation was 

achieved whilst bobbing. 

 
Figure 2.10 The ability of individuals to synchronise with a beat using the phase angle STD as a measure of 

synchronisation. The numbers of unsynchronised subjects are stated for each frequency (after Parkhouse and 
Ewins, 2004). 

 
 

 
In similar work, the capabilities of ten individuals to jump and bob to a metronome beat over 

the frequency range of 1.0-3.5Hz were experimentally examined (Sim et al., 2005). 

Synchronisation was characterised by the jump deficit, i.e. the disparity between the number 

of jumps/bobs and number of beats. A large jump deficit was associated with unsynchronised 

activity. Table 2.2 shows that on average 65% of the test subjects were able to synchronise 

with the beat whilst jumping and 80% when bobbing. Four test subjects consistently achieved 

a jump deficit of zero whilst jumping, compared to six subjects when bobbing. This reveals that 

test subjects found it easier to control bobbing activity and synchronise it to a specific beat. 

 Jumping at 1.5Hz                                               Jumping at 2Hz                                               Jumping at 2.67Hz                                    Jumping at 3.5Hz

  Bobbing at 1.5Hz                                                  Bobbing at 2Hz                                                Bobbing at 2.67Hz                                   Bobbing at 3.5Hz
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The force profiles of the test subjects able to consistently synchronise with the beat can be 

seen in Figure 2.5 for jumping and Figure 2.8 for bobbing. 

Table 2.2 The number of synchronised TSs (jumping defict=zero) at each activity frequency (after Sim et al., 2005). 

 
Jumping frequency (Hz) Bobbing frequency (Hz) 

1 1.5 2 2.5 3 3.5 Ave 1 1.5 2 2.5 3 3.5 Ave 
Synchronised TSs 9 6 7 6 7 4 6.5 10 8 8 8 8 6 8 

 

The results of Sim et al’s work suggest that the majority of people can synchronise their 

actions with a beat at certain frequencies. Synchronisation occurs within the range of 1.0-

3.0Hz for jumping, and 1.0-3.5Hz for bobbing. The frequency of 1.0Hz was the easiest to 

synchronise with, while the frequency of 3.5Hz was the most difficult. The latter conclusion 

agrees with findings by Parkhouse and Ewins (2004). The difficulty in synchronising at 3.5Hz is 

probably caused by lack of control when performing an activity at such a fast speed. 

Due to the larger sample size of 40, Parkhouse and Ewins‘s work is likely to be a better 

reflection on the abilities of the population in general. However Parkhouse and Ewins (2004) 

did not conduct experiments at frequencies below 1.50Hz, nor at 3.00Hz, preventing 

comparison with Sim et al’s conclusions at these frequencies. 

Both studies suggest that coordination with a beat is easier to maintain when bobbing than 

when jumping (Parkhouse and Ewins, 2004; Sim et al., 2005). A possible explanation is the 

continuous contact with the ground whilst bobbing allows the subjects to control their 

movements better, therefore matching the beat more consistently. As mentioned in the 

previous section, in Figure 2.8 subjects seven and ten ‘bounced’ whilst the remaining subjects 

‘jounced’. The bouncing subjects synchronised with the beat throughout each test frequency. 

Therefore, synchronisation with a beat is potentially easier when bouncing than jouncing, 

although further experiments are required before a firm conclusion can be drawn. 

To investigate the frequency ranges of aural stimuli likely to be present at music events, the 

beat frequency of a selection of pop songs from the 1960s to the 1990s were analysed (Ginty 



Chapter 2. Dynamic Crowd Activities 

24 

et al., 2001). As presented in Table 2.3 an increase of 0.12Hz was observed in the average song 

beat between each decade. If the trend of increasing music frequency continued to the 

present time, the average tempo of current pop songs would be 2.31Hz. High frequency songs 

are likely to continue becoming more relevant in the future. 

Table 2.3 Average music beat frequency of pop songs over each decade (after Ginty et al., 2001). 
Decade 1960s 1970s 1980s 1990s 

Frequency (Hz) 1.72 1.84 1.96 2.07 

 

Of the songs investigated 96% have a frequency between 1.0 and 2.8Hz, deeming this the 

common frequency range. A small number of songs (2.9%) had a beat greater than 2.8Hz and 

83% of these high-frequency songs were composed in the 90s. This again highlights the 

increased prominence and relevance of high frequency songs in recent times. Of the songs 

investigated 3.3% were slower than 1Hz, these low frequency songs are unlikely to stimulate 

people to jump (Ginty et al., 2001). 

The selection of songs were used to investigate the ability of individuals to jump to a beat 

(Ginty et al., 2001). Two individuals jumped together to different samples of music in the range 

of 0.6-3.1Hz. To characterise an individual’s synchronisation with the beat, the coordination 

between both individuals whilst jumping was observed. The ease of synchronisation between 

the individuals was quantified, where 1 was denoted as easy to synchronise, 2 moderately 

easy, 3 difficult and 4 very difficult (Table 2.4). Unfortunately the method used for this 

classification was not described and therefore cannot be evaluated. 

It was proposed that an individual jumping independently could coordinate to a greater range 

of frequencies than two individuals jumping together (Ginty et al., 2001). This was reasoned as 

synchronisation was only required with the beat and not the other person’s actions. Therefore 

it was suggested that individual beat synchronisation was possible for synchronisation scores 

greater or equal to 3. A frequency range of 1.2-2.8Hz (Table 2.4) was identified as potentially 

dangerous for individuals rhythmically jumping (Ginty et al., 2001). This assumption that 
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frequencies with a score of 3 facilitate coordinated activity is questionable. Furthermore the 

applicability of these findings to a wider population is limited as only two test subjects were 

used. 

Table 2.4 Ease of synchronisation between two individuals (1 easy, 2 moderate, 3 difficult, and 4 very difficult) (after 
Ginty et al., 2001). 

Freq (Hz) 0.6 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.0 3.1 

Score 4 4 4 4 3 3 3 2 2 2 1 1 1 1 1 1 2 2 3 3 3 4 4 

 

There are discrepancies between Ginty et al’s work and the findings of Sim et al. (2005), where 

a high degree of synchronisation was observed at 1Hz and 3Hz. The likelihood of crowds 

jumping at low frequencies downgrades the concern of the high synchronisation potential at 

1Hz. However, the conclusion that synchronisation is not possible at 3Hz (synchronisation 

score of 4) directly contradicts the good synchronisation seen from 70% of Sim et al.’s test 

subjects. In addition, the trend of increasing song frequency suggests that high frequency 

songs will become more popular. Therefore, the proposed jumping synchronisation range is 

too low.  

The discrepancies between authors may also originate from the difference in stimulus. The 

results from individuals (Sim et al., 2005) and two test subjects (Ginty et al., 2001) may not be 

comparible, as the presence of another person may have acted as an additional stimulus. 

Within the two test subject experiments no consideration was given to the effect of the other 

person, and no one test subject trials were conducted to quantify this effect.  

A further difference in the stimuli between the two experiments is the use of music (Ginty et 

al., 2001) instead of a metronome beat (Sim et al., 2005). As music is not purely a beat like a 

metronome, individuals may struggle to detect the beat, or may jump at a comfortable 

harmonic of the beat (Littler, 2003). As music is a more common stimulus at events, further 

research into the synchronisation due to music is required. 
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2.4.1.2 Other Stimuli 

In addition to aural beats, visual and tactile stimuli can influence an individual’s ability to jump 

or bob consistently. Furthermore, as mentioned in the previous section the presence of 

another person may act as an additional stimulus. The effect of these stimuli on 

synchronisation with a beat will be examined in the following section. 

To investigate an individual’s ability to synchronise with a visual stimulus, experiments were 

conducted using an image in simple harmonic motion (Parkhouse and Ewins, 2006). Within the 

experiments 30 people jumped and bobbed individually upon a force plate. The aim was to 

investigate the ability of individuals to synchronise their action’s with the movement of the 

image. A subject having a phase angle STD equal or greater than 60° was deemed 

unsynchronised, while subjects were considered synchronised if their STD was less than 60˚. A 

comparison with similar experiments using an audio metronome showed that individuals were 

less synchronised when reacting to purely visual cues. An exception was seen at 1.5Hz. 

In comparison other experiments found that people were more synchronised when jumping in 

a pair, indicating visual cues in the form of another person may be significant (Ebrahimpour 

and Fitts, 1996). Experiments were conducted using a metronome and pairs of individuals in 

different orientations on two force plates. The synchronisation was characterised as the time 

lag between the peak forces of the active pair. Better synchronisation was observed in pairs 

when jumping facing one another than back to back. The minimum phase angles, indicating 

the best synchronisation, occurred when subjects could both see and hear one another, the 

angles were smallest at 2Hz. When the subjects were exposed to only aural cues, the 

synchronisation between the individuals decreased with increasing tempo. 

This research was expanded to explore how jumping and bobbing in pairs was influenced by 

aural, visual and tactile stimuli, as well as the absence of stimuli (Noormohammadi et al., 

2011). A sample population of two pairs were used. Pair 1 contained individuals a and b, and 
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pair 2 individuals c and d. Nominally the same experiments were conducted with each pair. 

Each individual within the pair performed jumping and bobbing on a separate force plate. A 

metronome beat, a flashing LED light box, and a solenoid actuator providing a shock to the 

thumb, were used as the aural, visual and tactile stimuli, respectively. Although these stimuli 

are unrepresentative of real events, the results can be used as an indication of the effect. 

The coordination between the individuals and the beat was characterised by a synchronisation 

factor. The synchronisation factor was defined as the ratio of the power of the force 

component coordinated with the beat PSynchronised, and the power of the entire signal PTotal 

(Parkhouse and Ewins, 2006); where PTotal was calculated as the area under the power spectral 

density (PSD) curve around the relevant harmonic, with a frequency bandwidth equal to the 

target frequency. The PSynchronised component corresponds to the area of the PSD at the activity 

frequency, as demonstrated in Figure 2.11. In addition to the synchronisation between the 

individuals and the beat, the synchronisation between the two individuals was investigated. 

For the purpose of this review, the synchronisation between the individuals within the pairs 

has been characterised by the absolute difference in phase angle between them |Δφ|. 

 
Figure 2.11 The calculation of synchronisation factor for the first three harmonics (after Parkhouse and Ewins, 2006). 

 
 
 

The results from jumping at 2Hz are shown in Table 2.5. An average synchronisation factor of 

0.942 was seen at the 1st harmonic due to the aural stimulus. It was deemed the most effective 

cue for individuals synchronising with a beat. The best synchronisation between the pairs 

occurred when cued by the visual stimulus, differences in phase angle of 0.2° and 6.1° were 
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seen for pair 1 and pair 2. Likewise the differences in phase angles were small when the pairs 

coordinate their actions by watching one another, without an external cue. These trials 

indicate that visual cues have the potential to be as significant as aural stimuli. Some degree of 

synchronisation was seen for each type of stimulus, however the worst synchronisation 

occurred when using a purely tactile cue. 

Table 2.5 Pair and individual syncronisation when jumping at 2Hz (adapted from Noormohammadi et al., 2011). 

Stimulus Pair 
1

st
 Harmonic 2

nd
 Harmonic 

Phase (˚) Sync factor Phase (˚) Sync factor 

Aural 

1a 18.5 0.922 -147.0 0.793 
1b 8.3 0.950 -171.6 0.916 

|Δφ| 10.2 
 

24.6 
 

2c 5.5 0.935 173.8 0.797 
2d 17.6 0.962 -151.2 0.871 

|Δφ| 12.1 
 

35 
 

Ave sync factor 
 

0.942 
 

0.844 

Tactile 

1a 21.9 0.767 -144.8 0.36 
1b 106.1 0.308 -176.0 0.237 

|Δφ| 84.2 
 

31.2 
 

2c -41.9 0.387 147.4 0.263 
2d -45.6 0.579 55.6 0.257 

|Δφ| 3.7 
 

91.8 
 

Ave sync factor 
 

0.510 
 

0.279 

Visual 

1a -89.6 0.599 119.5 0.225 
1b -89.4 0.617 90.6 0.301 

|Δφ| 0.2 
 

28.9 
 

2c -86.5 0.681 119.0 0.237 
2d -80.4 0.730 12.3 0.337 

|Δφ| 6.1 
 

106.7 
 

Ave sync factor 
 

0.657 
 

0.275 

None 

1a -44.7 0.831 83.0 0.526 
1b -41.2 0.876 88.7 0.592 

|Δφ| 3.5 
 

5.7 
 

2c -68.4 0.767 161.9 0.299 
2d -75.6 0.707 162.5 0.316 

|Δφ| 7.2 
 

0.6 
 

Ave sync factor 
 

0.795 
 

0.433 

 

The difference in the phase angle between the pairs varied considerably for different trials 

(Table 2.5). When using the tactile stimulus pair 1 exhibited a phase angle difference of 84.2°, 

whereas pair 2 achieved a difference of 3.7°. The large variation in the results highlights the 

presence of inter-pair variability, and the need for a larger sample size. 

Smaller synchronisation factors at the 2nd harmonic were seen for the majority of trials (Table 

2.5). The best 2nd harmonic synchronisation occurred when using an aural stimulus (average 
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synchronisation factor 0.844). The smallest differences in phase angle at the 2nd harmonic (5.7˚ 

and 0.6˚) indicating good synchronisation between test subjects occurred when jumping 

without an external stimulus. Pair 2’s individual synchronisation factors were small, 0.299 and 

0.316, without an external stimulus. Therefore the individuals were not jumping at a 

consistent frequency, just consistently with one another, suggesting group synchronisation is 

more dominant than beat synchronisation. 

Further experiments that were more representative of real situations were conducted by Racic 

et al. (2013). Bobbing subjects were encouraged to interact together providing a rhythmic 

stimulus. Aural, visual and tactile cues, and the effect of subject proximity on coordination was 

investigated. The synchronisation factor β was quantified by summing the time lags Δi of n 

cycles between the subjects on a cycle-by-cycle basis: 

 𝜷-=
∑ |∆𝒊|
𝒏
𝒊=𝟏

𝒏𝑻
=
𝒇

𝒏
∑|∆𝒊|

𝒏

𝒊=𝟏

 2.1 

Values of β closest to zero indicate the best synchronisation. Figure 2.12 shows that individuals 

were most in-sync when all the stimuli were included (i.e. bobbing to the metronome beat, 

whilst facing each other and holding hands). Furthermore the poorest synchronisation was 

observed when subjects stood back to back, not touching, with only the metronome to guide 

them. It was also noted that when individuals were sideways on to one another the 

synchronisation increased with proximity. The effect of proximity reduced when individuals 

were facing one another, as the additional visual cues compensated for the distance between 

them. The best synchronisation was seen between the subjects at the highest bobbing 

frequencies investigated 2.0Hz and 2.7Hz.  

It can be concluded from this section that aural, visual and tactile cues, as well as the presence 

of other people, affect the degree of synchronisation. An aural beat is considered to have the 

greatest effect on synchronisation, followed by visual and then tactile stimuli. It is therefore 

necessary, when designing against human induced rhythmic loading, to consider the increased 
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coordination due to these stimuli. The variation in the results between different authors 

highlights the need for more experimental tests, allowing the full extent of the synchronisation 

potential in different circumstances to be understood. 

 

Case 1 Back to back Only aural 

Case 2 Back to back, 
touching 

Aural and 
tactile 

Case 3 Side by side Aural and 
partial visual 

Case 4 Side by side, 
touching 

Aural, partial 
visual and 

tactile 
Case 5 Face to face Aural and full 

visual 

Case 6 Face to face, 
touching 

Aural, full 
visaul and 

tactile 

  

 

 
Figure 2.12 The β values between subjects when a) at close proximity, b) at medium distance c) at far distance and 

d) all scenarios (adapted from Racic et al., 2013). 
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2.4.2 Group Synchronisation 

Large dynamic forces and excessive structural vibrations are a potential consequence of a 

group of individuals accurately coordinating their motions. The BS 6399 (BSI, 1996) 

recommends a potential synchronisation frequency range of 1.5-2.8Hz for large groups. Ginty 

et al. (2001) quotes synchronised frequency ranges of 1.5-2.5Hz for small groups and 1.8-2.3Hz 

for large groups. Due to natural variations in human physiology and rhythmic ability, it is highly 

unlikely that perfect synchronisation could be achieved across a group of individuals. Designing 

a structure to withstand a dynamic load from a fully synchronised crowd therefore is a too 

conservative and expensive approach. Hence a knowledge base of the degrees of 

synchronisation possible for different group sizes, stimuli and at different events is required. 

Few experiments involving groups of individuals have been conducted due to limitations in 

equipment, space for testing and availability of subjects. As stated in Section 2.4.1.2 the 

presence of other individuals has an effect on the achieved degree of synchronisation. 

Therefore, it would be desirable to experimentally quantify synchronisation between multiple 

individuals. 

Ebrahimpour and his co-authors discovered experimentally that people are better 

synchronised with an aural beat when acting together, than when they are on their own 

(Section 2.4.1.2) (Ebrahimpour and Fitts, 1996; Ebrahimpour and Sack, 1989). Recent jumping 

experiments confirmed this finding for groups of up to 15 people (Comer et al., 2007). The 

mean phase delay which represents the average timing of an individual’s jump relative to the 

aural cue, was used as a measure of beat synchronisation. A 33% reduction in the STD of the 

mean phase delay was apparent for subjects when jumping in a group, compared to jumping 

alone. It was concluded that people jumping within a group are more capable of synchronising 

their actions to one another, than an individual to a metronome beat. It was also suggested 

that visual stimuli was of more importance than aural, when considering short-term crowd 

synchronisation. 
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Parkhouse and Ewins (2006) dismissed the dangers of increased synchronisation due to crowds 

observing one another. They reasoned that as the phase lags varied between individuals, using 

another subject as a cue was likely to propagate the phase lags reducing the synchronisation. 

This reasoning, however, has not been verified experimentally. 

The largest laboratory investigations into the effect of crowd size on the structural response 

included 75 different groups of up to 64 individuals (Ellis and Ji, 2002). The experiments were 

conducted on two different floors of known dynamic properties. The subjects jumped to music 

of a specified beat and the responses of the floors were measured. The DLFs for the first three 

forcing harmonics were back calculated. Figure 2.13 shows that the DLFs decrease with 

increasing crowd size. A large scatter in the DLFs was observed for all group sizes. This 

indicates large variations of the force even within groups of the same size. It is therefore 

suggested that further experimental work with different group sizes is undertaken. 

 
Figure 2.13 The DLFs of the first three harmonics for different sized groups jumping (after Ellis and Ji, 2002). 
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The previous investigations took place within a lab environment which may not have recreated 

the ambiance of a pop concert. To overcome this issue insitu experiments were conducted by 

Kasperski and Niemann (1993) and Littler (2003). 

The accelerations and deflections of a stand due to 5-70 individuals jumping to music were 

measured (Kasperski and Niemann, 1993). For groups with less than 20 individuals little 

decrease in coordination was observed. For groups of more than 20 individuals a linear 

decrease in coordination (coordination factor) with increasing crowd size was identified (Figure 

2.14). For groups larger than 70 individuals, the coordination factor was assumed to approach 

a maximum reduction of 50% of the dynamic load. The authors also noted the importance of 

motivation in maintaining coordination between the group. It was observed during some tests, 

that the groups of older, less enthusiastic individuals, were poorly coordinated, and low 

structural vibrations were recorded. On the other hand, groups of younger enthusiastic 

individuals caused larger vibrations. However a large scatter of response data was recorded 

between nominally identical tests performed by the same group. This indicates the wide range 

of possible loading situations and the need for a statistical modelling approach. 

 
Figure 2.14 Coordination factors (adapted from Kasperski and Niemann, 1993). 

 
 
 

The responses of 15 stands to crowd movements were monitored over 18 different concerts 

(Littler, 2003). It was observed that crowd activity depended on the tempo and the song. 

Individuals often chose not to jump at the beat of the music, but at half or double the beat, 
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whichever was comfortable. It was also apparent that people changed their jumping rhythm 

once tired, or at the chorus of a song. Consequentially, awareness of the common song 

frequencies may not be sufficient to predict the reaction of a crowd. A variety of factors may 

influence their movements. It was noted on several occasions that a crowd were able to 

coordinate their movements to songs with a tempo greater than 2.8Hz. As a result 

recommendations were made to raise the upper limit of comfortable jumping from 2.8Hz (BSI, 

1996) to 3.0-3.5Hz (Littler, 2003). An increased limit has now been adopted by ISO (2007). 

The variations in the results presented by different authors demonstrate the need for more 

experiments with groups of individuals that are exposed to different stimuli. In particular, it is 

necessary to quantify the importance of visual stimuli, for which contradictory observations 

currently exist. Despite previous work very little is known about actual crowd behaviour. The 

motions and actions of crowds are of great interest. The design of stadia and other high 

capacity venues would benefit from more crowd observations. 

2.5 Conclusion 

Having examined literature which reviewed jumping and bobbing activities, it is accepted that 

rhythmic jumping is the most severe human induced dynamic load. Amplitudes of dynamic 

force, up to seven times the weight of the individual can occur (Bachmann and Ammann, 

1987). However it is generally thought that as bobbing requires less energy, it is the more 

common of the two activities. It is worth noting that a greater degree of synchronisation, both 

with the beat and between individuals, has been seen for rhythmic bobbing. Furthermore, a 

higher activity frequency range is achievable whilst bobbing. Therefore, both activities should 

be considered during the design process. 

Many authors have deliberated and proposed frequency limits, which individuals can 

effectively synchronise with. Earlier work disregarded the ability of individuals to synchronise 

at frequencies above 2.8Hz (Ginty et al., 2001). Other experiments saw good synchronisation 
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at 3Hz for jumping and up to 3.5Hz for bobbing (Sim et al., 2005). These findings were 

consistent with insitu stadium tests, where an increase in the comfortable jumping limit to 3-

3.5Hz was recommended (Littler, 2003). Observing the work of these authors and the variation 

in results, there is a need for further jumping and bobbing experiments at a variety of 

frequencies, specifically using music as an aural cue. 

It was generally thought that an aural beat was required for synchronisation and that other 

cues and the effect of crowd interaction were of little importance (Parkhouse and Ewins, 2004; 

BSI, 1996). The effects of tactile and visual stimuli were investigated and it was found that both 

increased coordination (Noormohammadi et al., 2011; Racic et al., 2013). Experiments 

demonstrated individuals synchronised with a beat better when within a group (Ebrahimpour 

and Fitts, 1996; Comer et al., 2007). However, discrepancies between authors indicate the 

need for more experiments investigating beat synchronisation within a group of individuals. 

Synchronisation within a group was investigated, in general coordination and DLFs decreased 

with crowd size (Kasperski and Niemann, 1993; Ellis and Ji, 2002). For crowds greater than 70 

individuals this tended towards a 50% reduction in the dynamic load (Kasperski and Niemann, 

1993). However, larger variations in the results were seen within the same experimental setup 

for the same group. This indicates the wide range of crowd responses possible, and the need 

for more synchronisation experiments with groups, especially within stadium environments. 

Examining the contents of this review, it is apparent that multiple subject GRF experiments 

investigating group synchronisation and the effect of various stimuli, especially music, should 

be conducted. These experiments, and more observations of real crowds, would better allow 

the incorporation of crowd-interaction into the structural design process. The effect of 

inclusion within a group and the additional visual and tactile stimuli should be considered 

when accounting for dynamic loads. This shortage is addressed in Chapter 7 where the results 

from varying stimuli group experiments are reported. 
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3 Review of Jumping and Bobbing Models 

As detailed in the previous section, jumping and bobbing activities are the most relevant 

human induced load cases for structures where crowds assemble. These venues include 

stadiums, concert halls and grandstands. The dynamic forces applied to the structure may vary 

between venue type and between different regions and countries (Jones et al., 2011a). 

The actions and forces associated with jumping and bobbing vary between individuals which 

can lead to difficulties adequately accounting for the dynamic loading within the design 

process. Large structural accelerations are often a consequence of excessive dynamic loading 

and numerous problems can arise. These include damage to non-structural components, 

unwanted noise, discomfort or panic of the occupants and overstressing of the structure. In 

extreme cases large vibrations may compromise the structural integrity. Dynamic loads 

therefore require adequate consideration within the design process without reverting to 

unnecessarily conservative and uneconomical design. 

In the following section various approaches to model the vertical component of jumping and 

bobbing forces, first for individuals (Section 3.1) and then for crowds (Section 3.2) are critically 

examined. Sophisticated models that include dynamic features of both the human body and 

structure are also covered. The findings of this literature review are summarised in Section 3.3. 

3.1 Mathematical Models for Individuals’ Forces  

To account for and predict the dynamic loading likely to be inflicted upon a structure by an 

individual jumping or bobbing, various load models have been developed. The methods of 

modelling individuals’ bobbing and jumping will be reviewed, starting with equivalent static 

models, progressing to periodic and near periodic models. These models are developed with 

reference to ground reaction forces (GRF) recorded on rigid surfaces. Single jumps or bobs will 

not be considered due to their transient nature. 
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3.1.1 Equivalent Static Loads 

The earliest method of accounting for human induced dynamic loads in structural design 

involved replacing them with an equivalent static load. In the 19th century the accepted 

practice was to allow an equivalent static load of 100 lbft-2 (equivalent to 4.8kNm-2) for a dense 

crowd (Tilden, 1913). However, this design value was not consistent with experimental work 

(Moreland, 1905) and observations of structures (Tilden, 1913). Equivalent static loads were 

used in structural design over a large part of the 20th century, with suggested values between 

2.15 and 8.14 kNm-2, as shown in Table 3.1. A static load representing the dynamic force is 

insufficient to meet the structural vibration serviceability criteria. Dynamic forces are present 

at the harmonics of the applied force, which, if matching a natural frequency of the structure 

can cause resonance. In consideration of this, from the 1980s onwards more sophisticated 

dynamic load models were proposed. 

Table 3.1 Equivalent static dynamic loads by various authors, assuming the average seating area per person is 0.7m 
by 0.5m (adapted from Jones et al., 2011b). 

 
Jones et al. 

(2011b) 
Tuan and Saul 

(1985) 
Ebrahimpour et al. 

(1986) 
Moreland 

(1905) 
Tilden 
(1913) 

Action Static 
Rhythmic 
jumping 

Periodic jumping Jumping ‘Jouncing’ 

Frequency N/A 2.2 Hz 3 Hz Unknown N/A 
Participants 1 1 1 90 1 

Load Observed 
0.75 

kN/person 
4.50 

kNm
-2

 
2.85 

kN/person 
1.13 

kN/person 
2.04 

kN/person 
Equivalent static load (kNm

-2
) 2.15 4.50 8.14 3.23 5.83 

 

3.1.2 Periodic Models 

To imitate the repetitive nature of rhythmic activities, many authors proposed periodic load 

models. The semi-sine model (Bachmann and Ammann, 1987) was one of the first dynamic 

load models for jumping forces (Figure 3.1): 

 𝑭(𝒕) =
𝑲𝑷 ∙ 𝑾 ∙ 𝐬𝐢𝐧(𝝅 ∙ 𝒕 𝒕𝑷⁄ )

𝟎

𝒇𝒐𝒓𝒕 ≤ 𝒕𝑷
𝒇𝒐𝒓𝒕𝑷 < 𝒕 ≤ 𝑻𝑷

 3.1 

where K P is the impact factor, while W, T P and t P, represent the test subject’s weight, period 

and contact time, respectively. 
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Figure 3.1 Force time history of the semi-sine model (after Bachmann and Ammann, 1987). 

 
 
 

A Fourier series is used to describe the semi-sine profile and incorporate the harmonic 

components of the jumping force. The force spectra of the semi-sine model showing the DLFs 

of each harmonic for various contact ratios are shown in Figure 3.2. This can be written 

analytically (Ji and Ellis, 1994; Ji and Wang, 2001): 

 
𝒂𝟎 =

𝟐𝑲𝑷𝜶

𝝅
= 𝟏. 𝟎 3.2 

 
𝑭(𝒕) = 𝑾 [𝟏. 𝟎 +∑𝒓𝒏

∞

𝒏=𝟏

𝐬𝐢𝐧 (
𝟐𝒏𝝅

𝑻𝑷
𝒕 + 𝝓𝒏)] 3.3 

where 
𝒓𝒏 = √𝒂𝒏

𝟐 + 𝒃𝒏
𝟐   

when: 
𝟐𝒏𝜶 = 𝟏,𝒕𝒉𝒆𝒏…𝒂𝒏 = 𝟎𝒃𝒏 =

𝝅

𝟐
  

else: 
𝒂𝒏 = 𝟎. 𝟓 [

𝐜𝐨𝐬(𝟐𝒏𝜶 − 𝟏)𝝅 − 𝟏

𝟐𝒏𝜶 − 𝟏
−
𝐜𝐨𝐬(𝟐𝒏𝜶 + 𝟏)𝝅 − 𝟏

𝟐𝒏𝜶 + 𝟏
] 3.4 

 
𝒃𝒏 = 𝟎. 𝟓 [

𝐬𝐢𝐧(𝟐𝒏𝜶 − 𝟏)𝝅

𝟐𝒏𝜶 − 𝟏
−
𝐬𝐢𝐧(𝟐𝒏𝜶 + 𝟏)𝝅

𝟐𝒏𝜶 + 𝟏
]  3.5 

where α is the contact ratio, r n is the DLF and ϕ n is the phase angle. The mean value of the 

signal is a o, and a n and b n are the Fourier coefficients associated with the nth harmonic. 

Contact ratio dependent DLFs and phase angles for the first six harmonics of jumping are 

shown in Table 3.2. As the harmonic number and the contact ratio increases, the DLF 

magnitude decreases. The number of harmonic components used will alter the dynamic load 

and the structural response. Figure 3.3 compares two force profiles using one and six harmonic 
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components of the semi-sine model (Table 3.2). However, a visually acceptable reconstruction 

of the force time history does not necessarily equate to a reliable force spectrum. 

 
Figure 3.2. Harmonics load amplitudes from the semi-sine model (after Bachmann and Ammann, 1987). 

 
 
 

Table 3.2 DLFs factors for different contact ratios for up to the 6
th

 harmonic (after BRE, 2004). 

Contact 
Ratio 

Harmonic number 

 n=1 n=2 n=3 n=4 n=5 n=6 

α=2/3 
rn 9/7 9/55 2/15 9/247 9/391 2/63 
ϕn -π/6 -5π/6 -π/2 -π/6 -5π/6 -π/2 

α=1/2 
rn π/2 2/3 0 2/15 0 2/35 
ϕn 0 -π/2 0 -π/2 0 -π/2 

α=1/3 
rn 9/5 9/7 2/3 9/55 9/91 2/15 
ϕn π/6 -π/6 -π/2 -5π/6 -π/6 -π/2 

 
 

 
Figure 3.3 The effect of the number of Fourier components on the semi-sine model (after BRE, 1997). 
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The number of harmonics recommended by various researchers vary between two and six 

(Allen et al., 1985; Rainer et al., 1988; Pernica, 1990; Allen, 1990; Ellis and Ji, 1994; BSI, 1996; 

Reid et al., 1997). To design against resonance at the assumed jumping frequency f J at the 

lowest structural frequency f n, the inclusion of harmonic components to the nearest integer 

value of n =f n/f J  is recommended (BRE, 2004; Ellis and Ji, 1994). This method suggests that 

the number of harmonic components depends on the structure. Therefore a very stiff 

structure would require a high number of components for adequate consideration of the 

response. However, it is unlikely that an individual will jump with enough precision to 

stimulate resonance at the corresponding harmonic. Energy dissipates around the higher 

harmonics reducing their influence unless a very precise jumping rhythm is maintained. 

Therefore, very stiff structures are unlikely to be in danger. In general, to adequately 

reconstruct the force time history three or four harmonic components are recommended (Ellis 

and Ji, 2002). 

As seen in Figure 3.2 and Table 3.2 the DLFs and the impact factors decrease with increasing 

contact duration, due to the conservation of energy (Bachmann and Ammann, 1987). As the 

contact ratio of the jump decreases, the jumper is airborne for longer and lands with greater 

force increasing the impact factor. Figure 3.4 shows the relationship between the contact ratio 

and impact factor when the force profile takes the shape of the theoretical semi-sine model 

(Bachmann and Ammann, 1987). In practise it was demonstrated that this relationship is not 

always satisfied (Sim et al., 2008). It was shown that the force profiles of some test subjects 

had strong correlation between the contact ratio and impact factor, whereas others had little. 

The correlation reduced further at higher frequencies. This is likely due to differences in 

jumping styles, for example it is possible to jump whilst maintaining a flat footed style, 

although it is more common to rise and land on the toes. These and other personal 

preferences are likely to alter the GRF profile and the correlation between contact ratio and 

impact factor. 
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Figure 3.4 Contact ratio dependant impact factors (after Bachmann and Ammann, 1987). 

 
 

 
Previously the contact ratios in Table 3.2 were used to distinguish between high impact and 

low impact jumps. To allow the jumping frequency to be specified with the model, a 

relationship was sought between the contact ratio and the jumping frequency (Bachmann and 

Ammann, 1987). Contact ratios between 0.25 and 0.6 were found experimentally at a variety 

of jumping frequencies (Bachmann and Ammann, 1987; Ji and Ellis, 1994). It was observed that 

a range of contact ratios were possible for each jumping frequency due to variability in the 

jumping style and height (Bachmann and Ammann, 1987). However, the lower contact ratio 

boundary is dictated by the limits of muscular strength and human discomfort (Wyatt, 1985). 

The contact time is unlikely to fall below 0.15s for jumping (Bachmann and Ammann, 1987), 

therefore overall the minimum contact ratio can be calculated as: 

 𝜶 =
𝒕𝒑

𝑻𝑷
= 𝟎. 𝟏𝟓 ∙ 𝒇𝑱 

3.6 

However, after experiments over a range of frequencies, a frequency dependent lower limit 

for contact time was observed (Baumann and Bachmann, 1987; Wilford, 2001) shown by the 

medium dashed line in Figure 3.5. Once contact ratios are established from tp x f j where tp is 

sourced from Figure 3.5, Figure 3.2 and Figure 3.4 can be utilised to find the maximum DLFs 

and impact factors. The predicted DLFs (dashed and dotted lines) have been compared to 
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experimental DLFs found using a force platform (Pernica, 1990), and from measured responses 

of beams of known dynamic properties (Ji and Ellis, 1994) in Figure 3.6. 

 
Figure 3.5 Contact times as a function of jumping frequency (adapted from Wilford, 2001). 

 

 

 
Figure 3.6 Frequency varying DLFs for a jumping person using the minimum observed contact ratios (Baumann and 
Bachmann, 1987), and the revised minimum contact ratios (Wilford, 2001), compared to experimental DLFs (filled 

markers (Pernica, 1990), hollow markers (Ellis and Ji 1994; Ji and Ellis, 1994)) (adapted from Wilford, 2001). 
 
 
 

The predicted DLFs from the semi-sine model compare well at higher frequencies to the 

measured data. However, at lower frequencies the DLFs are overestimated. The discrepancy 

between the measured and predicted data at low frequencies suggests that the theoretical 

model does not perform well in this frequency region, and that the minimum contact ratios 

are too small. As larger contact ratios values (0.4-0.75) have been found in some experimental 
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studies (Yao et al., 2002, 2006; Sim et al., 2008), the conservative values of minimum contact 

times were revised by Wilford (2001). The DLFs from the amended minimum contact times 

(Figure 3.5) compare better with the experimental data as seen by the solid lines in Figure 3.6. 

However, there is little experimental evidence to suggest that jumping frequency dictates a 

unique contact ratio. From recent experimental work on a flexible surface contact ratios of 0.5-

0.7 were observed for jumping at 2Hz (Yao et al., 2002). The GRFs increased with surface 

stiffness suggesting the contact ratios varied with the natural frequency of the surface. During 

resonance and near resonance conditions the contact ratio values increased further to 0.75-

0.95. It was suggested that individuals subconsciously altered their contact ratio to track the 

surface movement (Yao et al., 2002). 

The semi-sine model is a simple way of modelling the jumping GRF and a good basic 

representation can be achieved. However, the jumping frequency is used to establish a 

frequency specific contact ratio which is inconsistent with experimental findings (Yao et al., 

2002). This deterministic model does not account for intra and inter-subject variability. In 

addition, the shape of the force profile is unable to replicate the asymmetric and double 

peaked profiles seen at low frequencies discussed in Chapter 2. 

3.1.3 Near Periodic and Shape Varying Models 

Modelling jumping and other human forces as a periodic function provides a general 

representation of the force. However, due to human inability to perfectly repeat actions, the 

loading is rarely periodic. Recent studies described human motion as occurring over a narrow 

band of frequencies instead of at a specific frequency (Brownjohn et al., 2004). Accordingly, 

human loading is referred to as near-periodic to accommodate both its cyclic nature and its 

inevitable variability (Racic, 2009). A repercussion of using a periodic model is a force spectrum 

consisting of discrete spectral lines at the jumping frequency and its integer multiples. Real 

dynamic forces are characterised by the energy leakage around these main harmonics. This 

spectral leakage increases at higher harmonics and therefore a periodic model may cause 
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overestimations of the structural response at higher harmonics (Racic, 2009). There is also 

potential for smaller non-dominant spectral lines with resonance potential to be missed. 

Jumping can be modelled by a normalised experimental force history from an individual, this 

can be extrapolated to represent a crowd (Sazak et al., 2011). This method intrinsically allows 

for the inclusion of some intra-subject variation. There is a lack of inter-subject variability as 

the force history profiles and the jump timings are identical for each individual simulated, 

which is an unrealistic representation (Sim et al., 2005, 2006, 2008). 

An near periodic model (Sim et al., 2008) which incorporates both intra and inter-subject 

variation using five independent parameters is described in Figure 3.7. This five parameter 

model is based on an experimental database of individuals jumping on a force plate 

(Parkhouse and Ewins, 2006, 2004). Beta parameters (Figure 3.7) are found from the 

experimental data and used in Beta distributions which model the variation in the parameters 

between individuals. Three of the parameters represent the intra-subject variation in the jump 

timing. These include an auto-regression timing coefficient, to mimic the subject’s conscious 

effort to realign to the beat with reference to the previous jump. In addition, the mean phase 

delay of the jumps is included, and human error in the jump timing is incorporated using the 

STD of the random timing errors. 

The final two parameters are the STD and mean values of the contact ratio which vary 

between individuals (Sim et al., 2008). This variation is modelled using another beta 

distribution based on the experimental data. 
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Figure 3.7 A flow chart for the use of the near periodic model (adapted from Sim et al., 2008). 
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To further refine the five parameter model, a relationship was devised between force 

magnitude ik and the timing of the previous and upcoming jumps. Finally a semi-cosine-

squared function was adopted to represent the shape of each jump, providing a better fit to 

experimental data than a semi-sine profile. Monte Carlo simulations can then be used to 

accumulate individual jumping forces to model an entire crowd. However, as the data were 

collected from individuals, the greater synchronisation often seen within crowds (Section 

2.4.2) is not considered. Therefore the resulting crowd DLFs are likely to underestimate the 

dynamic load and therefore this model may be unreliable for crowd simulations. 

The five parameter model is complex, requiring distributions for a significant number of 

parameters, however the end user is considered and several flow charts to aid calculation are 

presented. A further advantage is the inclusion of the beta distribution parameters collected 

from jumping experiments which allow the user to model the various distributions of each 

jumping parameter. Hence if experimental reference data is unavailable these distributions 

can be used within the model, but the option for using alternative reference data exists. 

Within the five parameter model a linear relationship between the timing of the jump and the 

size of the impulse is assumed. Later authors have observed a lack of correlation between 

these two variables (Racic and Pavic, 2010).  

The model is based upon test subjects without a jump deficit (Sim et al., 2005). Subsequently 

only 75% of participants jumping at 2Hz were included despite this frequency being considered 

as easy to jump at. The inclusion rate decreased further at higher frequencies dropping to only 

41% at 3.5Hz. This selective inclusion favours an unrealistic worst-case scenario where 

individuals are able to maintain rhythmic jumping to a high level of accuracy. 

A further shortfall of this model is the use of the centroid of the force profile to define the 

jump timings. This technique is perhaps appropriate for jumping frequencies over 2Hz, where 

the force profiles tend towards a symmetrical arc. At lower frequencies a range of profile 
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shapes are seen (Section 2.2.2), due to this variation the centroid may be inappropriate to 

identify the timings of each jump. This also highlights that a half-cosine-squared function is 

unrepresentative of the force profile at low frequencies. 

The most detailed narrow band jumping model is a many Gaussian model (Racic, 2009). An 

extensive database of experimental jumping forces was compiled, consisting of 825 force 

profiles generated by 38 males and 17 females. Using characteristics from a pre-existing 

jumping force history from this database the model replicates the average shape and 

amplitude of the force profile. This was accomplished using a closed loop trajectory, Zi(t), in 

3D space (x,y,z) around a circle with a radius of one in the plane of (x, y), demonstrated in 

Figure 3.8. Gaussian exponentials are summed together to create the profile shape, allowing 

for the possibility of asymmetric jumping profiles. 

The jumping periods of the modelled force were simulated from the mean jumping period of a 

pre-collected trial, summed with a period variation value. The auto spectral density (ASD) of 

the trial period variations were used to simulate period variations with the same standard 

deviation and ASD as the original trial. A linear relationship between the jumping periods and 

the weight normalised impulses was observed, and utilised to create synthetic impulses which 

correspond to the synthetic periods. 

 
Figure 3.8 Trajectories Zi(t) of jumping, displayed in a 3D form (after Racic and Pavic, 2010). 
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The many Gaussian model is currently the best available model for representing individual 

forces on rigid ground. Consideration to intra-subject variation is a major benefit. The jump 

characteristics are modelled with reference to real forces, and therefore reflect real jumping 

time histories. The major benefit over the five parameter model is the ability to change the 

profile shape to produce an asymmetric profile akin to low frequency jumping. However, the 

modelling process is complex and significant processing is required. Furthermore, the 

synthesised force time histories are created using force characteristics from an experimental 

database. Currently the model is used in conjunction with a large database of forces, which is 

not publically available. 

Both the many Gaussian and the five parameter models are based upon GRFs collected on rigid 

ground, and therefore there may be limited applicability of these models upon other surfaces. 

3.2 Crowd Models 

At stadium events multiple people move within a crowd, applying a dynamic crowd load to the 

structure (Jones et al., 2011b). Models which account for the dynamic load due to crowds 

jumping and bobbing are discussed within this section. Often individuals within crowds will 

attempt to synchronise their actions with one another. The inclusion of a component to reflect 

the degree of crowd synchronisation is necessary for realistic crowd models. Modelling 

approaches to crowd synchronisation are discussed in Section 3.2.1. 

Human occupants can affect the dynamic properties of the structure through a phenomenon 

known as human structure interaction (HSI). HSI is introduced in Section 3.2.2 and its inclusion 

within crowd modelling is presented in Section 3.2.3. The consideration, or lack thereof, of HSI 

within stadium guidance is discussed. Thought is also given to the effect of ground flexibility on 

the GRFs. 
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3.2.1 Synchronisation 

During stadium events crowds of people are likely to be active and attempt to coordinate their 

movements with one another. Due to the differences in physiology and human nature a 

variety of movements, not restricted to rhythmic jumping or bobbing, will occur. A particular 

beat may be prominent amongst the movements, prompted by aural or other stimuli. 

However, due to different coordination abilities, other frequencies of movement will be 

present (BRE, 1997), and will reduce the potency of the dominant harmonic. The 

synchronisation of the crowd, or lack thereof, can be described by the phase lags between the 

individuals. Two methods have been used to account for these phase lags. The cumulative 

effects of the phase lags within the crowd can be considered by applying an overall 

coordination factor to the crowd load or including it within the DLFs. An alternative method is 

to apply phase lags of a specified distribution to force profiles which are then used within 

Monte Carlo simulations of the crowd loading. The synchronisation and participation of the 

crowd will be affected by various factors (Section 2.4). The implementation of these methods 

and the consideration of the factors which affect synchronisation are presented within this 

section. 

Originally crowds were represented by static equivalent multiples of individual loads as 

discussed in section 3.1.1. At times these models included a factor to reflect the likelihood of 

an extreme loading case, or to demonstrate the lack of coordination within a crowd (Tilden, 

1913; Moreland, 1905). The American Standards Association (ASA) found that the size of the 

crowd affected the degree of synchronisation (Homan et al., 1932). This “group effect” was 

observed when comparing the horizontal forces on a platform for groups of three and nine 

men. The groups of three were more synchronised and consequentially the ASA recommended 

that the total applied force should be multiplied by a factor of 0.75 (Homan et al., 1932; Saul 

and Tuan, 1986). The recognition that perfect group synchronisation is rarely seen in large 

crowds is a significant development towards modern crowd models. 
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Many modern crowd models are developed based on summations of experimental or 

analytical individual force time histories. A crowd adapted version of the semi-sine model 

reflects the reduced coordination as an increased minimum contact duration of 0.2s (Baumann 

and Bachmann, 1987) for groups larger than 20 (Figure 3.5). The extended duration acts to 

increase the contact ratios, reducing the impact factors and DLFs. This results in a 10% 

reduction in the dynamic load for jumping at 2.45Hz.  

Coordination factors C can also be used with the semi-sine and other models to account for 

imperfect synchronisation. Coordination factors may incorporate the influence of variables, 

such as, number of people, frequency of stimuli, harmonic number, type of event and number 

of events occurring within the structure’s lifetime. Examples of Coordination factors which 

reflect the decreased synchronisation with increasing group size N, are demonstrated in Figure 

3.9, Figure 3.10 and Figure 3.11. The decreased synchronisation is due to the spread of 

jumping abilities and enthusiasm as the sample sizes increases. For groups larger than 

approximately 50 the coordination factor tends to a constant value (Parkhouse and Ewins, 

2004; Kasperski and Niemann, 1993), potentially rendering a size dependant coordination 

factor unnecessary in the design of large event venues (Figure 3.9). 

 
Figure 3.9 Coordination factors (after Kasperski and Niemann, 1993). 

 
 
 

A further effect of group size is the reduced influence of the higher harmonic components, 

which is reflected in the coordination factors shown in Figure 3.10 and Figure 3.11. 
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Figure 3.10 Coordination factors for free and restricted movement (after Hansen and SØrensen, 2002). 

 
 
 

The coordination factors in both Figure 3.9 and Figure 3.10 are based upon crowd experiments 

on grandstand structures. Hansen and Sørensen (2002) observed a relatively small reduction in 

the response at the 1st harmonic for group sizes between 1 and 10. They therefore 

recommended a 1st harmonic coordination factor of one for all values of N (Figure 3.10). 

Kasperski and Niemann (1993) observed crowds of up to 70 people and saw a decrease in 

coordination for groups larger than 20 (Figure 3.9). This would therefore suggest that a 1st 

harmonic coordination factor of one, for all group sizes is over-conservative. 

 
Figure 3.11 DLFs for group size, harmonic, activity and activity frequency (after Parkhouse and Ewins, 2004). 
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Frequency dependent coordination factors are seen in Figure 3.11 and Figure 3.12. As 

discussed previously, some frequencies are more common, or easier to coordinate with (Ginty 

et al., 2001). Frequency dependent coordination factors provide an awareness of the 

frequencies likely to provoke a severe structural response. In addition, the natural frequencies 

of the structure can be checked for potential vulnerabilities and the design altered or proactive 

remedial measures invoked. 

  
Figure 3.12 Coordination factors a) for mild loading (Scenarios 2 and 3) and b) extreme loading (Scenario 4) (after 

UK Working Group, 2008). 
 
 
 

Parkhouse and Ewins (2004) found DLFs which reflected the varying degrees of coordination 

due to group size, activity, activity frequency, and harmonic. They measured individuals’ GRFs 

and modelled crowds by aligning the individual trials with the original beat. By looping each 

force history and starting at a different jumping cycle, dictated by a random number, the 

simulation of groups larger than the subject pool was possible. This approach made it unlikely 

that two identical force time histories would feature within a crowd. The synchronisation 

within these simulated groups was quantified using the STD of the mean phase lags of each 

individual to the beat. The highest level of crowd synchronisation occurred at 1.5Hz and 2Hz 

for jumping, and at 1.5Hz and 3.5Hz for bobbing (Parkhouse and Ewins, 2004). From the 

simulations DLFs for jumping and bobbing groups of various sizes, which reflect the frequency 

and harmonic were found (Figure 3.11). Constant DLFs were observed for crowd sizes greater 

a) b) 
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than 100 indicating that there is a lower limit on poor synchronisation. However, these results 

are based on individual’s GRFs and therefore crowd influences are not included. 

The coordination factors in Figure 3.10 reflect differences in stadium seating conditions, 

(standing, solid line or seated, dashed line), as these may affect movement, reducing crowd 

activity and synchronisation (Hansen and Sørensen, 2002). This allows a basic assessment of 

the dynamic load based on the stadium layout. 

In the previous coordination factors the nature of the event, which may influence crowd 

synchronisation, is not considered. The UK stadium recommendations (UK Working Group, 

2008) consider four event scenarios involving large crowds and their effect on synchronisation 

(Table 3.3). The events considered include low profile sporting events, classical concerts, 

medium-tempo pop concerts and high energy rock events. Figure 3.12 shows the coordination 

factors which vary with activity frequency for Scenarios 2-4. Scenario 1 events are thought to 

have minimal crowd activity and therefore little influence on the structure. This method allows 

stadia to be designed in consideration of their end use. 

Table 3.3 Event scenarios (adapted from UK Working Group, 2008 and Parkhouse and Ward, 2010). 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

‘A low profile 
sporting 

event‘, ‘less 
than maximum 

attendance’. 

‘Classical concert and 
typical well attended 

sporting event’ with the 
‘audience seated with 

only a few exceptions – 
minor excitation’. 

‘High profile sporting events and 
concerts with medium tempo 

music’, ‘pop concerts with cross 
generation appeal’ with a 

‘potentially excitable crowd with 
crowd participation.’ 

‘More extreme events including 
high energy concerts with periods 
of high intensity music’ featuring 

a young excited crowd, mostly 
standing/bobbing and jumping, 

vigorous participation. 

 

The use of questionnaires alongside experimental GRFs is another method to reflect the 

audience and event within the coordination factor. Questionnaires have been used to 

characterise the subjects’ rhythmic aptitude and likelihood of attendance at events (Parkhouse 

and Ewins, 2006). This allows the GRFs that correspond to a certain group, for example concert 

going subjects, to be selected from an experimental database. To compile this database, the 

GRFs of individuals jumping to a metronome beat were collected. The total dynamic force of 

an individual upon a structure was found to be comprised of a synchronised and stochastic 
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component. The component synchronised is the mean cycle of the force history (solid line, 

Figure 3.13). The stochastic component is comprised of the portions of the force history with a 

different phase angle to the synchronised component. An equivalent synchronised load can be 

created by applying the power of the total force history to the mean cycle of the force history 

(Figure 3.13, dashed line). The equivalent synchronised load can represent the force history of 

a jumping individual via a half-cosine model with three harmonics. 

 
Figure 3.13 A half-cosine model representing the equivalent synchronised loading component, and the mean GRF 

compared to individual jumping GRFs (after Parkhouse and Ewins, 2006).  
 
 
 

In Figure 3.13 the equivalent synchronised loading better accounts for potential peak loads 

than the mean force history. Nevertheless, peak loads over those encompassed by the 

equivalent synchronised load can still occur and the neglect of these may cause the 

underestimation of the structural response. It is more likely however that the removal of intra-

subject variability will cause the load to be overestimated. 

By the modelling and summation of specific GRFs various crowds can be simulated. When 

extrapolating this model to a crowd, the synchronised component was found to be dominant 

and proportional to the size of the crowd. The stochastic component was proportional to the 

square root of crowd size, thereby decreasing in significance in comparision to the 

synchronised component for larger crowds. Crowds ranging in size between 5-200 individuals, 

of various dispositions were simulated 1000 times. DLFs, which reflect the coordination of the 

groups for varying conditions were calculated (Figure 3.14). Figure 3.15 demonstrates the 
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variation in the DLFs between simulations. The DLFs in Figure 3.15 match experimental data 

well (Pernica, 1990; Ellis and Ji, 2004), except for large groups at the third harmonic. The least 

DLF variation is seen for large crowds and the first harmonics. 

 
Figure 3.14 DLFs for group size, harmonic, activity and activity frequency (after Parkhouse and Ewins, 2006). 

 
 
 

Crowd models which summed audio aligned individual force times histories were shown to 

underestimate the force, as crowd interaction was not included (Comer et al., 2013). Caution 

should be used when using models which are based on the extrapolation of individual forces. 

 
Figure 3.15 The variation in DLFs for different group sizes, N, jumping at 2Hz, compared with experimental DLFs 

from Pernica (1990) (solid) and Ellis and Ji (2004) (hollow) (after Parkhouse and Ewins, 2006). 
 
 
 

An alternative method of incorporating coordination factors into crowd models is by 

considering the number of dynamic events k which are likely to occur within a structure’s 
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lifetime (Kasperski and Agu, 2005). If the structure is hosting a large number of dynamic 

events, there is a higher risk that several events will result in high dynamic loads. Experiments 

were conducted using 70 individuals jumping alone for 30 seconds on a force plate, to measure 

the DLFs and phase angles (Kasperski and Agu, 2005). No clear pattern of frequency change 

between jumps was observed and therefore it was assumed that the variation between each 

jump was statistically independent. The force time histories of the subjects were categorised 

to reflect the ability of the individuals to match a beat. The subjects were accordingly divided 

into ‘good’, ‘medium’, ‘bad (slow)’ and ‘bad (fast)’ subgroups. This approach provided the 

opportunity, as in previous models, for various rhythmic abilities to be incorporated into the 

model, enabling the reflection of a variety of crowds. ‘Good’ jumpers had normally distributed 

root mean squared (RMS) values and reduced variates, y i, of the 1st harmonic load 

amplitudes; where the reduced variate is: 

 𝒚𝒊 =
𝒓𝒊,𝒏 − 𝒓𝒏̅̅ ̅

𝒓𝒊,𝒏,𝑹𝑴𝑺

 3.7 

where r i, n is the DLF of the i th jump, of the n th harmonic, 𝑟�̅� is the average DLF value of the nth 

harmonic and 𝑟𝑛,𝑅𝑀𝑆 is the RMS value. 

The variations in individuals’ weights were incorporated into the model using a distribution 

found by the Robert-Koch-Institut in Berlin. By including these three distributions in the semi-

sine model (Bachmann and Ammann, 1987), a ‘normal’ crowd of various group sizes can be 

simulated. The coordination factor was defined as the maximum structural acceleration from 

N people jumping, divided by the maximum acceleration of one ‘good’ male jumping. 

A non-exceedance probability approach, favoured by the Eurocodes, was applied to the above 

model. The purpose was to prevent structural accelerations exceeding the serviceability limits 

over the lifetimes’ of 95% of structures. The number of dynamic crowd events within the 

lifetime of the structure is estimated. The coordination factor is then determined to reflect the 

number of dynamic events as demonstrated in Figure 3.16 and Table 3.4. 
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Figure 3.16 Crowd coordination factor based on number of dynamic events, k (after Kasperski and Agu, 2005). 

 
 
 

The crowd dynamic force is calculated thus: 

 𝑭(𝒕) = 𝑵𝑪(𝑵, 𝒏, 𝒌)𝑾𝒓𝒏 ∙ 𝐬𝐢𝐧(
𝟐𝝅𝒏

𝑻
∙ 𝒕) 3.8 

where C is dependent on the group size N, the harmonic number n, and the number of 

dynamic events k. 

Table 3.4 Event dependant coordination factors C for N=10 (after Kasperski and Agu, 2005). 
 Coordination factors C 

Number of events k 1 5 50 500 1000 

n=1 0.87 0.91 0.95 0.96 0.96 
n=2 0.69 0.78 0.84 0.87 0.87 
n=3 0.62 0.71 0.78 0.82 0.83 

 

It is shown in Figure 3.16 and Table 3.4 that as group size increases, the coordination 

decreases in agreement with previous models. In addition, as the number of events increases 

above 500, the coordination factor tends to a constant value at each harmonic. This model was 

used within ISO (2007) alongside the semi-sine model and the Fourier coefficients in Table 3.5, 

to calculate the worst case loads. 

The majority of coordination factors are based on data from individuals or small groups 

jumping and bobbing. In general the coordination factors and DLFs found with reference to 

group experiments are higher than those using individual forces. However, most of the group 

experiments rely upon extrapolation to draw conclusions for larger crowds. Further 
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experiments with different group sizes are required to observe and realistically incorporate 

crowd behaviour into coordination factors. Furthermore, rigid GRFs formed the basis for most 

of the models and knowledge of the effect of surface stiffness, and an awareness of the 

transferability of the models to different environments is recommended. 

Table 3.5 The DLFs used in ISO (2007) (adapted from ISO, 2007). 
 Fourier coefficients DLFs rn 

Activity 1
st

 Harm 2
nd

 Harm 3
rd

 Harm 

Vertical action, seated audience 0.5 0.25 0.15 
Coordinated jumping (areas without seats) 1.7 or 2.1-0.15fj 1.0 or 1.9-0.17*(2fj) 0.4 or 1.25-0.11*(3fj) 

 

Coordination factors account for the cumulative effects of the time lags between individuals, 

an alternative approach is to apply a time lag of a specified distribution to each force time 

history. To investigate the distribution of phase lags groups of two and four individuals, from a 

subject pool of 20 males and 15 females, jumped on a force plate (Ebrahimpour and Sack, 

1989). It was observed that the phase lags followed an exponential distribution, suggesting 

that people tended to jump in phase. Monte Carlo simulations were used to define a load 

model for groups of up to 50 individuals jumping at a range of frequencies (Ebrahimpour and 

Sack, 1989). The results were used to define ‘load intensity amplitudes’ per unit area. Figure 

3.17 shows that for large groups the load amplitude tends toward 3.35 kNm-2. The standard 

seating allowance of modern stadia is 0.4m2 per person, thus a dynamic addition of 536N per 

person is recommended. This loading is approximately a multiplication factor of 1.80 to the 

static load (Ebrahimpour and Sack, 1989; Racic, 2009). For a large crowd jumping at 2Hz this is 

equivalent to a coordination factor of 0.80, comparable to Kasperski and Agu’s values and 

smaller than the UK recommendations (UK Working Group, 2008). The phase lags in this model 

were sourced from individuals jumping together and therefore considered human-human 

interaction. However, extrapolation to larger groups is likely to overestimate the coordination 

achievable in crowds. Further experimental work is desirable, to decide whether the empirical 

phase lags from a small number of individuals are valid for larger crowds. 
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Figure 3.17 Load intensity amplitudes for 2Hz jumping for varying crowd sizes (after Ebrahimpour and Sack, 1989). 

 
 
 

Wilford (2001) used Monte Carlo simulations to model crowd loads using a normally 

distributed time delay with a standard deviation of 0.14T, where T is the period. The predicted 

crowd DLFs are displayed in Figure 3.18, and are compared to those measured from groups of 

8-25 people (Pernica, 1990). The predicted DLFs closely match the experimental values for the 

1st and 3rd harmonic for mid-frequency jumping (2-3Hz). However, the predictions of the 2nd 

harmonic were not as successful and overestimated the DLFs. By increasing the standard 

deviation of the period to 0.2T for jumping at 4Hz, a better correspondence at higher 

frequencies was possible (Wilford, 2001). A larger standard deviation reflects the increased 

difficultly of synchronising with a beat at high frequencies, as seen in previous experimental 

work (Parkhouse and Ewins, 2004). 

The normally distributed phase lag model, relies on matching simulated data to previous 

experimental work (Pernica, 1990) without actually observing the phase lags. Therefore a 

normal distribution may not be the most appropriate method for describing phase lags. 
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Figure 3.18 Predicted DLFs for 10 people compared to experimental DLFs from 8-25 people jumping (Pernica, 1990) 

(after Wilford, 2001). 
 
 
 

There is disagreement between several authors as to the distribution of phase lags. 

Furthermore, in some experimental work no obvious distributions of phase lags were found 

(Kasperski and Agu, 2005). Therefore, more experiments to observe phase lags within large 

groups are recommended. 

3.2.2 Human Structure Interaction  

The majority of the previous models use GRFs from rigid surfaces and therefore do not 

consider the interaction between the occupants and the structure. The presence of humans 

upon a structure can alter the dynamic properties. In addition, the response of the structure 

can affect the movement and forces of the inhabitants. Until the late 1990s, the spectators on 

a structure were modelled only as an external mass in structural engineering applications. A 

study at the rugby union ground at Twickenham, however, revealed that people are dynamic 

entities that interact with the structural dynamics (Ellis and Ji, 1997). The response to impact 

excitation was measured whilst the stadium was empty and during a full capacity varsity match 

in 1991 (Figure 3.19). 
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Figure 3.19 An auto-spectra of the structural response at Twickenham stadium when a) empty and b) occupied 

(after Ellis and Ji, 1997). 
 
 
 

As shown in Figure 3.19 the presence of the crowd changed the single mode of the empty 

structure into a system with two modes. The two modal frequencies of the occupied stand lay 

either side of the natural frequency of the empty stand. The response magnitudes of the 

occupied stand were reduced, implying a higher damping ratio. It has been suggested that 

spectators have the potential to increase the overall damping ratio of a structure from a 

typical value of 2% to a value as high as 25% (Parkhouse and Ward, 2010). 

Sim (2006) simulated the response of a cantilever stand to passive crowds. For low natural 

frequency structures the passive crowd acted as additional mass increasing the structural 

response. The passive crowd on structures with higher natural frequencies acted as a damper, 

reducing the structural response. The frequency and structural response reduction factors are 

presented in Figure 3.20 for a seated passive crowd. 

 

Figure 3.20 a) The natural frequency reduction factor and the b) structural response reduction factor for different 
modal ratios and structural natural frequencies, where X is the maximum structural displacement. 
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Investigations into the dynamic properties of individuals (Sachse et al., 2002) confirmed that 

passive humans could not simply be modelled as an additional mass (Ellis and Ji, 1997). This is 

because the human body is a dynamic system with its own natural frequency and damping. 

The data in Table 3.6 demonstrates that the dynamic properties of passive crowds vary 

dramatically and are affected by posture. The presence of a passive crowd alters the structural 

properties. However, due to variation in the modal parameters between passive subjects (Wei 

and Griffin, 1998) the development of statistical approaches for modelling human-structural 

properties are required. 

Table 3.6 Variation in body properties between men and women and different postures (after Sim, 2006). 
 Undamped natural frequency (Hz) Damping ratio (%) 
 f1 f2 ζ1 ζ2 

 Mean STD Mean STD Mean STD Mean STD 

Seated men 5.1 0.58 9.3 2.01 31.1 10.11 43.7 43.41 
Seated women 5.3 1.06 9.2 2.85 38.5 14.90 31.7 11.63 
Seated children 5.2 5.16 15.9 24.20 37.5 39.23 31.2 36.35 
Standing men 5.8 0.54 12.6 2.34 33.1 7.21 45.9 17.21 

 

Ellis and Ji (1997) performed impact tests on a simple beam whilst an individual either stood, 

sat, walked or jumped upon it. Differing from the passive cases (standing or sitting), they found 

that an active subject, (i.e. a person walking or jumping) did not alter the dynamic properties 

(natural frequency and damping ratio) of the structure and therefore only acted as external 

exciter. This conclusion was however based on one subject on a flexible beam. In this 

configuration, there were instances when the person was not in contact with the structure and 

therefore could not affect the structure’s properties at those times. It is possible that the 

periods of contact between the subject and the structure were too short to affect the 

structural properties. In a crowd environment it is unlikely that at any instant in time the entire 

crowd will be airborne. Therefore an active crowd may cause the human-structure system’s 

properties to differ from those of the empty stand. 

A further concern is how the structural movement will affect the forces of the occupants. 

Modern stadia often feature cantilever stands, which are flexible and have the capacity to 
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affect GRFs (Dougill et al., 2006; Yao et al., 2006). In addition, it has been stated that the most 

severe loading cases occur when jumping on rigid ground (Kasperski and Niemann, 1993). To 

investigate the effect of surface stiffness experiments consisting of individuals jumping or 

bobbing on a flexible beam of varying frequency were conducted (Yao et al., 2006). It was 

observed that subjects struggled to coordinate their activity with the natural frequency of the 

structure when it was undergoing significant motion. As a consequence, the GRFs decreased 

significantly, this was referred to as force drop out. It was reasoned that force drop out was 

caused by the inability of the subjects to push off the structure due to its movement and the 

psychological fear that they would be flung from the structure. 

Harrison et al. (2008) recommended the use of V-notch curves for a given mass and damping 

ratio to reduce the DLFs of rigid GRFs at resonance frequencies (Figure 3.21). 

 
Figure 3.21 V-notch multiplication factor for the DLF to include the force drop out around resonance, for a specific 

mass and damping ratio (after Harrison et al., 2008) 
 
 
 

Experimental crowd DLFs from bobbing on flexible and rigid surfaces (Comer et al., 2013) are 

compared to those predicted using a model based on rigid GRFs (Figure 3.22). The rigid half 

cosine model (Parkhouse and Ewins, 2006) tends to underestimate the experimental DLFs as 

no crowd interaction is considered. The DLFs from rigid surfaces are greater than the 

equivalent flexible DLFs at the 2nd and 3rd harmonic, however both sets of DLFs are similar at 

the 1st harmonic. Force drop out cannot be investigated by this work, as the range of bobbing 

frequencies does not extend to the natural frequency of the empty structure. It is worth 
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emphasising that these are bobbing DLFs and are smaller, less likely to excite large structural 

responses which affect the subjects, than equivalent jumping DLFs. 

 

Figure 3.22 Measured DLFs for groups of a)5 and b) 9 people bobbing on rigid and flexible surfaces, compared to 
predicted DLFs (Parkhouse and Ewins, 2006) (after Comer et al., 2013). 

 
 
 

These experiments demonstrate that human behaviour and contact forces on perceivably 

moving structures are not directly comparable with those on rigid surfaces. Therefore 

consideration of the HSI is necessary to predict the vibration response of flexible structures 

accurately. 

The mass ratio of the crowd and structure affects the extent of HSI and the response of the 

structure (Harrison et al., 2008). Lighter, flexible structures occupied by a large crowd are often 

characterised by a high mass ratio. In this case, the structure is more vulnerable to the 

movements of the occupants and may vibrate excessively. Figure 3.23 shows that the contact 

forces differ with regard to mass ratio (Dougill et al., 2006). It can be seen that the DLFs 

measured on a rigid surface can both over and under-estimate the contact forces occurring on 

a flexible structure. The most extreme differences occur for crowds with a high human to 

structure mass ratio. The mass ratio and acceleration response do not increase at the same 

rate. It has been demonstrated that a 100 times increase in mass ratio corresponds to a 30 

times increase in acceleration (Dougill et al., 2006). From this it can be deduced that a 

perfectly synchronised crowd of N individuals would be unable to excite a response which is N 

times greater than the response from one individual. Previously, lack of crowd coordination 
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was credited with the un-proportional structural response to corresponding crowd size, 

however the response is also affected and limited by the mass ratio. 

 
Figure 3.23 The ratio of flexible contact forces to rigid contact forces (after Dougil et al., 2006). 

 
 
 

3.2.3 Combination Models 

As previously discussed the original method of modelling a crowd was as an external load upon 

a structure. With the increased understanding of HSI more authors are considering the effects 

of the human and structural movements upon one another. One of the shortfalls of the 

models presented in Section 3.2.1 is their reliance upon experimental GRFs collected using a 

force plate. A force plate is comprised of stiff, thin platform dynamometers or stiff, simple 

structural elements, and is therefore a rigid base, designed not to vibrate in reaction to human 

movements (Dougill et al., 2006). The data collected as the basis for these force models adopts 

the assumption that GRFs from rigid and flexible surface are equivalent, which is not always 

the case (Dougill et al., 2006; Yao et al., 2006). As a consequence new models that utilise GRFs 

measured on flexible surfaces, or that model human body dynamics directly are emerging. 

Comer et al. (2013) carried out crowd simulations using the time histories from groups of 5 to 

15 people bobbing on flexible and rigid surfaces. The model was based on the half-cosine 

model (Parkhouse and Ewins, 2006) reviewed in Section 3.2.1, however they included the 

power from the synchronised and stochastic components of crowd time histories (Figure 3.24). 
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When compared to measured crowd loads (white lines) Comer et al.’s synthesised load (solid 

black) was more conservative than the equivalent synchronised loading using crowd force time 

histories (dashed line). However, the synthesised load still underestimated the force for a 

significant number of cycles. As surface specific GRFs were used the model is a better 

reflection of real dynamic forces. Crowd interaction is included as the force time histories are 

from groups of people bobbing together. 

 

Figure 3.24 The normalised group loading of a bobbing crowd modelled using the equivalent synchronised load and 
both the synchronised and stochastic components, compared to normalised cycles of crowd load (after Comer et al., 

2013). 
 
 
 

Another proposed approach is a combined SDOF structure-jumper model with a varying mass 

(Nhleko et al., 2008), shown in Figure 3.25. The mass variation is dictated by a semi-sine 

function representing the impact and flight phases of the jumping subject. The methodology is 

an improvement on a previous step-function varying mass model (Ebrahimpour and Sack, 

1992). The latter approach is problematic as it implies that the mass transfer of the jumper 

onto the structure is instantaneous. 

At lower jumping frequencies large contact ratios and a variety of different shaped GRF 

profiles occur (Nhleko et al., 2008; Sim et al., 2008). To model jumping at low frequencies 

Nhleko et al. (2008) introduced, impulse shape factors λ1 and λ2. 
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Figure 3.25 Combined SDOF structure-jumper model with a varying mass, where c(t) is the structural damping 
coefficient, k(t) the structural stiffness and M(t) is the structural mass, all as functions of time. dM is a mass 

element of the jumper and U(t) is the velocity it is added to, or leaves the system. The input force in the system is 
f(t) (after Nhleko et al., 2008). 

 
 
 

They identified the impulse shape factors by fitting the model to experimental force profiles of 

five individuals jumping at different frequencies on a flexible beam (Nhleko et al., 2008). The 

shape factors are used alongside a specified contact ratio to determine the waveform of the 

GRF profile. Figure 3.26 shows that it is possible to achieve diverse shapes to better account 

for the GRF variation with regards to jumping frequency. However, within Section 2.2.2 it was 

demonstrated that the shape of the GRF when jumping at 1.5Hz is changeable between 

individuals (Sim et al., 2005). Therefore, one set of frequency dependant impulse shape factors 

is insufficient to represent the general population when jumping at a specific frequency. 

Further work to establish the distribution of λ1 and λ2 is required, this would account for inter-

subject variability. 

When using this model to predict dynamic loads underestimations of the experimental loads 

occurred. However, it should be noted that the factors are based on experimental studies on a 

flexible surface allowing consideration of the HSI. 

Another class of HSI models assumes that a person can be modelled as a DOF system within a 

combined human-structure model (Figure 3.27). The model allows the human and structural 
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properties to be modelled separately and combined to account for their interaction on each 

other (Sachse et al., 2002). 

 
Figure 3.26 The effect of impulse shape factors (λ1 and λ2) on the a) force profile and b) its dominant harmonic for a 

given jumping frequency (f J=1.5 Hz) and a contact ratio (α =0.725) (after Nhleko et al., 2008). 
 
 

 
Figure 3.27 A 2DOF human (h) structure (s) model (after Sachse et al., 2002). 

 
 

 
Sim (2006) adapted 2DOF passive models of individuals sitting and standing (Wei and Griffin, 

1998) and a 1DOF cantilever stand model to form a combined 5DOF crowd and stadium model. 

The crowd properties used were based on experimental observations of individuals subjected 

to vibrations (Wei and Griffin, 1998). Feedback loops were used to reflect the effect of the 

structural movements on the crowd forces and vice versa. Natural frequency and response 

reduction charts (Figure 3.20) were created from the simulations and can be used to aid 

quantification of structural responses. 
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For structures with natural frequencies up to 4Hz it was found that a SDOF system with altered 

Human-Structure properties was able to reproduce the natural frequencies and response 

reduction values, found using the 5DOF model (Sim, 2006). Above 4Hz a 3DOF model, including 

SDOF systems to represent the standing and sitting crowds and the stand provided a good fit. 

The 3DOF passive model can be used in conjunction with Monte Carlo simulations of the active 

crowd using the five parameter model described in Section 3.1.3 to form a complete crowd 

model. 

Dividing the crowd in this manner facilitates the application of different body properties to the 

active and passive crowd portions (Jones et al., 2011b). The overall damping coefficient 

benefits from the influence of the passive crowd, without ignoring the negative effects of the 

active crowd. However, it is worth noting that the simulated jumping forces are based on force 

time histories from individuals jumping on a rigid force plate, therefore no crowd interaction 

or HSI is included. Furthermore only individuals synchronised to the beat were considered in 

the pre-model analysis therefore representing a worst case high synchronisation scenario. 

A similar approach (Figure 3.28) is used in the current UK recommendations for stadium design 

(UK Working Group, 2008). A more detailed representation of the model for crowd bobbing is 

shown in Figure 3.29. The crowd induced bobbing forces are modelled as an internal driver 

that causes the body and structural motion, and is consequentially influenced by both 

structural and human vibration. Dougill et al. (2006) derived a relationship between the 

normalised internal (sinusoidal) driving force 𝐺(𝑡) and the normalised contact force𝐹(𝑡). The 

relationship reflected the modal mass of the system. The internal (driver) force was calibrated 

using GRFs collected from rigid surfaces (Parkhouse and Ewins, 2004, 2006). The natural 

frequency of the body unit was determined by assuming the peak contact and internal force 

ratio occurred when bobbing at the body’s natural frequency (Figure 3.30). The mean natural 

frequency and damping of individuals bobbing was found as 2.3Hz and 25%. 
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Figure 3.28 A 3DOF model representing passive (p) and active (a) occupants and the structure (s), where q represents 

displacement and G(t) the internal driving force (adapted from Jones et al., 2011b). 
 
 

 
Figure 3.29 2DOF crowd model (after Dougill et al., 2006). 

 
 

 
Figure 3.30 The relation between contact and internal force for different mass ratios (after Dougill et al., 2006). 

 
 

 
The internal force was assumed to be independent of surface. As both the internal and the 
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independent Fourier coefficients Gn that describe the internal force are known as Generated 

Load Factors (GLFs) and are essentially DLFs which consider the HSI (Table 3.7). 

Table 3.7 The GLF of the internal driver forces, where the human body properties are fn = 2.3Hz and ζ=25% ( after 
Dougill et al., 2006). 

 GLFs Gn 

Group size N 1
st

 harmonic 2
nd

 harmonic 3
rd

 harmonic 

5 0.286 0.095 0.033 
10 0.242 0.075 0.024 
20 0.217 0.064 0.018 
50 0.199 0.057 0.013 

100 0.194 0.055 0.010 
200 0.191 0.054 0.008 

 

Experimental contact forces from bobbing on flexible surfaces are compared to those 

predicted using the GLFs and the internal and contact force relationship in Figure 3.31. In 

general a good fit is seen, however the peak DLFs are overestimated for one person bobbing 

Figure 3.31a) and underestimated for groups bobbing Figure 3.31b) and c). It is likely the group 

DLFs are underestimated as the GLFs are based on individual force time histories, without 

group interaction. Force drop out can be seen in Figure 3.31a) at the 2nd harmonic. The DLFs of 

the 2nd harmonic approaching the natural frequency of the system are underestimated, 

however at the natural frequency and above it good DLF predictions are seen. Further 

comparisons between real GRFs would best identify whether the GRFs in Figure 3.31 are 

typical and amendments to the model are required. 

 
Figure 3.31 The predicted contact force DLFs (Dougill et al., 2006) compared to experimental DLFs from flexible 

surfaces for a) 1 person on a beam where fn=4Hz, ζ=4%, mass ratio (μ)=0.2 (Yao et al., 2006) b) 5 people on a 
flexible stadium simulator where fn=2.8Hz, ζ=3%, μ=0.22 (Comer et al., 2013) and c) 9 people on a flexible stadium 

simulator where fn=2.8Hz, ζ=3%, μ=0.4 (Comer et al., 2013). 
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This model is used in the latest UK recommendations (UK Working Group, 2008) to model the 

dynamic loads on structures where the lowest relevant natural frequency is below 6Hz. The UK 

recommendations do not consider structures with a natural frequency above 6Hz to be at risk 

from human induced dynamic loads. The scenarios presented in Table 3.3 are included in the 

recommendations to allow a variety of audience responses to be examined. The allowable 

response accelerations and displacements differ depending on the scenario (Table 3.8). The 

variations in audience response are predominantly due to the nature of the event, such as a 

classical concert, or a heavy metal gig. The procedure allows venues to be designed with 

consideration to the end use, improving on the ‘one size fits all’ approach seen in previous 

guidance. To further improve the accuracy of the model, additional crowd units of different 

properties, as seen in Table 3.8, can be added to represent a variety of crowd behaviours. This 

allows both passive and active portions of the crowd to be accounted for (Wei and Griffin, 

1998; Matsumoto and Griffin, 2003). Crowd units encompass all the individuals within the 

stands, the load from the crowd and the active crowd members are assumed to be uniformly 

distributed within each crowd unit. 

Table 3.8 The body mass properties for different scenarios from the Working Group’s UK recommendations for 
groups of 50 people, and the allowable RMS values for each scenario (adapted from UK Working Group, 2008 and 

Parkhouse and Ward, 2010). 

Crowd 
Event 

Scenario 
Allowable RMS 

value 
fn (Hz) ζ (%) 

GLFs 

n=1 n=2 n=3 

Seated Scenario 1  5 40%    
Mostly Seated Scenario 2 3%g 5 40% 0.12 0.015 0 

Active, mostly standing Scenario 3 7.5%g 2.3 25% 0.188 0.047 0.013 

Active, mostly standing Scenario 4 
20%g, 7mm 

displacement 
2.3 25% 0.375 0.095 0.026 

 

When using the crowd units, the body mass m is assumed to be 80kg per person, the stiffness 

of the unit k is therefore given by: 

 𝒌 = 𝟒𝝅𝟐𝑓𝑛
2𝒎𝑵 3.9 

where N is the number of individuals contained within the body unit. To reflect the lack of 

crowd synchronisation a coordination factor, C, is used as a multiplier to the periodic loading. 
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The factors used within the UK recommendations (UK Working Group, 2008) are frequency 

dependent and relate to the event scenario (Figure 3.12). 

To improve the internal driver model additional research should address the activity of 

jumping. The model would further benefit from the use of GRFs from individuals within a 

crowd. Additional GRF experiments upon flexible surfaces are required as limited force profiles 

are available. Inconsistencies occurred between the GRFs from the same bobbing individuals 

(Dougill et al., 2006), this highlights the variability in GRF and the necessity for the range and 

distribution of forces to be found. 

Jones et al. (2011a) aimed to verify the applicability of the UK recommendations (UK Working 

Group, 2008) by using them to calculate the response of a stand and comparing it to the 

empirical response. They found that the model reproduced the response at the middle of the 

stand well, while it underestimated the response at other locations (Figure 3.32). In the 

example considered the dominant mode was antisymmetric. Subsequently the maximum 

response occurred at the quarter-span points of the stand, resulting in an underestimation by 

the internal driver model. 

The presence of antisymmetric modes suggests the assumption of uniform crowd loading is 

not always invalid. It was observed from crowds within stadia that the people closest to the 

source of the music reacted before those in the middle of the stand, and the people at the 

back of the stand reacted last. The phase shifts between the audience were consistent with 

the time taken for the music to reach the various sections of the stand (Littler, 2002). The UK 

recommendations (UK Working Group, 2008) present the lack of coordination as a blanket 

factor, reducing the overall force magnitude. When this coincides with an antisymmetric 

mode, the modal forces may cancel out, preventing the simulated antisymmetric mode from 

excitation.  
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Figure 3.32 Measured and calculated responses using accelerometers and the UK Working Group (2008) model 

upon the City of Manchester Stadium during sporting events and concerts. MTVV is the maximum transient 
vibration value, calculated as peak 1 s RMS (after Jones et al., 2011a). 

 
 
 

The approaches of the other major stadia guidelines towards HSI are briefly reviewed, and 

their predicted responses compared to measured values. The Canadian Commentaries (NRC, 

2006) assume that low energy activities are typical for stadium environments as groups are 

unlikely to partake in prolonged coordinated jumping. Reduced load coefficients are utilised to 

incorporate the low energy activities, the lack of inter-subject coordination and HSI. The 

recommended DLFs (Table 3.9) are smaller than those of other guidelines and authors. In 

addition, a damping ratio of 6-12% is suggested to reflect the increased damping due to 

human occupation. Within this method the human-structure system is not directly modelled 

but its effects are taken into consideration through the DLFs and damping ratios. The low DLFs 

and high damping coefficients, published by the NRC, predict structural responses that are 

similar to the responses measured by Jones et al. (2011a) (Figure 3.33). This guidance also 

encourages stadia and grandstands design to avoid structural natural frequencies below 6Hz. 
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Table 3.9 The Canadian Code’s recommended loading functions (after NRC,2006). 

 Lively concert with seating (0.5m
2
/person) Lively concert no seating 

r1 0.25 0.40 
r2 0.05 0.15 
r3 0.00 0.00 

 
 

 
Figure 3.33 Measured and calculated responses using accelerometers and the Canadian Commentaries upon the 

City of Manchester Stadium during sporting events and concerts. MTVV is the maximum transient vibration value, 
calculated as peak 1 s RMS (after Jones et al., 2011a). 

 
 
 

The ISO (2007) guidance does not take HSI into account, as it aims to represent the worst case 

loading scenarios. The guidance predicts responses that are unlikely to be observed, but may 

occur once during the structures lifetime. The calculated structural responses in comparison to 

those measured by Jones et al. (2011a) are shown in Figure 3.34 and demonstrate this 

overestimation of loads. 
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Figure 3.34 Measured and calculated responses using accelerometers and the ISO 2007 approach upon the City of 

Manchester Stadium during sporting events and concerts. MTVV is the maximum transient vibration value, 
calculated as peak 1 s RMS (after Jones et al., 2011a). 

 
 
 

The guidelines which best reproduce in-situ crowds forces are the Canadian guidance and the 

UK recommendations. Both encourage the building of stadia with natural frequencies above 

6Hz. This recognises that higher harmonic components become less significant within a crowd, 

and that crowds are unlikely to synchronise at high frequencies. The Canadian guidance 

provides a simple and effective way of predicting the magnitude of the response, and was able 

to reproduce the force well in most sections of the stand studied by Jones et al. (2011a). 

However, the results are sensitive to the frequency of the stadia and the crowd mass which 

can reduce the precision. The UK recommendations are less sensitive to the input conditions 

and well replicate the forces in the middle of the stand. However, the process is more 

complicated than the Canadian guidance and the recommendations were unable to predict the 

response well at other locations on the stand. These checks were completed upon a single 

stand, therefore generalisation of conclusions should be made after further verification only. 
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3.3 Conclusion 

In this chapter, different approaches to model dynamic loading from jumping and bobbing 

crowds and individuals have been reviewed. A semi-sine model is a simple and effective way of 

representing the general features of the loading (Bachmann and Ammann, 1987). The model 

was utilised as a basis for representing crowds by many authors. Some incorporated a 

coordination factor to allow for non-perfect synchronisation between individuals (Hansen and 

Sørensen, 2002; Kasperski and Agu, 2005). The assumption of uniform loading and a blanket 

coordination factor simplifies the calculation of the crowd load. However, an alternative 

method should be sought to allow the various crowd distributions and differences in 

coordination to be considered. This would prevent antisymmetic modes being over looked. 

Other authors incorporated a phase lag between each individual’s GRF, to account for inter-

subject variability (Wilford, 2001; Ebrahimpour and Sack, 1989). Discrepencies were found in 

the literature with regard to the statistical distribution of the phase lags. Experiments using 

small groups were conducted to find the phase lags, then extrapolated to model a crowd. 

Experiments to determine the phase lags between individuals within larger groups, would 

better inform the engineering community. 

One of the main shortfalls of the semi-sine model is its periodic nature which assumes no 

intra-subject variability. A possible consequence of this assumption is the over or under 

estimation of the DLFs. The model is a good representation of jumping at mid to high 

frequencies (2-3.5Hz). A large variety of GRF shapes are seen at low frequency jumping, 

rendering the semi-sine representation inappropriate at certain frequencies. 

Attempts were made to adjust the shape of the GRF profile for different jumping frequencies 

(Nhleko et al., 2008; Racic, 2009). An intra-subject variability component was included in some 

models to tackle the variability of jumping frequency (Sim et al., 2008; Racic, 2009). The most 

successful method of recreating an individual jumping GRF is the many Gaussian model as 
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intra-subject variability is thoroughly considered. Unfortunately the model requires a pre-

prepared database of jumping GRFs which is currently unavailable in the public domain. 

Adapting the model to consider flexible surfaces or jumping within a group would be difficult, 

as a further database of GRFs would be required. 

Further efforts to models human loading were attempted using DOF systems. The integration 

of HSI and combined human-structure dynamic properties was seen within some models 

(Dougill et al., 2006). 

The current UK recommendations utilise a bobbing internal driver model (Dougill et al., 2006) 

that incorporates an internal force to account for the actions of the crowd on the structure. 

The model considers the human to structure mass ratio, and therefore allows the GRFs upon 

structures of varying flexibilities to be modelled. Crowd coordination factors can be 

incorporated to expand this model for crowd use. This approach addresses the deficit of 

flexible surface crowd models, but further work to validate the GRFs on flexible surfaces is 

required. In addition the model does not reflect the interaction between people and a uniform 

load distribution is assumed. Within the UK recommendations (UK Working Group, 2008) the 

crowd coordination factor is applied universally to the internal driver model, causing 

antisymmetic modes to be overlooked. 

Examining the contents of this review, it is apparent that experiments investigating the 

synchronisation within groups of people are required. This shortage is addressed in Chapter 7 

where the synchronisation from groups of 2, 4 and 8 subjects is quantified. 

More observations of real crowds would better allow the incorporation of human-to-human 

interaction into the structural design process. In addition more experiments upon on flexible 

surfaces would increase the understanding of the effect of surface and allow its incorporation 

within jumping models. To aid these goals a novel indirect group force measurement 

technique is proposed in Chapters 5 and 6.  
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Incorporating the intra-subject variability within force models should be more accessible. 

Studying the GRFs of different individuals and monitoring how the force time histories vary in 

Chapter 4, will improve understanding of intra-subject variation and its incorporation within 

models. 
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4 Characterising the Activities of Jumping and Bobbing 

The purpose of this chapter is to investigate the relationships between different characteristics 

of jumping and bobbing loads. Ground reaction forces (GRF) collected from a force plate are 

analysed to observe any patterns or trends. In addition the variation between test subjects (TS) 

known as the inter-subject variation (IESV), and the variation of a TS with themselves, known 

as the intra-subject variation (IASV) are observed for different properties of jumping and 

bobbing. A main focus of this Chapter is quantifying the IASV across a group of TSs as the IASV 

has often been over looked by previous authors and in force models. This insight will allow 

future models to reflect the realistic characteristics of individuals jumping or bobbing. This 

work will be partly published in a 2016 conference publication (Zivanovic et al., 2016). 

4.1 Experimental Procedure 

Eight test subjects (TS), four males and four females (Table 4.1), jumped and bobbed 

individually on an AMTI Biomechanics Force Platform OR6 (AMTI, 2007) which measured the 

GRF at a sampling rate of 1000Hz. A metronome was used to dictate the target jumping 

frequencies, 1, 2 and 3Hz for jumping and 1, 2, 3 and 4Hz for bobbing. The length of each trial 

was 20s, hence the minimum number of cycles recorded was approximately 20. In total 24 

trials of jumping and 32 trials of bobbing were recorded. In addition, the TSs’ displacements 

were recorded using a marker placed on the C7th vertebra (Figure 4.1 and Chapter 5), which 

was monitored at 200Hz using a VICON motion capture system (Oxford Metrics Group, 2007). 

The C7th vertebra was chosen as it was thought likely to track the holistic body movement 

well, without the additional localised movements which may be introduced if monitoring the 

head. Both the GRFs and the trajectories were filtered using a 5th order Butterworth filter. The 

cut-off frequency of the filter was 1Hz above the frequency of the 3rd forcing harmonic or 7Hz, 

whichever was the larger. 
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Table 4.1 TS physiological data. 

TS 1 2 3 4 5 6 7 8 

Sex M F M F F M M F 
Body mass (Kg) 83 70 83 65 66 85 73 68 

Height (m) 1.85 1.82 1.80 1.76 1.74 1.71 1.76 1.66 
BMI (Kgm

-2
) 24.4 21.1 25.8 21.0 21.8 29.1 23.6 24.8 

 

 
Figure 4.1 The human spine and vertebrae and the motion capture marker placement. 

 
 
 

4.2 Jumping Characterisation 

Within this section variations in the jumping frequency fJ, peak forces FJ,Peak, dynamic load 

factors (DLFs), impulses and the contact ratios CRJ of the jumping GRFs are discussed. The 

intra-subject variation (IASV), and the variation between the TSs (inter-subject variation IESV) 

are considered. In addition, the inter-intra-subject variation (EIASV) which is the variation of 

the IASV between the TSs is investigated. Physiological factors which may affect the peak 

forces are considered. The displacements of the jumps are analysed to investigate TS variation 

and the relationships between displacements and peak forces and TS height. If a variable is 

specific to a TS the subscript TS is used, the subscript O is used to denote an overall value 

considering all the TSs. To ensure comparable peak forces between the TSs, the GRFs within 

this chapter are normalised by the TS’s weight. 
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4.2.1 Variations in Jumping Frequency 

The average frequency and the frequency of each jump, calculated as the reciprocal value of 

the time elapsed between the points of zero force at the flight stage (Figure 4.2), were found. 

In Figure 4.3a the average TS jumping frequencies are plotted against target frequency. The 

overall mean jumping frequency and the mean ± 1 standard deviation (STD) from the 

population of 8TSs are plotted by square and circular marker respectively, this representation 

will be used throughout the chapter. 

 
Figure 4.2 A measured GRF from jumping with a single jumping cycle marked. 

 
 

 
Figure 4.3 a) The average TS jumping frequency and target frequency, the mean fJ,O (μfJ,O) and the mean ± 1STD 

(μfJ,O±σfJ,O) are approximated and the equations listed. b) The CoV of fJ,TS and average fJ,TS, the relationships between 
fJ and the mean CoV values (μfJ,O,CoV) and the mean ± 1STD (μfJ,O,CoV±σfJ,O,CoV) are aproximated. 

 
 
 

The distribution of the cycle-by-cycle jumping frequencies of each TS were investigated for 

each target frequency. The Anderson-Darling (AD) test was used to test for normality. 79.2% of 

the trials passed the 5% significance level of the test and therefore the majority of fJ,TS data can 
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be considered as normally distributed. The skewness and excess kurtosis of the distributions 

were investigated. For a normal distribution both values equal zero (Press et al., 1996), 

however the skewness and kurtosis of a distribution of size N is only considered significant if 

the value is twice as large as the standard error of skewness (SES) or the standard error of 

kurtosis (SEK) respectively (Lomax and Hahs-Vaughn, 2013): 

 𝑺𝑬𝑺 = √
𝟔𝑵(𝑵 − 𝟏)

(𝑵 − 𝟐)(𝑵 + 𝟏)(𝑵 + 𝟑)
 4.1 

 

𝑺𝑬𝑲 = 𝟐(𝑺𝑬𝑺)√
𝑵𝟐 − 𝟏

(𝑵 − 𝟑)(𝑵 + 𝟓)
 4.2 

87.5% of the trials had skewness values below 2*SES and 95.8% of trials had a kurtosis value 

less than 2*SEK. The low skewness and kurtosis values from the majority of trials are 

consistent with normally distributed data. 

The coefficient of variation (CoV) is a measure of each TS’s IASV and is calculated for each 

individual by normalising the STD of the data set by the average value (Figure 4.3b). The CoV 

facilitates the comparison of the data spread irrespective of the average value of the data set, 

therefore allowing trials of different jumping frequencies to be compared. The fJ,TS CoV values 

for each TS and target frequency are displayed in Table 4.2. The frequencies at which the 

largest and smallest CoV values occur vary between TSs, therefore there is not one target 

frequency which is solely responsible for the worst or best IASV. In general 1Hz and 3Hz have 

the highest IASV values, suggesting a lot of TS frequency variation. The lower CoV values at 2Hz 

suggest more consistency. 

The EIASV quantifies the range of IASV at each frequency, using the mean and the STD of the 

fJ,TS CoV values (Table 4.2). Both variables are needed to address the magnitude of the 

variation and the differences in variation between TSs. In Figure 4.3b the relationship between 

the EIASV and jumping frequency has been approximated by three 2nd order polynomials 

found using the linear least squares method (LLSM). On average the most TS variation (mean 

of fJ,TS CoV =0.043, Table 4.2) and the largest differences in EIASV between TSs occurred at 1Hz 
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(STD of fJ,TS CoV =0.019). Hence some TSs were able to perform the activity relatively 

consistently (CoV (IASV)=0.023) and others demonstrated more significant frequency variation 

between jumps (CoV (IASV)=0.079). On average the TSs’ jump frequencies were most 

consistent at 2Hz (mean of fJ,TS CoV =0.035, Table 4.2). At 2 and 3Hz the variation 

demonstrated by each TSs was most consistent with one another (STD of fJ,TS CoV =0.011, 

Table 4.2). 

Table 4.2 The average, STD and COV values of the fJ,TS. The EIASV (hatched background) and IESV (highlighted) are 
marked. The markers denote gender (* male,  female). 

 1Hz 2Hz 3Hz 
TS Ave (Hz)  STD (Hz)  COV (IASV) Ave (Hz)  STD (Hz)  COV (IASV) Ave (Hz)  STD (Hz)  COV (IASV) 

1 * 1.02 0.053 0.052 2.02 0.064 0.032 2.95 0.159 0.054 
2  0.95 0.075 0.079 1.79 0.060 0.034 2.64 0.081 0.031 
3 * 1.03 0.054 0.053 2.13 0.105 0.049 2.79 0.116 0.042 
4  1.00 0.025 0.025 2.01 0.100 0.050 3.01 0.088 0.029 
5  1.00 0.032 0.032 2.00 0.047 0.023 3.01 0.121 0.040 
6 * 0.97 0.048 0.049 2.28 0.091 0.040 3.16 0.178 0.056 
7 * 1.00 0.031 0.031 2.00 0.054 0.027 3.01 0.083 0.028 
8  1.00 0.023 0.023 2.01 0.042 0.021 3.01 0.129 0.043 

Mean (Hz) 1.00 0.043 0.043 2.03 0.070 0.035 2.95 0.119 0.040 
STD (Hz) 0.03 0.018 0.019 0.14 0.025 0.011 0.16 0.036 0.011 

CoV 0.03 0.421 0.440 0.07 0.351 0.321 0.05 0.299 0.266 

Single fJ  Lowest 
(Hz) 

Largest 
(Hz) 

Range  
(%fJ) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range 
(%fJ) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range  
(%fJ) 

0.83 1.14 31% 1.67 2.43 38% 2.43 3.52 36% 

 

The IESV was measured using the CoV of the average fJ,TS values. The IESV was smallest at 1Hz 

(0.03, Table 4.2) therefore, although the most EIASV occurred, the average jumping 

frequencies of the TSs were most consistent with one another. The greatest IESV occurred at 

2Hz (0.07, Table 4.2). The TSs were able to maintaining their jumping frequency well, however 

were targeting slightly different frequencies from one another hence the large average 

frequency variations between TSs. 

At 1Hz all TSs were on average within 5% of the target frequency, consistent with previous 

authors who observed the greatest TS synchronisation at 1Hz (Sim et al., 2005). The number of 

TSs achieving the target frequency ± 5% reduced to 5/8 at both 2 and 3Hz (Table 4.2). The TSs 

whose frequencies were within ±5% were mostly consistent between the different target 

frequencies. This indicates that TSs are likely to be consistently poor or consistently good at 
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synchronising with a beat. Of those TSs with average frequencies outside of 5% more TSs 

underestimated the target frequency at 3Hz (2/8), whereas more overestimations were seen 

at 2Hz (2/8). There was little consistency of TSs over or underestimating the frequency. It is 

worth noting that the number of TSs achieving the exact target frequency reduced with 

increasing frequency. The implications from these observations are that jumping at the target 

frequency is more achievable at 1Hz. Synchronisation with the target beat is as likely at 3Hz as 

it is at 2Hz, consistent with Sim et al. (2005). Furthermore, frequency overestimations are 

more likely at 2Hz, and underestimations more common at 3Hz. 

The TSs’ jumping frequencies were analysed by gender in Table 4.3. The STDs from the female 

TSs were on average smaller, suggesting greater ability in maintaining a specific jumping 

frequency. At 1 and 2Hz male TSs tended to jump faster than the target frequency, whereas on 

average female TSs were slower (Table 4.3). At 3Hz both genders on average jumped below 

the target frequency. 

Table 4.3 The mean and STD of the frequency normalised by target frequency comparing male and female TSs  

 1Hz 2Hz 3Hz 

 
Mean 

normalised 
average 

Mean 
normalised 

STD 

Mean 
normalised 

average 

Mean 
normalised 

STD 

Mean 
normalised 

average 

Mean 
normalised 

STD 

Mean  1.00 0.043 1.02 0.035 0.98 0.040 
Mean Male 1.01 0.047 1.05 0.039 0.99 0.045 

Mean Female 0.99 0.039 0.98 0.031 0.97 0.035 

 

4.2.2 Variations in the Peak Force 

The average peak forces for each TS are shown in Figure 4.4a. On average the smallest peak 

forces occur at 1Hz and the largest at 2Hz. The lines of best fit were approximated using a 2nd 

order polynomial and LLSM. 

An AD test revealed that the peak forces from 83% of the trials were normally distributed. All 

the trials had skewness values below 2*SES, consistent with normally distributed data. 

However, only 45.8% of trials had an excess kurtosis value less than 2*SEK. The kurtosis is not 
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the most reliable test for normality (Press et al., 1996) and is sensitive to sample size which 

may have influenced the values. 

 
Figure 4.4 a) The average peak forces and jumping frequency, the mean FJ,Peak,O (μJ,Peak,O) and the mean ± 1STD 

(μJ,Peak,O ±σJ,Peak,O) are approximated and the equations listed. b) The CoV of FJ,Peak,TS and average fJ,TS, the 
relationships between fJ and the mean CoV values (μJ,Peak,O,CoV) and the mean ± 1STD (μJ,Peak,O,CoV ±σJ,Peak,O,CoV) are 

aproximated. 
 
 
 

The smallest values of IASV (CoV of FJ,Peak,TS) occurred at 1Hz, indicating consistent TS peak 

forces. The largest values were split between 2 and 3Hz suggesting more jump-by-jump peak 

variation at these frequencies. On average the most peak force EIASV (mean of FJ,Peak,TS CoV 

=0.052, Table 4.4) and the largest differences in EIASV between TSs (STD of FJ,Peak,TS CoV 

=0.023) occurred at 2Hz. The spread of TS peak forces can be visualised by the range of CoV 

values in Figure 4.4b. The smallest EIASV occurred at 1Hz, the mean and STD of the FJ,Peak,TS 

CoV values were 0.036 and 0.009 respectively. The TSs maintained consistent peak forces 

within their own jumping trials, and this variation was consistent between TSs. 

The IESV was assessed using the CoV of the average FJ,Peak,TS. The least IESV occurred at 3Hz 

(0.07, Table 4.4), indicating the most consistent average peak forces between TSs. The largest 

IESV, 0.14, occurred at 2Hz, double the value seen at 3Hz. In addition a wider range of peak 

forces (2.07) at 2Hz was seen. These factors both demonstrate a greater spread of peak forces 

between TSs at 2Hz, a frequency deemed easy to jump at (Ginty et al., 2001). This is likely 

because 2Hz is a mid-frequency and a range of jumping actions, and therefore peak forces are 
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possible. There is enough time allocated for each jump for some degree of personal preference 

to affect the force time history. TSs have the ability to perform both high and low force jumps. 

Table 4.4 The average, STD and COV values of the FJ,Peak,TS. The EIASV (hatched background) and IESV (highlighted) 
are marked. The markers denote gender (* male,  female). 

 1Hz 2Hz 3Hz 
TS Ave STD COV (IASV) Ave STD COV (IASV) Ave STD COV (IASV) 

1 * 2.96 0.079 0.027 3.62 0.127 0.035 3.16 0.150 0.048 
2  2.65 0.078 0.029 3.21 0.175 0.055 3.53 0.151 0.043 
3 * 2.70 0.112 0.041 3.31 0.327 0.099 3.44 0.228 0.066 
4  2.47 0.078 0.032 2.51 0.170 0.068 3.14 0.141 0.045 
5  2.63 0.118 0.045 2.95 0.133 0.045 3.07 0.129 0.042 
6 * 3.14 0.103 0.033 3.58 0.121 0.034 2.80 0.106 0.038 
7 * 3.13 0.091 0.029 3.99 0.111 0.028 3.25 0.107 0.033 
8  2.55 0.130 0.051 2.94 0.168 0.057 3.36 0.206 0.061 

Mean 2.78 0.099 0.036 3.26 0.166 0.052 3.22 0.152 0.047 
STD 0.26 0.020 0.009 0.47 0.069 0.023 0.23 0.044 0.011 
CoV 0.09 0.205 0.245 0.14 0.417 0.440 0.07 0.288 0.241 

Peak 
force 

Lowest Largest  Δ Lowest Largest  Δ Lowest Largest  Δ 
2.30 3.31 1.01 2.15 4.22 2.07 2.58 3.88 1.30 

 

At 1 and 2Hz larger peak forces were seen from the male TSs (*) than from the female TSs ( ) 

(Figure 4.4a). This is potentially due to physiological gender differences, as men are typically 

larger and more muscular. At 1Hz the mean value of the peak force from female TSs was 2.57 

compared to 2.98 from male TSs (Table 4.5). The discrepancies were greatest at 2Hz where the 

female and male mean peak values were 2.90 and 3.63 respectively. However, there was little 

gender based distinction between the peak forces at the highest jumping frequency of 3Hz. 

There was no obvious link between consistency of peak force and gender (Table 4.5). 

Table 4.5 The means and STDs for the normalised peak forces comparing male and female TSs. 

 1Hz 2Hz 3Hz 
 Mean STD Mean STD Mean STD 

Mean 2.78 0.099 3.26 0.166 3.22 0.152 
Mean Male 2.98 0.096 3.63 0.172 3.16 0.148 

Mean Female 2.57 0.101 2.90 0.161 3.27 0.157 

 

These findings indicate that the magnitudes of the peak forces are not solely the product of TS 

weight, differences in physiology can affect them. 
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4.2.3 Other Physiological Factors 

Physiological factors that may affect the peak forces such as gender, weight and height are 

investigated within this section. Figure 4.5a, b and c shows the relationship between the 

average peak force and TS weight at each target frequency. At 1 and 2Hz there is a suggestion 

of a weak positive correlation between the TSs’ weight and FJ,Peak,TS. If the correlation holds 

true for a larger sample size it is likely that heavier TSs have higher normalised peak forces due 

to larger and stronger leg muscles facilitating greater push off forces. However, this may only 

be the case in healthy and not obese TSs. At 3Hz there is potentially a positive correlation 

amongst the female TS, the correlation is strongest amongst the female test population at all 

frequencies. It is also worth noting that the weight range of the female TSs was considerably 

smaller (65kg-70kg) than that of the male TSs (73kg-85kg). 

 
Figure 4.5 Average peak jumping force against TS weight at a)1Hz, b) 2Hz and c) 3Hz. 

 
 
 

The TSs’ heights are compared to the average peak forces in Figure 4.6a, b, c. At 1 and 2Hz 

(Figure 4.6a and b) there is no obvious correlation, however at 3Hz the correlation appears 

positive (Figure 4.6c). Therefore, at 3Hz taller TSs may naturally jump higher and 

consequentially generate larger landing forces. At lower jumping frequencies personal choice 

is likely to influence the jumping characteristics. The reduced jump consideration time at 3Hz 

may have increased the significance of the TS height. 

It would appear that weight influences the peak forces at 1 and 2Hz, whereas at 3Hz TS height 

is the dominant factor. The peak forces of women are more affected by TS weight, even at 

3Hz. To understand why the effect of TS weight is more significant amongst females, and to 
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confirm the correlation between peak force and weight and height, further experiments with 

larger sample sizes are recommended. 

 
Figure 4.6 Average peak jumping force against TS height at a)1Hz, b) 2Hz and c) 3Hz. 

 
 
 

4.2.4 DLFs from Jumping 

The DLFs were calculated for harmonic frequencies up to the larger of 6Hz or three harmonics. 

A 5th order band-pass Butterworth filter was used to extract each harmonic between the 

average harmonic frequency ± 3STD or fJ ± 0.5fJ, which ever was smaller. The low and high cut-

off frequencies were set to ensure that 99.7% of the frequency components contributing to 

the DLF at each harmonic were included, but also to prevent the overlap of harmonic 

components. The peak forces were found from the filtered force time histories and used to 

calculate the jump-by-jump DLFs. The average DLFs and the overall mean and mean ± 1STD are 

shown in Figure 4.7 a and b respectively. 

The largest DLF values occurred at the 1st harmonics of 2 and 3Hz jumping (1.27-1.63). The 

DLFs from the 1st harmonic of 1Hz jumping are smaller, due to the separate landing and 

launching impulses (Section 2.2.2), which caused the 2nd harmonic (2Hz) to dominant. As a 

result the even harmonic DLFs tend to be larger than the odd, except at 6Hz. By separating the 

force spectra into the odd and even constituents, separate relationships (dashed lines) 

between the harmonics of 1Hz can be observed in Figure 4.7a. The DLF values at the 

harmonics of 2 and 3Hz were very similar and decreased with increasing harmonic number 

(Figure 4.7b). 
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Figure 4.7 a) The DLFs values b) The DLFs of the harmonics and the mean and ± 1STD at each activity frequency. c) 

The CoV of the DLF, the relationships between fJ and the mean CoV values (μJ,DLF,O,CoV) and the mean ± 1STD 
(μJ,DLF,O,CoV ±σJ,DLF,O,CoV) are aproximated. *The even harmonics of 1Hz, ** the odd harmonics of 1Hz. 

 
 
 

On a jump-by-jump basis only 25% of the DLFs from the 1st harmonic of the trials passed a 5% 

AD test for normality. Considering all the included harmonics 20.8% of the trials passed the AD 

test. 23.9% of the harmonically split trials had a skewness value less than 2*SES, 43.5% had an 

excess kurtosis value below 2*SEK. All these factors indicate that the jump-by-jump DLFs of the 

included harmonics are not normally distributed. 

The values of DLF IASV (CoV of DLF) were plotted on Figure 4.7c. The CoV values tended to 

increase with harmonic number. The smallest values of IASV were seen at the 1st and 2nd 

harmonics of the trials (Table 4.6). The largest values indicating decreased individual DLF 

consistency occurred at the 3rd harmonic of 1 and 2Hz jumping, demonstrated by the wide 

data spread on Figure 4.7c. The most EIASV of DLF (mean of DLF CoV =0.454) occurred at the 

3rd harmonic of 1Hz, hence the TSs exhibited a wide range of DLF values. The largest 

differences in EIASV between TSs occurred at the 3rd harmonic of 2Hz (STD of DLF CoV =0.255), 

where the range of DLF values varied most between TSs. The smallest EIASV was at 1st 
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harmonic of 3Hz (mean of DLF CoV =0.131), the TSs’ EIASV were most similar to one another at 

the 2nd harmonic of 1Hz (STD of DLF CoV =0.051). 

Table 4.6 The average, STD and COV values of the DLFs from jumping. The EIASV (hatched background) and IESV 
(highlighted) are marked. The markers denote gender (* male,  female). 

1Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 6th Harmonic 

TS Ave STD 
COV 

(IASV)  
Ave STD 

COV 
(IASV)  

Ave STD 
COV 

(IASV)  
Ave STD 

COV 
(IASV)  

Ave STD 
COV 

(IASV)  
Ave STD 

COV 
(IASV)  

1* 0.31 0.039 0.126 1.03 0.156 0.151 0.18 0.080 0.445 0.46 0.107 0.233 0.18 0.079 0.451 0.10 0.034 0.330 
2  0.23 0.032 0.137 0.97 0.162 0.167 0.54 0.225 0.415 0.36 0.089 0.250 0.16 0.063 0.404 0.07 0.024 0.359 
3* 0.17 0.042 0.247 0.74 0.153 0.208 0.67 0.141 0.209 0.34 0.131 0.382 0.30 0.106 0.354 0.19 0.065 0.348 
4  0.24 0.042 0.175 0.96 0.071 0.074 0.25 0.030 0.120 0.34 0.067 0.194 0.21 0.031 0.147 0.06 0.027 0.429 
5  0.26 0.067 0.260 1.01 0.221 0.219 0.14 0.066 0.485 0.37 0.044 0.120 0.14 0.044 0.327 0.07 0.026 0.368 
6* 0.35 0.063 0.182 1.14 0.117 0.102 0.23 0.144 0.623 0.64 0.151 0.237 0.19 0.086 0.449 0.19 0.062 0.332 
7* 0.33 0.080 0.241 1.09 0.121 0.110 0.16 0.141 0.867 0.57 0.079 0.139 0.17 0.082 0.474 0.17 0.060 0.352 
8  0.27 0.089 0.335 1.01 0.175 0.173 0.15 0.070 0.469 0.37 0.045 0.123 0.15 0.051 0.346 0.09 0.037 0.403 

Ave 0.27 0.06 0.213 0.99 0.15 0.150 0.29 0.11 0.454 0.43 0.09 0.210 0.19 0.07 0.369 0.12 0.04 0.365 
STD 0.06 0.02 0.070 0.12 0.04 0.051 0.20 0.06 0.231 0.11 0.04 0.088 0.05 0.03 0.105 0.06 0.02 0.035 
CoV 0.22   0.370 0.331 0.12 0.304 0.342 0.70 0.554 0.509 0.26 0.433 0.417 0.28 0.368 0.284 0.47 0.421 0.095 

2Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 

TS Ave STD 
COV 

 (IASV)  
Ave STD 

COV 
 (IASV)  

Ave STD 
COV 

 (IASV) 

1 * 1.49 0.360 0.241 0.76 0.132 0.173 0.18 0.045 0.250 
2  1.56 0.093 0.060 0.63 0.052 0.081 0.08 0.037 0.480 
3 * 1.50 0.182 0.121 0.65 0.164 0.253 0.13 0.098 0.776 
4  1.27 0.236 0.186 0.28 0.064 0.231 0.12 0.025 0.216 
5  1.39 0.161 0.115 0.46 0.100 0.215 0.05 0.037 0.762 
6 * 1.60 0.180 0.112 0.81 0.105 0.130 0.19 0.042 0.223 
7 * 1.62 0.289 0.179 0.98 0.086 0.088 0.34 0.050 0.149 
8  1.39 0.364 0.261 0.50 0.047 0.094 0.13 0.032 0.239 

Ave 1.48 0.233 0.159 0.63 0.094 0.158 0.15 0.046 0.387 
STD 0.12 0.097 0.069 0.22 0.040 0.069 0.09 0.023 0.255 
CoV 0.08 0.418 0.435 0.35 0.432 0.437 0.58 0.492 0.658 

3Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 

TS Ave STD 
COV 

 (IASV) 
Ave STD 

COV 
(IASV) 

Ave STD 
COV 

(IASV) 

1 * 1.45 0.212 0.146 0.53 0.145 0.273 0.05 0.024 0.456 
2  1.63 0.094 0.057 0.77 0.093 0.121 0.14 0.045 0.328 
3 * 1.52 0.225 0.148 0.71 0.094 0.132 0.19 0.077 0.404 
4  1.43 0.069 0.048 0.54 0.093 0.172 0.13 0.039 0.294 
5  1.36 0.290 0.213 0.53 0.053 0.101 0.07 0.021 0.311 
6 * 1.40 0.148 0.106 0.37 0.101 0.271 0.05 0.017 0.342 
7 * 1.49 0.237 0.159 0.61 0.079 0.129 0.10 0.038 0.370 
8  1.44 0.241 0.167 0.62 0.106 0.171 0.20 0.057 0.281 

Ave 1.47 0.189 0.131 0.59 0.096 0.171 0.12 0.040 0.348 
STD 0.08 0.078 0.056 0.12 0.026 0.066 0.06 0.020 0.059 
CoV 0.06 0.410 0.431 0.21 0.268 0.388 0.50 0.502 0.170 

Average 
DLFs 

1
st

 harmonic all frequencies 2nd harmonic all frequencies 3rd harmonic all frequencies 
Lowest  Largest  Range  Lowest  Largest Range Lowest  Largest Range  

0.17 1.63  1.46 0.28  1.14 0.87 0.05  0.67 0.63 

 



Chapter 4. Characterising the Activities of Jumping and Bobbing  

92 

The DLF IESV between TSs was least at the 1st harmonics of 2 and 3Hz, the CoV values of the 

average TS DLFs were 0.076 and 0.053 respectively (Table 4.6). The largest variation occurred 

at the 3rd harmonic of 1Hz (0.652) where two TSs had significantly greater DLFs (above 0.5) 

than the other TSs. In general, the IESV increased with harmonic number, except at 1Hz. 

Variations in jumping frequency were more influential on the magnitude of the DLFs at the 

higher harmonics. 

The DLFs from males TSs at the harmonics of 1 and 2Hz tend to be larger than those from their 

female counterparts (Table 4.7). At 3Hz there is no obvious gender distinction. The larger DLFs 

are consistent with the higher peak forces associated with male TSs (Table 4.5). 

Table 4.7 The means and STDs of the 1
st

 harmonic DLFs comparing male and female TSs  

 1Hz Mean 1Hz STD 2Hz Mean 2Hz STD 3Hz Mean 3Hz STD 

Mean  0.270 0.057 1.478 0.233 1.465 0.189 
Mean Male 0.290 0.056 1.553 0.253 1.463 0.205 

Mean Female  0.249 0.058 1.403 0.213 1.468 0.173 

 

4.2.5 Variations in Contact Ratios 

Contact ratios are used by some authors as a key input in defining the jumping frequency and 

force, as described in Section 2.2.2 (Bachmann and Ammann, 1987; BRE, 2004). Therefore to 

critically evaluate these approaches the relationships between contact ratio and jumping 

frequency and peak force is investigated. 

The peak force and corresponding contact ratio of each jump were plotted in Figure 4.8 a-c. 

The correlation between the variables is negative indicating that small contact ratios 

correspond to large peak forces. This is consistent with the conservation of energy whilst 

jumping (Bachmann and Ammann, 1987) described in Section 2.2.2. The correlation is 

strongest at 1 and 2Hz. At 3Hz the gradient is shallower and the spread is greater (Figure 4.8c), 

consistent with the reduced correlation observed at higher frequencies (Sim et al., 2008). 
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At 1 and 2Hz from Figure 4.8 a and b, women typically have larger contact ratios than men. 

This finding agrees with the lower forces from female TSs (Figure 4.4a). This gender distinction 

is lost at 3Hz. 

The mean peak forces and the mean ± 1STD were plotted for each contact ratio in steps of 

0.02 (dash-dot line, and dashed line respectively). The mean STD was 0.175, the greatest STDs 

occurred between contact ratios of 0.63 and 0.78. A 2nd order polynomial line of best fit 

(μJ,Peak,O,sim) was plotted between the two variables (Figure 4.8d). The line of best fit matches 

the data well especially the maximum peak forces seen at low contact ratios. Some peak forces 

between contact ratios of 0.700 and 0.775 were underestimated, fortunately these were not 

the most severe. 

 
Figure 4.8 The contact ratio of each jump against the peak jumping force for a) 1Hz, b) 2Hz, c) 3Hz d) all frequencies. 

The mean FPeak,O and the mean ± 1STD at each contact ratio in steps of 0.02 are plotted via the dash-dot line and 

dashed lines respectively. The mean FJ,Peak,O is aproximated by a 2
nd

 order polynomial fit μJ,Peak,O,sim. 
 
 
 

In Figure 4.9a the average TS contact ratios were plotted against the average jumping 

frequencies. The overall mean contact ratio and the mean ± 1STD were plotted for each 

frequency and approximated by lines of best fit. The contact ratios at 1Hz were higher than at 

2 and 3Hz, where similar values are seen. The similarities at 2 and 3Hz suggest that contrary to 

the work of Bachmann and Ammann (1987) the jumping frequency does not necessarily 

dictate the contact ratio. 
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The contact ratios from 70.8% of the trials passed the AD test for normality. 75% of the trials 

had a skewness value below 2*SES and 95.8% of the trials had an excess kurtosis value less 

than 2*SEK. These findings suggest the contact ratios of individuals are normally distributed, 

which is consistent with the approach of Sim et al. (2008). 

 
Figure 4.9a) The average contact ratios and jumping frequency, the mean CRJ,O (μJ,CR,O) and the mean ± 1STD (μJ,CR,O 

±σJ,CR,O) are approximated and the equations listed. b) The CoV of CRJ,TS and average fJ,TS, the relationships between 
fJ and the mean CoV values (μJ,CR,O,CoV) and the mean ± 1STD (μJ,CR,O,CoV ±σJ,CR,O,CoV) are aproximated. 

 
 
 

The CoV of the contact ratios tends to increase with target frequency and are plotted on Figure 

4.9b. The smallest values of each TS occurred at 1Hz and hence the minimum IASV. The largest 

CoV values were split between 2 and 3Hz at a ratio of 3:5. Consistent with the low values of 

IASV, the magnitude and range of EIASV was significantly smaller at 1Hz than at the other 
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possible when jumping at this frequency. The lowest contact ratios occur at 2Hz, consistent 

with the largest peak forces seen. 

Table 4.8 The average, STD and COV values of the contact ratios. The EIASV (hatched background) and IESV 
(highlighted) are marked. The markers denote gender (* male,  female). 

 1Hz 2Hz 3Hz 
TS Ave STD COV 

(IASV) 
Ave STD COV 

(IASV) 
Ave STD COV 

(IASV) 

1 * 0.764 0.013 0.016 0.534 0.025 0.046 0.593 0.033 0.055 
2  0.820 0.018 0.022 0.571 0.019 0.033 0.543 0.026 0.047 
3 * 0.806 0.017 0.021 0.563 0.035 0.062 0.575 0.035 0.060 
4  0.801 0.010 0.013 0.666 0.046 0.069 0.644 0.036 0.056 
5  0.793 0.012 0.015 0.624 0.022 0.035 0.622 0.036 0.058 
6 * 0.739 0.026 0.035 0.535 0.020 0.038 0.672 0.027 0.040 
7 * 0.744 0.013 0.017 0.476 0.023 0.049 0.590 0.023 0.039 
8  0.796 0.015 0.019 0.606 0.025 0.041 0.623 0.054 0.086 

Mean 0.783 0.015 0.020 0.572 0.027 0.047 0.608 0.034 0.055 
STD 0.030 0.005 0.007 0.060 0.009 0.013 0.041 0.010 0.015 
CoV 0.038 0.319 0.342 0.104 0.338 0.276 0.067 0.285 0.270 

Contact  
ratio 

Lowest largest Δ Lowest largest Δ Lowest largest Δ 
0.700 0.862 0.162 0.420 0.811 0.391 0.485 0.751 0.265 

95
th

 
Percentiles 

2.5% 97.5% Δ 2.5% 97.5% Δ 2.5% 97.5% Δ 
0.717 0.843 0.127 0.461 0.699 0.238 0.511 0.717 0.207 

 

All the contact ratios observed were above 0.4 (Table 4.8), and 95.2% were above 0.5, similar 

to previous findings (Sim et al., 2008; Yao et al., 2002). The 95th percentiles for each frequency 

are displayed in Table 4.8. 97.5% of the 1Hz contact ratios are above 0.717, this value reduces 

to 0.461 at 2Hz and 0.511 at 3Hz. Hence very low contact ratios only occur at frequencies 

around 2Hz. These experiments therefore support Sim et al.’s statement that the contact 

ratios (0.25-0.67) featured in BSI (1996) are too low. 

It can be concluded that there is an inverse relationship between contact ratio and peak force, 

which varies with jumping frequency. Contact ratios are not necessarily specific to a jumping 

frequency. However, very high contact ratios are mostly associated with low frequency 

jumping, and very low contact ratios with jumping at frequencies around 2Hz. 

4.2.6 Force Impulse 

The relationship between the contact ratios and peak forces mean it is likely that the jump 

frequency influences the area under the force peak (impulse). Figure 4.10a-c shows the weight 
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and frequency normalised impulse against the frequency of each jump for each target 

frequency. As the jumping frequency increases the normalised impulse decreases. 

 
Figure 4.10 The normalised impulse against the jump frequency a) 1Hz, b) 2Hz, c) 3Hz. d) The average TSs normalised 

impulse and average jumping frequency, the overall mean normalised impulse (μJ,I,O) and the mean ± 1STD (μJ,I,O 
±σJ,I,O) are approximated and the equations listed. e) The CoV of the normalised impulses and average fJ,TS, the 

relationship between fJ and the mean CoV values (μJ,I,O,CoV), the mean ± 1STD (μJ,I,O,CoV ±σJ,I,O,CoV) are aproximated. 
 
 
 

In Figure 4.10 a-c there is a clear TS specific negative trend at each frequency. This is consistent 

with the positive linear relationship between the weight normalised impulse and the period 

found by Racic and Pavic (2010). Their equivalent jumping frequency, and frequency 

normalised impulse relationship has been plotted (dashed dot line) on Figure 4.10d. As a 

comparison the average normalised impulses and the mean ± 1STD are plotted and 

approximated by 2nd order polynomial lines of best fit (solid and dashed respectively). Racic 

and Pavic’s relationship accounts well for the normalised impulses at 2 and 3Hz, however at 

1Hz the impulses are underestimated. 

The normality of the distribution of the jump-by jump impulses was investigated, 70.8% of 

trials passed a 5% AD test. Furthermore 87.5% of trials had a skewness value below 2*SES, and 

91.6% had an excess kurtosis value less than 2*KES. These factors all indicate that the jumping 

impulses are distributed normally. 
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Table 4.9 The average, STD and COV values of the normalised impulses. The EIASV (hatched background) and IESV 
(highlighted) are marked. The markers denote gender (* male,  female). 

 1Hz 2Hz 3Hz 
TS Ave STD COV (IASV) Ave STD COV (IASV) Ave  STD  COV (IASV) 

1 * 1.19 0.123 0.104 0.30 0.019 0.063 0.14 0.016 0.117 
2  1.17 0.183 0.156 0.33 0.020 0.060 0.15 0.010 0.066 
3 * 1.17 0.121 0.103 0.27 0.027 0.100 0.16 0.012 0.076 
4  0.96 0.047 0.049 0.24 0.019 0.078 0.11 0.005 0.052 
5  0.96 0.058 0.060 0.24 0.011 0.044 0.11 0.008 0.078 
6 * 1.34 0.120 0.090 0.24 0.020 0.081 0.13 0.014 0.108 
7 * 1.08 0.069 0.064 0.27 0.014 0.052 0.12 0.006 0.053 
8  1.01 0.051 0.050 0.25 0.010 0.040 0.11 0.009 0.079 

Mean 1.11 0.096 0.084 0.27 0.017 0.065 0.13 0.010 0.079 
STD 0.132 0.048 0.036 0.032 0.006 0.020 0.020 0.004 0.024 
CoV 0.118 0.498 0.432 0.120 0.321 0.316 0.156 0.367 0.300 

Impulse 
Lowest Largest Δ Lowest Largest Δ Lowest Largest Δ 
0.908 1.382 0.474 0.431 0.652 0.221 0.292 0.508 0.216 

 

The IASV of the impulses (CoV of impulses) are plotted on Figure 4.10e. The smallest values 

and therefore the most TS consistency was seen at 2Hz (Table 4.9). The largest values 

indicating a wider range of TS impulses occurred at 1 and 3Hz jumping. The most impulse 

EIASV (mean of the CoV of the impulses =0.084) and the greatest TS variation in EIASV (STD of 

the CoV of the impulses =0.036) occurred at 1Hz. Hence most TS exhibited a wide range of 

impulse values, and the spread of values differed between TSs (Figure 4.10e). The smallest 

values of EIASV occurred at 2Hz. 

The greatest IESV was seen at the jumping frequency of 3Hz (CoV of the average impulses 

=0.156, Table 4.9), the average impulses values differed most between the individuals. The 

least IESV occurred at 1Hz (0.118), therefore although each TSs values varied, the values were 

similar amongst TSs. 

The impulses from female TSs tended to be smaller than those from males at the same 

frequency. This is consistent with the smaller normalised peak forces and larger contact ratios 

from female TSs. There is less distinction in the impulses of each TSs, and between genders at 

3Hz. However differences in impulse still occur between men and women unlike the gender-

based discrepancies at 3Hz in peak force and contact ratio. Impulse is a function of both peak 
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force and flight time, the continued discrepancies suggest subtle differences in the variables 

based on gender, which are emphasised in the impulse calculation. 

4.2.7 The Peak Displacements 

The vertical displacements of the TS’s body were monitored using a motion capture system 

(Oxford Metrics Group, 2007) to track a marker on the C7th vertebra (Figure 4.1). The 

maximum jump displacements were calculated on a jump-by-jump basis as the maximum 

elevation of the marker above the elevation of the marker when standing. The jump-by-jump 

peak force and maximum displacement of each TS are plotted in Figure 4.11a, the average 

peak forces and maximum displacements are plotted in Figure 4.11b. There is a positive 

correlation between the variables at 1 and 3Hz, the peak forces increase with maximum 

displacement. At 2Hz the spread of peak forces is greater and there is no obvious correlation. 

The reduced correlation at 2Hz indicates that the maximum displacement is less influential on 

the peak force at this frequency. 

 
Figure 4.11 a) The jump-by-jump peak force and maximum displacement, b) the average peak force against the 

avergae maximum displacement for each TSs 
 
 
 

Although the trend at 1 and 3Hz is positive, no correlation is obvious when considering all 

frequencies (Figure 4.11b). However, the displacements decrease with increasing jumping 
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to a large force, jumping frequency has a greater influence on the peak force. 
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Figure 4.12 a) The average maximum displacement and jumping frequency, the mean maximum displacement 

(μJ,D,O) and the mean ± 1STD (μJ,D,O ±σJ,D,O) are approximated and the equations listed. b) The CoV of the maximum 
displacements and average fJ,TS, the relationship between fJ and the mean CoV values (μJ,D,O,CoV) and the mean ± 

1STD (μJ,D,O,CoV ±σJ,D,O,CoV) are aproximated. 
 
 
 

70% of the trials had jump-by-jump displacements which passed the 5% AD test. Furthermore 

91.6% of trials had a skewness value less than 2*SES and the excess kurtosis value was less 

than 2*SEK in 91.6% of cases. Considering these tests it is likely that the maximum 

displacements of the jumps are normally distributed. 

The IASV, calculated as the CoV of the displacements, were plotted on Figure 4.12b. The CoV 

values increase with jumping frequency. Therefore, the smallest CoV values and hence most 

consistent TS displacements were seen at 1Hz, the largest values occurred at 3Hz. Overall the 

least EIASV (mean CoV of the displacements =0.093, Table 4.10) occurred at 1Hz. However, the 

EIASV values were most similar to one another at 2Hz (STD CoV of the displacements =0.035). 

From Figure 4.12b the most EIASV and the most variability in EIASV between TSs was seen at 

3Hz (mean and STD of CoV of the displacements, 0.204 and 0.044 respectfully). The TSs varied 

their maximum displacements between jumps, and the spread of displacements differed 

between TSs. 

The average values of TS maximum displacement were most consistent between TSs at 2Hz 

(CoV average displacement (IESV)=0.140, Table 4.10). The greatest variation between TSs was 
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jumping frequency. The values were between 0.068m and 0.188m at 1Hz (a difference Δ of 

0.12), 0.051m and 0.135m at 2Hz (Δ=0.084) , and 0.010 and 0.075 at 3Hz (Δ=0.65). 

Table 4.10 The average, STD and COV values of the maximum displacements. The EIASV (hatched background) and 
IESV (highlighted) are marked. The markers denote gender (* male,  female). 

 1Hz 2Hz 3Hz 
TS Ave (m) STD (m)  COV (IASV) Ave (m) STD (m)  COV (IASV) Ave (m) STD (m)  COV (IASV) 

1 * 0.14 0.011 0.079 0.09 0.010 0.113 0.04 0.009 0.241 
2  0.12 0.015 0.126 0.11 0.010 0.089 0.05 0.009 0.173 
3 * 0.09 0.011 0.120 0.08 0.015 0.191 0.05 0.011 0.219 
4  0.11 0.008 0.068 0.08 0.011 0.147 0.04 0.008 0.240 
5  0.13 0.007 0.056 0.08 0.007 0.091 0.04 0.005 0.139 
6 * 0.15 0.023 0.152 0.07 0.007 0.099 0.03 0.008 0.226 
7 * 0.15 0.008 0.054 0.09 0.010 0.103 0.04 0.006 0.146 
8  0.13 0.012 0.088 0.09 0.009 0.110 0.04 0.010 0.247 

Mean (m) 0.13 0.012 0.093 0.09 0.010 0.118 0.04 0.008 0.204 
STD (m) 0.020 0.005 0.036 0.012 0.003 0.035 0.007 0.002 0.044 

CoV 0.155 0.432 0.386 0.140 0.255 0.296 0.167 0.238 0.217 

Max mean 
displacement 

(m) 

Lowest 
(m) 

Largest 
(m) 

Δ (m) Lowest 
(m) 

Largest 
(m) 

Δ (m) Lowest 
(m) 

Largest 
(m) 

Δ (m) 

0.09 0.15 0.06 0.07 0.11 0.04 0.03 0.05 0.02 

 

The TS height was observed to influence the peak force at 3Hz (Section 4.2.3). The relationship 

between the maximum displacement and TS height was investigated. At 1Hz there was no 

correlation (Figure 4.13a). A slight positive correlation existed at 2 and 3Hz, suggesting that 

taller TSs performed higher jumps, consistent with the hypothesis in Section 4.2.3. The 

correlation was strongest at 3Hz, supporting the positive relationship between the peak force 

and the TS height in Figure 4.6. 

 
Figure 4.13 a)The avergae maximum displacement and b) the normalised average maximum displacement against 

TS height for each frequency. 
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the TSs have more time between jumps and hence the freedom to alter their jump 

displacement. A wider range of displacements are seen, which are likely due to TS preference 

and not necessarily their physiology. At 2Hz and 3Hz the average normalised maximum 

displacements oscillate around 5% and 2% of the TSs’ height, respectfully. It would appear at 

these frequencies the displacements are approximately proportional to the TSs’ height. 

4.2.8 Conclusions 

The characteristics of jumping with specific thought to the IASV, EIASV and IESV have been 

observed and analysed within this section. 

The distribution of the jumping frequencies of each individual was observed, 79.2% of the 

trials passed an AD test for normality. The greatest amount of EIASV occurred at the target 

frequency of 1Hz, the least at 2Hz. The IESV was greatest at 2Hz, suggesting that although TSs 

demonstrated high consistency, a considerable amount of variation occurred between the TSs. 

The least IESV occurred at 1Hz. 

All TSs on average achieved the target frequency ±5% at 1Hz, however only 5/8 TSs were able 

to do this for 2 and 3Hz. More frequency overestimations were seen at 2Hz and more 

underestimations at 3Hz. TSs in general either consistently achieved the target frequency or 

were consistently unable to do so. 

The peak forces of the TSs were normally distributed in 83.3% of trials. The EIASV was smallest 

at 1Hz and greatest at 2Hz. The IESV was also largest at 2Hz. The TSs were most consistent 

with one another at 3Hz. It was observed that male TSs had larger peak forces than female TSs, 

however this distinction was lost at 3Hz. TS weight influenced the peak forces at 1 to 2Hz, 

however at 3Hz height was the dominant influence. The peak forces of the female TSs were 

still strongly affected by weight at 3Hz. 

The jump-by-jump DLFs of the individuals were not normally distributed. The DLFs were 

greatest at the 1st harmonic of 2 and 3Hz. A negative correlation was observed between the 
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DLFs and the harmonic number for each jumping frequency. At 1 and 2Hz the DLFs from male 

TSs tended to be larger. The most EIASV occurred at the 3rd harmonic of 1Hz, the least at the 

1st harmonic of 3Hz. The IESV generally increased with harmonic number. 

A frequency dependant inverse relationship was discovered between the peak forces and the 

contact ratios of jumping. A good approximation of the relationship was achieved (Figure 4.8). 

It was observed that at lower frequencies (1-2Hz) women tended to have larger contact ratios, 

consistent with the smaller peak forces witnessed. 

The relationship between jumping frequency and contact ratio was investigated. It was found 

that jumping frequency does not necessarily dictate the contact ratio, however larger contact 

ratios were primarily associated with 1Hz jumping, and small contact ratios with 2Hz. 

Consistent with the work of Sim et al. (2008) and Yao et al. (2002) the contact ratios were 

greater than 0.4, and 95.2% of the contact ratios were above 0.5, this reconfirms that the 

contact ratios in BSI (1996) are too low. 

The distribution of the contact ratios was normal in 70.8% of trials. The EIASV was smallest at 

1Hz and largest at 3Hz. The least amount of IESV occurred at 1Hz, the largest at 2Hz. 

The weight and frequency normalised impulse was calculated for each jump. The results from 

AD, skewness and excess kurtosis tests on the distributions indicate that the jump-by-jump 

impulse is normally distributed. A negative relationship was observed between impulse and 

jumping frequency. The impulse size was affected by jump frequency, gender and a degree of 

personal preference. The most EIASV occurred at 1Hz, the smallest value was at 2Hz. The IESV 

was greatest at 2Hz and least at 1Hz. It is worth noting for the majority of the characteristics of 

jumping the target frequency of 2Hz has the highest levels of IESV. This is likely because 2Hz is 

a mid-frequency and there is enough time for TSs to have an element of choice in the jumping 

parameters.  



Chapter 4. Characterising the Activities of Jumping and Bobbing  

103 

The jump-by-jump maximum displacements were found to be normally distributed. The 

maximum displacements decreased with increased jumping frequency. At 1 and 3Hz the 

correlation between peak force and maximum displacement was positive. However, when 

including all jumping frequencies no correlation was obvious. The jumping frequency has a 

greater influence on the peak force than the maximum displacement. The least EIASV occurred 

at 1Hz and the most at 3Hz. The IESV was greatest at 3Hz and the TSs were most consistent to 

one another at 2Hz. 

The effect of TS height on the maximum displacements was investigated to affirm the 

hypothesis that taller TSs have a greater maximum displacement. The results imply that for the 

jumping frequencies of 2 and 3Hz the hypothesis is valid. At 1Hz TS height appeared to have 

little influence on the maximum displacements. 

4.3 Characterising Bobbing 

Within this section the GRFs from the bobbing TSs are examined. Firstly differences between 

bouncing and jouncing force profiles will be considered. Then variations in the bobbing 

frequencies, the normalised peak forces, DLFs and maximum displacements will be 

investigated. A focus on the IASV, EIASV and the IESV will be adopted during the analysis. 

4.3.1 Characterising Bouncing and Jouncing 

The variation of the bobbing force profiles is exacerbated by the two possible bobbing styles, 

bouncing and jouncing, described in Section 2.3. Video footage from the trials showing the TSs’ 

heels was used to determine their bobbing style at each frequency. Few studies have been 

conducted into the differences in the GRF profiles of the two activities. These differences will 

be examined in this section. 

4.3.1.1 Bouncing and Jouncing at 1Hz 

Figure 4.14 shows the force profiles from TSs bouncing at 1Hz, the corresponding jouncing 

profiles are shown in Figure 4.15. Greater similarities in the shape exist between the bouncing 
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profiles (Figure 4.14), than between the jouncing profiles (Figure 4.15). The bouncing profiles 

are comprised of a large and small force peak. The lowest GRFs are approximately 0.6, and the 

highest values approximately 1.8 (Figure 4.14). 

There are three profile patterns amongst the jouncing TSs. The force profiles of TS1 and TS6 

consisted of a force peak, followed by small oscillations around the TS’s static force (Figure 

4.15). There are two small force peaks in the negative direction either side of the main force 

peak. The force histories of TS2 and TS3 have a similar pattern; a force peak, followed by 

oscillations around the TSs’ weight, and a force peak in the positive and then negative 

directions (Figure 4.15). The force magnitudes are greater than those of TS1 and TS6 in both 

the positive and negative directions, approaching 2 and 0. The additional positive peak may be 

caused by a heel strike between bobs. It is likely that TS1 and TS6 used their toes to control the 

action and therefore reduced the heel impact. 

 
Figure 4.14 The normalised GRF profiles from bouncing at 1Hz. 

 
 

 
Figure 4.15 The normalised GRF profiles from jouncing at 1Hz. 

 
 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

Time [s]

N
o

rm
a

lis
e

d
 F

o
rc

e

 

 

TS4

TS5

TS7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

Time [s]

N
o

rm
a

lis
e

d
 F

o
rc

e

 

 

TS1

TS2

TS3

TS6

TS8



Chapter 4. Characterising the Activities of Jumping and Bobbing  

105 

TS8’s force time history consists of wider dual peaks and dual troughs of smaller force 

magnitude (Figure 4.15). The profile could be considered as two peaks followed by an 

oscillating trough, hence containing elements similar to the profiles shapes of TS2 and TS3. 

4.3.1.2 Bouncing and Jouncing at 2Hz 

There are two force profile patterns from bouncing at 2Hz (Figure 4.16). The 2Hz profiles of 

TS1 and TS7 are similar to their 1Hz bouncing profiles, except TS1 includes an additional 

localised peak. The force profile from TS4 consists of a large peak followed by a significantly 

smaller peak, similar to the other bouncing profiles. However, the magnitude of the peaks and 

troughs are larger and more reminiscent of jouncing (Figure 4.17). 

 
Figure 4.16 The normalised GRF profiles from bouncing at 2Hz. 

 
 

 
Figure 4.17 The normalised GRF profiles from jouncing at 2Hz. 
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force profiles can occur at 2Hz (Figure 4.17). The dual peaks observed from the TS at 1Hz 

(Figure 4.15) are merging into one. 

4.3.1.3 Bouncing and Jouncing at 3Hz 

There are two patterns of bobbing force profile at 3Hz. The profile of TS1 (Figure 4.18) consists 

of a large peak followed by two smaller peaks akin the 2Hz profile (Figure 4.16), however the 

large peak and foremost small peak have begun to merge. This implies that TS1 uses the same 

bobbing action but with increased tempo. The shape and force magnitude of TS4’s force 

profile (Figure 4.18) is very similar to the jouncing profiles in Figure 4.19. The second bouncing 

peak within the trough at 2Hz (Figure 4.16) has mostly merged with the larger peak. 

 
Figure 4.18 The normalised GRF profiles from bouncing at 3Hz. 

 
 
 

The jouncing profiles in Figure 4.19 all follow the same pattern. However variation of the force 

magnitude demonstrates the possibility of large and small jouncing GRFs. Some of the troughs 

reach zero indicating the occasional jump. At 3Hz jouncing becomes very similar to jumping. 

 
Figure 4.19 The normalised GRF profiles from jouncing at 3Hz. 
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4.3.1.4 Bouncing and Jouncing at 4Hz 

The profiles from the bouncing (Figure 4.20) and jouncing (Figure 4.21) TSs all follow the same 

single peaked pattern at 4Hz. The bouncing peaks are between 1.5 and 2, the jouncing peaks 

are slightly larger, the majority of which are between 1.5 and 2.7. 

 
Figure 4.20 The normalised GRF profiles from bouncing at 4Hz. 

 
 

 
Figure 4.21 The normalised GRF profiles from jouncing at 4Hz. 
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frequency are plotted in Figure 4.22a. Star and triangular markers are used to denote male and 

female TSs and solid and hollow markers are used to distinguish the jouncing and bouncing 

TSs. The overall mean values and the mean ± 1STD are approximated by 1st order polynomial 

line of best fit (solid and dashed lines respectively). 

 
Figure 4.22 a) The average bobbing frequency against target frequency, the mean fB,O (μfB,O) and the mean ± 1STD 
(μfB,O±σfB,O) are approximated and the equations listed. b) The CoV of fB,TS against average fB,TS, the relationships 

between fB and the mean CoV values (μfB,O,CoV) and the mean ± 1STD (μfB,O,CoV±σfB,O,CoV) are aproximated. 
 
 
 

Overall 53.1% of the trials passed an AD test for normality, however 75% of the 1Hz trials 

passed. The number of successful trials decreased with increasing target frequency. 75% of the 
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0.010 occurred at 4Hz revealing that the variation in the TSs’ bobbing frequency was most 

similar to one another. 

Table 4.11 The average, STD and COV values of the fB,TS. The EIASV (hatched background) and IESV (highlighted) are 
marked. The markers denote gender (* male,  female), and font the style (bouncing underlined, jouncing italics). 

 1Hz 2Hz 3Hz 4Hz 
TS Ave 

(Hz) 
STD 
(Hz) 

COV 
(IASV) 

Ave 
(Hz) 

STD 
(Hz) 

COV 
(IASV) 

Ave 
(Hz) 

STD 
(Hz) 

COV 
(IASV) 

Ave 
(Hz) 

STD 
(Hz) 

COV 
(IASV) 

1 * 1.01 0.051 0.050 2.00 0.089 0.044 3.02 0.162 0.054 4.02 0.188 0.047 
2  0.95 0.043 0.046 2.31 0.085 0.037 2.57 0.100 0.039 3.56 0.210 0.059 
3 * 1.01 0.049 0.049 2.29 0.242 0.106 3.02 0.126 0.042 3.56 0.162 0.046 
4  1.01 0.047 0.046 2.01 0.063 0.032 3.01 0.086 0.028 4.01 0.184 0.046 
5  1.00 0.048 0.048 2.01 0.062 0.031 3.02 0.160 0.053 3.95 0.195 0.049 
6 * 1.03 0.067 0.065 2.44 0.136 0.056 3.03 0.090 0.030 3.87 0.138 0.036 
7 * 0.99 0.042 0.043 2.00 0.060 0.030 3.02 0.073 0.024 4.00 0.128 0.032 
8  1.01 0.091 0.090 2.03 0.072 0.036 3.00 0.072 0.024 3.68 0.215 0.058 

Mean (Hz) 1.00 0.055 0.055 2.14 0.101 0.046 2.96 0.108 0.037 3.83 0.178 0.047 
STD (Hz) 0.024 0.017 0.016 0.180 0.062 0.025 0.160 0.036 0.012 0.201 0.032 0.010 

CoV 0.024 0.302 0.290 0.084 0.615 0.551 0.054 0.336 0.328 0.053 0.180 0.204 

Single 
 bob freq 

(Hz) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range 
(%fB) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range 
(%fB) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range 
(%fB) 

Lowest 
(Hz) 

Largest 
(Hz) 

Range 
(%fB) 

0.784 1.235 45.1% 1.770 2.899 56.5% 2.353 3.390 34.6% 3.175 5.000 45.6% 

 

The smallest amount of IESV, measured using the CoV of the average fB,TS occurred, at 1Hz 

(0.024, Table 4.11). Although the TSs’ bobbing frequencies were variable, the consistency 

between TSs was high, comparable with jumping. The largest variation in bobbing frequency 

between TSs occurred at 2Hz (0.084) consistent with jumping. The target frequency of 2Hz had 

the largest range of bobbing frequencies (56.5%) as a percentage of the target frequency. 

The IASV and EIASV of the jumping TSs (Table 4.2) were generally smaller than those in Table 

4.11. This is inconsistent with findings of previous authors where bobbing TSs were better at 

maintaining a target frequency (Sim et al., 2005). There is little difference in the IESV between 

the two activities, but on average jumping was slightly smaller.  

At 1Hz all TSs were on average within 5% of the target frequency, this is consistent with 

previous observations of highest TS bobbing synchronisation at 1Hz (Sim et al., 2005). The 

number of TSs achieving the target frequency ±5% reduced to 7/8 at 3Hz and 5/8 at both 2 and 

4Hz (Table 4.11). Overestimations of the bobbing frequency were seen at 2Hz, whereas at 3 

and 4Hz only underestimations were seen. It is worth noting that on average across all 
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frequencies slightly more individuals achieved the average target frequency when bobbing 

(6.25, Table 4.11) compared to jumping (6, Table 4.2). Although more frequency variation is 

seen between bobs, on average the TS are slightly more likely to achieve the target frequency 

than when jumping. This is consistent with other authors (Sim et al., 2005; Parkhouse and 

Ewins, 2004). However, the previous literature recorded a greater segregation between the 

number of synchronised TSs when jumping and bobbing. 

The TSs were split by bobbing style and gender (Table 4.12). There was no significant gender 

bias in target frequency proximity, however on average the male TSs were slightly closer. The 

bouncing TSs were consistently nearer the target frequency. All the TSs who did not on achieve 

an average target frequency ± 5% were jouncing. Beat synchronisation whilst bouncing 

appears easier than jouncing. It is possible that the TSs within the experiments conducted by 

Parkhouse and Ewins (2004) were asked to bounce rather than having the freedom to choose 

the style. No distinction of the bobbing style was reported within their work. This may explain 

the segregation between the beat synchronisation of bobbing and jumping TSs within their 

experiments. 

Table 4.12 The mean, STD and CoV of the fB,TS values for bobbing style (bouncing (B)/ Jouncing (J)) and gender. 

 1Hz 2Hz 3Hz 4Hz 
TS Ave 

(Hz) 
STD 
(Hz) 

COV Ave 
(Hz) 

STD 
(Hz) 

COV Ave 
(Hz) 

STD 
(Hz) 

COV Ave 
(Hz) 

STD 
(Hz) 

COV 

Mean J (Hz) 1.00 0.060 0.060 2.21 0.119 0.053 2.94 0.103 0.035 3.80 0.183 0.049 
STD J (Hz) 0.03 0.019 0.018 0.19 0.074 0.031 0.19 0.034 0.011 0.22 0.033 0.010 

CoV J 0.03 0.322 0.308 0.09 0.622 0.585 0.06 0.330 0.324 0.06 0.179 0.204 

Mean B (Hz) 1.00 0.046 0.046 2.00 0.070 0.035 3.01 0.124 0.041 3.94 0.161 0.041 
STD B (Hz) 0.01 0.003 0.003 0.00 0.016 0.008 0.01 0.054 0.018 0.10 0.033 0.007 

CoV B 0.01 0.070 0.062 0.00 0.224 0.223 0.00 0.434 0.432 0.02 0.203 0.179 

Mean M (Hz) 1.01 0.052 0.052 2.18 0.131 0.059 3.02 0.112 0.037 3.86 0.154 0.040 
STD M (Hz) 0.016 0.011 0.010 0.216 0.080 0.033 0.003 0.040 0.013 0.215 0.027 0.007 

CoV M 0.016 0.202 0.185 0.099 0.609 0.560 0.001 0.352 0.353 0.056 0.174 0.183 

Mean F (Hz) 0.99 0.057 0.058 2.09 0.071 0.034 2.90 0.104 0.036 3.80 0.201 0.053 
STD F (Hz) 0.03 0.023 0.022 0.151 0.011 0.003 0.222 0.039 0.013 0.214 0.014 0.007 

CoV F 0.03 0.393 0.376 0.073 0.152 0.087 0.077 0.370 0.356 0.056 0.069 0.122 
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In general the bouncing TSs demonstrated less EIASV and IESV than the jouncing TSs. There 

was little difference in variability between the genders. In general female TSs had slightly 

smaller values of IESV, whereas male TSs had slightly smaller EIASV values. 

4.3.3 Variation in Peak Force 

The average peak force is plotted against the average bob frequency of each TS in Figure 

4.23a. The overall mean peak force and the mean ± 1STD are approximated by 2nd order 

polynomial lines of best fit. On average the smallest peak forces occur at 1Hz and the largest at 

3Hz, however between 2 and 4Hz the peak forces are similar (Figure 4.23a). The peak forces 

from bobbing were smaller than those from jumping in Table 4.4. The range of bobbing peak 

forces considering all frequencies is 1.24-2.86, compared to 2.15-4.22 whilst jumping.  

Using a 5% AD test the bob-by-bob peak forces of 84.4% of the trials were found to be 

normally distributed. All the trials passed the 2*SES test for skewness, however only 50% 

passed the 2*SEK test for excess kurtosis. 

 
Figure 4.23 a) The average peak forces against average bobbing frequency, the mean FB,Peak,O (μB,Peak,O) and the 

mean ± 1STD (μB,Peak,O ±σB,Peak,O) are approximated and the equations listed. b) The CoV of FB,Peak,TS against average 
fB,TS, the relationships between fB and the mean CoV values (μB,Peak,OCoV) and the mean ± 1STD (μB,Peak,O,CoV 

±σB,Peak,O,CoV) are aproximated. 
 
 
 

The IASV of the peak forces (CoV of FB,Peak,TS) increased with bobbing frequency (Figure 4.23a). 

The majority of the smallest IASV values occurred at 1Hz, and the largest at 4Hz (Table 4.13). 

The smallest EIASV values occurred at 1Hz (mean and STD of the FB,Peak,TS CoV 0.040, 0.011, 

respectively), which is consistent with the results from jumping. This indicates that the TSs had 
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the most consistent peak forces at this frequency, and similar peak force variation between 

the TSs. The largest EIASV value (mean FB,Peak,TS CoV) was 0.72 at 4Hz, where the TSs’ variation 

was the greatest. The largest STD FB,Peak,TS CoV, representing the greatest differences in force 

peak variation between TSs was 0.023 at 3Hz. 

Table 4.13 The average, STD and COV values of the FB,Peak,TS. The EIASV (hatched background) and IESV (highlighted) 
are marked. The markers denote gender (* male,  female), and font the style (bouncing underlined, jouncing italics). 

 1Hz 2Hz 3Hz 4Hz 
TS Ave STD COV Ave STD COV Ave STD COV Ave STD COV 

1 * 1.72 0.071 0.041 1.60 0.065 0.041 1.90 0.085 0.045 1.97 0.141 0.072 
2  1.81 0.096 0.053 2.35 0.119 0.051 2.54 0.136 0.054 2.30 0.170 0.074 
3 * 1.88 0.106 0.057 1.82 0.145 0.079 2.38 0.192 0.081 2.34 0.135 0.058 
4  1.61 0.058 0.036 1.84 0.049 0.027 2.03 0.095 0.047 2.09 0.147 0.070 
5  1.68 0.063 0.038 2.22 0.137 0.062 2.07 0.217 0.105 2.09 0.206 0.099 
6 * 1.51 0.063 0.042 1.61 0.072 0.045 2.14 0.117 0.055 1.78 0.109 0.061 
7 * 1.43 0.040 0.028 1.78 0.068 0.038 1.83 0.074 0.041 1.74 0.082 0.047 
8  1.34 0.036 0.027 2.33 0.091 0.039 2.52 0.108 0.043 2.26 0.213 0.094 

Mean 1.62 0.067 0.040 1.94 0.093 0.048 2.18 0.128 0.059 2.07 0.150 0.072 
STD 0.187 0.025 0.011 0.309 0.036 0.016 0.272 0.051 0.023 0.230 0.045 0.017 
CoV 0.115 0.367 0.265 0.159 0.384 0.342 0.125 0.400 0.385 0.111 0.299 0.243 

Peak 
forces 

Lowest  Largest Δ Lowest  Largest Δ Lowest  Largest Δ Lowest  Largest Δ 
1.24 2.08 0.84 1.41 2.53 1.12 1.64 2.86 1.22 1.53 2.74 1.22 

 

The IESV was measured using the CoV of the mean FB,Peak,TS values and was lowest at 4Hz 

(0.111, Table 4.13), closely followed by 1Hz (0.115). There was good consistency between the 

TSs at these frequencies. The greatest variation in peak forces between TSs was seen at 2Hz 

(0.159), consistent with jumping. The values of EIASV and IESV in Table 4.13 are larger than 

those collected from jumping TSs (Table 4.4). This is likely due to the two distinctive bobbing 

styles increasing the range of possible peak forces. 

The bobbing trials were firstly separated by bobbing style and then gender (Table 4.14). The 

mean peak forces were larger from jouncing than from bobbing. There was less IESV and EIASV 

of the peak forces amongst the bouncing TSs, however the sample size was smaller. In general 

the mean peak forces from female TSs were larger than from male TSs, contrary to jumping. 

There was no significant difference in the IESV and EIASV amongst male and female TSs. 

As with the jumping analysis the effect of various physiological factors upon the peak forces 

was investigated. However, no obvious correlation was found between peak force and TS 
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weight or height. It appears physiological features have little effect on the peak forces of 

bobbing. This is likely due to the continuous contact with the ground. 

Table 4.14 The mean, STD and CoV of the peak forces for bobbing style (bouncing/ jouncing) and gender. 

 1Hz 2Hz 3Hz 4Hz 
TS Ave STD COV Ave STD COV Ave STD COV Ave STD COV 

Mean J 1.652 0.074 0.044 2.066 0.113 0.055 2.247 0.141 0.063 2.117 0.158 0.074 
STD J 0.223 0.028 0.012 0.333 0.031 0.016 0.281 0.054 0.025 0.232 0.049 0.020 
CoV J 0.135 0.373 0.267 0.161 0.273 0.286 0.125 0.384 0.395 0.109 0.311 0.271 

Mean B 1.573 0.054 0.034 1.740 0.061 0.035 1.965 0.090 0.046 1.935 0.128 0.066 
STD B 0.129 0.012 0.005 0.125 0.010 0.007 0.092 0.007 0.001 0.219 0.027 0.006 
CoV B 0.082 0.225 0.156 0.072 0.168 0.209 0.047 0.079 0.031 0.113 0.210 0.097 

Mean M 1.635 0.070 0.042 1.703 0.088 0.051 2.063 0.117 0.056 1.958 0.117 0.060 
STD M 0.204 0.027 0.012 0.114 0.038 0.019 0.250 0.053 0.018 0.274 0.027 0.010 
CoV M 0.125 0.391 0.282 0.067 0.439 0.375 0.121 0.455 0.324 0.140 0.231 0.173 

Mean F 1.610 0.063 0.039 2.185 0.099 0.045 2.290 0.139 0.062 2.185 0.184 0.084 
STD F 0.198 0.025 0.011 0.237 0.038 0.015 0.278 0.055 0.029 0.111 0.031 0.014 
CoV F 0.123 0.392 0.280 0.108 0.387 0.338 0.121 0.394 0.464 0.051 0.169 0.171 

 

4.3.4 DLFs from Bobbing 

The DLFs from bobbing were calculated up to the 3rd harmonic or 6Hz, whichever was the 

larger following the procedure outlined in Section 4.2.4. The bob-by-bob DLFs were found and 

used to calculate the average DLFs (Figure 4.24a) and the overall mean DLFs and mean ± 1STD 

(Figure 4.24b). The bob-by-bob DLFs are not considered normally distributed as only 21.7% of 

harmonics within the trials passed the 5% AD test. In addition, only 9.5% of the harmonics had 

skewness values less than 2*SES, 34.8% had an excess kurtosis value less than 2*SEK. 

The IASV values (CoV of DLF) were plotted on Figure 4.24 and in general increased with 

harmonic number. Hence, more TS self-consistency was seen at the 1st harmonics of the 

bobbing frequencies. The lowest IASV values were seen at 1st harmonic of 3Hz, the highest 

values occurred at the 3rd harmonic of 4Hz. 

Overall the TSs demonstrated least variation (EIASV) at the 1st harmonic of 4Hz (mean DLF CoV 

=0.131, Table 4.15). The amount the TSs’ DLFs varied was also most similar to one another at 

this harmonic frequency (STD of DLF CoV =0.061). The greatest amount of EIASV occurred at 

the 3rd harmonic of 4Hz (mean DLF CoV =0.561). The greatest spread in TS variation was at the 
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6th harmonic of 1Hz (STD of DLF CoV =0.212). In general the IASV and EIASV values from 

bobbing were greater than from jumping (Table 4.6). 

 
Figure 4.24 a) The DLFs from bobbing, b) The DLFs of the harmonics and the mean and ± 1STD at each activity 

frequency. c) The CoV of the DLF and the relationship between fB and the mean CoV values (μB,DLF,O,CoV) and the 
mean ± 1STD (μB,DLF,O,CoV ±σB,DLF,O,CoV) are aproximated. 

 
 
 

The IESV of the DLFs was calculated using the CoV of the average DLFs from each TS, 

highlighted in Table 4.15. The largest amount of variation between TSs occurred at the 6th 

harmonic of 1Hz, and the least at the 1st harmonic of 4Hz. In general more IESV was seen at the 

higher harmonics. Overall the values of IESV were greater than those of jumping. This is likely 

due to the two styles of bobbing possible. Furthermore, bobbing can vary between 

enthusiastic borderline bobbing (bobbing which is on the border of jumping (Harrison et al., 

2008)) and very low energy bobbing. There is a greater element of TS choice whilst bobbing 

and therefore the variation between the TSs is greater. 
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Table 4.15 The average, STD and COV values of the DLFs. The EIASV (hatched background) and the IESV (highlighted) are 
marked. The markers denote gender (* male,  female), and font the style (bouncing underlined, jouncing italics). 

1Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 6th Harmonic 
TS Ave STD COV Ave STD COV Ave STD COV Ave STD COV Ave STD COV Ave STD COV 

1 * 0.07 0.011 0.161 0.11 0.023 0.223 0.12 0.038 0.322 0.14 0.033 0.242 0.12 0.026 0.207 0.10 0.029 0.288 
2  0.11 0.015 0.137 0.45 0.077 0.170 0.40 0.060 0.148 0.11 0.041 0.392 0.11 0.029 0.255 0.05 0.016 0.315 
3 * 0.05 0.019 0.419 0.27 0.075 0.278 0.35 0.102 0.294 0.21 0.090 0.428 0.13 0.050 0.399 0.10 0.039 0.397 
4  0.20 0.053 0.260 0.26 0.036 0.138 0.10 0.020 0.214 0.04 0.013 0.341 0.01 0.007 0.590 0.01 0.010 0.876 
5  0.16 0.045 0.292 0.32 0.036 0.114 0.15 0.039 0.264 0.05 0.029 0.558 0.04 0.020 0.505 0.01 0.009 0.577 
6 * 0.05 0.011 0.221 0.12 0.031 0.260 0.14 0.047 0.339 0.13 0.036 0.274 0.12 0.034 0.294 0.09 0.028 0.305 
7 * 0.09 0.015 0.160 0.18 0.019 0.105 0.12 0.025 0.210 0.04 0.018 0.425 0.02 0.008 0.414 0.01 0.004 0.274 
8  0.26 0.081 0.309 0.08 0.028 0.363 0.07 0.028 0.394 0.07 0.020 0.295 0.04 0.012 0.281 0.03 0.008 0.259 

Ave 0.12 0.031 0.245 0.22 0.041 0.206 0.18 0.045 0.273 0.10 0.035 0.369 0.07 0.023 0.368 0.05 0.018 0.411 
STD 0.08 0.026 0.095 0.13 0.022 0.091 0.12 0.026 0.080 0.06 0.024 0.103 0.05 0.015 0.133 0.04 0.013 0.214 
CoV 0.63 0.818 0.388 0.57 0.553 0.441 0.69 0.587 0.293 0.61 0.693 0.279 0.67 0.629 0.360 0.77 0.718 0.521 

2Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 
TS Ave STD COV Ave STD COV Ave STD COV 

1 * 0.20 0.099 0.494 0.20 0.031 0.155 0.13 0.039 0.311 
2  1.01 0.263 0.259 0.22 0.059 0.264 0.06 0.028 0.443 
3 * 0.64 0.106 0.166 0.18 0.100 0.569 0.11 0.052 0.458 
4  0.61 0.041 0.067 0.20 0.020 0.098 0.05 0.010 0.207 
5  0.90 0.232 0.258 0.20 0.027 0.133 0.04 0.019 0.523 
6 * 0.44 0.134 0.306 0.08 0.044 0.540 0.04 0.027 0.630 
7 * 0.29 0.077 0.270 0.37 0.046 0.126 0.08 0.018 0.223 
8  1.10 0.163 0.147 0.21 0.049 0.233 0.07 0.010 0.153 

Ave 0.65 0.14 0.246 0.21 0.05 0.265 0.07 0.03 0.369 
STD 0.33 0.08 0.127 0.08 0.03 0.188 0.03 0.01 0.170 
CoV 0.51 0.547 0.518 0.37 0.532 0.708 0.45 0.563 0.462 

3Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 
TS Ave STD COV Ave STD COV Ave STD COV 

1 * 0.52 0.022 0.043 0.21 0.038 0.178 0.11 0.041 0.367 
2  0.99 0.408 0.411 0.24 0.105 0.434 0.05 0.030 0.620 
3 * 1.05 0.192 0.183 0.23 0.061 0.262 0.09 0.049 0.542 
4  0.85 0.034 0.040 0.22 0.030 0.139 0.09 0.016 0.175 
5  0.83 0.129 0.156 0.18 0.068 0.376 0.03 0.017 0.644 
6 * 0.96 0.107 0.112 0.16 0.042 0.264 0.02 0.013 0.544 
7 * 0.59 0.134 0.226 0.16 0.028 0.173 0.07 0.013 0.195 
8  1.05 0.185 0.176 0.33 0.033 0.100 0.09 0.024 0.258 

Ave 0.85 0.15 0.168 0.22 0.05 0.241 0.07 0.03 0.418 
STD 0.20 0.12 0.118 0.06 0.03 0.117 0.03 0.01 0.193 
CoV 0.24 0.797 0.703 0.25 0.519 0.485 0.48 0.537 0.462 
4Hz 1st Harmonic 2nd Harmonic 3rd Harmonic 
TS Ave STD COV Ave STD COV Ave STD COV 

1 * 0.83 0.085 0.102 0.14 0.056 0.405 0.01 0.009 0.915 
2  1.15 0.126 0.110 0.17 0.069 0.402 0.04 0.016 0.393 
3 * 1.03 0.072 0.071 0.26 0.046 0.179 0.07 0.032 0.434 
4  0.77 0.208 0.269 0.20 0.069 0.335 0.09 0.043 0.477 
5  0.93 0.147 0.158 0.14 0.068 0.471 0.04 0.032 0.816 
6 * 0.73 0.090 0.123 0.06 0.026 0.423 0.02 0.011 0.497 
7 * 0.57 0.066 0.116 0.14 0.030 0.224 0.03 0.014 0.515 
8  0.98 0.101 0.102 0.22 0.072 0.327 0.07 0.032 0.442 

Ave 0.87 0.11 0.131 0.17 0.05 0.346 0.05 0.02 0.561 
STD 0.18 0.05 0.061 0.06 0.02 0.101 0.03 0.01 0.194 
CoV 0.21 0.422 0.463 0.37 0.340 0.292 0.62 0.537 0.345 

Average 
DLFs 

1
st

 harmonic all frequencies 2nd harmonic all frequencies 3rd harmonic all frequencies 
Lowest Largest Range Lowest Largest Range Lowest Largest Range 

0.05 1.15 1.10 0.06 0.45 0.39 0.01 0.40 0.39 
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From Figure 4.24b, disregarding the 1st harmonic of 1Hz, the mean DLF magnitudes at each 

harmonic are comparable between the frequencies. The biggest DLFs were seen at the 1st 

harmonics of 2, 3 and 4Hz bobbing. The largest average value was 1.15 at 4Hz, smaller than the 

largest average jumping DLF value (1.63 at 3Hz, Table 4.6). Above the 1st harmonic the majority 

of the DLFs were below 0.4. In theory the bobbing DLFs should be less than one as contact is 

maintained with the ground (Parkhouse and Ewins, 2004). Six average DLFs from these trials 

exceed one. Sim et al. (2005) also demonstrated that enthusiastic bobbing can produce DLFs 

greater than one. 

The highest DLFs were produced by the jouncing TSs, marked by solid markers on Figure 4.24a. 

However, above the 1st harmonics there were no obvious distinctions in the DLFs between the 

styles. Although larger peak forces are associated with jouncing (Table 4.14), the more 

consistent bobbing frequency associated with bouncing (Table 4.12) makes the DLFs 

comparable at higher harmonics. Overall the EIASV values are generally smaller amongst the 

bouncing TSs, the IESV is similar between the two styles (Table 4.16). 

The DLFs from female TSs are larger than those from male TSs (Table 4.16). In general male 

TSs’ have slightly smaller values of EIASV. The IESV is less amongst female TSs. 

Table 4.16 The mean, STD and CoV of the 1
st

 harmonic DLF values for bobbing style (bouncing/ Jouncing) and gender. 

 1Hz 2Hz 3Hz 4Hz 
TS Ave STD COV Ave STD COV Ave STD COV Ave STD COV 

Mean J 0.107 0.027 0.249 0.819 0.180 0.227 0.911 0.192 0.211 0.915 0.100 0.110 
STD J 0.090 0.030 0.115 0.276 0.066 0.068 0.177 0.111 0.105 0.198 0.032 0.028 
CoV J 0.837 1.091 0.463 0.337 0.368 0.297 0.194 0.575 0.499 0.217 0.317 0.257 

Mean B 0.150 0.038 0.237 0.366 0.073 0.277 0.681 0.028 0.042 0.751 0.149 0.196 
STD B 0.055 0.020 0.069 0.215 0.029 0.213 0.232 0.008 0.002 0.029 0.083 0.103 
CoV B 0.365 0.533 0.291 0.589 0.405 0.770 0.340 0.292 0.050 0.039 0.561 0.528 

Mean M 0.064 0.014 0.240 0.391 0.104 0.309 0.779 0.114 0.141 0.790 0.078 0.103 
STD M 0.022 0.004 0.122 0.191 0.023 0.137 0.263 0.071 0.080 0.192 0.011 0.023 
CoV M 0.335 0.287 0.509 0.489 0.225 0.443 0.338 0.621 0.571 0.243 0.139 0.227 

Mean F 0.182 0.048 0.249 0.907 0.175 0.183 0.928 0.189 0.196 0.958 0.145 0.160 
STD F 0.064 0.027 0.078 0.216 0.098 0.093 0.111 0.159 0.155 0.154 0.046 0.077 
CoV F 0.354 0.555 0.311 0.238 0.563 0.509 0.119 0.840 0.794 0.161 0.315 0.482 
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Previous literature suggested that there is often not a dominant harmonic for bobbing (Sim et 

al., 2005). This holds true for most TSs at 1Hz where there is little difference in the harmonic 

DLFs (Figure 4.24a). At 2, 3 and 4Hz this is not the case for TSs from both bobbing styles. 

4.3.5 Bobbing Displacement 

As with the jumping experiments the displacements of the TSs’ body were monitored and 

collected. The maximum bob-by-bob displacements were calculated as the maximum elevation 

of the marker above the rest height of the marker and plotted against the peak force (Figure 

4.25a). The average peak force against average maximum displacement for each TS are shown 

in Figure 4.25b. There is a slight positive correlation between the variables at each frequency 

(Figure 4.25b). However, likewise to jumping the target frequency has a greater effect on the 

peak force (Figure 4.11a). Also consistent with jumping, greater maximum displacements were 

seen at 1 and 2Hz, compared to the higher frequencies. There is little obvious distinction 

between the average displacements from jouncing and bouncing TSs, however the largest 

displacements were all from jouncing TSs. The maximum displacements are smaller than those 

from jumping which can be twice as large. It is worth noting that negative maximum 

displacements can occur when bobbing (Figure 4.25a). Some TSs bend below their static height 

when attempting to maintain a continuous stream of bobs at 4Hz. 

 
Figure 4.25 a) The bob-by-bob peak force and maximum displacement. b) The average peak force and average 

maximum displacement for each TS.  
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The bob-by-bob maximum displacements only passed the 5% AD test in 37.5% of trials, 

however 75% of the 4Hz trials passed. The skewness value was below 2*SES in 59.4% of cases, 

all of the 4Hz trials had a value beneath this threshold. 78% of trials had an excess kurtosis less 

than 2*SEK. Considering these tests it is likely that the maximum displacements can only be 

considered normally distributed for the bobbing frequency of 4Hz. 

The average value of each TS’s maximum displacement and bob frequency are plotted in 

Figure 4.26a. The IASV values calculated as the CoV of the maximum displacements increase 

with increasing target frequency (Figure 4.26b). The smallest CoV values and hence most 

consistent TS displacements were seen at 1Hz, the largest values occurred at 4Hz. Overall the 

least EIASV (mean CoV of displacements =0.202, Table 4.17) occurred at 1Hz. However, the 

TSs’ EIASV of maximum displacements were most similar to one another at 3Hz (STD CoV of 

displacements =0.115). The greatest EIASV (mean CoV of displacements =0.444) was at 4Hz, 

highlighting the high variability in each TS’s maximum displacement. The greatest spread in TS 

variation was seen at 2Hz (STD CoV of the displacements =0.162). 

 
Figure 4.26 a) The average maximum displacement and bobbing frequency, the mean maximum displacement 

(μB,D,O) and the mean ± 1STD (μB,D,O ±σB,D,O) are approximated and the equations listed. b) The CoV of the maximum 
displacements and average fB,TS, the relationships between fB and the mean CoV values (μB,D,O,CoV) and the mean ± 

1STD (μB,D,O,CoV ±σBD,O,CoV) are aproximated. 
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displacements occurred at 2Hz (0.092m). Smaller ranges of maximum displacements were 

seen at the higher bobbing frequencies. 

Table 4.17 The average, STD and COV values of the maximum displacements. The EIASV (hatched background) and 
IESV (highlighted) are marked. The markers denote gender (* male,  female), and font the style (bouncing 

underlined, jouncing italics). 

 1Hz 2Hz 3Hz 4Hz 
TS Ave (m) STD (m)  COV Ave (m) STD (m)  COV Ave (m) STD (m)  COV Ave (m) STD (m)  COV 

1 * 0.02 0.006 0.411 0.01 0.006 0.402 0.01 0.004 0.272 0.01 0.004 0.369 
2  0.07 0.007 0.098 0.05 0.013 0.256 0.05 0.014 0.314 0.02 0.014 0.584 
3 * 0.03 0.009 0.316 0.03 0.010 0.370 0.02 0.012 0.524 0.01 0.006 0.481 
4  0.04 0.002 0.052 0.04 0.002 0.057 0.02 0.003 0.127 0.01 0.004 0.347 
5  0.03 0.004 0.116 0.06 0.014 0.237 0.02 0.008 0.322 0.01 0.007 0.452 
6 * 0.02 0.007 0.398 0.02 0.010 0.506 0.03 0.005 0.197 0.01 0.008 0.643 
7 * 0.02 0.003 0.153 0.01 0.002 0.111 0.02 0.005 0.301 0.01 0.003 0.366 
8  0.07 0.005 0.067 0.07 0.006 0.095 0.03 0.008 0.284 0.02 0.006 0.313 

Mean (m) 0.04 0.005 0.202 0.04 0.008 0.254 0.02 0.007 0.293 0.01 0.007 0.444 
STD (m) 0.022 0.002 0.149 0.020 0.005 0.162 0.010 0.004 0.115 0.005 0.004 0.119 

CoV 0.608 0.457 0.741 0.566 0.582 0.638 0.391 0.555 0.392 0.348 0.542 0.267 

Max  
disp (m) 

Lowest 
(m) 

Largest 
(m) 

Δ  
(m) 

Lowest 
(m) 

Largest 
(m) 

Δ  
(m) 

Lowest 
(m) 

Largest 
(m) 

Δ  
(m) 

Lowest 
(m) 

Largest 
(m) 

Δ  
(m) 

0.006 0.078 0.072 -0.001 0.092 0.093 -0.002 0.071 0.073 -0.009 0.050 0.059 

 

The EIASV values from the maximum displacements of jumping were smaller, however both 

activities saw an increase in EIASV with increased frequency. The IESV values from jumping 

were significantly smaller. In general the TSs maintained a more consistent maximum 

displacement personally and amongst the other TSs whilst jumping. 

The TSs’ average maximum displacements were plotted against TS height to determine 

whether there was a relationship between the variables (Figure 4.27). Little correlation was 

apparent between the two variables, suggesting that TS height does not affect the maximum 

bob displacement. 
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Figure 4.27 The average maximum displacement against TS height. 
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jouncing. The bouncing TSs also had less EIASV and IESV. Beat synchronisation whilst bouncing 

appears easier than jouncing. 

The greatest peak forces from bobbing were at 3Hz, however the values were similar between 

2 and 4Hz. Each TS’s peak forces were potentially normally distributed. The jouncing TSs had 

larger peak forces, and greater IESV and EIASV than the bouncing TSs. Contradictory to the 

observations of jumping, the female TSs on average had larger forces than the male TSs. The 

least FB,Peak,TS EIASV occurred at 1Hz, which is consistent with the findings from the jumping 

analysis. The greatest amount of EIASV occurred at 3 and 4Hz. The FB,Peak,TS IESV was lowest at 

1 and 4 Hz, and highest at 2Hz, which is consistent with jumping. The values of EIASV and IESV 

(Table 4.13) were larger than those from jumping (Table 4.4). This is likely due to the two styles 

of bobbing increasing the range of peak forces. Unlike jumping, the normalised bobbing force 

is unaffected by TSs weight and height, little correlation was seen between these factors and 

FB,Peak,TS. 

The bobbing DLFs were not normally distributed and smaller than those from jumping. In 

general the DLF’s IASV, EIAV and IESV increased with harmonic number and were larger than 

those from jumping TSs. The largest bobbing DLFs occurred at the 1st harmonic from jouncing 

TSs at 2, 3 and 4Hz. At 1Hz and the higher harmonics there was little distinction between 

bouncing and jouncing. It is likely the larger peak forces associated with jouncing are 

compensated by the more consistent bob frequency of bouncing. 

Although bobbing can take place at a higher frequency the DLF values from bobbing are on 

average between 1.7 and 2.3 times smaller than jumping at the 1st harmonic, and between 

2.68 and 4.5 times at the 2nd harmonic. Jumping is the more critical activity and more likely to 

adversely affect structures. 

The bob-by-bob maximum displacements are only normally distributed for the target 

frequency of 4Hz. The largest maximum displacements were from jouncing TSs and occurred at 
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1 and 2Hz. The values can be twice as small as the equivalent jumping maximum 

displacements. There is a slight positive correlation between the maximum displacements and 

the peak forces, however bob frequency has a greater effect on peak force. No correlation was 

observed between TS height and maximum displacements. The most EIASV was at 3Hz, 

however the EIASV values between TSs were similar. The least EIASV occurred at 1Hz. The 

maximum displacements varied most between TSs (IESV) at 1Hz, and were most consistent 

with one another at 4Hz. The values of IASV, EIASV and IESV were larger than those from 

jumping, hence jumping TSs were more consistent with themselves and each other. 

It would be of benefit to study the IESV, IASV and EIASV of both bobbing and jumping TSs 

within groups to observe how inclusion within a group affects TS variation. 
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5 Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics 

5.1 Introduction 

Jumping is deemed the most critical human induced dynamic loading that can be applied upon 

a structure (Ellis and Ji, 1994; Rainer et al., 1988). Jumping forces are tri-directional, however 

the largest component and the subject of this study is the force in the vertical direction. When 

jumping, an individual can generate a ground reaction force (GRF) that is up to seven times 

larger than their static weight (Bachmann and Ammann, 1987). If individuals within a crowd 

jump in sync with one another, there is potential to produce a large dynamic load which may 

lead to extreme structural accelerations and displacements. Environmental stimuli such as 

music, visual cues and other audience members may encourage and increase the coordination. 

Due to the diverse physiology and psychology of humans, the range of movements and 

synchronization capabilities vary between individuals. It is therefore difficult to accurately 

predict the dynamic load capacity of a crowd. Furthermore, within the venues at risk, such as 

stadiums or concert halls, measuring the dynamic force is challenging. 

The current UK recommendations (UK Working Group, 2008) for stadium design 

predominantly rely on laboratory studies to calculate the likely dynamic forces (Parkhouse and 

Ewins, 2004; Yao et al., 2006). These studies often observe individuals separately in a lab, and 

therefore crowd interaction and environmental influences are ignored. In addition, the 

activities observed within a laboratory may not be consistent with those at a stadium event. 

Hence, there is a lack of authentic force measurements from crowds, which lead to difficulties 

predicting the dynamic forces and the corresponding structural response. As a consequence, 

stadium designs may underestimate the dynamic load, leading to excessive vibrations which 

can cause crowd panic, and cracking and damage of the structure. Alternatively, 
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overestimating the force leads to over-conservative and unnecessarily expensive stadia. To 

further this field of research and ensure safe but economical stadium designs, in-situ 

observations of crowds on stadia are required. 

Within this chapter the current practice and force measurement techniques are discussed. A 

simple and reliable technique, with in-situ potential, to aid the measuring of dynamic forces 

from individuals within a crowd is proposed. Experiments using this technique and a force 

plate to measure the GRFs of jumping subjects are conducted and the results presented and 

compared to those of previous authors. The results are verified by applying the forces to 

varying single degree of freedom (SDOF) systems. The contents of this chapter are partially 

reported in a conference publication (McDonald and Zivanovic, 2013). 

5.2 Background 

In this section a brief introduction to the current UK stadium guidance is given. This is followed 

by a discussion of the different methods currently used for measuring the structural response 

and dynamic forces. These methods include conventional direct measurement methods (such 

as the use of force plates) and indirect methods (such as the use of accelerometers, marker-

based motion capture techniques and marker-less video techniques). 

5.2.1 Recommendations for Grandstands 

The most recent UK stadium recommendations are provided by the UK Working Group (2008), 

as detailed in Section 3.2.3. The recommendations include two routes to assess the dynamic 

response of a structure. The first route advises that if the lowest relevant natural frequency of 

the structure is 3.5Hz or greater for loading scenarios 1 and 2 (Table 3.3), or 6Hz and above for 

scenarios 3 and 4 the structure will not be prone to significant crowd excitation. Failing this 

criterion, the second route for the evaluation of the structural response includes accurate 

modelling of the structure and the dynamic forces, and the comparison of the calculated 

response to predefined vibration limits, described in Section 3.2.3. Implementation of this 
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route requires a good insight into the expected event-specific crowd behaviour and knowledge 

of the crowd’s sensitivity to the vibrations generated. 

The current design practice would benefit from in-situ testing of crowds at stadium events, as 

the majority of the current knowledge is based on laboratory studies. This work would thereby 

aid further developments and verification of the current force models (Section 3.2.3). 

5.2.2 Measuring Dynamic Load 

Quantifying the vertical dynamic load due to crowd movements on a structure is challenging. 

Some existing methods including the evaluation of the structural response, and direct and 

indirect force measurements are discussed in this section. 

A force plate is a direct method of measuring the GRFs (Dougill et al., 2006). Although force 

plates are able to accurately measure dynamic loads, several limitations are associated with 

the use of these devices for structural engineering purposes. These restrictions include the 

limited size of the plate and the potential data bias introduced by a subject targeting a specific 

landing area. One force plate is required per TS which limits group size. In addition, force 

plates are often fixed to a location, restricting their use to a particular area of a structure.  

Accelerometers can be used as an indirect method to evaluate the dynamic forces via 

measurements of structural accelerations. Relating the measured response to the applied 

force is difficult as a range of crowd activities may occur, and the participation levels and 

distribution, and the synchronisation of the crowd is unknown (Salyards and Hanagan, 2007; 

Setareh, 2011). In addition the modal properties of the stucture are altered by human 

occupancy. 

A novel indirect GRF measurement system which addresses some of the limitations of force 

plates and accelerometers was developed by Thornton-Trump and Daher (1975). This 

approach, originally used in biomedical studies, was introduced into the field of structural 
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engineering (Harrison, et al., 2006; Racic et al., 2010). Motion-capture systems monitor 

individual’s body movements and use this kinematic data to calculate the GRFs. The dynamic 

part of the GRF FGR is obtained by subtracting the individual’s weight from the total GRF, which 

is calculated as the product of the body mass m and the acceleration of the centre of mass 

(CoM) aCoM (positive downwards): 

        𝑭𝑮𝑹 = 𝒎𝒂𝑪𝒐𝑴 − 𝒎𝒈 = 𝒎(𝒂𝑪𝒐𝑴 − 𝒈)   5.1 

where g is the acceleration due to gravity (+9.81ms-2). The CoM movement cannot be directly 

measured as it is within the body for studied jumping postures. An indirect alternative is to 

theoretically divide the body into rigid segments and apply markers to specific locations on 

each body segment (Figure 5.1). The setup in Figure 5.1 (Racic et al., 2010) uses nine markers 

placed on one side of the body, symmetry of segment movement is assumed across the 

sagittal plane. The marker displacements are tracked via the camera system, and a mass 

distribution model (De Leva, 1996) is then used to calculate the displacements of each 

segment’s CoM (Racic et al., 2010). Differentiating the segment’s CoM displacements twice 

enables the segment’s CoM accelerations to be found. The dynamic GRF is then calculated as 

the sum of the inertia forces of each segment: 

   𝑭𝑮𝑹 = ∑ 𝒎𝒊

𝒔

𝒊=𝟏

(𝒂𝒊 − 𝒈)         5.2 

where mi is the mass and ai the acceleration of the CoM of the ith body segment. Racic et al. 

(2010) observed percentage differences of ±2%, ±4% and ±7% over activity frequencies of 1.4-

2.8Hz for the 1st, 2nd and 3rd harmonic components respectively, between GRFs measured 

simultaneously using markers and a force plate. However, it should be noted that the test 

population in this experiment was limited to two male volunteers. The small sample size 

prevents the generalisation of the experimental results to the wider population. In addition, 

the use of nine markers to monitor a subject is impractical when considering multiple subjects. 

Difficulties will be incurred when identifying the ownership of each marker if using a passive 
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marker system which relies on external lighting such as VICON (Oxford Metrics Group, 2007). 

Furthermore, a clear view of each marker is required which is impractical in crowded 

situations. Tracking nine markers per subject increases the complexity of the experiments and 

the equipment required. 

 
Figure 5.1 Marker positions and experimental setup for motion capture tests (after Racic et al., 2010). 

 
 
 

In the previous nine marker work, it was assumed that the body was composed of a series of 

rigid sections connected by joints (De Leva, 1996; Zatsiorsky et al., 1990). When a subject 

jumps, the landing impact and corresponding accelerations cause relative movement between 

the soft body tissue and the underlying “rigid” bone. This movement is called soft tissue 

artefact and may introduce an error in the calculation of the CoM position of each segment, 

and therefore the total GRF. The soft tissue artefact can be minimised by placing markers 

solely on bony landmarks where relative movements are reduced (Racic et al., 2010). 

Moreover, the frequency of the relative movement is generally higher than the harmonics of 

interest, in this case the first three, and can be filtered out as background noise using a low 

pass filter (Racic et al., 2010). 

Indirect force measurement has also been attempted using video monitoring (Mazzoleni and 

Zappa, 2012; Hoath et al., 2007). One such technique uses digital image correlation (DIC) 



Chapter 5. Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics  

128 

methods to track the movement of 100 segments (each assumed to have the same mass) per 

person through each frame of footage (Mazzoleni and Zappa, 2012). The total GRF is 

calculated as: 

 𝑭𝑮𝑹 = ∑
𝒎

𝟏𝟎𝟎

𝟏𝟎𝟎

𝒊=𝟏

 ∙ 𝑎𝑖  
5.3 

where m is the subject’s mass and ai the acceleration time history of the ith segment. These 

estimated forces compare well to data collected simultaneously using a force plate. 

Percentage errors between +3% and -12% for the 1st harmonics of the two force spectra were 

reported. Although this method was only verified on one subject, a similar approach has been 

used to estimate the structural response of the Meazza stadium under the loading of up to 

eight jumping individuals. In this case, the group’s average accelerations were calculated by 

monitoring the accelerations of 1344 segments encompassing the group. However, only 305 

segments from the top portion of the subjects, where significant motion was detected, were 

used to calculate the average accelerations. The average accelerations were multiplied by the 

total mass of the group to estimate the GRF. The response of the stadium was then estimated 

and compared to the response measured using accelerometers. It was found that the error 

relative to the measured response was between +32% and -14%, suggesting that this 

technology has potential for future developments. 

Another video technique, that aimed to distinguish individuals’ movements from within a 

crowd was proposed (Hoath et al., 2007). Individuals’ head movements were tracked through 

frames of video footage and the displacements were compared to GRFs simultaneously 

measured using a force plate. Correlation was found between the head movements and the 

GRFs. However, if subjects turned or moved their heads relative to their bodies, the processing 

software failed to recognise the patch of pixels. 

Whilst marker-less video techniques are more convenient, they often consider average crowd 

movement and the synchronisation between individuals is not prioritised. Increased 
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percentage errors are seen when compared to the motion capture system technique utilising 

nine markers (Racic et al., 2010). The aim of this chapter is to investigate a potential method to 

simplify experimental procedures whilst still achieving accurate measurements of GRFs. 

5.3 Experimental Procedure 

A large number of markers per person is not suitable for monitoring groups of individuals. 

Difficulties differentiating between markers on each test subject may arise. Additionally, 

implementing multiple markers in in-situ conditions is demanding of time and resources. 

Therefore, a new experimental method, using a single marker to track each individual, is 

suggested in this study. 

The first objective of the experiments is to identify if one marker is sufficient to map the 

movement of the CoM, and calculate an accurate force profile. The second objective is to 

investigate the location of the marker which best facilitates the first aim. 

A Gait lab facility, equipped with 12 infra-red VICON cameras (Oxford Metrics Group, 2007), 

two digital video cameras and an AMTI Biomechanics Force Platform OR6 (AMTI, 2007), was 

used in the experiments. Markers were attached to the Test Subject’s (TS) body and cameras 

recorded their movements. VICON Nexus software (Oxford Metrics Group, 2008) was then 

utilised to recreate the movements on a computer. 

Eight TSs (four male and four female) participated in the experiments. Physiological 

information regarding the TSs is shown in Table 5.1. 

Table 5.1 TS physiological data. 

TS 1 2 3 4 5 6 7 8 

Sex M F M F F M M F 
Body mass (Kg) 83 70 83 65 66 85 73 68 

Height (m) 1.85 1.82 1.80 1.76 1.74 1.71 1.76 1.66 
BMI(Kgm

-2
) 24.4 21.1 25.8 21.0 21.8 29.1 23.6 24.8 

 

The BMI refers to the body mass index calculated as (CDC, 2011): 
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which is a method of working out the body build of the TSs. If the BMI <18.5 the person is 

considered to be underweight, for 18.5 ≤ BMI <25 they are considered normal, for 25 ≤ BMI 

<30 overweight and BMI ≥30 obese (CDC, 2011). 

The experimental protocol consisted of a TS jumping on a force plate to the beat of a 

metronome at frequencies of 1, 2 and 3Hz. The chosen frequency range accommodated 

extreme jumping frequencies (1Hz, 3Hz) and a frequency deemed easy to jump at (2Hz) (Yao et 

al., 2006). The frequency of 2Hz is also fairly representative of pop music. For each trial five 

seconds was allocated to allow the TSs to familiarise themselves with the beat, then 20 

seconds of data were recorded. 

A total of 17 markers were applied to each TS, as shown in Figure 5.2 and Figure 5.3. The 

marker positions were at locations with the potential to represent the movement of the CoM 

well. The markers were divided into three location groups: the back, hips and front of the TSs. 

 
Figure 5.2 From left to right: the side, isometric and frontal views of the 17 markers displayed using Nexus software 
(Oxford Metrics Group, 2008). B, H and F refer to markers on the back, hips and front of the TS, respectively, where 

L and R notate left and right, respectively. 
 
 
 

Six markers were placed on the TS’s back (B1- B6 in Figure 5.2) on the L5th, L3rd and the L1st 

vertebrae on the lower back, the T11th vertebrae and T6th vertebrae (between the shoulder 

blades) on the middle back and the C7th vertebrae at the base of the neck (Figure 5.3a). Four 

       𝑩𝑴𝑰 =
𝑩𝒐𝒅𝒚 𝒎𝒂𝒔𝒔

𝑯𝒆𝒊𝒈𝒉𝒕𝟐
 5.4 
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markers were positioned on the hips (RH1 & RH2 on the right hip, and LH1 &LH2 on the left 

hip, Figure 5.2), on the anterior superior iliac spine and the greater trochanter on both the left 

and right side of the body. Seven markers were placed on the front of the TS (F1- F7 in Figure 

5.2b) positioned evenly up the torso. The majority of the markers were placed on the trunk as 

the CoM location was expected to be within that region for a jumping posture. 

 
Figure 5.3 a) Vertebrae locations of the back markers. b) Front and hip markers on a TSs. 

 
 
 

The displacements from each marker were recorded at 200Hz by the VICON cameras. These 

were filtered using a 5th order Butterworth filter where the cut-off frequency of the filter was 

either 1Hz above the frequency of the 3rd forcing harmonic or 7Hz, whichever was the larger. 

The marker accelerations aIndirect,i of the ith marker were calculated by differentiating the 

marker displacements twice. The accelerations were re-filtered at the appropriate frequencies, 

as above. The GRF estimated using the i
th marker FIndirect,i, hereafter referred to as the indirect 

force, was calculated as: 

        𝑭𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕,𝒊 = 𝒎(𝒂𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕,𝒊 − 𝒈) 5.5 

For comparison purposes, the benchmark GRF, hereafter referred to as the direct force, was 

also recorded using the force plate, at a sampling rate of 1000Hz. 

C7th
Cervical
vertebrae

Thoracic
vertebrae

Lumbar
vertebrae

Sacral
vertebrae

Coccygeal
vertebrae

T6th
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a) b) 
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As stated in Section 5.2.2, markers placed on soft tissue (which is prevalent around the trunk) 

are prone to soft tissue artefact. To reduce the relative vibrations of the markers on the trunk 

a muscle wrap was used around the stomach. 

The two force collection methods operate at different sampling frequencies. Before analysis, 

the direct forces were initially filtered at 100Hz to prevent aliasing (Lynn and Fuerst, 2000) and 

resampled at 200Hz, the frequency used for measuring the indirect force. Both sets of force 

data were processed using MATLAB R2011b (MathWorks, 2011). The force spectra were 

reconstructed between the frequencies of interest to remove the influence of unwanted 

frequency components. Sine waves of the relevant amplitudes and phase angles at the 

remaining frequencies were summed together to recreate the force time history. The cut-off 

frequency was set as previously, either 1Hz above the frequency of the 3rd forcing harmonic or 

7Hz, whichever was the larger. The approach allowed the first three harmonics of interest to 

be fully investigated. In addition the frequency components of the force that could initiate 

resonance in structures with a vibration mode below 6Hz were included (UK Working Group, 

2008). 

The experiments were approved by the Biomedical & Scientific Research Ethics Committee at 

the University of Warwick on 24th September 2012. A risk assessment was completed, 

alongside TS consent forms and physical readiness questionnaires available in Appendix A. 

5.4 Results and Analysis 

Within this section the results from the experiments will be presented. The coefficient of 

determination R2 (Draper and Smith, 1985) will be used to quantify how well the indirect force 

agrees with the direct force. R2 takes values between 0 and 1, where 1 is a perfect fit and 0 

shows no correlation. R2 is calculated as:  

 𝑹𝟐 = 𝟏 −
𝑺𝑺𝒆𝒓𝒓

𝑺𝑺𝒕𝒐𝒕

 5.6 
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    𝑺𝑺𝒕𝒐𝒕 = ∑(𝑭𝒅𝒊𝒓𝒆𝒄𝒕,𝒊

𝒏

𝒊=𝟏

− 𝑭𝒅𝒊𝒓𝒆𝒄𝒕
̅̅ ̅̅ ̅̅ ̅̅ ̅)𝟐  

5.7 

 
       𝑭𝒅𝒊𝒓𝒆𝒄𝒕

̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝟏

𝒏
 ∑ 𝑭𝒅𝒊𝒓𝒆𝒄𝒕,𝒊

𝒏

𝒊=𝟏

 
5.8 

 
𝑺𝑺𝒆𝒓𝒓 = ∑(𝑭𝒅𝒊𝒓𝒆𝒄𝒕,𝒊

𝒏

𝒊=𝟏

− 𝑭𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕,𝒊)
𝟐 

5.9 

where n is the number of data points, SSerr and SStot are the residual sum of squares and the 

total sum of squares respectively. Fdirect,i and Findirect,i represent the directly and indirectly 

measured force and 𝐹𝑑𝑖𝑟𝑒𝑐𝑡
̅̅ ̅̅ ̅̅ ̅̅  is the average value of directly measured force. The subscripts F, t 

and f will be used to denote the force, and the time- and frequency-domains of the force 

respectively. If a domain is not specified R2F refers to the R2 values of the force in both 

domains. Hereafter the time- and frequency-domains will be referred to as the t- and f-

domains respectively. 

Initially the markers within each location group are examined to identify the markers which 

consistently measure the jumping force well. Once a stand out marker has been identified the 

percentage differences between the direct and indirect forces at different harmonics will be 

examined and compared to results from previous work. To verify the indirect force 

measurements the direct and indirect forces will be applied to a virtual structure to investigate 

how the error in the force propagates to the structural response. This study will then be used 

to establish the likely errors in the structural response for different jumping frequencies and 

resonance at different harmonics of the force. 

5.4.1 Hip Markers 

For the hip group as a whole, the mean value and standard deviation (STD) of R2F,t are 0.945 

and 0.027, and for R2F,f the mean and STD are 0.960 and 0.024 (Table 5.2). High mean values 

and low STDs suggest that as a group, the hip markers are highly consistent and measure the 

force successfully. Table 5.3 shows that the RH1 marker (highlighted in the table) is, on 

average, the best performing hip marker. However, similar values are seen for the LH1 marker 
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suggesting that the side the marker is positioned on is not significant. The mean R2
F values for 

this marker across all TSs and trials in the t- and f-domains are highlighted in Table 5.2, the 

values are 0.953 and 0.968 respectively, and the STDs are 0.023 and 0.020. The accuracy of the 

force measurement using the RH1 marker can be seen in Figure 5.4 for each frequency. The 

indirect force (dashed line) matches the direct force (solid line) well in both the t-and f-

domains. The f-domain (Figure 5.4c, f and i) was created from the entire jumping trial. 

Table 5.2 The average R2F values for the hip markers. 

 
R2

F, t R2
F, f 

 
1 Hz 2 Hz 3 Hz Ave STD 1 Hz 2 Hz 3 Hz Ave STD 

RH1  0.969 0.970 0.921 0.953 0.023 0.981 0.983 0.939 0.968 0.020 
RH2 0.963 0.963 0.904 0.943 0.028 0.977 0.977 0.929 0.961 0.023 
LH2 0.955 0.956 0.895 0.935 0.028 0.970 0.970 0.917 0.952 0.025 
LH1  0.965 0.966 0.911 0.947 0.026 0.979 0.977 0.926 0.961 0.024 

    0.945 0.027    0.960 0.024 

Table 5.3 R2F, t and R2F, f  values for the hip markers. 
 TS 1 2 3 4 5 6 7 8 Ave STD 

R2
F, t            

1Hz 

 RH1 0.968 0.983 0.969 0.982 0.962 0.955 0.959 0.972 0.969 0.009 
 RH2 0.947 0.975 0.963 0.976 0.952 0.959 0.960 0.975 0.963 0.010 
 LH2 0.944 0.980 0.955 0.957 0.926 0.972 0.948 0.958 0.955 0.016 
 LH1 0.956 0.979 0.966 0.983 0.962 0.975 0.942 0.960 0.965 0.013 

2Hz 

 RH1 0.968 0.986 0.960 0.986 0.962 0.970 0.962 0.969 0.970 0.010 
 RH2 0.953 0.979 0.954 0.982 0.947 0.960 0.955 0.971 0.963 0.012 
 LH2 0.960 0.972 0.944 0.959 0.938 0.973 0.947 0.953 0.956 0.012 
 LH1 0.971 0.975 0.959 0.985 0.960 0.979 0.952 0.946 0.966 0.013 

3Hz 

 RH1 0.949 0.952 0.924 0.950 0.853 0.891 0.909 0.947 0.922 0.036 
 RH2 0.929 0.923 0.869 0.943 0.800 0.899 0.908 0.958 0.904 0.047 
 LH2 0.929 0.938 0.861 0.922 0.762 0.929 0.898 0.920 0.895 0.055 
 LH1 0.946 0.946 0.879 0.953 0.795 0.926 0.907 0.933 0.911 0.049 

R2
F, f             

1Hz 

 RH1 0.983 0.992 0.989 0.985 0.973 0.974 0.974 0.982 0.981 0.007 
 RH2 0.973 0.988 0.980 0.981 0.963 0.975 0.974 0.984 0.977 0.007 
 LH2 0.976 0.991 0.963 0.965 0.948 0.980 0.967 0.971 0.970 0.012 
 LH1 0.980 0.989 0.976 0.990 0.978 0.985 0.962 0.972 0.979 0.009 

2Hz 

 RH1 0.985 0.996 0.989 0.993 0.973 0.981 0.973 0.976 0.983 0.008 
 RH2 0.976 0.988 0.984 0.989 0.958 0.975 0.971 0.977 0.977 0.009 
 LH2 0.979 0.985 0.962 0.971 0.949 0.984 0.966 0.960 0.970 0.012 
 LH1 0.984 0.988 0.977 0.992 0.970 0.988 0.965 0.953 0.977 0.013 

3Hz 

 RH1 0.965 0.974 0.940 0.979 0.874 0.905 0.913 0.963 0.939 0.038 

 RH2 0.947 0.951 0.916 0.974 0.836 0.917 0.913 0.974 0.929 0.042 

 LH2 0.947 0.967 0.881 0.941 0.790 0.955 0.903 0.952 0.917 0.055 

 LH1 0.961 0.973 0.890 0.963 0.813 0.946 0.910 0.955 0.926 0.050 
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Figure 5.4 Comparing the direct and indirect force using the RH1 marker for jumping at a) 1Hz (t-domain), b) 1Hz (f-

domain), c) 2Hz (t-domain), d) 2Hz (f-domain), e) 3Hz (t-domain), f) 3Hz (f-domain). 
 
 
 

The range of R2F values which contain 95% of the data were investigated. To increase the 

resolution of the R2F distribution each data record was split into three trials and new R2F values 

were calculated for each. The newly split trials were approximately seven seconds in duration. 

It has been demonstrated that four jumping cycles are required for a stable mean GRF (Racic et 
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al., 2009), hence a trial duration of seven seconds is adequate. The 95th percentiles were found 

by calculating the top and bottom 2.5% of R2F values within the data set, and hence defining 

the limits wherein 95% of the data lie. The 95th percentile values of R2
F for the RH1 marker and 

the hip group as a whole are calculated in Table 5.4 and shown in Figure 5.5. The percentile 

ranges across all jumping frequencies and for each jumping frequency are included. 

Table 5.4 The average R2
F and 95% values for the hip markers. 

 
1Hz 2Hz 3Hz 

 Ave 
95% 95% 

Range Ave 
95% 95% 

 Range Ave 
95% 95% 

Range 
 

Min Max Min Max Min Max 

R2
F, t             

RH1 0.962 0.926 0.981 0.055 0.962 0.935 0.984 0.049 0.919 0.800 0.967 0.167 
RH2 0.956 0.926 0.977 0.051 0.953 0.921 0.975 0.054 0.903 0.731 0.962 0.231 
LH2 0.948 0.903 0.975 0.072 0.947 0.926 0.974 0.048 0.894 0.714 0.955 0.241 
LH1 0.958 0.915 0.982 0.067 0.957 0.927 0.977 0.050 0.910 0.787 0.963 0.176 

Hip Ave 0.956 0.914 0.981 0.067 0.955 0.926 0.979 0.053 0.906 0.761 0.964 0.203 

R2
F, f             

RH1 0.977 0.962 0.989 0.027 0.978 0.957 0.994 0.037 0.936 0.825 0.982 0.157 
RH2 0.973 0.952 0.983 0.031 0.972 0.948 0.986 0.038 0.926 0.760 0.978 0.218 
LH2 0.965 0.930 0.985 0.055 0.966 0.944 0.991 0.047 0.915 0.734 0.985 0.251 
LH1 0.974 0.951 0.988 0.037 0.973 0.944 0.993 0.049 0.926 0.806 0.986 0.180 

Hip Ave 0.972 0.948 0.988 0.040 0.972 0.945 0.993 0.048 0.926 0.788 0.982 0.194 

 

The majority of the lower percentage limits for both the RH1 marker and the entire hip group 

in both the t- and f-domain are above 0.90. Limit values less than 0.90 only occur when 

jumping at 3Hz. However, the range of values at 3Hz in the t-domain is significantly narrower 

than the range from the front and back markers (analysed later in this chapter). Across all 

frequencies the lower 95th percentile limit of the RH1 marker in the f-domain is 0.868 and the 

mean value is 0.948. 

Due to the location of the RH1 marker, issues may arise when tracking the marker in a crowd 

within a stadium environment, as other crowd members are likely to obstruct the marker from 

camera view. 
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Figure 5.5 Average R2F values from the RH1 marker in the a) t-domain and b) f-domain and for the entire hip group 

in the c) t-domain and d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are marked as 
crosses, the dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 

 
 
 

5.4.2 Front Markers 

As a group, the front markers are not as successful at measuring the force as the hip and back 

markers. The front R2F values in Table 5.6 and Table 5.5, which are reduced in comparison to 

the hip R2F values in Table 5.2 and Table 5.3, demonstrate this. 

Table 5.5 The average front marker R2F values for all TS and frequencies, comparing the direct and indirect forces. 

 
R2

F, t R2
F, f 

 
1 Hz 2 Hz 3 Hz Ave STD 1 Hz 2 Hz 3 Hz Ave STD 

F1 0.911 0.920 0.824 0.885 0.043 0.935 0.940 0.846 0.907 0.043 
F2 0.885 0.900 0.789 0.858 0.049 0.912 0.921 0.811 0.881 0.050 
F3 0.838 0.837 0.684 0.786 0.072 0.866 0.860 0.718 0.815 0.068 
F4 0.834 0.842 0.720 0.799 0.056 0.861 0.863 0.750 0.824 0.053 
F5 0.830 0.841 0.722 0.798 0.054 0.862 0.865 0.763 0.830 0.047 
F6 0.821 0.832 0.749 0.801 0.037 0.864 0.869 0.811 0.848 0.026 
F7 0.877 0.902 0.822 0.867 0.033 0.905 0.918 0.861 0.894 0.024 

    
0.828 0.063 
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Table 5.6 R2F, t and R2F,f  values for the front markers. 

 
TS 1 2 3 4 5 6 7 8 Ave STD 

R2
F, t            

1Hz 

F1 0.946 0.940 0.940 0.909 0.968 0.718 0.905 0.964 0.911 0.076 
F2 0.910 0.930 0.924 0.884 0.878 0.681 0.907 0.962 0.885 0.081 
F3 0.905 0.910 0.648 0.876 0.892 0.681 0.872 0.920 0.838 0.102 
F4 0.895 0.888 0.648 0.868 0.850 0.698 0.904 0.923 0.834 0.096 
F5 0.911 0.841 0.645 0.827 0.907 0.718 0.911 0.882 0.830 0.093 
F6 0.898 0.826 0.605 0.839 0.920 0.675 0.908 0.894 0.821 0.110 
F7 0.925 0.936 0.629 0.902 0.934 0.810 0.933 0.951 0.877 0.103 

2Hz 

F1 0.954 0.935 0.946 0.923 0.960 0.783 0.913 0.946 0.920 0.054 
F2 0.928 0.929 0.936 0.897 0.884 0.773 0.915 0.938 0.900 0.051 
F3 0.923 0.910 0.663 0.849 0.900 0.766 0.828 0.854 0.837 0.081 
F4 0.919 0.893 0.649 0.840 0.877 0.791 0.914 0.854 0.842 0.083 
F5 0.945 0.875 0.637 0.814 0.919 0.806 0.933 0.802 0.841 0.095 
F6 0.932 0.834 0.630 0.787 0.947 0.750 0.926 0.852 0.832 0.101 
F7 0.951 0.952 0.673 0.847 0.958 0.946 0.955 0.932 0.902 0.093 

3Hz 

F1 0.894 0.835 0.835 0.795 0.856 0.629 0.796 0.954 0.824 0.089 
F2 0.819 0.826 0.793 0.756 0.679 0.644 0.847 0.945 0.789 0.090 
F3 0.807 0.815 0.396 0.761 0.766 0.628 0.460 0.837 0.684 0.160 
F4 0.804 0.793 0.397 0.720 0.730 0.652 0.834 0.831 0.720 0.135 
F5 0.933 0.794 0.369 0.633 0.784 0.637 0.880 0.746 0.722 0.166 
F6 0.886 0.797 0.393 0.882 0.931 0.439 0.865 0.798 0.749 0.197 
F7 0.914 0.956 0.394 0.944 0.951 0.549 0.929 0.940 0.822 0.207 

R2
F, f            

1Hz 

F1 0.959 0.962 0.974 0.919 0.977 0.786 0.925 0.977 0.935 0.060 
F2 0.932 0.952 0.966 0.898 0.897 0.748 0.927 0.975 0.912 0.068 
F3 0.928 0.937 0.690 0.889 0.910 0.746 0.893 0.934 0.866 0.088 
F4 0.914 0.913 0.684 0.882 0.876 0.758 0.923 0.937 0.861 0.085 
F5 0.944 0.887 0.682 0.848 0.924 0.776 0.931 0.902 0.862 0.085 
F6 0.943 0.881 0.662 0.866 0.941 0.755 0.929 0.935 0.864 0.096 
F7 0.951 0.960 0.680 0.917 0.953 0.851 0.955 0.970 0.905 0.092 

2Hz 

F1 0.964 0.949 0.978 0.939 0.971 0.842 0.925 0.955 0.940 0.041 
F2 0.940 0.942 0.967 0.922 0.892 0.833 0.927 0.947 0.921 0.039 
F3 0.934 0.924 0.696 0.879 0.906 0.824 0.846 0.869 0.860 0.071 
F4 0.926 0.906 0.676 0.870 0.884 0.843 0.924 0.871 0.863 0.075 
F5 0.955 0.894 0.665 0.850 0.925 0.864 0.941 0.830 0.865 0.087 
F6 0.952 0.866 0.660 0.839 0.954 0.850 0.936 0.894 0.869 0.090 
F7 0.960 0.960 0.701 0.889 0.965 0.951 0.962 0.953 0.918 0.085 

3Hz 

F1 0.900 0.871 0.865 0.806 0.866 0.689 0.802 0.970 0.846 0.077 
F2 0.831 0.860 0.824 0.769 0.684 0.706 0.851 0.961 0.811 0.084 
F3 0.821 0.849 0.507 0.770 0.770 0.688 0.496 0.846 0.718 0.134 
F4 0.811 0.824 0.509 0.729 0.733 0.709 0.839 0.842 0.750 0.104 
F5 0.945 0.833 0.489 0.655 0.788 0.726 0.889 0.781 0.763 0.134 
F6 0.905 0.833 0.580 0.913 0.952 0.614 0.872 0.816 0.811 0.130 
F7 0.924 0.971 0.577 0.960 0.970 0.600 0.936 0.948 0.861 0.158 

 

The highest R2F front marker values in Table 5.6 vary between the F1 and F7 markers. Overall 

the R2F values of the F1 marker are slightly higher (Table 5.5), however the F7 marker is in a 

better position for crowd observations and will be further analysed. Figure 5.6 demonstrates 

that the force measurements using the F7 marker for different jumping frequencies are similar 
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to the direct force measurements. The mean R2
F, t and R2

F, f values for the F7 marker across all 

TSs and trials, are 0.867 and 0.894, respectively, as highlighted in Table 5.5. The STDs (0.033 

and 0.024 in the t- and f-domains) are larger than for the other groups. 

 
 

 
 

 
 

Figure 5.6 Comparing the direct and indirect force using the F7 marker for jumping at a) 1Hz (t-domain), b) 1Hz (f-
domain), c) 2Hz (t-domain), d) 2Hz (f-domain), e) 3Hz (t-domain), f) 3Hz (f-domain). 
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The 95th percentiles of the F7 marker are shown in Figure 5.7 and demonstrate a dramatic 

increase in variability, compared to the RH1 markers. The range in percentiles (Table 5.7) 

highlights the lack of consistency associated with the F7 marker. 

 

 
Figure 5.7 Average R2F values from the F7 marker in the a) t-domain and b) f-domain and for the entire front group 

in the c) t-domain and d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are marked as 
crosses, the dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 

 
 
 

The F7 marker is the most visible of the markers analysed thus far. It is situated at the front of 

the body below the head, and should be visible within the crowded environment typical of 

grandstands. In addition F7 is located on a bony landmark and therefore measures such as a 

muscle wrap are unnecessary to combat soft tissue artefact. This marker could be used to 

calculate the force, but the accuracy of the force will be reduced compared with the RH1 
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marker. The main discrepancies in the R2
F values originate from TS3, the removal of this TS 

significantly increases the average R2
F values to 0.910 and 0.929 in the t- and f-domains. 

Table 5.7 The average R2
F and 95% values for the front markers. 

 
1Hz 2Hz 3Hz 

 Ave 
95% 95% 

Range Ave 
95% 95% 

 Range Ave 
95% 95% 

Range 
 

Min Max Min Max Min Max 

R2
F, t             

F1 0.906 0.670 0.963 0.293 0.913 0.752 0.964 0.212 0.825 0.622 0.957 0.335 
F2 0.880 0.631 0.954 0.323 0.891 0.739 0.953 0.214 0.788 0.608 0.950 0.342 
F3 0.828 0.592 0.920 0.328 0.830 0.661 0.920 0.259 0.685 0.291 0.850 0.559 
F4 0.824 0.602 0.915 0.313 0.835 0.642 0.919 0.277 0.719 0.272 0.841 0.569 
F5 0.820 0.604 0.921 0.317 0.833 0.630 0.944 0.314 0.722 0.230 0.941 0.711 
F6 0.806 0.549 0.925 0.376 0.823 0.620 0.944 0.324 0.749 0.240 0.939 0.699 
F7 0.867 0.581 0.944 0.363 0.894 0.662 0.956 0.294 0.824 0.242 0.973 0.731 

 Front Ave 0.847 0.594 0.957 0.363 0.860 0.641 0.956 0.315 0.759 0.270 0.955 0.685 

R2
F, f                      

F1 0.929 0.738 0.976 0.238 0.937 0.813 0.982 0.169 0.847 0.694 0.973 0.279 
F2 0.904 0.698 0.970 0.272 0.916 0.800 0.973 0.173 0.812 0.643 0.965 0.322 
F3 0.860 0.645 0.939 0.294 0.858 0.689 0.936 0.247 0.721 0.410 0.883 0.473 
F4 0.855 0.644 0.934 0.290 0.861 0.667 0.930 0.263 0.752 0.407 0.862 0.455 
F5 0.857 0.646 0.950 0.304 0.864 0.655 0.954 0.299 0.767 0.374 0.952 0.578 
F6 0.857 0.616 0.950 0.334 0.869 0.652 0.956 0.304 0.813 0.457 0.960 0.503 
F7 0.900 0.642 0.966 0.324 0.916 0.689 0.970 0.281 0.862 0.446 0.980 0.534 

 Front Ave 0.880 0.641 0.972 0.331 0.889 0.668 0.972 0.304 0.796 0.438 0.970 0.532 

 

5.4.3 Back Markers 

The back group of markers perform well as a whole. The mean value and STD of R2F, t are 0.944 

and 0.040, respectively, and 0.954 and 0.046, respectively, for R2F, f (Table 5.8). The R2F values 

increase with an increase in marker height on the back of the TS. The most successful marker 

from this set, having the highest mean R2F values across all TSs and trials, is the B6 marker, as 

highlighted in Table 5.9. The B6 marker additionally scores the highest R2 values in both 

domains when compared to the markers from the other two location groups. The t- and f-

domains of forces measured using the B6 marker can be observed in Figure 5.8. The figure 

demonstrates that the B6 marker can be used for successful measurement of the GRF at 

different jumping frequencies. The mean R2F, t value for the B6 marker across all TSs for all 

trials is 0.967 (Table 5.8), likewise the mean of R2F, f is 0.991 (Table 5.8). Additionally the STDs 

across all frequencies and TSs for the B6 marker are 0.012 and 0.003 in the t- and f-domains, 
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respectively (Table 5.8), which are the lowest recorded. These values indicate consistently 

good performances for all TSs and jumping frequencies. 

Table 5.8 The average R2
F values for the back markers. 

 
R2

F, t R2
F, f 

 
1 Hz 2 Hz 3 Hz Ave STD 1 Hz 2 Hz 3 Hz Ave STD 

B1  0.911 0.935 0.777 0.874 0.07 0.938 0.956 0.823 0.906 0.059 
B2 0.939 0.953 0.843 0.912 0.049 0.958 0.969 0.880 0.936 0.040 
B3 0.955 0.966 0.857 0.926 0.049 0.969 0.978 0.875 0.941 0.047 
B4 0.968 0.975 0.923 0.956 0.023 0.982 0.985 0.938 0.968 0.021 
B5 0.969 0.973 0.934 0.959 0.017 0.989 0.986 0.968 0.981 0.009 
B6 0.971 0.979 0.95 0.967 0.012 0.993 0.992 0.987 0.991 0.003 

    0.944 0.04    0.954 0.046 

Table 5.9 R2F, t and R2F, f  values for the back markers. 

 
TS 1 2 3 4 5 6 7 8 Ave STD 

R2
F, t            

1Hz 

B1 0.850 0.972 0.788 0.932 0.898 0.942 0.969 0.935 0.911 0.059 
B2 0.945 0.978 0.817 0.955 0.935 0.961 0.963 0.960 0.939 0.048 
B3 0.954 0.974 0.940 0.961 0.944 0.939 0.969 0.960 0.955 0.012 
B4 0.961 0.973 0.960 0.967 0.976 0.964 0.984 0.962 0.968 0.008 
B5 0.975 0.978 0.935 0.973 0.977 0.970 0.983 0.965 0.969 0.014 
B6 0.977 0.978 0.933 0.976 0.975 0.975 0.976 0.975 0.971 0.014 

2Hz 

B1 0.908 0.984 0.801 0.969 0.910 0.966 0.973 0.966 0.935 0.057 
B2 0.963 0.986 0.818 0.975 0.958 0.978 0.965 0.981 0.953 0.052 
B3 0.966 0.983 0.943 0.980 0.966 0.966 0.970 0.958 0.966 0.012 
B4 0.973 0.980 0.977 0.982 0.981 0.984 0.983 0.942 0.975 0.013 
B5 0.981 0.981 0.922 0.991 0.979 0.985 0.985 0.961 0.973 0.021 
B6 0.989 0.984 0.936 0.988 0.986 0.984 0.984 0.979 0.979 0.017 

3Hz 

B1 0.771 0.950 0.413 0.877 0.500 0.899 0.930 0.873 0.777 0.193 
B2 0.916 0.941 0.477 0.815 0.909 0.892 0.882 0.910 0.843 0.142 
B3 0.908 0.916 0.858 0.757 0.817 0.839 0.917 0.842 0.857 0.052 
B4 0.911 0.907 0.930 0.957 0.946 0.907 0.959 0.867 0.923 0.029 
B5 0.953 0.933 0.802 0.977 0.951 0.955 0.966 0.938 0.934 0.055 
B6 0.979 0.942 0.807 0.981 0.975 0.972 0.974 0.973 0.950 0.059 

R2
F, f            

 
1Hz 

 
 

B1 0.912 0.984 0.847 0.940 0.921 0.958 0.985 0.956 0.938 0.042 
B2 0.974 0.988 0.868 0.960 0.948 0.972 0.976 0.975 0.958 0.036 
B3 0.977 0.983 0.958 0.965 0.957 0.961 0.983 0.969 0.969 0.010 
B4 0.980 0.982 0.966 0.988 0.987 0.978 0.996 0.977 0.982 0.008 
B5 0.992 0.990 0.981 0.995 0.989 0.984 0.996 0.982 0.989 0.005 
B6 0.995 0.993 0.989 0.994 0.991 0.993 0.995 0.993 0.993 0.002 

2Hz 

B1 0.946 0.991 0.872 0.979 0.920 0.981 0.985 0.975 0.956 0.039 
B2 0.980 0.993 0.884 0.984 0.963 0.989 0.976 0.987 0.969 0.034 
B3 0.980 0.989 0.969 0.985 0.972 0.982 0.982 0.962 0.978 0.009 
B4 0.984 0.988 0.989 0.990 0.988 0.993 0.993 0.956 0.985 0.011 
B5 0.996 0.991 0.961 0.998 0.987 0.995 0.994 0.970 0.986 0.013 
B6 0.999 0.995 0.974 0.994 0.994 0.998 0.996 0.988 0.992 0.008 

3Hz 

B1 0.784 0.966 0.607 0.906 0.527 0.921 0.941 0.928 0.823 0.157 
B2 0.927 0.959 0.653 0.835 0.914 0.916 0.885 0.953 0.880 0.094 
B3 0.917 0.933 0.922 0.772 0.824 0.861 0.922 0.847 0.875 0.054 
B4 0.919 0.926 0.940 0.967 0.961 0.940 0.967 0.885 0.938 0.026 
B5 0.972 0.960 0.932 0.996 0.971 0.976 0.976 0.957 0.968 0.018 
B6 0.997 0.974 0.951 0.997 0.999 0.993 0.994 0.987 0.987 0.016 
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Figure 5.8 Comparing the direct and indirect force using the B6 marker for jumping at a) 1Hz (t-domain), b) 1Hz (f-
domain), c) 2Hz (t-domain), d) 2Hz (f-domain), e) 3Hz (t-domain), f) 3Hz (f-domain). 

 
 
 

The 95th percentiles of the R2F values for the B6 marker and the back group as a whole are 

demonstrated in Figure 5.9. The R2F, f lower 95th percentile limits for the B6 marker are all 

greater than 0.90, being 0.971, 0.965 and 0.919 for 1, 2 and 3Hz jumping, respectively. It 
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should be noted that the largest range between the percentiles is at 3Hz (Table 5.10). The 

lower 95th percentiles and average R2F values decrease with increasing jumping frequency. This 

indicates that measurement accuracy reduces with jumping frequency. 

To conclude, the B6 marker performs well consistently. The marker is positioned on a bony 

landmark and therefore is insensitive to soft tissue artefact rendering a muscle wrap 

unnecessary. However, as the marker is positioned on the back of the TS monitoring the 

movement may be difficult in actual venues. 

 

 
Figure 5.9 Average R2F values from the B6 marker a & b) and the entire back group c & d), where a &c) are the t-

domain and b &d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are marked as crosses, the 
dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 
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Table 5.10 The average R2F and 95% values for the back markers. 

 
1Hz 2Hz 3Hz 

 
Ave 95%Min 95%Max Range  Ave 95%Min 95%Max  Range  Ave 95%Min 95%Max Range 

R2
F, t             

B1 0.901 0.748 0.969 0.221 0.926 0.770 0.978 0.208 0.772 0.335 0.953 0.618 
B2 0.912 0.551 0.968 0.417 0.945 0.788 0.983 0.195 0.842 0.429 0.947 0.518 
B3 0.946 0.915 0.970 0.055 0.957 0.928 0.981 0.053 0.853 0.738 0.921 0.183 
B4 0.960 0.918 0.984 0.066 0.965 0.917 0.984 0.067 0.919 0.856 0.964 0.108 
B5 0.963 0.917 0.983 0.066 0.965 0.921 0.986 0.065 0.929 0.676 0.991 0.315 
B6 0.965 0.926 0.982 0.056 0.970 0.937 0.993 0.056 0.946 0.650 0.994 0.344 

Back Ave 0.941 0.783 0.979 0.196 0.955 0.850 0.986 0.136 0.877 0.445 0.987 0.542 

R2
F, f             

B1 0.931 0.812 0.986 0.174 0.952 0.860 0.991 0.131 0.819 0.393 0.977 0.584 
B2 0.941 0.730 0.979 0.249 0.965 0.871 0.991 0.120 0.880 0.644 0.969 0.325 
B3 0.963 0.943 0.986 0.043 0.972 0.951 0.988 0.037 0.873 0.756 0.939 0.183 
B4 0.976 0.952 0.995 0.043 0.979 0.943 0.994 0.051 0.935 0.869 0.971 0.102 
B5 0.984 0.958 0.996 0.038 0.982 0.953 0.995 0.042 0.965 0.890 0.996 0.106 
B6 0.988 0.971 0.996 0.025 0.987 0.965 0.997 0.032 0.985 0.919 0.998 0.079 

Back Ave 0.964 0.839 0.995 0.156 0.973 0.884 0.996 0.112 0.909 0.605 0.996 0.391 

 

5.4.4 Percentage Difference 

The R2F
 values provide a good overview of the success of the force measurement. However, to 

further evaluate the quality of the force measurement at each dominant harmonic the 

percentage difference (PD) of the peak indirect force relative to the peak direct force in the f-

domain is calculated. The values of PD at the first three dominant harmonics are discussed and 

compared to published results. This work is carried out for the B6 marker as it is the best 

performing marker. In addition, as the F7 marker is the most visible marker the average PDs 

are also calculated for it. 

The force PDs for each jumping frequency and harmonic are plotted in Figure 5.10. The PDs are 

sorted into two groups comprised of the harmonics where the indirect force overestimated 

the direct force and those which underestimated it. The mean values of PD are calculated for 

each group as well as the overall mean and STD for each frequency and harmonic (Table 5.11) 

and plotted on Figure 5.10. 

For the 1st harmonic of the forces, when considering all jumping frequencies, average PDs of 

+1.96% and -2.85% are seen (Table 5.11). In general this is fairly representative of the values 



Chapter 5. Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics  

146 

seen for each jumping frequency. The only exception is the mean underestimated PD of -5.83% 

for jumping at 1Hz. The 1st harmonic is not dominant at 1Hz which may affect the PD. In 

addition the harmonic component is smaller, so differences in peak value are exaggerated. 

 
Figure 5.10 The PDs and mean and ±1STDfor each harmonic for each jumping frequency using the B6 marker. 

 
 
 

Table 5.11 The PDs of the first three harmonics between the direct and indirect (B6) forces in the f-domain. 

Percentage Difference Jumping Frequency 
(+) Average 

overestimation 
(-) Average 

underestimation 
Overall 
Average 

STD 

1
st

 Harmonic 

1Hz 1.44 -5.83 -2.20 3.90 
2Hz 2.00 -0.49 1.38 1.30 
3Hz 2.46 -2.22 0.70 2.53 

All frequencies 1.96 -2.85 -0.04 3.19 

2
nd

 Harmonic 

1Hz 2.68 -1.66 1.05 2.53 
2Hz 16.76 -28.31 11.12 17.18 
3Hz 13.73 0.00 13.73 15.05 

3Hz (without TS3) 8.34 0.00 8.34 5.17 
All frequencies 11.05 -9.99 8.63 14.35 
All frequencies  

(without outliers) 
9.26 -9.99 6.84 8.29 

3
rd

 Harmonic 

1Hz 2.53 -3.72 -0.28 4.26 
2Hz 60.34 -39.08 43.02 74.35 

2Hz (without TS3) 48.76 -39.08 23.66 57.61 
3Hz 114.94 -18.37 112.64 127.81 

3Hz (without TS6) 84.60 -18.37 69.89 63.63 

All frequencies 59.27 -20.39 51.80 97.25 
All frequencies  

(without outliers) 
45.30 -20.39 31.09 26.68 

All harmonics ≤ 3Hz  2.34 -3.18 0.13 3.35 
2

nd
 Harmonic > 3Hz  12.55 -14.15 9.83 13.11 
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For all jumping frequencies the average PDs of the 2nd harmonics are +11.05% and -9.99%, as 

seen in Table 5.11. These values overestimate the error in the 2nd harmonic of 1Hz jumping, 

where the average PDs are +2.68% and -1.66%. The mean underestimated PD at the 2nd 

harmonic of 1Hz jumping is closer to zero than the 1st harmonic. The 2nd harmonic, 2Hz, is the 

dominant frequency when jumping at 1Hz and the magnitude of the harmonic component is 

greater. 

The jumping frequency with the greatest spread in PDs at the 2nd harmonic is 2Hz. Table 5.12 

demonstrates the considerable variation in the 2nd harmonic PDs between some of the TSs 

jumping at 2Hz. This does not conform to the general trend of PD spread increasing with 

frequency magnitude which can be observed in Figure 5.10. At 2Hz the STD of the 2nd harmonic 

is 17.18%, which is greater than the STD of its 3Hz counterpart, 15.05% (Table 5.11). High R2F 

values occur at 2Hz, suggesting that the general shape of the force profile is achieved, however 

the PDs show the measurements of peak values are not as accurate other frequencies. 

In contrast, at 3Hz the TSs had similar PDs to one another, however TS3 had a significantly 

larger average overestimated PD of 51.43% (Table 5.12). Removing this outlier reduces the 

average PDs for the 2nd harmonic of 3Hz to +13.73% and -0.00%, with a STD of 5.17%. 

Furthermore the absence TS3 reduces the mean PDs of the 2nd harmonic across all frequencies 

to below ± 10% (+9.26% and -9.99%). 

The 3rd harmonics in Table 5.11 demonstrate an increase in average PDs to +45.30% and -

20.39%. This again misrepresents the 3rd harmonic of 1Hz jumping, where mean PDs of +2.53% 

and -3.72% are recorded. However, these values are representative of the large PDs at the 3rd 

harmonic of both 2 and 3Hz jumping. After removing the most extreme PDs from 3Hz jumping 

as outliers, the mean PDs are +60.34% and -39.08% for 2Hz, and 84.60% and -18.37% for 3Hz, 

which are unacceptably high. The poor PDs at the 3rd harmonics demonstrate the force 

measurement is not as good at higher frequencies. This is potentially due to the higher noise 
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to signal ratio at the higher frequencies due to soft tissue artefact. As the frequency of the 

harmonic increases, in general the range of PDs also increases. 

Table 5.12 The PDs at the harmonics for each TS using the B6 marker. 

Jumping 
Freq 

TS 
1

st
 Harm 
(%) 

2
nd

 Harm  
(%) 

3
rd

 Harm  
(%) 

Freq 1
st

  
Harm (Hz) 

Freq 2
nd

  
Harm (Hz) 

Freq 3
rd

 
Harm (Hz) 

1Hz 

1 2.73 2.12 0.70 1.00 2.05 2.95 

2 -3.35 -0.61 0.98 0.95 1.75 2.60 

3 -8.34 -3.60 -0.87 1.05 2.10 3.05 

4 -5.83 0.30 -8.01 1.00 2.00 3.00 

5 1.90 4.65 6.24 1.00 2.00 3.00 

6 -5.79 -0.76 4.75 0.95 2.00 2.80 

7 0.83 3.27 -2.62 1.00 2.00 2.95 

8 0.27 3.06 -3.37 1.00 2.00 2.90 

+Ave 1.44 2.68 2.53 
   

-Ave -5.83 -1.66 -3.72 
   

Overall Ave -2.20 1.05 -0.28 0.99 1.99 2.91 

STD 3.90 2.53 4.26 0.03 0.10 0.14 

2Hz 

1 1.63 3.79 15.67 2.00 4.05 6.10 
2 -0.15 13.03 29.37 1.80 3.50 5.30 
3 -0.84 -28.31 178.56 2.10 4.35 6.70 
4 1.70 30.65 -20.61 2.00 4.00 6.05 
5 1.92 21.44 -57.56 2.00 4.00 6.00 
6 1.03 8.99 25.39 2.30 4.60 6.85 
7 2.10 12.25 29.09 2.00 4.05 6.05 
8 3.63 27.14 144.28 2.00 4.00 6.00 

+Ave 2.00 16.76 60.34 
   

-Ave -0.49 -28.31 -39.08 
   

Overall Ave 1.38 11.12 43.02 2.03 4.07 6.13 
STD 1.30 17.18 74.35 0.13 0.30 0.44 

3Hz 

1 0.74 9.36 67.96 2.95 5.90 8.70 
2 2.77 5.99 173.05 2.70 5.20 7.75 
3 -3.56 51.43 -18.37 2.85 5.65 8.30 
4 -2.93 6.66 56.74 3.00 6.05 9.05 
5 -0.18 2.23 61.62 3.00 6.10 9.10 
6 2.94 3.19 411.87 3.00 6.05 9.10 
7 2.84 17.92 4.73 3.00 6.05 8.80 
8 2.99 13.04 143.52 3.00 6.00 9.00 

+Ave 2.46 13.73 114.94 
   

-Ave -2.22 0.00 -18.37 
   

Overall Ave 0.70 13.73 112.64 2.94 5.88 8.73 
STD 2.53 15.05 127.81 0.10 0.29 0.45 

 

The largest PDs are overestimations of the force, which, although not ideal, are preferable to 

the component being underestimated. In general the frequencies of the harmonics are more 

variable at higher jumping frequencies and harmonics. This is demonstrated by the increased 

width of the data points on Figure 5.10. 
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The F7 marker is the most visible marker and therefore is potentially the most convenient 

marker for in-situ testing. The average PDs for the F7 marker are calculated in Table 5.13, 

where significantly higher PDs are seen compared to those from the B6 marker. For harmonics 

with a frequency less than or equal to 3Hz, average PDs of +12.50 -23.04 occur. If the 

magnitude of the 2nd harmonic is greater than 3Hz the average PD is +31.28. It is worth noting 

that the majority of the PDs are overestimations, therefore if an underestimation is 

unacceptable the F7 marker may be more appropriate than the B6 marker. 

The mean values of 1st harmonic PDs from the B6 marker (+1.96% and -2.85%) recorded in 

Table 5.11, compare well with the error ± 2% error recorded in the nine marker model (Racic 

et al., 2010). Furthermore the absolute values of the 1st harmonic PDs are smaller than the -

12% to +3% range reported in the video tracking studies (Mazzoleni and Zappa, 2012). 

Table 5.13 The PDs of the first three harmonics between the direct and indirect (F7) forces in the f-domain.  
Percentage 
Difference 

Jumping Frequency 
(+) Average 

overestimation 
(-) Average 

underestimation 
Overall 
Average 

STD 

1st  
Harmonic 

1 Hz 12.53 - 12.53 8.66 
1 Hz (without TS3) 9.42 - 9.42 2.84 

2 Hz 15.58 - 15.58 5.64 
2 Hz (without TS3) 13.76 - 13.76 3.15 

3 Hz 20.58 - 20.58 5.51 

All frequencies 16.23 - 16.23 7.53 
All frequencies (without outliers) 14.86 - 14.86 6.20 

2nd 
Harmonic 

1 Hz 17.71 - 17.71 6.56 
1 Hz (without TS3) 15.38 - 15.38 2.43 

2 Hz 56.34 - 56.34 39.56 
2 Hz (without TS3 & TS4) 34.51 - 34.51 11.05 

3 Hz 43.42 - 43.42 43.31 
3 Hz (without TS6) 28.51 - 28.51 19.08 

All frequencies 39.16 - 39.16 37.67 
All frequencies (without outliers) 25.72 - 25.72 15.15 

3rd 
Harmonic 

1 Hz 28.07 -23.04 8.90 28.12 
1 Hz (without TS5) 21.13 -23.04 2.20 23.33 

2 Hz 141.57 - 141.57 124.08 
2 Hz (without TS5 & TS6) 79.58 - 79.58 71.54 

3 Hz 474.20 - 474.20 674.04 
3Hz (without TS6) 226.26 - 226.26 165.61 

All frequencies 241.26 -23.04 208.22 441.75 
All frequencies (without outliers) 126.23 -23.04 103.84 103.84 

All harmonics ≤ 3Hz 12.50 -23.04 12.50 12.50 
2nd Harmonic >3Hz 31.28 - 31.28 16.17 

 



Chapter 5. Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics  

150 

Comparison between the PDs of the 2nd harmonics from this work and the published nine 

marker values of ±4%, is less satisfactory for jumping frequencies greater than 1Hz. Average 

PDs of +2.68% and -1.66% are recorded at the 2nd harmonic of 1Hz, these values increase to 

+9.26% and -9.99% when the jumping frequencies of 2 and 3Hz are included. However, the 

mean underestimated PDs are smaller than the 1st harmonic value of -12% from the video 

tracking studies (Mazzoleni and Zappa, 2012). 

For the 3rd harmonic, only the average PDs of 1Hz jumping, +2.53% and -3.72%, are smaller 

than, and suitably comparable with the nine marker PDs of ±7% (Racic et al., 2010). It should 

be noted however that the frequency range investigated using the nine marker model is 

smaller than the frequency range of this study. The large PDs at the 3rd harmonic of 2 and 3Hz 

are exacerbated as the frequency components at the higher harmonics are small. The 

inaccuracy of the 3rd harmonic component is not a cause for concern, as for a group load 

generally only the 1st or 2nd harmonic components are significant (Mazzoleni and Zappa, 2012). 

When crowds of individuals jump the frequency will vary between each individual. The 

variability causes leakages of signal energy around the key harmonics; this reduces the peaks 

and widens the base of the harmonics. As a relatively small amount of energy is associated 

with the 3rd harmonic of an individual jumping, within a group the amplitude of the 3rd 

harmonic becomes negligible (Mazzoleni and Zappa, 2012). 

The large spread of data at the higher frequency harmonics decreases confidence in the ability 

to indirectly measure the contribution of higher frequencies. This body of work suggests the 

first three harmonics can be well reproduced if their frequency is less than, or equal to 3Hz. 

From Table 5.11 average PDs of +2.34% and -3.18% are expected in this range, the 95th 

percentiles are +4.79 and -8.02.  

Indirect calculation of the 2nd harmonic for harmonic frequencies between 3 and 6Hz is not as 

satisfactory as below 3Hz. From Table 5.11 average PDs of +12.55% and -14.15% are recorded, 



Chapter 5. Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics  

151 

the 95th percentiles are +29.42 and -17.62. Only one data point in this array is negative, 

demonstrating that the majority of the force peaks are overestimated, this is preferable to 

underestimations. The 3rd harmonic is unlikely to be reproduced well unless its frequency is 

less than or equal to 3Hz. 

The similarities between the PDs presented here and those calculated in nine marker studies 

supports the hypothesis that a single marker model is an equally good, but less complex 

method of calculating the GRF at low frequency harmonics (Racic et al., 2010). When 

estimating the contribution of harmonics with a frequency greater than 3Hz, the errors in PD 

using multiple markers were smaller. However, the PDs at the 2nd harmonics using one marker 

were reasonable. The nine marker study only considers two male test subjects and the lower 

error achieved in those tests might be unrepresentative of the wider population. 

5.4.5 Structural Response 

To fully evaluate the success of the indirect force measurement the structural response to 

both the direct and indirect forces is examined and compared. In this section the structure is 

modelled as a SDOF system. Resonance responses are investigated and compared to the peak 

ratios of the applied forces. The relationships between the response ratio and the R2 value and 

peak ratio of the force are investigated. 

5.4.5.1 SDOF System Implementation 

Within this section the implementation of the structural model and the application of the 

forces will be discussed. The structure is represented as a SDOF system. Both the indirect force 

from the B6 marker and the direct force are applied for one individual at a time and the 

structural response due to each force is calculated. To ensure the simulations reflect the likely 

structural natural frequencies, including the vulnerable frequencies under 6Hz, the frequency 

of the SDOF system fn is varied in steps of 0.1Hz from 0.5Hz to 7Hz. In addition three different 

damping ratios ζ are used, with values of 0.01, 0.02 and 0.03 allowing the consideration of low, 



Chapter 5. Measuring Dynamic Force of a Jumping Person by Monitoring 

their Body Kinematics  

152 

medium and moderately damped structures (Setareh, 2011; Jones et al., 2011b). A modal mass 

of 10000 kg is assumed for ease of calculation. 

A popular stimulus for jumping at events is music. The longest continuous jumping force 

applied to a structure is therefore likely to coincide with the duration of a song. Since the 

average duration of current pop songs is four minutes (Foreman and Laser Jock, 2008) the 

measured force signals are looped for this duration and then applied to the SDOF structure. 

The steady state resonance response of the SDOF system is of greatest concern from a 

structural and safety point of view. As the steady state responses of the SDOF systems were 

achieved within 4 minutes, the numbers of cycles required for steady state resonance 

response were investigated to speed up processing. An estimate of the number of cycles is 

given as 1/ζ, where ζ is the damping ratio (Anderson and Naeim, 2012). Therefore the highest 

number of cycles required is 1/0.01 =100 cycles. As 1Hz is the lowest jumping frequency a 

maximum of 100 seconds is required for resonance steady state response to be reached. 

Therefore the first 100s of the response are analysed only. 

5.4.5.2 Response Magnitude 

Within this section the t- and f-domains of the structural responses to both the direct and 

indirect forces are investigated. This provides an insight into the ability of the indirect force to 

excite a structural response which matches that of the direct force. The magnitudes of the 

SDOF system responses are studied to identify high risk structural natural frequencies. 

Figure 5.11 demonstrates the resonance response of a structure due to jumping at 1Hz. The t-

domain responses from a direct force, and an indirect force, are shown in Figure 5.11a as 

dashed and solid lines, respectively. It can be seen that the two responses agree well. Good 

agreement can also be seen in the f-domain (Figure 5.11b), which, in this case includes the 

contribution of the first five forcing harmonics to the structural response. 
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In the simulations, each SDOF system is exposed to the forces generated at the three jumping 

frequencies. Figure 5.12 demonstrates the peak structural acceleration responses of the 

systems to the direct forces for the given range of natural frequencies, when ζ is 0.01. The 

purpose is to highlight the maximum structural accelerations likely, and to observe the natural 

frequency these occur at. 

 

 
Figure 5.11 The structural accleration response in the a) t-domain (for 100s and 10s) and b) the f-domain, of a 

structure with fn=1Hz and ζ=0.01, from TS4 jumping at 1Hz. 
 
 
 

The modal masses from stand case studies were examined, values between 36,904kg and 

290,830kg were reported by Jones et al. (2011a). Hence a conservative minimum estimate of 
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the modal mass of a stand is 35,000 kg. To incorporate this, the response values reported from 

the SDOF system should be divided by a mass factor mf of 3.5. 

The largest calculated structural acceleration is just over 6.07ms-2. With the application of mf 

this reduces to 1.73ms-1, which is equivalent to 17.7% of g. This response occurred for a 2Hz 

system exposed to jumping at the same frequency. Large accelerations are also seen when the 

natural frequency matches the forcing frequency for a 3Hz system. When the 2nd and 3rd 

harmonics of the jumping force match the frequency of the structure the maximum 

accelerations are about half of those caused by the 1st harmonic. It should be noted that when 

jumping at 1Hz, the largest responses occur at 2Hz (Figure 5.12). This is consistent with 2nd 

harmonic dominance caused by the 1Hz jumping style as explained in Section 2.2.2. 

 
Figure 5.12 The peak acceleration response for SDOF systems exposed to jumping at different frequencies. 

 
 
 

5.4.5.3 Response Ratio 

The purpose of this section is to investigate how well the steady state accelerations of the 

SDOF systems due to the indirect force Aindirect, match the accelerations caused by the direct 

force Adirect. The effect of different structural natural frequencies and jumping frequencies is 
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examined. A ratio of the responses rA is used to quantify the agreement between the 

responses and is calculated as: 

     𝒓𝑨 =
𝑨𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕

𝑨 𝒅𝒊𝒓𝒆𝒄𝒕

 5.10 

The subscripts t  and f will be used to denote the ratio in the t- and f-domains, respectively. A rA 

value of one implies complete agreement of the peak responses, rA>1 that the indirect force 

overestimates the structural response, whereas rA<1 implies that the response is 

underestimated. The response ratios are examined for each SDOF system and jumping 

frequency. This provides an insight into the range of fn values where the greatest and least 

difference between the structural responses occurs. 

Figure 5.13a shows the rA,t values from all the SDOF systems for jumping at 1Hz. Values of rA,t 

in the range of 0.9-1.1 are seen until approximately fn= 2.5Hz. For fn =2.5-5.0Hz the scatter 

increases gradually. However almost all the rA,t values remain in the range 1±0.2. This range is 

smaller than the range achieved in the crowd video tracking investigation (Mazzoleni and 

Zappa, 2012). For natural frequencies above 5Hz the spread in the data increases further. In 

these cases the direct force can be over or underestimated by up to a factor of two. 

Figure 5.13b shows the rA,t values for jumping at 2Hz. As before, rA,t values in the range of 0.9-

1.1 are seen for structures with a natural frequency fn< 2.5Hz. However, when jumping at 2Hz 

the variation in rA,t values is greater between fn = 2.5-5Hz than at 1Hz. Although the majority 

(85.9%) of the data points where the fn<5Hz remain within 1±0.2, there is significant deviation 

caused by TS3. When the fn exceeds 5Hz, the spread of the data increases further, suggesting 

that there is little correlation between the response from the direct and indirect forces in this 

frequency range. 

The smallest spread in rA,t values over the range of natural frequencies can be seen for jumping 

at 3Hz, as shown in Figure 5.13c. If the worst performing TS is ignored, the majority (93.75%) 

of the rA,t values are within 0.9 and 1.2 for fn≤7Hz. It should be noted that for jumping at 2Hz 
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and 3Hz, at higher natural frequencies the response is generally overestimated, which is 

preferable to underestimation. 

 

 

 
Figure 5.13 The B6 marker rA,t values for a range of SDOF systems due to jumping at a) 1Hz b) 2Hz and c) 3Hz. 
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These graphs suggest a very good agreement between the two responses for natural 

frequencies fn<2.5Hz, good agreement for 2.5Hz ≤ fn ≤ 5Hz, and poor agreement for fn > 5Hz. 

An exception is jumping at 3Hz where the majority of the structural responses are well 

reproduced up to fn =7Hz. This indicates that the ability of the indirect force to accurately 

generate the structural response is dependent on the jumping frequency and natural 

frequency. 

Although in general the correspondence of the structural response is poor above 5Hz, the 

maximum response accelerations are lower at these natural frequencies (Figure 5.12). The 

maximum response after applying mf when fn ≥ 5Hz is 0.88ms-2, this value decreases to 

0.52ms-2 for fn > 6Hz. In addition the largest accelerations at frequencies above 5Hz are due to 

3Hz jumping, where good consistency between the responses is seen. At fn >5Hz the SDOF 

response due to jumping at 1 and 2Hz is likely to be small, therefore the inability to reproduce 

the response well at high values of fn for these jumping frequencies is not critical. 

There is little difference in the ratio of responses between SDOF systems with different 

damping ratios, therefore in further simulations the worst case scenario, a damping ratio of 

0.01, is used. To compare the rA,t values at the harmonics of the jumping frequencies, the 

average rA,t values and the average rA, t ± 1STD are plotted against the structural frequencies 

normalised by jumping frequency (Figure 5.14). 
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Figure 5.14 The average rA, t values for the B6 marker as a function of fn normalised by the jumping frequency. 

 
 
 

Figure 5.14 shows the average rA,t value of each jumping frequency is approximately one, and 
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near one at the 1st harmonic. The STDs at the 1st harmonic are small. This suggests that the 

structural responses are well reproduced at resonance conditions. The average rA,t values at 
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for jumping at 2Hz and 3Hz where increases in the average values and STDs are seen, however 
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0.5Hz either side (Figure 5.15). It can be seen from Figure 5.15a that the structural response 

ratios associated with the 1st harmonic component of the force are very small, the majority of 

the rA, t values are between ±0.05. Figure 5.15b shows the R2F, f and rA, t values closest to one 

for the 1st harmonic, a negative correlation is apparent. 

 

 

 
Figure 5.15 The r A, t values plotted against the R2 F, f, harmonic  values at each harmonic of the force, for resonance 

due to the 1st (a & b), 2
nd

 (c & d), and the 3
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 (e & f) harmonic and all harmonics (g & h) where a,c, e & g) are an 
overview of the distribution and b, d, f & h) a zoomed section. 
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to 0.91 (Figure 5.15c) is required, 83.3% of trials achieve this. For an rA, t value between 0.95 

and 1.10 at the 2nd harmonic, an R2F,f harmonic value of approximately 0.985 is needed (Figure 

5.15d), 50% of trials achieve this (100% of 1Hz trials). When considering resonance at the 3rd 

harmonic, an R2F, f harmonic value of greater or equal to approximately 0.80 will facilitate a 

response ratio of between than 1 ±0.10 (Figure 5.15 e and f), 45.8% of trials achieve this (100% 

of 1Hz trials). 

Figures 4.15 g and h show the R2F, f harmonic values plotted against the overall R2F, f  values. 

Excluding the 3rd harmonics of 2 and 3Hz jumping, 96.4% of forces with an R2F, f  value of 0.985 

or greater have a response ratio between 0.8 and 1.10 at the main harmonics. 75% of trials 

using the B6 marker achieved this value or greater. The overall R2F,f values of the 2 and 3Hz 

trials are less influenced by the higher harmonic components of the force. Therefore using the 

overall R2F,f value to determine the response ratio at the 3rd harmonics of these jumping 

frequencies is inadequate. 

It is also possible to use the ratio of direct and indirect peak forces at each harmonic in the f-

domain rF ,f, and compare this to the structural response ratio at resonance of the harmonics in 

the t-domain rA ,t. This was carried out for resonance conditions as the largest structural 

responses occur. The jumping forces were applied to a subset of SDOF structures to excite 

them in resonance. The actual frequency of each jumping trial (which usually differs slightly 

from the jumping frequency targeted in the experiments) was investigated. The measured 

forces were applied to SDOF systems where the natural frequency matched either the 1st, 2nd 

or 3rd harmonic of the actual jumping frequency. To gauge whether rA, t was directly linked to 

the force ratio rF, f the variables were plotted against one another in Figure 5.16 for the first 

three harmonics. 
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Figure 5.16 The structural response ratio in the t-domain against the peak force ratio in the f-domain, for resonance 

due to the a) 1
st

 b) 2
nd

 and c) 3
rd

 harmonic component of the force. 
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14.15%). Satisfactory measurement of the 3rd harmonic of the force (and the corresponding 3rd 

harmonic resonance response) is only possible at harmonic frequencies less than or equal to 

3Hz. More accurate force measurements of the harmonics are apparent at 1Hz, and greater 

variation in the peak values are seen at 2Hz and 3Hz. This is due to a higher soft tissue artefact 

noise to signal ratio at the higher frequency components. It is therefore the harmonic 

frequency, not necessarily the harmonic number which is significant in dictating whether the 

force measurement will facilitate an accurate prediction of the response. 

The F7 marker is highly visible, therefore quantifying its ability to replicate the direct force is 

useful. The PDs between the direct and indirect forces in the f-domain are calculated in Table 

5.13 and are approximately equivalent to the PDs in the t-domain of the structural resonance 

response. Therefore, for the first three harmonics, if the frequency less than or equal to 3Hz, 

average PDs of +12.50% -23.04% are expected in the structural response. For 2nd harmonics 

with a frequencies between 3 and 6Hz average PDs of +31.28% occur. It is advised that the F7 

marker is only used when considering resonance at the 1st harmonic, or resonance due to the 

2nd and 3rd harmonics of 1Hz jumping. Caution should be practised when using the F7 marker 

as large errors in the response are likely, however if visibility is a priority the F7 marker could 

be used. 

The discrepancies in the force may be caused by the inability of a single monitoring point to 

capture the whole body movement at the higher harmonics. Arm movements and other 

deviations from a 2D vertical jumping motion may cause the position of the body CoM to shift, 

hence introducing discrepancies in the force measurements. It is also likely that some of the 

discrepancies at the higher harmonic frequencies are caused by the inability of the indirect 

system to measure the higher frequency components of the force. The higher frequency 

components of the force are smaller and the influence of the noise due to soft tissue artefact 

is more significant, hence larger discrepancies occur. In addition, from Figure 5.10, the 
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frequencies of the harmonics are more variable at higher frequencies. Structures are most 

influenced by forcing frequencies which match their natural frequency. When the direct and 

indirect forces are applied to high frequency structures, large differences in response can 

occur. The harmonic frequencies may be mismatched and discrepancies may occur between 

the force measurements at higher frequencies (Figure 5.13). 

Figure 5.8 revealed that the TSs at 1Hz created an additional bounce between jumps, spaced at 

1s to aid their beat synchronisation (Yao et al., 2006). A consequence is the 2nd harmonic 

dominates the f-domain, and the principal activity frequency is 2Hz. This is likely the cause of 

the smaller PDs at the 2nd harmonic of 1Hz jumping, as this is the dominant harmonic. When 

jumping at 2 and 3Hz the 1st harmonic is dominant. The ability of the markers to successfully 

capture this intermittent bounce, bodes well for future use of this method to monitor 

bouncing TSs. 

It is thought that soft tissue artefact would be more apparent in TSs with higher body fat and 

would cause noise and force discrepancies. A muscle wrap was used around the stomach in 

experiments and significantly reduced the soft tissue artefact, however the effect of body build 

on the R2F,f value is investigated. To categorise body type the BMI (CDC, 2011) is calculated for 

each TS (Equation 5.4) and the results are presented in Table 5.1. Unfortunately the BMI is a 

ratio of weight to height2 and therefore does not consider muscle density or fat content. TS1 

has a high BMI index of 24.4, but had a muscular build, so a close approximation to the direct 

force is seen from the indirect force. Whereas TS3 has a similar BMI of 25.8 but higher body 

fat, and therefore there is more discrepancy between the forces. Although TS3 consistently 

performed the poorest, other TSs with high body fat and BMI indexes still achieved good R2F,f 

values. Overall, there is insufficient evidence to link BMI and body fat to the R2F,f and rA,t. 

values. It is thought that body build will not significantly affect this work. 
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5.6 Conclusion 

It was found that a single monitoring point can be used for the calculation of the dynamic force 

of a jumping TS. The most effective marker for the measurement of the force was the B6 

marker located at the top of the back on the 7th cervical vertebra (C7/Vertebra Prominens). 

The first three harmonics of the force can be accurately measured if their harmonic frequency 

is less than or equal to 3Hz. Satisfactory force measurements can occur for the 2nd harmonic 

for frequencies between 3 and 6Hz. Reasonable measurements of the 3rd harmonic are only 

possible for jumping at 1Hz. 

The B6 marker is located at the back of the individual and some logistical issues when 

monitoring the TSs may arise. If using the B6 marker is impractical within a particular test set 

up, an alternative is to use the F7 frontal marker which is located at the base of the neck. A 

greater range of structural response ratios are likely, but the F7 marker has the advantage of 

being highly visible. The indirect force using the F7 marker is unlikely to underestimate the 

direct force, therefore if a force underestimation is unacceptable the use of the F7 marker over 

the B6 marker is suggested.  

These findings have the potential to facilitate future experimental determination of dynamic 

forces induced by crowd jumping at real-life stadium events. Monitoring of small to medium 

crowds using reflective markers is possible, and there is potential to expand to large crowds if 

the technique is adapted and combined with previous marker-less video techniques (Hoath et., 

al 2007). 
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6 Measuring Dynamic Force of a Bobbing Person by Monitoring 

their Body Kinematics 

6.1 Introduction 

Whilst jumping can produce large dynamic loads as seen in Chapter 4, the activity of bobbing 

(Section 2.3) requires less energy and is more commonly observed within crowds (NRC, 2006). 

Authors have noted greater degrees of coordination with the beat, and other individuals whilst 

bobbing (Parkhouse and Ewins, 2004), in addition a higher frequency range of activity is 

achievable (Sim et al., 2005). Therefore, accurate measures of bobbing forces are important. 

Within this section the methodology presented in Chapter 5 is extended to consider remotely 

monitoring and measuring the dynamic forces of bobbing individuals. The ground reaction 

forces (GRF) from bobbing test subjects (TS) are measured directly from a force plate (known 

as the direct force), and indirectly using a motion capture system (known as the indirect force). 

The effect of marker position on force measurement is investigated. After which the 

percentage differences between the force spectra are analysed. To ensure the applicability of 

the measurement system the bobbing forces are applied to a single degree of freedom (SDOF) 

system and the responses examined. 

The aim of these experiments is to deduce whether a single monitoring point can accurately 

measure the GRF of a bobbing individual, and to ascertain the best monitoring location. 

6.2 Experimental Procedure 

The experimental procedure is consistent with the methodology used in the jumping 

experiments in Chapter 5 and detailed in Section 5.3. The experiments took place within the 

Gait lab and eight individuals (the same individuals who took part in the jumping experiments) 

were asked to bob upon the force plate to a metronome beat. As noted in Section 2.3 a larger 
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frequency range of activity is possible whilst bobbing, therefore the activity frequencies were 

extended to 1, 2, 3 and 4Hz. The investigated marker positions were consistent with those 

used for the jumping experiments. Individuals were not coached in the bobbing style, this 

allowed them to choose whether they bounced or jounced to the metronome beat (Section 

2.3). MATLAB R2011b (MathWorks, 2011) was used to process the bobbing data which was 

filtered as detailed in Section 5.3. 

Due to the complex nature of the bobbing action which is comprised of an upward movement 

whilst maintaining contact with the floor, it is uncertain whether force measurement through 

the monitoring of one point is possible. The indirect force is calculated using the marker 

displacements which may have limited potential to convey the complex action. There is 

concern that the marker displacements will be similar to those of a jumping individual and 

hence overestimate the bobbing force. 

6.3 Results and Analysis 

The coefficient of determination R2 (Draper and Smith, 1985) is used to quantify the 

agreement between the direct and indirect experimental forces. The subscripts F, t and f will be 

used to denote the force, and the time- and frequency-domains of the force respectively. If a 

domain is not specified R2F refers to the R2 values of the force in both domains. Hereafter the 

time- and frequency-domains will be referred to as the t- and f-domains respectively. 

The experimental results from the markers will be examined by location group, starting with 

the hip group, followed by the front and back groups. 

6.3.1 Hip Markers 

For the hip group as a whole, the mean value and STD of R2F, t are 0.877 and 0.122, and for R2F, f 

the mean and STD are 0.912 and 0.120 (Table 6.1). The mean values are lower than the 

corresponding values when jumping (R2F, t =0.945 and R2F, f =0.960, Section 5.4.1) and the STDs 



Chapter 6. Measuring Dynamic Force of a Bobbing Person by Monitoring 

their Body Kinematics 

167 

are higher (R2
F, t, STD=0.027, R2

F, t, STD =0.024). From these comparisons it can be inferred that the 

indirect force measurement has a poorer agreement with the direct force and is less consistent 

when monitoring bobbing subjects, as predicted. 

Table 6.1 The average R2F values for the hip markers. 

 
R2

F,t R2
F,f 

 
1Hz 2Hz 3Hz 4Hz Ave STD 1Hz 2Hz 3Hz 4Hz Ave STD 

RH1  0.924 0.947 0.905 0.775 0.888 0.110 0.964 0.972 0.945 0.810 0.923 0.107 
RH2 0.907 0.928 0.891 0.727 0.863 0.129 0.953 0.955 0.928 0.772 0.902 0.123 
LH2 0.908 0.938 0.891 0.724 0.865 0.126 0.962 0.958 0.919 0.760 0.900 0.131 
LH1  0.930 0.954 0.920 0.772 0.894 0.119 0.974 0.972 0.945 0.809 0.925 0.115 

     0.877 0.122     0.912 0.120 

 

Although the bobbing R2F values are lower than their jumping counterparts the mean values 

are still reasonably high and the STD relatively low. Consistent with the jumping experiments 

the hip group are on average the most consistent and successful at measuring the GRF. 

The R2F values from the hip markers are very similar as they are in close proximity to one 

another. The markers in position 1 on the left and right hips have the highest R2F values (Table 

6.2). Overall the LH1 marker has the highest mean values (R2F, t =0.894 and R2F, f =0.925) and 

therefore will be considered further from this group. For jumping the RH1 marker was the best 

performing marker, however there is very little difference in the R2F values between these two 

markers when bobbing. It is therefore the position and not the side of the body which is 

important for monitoring. 

A comparison of the direct and indirect forces using the LH1 marker can be seen in Figure 6.1 

for various bobbing frequencies. The indirect force generally matches the direct force well in 

both the t-and f-domains. However, there is always some degree of overestimation in the 

indirect force, with the greatest discrepancies occurring at 4Hz. The overestimations tend to 

increase at higher frequencies because the bobbing displacements become more similar to 

high frequency jumping displacements (Section 4.3.1). As the indirect force is calculated using 

the displacements, distinguishing the bobbing and jumping action becomes more difficult. 
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Contact is maintained with the ground during bobbing therefore the direct force is not as high 

as the jumping equivalent, this causes discrepancies between the direct and indirect forces. 

It is worth noting that the bobbing GRFs are approximately half that of the corresponding 

jumping GRFs. The frequency components of the bobbing force are smaller than those from 

jumping, in Figure 6.1 none of the frequency components exceed a value of one. 

Table 6.2 R2
F, t and R2

F, f values for the hip markers. 

 TS 1 2 3 4 5 6 7 8 Ave STD 

R2
F, t  RH1 0.835 0.969 0.904 0.962 0.922 0.902 0.969 0.925 0.924 0.042 

 

1Hz 
RH2 0.784 0.961 0.901 0.941 0.890 0.907 0.953 0.922 0.907 0.052 
LH2 0.822 0.971 0.945 0.943 0.908 0.821 0.935 0.923 0.908 0.053 
LH1 0.860 0.971 0.943 0.972 0.929 0.876 0.960 0.929 0.930 0.039 

2Hz 

RH1 0.866 0.986 0.968 0.975 0.953 0.979 0.878 0.973 0.947 0.044 
RH2 0.813 0.985 0.961 0.947 0.923 0.975 0.848 0.969 0.928 0.059 
LH2 0.864 0.987 0.976 0.948 0.916 0.972 0.866 0.971 0.938 0.046 
LH1 0.911 0.987 0.970 0.977 0.961 0.979 0.875 0.972 0.954 0.037 

3Hz 

RH1 0.798 0.975 0.922 0.923 0.805 0.932 0.950 0.939 0.905 0.062 
RH2 0.770 0.961 0.920 0.901 0.745 0.924 0.957 0.949 0.891 0.079 
LH2 0.853 0.958 0.933 0.884 0.726 0.952 0.936 0.882 0.891 0.071 
LH1 0.908 0.969 0.935 0.934 0.802 0.966 0.926 0.920 0.920 0.049 

4Hz 

RH1 0.903 0.860 0.842 0.853 0.395 0.798 0.728 0.822 0.775 0.151 
RH2 0.856 0.808 0.747 0.800 0.300 0.757 0.688 0.857 0.727 0.170 
LH2 0.710 0.780 0.887 0.761 0.326 0.846 0.740 0.742 0.724 0.160 
LH1 0.830 0.830 0.888 0.850 0.321 0.876 0.722 0.858 0.772 0.177 

 R2
F, f 
 

1Hz 

RH1 0.973 0.981 0.962 0.979 0.953 0.916 0.981 0.964 0.964 0.020 
RH2 0.948 0.978 0.956 0.961 0.927 0.924 0.966 0.965 0.953 0.018 
LH2 0.937 0.984 0.967 0.960 0.953 0.981 0.946 0.963 0.962 0.015 
LH1 0.966 0.982 0.968 0.985 0.968 0.986 0.969 0.964 0.974 0.009 

2Hz 

RH1 0.976 0.991 0.984 0.985 0.979 0.992 0.888 0.984 0.972 0.032 
RH2 0.941 0.990 0.977 0.960 0.949 0.987 0.856 0.979 0.955 0.041 
LH2 0.943 0.992 0.986 0.961 0.941 0.984 0.875 0.984 0.958 0.037 
LH1 0.972 0.993 0.981 0.989 0.982 0.992 0.882 0.986 0.972 0.035 

3Hz 

RH1 0.944 0.988 0.974 0.937 0.834 0.952 0.958 0.970 0.945 0.045 

RH2 0.900 0.977 0.973 0.912 0.777 0.949 0.966 0.975 0.928 0.063 

LH2 0.915 0.978 0.953 0.896 0.746 0.981 0.945 0.937 0.919 0.071 

LH1 0.954 0.984 0.961 0.951 0.824 0.988 0.933 0.969 0.945 0.049 

4Hz 

RH1 0.944 0.906 0.919 0.864 0.426 0.821 0.738 0.867 0.810 0.157 
RH2 0.896 0.862 0.881 0.812 0.337 0.783 0.698 0.905 0.772 0.177 
LH2 0.774 0.840 0.919 0.785 0.290 0.895 0.750 0.830 0.760 0.186 
LH1 0.881 0.877 0.911 0.874 0.364 0.902 0.742 0.921 0.809 0.176 
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Figure 6.1 Comparing the direct and indirect forces using the LH1 marker for bobbing at 1Hz (a&b), 2Hz (c&d), 

3Hz(e&f) and 4Hz (g&h), where a, c, e & g) are the t-domain, and b, d, f & h) the f-domain. 
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The distribution of the R2F values was investigated to find the range containing 95% of the 

data. As previously with the jumping experiments, each data record was split into three trials 

and new R2
F values were calculated to increase the resolution of the R2

F distribution. The 

newly split trials were approximately seven seconds in duration. The 95th percentiles were 

found by calculating the top and bottom 2.5% of R2F values within the data set, and hence 

defining the limits wherein 95% of the data lie. The 95th percentile R2F values for the LH1 

marker and the hip group as a whole are calculated in Table 6.3 and shown in Figure 6.2. The 

percentile ranges across all bobbing frequencies and for each bobbing frequency are included. 

 

The majority of the lower limits for the LH1 marker are above 0.80, the lowest values are seen 

for bobbing at 4Hz (Table 6.3). The 95th percentile range increases with increasing frequency. 

The overall average R2F, f value for all bobbing frequencies for the LH1 marker is 0.935 (Figure 

6.2). The upper and lower R2F, f limits are 0.993 and 0.542 respectively, demonstrating that 

97.5% of the data have an R2F, f value greater than 0.542. 

The LH1 marker is unlikely to be visible within a crowd environment as it is low and potentially 

obstructed from view by other crowd members. Therefore using this marker to track 

movements within crowds is not recommended. 

Table 6.3 The average R2F and 95
th

 percentiles for the hip markers. 

 
1Hz 2Hz 3Hz 4Hz 

  Ave 
95% 95% 

Range Ave 
95% 95% 

 Range Ave 
95% 95% 

Range Ave 
95% 95% 

Range 
Min Max Min Max Min Max Min Max 

 R2
F, t                

RH1 0.924 0.826 0.978 0.152 0.947 0.843 0.987 0.145 0.905 0.772 0.975 0.204 0.775 0.351 0.921 0.569 
RH2 0.907 0.763 0.965 0.202 0.928 0.786 0.987 0.201 0.891 0.730 0.962 0.232 0.727 0.237 0.879 0.641 
LH2 0.908 0.804 0.972 0.168 0.938 0.843 0.987 0.144 0.891 0.724 0.960 0.236 0.741 0.337 0.892 0.555 
LH1 0.930 0.848 0.983 0.135 0.954 0.865 0.988 0.123 0.920 0.800 0.971 0.171 0.769 0.276 0.906 0.630 

Ave 0.917 0.801 0.977 0.176 0.942 0.825 0.989 0.164 0.902 0.735 0.974 0.239 0.753 0.230 0.918 0.687 

R2
F, f                 

RH1 0.964 0.913 0.986 0.073 0.972 0.886 0.994 0.107 0.945 0.832 0.989 0.157 0.810 0.386 0.956 0.570 
RH2 0.953 0.911 0.982 0.071 0.955 0.852 0.993 0.141 0.928 0.774 0.980 0.206 0.772 0.280 0.920 0.641 
LH2 0.962 0.930 0.986 0.056 0.958 0.868 0.993 0.125 0.919 0.743 0.984 0.241 0.760 0.211 0.930 0.720 
LH1 0.974 0.952 0.992 0.039 0.972 0.873 0.995 0.122 0.945 0.821 0.989 0.168 0.806 0.326 0.944 0.618 

Ave 0.963 0.918 0.989 0.071 0.964 0.861 0.994 0.133 0.934 0.754 0.988 0.234 0.787 0.266 0.948 0.681 
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Figure 6.2 Average R2F values from the LH1 marker in the a) t-domain and b) f-domain and for the entire hip 

group in the c) t-domain and d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are 
marked as crosses, the dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 

 
 
 

6.3.2 Front Markers 

As a group, the front markers are not as good for force measurement as the hip and back 

markers. The reduced R2F values in Table 6.4 and Table 6.5 demonstrate this when compared 

to the hip R2F values in Table 6.1 and Table 6.2. The mean values are R2F, t = 0.719 and R2F, f = 

0.754 (Table 6.4) which are smaller than the corresponding jumping values (R2F, t =0.828 and 

R2F, f = 0.857, Section 5.4.2). The STDs have increased from the values of R2F, t, STD=0.063, R2F, t, 

STD =0.058 for the jumping experiments to R2F, t, STD= 0.219 and R2F, f, STD= 0.200 for bobbing. 
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Table 6.4 The average R2
F values for the front markers. 

 R2
F,t R2

F,f 
 1Hz 2Hz 3Hz 4Hz Ave STD 1Hz 2Hz 3Hz 4Hz Ave STD 

F1 0.922 0.916 0.788 0.598 0.816 0.180 0.950 0.931 0.825 0.641 0.846 0.164 
F2 0.888 0.880 0.696 0.577 0.768 0.187 0.915 0.897 0.743 0.616 0.801 0.170 
F3 0.786 0.819 0.592 0.553 0.698 0.218 0.807 0.838 0.648 0.591 0.732 0.198 
F4 0.788 0.816 0.567 0.458 0.674 0.233 0.809 0.835 0.626 0.497 0.708 0.213 
F5 0.795 0.813 0.574 0.449 0.668 0.241 0.819 0.832 0.638 0.472 0.701 0.227 
F6 0.736 0.809 0.630 0.482 0.670 0.242 0.787 0.834 0.690 0.544 0.719 0.212 
F7 0.819 0.865 0.776 0.749 0.804 0.160 0.855 0.885 0.816 0.780 0.836 0.144 

     0.719 0.219      0.754 0.200 

 

The highest R2F values varied between the F1 and the F7 markers (Table 6.5). The F1 marker on 

average performs better, but the position of the F7 marker is more desirable and therefore will 

be considered further. The mean R2
F values of the force using the F7 marker are R2

F, t =0.804 

and R2F, f = 0.836 (Table 6.4), which are reasonable. Figure 6.3 demonstrates the indirect force 

measurements using the F7 marker, which are similar to the direct force measurements. The 

biggest discrepancies between the force measurements occur at 4Hz. 

The 95th percentiles of the F7 marker are shown in Figure 6.4 and demonstrate a dramatic 

increase in variability, compared to the LH1 marker. The range in percentiles (Table 6.6) and 

the larger STDs (Table 6.5) highlight the lack of consistency associated with the F7 marker. The 

R2F values decrease with increasing frequency. The F7 marker is the most visible of the 

markers. It is situated at the front of the body below the head, and should be visible within the 

crowded environment typical of grandstands. This marker could be used to calculate the force, 

but the accuracy of the force will be reduced when compared with the LH1 marker. 
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Table 6.5 R2F, t and R2F, f  values for the front markers. 
R2

F, t TS 1 2 3 4 5 6 7 8 Ave STD 

1Hz 

F1 0.891 0.934 0.902 0.954 0.913 - 0.938 0.920 0.922 0.020 
F2 0.716 0.919 0.906 0.952 0.874 - 0.931 0.914 0.888 0.073 
F3 0.701 0.908 0.244 0.926 0.884 - 0.928 0.909 0.786 0.233 
F4 0.708 0.887 0.258 0.921 0.888 - 0.938 0.912 0.788 0.228 
F5 0.865 0.787 0.299 0.909 0.879 - 0.935 0.892 0.795 0.207 
F6 0.876 0.787 0.305 0.877 0.874 0.350 0.937 0.882 0.736 0.239 
F7 0.897 0.928 0.384 0.904 0.896 0.675 0.951 0.916 0.819 0.183 

2Hz 

F1 0.923 0.950 0.934 0.957 0.970 0.896 0.724 0.970 0.916 0.076 
F2 0.814 0.940 0.925 0.961 0.891 0.845 0.721 0.945 0.880 0.077 
F3 0.801 0.923 0.630 0.879 0.898 0.822 0.694 0.907 0.819 0.100 
F4 0.786 0.904 0.620 0.847 0.895 0.813 0.763 0.904 0.816 0.090 
F5 0.876 0.847 0.623 0.830 0.893 0.823 0.756 0.860 0.813 0.082 
F6 0.890 0.867 0.534 0.782 0.902 0.814 0.787 0.896 0.809 0.114 
F7 0.888 0.944 0.601 0.846 0.920 0.921 0.862 0.935 0.865 0.105 

3Hz 

F1 0.796 0.846 0.884 0.544 0.846 0.634 0.826 0.931 0.788 0.123 
F2 0.541 0.816 0.877 0.407 0.632 0.545 0.865 0.885 0.696 0.175 
F3 0.513 0.788 0.242 0.349 0.713 0.485 0.827 0.822 0.592 0.212 
F4 0.447 0.746 0.234 0.278 0.711 0.460 0.886 0.775 0.567 0.229 
F5 0.803 0.708 0.241 0.148 0.741 0.488 0.904 0.561 0.574 0.252 
F6 0.838 0.685 0.260 0.516 0.856 0.313 0.912 0.659 0.630 0.231 
F7 0.822 0.903 0.311 0.692 0.911 0.709 0.958 0.904 0.776 0.198 

4Hz 

F1 0.864 0.533 0.643 - 0.352 - 0.299 0.897 0.598 0.230 
F2 0.792 0.505 0.589 - 0.240 - 0.517 0.819 0.577 0.195 
F3 0.785 0.476 - - 0.400 - 0.378 0.725 0.553 0.169 
F4 0.481 0.341 - - 0.262 - 0.591 0.618 0.458 0.139 
F5 0.729 0.326 - - 0.334 0.464 0.624 0.221 0.449 0.178 
F6 0.539 0.153 - 0.383 0.796 0.646 0.678 0.183 0.482 0.231 
F7 0.623 0.820 - 0.679 0.866 0.635 0.833 0.789 0.749 0.093 

R2
F, f F1 0.922 0.946 0.958 0.971 0.944 - 0.953 0.954 0.950 0.014 

1Hz 

F2 0.753 0.932 0.963 0.968 0.895 - 0.948 0.949 0.915 0.070 
F3 0.737 0.922 0.254 0.937 0.903 - 0.945 0.950 0.807 0.236 
F4 0.743 0.905 0.268 0.932 0.907 - 0.955 0.955 0.809 0.231 
F5 0.887 0.823 0.309 0.920 0.896 - 0.948 0.948 0.819 0.212 
F6 0.906 0.832 0.398 0.889 0.897 0.470 0.950 0.954 0.787 0.208 
F7 0.919 0.948 0.464 0.916 0.919 0.744 0.963 0.969 0.855 0.162 

2Hz 

F1 0.950 0.957 0.950 0.973 0.979 0.911 0.742 0.983 0.931 0.074 
F2 0.848 0.949 0.948 0.976 0.899 0.861 0.738 0.957 0.897 0.074 
F3 0.835 0.933 0.674 0.888 0.906 0.837 0.710 0.920 0.838 0.091 
F4 0.817 0.913 0.662 0.856 0.903 0.830 0.781 0.917 0.835 0.080 
F5 0.898 0.863 0.664 0.840 0.902 0.844 0.767 0.875 0.832 0.075 
F6 0.916 0.884 0.593 0.799 0.914 0.850 0.799 0.915 0.834 0.102 
F7 0.917 0.952 0.659 0.859 0.931 0.938 0.875 0.949 0.885 0.091 

3Hz 

F1 0.835 0.867 0.911 0.636 0.855 0.690 0.843 0.963 0.825 0.102 
F2 0.632 0.839 0.901 0.534 0.649 0.612 0.877 0.899 0.743 0.141 
F3 0.603 0.813 0.344 0.478 0.725 0.554 0.840 0.830 0.648 0.171 
F4 0.555 0.767 0.326 0.422 0.724 0.531 0.898 0.784 0.626 0.185 
F5 0.853 0.736 0.331 0.337 0.757 0.565 0.914 0.609 0.638 0.205 
F6 0.874 0.745 0.324 0.634 0.900 0.433 0.920 0.693 0.690 0.205 
F7 0.859 0.917 0.380 0.791 0.945 0.752 0.964 0.917 0.816 0.179 

4Hz 

F1 0.877 0.574 0.672 - 0.394 - 0.399 0.932 0.641 0.210 
F2 0.834 0.548 0.622 - 0.287 - 0.577 0.830 0.616 0.186 
F3 0.827 0.519 - - 0.432 - 0.443 0.731 0.591 0.160 
F4 0.537 0.387 - - 0.297 - 0.640 0.626 0.497 0.135 
F5 0.744 0.306 - - 0.388 0.486 0.684 0.226 0.472 0.189 
F6 0.575 0.251 - 0.449 0.821 0.671 0.717 0.324 0.544 0.195 
F7 0.637 0.853 - 0.741 0.895 0.665 0.860 0.807 0.780 0.093 
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Figure 6.3 Comparing the direct and indirect forces using the F7 marker for bobbing 1Hz (a&b), 2Hz (c&d), 3Hz(e&f) 

and 4Hz (g&h), where a, c, e & g) are the t-domain, and b, d, f & h) the f-domain. 
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Figure 6.4 Average R2F values from the F7 marker in the a) t-domain and b) f-domain and for the entire front group 

in the c) t-domain and d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are marked as 
crosses, the dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 

 
 

Table 6.6 The average R2F and 95
th

 percentiles values for the front markers. 

 
1Hz 2Hz 3Hz 4Hz 

  R2
F,t Ave 

95% 95% 
Range Ave 

95% 95% 
Range Ave 

95% 95% 
Range Ave 

95% 95% 
Range 

Min Max Min Max Min Max Min Max 

   F1 0.950 0.919 0.977 0.058 0.931 0.725 0.986 0.261 0.825 0.600 0.970 0.370 0.641 0.328 0.941 0.614 
F2 0.915 0.749 0.975 0.225 0.897 0.718 0.977 0.260 0.743 0.510 0.914 0.404 0.616 0.212 0.887 0.675 
F3 0.807 0.137 0.961 0.824 0.838 0.639 0.935 0.296 0.648 0.330 0.853 0.522 0.591 0.370 0.864 0.494 
F4 0.809 0.161 0.967 0.806 0.835 0.628 0.924 0.296 0.626 0.318 0.901 0.582 0.497 0.230 0.681 0.451 
F5 0.819 0.204 0.958 0.755 0.832 0.628 0.908 0.280 0.638 0.282 0.916 0.634 0.487 0.150 0.777 0.628 
F6 0.787 0.282 0.958 0.676 0.834 0.580 0.931 0.351 0.690 0.231 0.921 0.690 0.589 0.264 0.830 0.566 
F7 0.855 0.357 0.972 0.614 0.885 0.646 0.962 0.316 0.816 0.345 0.965 0.621 0.780 0.610 0.904 0.294 

Ave 0.817 0.173 0.954 0.781 0.846 0.568 0.967 0.398 0.661 0.171 0.935 0.764 0.575 0.176 0.880 0.704 

   R2
F,f                 

F1 0.922 0.883 0.964 0.081 0.916 0.705 0.979 0.274 0.788 0.520 0.940 0.420 0.598 0.244 0.908 0.664 
F2 0.888 0.708 0.963 0.255 0.880 0.701 0.966 0.265 0.696 0.406 0.896 0.490 0.577 0.159 0.871 0.712 
F3 0.786 0.131 0.942 0.811 0.819 0.589 0.925 0.336 0.592 0.220 0.842 0.622 0.553 0.327 0.840 0.513 
F4 0.788 0.153 0.943 0.789 0.816 0.580 0.916 0.335 0.567 0.221 0.888 0.668 0.458 0.189 0.661 0.473 
F5 0.795 0.196 0.936 0.740 0.813 0.582 0.896 0.314 0.574 0.136 0.905 0.769 0.488 0.207 0.769 0.562 
F6 0.736 0.181 0.938 0.757 0.809 0.515 0.918 0.403 0.630 0.131 0.913 0.783 0.536 0.142 0.802 0.660 
F7 0.819 0.269 0.953 0.684 0.865 0.584 0.953 0.370 0.776 0.275 0.958 0.683 0.749 0.594 0.870 0.276 

Ave 0.848 0.189 0.975 0.786 0.864 0.612 0.978 0.366 0.712 0.291 0.960 0.670 0.608 0.219 0.916 0.697 
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6.3.3 Back Markers 

The indirect force measurements using the back group of markers is reasonably successful. The 

mean value and STD of R2
F for the back group as a whole are 0.851 and 0.162 in the t-domain, 

and 0.884 and 0.146 in the f-domain (Table 6.7). The mean values are smaller than the 

corresponding jumping values of R2
F, t =0.944 and R2

F, f = 0.954 (Section 5.4.3). The bobbing 

STDs are greater than the jumping values of R2F, t STD =0.040 and R2F, f STD = 0.046. This reiterates 

that the indirect force measurements are not as successful or as consistent when bobbing. 

Table 6.7 The average R2F values for the back markers. 
 R2

F,t R2
F,f 

 1Hz 2Hz 3Hz 4Hz Ave STD 1Hz 2Hz 3Hz 4Hz Ave STD 

B1  0.887 0.893 0.776 0.565 0.788 0.204 0.921 0.910 0.821 0.645 0.831 0.165 
B2 0.880 0.891 0.827 0.505 0.776 0.201 0.916 0.909 0.864 0.570 0.815 0.175 
B3 0.916 0.926 0.842 0.536 0.805 0.199 0.942 0.939 0.867 0.575 0.831 0.194 
B4 0.930 0.962 0.922 0.790 0.901 0.087 0.958 0.973 0.941 0.819 0.923 0.083 
B5 0.915 0.951 0.919 0.866 0.913 0.065 0.957 0.971 0.956 0.905 0.947 0.052 
B6 0.924 0.960 0.929 0.902 0.929 0.062 0.968 0.982 0.964 0.944 0.965 0.052 

     0.851 0.162     0.884 0.146 

 

The R2F values for the back markers for all subjects are shown in Table 6.8. The highest R2F 

values from all markers are seen for the B6 marker, where the average value of R2
F, t is 0.929 

and R2F, f is 0.965 (Table 6.7). These values are smaller than the corresponding jumping values 

of R2F, t =0.967 and R2F, f =0.991 (Section 5.4.3). The STDs of the B6 marker are the smallest of 

all the markers when bobbing (R2F, t STD =0.062 and R2F, f STD =0.052) and are only slightly greater 

than the values when jumping (R2F, t STD =0.04 and R2F, f STD =0.046). The B6 marker is the most 

reliable marker, and the best at measuring the force, consistent with the previous jumping 

experiments. Figure 6.5 demonstrates that the B6 marker can effectively measure the direct 

force at different bobbing frequencies in both the t-and f-domains. The lowest R2
F values are 

associated with bobbing at 4Hz. 

The 95th percentiles and range of the R2F values for the B6 marker and the back group as a 

whole are shown in Figure 6.6. The range for the group as a whole is larger than for the B6 

marker, the B6 marker’s range of R2F, f values is the smallest of all the markers. The largest 
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ranges between the percentiles are at 3Hz and 4Hz (Table 6.9). This indicates that the accuracy 

of the indirect force measurement reduces with bobbing frequency.  

Table 6.8 R2
F, t and R2

F,f  values for the back markers. 
R2

F, t TS 1 2 3 4 5 6 7 8 Ave STD 

1Hz 

B1 - 0.964 0.780 0.857 0.840 0.933 0.938 0.894 0.887 0.060 
B2 0.700 0.970 0.808 0.878 0.889 0.959 0.920 0.916 0.880 0.083 
B3 0.845 0.971 0.923 0.887 0.904 0.950 0.925 0.921 0.916 0.036 
B4 0.909 0.969 0.950 0.946 0.935 0.878 0.950 0.905 0.930 0.028 
B5 0.855 0.968 0.855 0.958 0.938 0.882 0.955 0.912 0.915 0.044 
B6 0.880 0.968 0.854 0.958 0.943 0.891 0.966 0.931 0.924 0.040 

2Hz 

B1 - 0.987 0.847 0.724 0.841 0.969 0.918 0.966 0.893 0.088 
B2 0.727 0.990 0.869 0.779 0.945 0.980 0.859 0.978 0.891 0.093 
B3 0.865 0.990 0.958 0.805 0.953 0.978 0.880 0.974 0.926 0.063 
B4 0.918 0.990 0.965 0.949 0.978 0.958 0.971 0.968 0.962 0.020 
B5 0.880 0.987 0.892 0.967 0.978 0.960 0.973 0.972 0.951 0.038 
B6 0.913 0.987 0.928 0.963 0.979 0.980 0.954 0.980 0.960 0.026 

3Hz 

B1 - 0.963 0.570 0.769 0.391 0.915 0.964 0.861 0.776 0.203 
B2 0.624 0.962 0.643 0.757 0.900 0.911 0.911 0.905 0.827 0.124 
B3 0.790 0.953 0.866 0.633 0.807 0.880 0.934 0.873 0.842 0.094 
B4 0.808 0.950 0.936 0.942 0.915 0.976 0.966 0.883 0.922 0.051 
B5 0.857 0.970 0.777 0.970 0.941 0.974 0.963 0.901 0.919 0.066 
B6 0.891 0.973 0.719 0.978 0.973 0.979 0.969 0.954 0.929 0.084 

4Hz 

B1 - 0.688 0.124 0.541 - 0.734 0.822 0.481 0.565 0.228 
B2 0.568 0.647 0.209 0.206 0.609 0.650 0.526 0.620 0.505 0.176 
B3 0.697 0.663 0.743 0.119 0.290 0.487 0.629 0.659 0.536 0.208 
B4 0.745 0.630 0.700 0.732 0.833 0.881 0.935 0.866 0.790 0.097 
B5 0.847 0.796 0.713 0.930 0.892 0.934 0.904 0.913 0.866 0.072 
B6 0.928 0.864 0.747 0.925 0.930 0.964 0.915 0.940 0.902 0.064 

R2
F, f B1 - 0.981 0.852 0.877 0.866 0.975 0.950 0.945 0.921 0.050 

1Hz 

B2 0.801 0.982 0.869 0.893 0.909 0.982 0.931 0.963 0.916 0.058 
B3 0.908 0.980 0.959 0.905 0.927 0.973 0.936 0.951 0.942 0.026 
B4 0.938 0.979 0.961 0.960 0.966 0.962 0.962 0.940 0.958 0.013 
B5 0.942 0.983 0.917 0.974 0.969 0.958 0.968 0.947 0.957 0.020 
B6 0.963 0.985 0.927 0.974 0.971 0.980 0.980 0.967 0.968 0.017 

2Hz 

B1 - 0.991 0.889 0.740 0.870 0.980 0.927 0.976 0.910 0.082 
B2 0.785 0.994 0.904 0.790 0.954 0.992 0.862 0.988 0.909 0.082 
B3 0.899 0.994 0.981 0.814 0.962 0.991 0.885 0.983 0.939 0.061 
B4 0.932 0.994 0.973 0.959 0.987 0.970 0.983 0.985 0.973 0.019 
B5 0.937 0.993 0.916 0.981 0.988 0.972 0.991 0.987 0.971 0.027 
B6 0.968 0.993 0.950 0.978 0.988 0.994 0.994 0.991 0.982 0.015 

3Hz 

B1 - 0.977 0.728 0.779 0.421 0.949 0.980 0.909 0.821 0.187 
B2 0.686 0.974 0.767 0.774 0.907 0.942 0.921 0.942 0.864 0.099 
B3 0.820 0.964 0.929 0.661 0.814 0.916 0.947 0.886 0.867 0.094 
B4 0.831 0.961 0.952 0.966 0.932 0.991 0.994 0.904 0.941 0.050 
B5 0.979 0.982 0.831 0.989 0.958 0.989 0.995 0.923 0.956 0.052 
B6 0.988 0.987 0.775 0.995 0.996 0.995 0.998 0.977 0.964 0.072 

4Hz 

B1 - 0.740 0.425 0.567 - 0.769 0.826 0.543 0.645 0.142 
B2 0.585 0.699 0.496 0.231 0.634 0.671 0.567 0.674 0.570 0.142 
B3 0.710 0.714 0.853 0.169 0.312 0.515 0.645 0.680 0.575 0.214 
B4 0.756 0.685 0.712 0.756 0.853 0.916 0.950 0.921 0.819 0.097 
B5 0.900 0.850 0.754 0.966 0.918 0.955 0.941 0.956 0.905 0.067 
B6 0.963 0.913 0.781 0.965 0.985 0.991 0.977 0.980 0.944 0.066 
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Figure 6.5 Comparing the direct and indirect forces using the B6 marker for bobbing 1Hz (a&b), 2Hz (c&d), 3Hz(e&f) 

and 4Hz (g&h), where a, c, e & g) are the t-domain, and b, d, f & h) the f-domain. 
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Figure 6.6 Average R2F values from the B6 marker in the a) t-domain and b) f-domain and for the entire back group 

in the c) t-domain and d) the f-domain. The mean values and 95
th

 pecentiles for each frequency are marked as 
crosses, the dashed lines represent the mean and 95

th
 percentile values across all the frequencies. 

 
 
 

Table 6.9 The average R2F and 95
th

 percentiles for the front markers. 

 
1Hz 2Hz 3Hz 4Hz 

 R2
F, t   Ave 

95% 95% 
Range   Ave 

95% 95% 
 Range   Ave 

95% 95% 
 Range   Ave 

95%   95% 
 Range 

Min Max Min Max Min Max Min   Max 

  B1 0.887 0.758 0.965 0.207 0.893 0.701 0.989 0.288 0.776 0.377 0.968 0.591 0.591 0.122 0.830 0.708 
  B2 0.880 0.660 0.971 0.311 0.891 0.706 0.991 0.285 0.827 0.589 0.964 0.375 0.532 0.198 0.719 0.522 
  B3 0.916 0.825 0.971 0.146 0.926 0.798 0.990 0.192 0.842 0.613 0.958 0.345 0.587 0.173 0.749 0.575 
  B4 0.930 0.862 0.969 0.107 0.962 0.911 0.991 0.080 0.922 0.800 0.977 0.177 0.790 0.608 0.938 0.329 
  B5 0.915 0.829 0.975 0.146 0.951 0.864 0.989 0.125 0.919 0.764 0.975 0.212 0.866 0.697 0.951 0.254 
  B6 0.924 0.832 0.975 0.144 0.960 0.899 0.991 0.092 0.929 0.678 0.982 0.304 0.902 0.745 0.965 0.219 

 Ave 0.909 0.769 0.972 0.203 0.931 0.737 0.992 0.255 0.871 0.543 0.978 0.435 0.723 0.193 0.959 0.765 

 R2
F, f                 

  B1 0.921 0.810 0.982 0.173 0.910 0.718 0.993 0.275 0.821 0.411 0.981 0.570 0.645 0.410 0.833 0.423 
  B2 0.916 0.766 0.987 0.221 0.909 0.760 0.996 0.236 0.864 0.672 0.976 0.303 0.600 0.362 0.752 0.391 
  B3 0.942 0.890 0.981 0.091 0.939 0.809 0.995 0.186 0.867 0.641 0.968 0.327 0.626 0.209 0.862 0.653 
  B4 0.958 0.922 0.980 0.058 0.973 0.925 0.995 0.070 0.941 0.826 0.994 0.169 0.819 0.645 0.957 0.312 
  B5 0.957 0.906 0.985 0.078 0.971 0.912 0.994 0.082 0.956 0.820 0.996 0.176 0.905 0.739 0.976 0.237 
  B6 0.968 0.918 0.990 0.072 0.982 0.948 0.996 0.049 0.964 0.745 0.999 0.254 0.944 0.775 0.992 0.216 

 Ave 0.944 0.820 0.988 0.168 0.948 0.778 0.996 0.218 0.904 0.630 0.998 0.367 0.767 0.385 0.986 0.601 
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To conclude, the B6 marker is the best performing marker. However, as the marker is 

positioned on the back of the TS, monitoring the movement may be difficult in actual venues. 

In general the indirect force measurements from bobbing subjects are less accurate than from 

jumping subjects. 

6.3.4 Actual Bobbing Frequency and Percentage Difference. 

Within this section the actual bobbing frequency is compared to the target bobbing frequency. 

The indirect force is further analysed by calculating the percentage differences (PDs) of the 

peak indirect force relative to the peak direct force in the f-domain, for the B6 and F7 markers 

at each dominant harmonic. The bobbing trials are split into bouncing and jouncing to 

investigate whether force measurement of a specific action is easier. 

The frequency and the PDs for the first three harmonics are calculated for the B6 marker in 

Table 6.10. Comparing the actual bobbing frequency to the target frequency, more TSs 

achieved a frequency of 1Hz when bobbing than jumping (Section 5.4.4). However, when 

bobbing at frequencies of 2Hz and above, a wider range in average actual bobbing frequencies 

and harmonics occurs. This contradicts previous work which found that bobbing at a specified 

frequency is easier than jumping (Sim et al., 2005). The style of bobbing used by the TSs is 

shown in Table 6.10. The TSs which bounced produced trials that are at, or very near the 

metronome beat. The frequency deviation is greater for the jouncing subjects, consistent with 

observations in Chapter 4. The majority of TSs are at, or very close to the target frequency 

when bobbing below 4Hz. The results are influenced by three jouncing TSs who missed the 

target frequencies significantly. 

The PDs are sorted by over and under estimations of the force, mean values are calculated for 

each (Table 6.11). The PDs for each bobbing frequency and harmonic are plotted in Figure 6.7. 

A wider spread of PDs is seen compared to the corresponding jumping figure in Section 5.4.4. 
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For the 1st harmonic mean PDs values of +7.90% and -18.14% were found (Table 6.11). The 

largest PDs were at 1Hz, this is likely because the frequency components are small, and more 

affected by soft tissue artefact and variation in the CoM position. 

Table 6.10 The B6 marker PDs at each harmonics for each TS. 

 
TS 

1
st

  
Harm(%) 

2
nd

  
Harm(%) 

3
rd

 
Harm(%) 

Freq 1
st

 
Harm (Hz) 

Freq 2
nd

 
Harm (Hz) 

Freq 3
rd

 
Harm (Hz) 

Style 
Heel 

contact 

1Hz 

1 -5.30 -1.43 -1.98 1.00 2.00 3.05 Jouncing  

2 -8.09 -4.25 1.34 0.95 1.90 2.90 Jouncing Yes 

3 -44.28 -19.33 -21.25 1.00 2.05 2.95 Jouncing Yes 

4 9.55 17.17 12.41 1.00 2.00 2.95 Bouncing Yes 

5 7.72 13.06 19.57 1.00 2.00 3.00 Bouncing Yes 

6 -14.88 -6.82 -4.38 1.00 2.00 3.00 Jouncing Yes 

7 11.27 10.76 13.69 1.00 2.00 2.90 Bouncing Yes 

8 3.06 42.03 -5.81 1.00 2.00 3.00 Jouncing Yes 

Overall Ave -5.12 6.40 1.70 0.99 1.99 2.97   

STD 17.15 17.54 12.31 0.02 0.04 0.04   

2Hz 

1 0.08 -18.76 -19.22 2.00 4.00 6.00 Bouncing  
2 -1.19 0.01 102.95 2.30 4.60 6.90 Jouncing Yes 
3 -20.18 -16.17 47.26 2.25 4.45 6.40 Jouncing Yes 
4 10.05 28.47 25.15 2.00 4.00 6.00 Bouncing Yes 
5 4.46 28.54 70.65 2.00 4.05 6.05 Jouncing Yes 
6 -3.42 11.78 7.74 2.50 4.95 6.95 Jouncing No 
7 4.48 8.90 31.83 2.00 4.00 6.00 Bouncing Yes 
8 2.65 25.64 58.75 2.00 4.05 6.05 Jouncing Yes 

Overall Ave -0.38 8.55 40.64 2.13 4.26 6.29   
STD 8.42 17.78 35.60 0.19 0.35 0.39   

3Hz 

1 -3.17 -14.78 -96.52 3.01 6.03 9.04 Bouncing  
2 0.74 -1.29 77.67 2.55 5.05 7.70 Jouncing Occasional 
3 -25.12 143.73 954.17 3.00 6.05 9.10 Jouncing Yes 
4 -2.11 2.86 -8.26 3.00 6.00 9.00 Bouncing Yes 
5 0.12 0.29 -5.56 3.03 6.07 9.10 Jouncing Occasional 
6 0.79 -2.74 192.16 3.05 6.00 8.85 Jouncing No 
7 -1.72 -1.55 26.78 3.00 6.05 9.05 Jouncing Yes 
8 1.10 41.02 137.03 3.00 6.00 9.00 Jouncing No 

Overall Ave -3.67 20.94 159.68 2.96 5.91 8.86   
STD 8.24 48.82 311.91 0.16 0.34 0.47   

4Hz 

1 -15.03 21.62 497.20 4.00 7.75 11.85 Jouncing  
2 8.43 113.44 788.55 3.45 6.76 10.06 Jouncing No 
3 -33.75 117.98 213.77 3.60 7.10 10.65 Jouncing Yes 
4 -2.60 29.14 263.68 4.00 8.00 12.00 Bouncing Yes 
5 -1.11 -7.71 1549.63 4.00 8.00 12.00 Jouncing No 
6 5.30 -33.43 675.99 3.85 7.70 11.55 Bouncing Yes 
7 -0.26 31.40 260.12 4.00 8.00 12.00 Jouncing Yes 
8 1.95 -0.06 48.45 3.55 7.10 10.65 Jouncing No 

Overall Ave -4.63 34.05 537.17 3.81 7.55 11.35   
STD 12.77 51.23 447.79 0.22 0.49 0.75   

 

At the 2nd harmonic larger PDs occur, the mean PDs when ignoring one outlier are +28.85% 

and -11.06% (Table 6.11). The 2nd harmonic when bobbing at 4Hz had the largest PDs, this is 
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likely due to the higher soft tissue artefact noise to signal ratio at the high frequencies as 

described in Section 5.4.4. The mean PDs for the 2nd harmonic at 4Hz are +62.72% and -

13.73%, these are unacceptably high. 

Table 6.11 The PDs at the first three harmonics between the direct and indirect forces in the f-domain (B6 marker). 

PD Bobbing Frequency (Hz) 
(+) Average 

overestimation 
(-) Average 

 underestimation 
Overall 
Average 

STD 

1
st

 
Harmonic 

1 7.90 -18.14 -5.12 17.15 
2 4.34 -8.26 -0.38 8.42 
3 0.69 -8.03 -3.67 8.24 
4 5.23 -10.55 -4.63 12.77 

All frequencies 4.54 -11.25 -3.45 12.34 

2
nd

 
Harmonic 

1 20.76 -7.96 6.40 17.54 

2 17.22 -17.47 8.55 17.78 

3 46.98 -5.09 20.94 48.82 

3 (without TS3) 14.72 -5.09 3.40 16.21 

4Hz 62.72 -13.73 34.05 51.23 

All frequencies 36.92 -11.06 17.49 39.12 

All frequencies without outliers 28.85 -11.06 13.10 32.39 

3
rd

 
Harmonic 

1 11.76 -8.36 1.70 12.31 
2 49.19 -19.22 40.64 35.60 
3 277.56 -36.78 159.68 311.91 

3Hz (without TS3) 108.41 -36.78 46.18 90.19 
4 537.17 0.00 537.17 447.79 

4 (without TS5) 392.54 0.00 392.54 248.60 

All frequencies 218.92 -16.09 184.80 345.81 
All frequencies without outliers 140.47 -16.09 120.26 201.67 

All harmonics ≤ 4Hz 
 

9.70 -11.25 0.41 14.87 
2

nd
 Harmonic > 4Hz 

 
38.72 -9.41 18.72 50.47 

 

 
Figure 6.7 The positive PDs for the B6 marker for the dominant harmonics. 
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The average PDs at the 3rd harmonic (with the exclusion of two outliers) are +140.47% and -

16.09% (Table 6.11). This demonstrates that measuring the 3rd harmonic component at higher 

frequencies is challenging, in addition it shows the tendency of the indirect force to 

overestimate the higher frequency components. It should be noted that the PDs at the 3rd 

harmonic of 1Hz bobbing are +11.76% and -8.26%, which are reasonably low. 

In Table 6.12 the PDs from the B6 marker have been split into the different styles of bobbing to 

investigate whether the indirect force is more suited to measuring the force of a specific style. 

There appears to be more consistency in the force measurements between the bouncing TSs, 

demonstrated by the lower STDs highlighted in Table 6.12. At the 2nd and 3rd harmonics of 1Hz 

and the 1st harmonic of 2Hz the average values of PDs are lower for the jouncing TSs, whereas 

at higher frequencies the PDs from the bouncing TSs are smaller. In general the indirect force 

measurement shows better agreement with the direct force for the action of bouncing. 

However, fewer TSs chose to bounce and therefore these findings are based on a limited 

number of TSs. 

Table 6.12 The Average PDs for bouncing and jouncing TS at the first three harmonics for the B6 marker. 

PD at each 1Hz 2Hz 3Hz 4Hz 
Harmonic (%) 1

st
  2

nd
  3

rd
  1

st
  2

nd
  3

rd
  1

st
  2

nd
  3

rd
  1

st
  2

nd
  3

rd
  

Bouncing Ave 9.51 13.66 15.22 4.87 6.20 12.59 -2.64 -5.96 -52.39 1.35 -2.15 469.84 

Jouncing Ave -13.90 2.04 -6.42 -3.54 9.96 57.47 -4.02 29.91 230.38 -6.63 46.11 559.62 

Bouncing STD 1.45 2.65 3.12 4.08 19.38 22.66 0.53 8.82 44.13 3.95 31.29 206.16 

Jouncing STD 16.24 20.91 7.80 8.77 16.59 31.05 9.48 53.21 330.27 14.01 50.90 501.17 

Bouncing CoV 0.15 0.19 0.20 0.84 3.12 1.80 -0.20 -1.48 -0.84 2.93 -14.59 0.44 

Jouncing CoV -1.17 10.25 -1.22 -2.48 1.67 0.54 -2.36 1.78 1.43 -2.11 1.10 0.90 

 

As the F7 marker is the most visible marker the PDs between the direct and indirect forces 

were also calculated and the average values presented in Figure 6.8. Significantly higher PDs 

(Table 6.13) are seen compared to those from the B6 marker, however very few 

underestimations of the force occurred. For harmonics with a frequency less than or equal to 

4Hz the average values of PDs are -0.34 and +28.65. The 2nd harmonics which have a frequency 

value greater than 4Hz produce unacceptable average PDs (-45.80 and +64.90). For the 3rd 
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harmonic very large average PDs occur, except at 1Hz (-2.40 and + 26.33). Therefore using the 

F7 marker to measure frequency components above 4Hz will produce large overestimations of 

the force, however underestimations of the force are unlikely. 

 
Figure 6.8 The positive PDs for the F7 marker for the dominant harmonics. 

 
 
 

The values of PDs observed here are larger than those reported for the nine marker 

monitoring method (± 2% at the 1st harmonic, ± 4% at the 2nd harmonic and ± 7% at 3rd 
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structure. Within the following section the bobbing forces will be applied to SDOF systems and 

the responses due to the higher harmonics investigated. 

Table 6.13 The PDs at the first three harmonics between the direct and indirect forces in the f-domain (F7 marker). 

PD Bobbing Frequency 
(+) Average 

overestimation 
(-) Average 

underestimation 
Overall 
Average 

STD 

1
st

 
Harmonic 

1Hz 19.55 0.00 19.55 21.90 
1Hz (without TS3) 11.63 0.00 11.63 6.77 

2Hz 25.37 0.00 25.37 13.77 
2Hz (without TS3) 20.81 0.00 20.81 7.09 

3Hz 31.38 0.00 31.38 15.80 
3Hz (without TS3) 25.97 0.00 25.97 7.21 

4Hz 44.72 0.00 44.72 23.15 
4Hz (without TS3) 36.48 0.00 36.48 8.38 

All frequencies 30.25 0.00 30.25 21.24 
All frequencies without outliers 23.72 0.00 23.72 11.63 

2
nd

 
Harmonic 

1Hz 22.23 0.00 22.23 14.04 
2Hz 57.13 0.00 57.13 14.64 
3Hz 63.01 0.00 63.01 49.95 

3Hz (without TS6) 48.33 0.00 48.33 33.59 
4Hz 166.15 -91.60 133.93 214.97 

4Hz (without TS6) 81.47 -91.60 56.75 71.79 

All frequencies 77.13 -22.90 69.07 118.00 
All frequencies without outliers 52.29 -22.90 46.11 42.28 

3
rd

 
Harmonic 

1Hz 30.82 -2.40 26.67 16.18 
1Hz (without TS3) 26.33 -2.40 22.23 11.88 

2Hz 196.37 -41.93 136.79 192.71 
2Hz (without TS2) 117.50 -41.93 71.95 93.84 

3Hz 272.37 -37.27 233.67 293.90 
3Hz (without TS3 & TS6) 117.86 -37.27 92.00 72.86 

4Hz 643.30 0.00 643.30 673.94 
4Hz (without TS5) 453.00 0.00 453.00 478.92 

All frequencies 285.72 -20.40 260.11 445.87 

All frequencies without outliers 178.67 -20.40 159.79 305.24 

All harmonics ≤ 4Hz 
 

28.65 -0.34 28.07 17.61 
2

nd
 Harmonic > 4Hz 

 
64.90 -45.80 52.54 56.20 

 

6.3.5 Structural Response 

To fully evaluate the success of the indirect force measurement the structural response to 

both the direct and indirect forces is examined and compared. A SDOF system was used to 

model the response from both the direct and indirect forces. The experimental procedure is 

consistent with the method used to apply jumping force histories to SDOFs in Section 5.4.5. A 

damping ratio of ζ=0.01 was used in the SDOF systems. 
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6.3.5.1 Response Magnitude 

Within this section the magnitude of the structural response due to bobbing forces is 

investigated. This allows the quantification of the likely acceleration responses due to different 

bobbing and structural frequencies. Within Figure 6.9 the peak structural acceleration 

responses are plotted for SDOF systems with natural frequencies between 0.5 and 10Hz, for 

different bobbing frequencies. The maximum structural accelerations are compared to those 

from jumping forces in Figure 6.10. 

From Figure 6.9 the resonance response values at 2Hz and 4Hz are approximately the same, 

indicating that the structural response is consistent for resonance conditions at these 

frequencies. The greatest resonance response occurs when bobbing at 3Hz, however the 

magnitude is not considerably bigger than at 2 and 4Hz. The resonance response at 1Hz is 

significantly smaller that at the other frequencies which is consistent with the structural 

responses from jumping forces. 

 
Figure 6.9 The peak acceleration response for SDOF systems exposed to bobbing at different frequencies. 
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Figure 6.10 Comparison of the maximum structural responses for bobbing and jumping forces. 

 
 
 

The maximum response due to bobbing (4.204ms-2) is smaller than the maximum response 

when jumping (6.07ms-2 from Figure 6.10). Dividing the response by a mass factor mf of 3.5 (a 

factor to reflect the mass of a stand) the maximum response reduces it to 1.20ms-2, which is 

equivalent to 12.20% of g. 

The SDOF responses due to the 2nd harmonics of the bobbing forces are smaller than the 

comparative jumping responses (Figure 6.10). The 2nd harmonic responses are approximately a 

quarter of the 1st harmonic value, compared to half when jumping. The responses due to 

bobbing at 1Hz are similar for the first three harmonics. This is consistent with previous 

observations of low frequency bobbing where the force spectra were not dominated by a 

specific harmonic (Sim et al., 2005 ). 

For bobbing the largest response from a SDOF with a natural frequency greater or equal to 6Hz 

is 1.194 ms-2, with the application of mf this reduces to 0.341ms-2. The comparative value when 

jumping is 0.629ms-2. These structures (fn≥ 6Hz) are deemed to have a sufficiently high natural 

frequency and therefore not prone to crowd excitation (Section 5.2.1). 

It is worth noting from Figure 6.10 that there are occasions when the response from the 

bobbing force is larger than from jumping. This occurs between 3-4Hz and the corresponding 
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2nd harmonic when bobbing subjects were attempting to move at 4Hz but achieved a lower 

frequency. At fn= 8Hz which matches the 2nd harmonic of 4Hz, the bobbing response is larger 

than the jumping response. However several jumping harmonics occur after this point with a 

larger magnitude. It is suggested that the responses from the 3rd harmonics of jumping are 

larger than those from the 2nd harmonics of bobbing. The response due to 2nd and 3rd harmonic 

of bobbing is far smaller than for jumping, diminishing more rapidly. Although it may be 

possible for bobbing forces to reach harmonics of a greater frequency, the magnitudes at 

these harmonics are small. At the frequencies investigated jumping is the more extreme force. 

It is therefore not critical that the higher frequency harmonics of bobbing were poorly 

measured by the indirect force. 

6.3.5.2 Response Ratio 

The purpose of this section is to investigate how well the steady state accelerations of the 

SDOF systems due to the indirect force Aindirect, match the accelerations caused by the direct 

force Adirect. The effect of different structural natural frequencies and bobbing frequencies is 

examined. A ratio of the response rA, introduced in Section 5.4.5 is used to quantify the 

variation between the responses (Equation 5.6). The response ratio will only be considered in 

the t-domain. 

Within Figure 6.11 the response ratio is plotted against the natural frequency of the SDOF for 

different bobbing frequencies. A comparison between this figure and the corresponding figure 

in Section 5.4.5 reveals that a greater spread of rA values is apparent for the activity of 

bobbing. This highlights that there are more discrepancies between the responses due to the 

indirect and direct force when bobbing compared to jumping. 

Figure 6.11a shows the response ratios from the 1Hz bobbing forces have the largest spread of 

rA values at lower frequencies. The values remain within approximately 1± 0.2 until fn=5Hz 

where greater spread in the rA values is seen. There is less spread in the rA values at lower 
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frequencies in Figure 6.11b -d where 2Hz, 3Hz and 4Hz bobbing forces are applied. These 

graphs follow a similar pattern, the majority of rA values are within 1± 0.2 at the low 

frequencies. When the fn is near to the bobbing frequencies the rA values closest to one are 

seen. This can also be seen at the 1st harmonic in Figure 6.12 where the mean and the mean 

±1STD of the response are plotted against the normalised bobbing frequency. For fn values 

larger than 4Hz a greater range of rA values occur for 2 and 3Hz bobbing, this value is shifted to 

4.5Hz for 4Hz bobbing (Figure 6.11b –d). From these figures TS3 is shown to have consistently 

different rA values to the other TSs. 

 
Figure 6.11 The B6 marker rA,t values for a range of SDOF systems due to bobbing at a)1Hz b)2Hz and c)3Hz d)4Hz. 
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Figure 6.12 The average rA, t values for the B6 marker as a function of fn normalised by the bob frequency. 

 
 
 

6.3.5.3 Quantification of the rA values for the B6 and F7 markers. 

A relationship was sought between the structural ratio and the R2F,f  value of the force, to 

understand how differences in the f-domain of the direct and indirect forces propagate to the 

structural accelerations. R2F, f values were recalculated to consider the main harmonics R2F, f 

harmonic (1st, 2nd &3rd) of the force ± 0.5Hz. Figure 6.13 a and b show the R2F,f 1st and r A,t values for 

resonance at the 1st harmonic. If R2F,f 1st ≥ 0.970, 94.7% of the structural ratios are between 1 ± 

0.10. Of the B6 markers trials 81.3% have a R2F,f 1st  value ≥ 0.970. To reduce to the structural 

ratios to 1± 0.05 an R2F,f 1st  value ≥ 0.995 should be sought, this applies to 59.4% of B6 trials. 

For resonance due to the 2nd harmonic of the force (Figure 6.13 c and d) a negative correlation 

can be observed between the two variables. To obtain an r A,t value between 1 ± 0.20 an R2F,f 

2nd value of ≥ 0.950 is advised (the case for 37.5% of trials), to achieve a reduced r A,t value of 1 

± 0.10 an R2F,f 2nd  value of ≥ 0.980 is needed (the case for 21.9% of trials). A negative 

correlation between R2F,f 3rd and r A,t at resonance of the 3rd harmonic can be seen in Figure 

6.13 e and f. For a structural ratio between 1 ± 0.20 an R2F,f 3rd  value of 0.900 is recommended 

(the case for 34.4% of trials). 

All the R2F,f harmonic values are plotted against the overall R2F,f  values for each trial (Figure 6.13 g 

and h), in general the overall R2F,f  value appears to have very little effect on the 2nd and 3rd 
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harmonic R2F,f harmonic values. The 1st harmonic dominants the overall R2F,f  value. However, this 

is not the case at 1Hz where a weak positive correlation can be observed at each of the 

harmonics, this is consistent with the non-dominant harmonic observations in Section 6.3.5.1. 

Using the R2F,f value to predict the response due to the 2nd or 3rd harmonic component of a 

bobbing force, with a frequency greater than 1Hz is likely to lead to large discrepancies in the 

response. 

 

 
Figure 6.13 The r A, t values plotted against the R2 F, f, harmonic  values at each harmonic of the force, for resonance 

due to the 1st (a & b), 2
nd

 (c & d) and 3
rd

 (e & f) harmonic and all harmonics (g & h) where a,c, e & g) are an 
overview of the distribution and b, d, f & h) a zoomed section. 
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applied to a SDOF system with the corresponding natural frequency (or the 2nd or 3rd multiple 

of it). The relationship between rF ,f, and rA,t can be seen in Figure 6.14 for the domain 

harmonics. Strong positive correlations occur and both variables are approximately equal to 

one another. Therefore the PD in the structural response can be approximated to the PD 

between the direct and indirect force found in Section 6.3.4. The average PDs of the force and 

therefore the corresponding resonance responses for the 1st and 2nd harmonics which are less 

than or equal to 6Hz, as well as the 3rd harmonic of 1Hz are +10.58 and -8.03 excluding 

outliers. The PDs at the 3rd harmonic are unsuitably large, with the exception of bobbing at 

1Hz. It appears that the frequency of the harmonic affects the success of the force 

measurement.  

 
Figure 6.14 The structural response ratio in the t-domain against the peak force ratio in the f-domain, for resonance 

due to the a) 1
st

 b) 2
nd

 and c) 3
rd

 harmonic component of the force. 
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is a more complex activity and therefore more difficult to quantify using measurements from 

one point of the body only. 

Smaller and more consistent PDs are seen when TSs chose to bounce rather than jounce, 

indicating that one marker monitoring is better suited for bouncing. In addition there is better 

correspondence between the actual bobbing frequency and the target frequency. 

The response ratio in the t-domain was shown to be approximately equivalent to the peak 

force ratio in the f-domain, and therefore the PDs from the force can be used to estimate the 

equivalent PDs in the response. 

Although bobbing can take place at a higher frequency the force and frequency components 

from bobbing are smaller than for jumping. The effect of the harmonics of bobbing on the 

structural response is smaller than from the corresponding jumping harmonics (Figure 6.10). 

Hence the large PDs between the direct and indirect bobbing forces at high harmonics are not 

critical. Jumping is the more severe activity likely to adversely affect structures and will be 

studied further within later experiments investigating synchronisation. 
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7 Group and Individual Synchronisation using a Range of 

External Stimuli 

7.1 Introduction 

It is not uncommon when groups of people assemble at events such as concerts, sports 

matches and club nights for their actions to become synchronised. The presence of a beat 

from a source such as music often acts to further coordinate and encourage movement at a 

specific frequency. Visual and tactile stimuli can also encourage the crowd to move in a specific 

rhythm. Varying the beat frequency and stimulus can affect the synchronisation of the 

individuals with each other and the beat, as discussed in Chapter 2.4. Due to differences in 

rhythmic ability and enthusiasm, it is unlikely an entire crowd would be able to regulate their 

activity to coordinate perfectly with one another. Identifying the levels of coordination with 

the beat and with one another, in response to different stimuli, beat frequencies and group 

sizes is important for economic yet safe structural design. 

Within this chapter individual and group synchronisation with a beat is investigated with the 

use of two audial stimuli and one visual stimulus. The effects of the frequency of the stimuli, 

group size and position within the group will be considered. As seen in Chapters 5 and 6 

jumping is deemed the most severe activity and therefore will be the focus of this study. The 

use of a single marker on the C7th vertebrae to calculate the ground reaction force (GRF) whilst 

jumping is presented in Chapters 5 and applied to groups of two, four and eight test subjects 

(TS) jumping. 

The response of single degree of freedom (SDOF) systems to GRFs from different group sizes, 

stimulus and target frequency are examined and compared to responses from periodic signals. 

In addition the structural responses from the experimental forces which are measured on rigid 
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ground, are compared to the responses from a flexible bridge. Charts are presented detailing 

the levels of resonance response likely for each stimulus and group size. 

7.2 Background 

Previous authors have found that jumping in a group can increase an individual’s 

synchronisation with a beat. Better beat synchronisation was observed from individuals 

jumping in a pair compared to those jumping alone (Sim, 2006; Ebrahimpour and Fitts, 1996). 

However, this crowd effect is limited by group size (Kasperski and Niemann, 1993; Ellis and Ji). 

From experiments in a stadium, good coordination whilst jumping was achieved within groups 

of up to 20 individuals (Kasperski and Niemann, 1993). For groups larger than 20 a linear 

decrease in coordination was observed. Other authors have noted a reduction and large 

scatter in the dynamic load factors (DLF) with increased group size (Ellis and Ji, 2002). The 

extent of the group coordination varies depending on the age of the group and the enthusiasm 

levels (Kasperski and Niemann, 1993), and on the frequency and song choice (Littler, 2003). 

There is conflicting information regarding the frequency range groups can coordinate their 

actions across. The BS 6399 (BSI, 1996) recommends a frequency range of 1.5-2.8Hz for large 

groups, as they consider high frequency coordination unlikely within groups. An alternative 

suggestion is a reduced range of 1.8-2.3Hz (Ginty et al., 2001), however, good individual 

synchronisation with a beat has been noted at 3Hz (Sim et al., 2008). Furthermore, crowd 

synchronisation has been noted in stadia and dance floor environments up to frequencies of 

3.11Hz (Littler, 2003). 

There is also disagreement on the effect of different types of stimuli on synchronisation. 

Individual jumping experiments where the stimulus was varied between a visual and audio 

metronome saw worse beat synchronisation when using the visual metronome (Parkhouse 

and Ewins, 2006). Jumping at 1.5Hz was an exception where better synchronisation occurred 

using the visual metronome. From these experiments it was concluded that the effects of 
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visual stimuli were minimal. Therefore, increased synchronisation due to individuals within a 

crowd observing one another was considered unlikely. Other experiments used audio, visual 

and tactile cues on pairs jumping (Noormohammadi et al., 2011). It was found that although 

better individual synchronisation with the beat occurred when using an audio signal, the 

synchronisation within the pairs was better when using the visual cue. It is possible that group 

synchronisation is dominant over individual synchronisation with a beat. It should be noted 

that at times the variability between pairs was large. From group experiments it has been 

suggested that visual cues and the presence of other individuals were a more effective stimuli 

for short term synchronisation than audio cues (Comer et al., 2007). From further experiments 

with pairs jumping it was found that the best group synchronisation occurred when the 

individuals were facing one another, holding hands and using an audio metronome (Racic et 

al., 2013). The variability of results from different authors, the limited number of test groups 

and the limited group sizes, highlights the need for a larger study of group stimuli experiments. 

Most group experiments have focused on a small number of individuals (Sim, 2006; 

Ebrahimpour and Fitts, 1996). The synchronisation results from small groups have been 

extrapolated to predict the synchronisation levels for larger groups (Ginty et al., 2001). 

However, as seen from experiments, the degree of synchronisation varies with group size. 

Other experiments have measured the structural response from larger groups and back 

calculated the DLFs, however, the quantification of the group synchronisation is often 

neglected (Kasperski and Niemann, 1993; Ellis and Ji, 2002). Other authors have overlapped 

individual time histories to recreate a group and then calculated the synchronisation between 

the members (Parkhouse and Ewins, 2006; Kasperski and Agu, 2005). This method neglects the 

increased synchronisation as a result of the group interaction. There is a real lack of group 

synchronisation experiments. This lack, coupled with the varying information regarding group 

size, frequency range and effect of stimuli from different authors, demonstrates a clear need 

for more group synchronisation experiments that consider these factors. 
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7.3 Experimental Procedure 

The purpose of these experiments is to investigate the effect of group size, stimulus, and 

target frequency on the synchronisation of individuals and groups. Previous synchronisation 

experiments have either studied medium sized groups (15TSs) and maintained a constant 

external stimuli (Comer et al., 2007), or varied the external stimuli but limited group size to 

two individuals (Racic et al., 2013). Unlike the previous experiments the external stimuli and 

the group size were varied to include up to 8TSs. The GRF from each TS will be measured 

simultaneously allowing the synchronisation to be quantified directly. Three different group 

sizes will be investigated, as well as six target frequencies and three different stimuli. 

The synchronisation experiments took place inside the Gait lab at the University of Warwick. In 

total 60 TSs, 43 male and 17 female, were involved in the experiments. The TSs’ ages ranged 

between 18 and 42, the average was 23. Most TSs were undergraduate or postgraduate 

students, and therefore representative of a young adult concert or sports event audience. 

All TSs were deemed fit and able to partake in the experiments through the use of a physical 

activity readiness questionnaire (Appendix A). The TSs were encouraged to warm up prior to 

the trials and stretch between trials and at the end. Scheduled opportunities to rest were given 

every six trials. However the subjects were made aware that they could have a break at any 

time, and if necessary leave the experiment. The experiments were approved by the 

Biomedical & Scientific Research Ethics Committee at the University of Warwick on the 24th 

September 2012. A risk assessment was completed and TS consent forms collected from each 

TS prior to the experiments, the risk assessment and consent form are available in Appendix A. 

The main focus of the experiments was the effect of group size and external stimuli on 

individual and group synchronisation. Group sizes of 2, 4 and 8 TSs were investigated. There 

were 25 different groups in total, 11 groups of 2TSs, 10 groups of 4TSs, and 4 groups of 8TSs. 

Each TS was involved in up to three different groups, each of a different size. 
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The experiments were split into three sessions each with a different external stimulus. Two 

different types of audial and one visual stimulus were used in the experiments to aid group 

coordination. The majority of the previous synchronisation experiments utilise an audio 

metronome, which is solely a beat at a specific frequency. Music however, is a more complex 

stimulus, involving different sounds and beats and is more common in a crowd environment. 

Both stimuli were used within these experiments. A comparison of the audial results will 

indicate whether previous authors are justified in extrapolating experimental results found 

using a metronome, to music based situations. In addition to the visual stimulus provided by 

the other group members, a visual metronome comprising of an animated box in simple 

harmonic motion was used to investigate the importance of visual stimuli on synchronisation. 

Reflective markers were placed on the C7th vertebrae (Figure 7.1) and were tracked by 12 

infra-red VICON cameras (Oxford Metrics Group, 2007) sampling at a rate of 200Hz (Figure 

7.2). Nexus software (Oxford Metrics Group, 2008) was used to process the data (Figure 7.3). 

The infra-red cameras were arranged to optimise marker capture in the test space, ensuring at 

least two cameras could track each marker (Figure 7.4). Two digital video cameras and a high 

speed camera were also used to record the groups. 

 
Figure 7.1 The human spine showing vertebrae and the C7th marker placement. 
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Figure 7.2 The Gait lab experimental setup for the synchronisation experiments. 

 

 

 
Figure 7.3 Camera layout and force plate and markers from the Nexus software (Oxford Metrics Group, 2008). 

 
 
 

A grid was taped in the middle of the gait lab separating the test area into eight 0.60 by 0.70m 

rectangles. Each TS was allocated a standing area of 0.42 m2 in accordance to the current UK 

recommendations of 2-3 people/m2 (UK Working Group, 2008) and the limited gait lab space. 

The data processing was made easier as the horizontal displacements of the TSs were 

restricted, similar to a stadium environment. Furthermore the ownership of each marker was 
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easier to identify. The TSs layout was arranged according to group size (Figure 7.5). All TSs 

faced towards the projector screen at the back of the room. Where possible, two rows of TSs 

were formed to simulate a stadium layout. A further advantage of this layout is the possible 

comparison of the synchronisation between the TSs in the rows. The TSs in the back row have 

the additional visual stimulus of the TSs in the front row. An AMTI Biomechanics Force 

Platform OR6 (AMTI, 2007) with a sampling rate of 1000Hz was placed in position 3 in the TS 

layout. This was used as a check of the force calculations. 

 

Figure 7.4 Experimental setup of the gait lab and observation room. The camera layout is optimised for group 
experiments. 

 
 

 

Figure 7.5 TS layout for different group sizes, where P is the position, the arrow dictates the direction the TSs are 
facing and F.P is the force plate. 

 
 
 

The groups of TSs were exposed to stimuli at frequencies of 1.5Hz, 1.75Hz, 2Hz, 2.67Hz, 3Hz 
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map the effect of frequency on synchronisation in different group sizes. The highest frequency 

of the quoted synchronisation range has varied between authors. The largest of these values, 

3.5 (Littler, 2003) has been used as our maximum frequency. The minimum frequency of 1.5Hz 

was chosen as Parkhouse and Ewins (2006) observed superior beat synchronisation at this 

frequency using a visual metronome, compared to an audial metronome. The middle 

frequency values, 2Hz and 2.67Hz, were chosen as good beat and group synchronisation have 

been seen at these frequencies (Sim, 2006; Racic et al., 2013). 

Once the TSs were assembled in the appropriate layout for the group size the stimulus was 

played and the TSs asked as a group to jump in time to the beat. An aclimitisation period of 5s 

was allowed to familise the TSs with the rhythm, 20 seconds of data were then recorded. 

Three trials were recorded for each frequency, the order of the frequencies was randomised to 

prevent over familarisation.  

The first session of each experiment featured an audial metronome as the stimulus (Figure 

7.6a). The stimuli used in the second session were a selection of songs with the same beat as 

one of the experimental target frequencies (Table 7.1). Two different songs were found to 

match the beat for each of the target frequencies, to prevent over familiarisation with a 

specific song. The 1st song was repeated for the 3rd trial. The frequency range of the music 

stimulus was reduced due to difficulty obtaining songs with a 3.5Hz beat. Due to limited 

2.67Hz song avaliablity, songs with a beat frequency of 2.6Hz and 2.65Hz were used. A group 

of 4TSs jumping to a music stimulus can be seen in (Figure 7.6b). 

The final session of the experiments used a visual cue projected onto a screen (Figure 7.6c). A 

range of on–off style metronomes were experimented with, including flashing colours and a 

number trigger, however TSs struggled to relate them to a jumping motion. To combat this an 

animated box in simple harmonic motion (Figure 7.7) was used (Pasman, 2012). The motion of 

the box was easier to translate into a physical action and was more reminiscent of the real 
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stimulus likely at group events. To encourage TSs to use the visual metronome rather than the 

sound of footfall, ear protectors were used to nullify noise (Figure 7.6c). 

 

 

 
Figure 7.6 a) A group of 2 TSs jumping to an audial metronome beat, b) a group of 4 TSs jumping to music, c) a 

group of 8 TSs jumping to a visual metronome. 
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Table 7.1 The music stimulus songs. 

 Song 1  Song 2 
Frequency (Hz) Title Artist Frequency (Hz) Title Artist 

1.5Hz 
‘I’m Like a 

Bird’ 
Nelly Furtado 1.5Hz ‘Hurt’ Johnny Cash 

1.75Hz 
‘Rolling in the 

Deep’ 
Adele 1.75Hz 

‘The Real Slim 
Shady’ 

Eminem 

2Hz ‘Avaliable’ 
Flo Rida feat 

Akon 
2Hz 

‘Don’t Stop 
Believin’ 

Journey 

2.65Hz ‘Hey Ya!’ OutKast 2.6Hz 
‘Don’t Stop Me 

Now’ 
Queen 

3Hz 
‘Hurts Like 

Heaven’ 
Coldplay 3Hz ‘In Da Club’ 50 Cent 

 

 
Figure 7.7 The visual metronome, simple harmonic motion of an animated box (Pasman, 2012). 

 
 
 

The data was processed using MATLAB R2012b (MathWorks, 2012) in acccordance to the 

procedure outlined in Chapter 5. The marker trajectories were filtered using a fifth order 

Butterworth filter where the cut-off frequency of the filter was either 4.5 times the frequency 

of the target force or 7Hz, whichever was the larger. Examination of the first four harmonics 

was possible, however as stated in Chapter 5 the one marker method should in general only be 

used for force calculations up to the 2nd harmonic. The GRF force was calculated as detailed in 

Chapter 5. 

All the forces and summed group forces from the trials were cut to complete cycles, starting 

and returning to zero, to avoid spectral leakage. In consequence some trials were shorter than 

20s. However all trials were zero padded before and after the signal to a total duration of 100s, 

increasing the resolution of the frequency spectrum from 0.05 to 0.01Hz. 
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In total 1,275 trials of different sized groups were recorded and 4,794 individual GRFs. This is 

possibly the most extensive database of individual and group GRFs in response to different 

stimuli and group sizes. 

7.4 Individual Synchronisation 

This section focuses on how group size and stimuli affect individual synchronisation. Individual 

synchronisation can be broken down into two areas, synchronisation with the target beat and 

individual self-synchronisation. Synchronisation with the beat is a reflection on how well each 

individual matches the target frequency dictated by the stimulus. Self-synchronisation 

considers how consistent an individual is within their own action irrespective of the target 

frequency. An individual may jump consistently at a frequency other than the target 

frequency, displaying high self-synchronisation and low intra subject variability (IASV), but 

poor beat synchronisation. 

7.4.1 Synchronisation Calculation Methodology 

To measure both types of synchronisation a previous methodology for calculating 

synchronisation factor (Parkhouse and Ewins, 2006) was adapted. For both factors the power 

spectral density p (PSD) of the force time histories were calculated: 

        𝒑 =
𝟏

𝟐

𝒂𝟐

∆𝒇
 7.1 

where a is the amplitude of the force component at each frequency which occupies a 

bandwidth Δf. The PSDs were split into the harmonics of interest using a bandwidth filter. 

The beat synchronisation factor was defined as the ratio of the power of the force component 

coordinated with the beat, and the total power of the signal within each harmonic section 

(Figure 7.8). The total power was calculated as the area under the PSD. The beat component 

corresponds to the area of the PSD (which has resolution Δf=0.01Hz) at the activity frequency. 

The self-synchronisation factor was defined as the ratio of the area of the largest frequency 
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component within a harmonic section over the total power of that harmonic (Figure 7.8). A 

synchronisation factor of one equates to perfect beat, or self-synchronisation. 

When calculating the beat synchronisation the bandwidth filter was centred around the target 

frequency, or twice the target frequency for the 2nd harmonic. To ensure the actual harmonics 

of the signal were targeted when calculating the self-synchronisation factor and the DLF 

values, a flexible bandwidth filter midpoint was instigated. The dominant frequency of the 

signal was found by identifying the maximum peak in the PSD. This was attributed to either the 

1st or 2nd harmonic by determining if the frequency was greater than the target 

frequency*1.5 (2nd harmonic dominance) or less than the target frequency*1.5 (1st harmonic 

dominance). This allowed for the possibility of 2nd harmonic dominance which is common at 

lower jumping frequencies. The frequency of the dominant harmonic (or half the dominant 

frequency for 2nd harmonic dominance), multiplied by the harmonic number was used as the 

midpoint for the bandwidth filter. 

 
Figure 7.8 The calculation of the beat and self-synchronisation factor. 

 
 
 

All the frequency components contributing to each harmonic should be included in the 

bandwidth filters. However, non-relevant frequency components such as background noise, or 

frequency components belonging to another harmonic should be excluded. A target frequency 

dependant bandwidth was proposed as frequency spread is more common at higher 
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frequencies than mid-range frequencies (Section 4.2.1). This frequency spread will propagate 

further at the higher harmonics. 

The sensitivity of both synchronisation factors and the harmonic DLFs to the frequency range 

was tested to ensure a bandwidth of adequate but not excessive size was used. Average values 

of the synchronisation factors and DLFs are shown in Figure 7.9 for a sample of TSs when 

different frequency bandwidths (% target frequency) were applied. It is worth noting that the 

total bandwidth is twice the size of the frequency band as it is applied to both sides of the 

midpoint. A bandwidth filter of ±30% of the target frequency was chosen as stable values of 

synchronisation factors and DLFs were seen in this range. 

 
Figure 7.9 The average values of a) beat synchronisation factor, b) self synchronisation factor and c) DLF for 

different frequency bands centered around the flexible harmonic midpoint frequency as a percentage of the target 
frequency. 

 
 
 

From observations of PSD plots a ±30% band is narrow enough to avoid the inclusion of 

irrelevant frequency components. However, it was noted that as a smaller range of values are 

included at the lower jumping frequencies, some relevant frequency components were 

excluded from these spectra. A lower limit on the bandwidth range was proposed. From 

observations of the bandwidths at which the synchronisation factors and DLFs stabilised at 

other jumping frequencies (Figure 7.10), and PSD plots of 1.5Hz and 1.75Hz, a minimum range 

of ±0.6Hz was suggested. An example time history and frequency spectra relating to the first 

two harmonics and filtered as detailed above is shown in Figure 7.11 a and b. 
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Figure 7.10 The average values of a) beat synchronisation factor, b) self synchronisation factor and c) DLF for 

different frequency bands (Hz) centered around the flexible harmonic midpoint frequency. 
 
 

 
Figure 7.11 The a) time history and the b) frequency spectra relating to the 1

st
 and 2

nd
 harmonic components of an 

individual TS jumping at 1.75Hz. Some of the zero padding can be seen in figure a) and the 0.6*2 bandwidth filter is 
demonstrated in figure b). 

 
 
 

To ensure the stability of the PSD spectrum, the variation of self-synchronisation factors were 

investigated with regard to the number of cycles within the signal. Previous work has 

suggested that a minimum of 30 cycles are required for spectrum stability (Parkhouse and 

Ewins, 2006). However regardless of the number of cycles, oscillation of the synchronisation 

factors was observed if the resolution of the frequency spectrum was not adequately high to 

pick up the peak values. To counteract this, the signals were zero padded to 100 seconds to 

improve the resolution of the frequency spectrum (Figure 7.11a). The inclusion of additional 

zeroes reduced the overall power of the signal. In addition the increased resolution reduced 

the area of the synchronised component in relation to the total area of the spectrum. A zero 

padding factor equal to the total signal length/original signal length was applied to all 

synchronisation values, this counteracted the reduced power and synchronisation factor due 

to the zero padding. Having applied the appropriate zero padding factor the stability of the 

synchronisation factor could be assessed (Figure 7.12). The 3Hz metronome trials were used 
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because of the large number of cycles. The trials were sampled in increments of six cycles 

between 6 to 54. The self-synchronisation factor of 67.4% of trials stabilised at or before 30 

cycles and 84.0% of the trial stabilised by 40 cycles. Within this experiment the minimum cycle 

number is 30 for the 1.5Hz trials. A sample of 300 trials using a 1.5Hz metronome beat were 

tested for sensitivity between 3 and 27 cycles in increments of 3 cycles (Figure 7.13). 83.3% of 

trials stabilise before 27 cycles. The majority of the self-synchronisation values are stable and 

the high number of force time histories should reduce the significance of any anomalies in the 

data. From this investigation it was confirmed that approximately 30 cycles are required for 

synchronisation factor stability, and, in addition the duration of the signal has to be adequately 

long to include the frequency peaks. Zero padding with the inclusion of a zero padding factor is 

an appropriate method to extend the signal without influencing the original signal. It is 

recommended that trials are zero padded to 100s, however there is little variability in the 

synchronisation factor over 50s (Figure 7.14). This confirms that stability is reached within the 

majority of trials for all the frequencies investigated in this body of work. 

 
Figure 7.12 The variation in self-synchronisation factor with number of cycles for a sample of TSs jumping at 3Hz. 

 
 

 
Figure 7.13 The variation in self-synchronisation factor with number of cycles for a sample of TSs jumping at 1.5Hz. 
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Figure 7.14 The sensitivity of self-synchronisation factor to the length of the trials, where zero padding was used, 

this example demonstrates a sample of 1.5Hz and 3.5Hz trials. 
 
 
 

7.4.2 Individual Synchronisation Results 

The beat and self-synchronisation factors were calculated for each individual within each 

group and separated into stimulus, group size and frequency. To ensure the synchronisation 

factors were representative, the values for each individual were averaged across the three 

trials for each frequency and stimuli. 

7.4.2.1 Individual Beat Synchronisation Factors 

The beat synchronisation factors were tested for normality using a 5% Anderson-Darling test 

(AD test). Considering the 1st harmonic of all jumping frequencies and stimuli, only 5.9% 

passed the AD test, 27.5% passed at the 2nd harmonic. The results considering the stimuli 

separately are shown in Table 7.2. 

Table 7.2 AD test pass rate for beat synchronisation factors. 

AD Test pass rate Metronome Music Visual All 

1
st

 Harmonic 5.6% 0.0% 11.1% 5.9% 
2

nd
 Harmonic 0.0% 46.7% 38.9% 27.5% 

All Harmonic 2.8% 23.3% 25% 16.7% 

 

The skewness and kurtosis of the beat synchronisation factors were calculated and compared 

to twice the standard error of skewness (SES) and twice the standard error of kurtosis (SEK) 

respectively in Table 7.3. Values less than 2*SES and 2*SEK are consistent with a normal 

distribution. The results were inconsistent for both skewness and kurtosis. Considering these 

and the AD test results it is unlikely that the beat synchronisation factors are consistently 
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normally distributed, hence the 95th percentiles will be used to quantify data spread. The mean 

(filled markers) and the 95th percentiles (hollow markers) of the synchronisation factors are 

plotted for each stimulus, group size and frequency in Figure 7.15, Figure 7.16 and Figure 7.17. 

Table 7.3 Skewness and kurtosis values for beat synchronisation below 2*SES and 2*SEK respectively. 

Skew pass rate Metronome Music Visual All 

1
st

 Harmonic 61.1% 33.3% 33.3% 43.1% 
2nd Harmonic 72.2% 60.0% 72.2% 68.6% 
All Harmonic 66.7% 46.7% 52.8% 55.9% 

Kurtosis pass rate     
1

st
 Harmonic 66.7% 60.0% 61.1% 62.7% 

2
nd

 Harmonic 83.3% 86.7% 77.8% 82.4% 
All Harmonic 75.0% 73.3%% 69.4% 72.5% 

 
 

 
Figure 7.15 Mean and 95

th
percentiles of metronome beat synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 

 
 

 
Figure 7.16 Mean and 95

th
percentiles of music beat synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 

 
 

 
Figure 7.17 Mean and 95

th
percentiles of visual beat synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 
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Mean values of beat synchronisation between 0.2 and 0.8 are seen for the 1st harmonic of 

most jumping frequencies. The largest values are highlighted for each stimulus, group size, 

frequency and harmonic in Table 7.4. The greatest average beat synchronisation factors are 

seen for groups of 8TSs jumping at 2.67Hz to music (0.86) and jumping between 1.5-2Hz using 

a visual stimulus (0.85). 

Table 7.4 Mean individual beat synchronisation factors. 

Stimulus Metronome Music Visual 

Group Size 2 4 8 2 4 8 2 4 8 
Harmonic 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

1.5Hz 0.52 0.25 0.45 0.21 0.33 0.14 0.39 0.20 0.38 0.16 0.31 0.11 0.74 0.41 0.65 0.33 0.85 0.48 
1.75Hz 0.55 0.35 0.57 0.35 0.36 0.19 0.65 0.45 0.73 0.50 0.83 0.53 0.74 0.46 0.67 0.43 0.85 0.57 

2Hz 0.70 0.53 0.75 0.53 0.42 0.27 0.65 0.48 0.62 0.48 0.70 0.54 0.74 0.49 0.63 0.36 0.85 0.58 
2.67Hz 0.65 0.44 0.65 0.44 0.39 0.24 0.77 0.53 0.75 0.51 0.86 0.61 0.52 0.29 0.38 0.20 0.54 0.26 

3Hz 0.62 0.40 0.61 0.38 0.36 0.21 0.71 0.47 0.66 0.43 0.72 0.47 0.43 0.22 0.25 0.10 0.35 0.15 
3.5Hz 0.44 0.25 0.53 0.28 0.24 0.12       0.21 0.08 0.18 0.06 0.15 0.07 

 

The lowest beat synchronisation factors were expected at 3.5Hz consistent with the poor 

synchronisation found by previous authors (Sim et al., 2005; Parkhouse and Ewins, 2004). This 

was the case when using a visual metronome. However, the beat synchronisation factors at 

3.5Hz, when using an audial metronome were not significantly different from the factors at 

other frequencies. Individual beat synchronisation should be considered possible at all the 

frequencies studied here. 

The 95th percentile boundaries show the potential range of beat synchronisation factors. Beat 

synchronisation factors as high as 0.98 are possible at the 1st harmonic, indicating near perfect 

beat synchronisation. In addition near-zero values are possible at all harmonics, stimuli and 

group sizes. This is an indicator of the large scatter in the beat synchronisation from individual 

jumpers. 

The mean beat synchronisation factors for all group sizes are plotted in Figure 7.18 a, b and c 

for each stimuli. The peak values of mean beat synchronisation are similar for the different 

stimuli for groups of 2 and 4 TSs. The beat synchronisation increased slightly when using either 
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the visual or music stimuli in a group of 8TSs. Excluding the metronome stimulus, the presence 

of a group encouraged synchronisation, as previously seen (Comer et al., 2007). The peak 

mean beat synchronisation factors increase from a value of 0.63 to 0.85 for 2Hz jumping with a 

visual stimulus, and from 0.75 to 0.86 at 2.67Hz using music (Table 7.4). 

 
Figure 7.18 Mean values of beat synchronisation factors for all group sizes for a) metronome, b) music and c) visual 

stimuli. 
 
 
 

For groups of 8TSs the metronome beat synchronisation factors are significantly smaller than 

those seen using the visual or music cues. The levels of synchronisation for different excitation 

frequencies gathered from previous metronome stimulus experiments (Sim et al., 2005; 

Parkhouse and Ewins, 2004), are not directly transferrable to other more varied stimuli. 

The beat synchronisation factors were also calculated for the eight individual TSs (1TS) who 

jumped to a metronome in Chapter 5. This enabled a comparison of the beat synchronisation 

between individuals within a group, and individuals jumping alone for a metronome stimulus 

(Figure 7.18a). The values of beat synchronisation from 1TS were in general smaller than those 

from TSs in groups of 2 and 4. The beat synchronisation factors from 1TS were greater than 

those seen in groups of 8TSs. However, the 8TSs factors from the metronome were smaller 

than those from other stimuli, the 1TS values are generally smaller than the 8TSs values for 

music and visual stimuli. 

Three TSs who participated in the individual experiments, also took part in an experiment of 

every group size. Their beat synchronisation factors were averaged and plotted against group 

size for 2 and 3Hz in Figure 7.19. The beat synchronisation factors increased in groups for both 
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investigated harmonics and frequencies. Between 1 and 8TSs the average increase in beat 

synchronisation at the first harmonic was 0.35. This is an average increase in beat 

synchronisation of 82.0%. As only a metronome was used within the 1TS experiments 

conclusions about other stimuli cannot be drawn, however inclusion within a group clearly 

affects beat synchronisation. Individual GRFs combined to make a group force (Parkhouse and 

Ewins, 2006) are unlikely to be equivalent to the GRFs from a corresponding real life crowd. 

 
Figure 7.19 The average beat synchronisation factors from 3 TSs who took part in experiments of all group sizes. 

 
 
 

From observing Figure 7.18 it is apparent that each stimulus favours beat synchronisation at 

different jumping frequencies. The largest beat synchronisation factors are seen at the middle 

frequencies (2-3Hz) when using a metronome (Table 7.4). Jumping at frequencies of 1.75, 2.67 

and 3Hz produce the highest beat synchronisation when using music as a cue. Lower values 

occur at 2Hz than at the adjacent frequencies indicating that TSs struggled to maintain the 

specific beat at this frequency. In addition, poor beat synchronisation is seen at 1.5Hz. 

Beat synchronisation using a visual cue is best at low frequencies between 1.5-2Hz (Table 7.4). 

The ability of the TSs to match the lower beat frequencies indicates that visual cues are 

significant. However, at higher frequencies the TSs are unable to follow the beat as the visual 

metronome moves too fast for the individuals to interpret the visual stimulus into movement. 
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7.4.2.2 Individual Self-Synchronisation Factors 

Beat synchronisation factors are only concerned with the synchronisation at the target 

frequency. Self-synchronisation factors take into account other frequencies, and therefore are 

a better indicator of maximum individual synchronisation. 

The self-synchronisation factors were processed as above, and their distribution tested for 

normality using a 5% AD test, and the skewness and kurtosis of the data. The AD test pass 

rates (Table 7.5) were higher than those for beat synchronisation, however the values in 

general indicate a non-normal distribution at the 1st harmonic. 

Table 7.5 AD test pass rate for self-synchronisation factors. 

 Metronome Music Visual All 

1
st

 Harmonic 16.7% 13.3% 50.0% 27.5% 
2

nd
 Harmonic 83.3% 73.3% 55.6% 70.6% 

All Harmonic 50.0% 43.3% 52.8% 49.0% 

 

The majority of the kurtosis values were less than 2*SEK, the skewness results however were 

more varied (Table 7.6). Considering these factors it is unlikely that the self-synchronisation 

factors are consistently normally distributed, and therefore the 95th percentiles will be used as 

an indicator of spread. 

Table 7.6 Skewness and kurtosis values for self-synchronisation below 2*SES and 2*SEK respectively. 

Skew pass rate Metronome Music Visual All 

1
st

 Harmonic 44.4% 26.7% 55.6% 43.1% 
2

nd
 Harmonic 88.9% 86.7% 83.35 86.3% 

All Harmonic 66.7% 56.7% 69.4% 64.7% 

Kurtosis pass rate     
1

st
 Harmonic 66.7% 73.3% 77.8% 72.5% 

2
nd

 Harmonic 100.0% 86.7% 94.4% 94.1% 

All Harmonic 83.3% 80% 86.1% 83.3% 

 

The mean self-synchronisation factors (filled markers) and 95th percentiles (hollow markers) 

are plotted for stimulus, group size, frequency and harmonic in Figure 7.20, Figure 7.21 and 

Figure 7.22. The self-synchronisation factors reflect the largest frequency component within 

the specified area of the PSD spectrum and are therefore higher (or equal to) the beat 

synchronisation factors. Mean self-synchronisation factors between 0.6 and 0.9 are seen for 



Chapter 7. Group and Individual Synchronisation using a Range of 

External Stimuli 

215 

the 1st harmonic for most jumping frequencies. The largest values are highlighted for each 

stimulus, group size, frequency and harmonic in Table 7.7. The greatest average self-

synchronisation factors are seen for groups of 8TSs jumping at 1.75Hz to music (0.90) and to a 

visual stimulus (0.89). 

 
Figure 7.20 Mean and 95

th
percentiles of metronome self-synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 

 
 

 
Figure 7.21 Mean and 95

th
percentiles of music self-synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 

 
 

 
Figure 7.22 Mean and 95

th
percentiles of visual self-synchronisation factors for group sizes of a) 2, b) 4 and c) 8. 

 
 
 

The lowest self-synchronisation factors occur when using a visual stimulus to jump at 3.5Hz. 

However, the equivalent 3.5Hz self-synchronisation factors when using a metronome are not 

significantly lower than the synchronisation factors at other frequencies, except in groups of 

8TSs. It is thought that self-synchronisation is possible over all the frequencies examined here. 
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These experiments support previous recommendation to raise the frequency range of 

comfortable jumping to 3.5Hz (Littler, 2003). 

Table 7.7 Mean individual self-synchronisation factors. 

Stimulus Metronome Music Visual 

Group Size 2 4 8 2 4 8 2 4 8 
Harmonic 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

1.5Hz 0.71 0.44 0.65 0.39 0.73 0.42 0.69 0.47 0.74 0.47 0.75 0.43 0.79 0.50 0.75 0.48 0.87 0.55 
1.75Hz 0.77 0.56 0.79 0.55 0.80 0.52 0.81 0.61 0.81 0.63 0.90 0.71 0.82 0.60 0.79 0.59 0.89 0.68 

2Hz 0.86 0.67 0.86 0.68 0.87 0.65 0.85 0.67 0.88 0.68 0.87 0.69 0.84 0.61 0.77 0.54 0.88 0.64 
2.67Hz 0.86 0.65 0.82 0.62 0.79 0.55 0.83 0.62 0.84 0.62 0.87 0.66 0.70 0.45 0.62 0.40 0.65 0.41 

3Hz 0.80 0.56 0.79 0.53 0.77 0.51 0.78 0.58 0.78 0.55 0.77 0.55 0.65 0.40 0.58 0.33 0.58 0.33 
3.5Hz 0.71 0.46 0.72 0.47 0.57 0.35       0.52 0.30 0.49 0.27 0.44 0.26 

 

The 95th percentile boundaries show the range of self-synchronisation factors and is smaller 

than the equivalent beat synchronisation range. Synchronisation values as high as 0.98 are 

possible at the 1st harmonic, indicating near perfect self-synchronisation. The lower 95th 

percentile values are higher than those from beat synchronisation, and do not approach zero. 

The self-synchronisation for each stimulus improves slightly within groups of 8TSs (Figure 7.23) 

consistent with previous findings (Comer et al., 2007). However, the difference in self-

synchronisation is not as significant as the increased beat-synchronisation factors for visual 

and music cues in larger groups. An exception is jumping at 3.5Hz to a metronome where self-

synchronisation is reduced in groups of 8TSs. The high speed stimulus is difficult to jump to, 

and it is likely that each individual tries to accommodate the metronome beat and the 

movement of other group members confusing the jumping pattern and increasing the IASV. 

 
Figure 7.23 Mean values of self-synchronisation factors for all group sizes for a) metronome, b) music and c) visual 

stimuli. 
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The self-synchronisation factors calculated from the individuals jumping alone detailed in 

Chapter 5 are also presented in Figure 7.23. The self-synchronisation factors from the 1TS are 

considerably lower than those within a group. 

The self-synchronisation values were averaged over the three TSs which participated in all 

group sizes throughout the experimental program (Figure 7.24). The self-synchronisation 

factors increased in groups but not as significantly as for the beat synchronisation (Figure 

7.19). Inclusion within a group improves an individual’s self-synchronisation reducing the IASV 

of the period. 

 
Figure 7.24 The average beat synchronisation factors from 3 TSs who took part in experiments of all group sizes. 

 
 
 

The audial and visual cues aid self-synchronisation at different frequencies. Consistent with 

beat synchronisation, good visual self-synchronisation occurs at low jumping frequencies (1.5-

2Hz). Both audial cues produce the highest self-synchronisation factors at target frequencies of 

2-2.67Hz. This highlights that individual synchronisation frequency ranges should take into 

consideration the type of stimulus involved. 

The self (hollow markers) and beat (filled markers) synchronisation factors are compared in 

Figure 7.25. When using a metronome as the stimulus the average self-synchronisation factors 

are consistently higher than the beat synchronisation factors at all harmonics (Figure 7.25a). 

This indicates that individuals struggled to translate the sound signals into a matching jumping 

action and are using the other group members to set their jumping frequency. The largest 

difference between the factors occurs when jumping in a group of 8TSs. The self-
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synchronisation is high whereas the beat synchronisation is low, this suggests that the group 

effect is more significant to individual synchronisation than the metronome cue. This was 

postulated in Section 7.2 based on previous findings (Noormohammadi et al., 2011). 

 
Figure 7.25 Comparision of mean self-synchronisation and beat synchronisation factors for all group sizes stimuli for 

a) metronome, b) music and c) visual stimuli. 
 
 
 

The differences between the types of synchronisation are less consistent when using a music 

stimulus. At 1.5Hz and 2Hz there are significant differences between the two factors, here TSs 

struggled to achieve the target frequencies, but jumped consistently and had low IASV values. 

Both synchronisation factors from the groups of 8TSs are similar to one another, unlike the 

metronome stimulus. This suggests that TSs are using both the music cue and the other group 

members to stay in time to the beat. 

Between 1.5 and 2Hz the visual beat and self-synchronisation factors are very similar to one 

another. The difference between the two types of synchronisations is smallest within groups of 

8TSs, here the presence of the group aids self-synchronisation without distracting the TSs from 

the target frequency. The difference between the factors increase at frequencies greater than 

or equal to 2.67Hz. The TSs are able to use the visual metronome to match the beat at the 

lower frequency, however at higher frequencies, they are unable to interpret the movement 

fast enough to translate it to the equivalent body motion. 
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7.5 Group Synchronisation 

Both the self and beat synchronisation of the whole group are quantified in this section using 

the PSD method described in Section 7.4. The group beat synchronisation factor reflects how 

well the group as a whole achieves the target frequency. The group self-synchronisation factor 

quantifies how synchronised the members of the group are with one another. The force time 

histories from each individual within the group are summed together to create a group time 

history. The group time history is then processed according to the procedure outlined in 

Section 7.4. The group beat and self-synchronisation factors are calculated for each harmonic. 

The factors are averaged across the three trials recorded for each stimulus and frequency. The 

mean group synchronisation factors are then found for each group size, stimulus, frequency 

and harmonic. 

7.5.1 Group Beat Synchronisation Factors 

The group beat synchronisation factors are discussed first and are shown in Figure 7.26. Mean 

values of group beat synchronisation between 0.2 and 1 are seen for the 1st harmonic for all 

jumping frequencies. The largest values are highlighted for each group size, stimulus, 

frequency and harmonic in Table 7.8. The greatest average group beat synchronisation factors 

are seen for groups of 8TSs jumping at 2.67Hz to music (0.96) and jumping between 1.5-2Hz 

for visual stimulus (0.93-0.94). Values as high as 0.98 were seen for some groups of 8TSs 

jumping to music at 2.67Hz. 

 
Figure 7.26 Mean values of group beat synchronisation factors for all group sizes for a) metronome, b) music and c) 

visual stimuli. 
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The beat synchronisation at different frequencies is dependent on the stimulus. The lowest 1st 

harmonic group beat synchronisation factors occur when using a visual stimulus to jump at 

3.5Hz. However, the values of beat synchronisation at 3.5Hz when using a metronome are not 

significantly different from those at low frequencies. Poor group beat synchronisation is also 

seen when using a music stimulus at 1.5Hz. The lowest and highest synchronisation factors are 

consistent with the individual beat synchronisation factors. It is thought that group beat 

synchronisation is possible to some degree over all the frequencies examined here. 

Table 7.8 Mean group beat synchronisation factors. 

Stimuli Metronome Music Visual 

Group Size 2 4 8 2 4 8 2 4 8 
Harmonic 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

1.5Hz 0.51 0.24 0.45 0.29 0.36 0.17 0.40 0.22 0.37 0.16 0.30 0.12 0.78 0.43 0.72 0.43 0.94 0.61 
1.75Hz 0.56 0.33 0.62 0.37 0.39 0.22 0.67 0.49 0.76 0.53 0.84 0.60 0.78 0.49 0.73 0.50 0.93 0.73 

2Hz 0.72 0.52 0.79 0.59 0.46 0.34 0.65 0.49 0.67 0.53 0.73 0.62 0.78 0.54 0.69 0.38 0.94 0.73 
2.67Hz 0.68 0.48 0.73 0.53 0.46 0.34 0.81 0.59 0.87 0.56 0.96 0.80 0.54 0.31 0.40 0.23 0.66 0.37 

3Hz 0.66 0.45 0.70 0.44 0.45 0.32 0.75 0.54 0.77 0.50 0.88 0.69 0.45 0.23 0.28 0.13 0.42 0.18 
3.5Hz 0.49 0.28 0.62 0.31 0.37 0.16       0.20 0.09 0.20 0.07 0.23 0.10 

 

Similar beat synchronisation factors are seen for groups of 2 and 4 TSs, for all stimuli. The 

factors from the audial stimuli (metronome and music), from groups of 4TSs are slightly larger 

than those from groups of 2TSs. Most significantly the beat synchronisation factors are larger 

for groups of 8TSs when using a music or visual cue (Figure 7.26 b, c). This phenomenon also 

occurs at the 2nd harmonic and is consistent with observations from individual beat 

synchronisation factors. In certain situations group size can increase group beat 

synchronisation. As this effect is opposite to what occurs when using a metronome stimulus 

(Figure 7.26a), extrapolation of metronome data to larger groups with diverse stimuli is not 

justifiable as it may lead to underestimations of a crowd’s capacity for beat synchronisation. A 

consequence of this is an underestimation of the crowd loading and the potential for 

resonance. 
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7.5.2 Group Self-Synchronisation Factors 

The group self-synchronisation factors are based on the largest PSD frequency component of 

each harmonic range. They are therefore greater or equal to the group beat synchronisation 

factors. The mean group self-synchronisation factors are plotted in Figure 7.27. 

The mean 1st harmonic group self-synchronisation factors are between 0.4 and 1 for all 

frequencies. As seen previously synchronisation is easier at certain frequencies with the use of 

specific stimuli. The maximum mean group self-synchronisation values occur for groups of 8TSs 

using a music cue at 2.67Hz (0.96, Table 7.9), values as high as 0.98 were found for a group of 

8TSs. High factors were also seen between 1.5-2Hz for visual stimulus (0.94-0.95). The lowest 

group self-synchronisation occurs at 3.5Hz when using a visual stimulus. The group self-

synchronisation factors are largest in groups of 8TSs, where the presence of the crowd has 

improved synchronisation. 

Table 7.9 Mean group self-synchronisation factors. 

Stimuli Metronome Music Visual 

Group Size 2 4 8 2 4 8 2 4 8 
Harmonic 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

1.5Hz 0.70 0.45 0.66 0.45 0.78 0.48 0.67 0.47 0.72 0.51 0.77 0.49 0.82 0.51 0.79 0.55 0.94 0.67 
1.75Hz 0.77 0.57 0.80 0.57 0.80 0.63 0.79 0.64 0.82 0.69 0.91 0.77 0.84 0.64 0.83 0.65 0.94 0.80 

2Hz 0.86 0.64 0.89 0.73 0.92 0.74 0.82 0.66 0.89 0.72 0.92 0.79 0.86 0.65 0.82 0.58 0.95 0.75 
2.67Hz 0.88 0.70 0.86 0.70 0.87 0.68 0.85 0.68 0.90 0.63 0.96 0.82 0.72 0.46 0.62 0.45 0.69 0.43 

3Hz 0.82 0.60 0.82 0.54 0.86 0.62 0.79 0.63 0.79 0.56 0.88 0.72 0.64 0.40 0.58 0.35 0.60 0.37 
3.5Hz 0.70 0.47 0.73 0.46 0.67 0.38       0.48 0.30 0.48 0.26 0.41 0.21 

 

 
Figure 7.27 Mean values of group self-synchronisation factors for all group sizes for a) metronome, b) music and c) 

visual stimuli. 
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Values of group self-synchronisation above 0.67 are possible for groups of 8TSs at all 

frequencies examined here and therefore frequencies between 1.5 and 3.5Hz should be 

considered to have crowd synchronisation potential. 

The group self-synchronisation factors give an indication of how well a group of TSs are able to 

replicate a jumping period relative to each other. A high group self-synchronisation factor is 

indicative of consistent periods and lower time lags between TSs. The initial period timing for 

each TS and jump was plotted in Figure 7.28 for a trial with high (0.97) and low (0.47) group 

self-synchronisation factor for 8TSs jumping at 2Hz to music. Each colour represents the timing 

of an individual TS. There is very little spread in the initial timing of each jump in Figure 7.28a, 

whereas in Figure 7.28b there is a wide variation in TS jump timings, as would be expected. 

 

 
Figure 7.28 The initial time of each period for a) a high group self-synchronisation factor (0.97) and b) a low group 

self-synchronisation factor (0.47) for a group of 8TSs jumping at 2Hz to music. 
 
 
 

The group beat (filled markers) and self (hollow markers) synchronisation factors are 

compared to one another in Figure 7.29. There is a noticeable difference between the group 

beat and self-synchronisation factors when using a metronome. Groups of individuals are able 

to keep time with one another but not at the prescribed metronome frequency. The values of 
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beat and group self-synchronisation factor are more similar when using music or visual stimuli. 

The only significant difference between the factors for a music stimulus is at 2Hz where TSs 

struggled to maintain the target frequency, but were well synchronised with one another. At 

frequencies above 2Hz the group beat synchronisation factors for the visual stimulus become 

substantially smaller than the group self-synchronisation factors. Individuals are unable to 

keep in time to the visual stimulus but maintain some semblance of synchronisation with one 

another. The difference between the synchronisation factors increases at the 2nd harmonic. 

The environment and the stimulus frequency should be examined when deciding the level of 

crowd synchronisation to design against. Groups of 8TSs were able to achieve mean self-

synchronisation factors of 0.96 in certain conditions. This is potentially 0.96*8*dynamic load of 

one individual. Individuals within groups of up to 8TSs have the potential for near perfect 

synchronisation with one another. 

 
Figure 7.29 Mean values of group beat and group self-synchronisation factors for all group sizes for a) metronome, 

b) music and c) visual stimuli. 
 
 
 

The group self-synchronisation factors demonstrate the crowd’s ability to synchronise with 

one another and therefore should be consulted when considering an action within a given 

frequency range. However, if a certain jumping frequency is expected and of particular 

concern, for example to avoid structural resonance, the values of beat synchronisation should 

be referenced. 

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Harmonic Frequency [Hz]
0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Harmonic Frequency [Hz]
0 2 4 6 8

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Harmonic Frequency [Hz]

S
y
n

c
h

ro
n

is
a

ti
o

n
 F

a
c
to

r

S
y
n

c
h

ro
n

is
a

ti
o

n
 F

a
c
to

r

b) c)a)

S
y
n

c
h

ro
n

is
a

ti
o

n
 F

a
c
to

r

1st Harm

2nd Harm

2

4

8

Group size

Hollow is self- 
sync factor
Filled is beat 
sync factor



Chapter 7. Group and Individual Synchronisation using a Range of 

External Stimuli 

224 

7.5.3 Synchronisation Factors of the Rows 

As noted the two rows of TSs are subjected to different stimuli. The back row of TSs (row 1) 

has the advantage of an additional visual stimulus in the form of the movements of the front 

row (row 2). The two rows can be analysed separately to investigate the effect of row position 

in groups of 4 and 8 TSs. The row synchronisation factors are processed as outlined above to 

create row beat synchronisation factors and row self-synchronisation factors (Figure 7.30, 

Figure 7.31). 

From Figure 7.30 there appears to be little difference between the row beat synchronisation 

factors from row 1 (filled markers) and row 2 (hollow markers). The same observation is true 

for the row self-synchronisation factors in Figure 7.31. The addition of individuals in front does 

not necessarily improve the synchronisation of the row behind. Being within a crowd improves 

synchronisation, however the position of an individual within the crowd appears insignificant. 

 
Figure 7.30 Mean values of row 1 and row 2 beat synchronisation factors for groups of 4 and 8 TSs for a) 

metronome, b) music and c) visual stimuli. 
 
 

 
Figure 7.31 Mean values of row 1 and row 2 self-synchronisation factors for groups of 4 and 8 TSs for a) 

metronome, b) music and c) visual stimuli. 
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7.6 Structural Response 

7.6.1 Response to Experimental Forces 

The response of a SDOF system was used to demonstrate the implications of crowd 

synchronisation on a structure with reference to different crowd sizes and stimuli. To illustrate 

the effect SDOF structures were simulated in Matlab (MathWorks, 2012) with a modal mass of 

35000kg and varying damping ratios ζ of 1%, 2%, 3%. These values with the application of a 

mass factor mf are in keeping with those considered in Section 5.4.5 and are typical stadia 

values. To ensure the simulations reflect the likely structural natural frequencies, the 

frequency of the SDOF system fn is varied in steps of 0.05Hz from 0.5Hz to 7Hz, or 2.5*target 

frequency, whichever is the larger. This ensures the vulnerable frequencies under 6Hz (UK 

Working Group, 2008) are considered and the response to the first two harmonics of the force 

is captured. The purpose of these simulations was not to give firm response values but to 

reflect likely values using a simplified model. 

The 20s duration forces from groups of 2, 4 and 8TSs were filtered as described in Section 7.3 

and cut to ensure the signal started and ended at zero. The group forces were then applied to 

single point on the simulated SDOF structures, the maximum response for each structural 

frequency and damping ratio were recorded, as highlighted by asterisks in Figure 7.32. In some 

cases due to the combination of several force time histories and the length of the trials the 

steady state response was not reached, an example of this is Figure 7.32h. The response for 

8TSs is less like the conventional resonance response seen in Figure 7.32 d and f for 2 and 4TSs. 

These trials used the metronome stimulus and therefore the slight spread of frequencies in 

Figure 7.32g is consistent with the lower synchronisation factors associated with these 

conditions. 

The maximum responses for each SDOF structure were averaged across the three trials, then 

for each target frequency, stimulus and group size. For ease of viewing the envelope of 
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maximum mean response including all frequencies, and the maximum 90th and 10th percentile 

bands are plotted against structural fn in Figure 7.33, Figure 7.34 and Figure 7.35. Charts of the 

mean, 90th and 10th percentile bands of the maximum response for each specific target 

frequency are shown in Appendix B. 

 
Figure 7.32 The frequency spectra and the time histories of the acceleration structural response for SDOFs with 1% 
damping and an fn of 2Hz, subjected to a and b)1TS, c and d) 2TSs, e and f) 4TSs and g and h) 8TSs jumping at 2Hz. 

The value of maximum response is marked for each time history. 
 
 
 

Figure 7.33, Figure 7.34 and Figure 7.35 can be used to predict the response to 1, 2, 4 and 8 

TSs jumping on a structure with natural frequency between 0.5 and 7Hz and damping ratio of 

1%, 2%, or 3%. The responses can be applied to structures of different modal masses M by 

multiplying the responses by a factor of 35,000/M. 
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Figure 7.33 The envelope of the mean and the 90

th
 and 10

th
 percentiles for the acceleration response due to the 

metronome stimulus, considering the largest mean response (or 90
th

 and 10
th

 percentile) value found for all 
frequencies for each structural frequency and damping ratio. a) 1TS, b) 2TSs, c) 4TSs and d) 8TSs. 

 
 

 
Figure 7.34 The envelope of the mean and the 90

th
 and 10

th
 percentiles for the acceleration response due to the 

music stimulus, considering the largest mean response (or 90
th

 and 10
th

 percentile) value found for all frequencies 
for each specific structural frequency and damping ratio. a) 1TS, b) 2TSs, c) 4TSs and d) 8TSs. 
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were seen in Figure 7.34 for the music stimulus and in Figure 7.35 for visual stimulus, 

indicating high consistency within and between the groups, causing structural resonance. 

 
Figure 7.35 The envelope of the mean and the 90

th
 and 10

th
 percentiles for the acceleration response due to the 

visual stimulus, considering the largest mean response (or 90
th

 and 10
th

 percentile) value found for all frequencies 
for each specific structural frequency and damping ratio. a) 1TS, b) 2TSs, c) 4TSs and d) 8TSs. 

 
 
 

7.6.2 Comparison with the Response to an Equivalent Half-Sine Force 

The maximum responses to periodic half-sine forces of each target frequency are plotted in 

Figure 7.36, Figure 7.37 and Figure 7.38. The magnitude of the force is equal to the average 

DLF value from the summed force and average group weight (Table 7.10) for each group size, 

stimulus, frequency and harmonic. In addition the maximum responses when using the 90th 

percentile of the DLFs values and of the group weight are also plotted. 

Comparing Figure 7.33 and Figure 7.36 the structural responses to the mean experimental data 

and the periodic equivalent for the metronome stimulus for groups of 1, 2 and 4TSs are in 

agreement for resonance at 2, 2.67Hz and 3Hz. At the other target frequencies and especially 

at the 2nd harmonic of the forces, the responses from the periodic forces are larger than from 

the experimental data. In groups of 8TSs the response from the periodic force overestimates 

the experimental data responses at all frequencies. Occasionally the 90th percentile response 

from the experimental data is marginally larger than the equivalent periodic response. 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

Structu al fn [Hz]r

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

Structu al fn [Hz]r

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Structu al fn [Hz]r

a)

b)

M
e

a
n

 S
tr

u
c
tu

ra
l 
R

e
s
p
o

n
s
e

 [
m

s
]

-2
M

e
a
n

 S
tr

u
c
tu

ra
l 
R

e
s
p

o
n
s

e
 [

m
s

]
-2

c)

1%

10th% 

3%

& 90th%

mean

2%

10th% 

& 90th%

mean

10th% 

& 90th%

mean



Chapter 7. Group and Individual Synchronisation using a Range of 

External Stimuli 

229 

The responses to the experimental data and the equivalent periodic force from the music 

stimulus are shown in Figure 7.34 and Figure 7.37. For all group sizes the two responses are in 

agreement for resonance at 1.75Hz to 3Hz. At 1.5Hz and the 2nd harmonics the periodic 

response overestimates the experimental data response. 

 
Figure 7.36 The acceleration response to a periodic half-sine force of each target frequency, with magnitude equal 

to the average DLF value from the metronome stimulus for group sizes of a)1TS, b) 2TSs, c) 4TSs and d)8TSs. 
 
 

 
Figure 7.37 The acceleration response to a periodic half-sine force of each target frequency, with magnitude equal 

to the average DLF value from the music stimulus for group sizes of a)2TS, b) 4TSs, and c) 8TSs. 
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Figure 7.38 The acceleration response to a periodic half-sine force of each target frequency, with magnitude equal 

to the average DLF value from the visual stimulus for group sizes of a)2TS, b) 4TSs, and c) 8TSs. 
 
 
 

Table 7.10 The mean, 10
th

 and 90
th

 percentiles of the TS’s weight and the DLF values for each group size and stimulus. 

   1
st

 Harmonic DLF 2
nd

 Harmonic DLF 

  W(kg) 1Hz  1.5Hz  1.75Hz  2Hz  2.67Hz 3Hz 3.5Hz 1Hz  1.5Hz  1.75Hz  2Hz  2.67Hz 3Hz 3.5Hz 

Metronome               
1TS Mean 74.13 0.27   1.49  1.47  1.00   0.64  0.59  

 90% 84.40 0.35   1.63  1.60  1.13   0.93  0.75  
2TS Mean 69.48  1.21 1.38 1.50 1.50 1.42 1.24  0.48 0.66 0.72 0.70 0.61 0.43 

 90% 78.55  1.50 1.60 1.67 1.60 1.54 1.44  0.68 0.87 0.95 0.85 0.72 0.53 
4TS Mean 70.99  1.00 1.17 1.43 1.35 1.25 1.07  0.42 0.54 0.68 0.58 0.47 0.31 

 90% 79.44  1.49 1.59 1.64 1.57 1.54 1.36  0.66 0.89 0.97 0.78 0.70 0.49 
8TS Mean 73.47  0.90 1.16 1.39 1.39 1.29 1.03  0.29 0.40 0.53 0.55 0.44 0.28 

 90% 76.13  1.03 1.36 1.46 1.48 1.47 1.26  0.36 0.45 0.58 0.62 0.58 0.38 

 Music               
2TS Mean 69.48  1.29 1.43 1.46 1.44 1.36   0.53 0.64 0.70 0.65 0.55  

 90% 78.55  1.58 1.61 1.64 1.59 1.54   0.77 0.84 0.88 0.82 0.69  
4TS Mean 70.99  0.98 1.18 1.33 1.24 1.11   0.41 0.51 0.60 0.47 0.37  

 90% 79.44  1.43 1.55 1.60 1.41 1.34   0.64 0.70 0.83 0.59 0.45  
8TS Mean 73.47  1.00 1.33 1.42 1.35 1.16   0.30 0.48 0.56 0.47 0.35  

 90% 76.13  1.19 1.54 1.50 1.36 1.22   0.49 0.73 0.66 0.51 0.39  

 Visual               
2TS Mean 69.48  1.23 1.36 1.48 1.35 1.29 1.11  0.42 0.64 0.69 0.59 0.55 0.40 

 90% 78.55  1.49 1.63 1.65 1.54 1.52 1.36  0.63 0.84 0.89 0.74 0.64 0.52 
4TS Mean 70.99  1.06 1.28 1.30 1.17 1.05 0.95  0.35 0.53 0.54 0.49 0.41 0.32 

 90% 79.44  1.42 1.56 1.56 1.42 1.38 1.24  0.49 0.72 0.73 0.62 0.53 0.43 
8TS Mean 73.47  1.23 1.34 1.33 0.89 0.80 0.57  0.30 0.48 0.47 0.28 0.27 0.17 

 90% 76.13  1.38 1.49 1.46 1.04 1.00 0.67  0.47 0.67 0.59 0.30 0.33 0.19 

 

For the visual stimulus (Figure 7.35 and Figure 7.38) good agreement between the periodic and 

experimental data responses are seen for resonance at 1.5 to 2Hz for all group sizes. The 

resonance response due to other jumping frequencies and the 2nd harmonics of the forces are 

overestimated by the periodic equivalent force. In general the 90th percentiles of the response 
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from the periodic forces are greater or equal to those from the experimental data. However, 

occasionally the 90th percentiles from the experimental data are marginally larger than from 

the periodic force. 

The responses to periodic forces with a magnitude equal to the 10th percentiles of group 

weight and DLF values (Table 7.10) are shown in Figure 7.39, Figure 7.40 and Figure 7.41. They 

are compared to the 10% percentile responses from the experimental forces. For the 

metronome stimulus (Figure 7.39) the periodic response overestimates the experimental data 

10th percentile response. The responses are most similar at 2Hz resonance. The responses 

correspond well for all group sizes at the 1st harmonics of 1.75 to 3Hz for the music stimulus 

(Figure 7.40). The periodic response estimation for the visual stimulus is better than for the 

metronome, the responses are best matched for groups of 8TSs, except at 3.5Hz. The 

responses at the 2nd harmonics are overestimated for all stimuli and group sizes.  

 
Figure 7.39 A comparison of the 10

th
 percentile maximum acceleration response from experimental data, and an 

equivalent periodic half-sine force of each target frequency, with magnitude equal to the 10
th

 percentile DLF value 
from the metronome stimulus for group sizes of a)1TS, b) 2TSs, c) 4TSs and d) 8TSs. 
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Figure 7.40 A comparison of the 10

th
 percentile maximum acceleration response from experimental data, and an 

equivalent periodic half-sine force of each target frequency, with magnitude equal to the 10
th

 percentile DLF value 
from the music stimulus for group sizes of a)2TS, b) 4TSs, and c) 8TSs. 

 

 

 
Figure 7.41 A comparison of the 10

th
 percentile maximum acceleration response from experimental data, and an 

equivalent periodic half-sine force of each target frequency, with magnitude equal to the 10
th

 percentile DLF value 
from the visual stimulus for group sizes of a)2TS, b) 4TSs, and c) 8TSs. 
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components within the experimental forces are ignored and the corresponding response is 

potentially overlooked at non-resonance frequencies. 

Examining the values of structural response in Figure 7.33, Figure 7.34 and Figure 7.35, it is 

possible for a lightly damped structure (ζ=1%) having a modal mass of 35000kg to be excited to 

extremely high structural accelerations when the TS’s frequency matches that of the structure. 

Especially high values of mean acceleration occurred for 8TSs for visual (9.91ms-2) and music 

(9.79ms-2) stimuli. In addition the 90th percentiles reach 11.35ms-2 for the visual stimulus and 

10.13ms-2 for the music stimulus. As there is potential for the structural accelerations to 

exceed gravity, occupants may be thrown from the structure. 

7.6.3 Comparison with the Response of a Flexible Bridge 

Previous authors argued that TSs were unable to continually perform an activity at the natural 

frequency of the structure when exposed to already large accelerations (Yao et al., 2006). TSs 

are unlikely to maintain their synchronised force, and therefore such high structural 

accelerations are unlikely to be reached. Reductions in the GRFs have been seen at resonance, 

known as force drop out (Yao et al., 2006). However these maximum peak accelerations 

should not be over looked as accelerations of 11.28ms-2 have been recorded on the Valladolid 

Science Museum Bridge in Spain (Figure 7.42a) due to pairs jumping at resonance. 

The response accelerations in Figure 7.33 to Figure 7.38 include group effect but no human 

structure interaction (HSI). As seen in Section 3.2.2 the GRFs measured on flexible surfaces are 

different from those on rigid surfaces (Dougill et al., 2006; Yao et al., 2006). Experiments were 

conducted on the 2nd span of the Valladolid Museum Bridge (Figure 7.42b) which is noted for 

being lively with extreme responses (Casado et al., 2011). The 1st bending mode of the span 

has a natural frequency of 3.5Hz which can be easily excited by the 2nd harmonic of pedestrian 

traffic, or individuals or groups jumping at 3.5Hz. The span of the bridge is lightly damped 

(ζ=0.7%) and has a modal mass M of 18,500kg. An accelerometer was placed in the middle of 
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the span and recorded the structural accelerations at 600Hz. A Pair of individuals jumped in 

the middle of the span for three minutes at frequencies between 1.5 to 3.75Hz to a 

metronome beat. Three pairs participated in the experiments. 

The acceleration responses were filtered in accordance to the experimental procedure in 

Section 7.3. The maximum acceleration response was found for each pair of TSs for 

frequencies of 1.5, 1.75, 2 and 3.5Hz and plotted in Figure 7.43. The 2TS experimental forces 

measured on a rigid surface using a metronome were applied to an equivalent SDOF system to 

investigate any differences in the response. The mean maximum response values and the 10th 

and 90th percentiles are marked on Figure 7.43. 

 
Figure 7.42 The Valladolid Science Museum Footbridge, in Spain a) the whole structure, b) span 2. 

 
 
 

a)

b)
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Figure 7.43 A comparision of the maximum acceleration response from pairs jumping on the flexible Valladolid 

Museum bridge and an equivalent SDOF system with experimental 2TSs metronome forces measured on rigid surfaces. 
 
 

 
The responses from the 2TS forces measured on a rigid surface were larger than the bridge 

responses (Figure 7.43). Outside of resonance the 90th percentiles are on average within 

1.14ms-2 of the bridge’s response. The 10th percentiles are a conservative estimate of the 

minimum response value (Figure 7.43). At resonance due to the 1st harmonic of 3.5Hz and the 

2nd harmonic of 1.75Hz the difference between the bridge responses and the 2TS responses 

increased. This is potential caused by force drop out (Yao et al., 2006). The 10th percentiles are 

however a good approximation of the bridge responses at resonance. It is suggested that 

outside of resonance the 10th percentile to mean of the rigid forces are a conservative 

approximation of the range of forces on flexible surfaces. At resonance it is suggested that the 

10th percentile approximates the flexible forces. This should prevent large overestimations in 

the response. However these findings are only based on a limited number of experiments 

using a metronome stimulus and should be verified for other stimuli. Further experiments on 

flexible surfaces are recommended as only three pairs of TSs jumped on a single bridge with a 

natural frequency of 3.5Hz within this work. 

7.6.4 Response Envelopes for Excitation in Resonance 

Using the prominent response peaks from experimental and periodic data, charts (Figure 7.44, 

Figure 7.45 and Figure 7.46) have been created to give an indication of the levels of 
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stimuli. The 10th and 90th percentiles of the response have been included for both the periodic 

and experimental data. 

 
Figure 7.44 The expected structural resonance response for different structural frequencies for the metronome 

experimental data and the equivalent periodic signal, for a)1TS, b) 2TSs, c) 4TSs and d) 8TSs. 
 
 

 
Figure 7.45 The expected structural resonance response for different structural frequencies for the music 

experimental data and the equivalent periodic signal, for a)2TSs, b) 4TSs, and c) 8TSs. 
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In public event space design for groups of 2, 4 and 8 synchronised individuals jumping, both 

the charts for music (Figure 7.45) and visual (Figure 7.46) stimuli should be consulted for the 

resonance response. For low frequency structures (≤2Hz), the focus should be on the visual 

stimulus (Figure 7.46), and mid frequency structures (1.75-3Hz) the music stimulus (Figure 

7.45). For the over lapping frequencies (1.75-2Hz) both music and visual charts should be 

consulted equally or the chart most appropriate for the end use. 

 
Figure 7.46 The expected structural resonance response for different structural frequencies for the visual 

experimental data and the equivalent periodic signal, for a)2TSs, b) 4TSs, and c) 8TSs. 
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recommended as adaption for different TS weights and DLF values is simple. Considering the 

findings in Section 7.6.3 for jumping on a flexible surface using a metronome, the mean and 

10th percentile curves may produce the most realistic values of the response of flexible 

structures. A factor of 35,000/M should be applied to the responses for different modal 

masses. For the effects of the 2nd harmonics the experimental data curves should be used to 

avoid significant overestimations of the structural response. 

7.6.5 The Structural Response and the Group Synchronisation Factors 

The synchronisation factors discussed in 7.4 and 7.5 are a measure of synchronisation of, and 

between individuals, not necessarily the synchronisation with the structure. However, it is 

thought high group synchronisation should translate to high levels of structural 

synchronisation. For each stimulus, group size, frequency and harmonic the group self-

synchronisation factors are compared to the mean maximum structural response from all the 

structural frequencies investigated for 1, 2 and 3% damping (Figure 7.47). The structural 

frequency where the response is largest should correspond to the largest PSD component 

representing the group self-synchronisation factor. In addition, the group self-synchronisation 

factors and the 10th percentiles of the maximum responses are compared (Figure 7.48). 

There is a positive correlation between the 1st harmonic group self-synchronisation factors and 

the mean and 10th percentiles of the maximum structural responses, as seen in Figure 7.47a, c 

and e, and Figure 7.48a, c and e. The correlation is strongest in groups of 8TSs. The relationship 

varies depending on the group size and damping ratio, but stimulus does not appear to affect 

it. The gradient of the relationships at the 10th percentiles are shallower than for the mean 

values, indicating that the effect of group self-synchronisation on the response is less. The 

relationships in Figure 7.47a, c and e, and in Figure 7.48 a, c and e can be used to estimate the 

maximum structural response (having applied 35000/M) caused by an assumed degree of 

synchronisation. As seen in Section 7.6.3 the 10th percentile of response may be a more 
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realistic approximation of the response of a flexible structure at resonance. At the 2nd 

harmonic of the force there is no correlation between the group self-synchronisation factors 

and the responses, Figure 7.47b, d and f Figure 7.48b, d and f. 

 

 

 
Figure 7.47 The relationship between the group self-synchronisation factors and the mean maximum structural 
response for 1% (a &b), 2% (c &d) and 3%(e &f) damping, where a, c &e are the 1

st
 harmonic and b, d &f the 2

nd
 

harmonic. 
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Figure 7.48 The relationship between the group self-synchronisation factors and the 10

th
 percentile of the maximum 

structural response for 1% (a &b), 2% (c &d) and 3%(e &f) damping, where a, c &e are the 1
st

 harmonic and b, d &f 
the 2

nd
 harmonic. 

 
 
 

7.7 Conclusions  

This work has provided an in-depth study into the effect of stimuli and group size on 

synchronisation and quantified group synchronisation for 2, 4 and 8 TSs. Synchronisation with 

one's self and other TSs, and synchronisation with a beat has been investigated. 

Individual beat and self-synchronisation is possible between 1.5 to 3.5Hz, the degree of this 

depends on the external stimulus. A visual stimulus encourages high average values of beat 

(≥0.63, Table 7.4) and self-synchronisation (≥0.75, Table 7.7) factors at low frequencies (1.5-

2Hz). However, the average synchronisation at high target frequencies (2.67-3.5Hz) is poor 

(beat ≥0.15, self ≥0.44). In general the highest average beat (≥0.62) and self-synchronisation 
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(≥0.79) factors for audial stimuli are seen at the mid frequencies (2Hz-2.67Hz), however good 

mean self-synchronisation is possible between 1.5-3.5Hz (≥0.71). 

The mean individual beat synchronisation factors are between 0.2 and 0.8 at the 1st harmonic 

and vary with group size, target frequency and stimulus (Figure 7.18). However, 

synchronisation factors as high as 0.98 can occur (Figure 7.15, Figure 7.16, Figure 7.17). The 

mean self-synchronisation factors are between 0.6-0.9 and vary with group size, target 

frequency and stimulus (Figure 7.23) However self-synchronisation factors as high as 0.98 are 

possible (Figure 7.20, Figure 7.21, Figure 7.22). 

The beat and self-synchronisation factors calculated for eight solitary individual TSs were 

found to be significantly smaller than those from individuals within groups. If combining 

solitary individual GRFs (Parkhouse and Ewins, 2006) the improved synchronisation due to the 

crowd effect is ignored and therefore the equivalent crowd force will be underestimated. It is 

recommended that solitary individual force time histories are not extrapolated to create group 

loading. 

Inclusion within a group improves the beat synchronisation of individuals considerably in most 

cases, supporting conclusions about crowd effect made by previous authors (Sim, 2006; 

Ebrahimpour and Fitts, 1996; Comer et al., 2007). An exception is the metronome stimulus, 

where the other group members become a stronger stimulus than the beat itself, encouraging 

synchronisation within the group. This highlights that stimuli affect synchronisation in different 

ways. Inclusion within a group also moderately improves an individual’s self-synchronisation 

reducing the IASV of the period. 

For examining individual synchronisation, the self-synchronisation factors in Figure 7.23 are 

recommended as mean values. However, if knowledge of synchronisation at a specific 

frequency is required the mean beat synchronisation factors in Figure 7.18 should be used. 
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Group beat and self-synchronisation factors were calculated using the total group time 

histories. Mean group beat synchronisation factors between 0.2 and 1 occur (Figure 7.26), 

which are dependent on the stimulus, target frequency and group size. The lowest 

synchronisation was seen for music stimulus at 1.5Hz and visual stimulus between 3 and 3.5Hz. 

The group beat synchronisation factors were largest for groups of 8TSs for the majority of 

frequencies, when using visual (max value 0.94, Table 7.8) or music cues (max value 0.96) 

Figure 7.26 b, and c. Hence, in certain situations group size can increase beat synchronisation. 

As this affect is not linked to the metronome stimulus, extrapolation of metronome data 

(Dougill et al., 2006; Sim et al., 2008) to larger groups with diverse stimuli may lead to 

underestimations of a crowd’s capacity for beat synchronisation, and consequentially 

underestimate the load and the potential for resonance. 

Group self-synchronisation factors give an indication of the consistency of the periods and the 

values of the time lags between individuals (Figure 7.28). A high level of mean group self-

synchronisation (≥0.67, Table 7.9) is possible between at least 1.5 and 3.5Hz for all group sizes 

depending on the stimulus. The mean group self-synchronisation factors are between 0.4 and 

1 and are dependent on target frequency, group size and stimulus. The best group self-

synchronisation was seen in for 8TSs using a music cue at 2.67Hz (0.96, Table 7.9) and between 

1.5-2Hz for visual stimulus (0.94-0.95). The worst synchronisation occurred at 3 and 3.5Hz 

when using a visual stimulus. The group self-synchronisation factors were largest in groups of 

8TSs, where the presence of a crowd has improved synchronisation. For the metronome 

stimulus the group self-synchronisation factors from 8TS (0.67-0.92, Table 7.9) were 

significantly larger than the group beat synchronisation factors (0.36-0.46, Table 7.8). This 

indicates that synchronisation with other group members is dominant over synchronisation 

with a beat for a metronome stimulus. 
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The environment and the stimulus frequency and type should be examined when deciding the 

level of synchronisation to design against. Groups of 8TSs were able to achieve mean self-

synchronisation factors of 0.96 in certain conditions. In some cases group self-synchronisation 

factors as high as 0.98 were seen. Individuals within groups of 8TSs have the potential for near 

perfect synchronisation with one another. 

The group self-synchronisation factors in Figure 7.27 demonstrate the crowd’s ability to 

synchronise with one another regardless of whether the target frequency was achieved. The 

level of synchronisation is not only dependant on the frequency but on group size and 

stimulus. The group self-synchronisation factors should be consulted when considering 

jumping within a given frequency range. However, if a certain jumping frequency is expected 

and of particular concern, for example to avoid structural resonance, the values of beat 

synchronisation in Figure 7.26 should be referenced. 

The high synchronisation potential when using visual stimulus, especially at low frequencies 

was demonstrated with in this work. This challenges statements made by previous authors 

where the synchronisation potential from visual stimulus was disregarded (Parkhouse and 

Ewins, 2006). From this study it is advised that both visual and audial stimuli should be 

considered to have the potential to cause synchronisation. In addition individual and group 

synchronisation frequency ranges should take into consideration the type of stimulus involved. 

The effect of position within a crowd was investigated and it was found that the addition of 

individuals in front does not necessarily improve the synchronisation of the row behind. Being 

within a crowd improves synchronisation however the position of an individual within the 

crowd appears insignificant. 

The group forces and equivalent half-sine periodic forces were applied to SDOF systems of 

various natural frequencies and damping ratios. For lightly damped structures accelerations 

above gravity were possible. However it is unlikely that groups will continue applying a 
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synchronised force when exposed to such large accelerations (Yao et al., 2006). Considering all 

stimuli, good agreement between the SDOF resonance responses to periodic and experimental 

forces at the 1st harmonic of 1.5 to 3Hz were possible for all group sizes. Therefore there is 

potential for a half-sine function of adequate DLF and group weight to model group loading for 

1, 2, 4 and 8TSs when jumping between 1.5 and 3Hz. 

As seen by previous authors (Dougill et al., 2006; Yao et al., 2006) rigid and flexible GRFs may 

not be comparable. Real acceleration responses from pairs of individuals jumping on a bridge 

were compared to the responses of an equivalent SDOF system using experimental data from 

groups of 2TSs on rigid surfaces. The responses from forces measured on rigid surfaces were in 

general larger than those from a flexible surface (bridge), especially at resonance. It is 

suggested that outside of resonance the 10th percentiles and mean values of the response 

from the forces measured on rigid surfaces can be used to approximate the response to 

flexible forces. At resonance there is potential for the 10th percentiles to be used to prevent 

response overestimations. Charts were created to inform designers of the values of resonance 

response likely for different structural properties, group sizes and stimuli, Figure 7.44, Figure 

7.45 and Figure 7.46. Positive correlation was found between the group self-synchronisation 

factors and the maximum structural responses (Figure 7.47, Figure 7.48). The relationships can 

be used to estimate the structural response from different values of group self-

synchronisation. 

This body of work set out to investigate the effect of group size, target frequency and external 

stimulus on individual and group synchronisation. Group and individual synchronisation factors 

have been calculated for group sizes of 2, 4 and 8 TSs. These synchronisation factors can be 

used in conjunction with current crowd and individual jumping models (Chapter 3) to simulate 

crowd or individual dynamic loading, with reference to the frequency and type of stimulus 
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expected. Ideally further experiments would be conducted with larger group sizes to 

investigate the applicability of these factors to larger group sizes. 

Further experiments are recommended using this method and different stimuli on flexible 

grandstand structures to understand further the differences between rigid and flexible GRFs. 

In addition these experiments can be used to determine if crowd synchronisation on flexible 

surfaces is the same as on rigid surfaces. 

It is suggested that the use of metronomes be discontinued as a stimulus for synchronisation 

experiments. The variation between the metronome beat synchronisation factors for both 

individuals and groups, for 8TSs, compared to other stimulus was significant. 

The effect of position within a group was briefly studied within this chapter. Further 

experiments with additional rows would be of benefit to validate those conclusions drawn on 

the TS position within this work. 
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8 Conclusions and Recommendations for Further Work 

8.1 Conclusions 

Within this work the properties of jumping and bobbing activities have been examined for 8 

test subjects (TS) over a range of frequencies, and relationships sought between them 

(Chapter 4). Thought was given to the physical characteristics of the TSs and the potential 

influence on the properties investigated. The properties of interest for jumping, observed on a 

jump-by-jump basis, were frequency, peak force, dynamic load factor (DLF), impulse, contact 

ratio and displacement. For bobbing the properties of interest were frequency, peak force, DLF 

and displacement observed on a bob-by-bob basis. The intra-subject variation (IASV), the inter-

subject variation (IESV) and the inter-intra-subject variation (EIASV) were examined and 

quantified. 

For jumping it was observed that male TSs generated larger normalised peak forces than 

female TSs, however this distinction was lost at 3Hz. TS weight influenced the normalised peak 

forces at 1-2Hz, however at 3Hz TS height was the dominant influence. The effect of TS height 

on the maximum displacement was investigated and for the jumping frequencies of 2 and 3Hz 

taller TS’s were found to have larger displacements. At 1Hz TS height appeared to have little 

influence on the maximum displacement. Unlike jumping, the normalised bobbing force was 

unaffected by TSs weight and height, and no correlation was observed between TS height and 

maximum displacements. 

There is an inverse relationship between contact ratio and peak force, which varies with 

jumping frequency. Contact ratios are not necessarily specific to a jumping frequency. 

However, very high contact ratios are mostly associated with low frequency jumping, and very 

low contact ratios with jumping at frequencies around 2Hz. 
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The TS’s frequency variation was most similar to one another at 2Hz (EIASV, mean CoV=0.035, 

Table 4.2) and most varied at 1Hz (EIASV, mean CoV=0.043). Overall the normalised peak 

forces of the TSs were most consistent with one another at 3Hz (IESV, CoV=0.07, Table 4.4) and 

least consistent at 2Hz (IESV, CoV=0.14). For jumping a significant portion of the properties 

were found to have the largest IESV at a frequency of 2Hz, suggesting high diversity of jumping 

properties between TSs. For bobbing displacement the EIASV values were smallest at 1Hz 

(mean CoV=0.202, Table 4.17) and largest at 4Hz (mean CoV=0.444). In general the bobbing 

DLF values were most consistent between the TSs at the 1st harmonic, more IESV occurred at 

the higher harmonics (3 and above). The IESV and EIASV values in general were smaller for 

jumping than for bobbing, indicating that jumping TSs are more consistent with each other. 

This is likely due to the wider variety of styles and force profiles possible when bobbing. 

For the activity of bobbing the force profiles of two different styles, bouncing and jouncing 

were examined and characterised. In general the forces were larger from jouncing TSs. A high 

variety of profile shapes were possible for both styles, the variety reduced with increased 

bobbing frequency. At high frequencies the bouncing and jouncing force profiles became more 

similar, tending towards a single force peak comparable to jumping force profiles. 

This study into the variation of jumping and bobbing properties provides a greater 

understanding of how the actions change on a cycle-by-cycle basis, and between people. These 

variations can be used to improve current jumping and bobbing models (Chapter 3) facilitating 

more realistic characteristics. 

To tackle the difficulty of crowd force measurements a novel approach was developed 

(Chapters 5 & 6) from existing motion capture techniques. The use of a single monitoring point 

was proposed to increase ease of multiple subject tracking. This could be used indirectly to 

calculate the ground reaction force (GRF). To achieve this, the movement of the centre of mass 

(CoM) was required. 17 locations with the potential to track the CoM movements were 
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proposed on the front, back and hips of the eight participating TSs. A metronome dictating 

target frequencies of 1, 2 and 3Hz was used for jumping, 4Hz was used in addition for bobbing. 

After comparing the indirect (motion capture) force measurement for each potential location 

to the direct force simultaneously measured by a force plate, an adequate location on the back 

(C7th vertebrae) of the TSs was found. The first three harmonics of a jumping force can be 

accurately measured if their harmonic frequency is less than or equal to 3Hz. The average 

percentage differences (PD) between the direct and indirect force in the f-domain for 

frequencies less than or equal to 3Hz were +2.34% -3.18% (Table 5.12). Satisfactory jumping 

force measurements can occur for the 2nd harmonic for frequencies between 3 and 6Hz 

(average PDs +12.55% and -14.15%). Reasonable measurements of the 3rd harmonic are only 

possible at 1Hz (average PDs +2.53% and -3.72%). For the activity of bobbing the average PDs 

for the 1st and 2nd harmonics which are less than or equal to 6Hz, as well as the 3rd harmonic of 

1Hz are +10.58 and -8.03 excluding outliers. The PDs at the 3rd harmonic are unsuitably large, 

with the exception of bobbing at 1Hz. The higher error is because bobbing is a more complex 

activity and therefore more difficult to quantify using measurements from one point of the 

body only. 

The indirect and direct forces were applied to a selection of SDOF systems. The response ratio 

in the t-domain was shown to be approximately equal to the peak force ratio in the f-domain, 

therefore the PDs from the force can be used to estimate the equivalent PDs in the response. 

These findings have the potential to allow experimental determination of dynamic forces 

induced by jumping and bobbing crowds at real-life stadium events. There is potential for the 

C7th vertebra location to be used in crowd monitoring, future developments may allow its use 

in marker-less video monitoring. 

Although bobbing can take place at a higher frequency the DLF values from bobbing are on 

average between 1.7 and 2.3 times smaller than jumping at the 1st harmonic and between 2.68 
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and 4.5 times at the 2nd harmonic. Jumping is the more critical activity likely to adversely affect 

structures and it therefore was focus of the synchronisation experiments. 

Having found a suitable crowd monitoring technique the synchronisation of groups of 2, 4 and 

8 TSs jumping were investigated over six different target frequencies using different audial and 

visual cues (Chapter 7). In total 1,275 trials of different sized groups were recorded and 4,794 

individual GRFs. This is possibly the most extensive database of individual and group GRFs for 

jumping in response to different stimuli and group sizes. 

The individual TS synchronisation was first investigated. Both the synchronisation with the 

beat (beat-synchronisation) and how consistently they maintained their rhythm irrespective of 

the target frequency (self-synchronisation) was considered. 

Individual beat and self-synchronisation is possible between 1.5 to 3.5Hz, the degree of this 

depends on the external stimulus. A visual stimulus encourages high average values of beat 

(≥0.63, Table 7.4) and self-synchronisation (≥0.75, Table 7.7) factors at low frequencies (1.5-

2Hz). However, the average synchronisation at high target frequencies (2.67-3.5Hz) is poor 

(beat ≥0.15, self ≥0.44). In general the highest average beat (≥0.62) and self-synchronisation 

(≥0.79) factors for audial stimuli are seen at the mid frequencies (2Hz-2.67Hz), however good 

self-synchronisation is possible between 1.5-3.5Hz (≥0.71). The highest beat synchronisation 

values were seen for groups of 8TSs (0.86), with an exception of the metronome stimulus 

where the average 8TS beat synchronisation factors were between 0.24-0.42, Table 7.4. The 

other group members became a stronger stimulus than the metronome beat itself, 

encouraging synchronisation with one another not the beat. This highlights that stimuli affect 

synchronisation in different ways. Inclusion within a larger group (8TSs) moderately improves 

an individual’s self-synchronisation as well. 

The beat and self-synchronisation factors calculated for eight solitary individual TSs were 

found to be significantly smaller than those from individuals within groups. Inclusion within a 
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group improves the beat synchronisation of individuals considerably in most cases, supporting 

conclusions about crowd effect made by previous authors (Sim, 2006; Ebrahimpour and Fitts, 

1996; Comer et al., 2007). If combining GRFs from solitary individuals (Parkhouse and Ewins, 

2006) the improved synchronisation due to the crowd effect is ignored and therefore the 

equivalent crowd force may be underestimated. Hence it is recommended that solitary 

individual force time histories are not extrapolated to create group loading. 

Group beat and group self-synchronisation factors were also calculated to determine how well 

the groups as a whole managed to maintain the target frequency, and how synchronised they 

were with one another. The group beat synchronisation factors were largest for groups of 8TSs 

for the majority of frequencies, when using visual (max value 0.94, Table 7.8) or music cues 

(max value 0.96). Hence, in certain situations group size can increase beat synchronisation. As 

this effect is not linked to the metronome stimulus, extrapolation of metronome data (Dougill 

et al., 2006; Sim et al., 2008) to larger groups with diverse stimuli may lead to 

underestimations of a crowd’s capacity for beat synchronisation, and consequentially 

underestimate the load and the potential for resonance. 

A high level of average group self-synchronisation (≥0.67, Table 7.9) is possible between at 

least 1.5 and 3.5Hz for all group sizes depending on the stimulus. The group self-

synchronisation factors were largest in groups of 8TSs (max value 0.96, Table 7.8), where the 

presence of the crowd improved synchronisation. For the metronome stimulus the group self-

synchronisation factors from 8TSs (0.67-0.92) were significantly larger than the group beat 

synchronisation factors (0.36-0.46). This indicates that synchronisation with other group 

members is dominant over synchronisation with a beat for a metronome stimulus. 

The environment and the stimulus frequency and type should be examined when deciding the 

level of synchronisation to design against. Individuals within groups of 8TSs have the potential 

for near perfect synchronisation with one another. From this study it is advised that both 
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visual and audial stimuli should be considered to have the potential to cause synchronisation. 

In addition individual and group synchronisation frequency ranges should take into 

consideration the type of stimulus involved. 

For examining synchronisation, the self-synchronisation factors in Figure 7.23 and Figure 7.27 

for individuals and for groups are recommended as mean values. However, if a certain jumping 

frequency is expected and of particular concern, the values of beat synchronisation factors in 

Figure 7.18 and Figure 7.26 should be referenced. 

The effect of position within a crowd was investigated and it was found that individuals in front 

do not necessarily improve the synchronisation of the row behind, the position of an individual 

within the crowd appears insignificant. 

The measured group forces and equivalent half-sine periodic forces were applied to SDOF 

systems of various natural frequencies and damping ratios. Considering all stimuli good 

agreement between the SDOF resonance responses to periodic and experimental forces at the 

1st harmonic of 1.5 to 3Hz were possible for all group sizes. There is potential for a half-sine 

function of adequate DLF and group weight to model group loading for 1, 2, 4 and 8TSs when 

jumping between 1.5 and 3Hz. However, the response outside of resonance maybe 

underestimated due to additional frequency components in the real forces. 

Real acceleration responses from pairs of individuals jumping on a bridge were compared to 

the responses of an equivalent SDOF system using experimental data from 2TSs on rigid 

surfaces. The responses from the forces measured on rigid ground were larger, especially at 

resonance. There is potential for the 10th percentile of the response from the forces measured 

on rigid ground to be used to approximate the resonance response from flexible forces. Charts 

were created to inform designers of the values of resonance response likely for different 

structural properties, group sizes and stimuli, Figure 7.44, Figure 7.45 and Figure 7.46. 
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8.2 Recommendations for Further work 

The indirect force measurement technique presented in this thesis provides potential for in-

situ crowd observations. However the use of the IR cameras currently limits the method to 

mostly lab environments. In addition, the application of markers to a crowd is difficult from a 

resources and logistics perspective. If the technique is adapted and combined with previous 

marker-less video techniques which use digital cameras (Hoath et al., 2007) there is potential 

to track the C7th vertebrae without using an external marker. This would allow large in-situ 

crowds to be monitored with less equipment restraints. 

The characteristics of jumping and bobbing individuals have been studied within this body of 

work, it is recommended that this study be extended to include individuals who are part of a 

group and groups as a whole. This would allow further investigation into the crowd effect on 

jumping and bobbing time histories. 

An aim from this body of work was to investigate the effect of group size, target frequency and 

external stimulus on individual and group synchronisation. Group and individual 

synchronisation factors have been calculated for group sizes of 2, 4 and 8 TSs. Ideally further 

experiments would be conducted with larger group sizes to investigate the applicability of 

these factors. These synchronisation factors can be used in conjunction with current crowd 

and individual jumping models (Chapter 3) and the individual jumping and bobbing 

characterisations in Chapter 4 to simulate crowd or individual dynamic loading. It would be 

possible to reflect the frequency and type of stimulus within the model. 

Further experiments are recommended using the indirect method and a variety of stimuli on 

flexible grandstand structures to investigate the differences between rigid and flexible GRFs. In 

addition these experiments can be used to determine if crowd synchronisation on flexible 

surfaces is the same as on rigid surfaces. 
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The effect of position within a group was briefly studied in Chapter 7, further experiments with 

additional rows would be of benefit to validate those conclusions drawn on the TS position 

within this work. 
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A. Appendix: Experimental Documents 

Project title: Experimental Identification of Dynamic Forces Produced by 

Individuals and Groups 

Investigators: Miss M G McDonald and Dr Stana Zivanovic  

CONSENT & APPLICATION FORM 

1. I, the undersigned, voluntarily agree to take part in the study above. 

2. I have read and understood the Project Information Sheet dated 25/06/2012. I have 

been given a full explanation by the investigators of the nature, purpose, location, and 

likely duration of the study, and of what I will be expected to do. I have been given 

the opportunity to ask questions on all aspects of the study and have understood the 

advice and information provided. I am aware that I can take rest at any time during the 

study. 

3. I have completed the Physical Activity Readiness Questionnaire and have been able to 

answer “NO” to all questions.  

4. I agree to comply with any instructions given to me during the study and to co-operate 

fully with the investigators.  

5. I understand that all personal data relating to volunteers are held and processed in the 

strictest confidence, and in accordance with the Data Protection Act (1998). I agree 

that I will not seek to restrict the use of the results of the study on the understanding 

that my anonymity is preserved.  

6. I agree that photographs and video records in which I feature can be taken during 

experiments. I am aware that they will be used for the quality assurance and data 

analysis purposes only.   

7. I do/do not (delete as appropriate) give permission for video records and photographs 

in which I feature to be used in seminars, publications, for conference presentations 

and in other forms of publicity of this research. 

8. I would/would not (delete as appropriate) like to take part in experiments in which I 

will be blindfolded.  

9. I would/would not (delete as appropriate) like to take part in experiments within a 

group. 

10. I understand that I am free to withdraw from the study at any time without needing to 

justify my decision. I agree that in case of withdrawal the data that have already been 

collected can be used in the research. 

11. I understand that the University of Warwick holds insurance that cover claims for 

injury or deterioration in health, which arise directly from participation in clinical 

trials, but that it applies only in those situations where the University can be shown to 

be legally liable.  

12. I confirm that I have read and understood the information above and freely consent to 

participating in this study. I have been given adequate time to consider my 

participation and agree to comply with the instructions and restrictions of the study.  

Details to be completed by applicant: Please PRINT clearly 

Full name:  
Email address: Contact no:  

Signature:......................................................Date:................................ For admin use only: TS# 



A. Appendix: Experimental Documents 

261 

 

University of Warwick 
School of Engineering 

Civil Research Group 

Project title: Experimental Identification of Dynamic Forces Produced by 

Individuals and Groups 

Investigators: Miss M G McDonald and Dr Stana Zivanovic 

PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 

We are asking you to complete this questionnaire to check whether you are suited for the kind of 

physical activity you will be asked to engage in. The activity will not be physically strenuous and the 

levels of fitness we are looking for are normal levels. However, before you participate in any 

experiment we would like to identify a small number of people for whom even this level of activity 

might be inappropriate. To enable us to do this, we need you to answer the questions below. 

Please read the following questions carefully and answer them to the best of your knowledge by 

ticking the appropriate boxes. This form will be kept securely by the investigators who will respect its 

confidentiality. The form will be shred no later than six months after completing the experiments.  

 

I have completed this questionnaire truthfully to the best of my knowledge. 

Signature:................................................Date: ................................................ 

Name (BLOCK CAPITALS):................................................................................ 

 Yes 

(Initial) 

No 

(Initial) 

1. Has your doctor ever said you have a heart condition 

and recommended only medically supervised physical 

activity? 

  

2. Do you have chest pain brought on by physical 

activity? 
  

3. Have you developed chest pain within the last month?   

4. Do you lose consciousness or fall over as a result of 

dizziness? 
  

5. Do you have a difficulty in balancing whilst walking, 

jumping, bouncing, stamping? 
  

6. Has a doctor ever recommended medication for your 

blood pressure or a heart condition? 
  

7. Are you currently on any medication that could affect 

your health when exposed to physical activity? 
  

8. Are you aware, through your own experience or a 

doctor’s advice, of any reason why you should not 

exercise without medical supervision? 

  

9. Have you consumed excessive amount of alcohol or 

any other substance in the last 24h that could 

compromise your balance and alertness? 

  

10. Has your doctor ever said you have a heart condition 

and recommended only medically supervised physical 

activity? 
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University of Warwick 
School of Engineering 

Civil Research Group 

 

Project title: Experimental Identification of Dynamic Forces Produced by 

Individuals and Groups  

Investigators: Miss M G McDonald and Dr Stana Zivanovic 

PARTICIPANT DATA, To be filled in by the Investigator. 

Coded name:   Age:  

Gender: 
Male Female Preferred hand: 

Left 
Right 

Height [m]:  Preferred leg (if 

known): 
Left 

Right 

Body mass [kg]:  Preferred eye (if 

known): 
Left 

Right 

Permission to use photos/videos granted: Yes / No 

Participant agreed to take part in the tests involving 

blindfolding? (Note: This info is for additional 

experiments which will run only if there are 

volunteers) 

Yes / No 

Participant agreed to take part in the tests in groups?  Yes / No 

Marker Positions 

Date: 
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Risk Assessment 

Individual Jumping and Bobbing Experiments 

Procedure 

The experimental procedure is detailed in Chapter 5 and Chapter 6. 

Risks and Control Measures 

The expected risks and measures put in place to combat the risks are detailed in Table 

A.1. 

Table A.1 The risk assement and control measures for the indivdual jumping and bobbing experiments. 

Risk Control measures 

Trip hazards 
The Gait lab was scouted for trip hazards and any loose cables were taped to the 

floor. 
TS becoming 
dehydrated 

Provide water if required and ensure the room temperature is appropriate. 

TS’s personal 
details being 

stolen 

All paper copies of data relating to TSs are locked in a secure filing cabinet. Any 
electronic data is stored in a password protected area on a University desktop PC. 

Fire 
The TSs were made aware of the fire alarm procedure and the location of the 

nearest fire exit. 
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Group Synchronisation Experiments 

Procedure 

The experimental procedure is detailed in Chapter 7. 

Risks and Control Measures 

The additional expected risks, and measures put in place to combat the risks for the 

group synchronisation experiments are detailed in Table A.2 and were used in addition 

to Table A.1. 

Table A.2 The risk assement and control measures for the group synchronisation experiments. 

Risk Control measures 

TS becoming hot and 
dehydrated due to the 
number of TS involved 

Use the air conditioning system to maintain an acceptable temperature 
and provide water when required. 

TS bumping into one 
another 

Allocate an adequate space allowance per TS which is marked out on 
the floor. 

TS’s personal details being 
stolen 

All paper copies of data relating to TSs are locked in a secure filing 
cabinet. Any electronic data is stored in a password protected area on 

a University desktop PC. 
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B. Appendix: Response Graphs 

The mean, 10th and 90th percentiles of maximum acceleration responses of SDOF 

structures excited by groups of 1, 2, 4 and 8 TSs jumping at different target frequencies. 

Metronome Stimulus 

 
Figure B.1 Structural responses to 1TS jumping at 1Hz to a metronome. 

 
 

 
Figure B.2 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.5Hz to a metronome. 

 
 

 
Figure B.3 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.75Hz to a metronome. 
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Figure B.4 Structural responses to a)1TS, b)2TSs, c) 4TSs and d) 8TSs jumping at 2Hz to a metronome. 

 
 

 
Figure B.5 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 2.67Hz to a metronome. 
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Figure B.6 Structural responses to a)1TS, b)2TSs, c) 4TSs and d) 8TSs jumping at 3Hz to a metronome. 

 

 
Figure B.7 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 3.5Hz to a metronome. 
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Music Stimulus 

 
Figure B.8 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.5Hz to music. 

 

 
Figure B.9 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.75Hz to music. 

 

 
Figure B.10 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 2Hz to music. 
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Figure B.11 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 2.67Hz to music. 
 

 

Figure B.12 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 3Hz to music. 
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Visual Stimulus 

 

Figure B.13 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.5Hz to visual stimulus. 
 

 

Figure B.14 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 1.75Hz to visual stimulus. 
 

 

Figure B.15 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 2Hz to visual stimulus. 
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Figure B.16 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 2.67Hz to visual stimulus. 
 

 

Figure B.17 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 3Hz to visual stimulus. 
 

 

Figure B.18 Structural responses to a)2TSs, b) 4TSs and c) 8TSs jumping at 3.5Hz to visual stimulus. 
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