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Abstract

The thesis deals with dimension theory and ergodic theory. We are interested

in applying thermodynamic formalism to give explicit values. Mainly we study

dimension of sets with different ergodic averages. An extension to the case of level

sets for Gibbs measures of hyperbolic dynamical system are investigated. This leads

to very accurate numerical averages.
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Chapter 1

Introduction

1.1 Ergodic Theory

In the late nineteenth century Boltzmann and Gibbs working on statistical mechan-

ics raised a problem which turned out to be rather more mathematical than physical.

In today’s context the problem can be restated as follows: given a measure preserv-

ing mapping T : X → X of a space (X,µ) and integrable function f : X → R, can

one find conditions under which the limit

lim
n→+∞

f (x) + f (T (x)) + · · ·+ f
(
Tn−1 (x)

)
n

exists and is constant everywhere ?

In 1931 Birkhoff in his paper [8] proved that the limit in question exists almost

everywhere and so became a theorem, an important one for that matter. Almost at

the same time and independently von Neumann proved the ergodic theorem for Lp

spaces for 1 ≤ p <∞.

1.2 Thermodynamic Formalism

At the heart of thermodynamic formalism lies the two main pillars in the form of

entropy and topological pressure. The notion of entropy was introduced into er-

godic theory in 1958 by Kolgomorov. It is one of the most important invariants in

dynamical systems and hence is a tool for classifying any two dynamical systems.

The definition of entropy which has generally been adopted by ergodic theorists is

a slight modification from Kolgomorov’s and it is due to Sinai since 1959.

The notion of topological pressure was introduced by Ruelle in the paper [41]
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for expansive transformations and Walters in [49] for the general case.

1.3 Dimension Theory

The notion of dimension has been known for a while for topological space taking

integral values. In this form the dimension was introduced by Urysohn in [48] and

Menger in [32]. However for the non-integral valued dimension the initial formula-

tion is due to Caratheodory in [13]. A firm footing of the definition of dimension was

introduced by Felix Hausdorff in 1919 in his paper [23]. This notion of dimension

later became known as Hausdorff dimension and it is arguably the most popular

among experts in the area.

Besicovitch and collaborators took the Hausdorff dimension to another level and

were heavily involved in function theory side of studies. Further down the line

of contributions to the dimension theory was made by Falconer and his book [15]

has been adopted as the standard text in many fractal geometry modules across

universities.

1.4 Multifractal Analysis

Some of the pioneers in multifractal analysis were the authors Halsey, Jensen,

Kadanoff, Procaccia and Shraiman in their paper [22], who were working on multi-

scaling behaviour of physical measures on strange attractors and related problems.

Almost immediately a different set of authors Collet, Lebowitz and Porzio in their

work [14] gave a rigorous treatment to the multifractal analysis. Their work involved

studying analysis of a certain measures invariant for some interval Markov maps.

1.5 A preview of the chapters

The main theoretical areas are given a broad introduction in Chapter 1 together

with a mention of the main early and current contributors to these areas. The the-

sis is structured in a way such that there is a gradual build up towards main result

and therefore each chapter is dependent on the preceding ones.

Chapter 2 is a collection of basic objects that we require either as definitions or

as theorems within areas of dimension theory, thermodynamic formalism and mul-

tifractal analysis to carry out computations for the latter chapters.
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In Chapter 3 we begin with the transfer operators which are linear operators on

the Banach space Fθ (C). The underlying dynamics associated to the transfer oper-

ator is the shift map acting on the shift space. By finding an appropriate projection,

the shift of finite type can be applied to model many examples of dynamical systems.

The transfer operator is pivotal to the Theorem ( 3.1.4).

Chapter 4 is survey of the method to compute Hausdorff dimension of dynami-

cally defined sets of conformal iterative function scheme by finding periodic points

of period up to some N . This method was introduced by Jenkinson and Pollicott

in [25].

The main result is presented in Chapter 5. An algorithm to calculate the Haus-

dorff dimension for the Birkhoff average level sets is presented. By applying the

technique of determinants of the nuclear operators, the method is shown to exhibit

a high degree of accuracy. A numerical estimation is presented as a consequence.

We show that the result holds for the levels sets resulting from the local dimension.

Chapter 6 covers possible projects and generalisation to the main results. The

projects may include among other examples to investigate if a similar result holds

true for the perturbations of the Arnold CAT map on the 2-torus.
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Chapter 2

Preliminaries

2.1 Dimension Theory

The central idea of dimension of set lies in investigating how much space for each

point in a set is occupied by other points of the set in its neighbourhood. Hausdorff

dimension is probably the most popular thus far of the many definitions of dimen-

sion of a set. Besicovitch developed the Hausdorff dimension further by studying its

properties using tools from function theory (see [7] for example).

A civil war broke out in Russian and this impacted negatively on the education

system. After being prevented from leaving the country Besicovitch finally escaped

in 1924. He later in 1925 settled at Cambridge University where he established most

of his work.

2.1.1 Covers

We begin by introducing the idea of Hausdorff dimension and describing its main

properties. We start by recalling the definition of an open cover.

Definition 2.1.1. An open cover of a subset U ⊆ X, for a topological space X is

a collection of open subsets {Yi}∞i=1 of X such that Y ⊆
⋃∞
i=1 Yi.

A useful concept for open covers is that of the refinement.

Definition 2.1.2. A refinement of an open cover C of U ⊆ X, for a topological

space X is a new cover D of U such that every set in D is contained in some set in

C.
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For a metric space (X, d), the diameter of the set A ⊂ X is

|A| := sup {d (x, y) : x, y ∈ A} .

Definition 2.1.3. The δ− cover of a set V ⊂ X is a collection of subsets {Vi}∞i=1 ⊂
X such that V ⊂

⋃∞
i=1 Vi and |Vi| < δ for all i.

We now give the definition of a normal space.

Definition 2.1.4. A topological space X is called normal if for any two closed

disjoint subsets A,B of X then there exists open neighbourhoods OA ⊃ A and

OB ⊃ B such that OA ∩OB = ∅.

One of the questions to be asked early in geometry is how to give a numerical

value to depict the ‘amount’ of the space occupied by any subset of a topological

space.

Some sets have a natural idea of integer dimension, for example for widely used

sets like intervals and smooth manifolds this is well known. In general for more

complicated sets one needs to introduce a more formal definition. However there

are different definitions depending on the properties we require.

Lebesgue Covering Dimension

Lebesgue covering dimension or topological dimension of a topological space is de-

fined to be the minimum value of n, where n ∈ N, such that any open cover has a

refinement in which no point is included in more than n + 1 elements. If no such

n exists then the space is said to have infinite dimension. This quantity will be

denoted by dimtop. Among the pioneers for topological dimension are Urysohn in

his paper [48] and Menger in [32].

The Lebesgue covering dimension is attributed to Henri Lebesgue. The Euclidean

space Rn has topological dimension n (cf. Pears in [35] ). One also would expect

that any two homeomorphic spaces to have the same topological dimension. This

is because of the bijection between open sets of the two homeomorphic spaces. It

will be appealing to establish how the subsets are related to the space they live in

as illustrated by the following theorem.

Theorem 2.1.1. Every closed subspace M of a normal space X we have dimtopM ≤
dimtopX.
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Figure 2.1: Refinement of circle cover at the top by bottom picture covers.

Proof. The theorem is obvious if dimtopX = ∞, so that we can assume that

dimtopX = n <∞.

Consider a finite open cover {Ui}ki=1 of the space M. For i = 1, 2, ..., k let Wi be an

open subset of X such that Ui = M ∩Wi. The family X \M ∪W k
i=1 is an open

cover of the space X and since dimtop ≤ n it has a finite open refinement γ which no

point is included in more than n+ 1 elements of γ. One easily sees that the family

γ \M is a finite open cover of space M , refines U and has no point of M is included

in more than n+ 1 elements of γ \M , so that dimtopM < n = dimtopX.

Example 2.1.1. Let S1 be the unit circle then dimtop S
1 = 1. This is evident if we

consider any cover for S1. It is always possible to refine the cover until where any

point, say x ∈ S1 is contained in at most 2 arcs. Figure ( 2.1) shows the covers

of the black circle in the top diagram refined into sets in the neighbourhood of the
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circle curve of the bottom diagram.

2.1.2 Measure

A σ− algebra on a set X is a collection of subsets of X that contains the empty set

∅ and the whole space X, and is closed under complements, countable unions, and

countable intersections.

Let X be any set ( which will be called our space), and let A be a collection of

subsets of X. Suppose

1. ∅, X ∈ A,

2. Ac ∈ A whenever A ∈ A,

And in addition if
⋃∞
n=1An ∈ A whenever An ∈ A for every n ∈ N then A is called

σ − algebra.

We will refer to the elements of A as measurable sets.

Definition 2.1.5. A measurable space (X,A) is a non-empty set X equipped with

a σ-algebra A on X.

It turns out that measurable spaces are a rich source of domain for ‘measures’

which will be discussed shortly.

Definition 2.1.6. Let µ be a function on the subsets of a metric space (X, d) into

the interval of positive real numbers and possibly taking the value∞. If in addition

µ satisfies

1. if A = ∅ then µ (A) = 0,

2. if A ⊆ B then µ (A) ≤ µ (B),

3. if A1, A2, ... are disjoint countable sets then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ (Ai) .

The function µ with these properties will be called a measure.
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A measure is yet another tool for distinguishing among the sets of the same

metric space according to their numerical ‘size’. For a measure we require that if we

group together a countable number of sets in a reasonable manner then the size of

the whole space occupied by the group is equal to the sum of the size of the pieces

making it. We require that the empty set occupies a ‘space’ of size zero. We would

also expect that a set be at most as big as any of its subsets.

Example 2.1.2. Let X be any set, and let A = 2X be the power set of X, that

is, the collection of all subsets of X. A is a σ − algebra (in fact, it is the largest

σ − algebra on X), we may define a measure ν

ν (A) =

{
card (A) A is finite,

∞ otherwise.

So that if A is a finite set, ν counts the number of points in A; otherwise

gives ∞. This is known as the counting measure on X.

2.1.3 Lebesgue Measure

Each of the subsets of R inherits a metric, and thus a topology, from the real line,

as indeed does every subset of Rn. The topological notions provide one, very coarse,

way of classifying subsets of R. On the other hand the Lebesgue measure, which

generalises the notion of “length” to sets which are not intervals on R gives finer

tool.

Definition 2.1.7. Let A ⊂ Rn , for n ∈ N, the n−dimensional Lebesgue measure
of set A is defined

Ln (A) = inf

{
voln (Ai) : A ⊂

∞⋃
i=1

Ai, where {Ai} is a box cover of A

}
.

The box cover of set A in Rn is the ‘cubes ’ covering of A with sides parallel

to each corresponding axis of R.

Examples of Lebesgue measure zero sets in R:

We define one of the simplest families of ‘fractal’ sets, which will serve to demonstrate

the definitions that follow.

Let 0 < λ < 1. The middle− λ Cantor set Cλ ⊆ [0, 1] is defined by the limit of a

recursive procedure. For n = 0, 1, 2, .... we construct a set Cnλ which is a union of

2n closed intervals, indexed by sequences i = i1, ...in ∈ {0, 1}n and each of length
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((1− λ) /2)n. To begin let C0
λ = [0, 1] and I = [0, 1] ( indexed by the unique empty

sequence). Assuming that Cnλ has been defined and is the disjoint union of the 2n

closed intervals Ii1...in , i = i1, ...in ∈ {0, 1}n, divide each of the intervals into the

two subintervals, Ii1...in0, Ii1...in1 ⊆ Ii1...in which remain after removing from Ii the

open subinterval with the same center as Ii1...in and λ times shorter. Finally let

Cn+1
λ =

⋃
i∈{0,1}n+1

Ii

Clearly C0
λ ⊇ C1

λ ⊇ ..., and since the sets are compact,

Cλ =

∞⋂
n=0

Cnλ

is compact and nonempty.

Figure 2.2: Middle λ Cantor set for λ = 0.2.

All of the sets Cλ for 0 < λ < 1 are mutually homeomorphic, since all are

topologically Cantor sets (i.e. compact and totally disconnected without isolated

9



points ). They all are of first Baire category. And they all have Lebesgue measure

0, since one may verify that L (Cnλ ) = (1− λ)n → 0 as n→∞. Hence none of these

theories can distinguish between them.

Nevertheless qualitatively it is clear that Cλ becomes “larger ” as λ → 0, since

decreasing λ results in removing shorter intervals at each step. In order to quantify

this one uses dimension.

2.1.4 Box Dimension

One of the widely accepted notion of determining how ‘big’ a set is the box-

dimension also known as the Minkowski dimension or Minkowski - Bouligand di-

mension. In a more usable form the box dimension was reformulated by Pontrjagin

and Schnirelman [39] in 1932. The box-dimension may be thought of as the most

efficient way of covering a set by small sets of equal size.

Definition 2.1.8. Let E be any non-empty bounded subset of of Rn and let Nδ (E)

be the smallest number of sets of diameter at most δ which can cover E. The lower

and upper box− counting dimensions of E respectively are defined as

dimBE = limδ→0

logNδ (E)

− log δ
,

dimBE = limδ→0
logNδ (E)

− log δ
.

If these are equal we refer to the common value as the box − counting dimension
or box dimension of E

dimB E := lim
δ→0

logNδ (E)

− log δ
.

Proposition 2.1.2. Let E denote the closure of E in Rn then

dimB E = dimB E.

Proof. Let B1, · · · , Bk be a finite collection of closed balls, each with a radius of δ.

Suppose that the closed set
⋃k
i=1Bi contains E, then it also contains E. If Nδ (E)

is the smallest number of closed balls of radius δ that cover E then we have

limδ→0

logNδ (E)

− log δ
= limδ→0

logNδ

(
E
)

− log δ
.

and the results follow.
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Let dim be a general definition of dimension. We will classify a definition

of dimension as satisfying the countable stability if for any countable collection of

subsets {Ei}∞i=1 then

dim

( ∞⋃
i=1

Ei

)
= sup

1≤i<∞
dimEi.

The result of the proposition may seem to be an attractive at first, nevertheless

it shows how restrictive the application of box dimension is, since the countable

stability fails as illustrated by the following example.

Example 2.1.3. The set of rational numbers Q in the interval [0, 1] has dimB (Q ∩ [0, 1]) =

1. By proposition ( 2.1.2) since Q ∩ [0, 1] = [0, 1] , we see that dimB (Q ∩ [0, 1]) =

dimB [0, 1] .

On the other hand Q ∩ [0, 1] is a set of countable union of singletons, each having

dimB ({x}) = 0.

Box dimension calculations for Cλ

For Cλ as before, dimB Cλ = log 2/ log (2/ (1− λ)) . Let us demonstrate this. To get

an upper bound, we note that for δn = ((1− λ) /2)n the sets Cnλ are covers of Cλ

by 2n intervals of length δn, hence Nδn (Cλ) ≤ 2n. If δn+1 ≤ δ < δn then clearly

Nδ (Cλ) ≤ Nδn+1 (Cλ) ≤ 2n+1.

On the other hand every set of diameter ≤ δ can intersect at most two maximal

intervals in Cn+1
λ , hence

Nδ (Cλ) ≥ 1

2
· 2n,

so for δn+1 ≤ δ < δn

(n− 1) log 2

(n+ 1) log (2/ (1− λ))
≤ logNδ (Cλ)

log 1/δ
≤ (n+ 1) log 2

n log (2/ (1− λ))
,

and so, taking δ → 0,

dimB Cλ = log 2/ log (2/ (1− λ)) .

In general for any Cantor set like set A ⊆ Rn in the sense that their box dimension

is less than n are not seen by Lebesgue measure, that is, if dimB A < n then we
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have L (A) = 0. To see this, let us choose

ε =
1

2
(n− dimB A) .

From the definition of dimB A we can find sufficiently small δ and

δ−(dimB A+ε)

sets of diameter less than δ that cover A. In addition we can cover a set of diameter

less than δ by a set of volume strictly less c · δn for some c > 0. In total the cover

of A in question has a volume

cδn · δ−(dimB A+ε) = cδε.

Since this holds for arbitrary small δ, we conclude that L (A) = 0.

2.1.5 Hausdorff Dimension

This notion of dimension is named after Felix Hausdorff, a Polish mathematician

born in 1868 in Breslau, Germany which later became Wroclaw, part of Poland. In

introducing the definition, Hausdorff in his 1919 paper [23], generalised the results

of Caratheodory [13]. Life because unbearable for Hausdorff being a Jew when he

was forced to resign from his position at Bonn in 1935. Having being marked and his

transfer to Cologne imminent, Hausdorff committed suicide with his wife, Charlotte

on 26th January 1942.

Definition 2.1.9. The Hausdorff pre-measure is a function on subsets A of a metric

space (X, d) given by,

Htδ (A) := inf

{ ∞∑
i=1

|Ai|t : {Ai}∞i=1 is a δ − cover of A

}
.

The infimum in the definition exists and this can be easily verified. Let δ1 < δ

then Htδ1 (A) ≥ Htδ (A) since the infimum over the larger class of covers is lower.

The function Htδ is decreasing in δ.

We will also define
∑
|Ui|s to be the s−value for the δ−cover {Ui}∞i=1 .

Definition 2.1.10. Formally we write

Ht (A) = lim
δ→0
Htδ (A)

12



∞

0
0

dimHA

Ht(A)

tn

Figure 2.3: Graph of Ht(A) against t for a set A. The Hausdorff dimension is the
value of t at which the ‘jump’ from ∞ to 0 occurs.

and we call this quantity the t-dimensional Hausdorff measure of the set A.

Definition 2.1.11. The Hausdorff dimension of a set A is defined by

dimH A = inf
{
t : Ht (A) = 0

}
= sup

{
t : Ht (A) =∞

}
.

The following Lemma asserts that the Hausdorff dimension has desirable

properties of a dimension function.

Lemma 2.1.3. Let A,B ∈ Rn and {Ai} be a sequence of sets in Rn,

1. If A = ∅ then dimH A = 0,

2. If A ⊆ B then dimH A ≤ dimH B,

3. dimH (
⋃∞
i=1Ai) = sup1≤i<∞ dimH Ai.

4. If {xi}∞i=1 is a countable set then dimH A = 0.

Proof. (1). For a set A then if A = ∅ it is clear from the fact that Ht (A) ≤ |A|t.

(2). Suppose that A ⊂ B and let s > dimH B. We have that Hs (B) = 0. This

implies that Hs (A) = 0. Hence dimH A ≤ s. Since s is arbitrary Hs (A) ≤ Hs (B).

(3). We recall that dimH A = inf
{
t | Ht (A) = 0

}
. It suffices to only show the

less than side since the other side of equality is a consequence of point (2) of the
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Lemma. Let s > dimH Ai for all i, we have

Ht
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

Ht (Ai) = 0.

Hence dimH (
⋃∞
i=1Ai) ≤ s.

(4). For any t and any singleton subset {xi} of A we note that Ht ({xi}) ≤ | {xi} |t =

0. On the optimum δ- cover is {xi, 0, 0, 0, 0, 0, 0, 0, 0, · · · } giving us H0 ({xi}) = 1.

Hence dimH ({xi}) = 0. By part 3 of the Lemma we deduce that dimH (A) = 0.

Proposition 2.1.4. Let A ⊂ Rn and suppose that f : A → Rm satisfies a Hölder

condition

|f (x)− f (y) | ≤ c|x− y|α (x, y ∈ F ) .

then dimH f (A) ≤ (1/α) dimH A.

Proof. If s > dimH A. Suppose that {Ui} is a δ-cover of A, then, since

|f (A ∩ Ui) | ≤ c|A ∩ Ui|α ≤ c|Ui|α,

it follows that {f (A ∩ Ui)} is a ε-cover of f (A), where ε = cδα. Thus∑
i

|f (A ∩ Ui) |s/α ≤ cs/α
∑
i

|Ui|s,

so that

Hs/αε (f (A)) ≤ cs/αHsδ (A) .

Taking δ → 0 we have

Hs/α (f (A)) ≤ cs/αHs (A) .

SinceHs (A) = 0 thenHs/α (f (A)) = 0, which implies that dimH f (A) ≤ (s/α) dimH A

for all s > dimH A.

Corollary 2.1.5. (a) If f : A→ Rm is a Lipschitz transformation then dimH f (A) ≤
dimH A.

(b) If f : A→ Rm is a bi-Lipschitz, that is,

c1|x− y| ≤ |f (x)− f (y) | ≤ c2|x− y| (x, y ∈ A)

where 0 < c1 ≤ c2 <∞ , then dimH f (A) = dimH A.
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Proof. Part (a) follows from Proposition 2.1.4 taking α = 1. Applying this to

f−1 : f (A)→ A gives the other inequality required for (b).

Example 2.1.4. dimH (Q ∩ [0, 1]) = 0 and dimB (Q ∩ [0, 1]) = 1

Some techniques for determining the Hausdorff dimension

For an upper estimate of the Hausdorff dimension of a given set it is enough to

find one sufficiently efficient cover. For a lower estimate of the Hausdorff dimen-

sion one has to prove something for all conceivable covers. The main method to do

so is to introduce an appropriate measure on the set. This method was suggested

by Frostman in [17] and it is widely used. We define the mass distribution on the set.

Definition 2.1.12. Let E be a subset of a general metric space (X, d). A measure

µ on the measurable space (X,A) is called mass distribution over E if there is a

compact subset A ⊂ E such that

µ (Ac) = 0 and 0 < µ (A) <∞.

Theorem 2.1.6. ( Mass distribution principle )

Let µ be a mass distribution over E such that for some α ≥ 0 and some positive

constants c and δ we have

µ (U) ≤ c |U |α for all U with |U | < δ.

Then

Hα (E) ≥ µ (E)

c
and dimH E ≥ α.

Proof. We may suppose without loss of generality Hα (E) <∞. Let Ui be a δ-cover

of E satisfying
∞∑
i=1

|Ui|α ≤ Hα (E) + ε.

Then

0 < µ (E) ≤ µ

( ∞⋃
i=1

Ui

)
≤

∞∑
i=1

µ (Ui) ≤
∞∑
i=1

c |Ui|α ≤ cHα (E) + cε

and hence ∞ > Hα (E) ≥ µ(E)
c > 0 which implies the first assertion. In particular

we have dimH E ≥ α.
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Box dimension as an upper bound for Hausdorff dimension

Choose any δ > 0. Let s > dimBE. Choose η ∈ (dimBE, s) . Then for each suffi-

ciently small number ε > 0 with ε < δ there is a covering of E by k balls of diameter

ε such that

log k = log (Nε (E)) ≤ η log
1

ε
= log

(
1

ε

)η
.

Hence the s−value of this

δ − cover is ≤ kεs ≤ εs

εη
= εs−η,

which converges to zero as ε→ 0. This implies Hsδ (E) = 0 and passing to the limit

as δ tends to 0 we therefore have dimH E ≤ s. This completes the proof.

Hausdorff dimension calculations for Cλ

We can now complete the calculation of the dimension of Cλ. Write

β =
log 2

log (2/ (1− λ))
.

We have already seen that

dimB Cλ ≤ β

so, since

dimH Cλ ≤ dimB Cλ,

we have an upper bound of β on dimH Cλ.

Let µ = µλ on Cλ denote the measure which gives equal mass to each of the 2n

intervals in the set Cnλ introduced in the construction of Cλ. Let

δn = ((1− λ/ 2))n

be the length of these intervals. Then for every x ∈ Cλ, one sees that Bδn (x)

contains one of these intervals and at most a part of one other interval, so

µ (Bδn (x)) ≤ 2 · 2−n = C · δβn .

Using the fact that

Bδn+1 (x) ⊆ Br (x) ⊆ Bδn (x)

whenever

δn+1 ≤ r < δn for x ∈ Cλ
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we have

µ (Br (x)) ≤ µ (Bδn (x)) ≤ C · δβn ≤ C ·
(

2

1− λ

)β
· δβn+1 ≤ C

′rβ.

Hence by the mass distribution principle, dimH Cλ ≥ β. Since this is the same as

the upper bound, we conclude dimH Cλ = β.

2.2 Shift Spaces

In various examples of dynamical systems the orbits are usually described through

its itinerary. As an alternative we introduce some symbolic spaces that allow to

describe the dynamics of more maps using itineraries.

Let us decompose the space X in finitely many pieces, that is,

X = P1 ∪ P2 ∪ · · ·PN .

If Pi are pairwise disjoint, we say that {P1, . . . , PN} is a finite partition of X. Let

x ∈ X. Since Pi covers X, for each i ∈ N there exists 1 ≤ ai ≤ N such that

f i (x) ∈ Pai . The sequence a0, a1, . . . , an, . . . , is the itinerary of x with respect to

{P1, . . . , PN}.
We can code the ( forward ) orbit O+

f (x) and write the sequence a = (ai)
∞
i=0. The

sequence belongs to

Σ+
N = {1, . . . , N}N = {a = (ai)

∞
i=0 , 1 ≤ ai ≤ N} ,

that is, the space of ( one-sided ) sequences in the digits 1, . . . , N .

If f is invertible, for each i ∈ Z there exits 1 ≤ ai ≤ N such that f i (x) ∈ Pai
and we can code the full orbit Of (x) with the full ( past and the future ) itinerary{
a = (ai)

∞
i=−∞

}
, which belongs to the space

ΣN = {1, . . . , N}Z =
{
a = (ai)

∞
i=−∞ , 1 ≤ ai ≤ N

}
,

that is the space of bi-sided sequences in the digits 1, . . . , N .

In both cases, f (x) is coded by the shifted sequence: since f i (f (x)) = f i+1 (x) ∈
Pai+1 by definition of itinerary of x, the itinerary of f (x), and hence the coding of

O+
f (f (x)) is given by

σ+
(
(ai)

+∞
i=0

)
= (ai+1)+∞

i=0 ,
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or, when f is invertible, by

σ
(
(ai)

+∞
i=−∞

)
= (ai+1)+∞

i=−∞ .

The maps,

σ+ : Σ+
N → Σ+

N , σ : ΣN → ΣN ,

are known as full (one-sided ) shifted on N symbols and full bi-sided shift on N

symbols.

If ψ : X → Σ+
N (or ψ : X → ΣN in the invertible case) is the coding map which

assign to each point its itinerary, the previous relation shows that for x ∈ X

ψ (f (x)) = σ+ (ψ (x)) (or ψ (f (x)) if f is invertible) .

in order to give a conjugacy, though, the coding ψ should be both injective and

surjective. Thus, it is natural to ask: (1) Is the coding unique? and (2) Do all

sequences in Σ+
N (or in ΣN ) occur as possible itineraries?

If consider examples of the baker map and the doubling map the answer to the

first questions is no when coding by σ : Σ2 → Σ2 and σ+ : Σ+
2 → Σ+

2 respectively.

However for both systems any sequence can occur as a possible itinerary. The coding

of the Gauss map by a countable many digits {1, . . . , n, . . . , }N the coding is also

not always unique.

Example 2.2.1. Consider the map ψ : Σ+
2 → [0, 1] . For each (ai)

∞
i=1 ∈ Σ+

2 we

define

ψ ((ai)
∞
i=1) =

∞∑
i=1

ai
2i
∈ [0, 1] .

The rational numbers of the form k
2n has two different codings or expansions one

ending with a sequence of 0’s and the with 1’s.

To be able to describe the subset of the shift that captures itineraries of this

form is one of the reasons to study subshifts of finite type of the following form.

Definition 2.2.1. An N × N matrix is called a transition matrix if all entries

Ai,j , 1 ≤ i, j ≤ N , are either 0 or 1.

One can use a matrix A to encode the information of which pairs of consec-

utive digits can appear in the itinerary: the digit i can be followed by digit j if and
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only if the entry Ai,j is equal to 1. More formally, we can consider the following

subspaces Σ+
A ⊂ Σ+

N and ΣA ⊂ ΣN of sequences.

Definition 2.2.2. The shift spaces associated to a transition matrix A are:

Σ+
A =

{
(ai)

+∞
i=0 ∈ Σ+

N , Aaiai+1 = 1 for all i ∈ N
}

ΣA =
{

(ai)
+∞
i=−∞ ∈ ΣN , Aaiai+1 = 1 for all i ∈ Z

}
.

The spaces ΣA and Σ+
A are invariant under the shift and we can consider the

restriction of σ+ and σ to these subspaces respectively.

Definition 2.2.3. The restriction of the shift maps to

σ+ : Σ+
A → Σ+

A, σ : ΣA → ΣA.

are called subshift of finite type (also called a topological Markov chain ).

Often the cylinder sets are crucial for doing manipulations of the shifts. The

cylinder sets are also the open sets for the shifts when endowed with an appropriate

metric.

Definition 2.2.4. The cylinder sets are the sets with points which have a fixed

initial coordinates , we define

Ck (x) = {y ∈ ΣA : xi = yi, −l ≤ j < k} ,

as for one sided shift we define

Ck (x) =
{
y ∈ Σ+

A : xi = yi, 0 ≤ j < k
}
.

Example 2.2.2. Let us consider a one sided shift on k symbols. Then we see that

there are kn periodic points of period n.

This is evident since the periodic points of period n in Σ+
A are exactly the points of

the form xi = xi+n for all i ∈ N. This implies that these are the points which satisfy

(σ+)
n
x = x. In other words how many members of Cn (x) are there?

2.3 Ergodicity

In this section we state a theorem which bears Birkhoff’s name. The theorem

transformed Maxwell-Boltzmann kinetic theory of gases into a rigorous principle

through the use of Measure Theory in 1931.
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Definition 2.3.1. Let (X,B, µ) be a probability space and let T : X → X be a

measure-preserving transformation. T is said to be ergodic if for any B ∈ B then

T−1B = B =⇒ µ (B) = 0 or 1.

Remark 2.3.1. It is important to note that ergodicity implies indecomposability

condition. This means that if T is ergodic then we can not have T−1A = A with

0 < µ (A) < 1.

Theorem 2.3.2. (Birkhoff’s Ergodic Theorem) Let T be an ergodic transformation

of the probability space (X,B, µ) and let f ∈ L1 (X,B, µ) . Then

1

n

n−1∑
j=0

f
(
T jx

)
→
∫
fdµ

for µ− almost every x ∈ X.

The proof to this theorem can found in Birkhoff’s paper [8] and the books

of Walters [50] and Mañé [28].

2.4 Thermodynamic Formalism

2.4.1 Topological Pressure

The notion of topological pressure, which is the most basic notion of thermodynamic

formalism, was introduced by Ruelle for expansive transformations and Walters in

the general case.

It is worthwhile to notice that the possibility of coding repellers and hyperbolic sets

via symbolic dynamics often allows one to give simpler proofs. Thus, it is of inter-

est to have explicit formula for the topological pressure with respect to the shift map.

There are a number of different ways of defining the topological pressure. The most

general one (as when considering continuous maps defined over compact spaces) is

using (n, ε) - generating sets. Here we will consider a different definition, which co-

incides with the classical one for dynamical systems that are sufficiently hyperbolic.

Even though the following definition holds in greater generality, we will restrict

ourselves to symbolic systems and to piecewise expanding interval maps with full

branches.

Let σ+ : Σ+
A → Σ+

A be a one-sided sub-shift and σ : ΣA → ΣA be a two-sided
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sub-shift of finite type. These will be dynamical systems under consideration. Let

φ : ΣA → R or φ : Σ+
A → R be a Holder continuous function, that we will call a

potential.

Definition 2.4.1. The topological pressure of the map σ at the potential φ is

defined by

P (φ) = lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

φ
(
σix
))

.

Remark 2.4.1. The pressure for an expanding map with full branches is defined in

the same way, the only difference being that we sum over periodic points of period

n ∈ N, that is the set {x ∈ X : Tnx = x} .

Let us note that using sub-additivity arguments it is possible to prove that

the above limit exists.

In order to understand the definition, let us start by considering the null-potential,

that φ ≡ 0. In this case we obtain

P (φ) = lim
n→∞

1

n
log

∑
σnx=x

1.

We introduce a useful asymptotic notation,

Definition 2.4.2. Suppose f and g are complex valued functions defined on the

same space, we write f � g if there exists a constant C > 0 such that

1

C
|f | ≤ |g| ≤ C |f | .

Therefore, P (0) quantifies the exponential growth of periodic orbits,∑
σnx=x

1 � exp (nP (0)) .

The number P (0) is usually called topological entropy and it is denoted by htop (σ).

The topological pressure can be thought of as a weighted topological entropy. In-

deed, each point on the periodic orbit
{
x, σx, σ2x, ..., σn−1x

}
, is given weight φ

(
σix
)
.

The topological pressure quantifies exponential growth of the weighted periodic or-

bits, that is, ∑
σnx=x

exp

(
n−1∑
i=0

φ
(
σix
))
� exp (nP (φ)) .

There are several properties of the pressure that can easily be deduced from the
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definition, for instance

1. If φ ≤ ψ then P (φ) ≤ P (ψ)

2. The pressure function P (·) is convex (with respect to the potential)

3. If c ∈ R then P (φ+ c) = P (φ) + c

4. P (φ) = P (φ+ ψ ◦ σ − ψ) .

These properties will be discussed in Theorem ( 2.4.4).

Example 2.4.1. Let I1, I2 be subintervals of the unit interval [0, 1] and let T :

I1 ∪ I2 → [0, 1] be an affine cookie cutter, then T restricted to each interval Ii is

piecewise linear, T |Ii = aix+ ci. The topological pressure of this system is given by

P
(
−t log

∣∣T ′∣∣) = lim
n→∞

1

n
log

∑
Tnx=x

exp

(
n−1∑
i=0

−t log
∣∣(T ′ (T ix))∣∣)

= lim
n→∞

1

n
log

∑
Tnx=x

n−1∏
i=0

∣∣T ′ (T ix)∣∣
= lim

n→∞

1

n
log

∑
ij∈{1,2}
j∈{1,...,n}

(ai1 · · · ain)−t

= lim
n→∞

1

n
log
(
a−t1 + a−t2

)n
= log

(
a−t1 + a−t2

)
.

2.4.2 Entropy

The notion of entropy was introduced into ergodic theory in 1958 by Kolgomorov. It

is one of the most important invariants in dynamical systems. The definition of en-

tropy used now is a slightly different from Kolgomorov’s and it is due to Sinai (1959).

In this section we briefly sketch the definition of entropy, for a thorough account see

for example Walters [50] and Pesin [38]. Entropy can be thought of as a measure

of the disorder of the system. In other words, the entropy of an invariant measure

quantifies the amount of disorder of the system realised by the measure µ. The

definition of entropy is done in several steps. Let T : X → X be a continuous map

of the compact metric space X and let µ be a T -invariant probability measure.

Entropy of a Partition

Suppose that P1 and P2 are partitions of X in the Borel σ-algebra B. If P1 =

{A1, · · · , An} and P2 = {B1, · · · , Bm} are finite partitions of X then their join is
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the partition

P1 ∨ P2 := {Aj ∩Bj : 1 ≤ i ≤ n and 1 ≤ j ≤ m} .

Definition 2.4.3. Let P1 = {A1, · · · , An} be a partition of X. The entropy of P1

with respect to µ is defined by

H (P1) = −
n∑
i=1

µ (Ai) logµ (Ai) .

Entropy of measure preserving transformation

Let P1 = {A1, · · · , An} be a partition of X. This partition can be refined using

dynamics. Indeed, we can consider the partition

n−1∨
i=0

T−iP1 =
{
∩n−1
j=0Aij : ij ∈ {1, ..., n}

}
.

The entropy of (T, µ) with respect to P1 is defined by

h (T, P1) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP1

)
.

Finally,

Definition 2.4.4. Let T : X → X be a continuous map of the compact metric

space X and let µ ∈MT (X) then the entropy of T with respect to µ is defined by

hµ (T ) = sup {h (T, P ) : P finite partition of X} ,

where MT (X) is the set of all T -invariant probability measures.

2.4.3 Gibbs Measures

Gibbs measure were were first introduced into ergodic theory and dynamical systems

by Sinai in the paper [47].

Definition 2.4.5. Let T be a continuous transformation from compact metric space

X to itself. The transformation T is said to be topologically mixing if for any U , V

nonempty open subsets of X, there is an N so that T−mU ∩ V 6= 0 ∀ m ≥ N .

Lemma 2.4.2. σ : ΣA → ΣA is topologically mixing if and only if AM > 0 (that is,

AMi,j > 0 ∀ i, j) for some M .
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Definition 2.4.6. Let T be a continuous transformation from a compact metric

space X to itself. Suppose µ is a probability measure on X and let φ ∈ C (X,R) .

The measure µ is called Gibbs measure with respect to φ if there exits constants

A,B > 0 and P ∈ R such that

A ≤ µ [x1 · · ·xn]

exp
(
−Pn+

∑n−1
k=0 φ (T kx)

) ≤ B ∀x ∈ X, ∀n ≥ 0 (2.1)

where [x1 · · ·xn] are the cylinder sets.

In Section 3.2 the Gibbs measure will be shown to be unique where we will

appeal to the properties of the transfer operator on space of functions on the shift

space ΣA and the shift map σ to achieve this. The introduction of the transfer

operator is deferred until Section 3.1 where it will be discussed.

2.4.4 Variational Principle

Let f : Σ+
A → C be complex valued function defined on Σ+

A. Define

varn (f) = sup
{
|f (x)− f (y)| : x, y ∈ Σ+

A and xi = yi for i = 0, . . . , n− 1
}

to be the nth variation of f . One observes that varn (f) measures how much f can

vary on cylinders of length n.

Definition 2.4.7. For f : Σ+
A → C define

|f |θ = sup

{
varn (f)

θn
: n = 0, 1, 2, . . .

}
to be the least Hölder of f .

We define

Fθ (C) =
{
f : Σ+

A → C : |f |θ <∞
}

similarly define

Fθ (R) =
{
f : Σ+

A → R : |f |θ <∞
}
.

Definition 2.4.8. Suppose µ is a probability measure on the space Σ+
A satisfying

µ (B) = µ
(
σ−1B

)
for any B ∈ Σ+

A then µ is said to be σ − invariant. We denote

Mσ

(
Σ+
A

)
for the set of all σ−invariant probability measures on Σ+

A.

Theorem 2.4.3. [11] Let φ ∈ Fθ (R) , Σ+
A is topologically mixing and µφ the Gibbs
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measure of φ. Then φ is the unique µ ∈Mσ

(
Σ+
A

)
for which

P (φ) = hµ (σ) +

∫
φdµ. (2.2)

We will define the measure µ ∈Mσ

(
Σ+
A

)
satisfying equation( 2.2) to be the

equilibrium measure for the potential φ.

We will see in the next chapter that the pressure P (f) for f ∈ Fθ (R) can be ex-

pressed as P (f) = log λ where λ is the maximal eigenvalue for the transfer operator

Lf . We can regard pressure as a functional Fθ (R) → R. By using the variational

principle, one can prove the following properties of this functional.

Theorem 2.4.4. 1. Pressure is monotone: if f, g ∈ Fθ (R) and f ≤ g then

P (f) ≤ P (f) .

2. Pressure is convex: if f, g ∈ Fθ (R) and α ∈ [0, 1] then

P (αf + (1− α) g) ≤ αP (f) + (1− α)P (f) .

3. If f is cohomologous to g + c, where f, g ∈ Fθ (R) and c ∈ R then

P (f) = P (g) + c.

Proof. Throughout, let f, g ∈ Fθ (R).

If f ≤ g then

P (f) = sup

{
hµ (σ) +

∫
fdµ

}
≤ sup

{
hµ (σ) +

∫
gdµ

}
= P (g) .

where the suprema are taken over all σ-invariant probability measures; hence 1.

holds.

Statement 2. follows by noting that, for α ∈ [0, 1],

P (αf + (1− α) g) = sup

{
hµ (σ) +

∫
αf + (1− α) gdµ

}
≤ sup

{
α

(
hµ (σ) +

∫
fdµ

)}
+ sup

{
(1− α)

(
hµ (σ) +

∫
gdµ

)}
= αP (f) + (1− α)P (g) .
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where the suprema is taken over all σ-invariant probability measures.

Statements 3 follow immediately from the variational principle.

2.5 Multifractal Analysis

The theory of multifractal analysis can be traced back to the authors, Hasley et al.

in [22]. The early work in multifractal analysis of dynamical systems was done by

Collet et al. in [14] for invariant measures for interval Markov maps.

In this section we will present a motivation for the study of a general theory of

multifractal analysis by restricting ourselves to the multifractal analysis for Gibbs

measures which are invariant for conformal repellers.

Pointwise Dimension

Definition 2.5.1. Let x ∈ X and suppose we have a Borel probability measure ν

on X, we define the pointwise dimension at point x ∈ X by

dν (x) = lim
r→0

log ν (B (x, r))

log r
.

The limit exists at a point x, if the following two limits exist and are equal,

dν (x) = lim
r→0

sup
log ν (B (x, r))

log r
,

and

dν (x) = lim
r→0

inf
log ν (B (x, r))

log r
.

The two limits are called upper pointwise dimension and lower pointwise dimension

respectively.

However most of the measures will be nicely behaved in that we have exis-

tence for almost every point of the space under consideration.

Let ν be a finite Borel measure in a metric space X, of particular interest are the

level sets

Kα = {x ∈ X : dν (x) = α}

for each α ∈ [−∞,+∞]. Denote by Y the set of points in X which do not attain
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any of the α’s. There is a natural multifractal decomposition of X by,

X = Y ∪
⋃

α∈[−∞,+∞]

Kα.

Definition 2.5.2. Let M be a smooth manifold and T : M → M be a C1+ε

transformation. A compact subset J of M is repeller if

1. T (J) = J ,

2. there exists C > 0 and τ > 1 such that

‖DxT
nu‖ ≥ Cτn ‖u‖

for all x ∈ J and u ∈ TxM ,

3. there exists an open subset V ⊂M such that V ⊃ J and J ∩ TnV = ∅ for all

n ≥ 1.

The transformation T is called conformal if DxT is a multiple of an isometry

for any x ∈ J .

Definition 2.5.3. The dimension spectrum of the measure ν is the function

fν (α) = dimH Kα.

Let J be a conformal repeller of a C1+ε transformation T , for some ε > 0.

Suppose also that ψ : J → R is a Holder continuous function satisfying P (ψ) = 0

for the topological pressure function P defined on J .

Bowen’s dimension formula

We present a criterion of calculating Hausdorff dimension for conformal repellers

which was originally discovered by Bowen on his work for quasi-circles in [12].

Theorem 2.5.1. If J is a repeller for a C1+ε transformation T , for some ε ∈ (0, 1],

such that T is conformal on J,

dimH J = s,

where s is the unique real number such that P (sφ), for the function φ : J → R
defined by

φ (x) = − log ‖DxT‖ .
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For the proof we refer the reader to Barreira’s book [5].

Multifractal theorem

Continuing with the formulation in the multifractal analysis from Definition ( 2.5.3)

we note that there is a function κ : R→ R for the pressure function such that

P (−κ (q) log ‖DT‖+ qψ) = 0

for every q ∈ R.
It is easy to show that the function φq = −κ (q) log ‖DT‖ + qψ is Holder contin-

uous. One establishes that the function κ is well defined from the real analyticity

of the pressure function P (see [43]) and then invoking the implicit function theorem.

We define the bounds for α, α and α.

Definition 2.5.4. Let

α = sup
νq

∫
J dνq∫

J log ‖DT‖ dνq

and

α = inf
νq

∫
J dνq∫

J log ‖DT‖ dνq
.

Let µ be the equilibrium measure of − (dimH J) log ‖DT‖ and νq be the

equilibrium measure of the function φq. We now state the main multifractal analysis

theorem for equilibrium measures which is due to Pesin and Weiss in [37].

Theorem 2.5.2. Let J be a repeller of a C1+ε transformation T , for some ε > 0,

such that T is a conformal and topologically mixing on J. If ν is the equilibrium

measure of a Holder continuous function ψ : J → R with P (ψ) = 0, then:

1. the set Kα(q) is T - invariant and dense for every q ∈ R;

2. if ν = µ, then α = α = dimH J and fν is a delta function;

3. fν : (α, α)→ R is analytic and strictly convex;

4. if fν is the Legendre transform of κ, that is, for each q ∈ R we have

fν (α (q)) = κ (q) + qα (q) ;
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5. for each q ∈ R we have νq
(
Kα(q)

)
= 1 and

lim
r→0

log νq (B (x, r))

log r
= κ (q) + qα (q) ,

for νq-almost every x ∈ Kα(q).

A detailed account of the proof of this theorem can be found in the paper [37]

for Gibbs measures and the book of Barreira in [4]. A similar result was earlier done

also by Pesin and Weiss for conformal expanding maps and Moran-like geometric

constructions in [36].

2.6 Linear Operators on Banach spaces

2.6.1 Spectral radius

Let B (X,Y ) be the space of bounded linear operators from a normed linear space

X to another normed linear space Y.

We state a well known proposition.

Proposition 2.6.1. Given B (X,Y ) described above. If in addition Y is a complete

normed linear space then B (X,Y ) is a Banach space.

In particular we will write B (X) = B (X,X) if X is a complete normed linear

space.

Definition 2.6.1. Let T ∈ B (X). The set

σ (T ) = {λ ∈ C | T − λI is not invertible} is called the spectrum of T.

The spectral radius for T ∈ B (X) is defined by

R (T ) = sup
λ∈σ(T )

|λ| .

2.6.2 Riesz Representation Theorem

Theorem 2.6.2. Let X be a compact metric space and J : C (X,C)→ C a contin-

uous linear map such that J is a positive operator and J (1) = 1. Then there exists

µ ∈ M (X), where M (X) is the set of Borel probability measures on X, such that

J (f) =
∫
X fdµ for all f ∈ C (X,C) .
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The theorem provides an convenient procedure to construct Borel probability

measures on the space X. The measure constructed in this fashion is unique.

The proof can be found in the book of Parthasarathy [33].

2.6.3 Schauder Tychonov Theorem

Julius Schauder was born of a Jewish family in 1899 in Lemberg, The Austrian

Empire now Lviv Ukraine. During World War I Schauder served in the Austro-

Hungarian and Polish armies. Schauder completed his thesis The theory of surface

measure at Jan Kazimierz University under Steinhaus in 1923.

Schauder generalised Brouwer’s fixed point theorems on finite dimensional spaces to

Banach spaces in 1930.

At the beginning of World War II in 1939 Schauder enjoyed the protection

of the new Soviet administration but things turned for the worst when the Germans

entered Poland in 1941. Schauder was executed by the Gestapo in 1943.

Schauder generalised Brouwer’s fixed point theorems on finite dimensional

spaces to Banach spaces in 1930 which we state below.

Theorem 2.6.3. Let K be a convex compact subset of a locally convex topological

vector space, with φ a continuous function from K to K. Then φ has a fixed point.

We refer the reader to the book of Rudin [40] for the proof of this theorem.

2.6.4 Arzela-Ascouli Theorem

Giudo Ascoli was born in Livorno, Italy in 1887 to a Jewish family. Ascoli worked

as a secondary school teacher for several years in different schools in Italy before the

break out of World War I. His poor health would at first seem to be a blessing in

disguise as military conscription intensified, however Ascoli was later send to fight

in the frontline as an officer in the 44th Field Artillery Regiment in March 1917.

After the war in 1920 Ascoli moved to Turin to take up a teaching position at the

Technical Institute. With an improved health and better research environment As-

coli began his research in Analysis at Turin. The quality of his work earned him a

position at the University of Cagliari in 1930 as chair of algebraic analysis. The sec-

ond of interruptions to his research came when the the Fascist government passed a

law barring people with Jewish descent from government institutions and education

establishments in 1938. Ascoli would later work at the University of Milan from
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1945 to 1948 where he again produced several research papers.

The concept of equicontinuity was studied by both Giulio Ascoli and Cesare

Arzela and the equicontinuity theorem bears both their names.

Definition 2.6.2. A subset F of B (X,Y ) is said to be equibounded, or uniformly

bounded, by some constant M > 0 if we have ‖f (x) ‖Y ≤M ∀x ∈ X and ∀f ∈ F .

Definition 2.6.3. A subset F of B (X,Y ) of functions is said to be equicontinuous

if for all ε > 0 there is δ > 0 such that

‖f (x)− f (y) ‖Y < ε ∀x, y ∈ X with dX (x, y) < δ, and ∀f ∈ F .

We now present the theorem.

Theorem 2.6.4. Let X be a compact metric space. A subset F of C (X,R) is

relatively compact if and if it is uniformly bounded and equicontinuous.

For the proof of this theorem we refer the reader to the books [19], [40].

2.6.5 Perturbation Theorem

Kato survived the World War II living in Japan where he was forced to live in the

countryside from 1941 after completing B.S. in Physics. After the war Kato grad-

uated from the University of Tokyo in 1951 with a doctorate thesis titled On the

convergence of the perturbation method. Kato would be promoted to professorship

of Physics at the University of Tokyo in 1958. He moved to the University of Cal-

ifornia, Berkeley , USA where he continued to produce important results including

his work on introducing “techniques for studying the partial differential equations

of incompressible fluid mechanics, the Navier-Stokes equations.”

Theorem 2.6.5. ( Kato, Rellich ) Let V be a complex Banach space and L(V) be

a Banach space of linear operators on V. If S0 ∈ L (V ) has a simple eigenvalue α0

which is isolated point of the spectrum of S0 with the associated eigenvector v0, then

for every ε > 0 there exists δ > 0 such that ‖S − S0‖ < δ then the operator S has a

simple eigenvalue α (S) and associated eigenvector v (S) such that

1. the functions S 7→ α (S) and S 7→ v (S) are holomorphic on {‖S − S0‖ ≤ δ} ,

and

2. if {‖S − S0‖ ≤ δ} the spectrum(S) ∩D (α0, ε) = {α (S)}.

where D (α0, ε) is a disk in the complex plane of radius ε with centre α0.

The proof of this theorem can be found in the book of Kato [26].
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Chapter 3

Transfer Operator for shifts

3.1 Transfer operator

We will be interested in spaces of functions defined on Σ+
A. Among the continuous

functions defined on Σ+
A we restrict ourselves to functions satisfying the Hölder

continuity condition.

The |·|θ defined in the Definition( 2.4.7) has the property that |f |θ <∞ if and only

if there exists C > 0 such that

|f (x)− f (y)| ≤ Cdθ (x, y) for all x, y ∈ Σ+
A. (3.1)

and |f |θ is the least such C > 0 for which inequality ( 3.1) holds. Note that the

condition ( 3.1) says that f is Lipschitz continuous with respect to the metric dθ. It

is customary in thermodynamic formalism to say instead that f is Hölder of expo-

nent θ. This is because |f (x)− f (y)| ≤ Cdθ (x, y)α , then f is Lipschitz continuous

with respect to dθα . One observes that if f is necessarily continuous. We shall also

be interested in the space Fθ (R) of real-valued Holder functions.

It is worth to note that |·|θ is a semi-norm, but not a norm. This is because |f |θ = 0

if f is a constant function. We define a norm on Fθ (C) by setting

‖f‖θ = |f |∞ + |f |θ

where |f |∞ = sup |f (x)| is the uniform norm of f . We have the following important

result.

Proposition 3.1.1. The space Fθ (C) is a complex Banach space with respect to the

norm ‖ · ‖θ.
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A particularly important and tractable class of functions are those which

only depend on finitely many co-ordinates. Let f : Σ+
A → C. We say that f is

locally constant if f depends on only finitely many co-ordinates of Σ+
A. That is,

there exists n ≥ 0 such that f (x) = f (x0, x1, . . . , xn−1). Equivalently, f is constant

on cylinders of length n.

Clearly, if f is locally constant, then with n as above, varm (f) = varn (f) for all

m ≥ n. Hence |f |θ <∞ for any θ ∈ (0, 1). Hence f ∈ Fθ (C) for all θ ∈ (0, 1).

Transfer operators for the shift spaces

Let f ∈ Fθ (R). We define the transfer operator or Ruelle operator to be the map

Lf : Fθ (C)→ Fθ (C)

given by

Lfw (x) =
∑
σ(y)=x

ef(y)w (y) .

It is clear that Lf is a linear operator on the Banach space Fθ (C). It is also

straightforward to check that Lf is bounded.

Proposition 3.1.2. Let f ∈ Fθ (C). Then the transfer operator Lf : Fθ (C) →
Fθ (C) is a bounded linear operator.

We will be interested in understanding the spectral properties of Lf , in par-

ticular we want to determine the eigenvalues of Lf .

Ruelle’s Perron-Frobenius Theorem

In this section we study the case where the weight function f is real and we consider

the associated transfer operator acting on the real Banach space Fθ (R) of real-valued

functions.

The first step to this is the following result. We assume, for convenience, that

Lf1 = 1.

Proposition 3.1.3. ( Lasota-Yorke inequality ) Let f ∈ Fθ (C) and suppose that

Lf1 = 1. Then for all w ∈ Fθ (C) and n ≥ 0 we have

∣∣Lnfw∣∣θ ≤ C |w|∞ + θn |w|θ
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where C > 0 depends only on f and θ.

Proof. Throughout, if x = (x0, x1, . . .) then ix = (i, x0, x1, . . .) (and we assume that Ai,x0 = 1).

Note that if x, y ∈ Σ+
A then dθ (ix, iy) ≤ θdθ (x, y).

The proof is by induction on n. When n = 1, we estimate

|Lfw (x)− Lfw (y)| ≤
∑
|ef(ix)w (ix)− ef(iy)w (iy) |

≤
∑

ef(iy)|ef(ix)−f(iy) − 1||w (ix) |

+
∑

ef(iy) |w (ix)− w (iy)|

(the sums are all over i for which Ai, x0 = 1). Noting that

sup
x 6=y

∣∣ef(ix)−f(iy) − 1
∣∣

d (x, y)
≤
∞∑
r=1

θr |f |rθ d (x, y)r−1

r!
≤ C0

for some constant C0 > 0 and recalling that
∑
ef(ix) = 1 (as Lf1 = 1), we obtain

|Lfw|θ ≤ C0 |w|∞ + θ |w|θ .

Using induction, we assume that
∣∣∣Lnfw∣∣∣

θ
≤ C |w|∞ + θn |w|θ . Then

∣∣∣Ln+1
f w

∣∣∣
θ

=
∣∣Lf (Lnfw)∣∣θ

≤ C0

∣∣Lnfw∣∣∞ + θ
∣∣Lnfw∣∣θ

By induction we have∣∣∣Ln+1
f w

∣∣∣
θ
≤ C0 |w|∞ + θ (C |w|∞ + θn |w|θ)

= (C0 + Cθ) |w|∞ + θn+1 |w|θ
= C1 |w|∞ + θn+1 |w|θ .

We study the spectrum of Lf in the case where f ∈ Fθ (R) is real-valued.

Theorem 3.1.4. (Ruelle’s Perron-Frobenius Theorem) Let A be an aperiodic matrix

with entries in {0, 1}, with associated shift of finite type Σ+
A. Let f ∈ Fθ (R).

1. There is a simple maximal positive eigenvalue λ of Lf : Fθ (C)→ Fθ (C) with

a corresponding strictly positive eigenfunction h.
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2. The remainder of the spectrum is contained inside a disc in C of radius strictly

smaller than λ.

3. There is a unique probability measure µ such that∫
Lfvdν = λ

∫
vdν for all v ∈ C

(
Σ+
A,R

)
.

Moreover, if h is as in 1. and
∫
hdν = 1 then the measure µ defined by

dµ = hdν is a σ-invariant probability measure.

4. If h is as in 1. and
∫
hdν = 1 then

1

λn
Lnfv →

∫
vdν

uniformly for all v ∈ C
(
Σ+
A,R

)
.

We give the proof which follows the proof in book of Parry and Pollicott [34].

Proof. We first focus on the Schauder-Tychonov fixed point theorem. The Schauder-

Tychonov theorem is a surprisingly general fixed point theorem in the context of

convex sets that generalises the Brouwer fixed point theorem. It says the following:

Let Λ be a convex compact subset of a normed vector space X and suppose that

L : Λ→ Λ is a continuous transformation. Then L has a fixed point in Λ.

The second step is to show the existence of λ and h. Let

Λ =

{
g ∈ C

(
Σ+
A,R

)
: 0 ≤ g (x) ≤ 1, g (x) ≤ g (y) exp

(
|f |θ θn

1− θ

)
whenever xj = yj , j = 0, 1, . . . , n− 1} .

We claim that Λ is convex and uniformly closed. Suppose that x, y ∈ Σ+
A are such

that xj = yj , j = 0, 1, . . . , n− 1. Then from the definition of Λ it follows that

|g (x)− g (y)| ≤ |g (y)|
(

exp

(
|f |θ θn

1− θ

)
− 1

)
,

≤ |g|∞
|f |θ θn

1− θ
exp

(
|f |θ θn

1− θ

)
.

Hence Λ is uniformly equicontinuous.

As Λ is uniformly closed and uniformly equicontinuous, it follows from the Arzela-

Ascoli theorem that Λ is uniformly compact. It is also worth to note that Λ ⊂ Fθ (R).
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Define a family of linear operators Λ→ Λ as follows. For n ≥ 1 define

Lng (x) =
Lf
(
g (x) + 1

n

)∣∣Lf (g (x) + 1
n

)∣∣
∞
.

Clearly |Lng|∞ = 1. Suppose x, y ∈ Σ+
A are such that xj = yj for 0 ≤ j ≤ k. Then

Lf
(
g +

1

n

)
(x) ≤ Lf

(
g +

1

n

)
(y) exp

(
θk

1− θ
|f |θ
)
.

In particular,

Lng (x) ≤ Lng (y) exp

(
θk

1− θ
|f |θ
)
,

so that Ln is well-defined operator Λ→ Λ , for each n.

Since Λ is a complex uniformly compact subset of C
(
Σ+
A,R

)
, we can apply the

Schauder-Tychonov theorem for each Ln : Λ → Λ. Hence, for each n ≥ 1, there

exists hn ∈ Λ with Lf
(
hn + 1

n

)
= λnhn, where λn =

∣∣Lf (hn + 1
n

)∣∣
∞.

As Λ is uniformly compact, hn has a uniformly convergent subsequence with limit

h ∈ Λ. As Λ ⊂ Fθ (R), we have h ∈ Fθ (R).

By continuity, Lfh = λh where λ = |Lfh|∞.

In the third stage we show that the eigenvalue λ is positive .

To see that λ is positive, we note that

λnhn (x) =
∑

σ(y)=x

ef(y)

(
hn (y) +

1

n

)

≥
(

inf hn +
1

n

)
e−|f |∞ .

Hence λn ≥ e−|f |∞ for each n ≥ 1. Hence λ ≥ e−|f |∞ .

In the fourth stage we show that the eigenfunction h can be taken to be strictly

positive.

As hn ∈ Λ it follows from the definition of Λ that hn (x) ≥ 0. Hence hn (x) ≥ 0 for

all x ∈ Σ+
A. Suppose for a contradiction that there exists x0 for which h (x0) = 0.

Iterating the eigenvalue equation Lfh = λh gives that∑
σny=x0

ef
nyh (y) = λnh (x0) = 0.
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In particular, h (y) = 0 whenever σny = x0. As the set of such y is dense in Σ+
A, by

the aperiodicity of A, it follows that h is identically zero, a contradiction.

In the fifth step we show that λ is simple.

We know that Lfh = λh. Suppose that g is another continuous eigenfunction for

Lf corresponding to the eigenvalue λ. Let t = inf g (x) /h (x). By compactness this

infimum is achieved at some point: t = g (x0) /h (x0), say. Then g (x0)−th (x0) = 0.

Repeating the argument from Step 4 shows that g (x)− th (x) = 0 whenever y ∈ Σ+
A

is such that σny = x. Again, by aperiodicity the set of such y is dense, hence

g (x)− th (x) = 0 for all x, that is, g is a scalar multiple of h. Hence the eigenspace

corresponding to λ is one-dimensional.

In the sixth step we show that Lf can be reduced to a normalised form.

Let h, λ be as above, so that Lfh = λh and h > 0. Define

g = f − log hσ + log h− log λ.

Then
Lgw (x) =

∑
σ(y)=x

eg(y)w (y)

=
1

λ

∑
σ(y)=x

ef(y) h (y)

h (σ (y))
w (y)

=
1

λ

1

h (x)

∑
σ(y)=x

ef(y)h (y)w (y) .

Hence if we let Mh denote the linear operator that multiplies a function by h, that is

(Mhw) (x) = h (x)w (x) ,

then

Lg = λ−1M−1
h LfMh. (3.2)

As Lfh = λh, it follows from relation( 3.2) that Lg1 = 1, that is, g is normalised.

Since the spectrum of Lf is the spectrum of Lg scaled by a factor of 1/λ, it is suffi-

cient to prove the remainder of the theorem under the hypothesis that Lf1 = 1.

In the seventh step we show existence of ν.

The operator L∗f acts on C
(
Σ+
A,R

)∗
and preserves the convex weak-∗ compact
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subset of functionals that correspond to σ-invariant probability measures. By the

Schauder-Tychonov theorem, L∗f has a fixed point ν.

In the eighth step we show the uniqueness of ν.

We note that

varkLnfw ≤
∣∣Lnfw∣∣θ θk ≤ Cθk |w|∞ + θn+k |w|θ

by Proposition ( 3.1.3). Hence, for fixed w ∈ Fθ (R), the set
{
Lnfw

}∞
n=1

is a uni-

formly equicontinuous subset of C
(
Σ+
A,R

)
and so has a convergent subsequence,

Lnkf w → w∗ uniformly. We claim that w∗ is constant. To see that w∗ is constant note

that, as Lf is a convex combination of preimages, we have that supw ≥ supLfw ≥
· · · . Hence supLnkf w

∗ = supw∗. Choose xnk ∈ Σ+
A such that Lnkf w

∗ (xnk) = supw∗

( so that, in particular w∗ (x0) = supw∗). Then

Lnkf w
∗ (xnk) =

∑
σnky=xnk

ef
nk (y)w∗ (y) = w∗ (x0) .

This is a convex combination of the points w∗ (y). Hence w∗ (y) = w∗ (x0) whenever

σnk (y) = xnk . As the set of such y is dense, it follows that w∗ is constant.

To see that ν is unique, we note that

w∗ =

∫
w∗dν = lim

k→∞

∫
Lnkf wdν =

∫
wdν.

We can repeat this argument through any subsequence to see that Lnfw →
∫
wdν

for all w ∈ Fθ (R). By approximation, this is also true for all w ∈ C
(
Σ+
A,R

)
. Hence

by the Riesz Representation Theorem, ν is uniquely determined by the condition

that L∗fν = ν.

In the ninth step the remainder of the spectrum is estimated.

We have seen in Step 8 that if w ∈ Fθ (R) then Lnfw →
∫
wdν. Thus the constant

functions are eigenfunctions with eigenvalue 1. To show that the remainder of the

spectrum of Lf : Fθ (C) → Fθ (C) lies in a disc of radius strictly less than 1 it is

sufficient to prove that Lf , acting on the space C⊥ =
{
w ∈ Fθ (R) :

∫
wdν = 0

}
, has

a spectral radius strictly less than 1. By Proposition ( 3.1.3), we have∣∣∣Ln+k
f w

∣∣∣
θ
≤ C

∣∣∣Lkfw∣∣∣∞ + θn
∣∣∣Lkfw∣∣∣

θ
≤ C

∣∣∣Lkfw∣∣∣∞ + Cθn |w|∞ + θn+k |w|θ .

Moreover, by Step 8, as w ∈ C⊥ we have that Lnfw → 0 on the uniformly compact
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set
{
w ∈ C⊥ : |w|θ < 1

}
. Fix a choice of ε > 0. Then

∣∣∣Lkfw∣∣∣
θ
< ε provided k is

sufficiently large. The spectral radius formula tells us that the spectral radius of Lf
on C⊥ is bounded above by

inf

{∣∣∣Ln+k
f w

∣∣∣1/(n+k)

θ
: w ∈ C⊥, |w|θ ≤ 1

}
≤ ε1/(n+k).

The claim follows.

3.2 Transfer operator and Gibbs measures

Theorem 3.2.1. Suppose Σ+
A is topologically mixing and f ∈ Fθ (R). The σ-

invariant Gibbs measure µ on Σ+
A is unique and one can find constants c1 > 0,

c2 > 0 and P such that

c1 ≤
µ {y : yi = xi ∀i = 0, . . . ,m}

exp
(
−Pm+

∑m−1
k=0 f (σkx)

) ≤ c2 (3.3)

for every x ∈ Σ+
A and m ≥ 0.

We state the sketch of the proof of this theorem by Bowen [11].

Proof. Let f ∈ Fθ (R) and we adopt the µ, ν and h given by Ruelle’s theorem ( 3.1.4).

These assumptions also mean that µ is a σ-invariant probability measure which is

given by µ (w) =
∫
w (x)h (x) dν (x), for any w ∈ Fθ (R) and x ∈ Σ+

A once we know

that µ is mixing which is the other ingredient.

But first we establish the two characteristics of the measure µ on the space Σ+
A

under the shift map σ, which are that this measure is both invariant and mixing.

Let w ∈ C
(
Σ+
A,R

)
and write Smf (x) =

∑m−1
k=0 f

(
σkx

)
and recalling that after

m iterations

(
Lmf w

)
(x) =

∑
σmy=x

eSmf(y)w (y) (3.4)

allowing us to rewrite
((
Lmf w

)
· g
)

(x) = Lmf (w · (g ◦ σm)) for any g ∈ C
(
Σ+
A,R

)
.
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We then observe that
µ (w) = ν (hw)

= ν
(
λ−1Lfh · w

)
= λ−1ν (Lf (h · (w ◦ σ)))

= λ−1
(
L∗fν

)
(h (w ◦ σ))

= ν (h · (w ◦ σ))

= µ (w ◦ σ)

and hence the invariance follows.

To establish the mixing requirement we look at the cylinder sets

E =
{
y ∈ Σ+

A : yi = ai, 0 ≤ i ≤ r
}
,

F =
{
y ∈ Σ+

A : yi = bi, 0 ≤ i ≤ s
}
.

To estimate |µ (E ∩ σ−nF )− µ (E)µ (F )|, the terms within can be interpreted as

µ
(
E ∩ σ−nF

)
= µ (χE · χσ−nF )

= λ−nL∗nφ ν (hχE · (χF ◦ σn))

= ν
(
λ−nLnφ (hχE) · χF

)
and

µ (E)µ (F ) = ν (hχE) ν (hχF ) .

giving us∣∣µ (E ∩ σ−nF )− µ (E)µ (F )
∣∣ =

∣∣ν (λ−nLnφ (hχE) · χF
)
− ν (hχE) ν (hχF )

∣∣
≤
∥∥λ−nLnφ (hχE)− ν (hχE)h

∥∥
∞ ν (F ) .

Since χE ∈ Σ+
A, also satisfies varkχE = 0 for k > 0, we can further estimate

∣∣λ−nLnφ (hχE)− ν (hχE)h
∣∣
∞ ≤ Aµ (E)βn−k

where n ≥ k, A > 0, and β ∈ (0, 1) . Hence

∣∣µ (E ∩ σ−nF )− µ (E)µ (F )
∣∣ ≤ A (inf h)−1 µ (E)µ (F )βn−k. (3.5)

Passing to the limit in the inequality ( 3.5) as n→∞ gives us the desired result.
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We turn our attention to showing that we can always find the constants c1 > 0, c2 > 0

and P satisfying the double inequality ( 2.1 and 3.3) as well as the measure µ of

the Ruelle theorem.

Let x ∈ ΣA and consider the cylinder set E = {y ∈ Σ : yi = xi for i = 0, · · · ,m− 1} .
Set a =

∑∞
k=0 varkφ <∞. We have

µ (E) = ν (hχE)

= λ−mν (Lm (hχE))

≤ λ−meSmφ(x)ea‖h‖∞.

(3.6)

Since there can be no more than one y1 ∈ E such that σmy1 = x1 for any x1 ∈ Σ+
A

in the formula ( 3.4) with f replaced by hχE hence we can find a bound,

Lmφ (hχE) (x1) ≤ eSmφ(x1)ea‖h‖∞.

Let c2 = ea‖h‖∞ in the inequality ( 3.6) to give us one side.

The other side of the inequality can be obtained by first noting that there are

possibly more than one y1 such that σm+My1 = x1 for any x1 ∈ Σ+
A giving us a

lower bound,

Lm+M
φ (hχE) (x1) ≥ eSm+Mφ(y1)h (y1)

≥ e−M‖φ‖−a (inf h) eSmφ(x)

Hence

µ (E) = λ−m−Mν
(
Lm+M
φ (hχE)

)
≥ λ−Me−M‖φ‖−aλ−meSmφ(x).

If we take c1 = λ−Me−M‖φ‖−a and letting P = log λ we get the desired double

inequality ( 3.3).

We now show that the measure µ is unique.

Let Tm be a finite set of representatives of each cylinder set. We subdivide ΣA into

disjoint union of subsets
⋃
x∈Tm Em (x) where Em (x) are cylinder sets containing x

for i = 0, . . . ,m− 1. In addition suppose that µ′, c′1, c
′
2 and P1 are another measure

and constants satisfying ( 3.3).
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We observe that

c′1e
−P ′m

∑
x∈Tm

eSmφ(x) ≤
∑
x∈Tm

µ′ (Em (x)) ≤ c′2e−P
′m
∑
x∈Tm

eSmφ(x) (3.7)

Since
∑

x∈Tm µ
′ (Em (x)) = 1, passing to the limit in ( 3.7) we obtain

P ′ = lim
m→∞

1

m
log

(∑
x∈Tm

eSmφ(x)

)
.

The above treatment can be applied to the measure µ and the corresponding con-

stants c1, c2 and P to obtain explicit expression for P. Hence we see that P ′ = P.

Up to a constant depending on c1 and c2 the measure µ′ is absolutely continuous

with respect to µ. By Radon-Nikodym theorem µ′ = fµ where f is µ-integrable. On

the hand µ′ = (f ◦ σ)µ. By uniqueness of the Radon-Nikodym derivative we have

f ◦ σ = f a.e.

Since µ is ergodic then f can be identified with a constant function, c say.

We see that µ′ (ΣA) =
∫
c dµ = c = 1 giving us equality of µ′ and µ.
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Chapter 4

Computing Hausdorff dimension

of Julia sets and Schottky group

limit sets

This section deals with the calculation of Hausdorff dimension of sets resulting

from conformal dynamical systems. The method of calculations depend on Bowen’s

thermodynamic pressure criterion [12]. However the main tool is the Fredholm

determinant of nuclear transfer operators. For a complete literature on determi-

nants of nuclear operators the reader is referred to Atiyah and Bott [1], Baladi [2],

Grothendieck [20], [21], Mayer [29] and Ruelle [44]. The technique provides a mo-

tivation to the calculations in the multifractal analysis of the level sets defined in

some manner in chapter 5 which stand on these two modes of approach.

In 2002 Jenkinson and Pollicott in their paper [25] introduced a new algorithm

which relies entirely on all the periodic points of order less than some given N for a

conformal dynamical system. Our discussion will follow closely their result in this

chapter. Different algorithms to calculate Hausdorff dimension of conformal limit

sets have been formulated in the past, in particular the work of Bodart and Zins-

meister in [9], Widom, Bensimon, Kadanoff and Shenker in [51], Garnett in [18],

Saupe in [45] and McMullen in [31]. These algorithms come short of the super-

exponential convergence achieved in the periodic point method.
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4.1 General theory for conformal iterated function scheme

Proposition 4.1.1. Given an iterated function system scheme, the Hausdorff di-

mension dimH Λ of the limit set Λ is the largest zero of the function s 7→ det (I − Ls).

We define the function ∆N . Let DzT
n be the derivative of Tn at the fixed

point z. Define

an =
1

n

∑
Tnz=z

|DzT
n|−s

det
(
I − (DzTn)−1

)
and

∆N (s) = 1 +
N∑
n=1

∑
(n1,...,nm)

n1+···+nm = n

(−1)n

m!
an1 · · · anm .

Theorem 4.1.2. Let Λ be the limit set for a real-analytic conformal iterated function

scheme. Suppose Λ lies in a d-dimensional real analytic manifold. Then there exists

C > 0 and 0 < δ < 1 such that if 0 ≤ sN ≤ d is the largest real zero for ∆N then

|dimH Λ− sN | ≤ CδN
1+1/d

.

Theorem 4.1.3. Let X ⊂ M be a locally maximal compact invariant set for a

conformal real-analytic hyperbolic Markov map T : X → X, where M is a Cω

manifold of dimension d ∈ N. For each N ≥ 1 we can explicitly define a function ∆N ,

using only the derivatives DTn (z) evaluated at period-n points z, for 1 ≤ n ≤ N,

and associate C > 0 and 0 < δ < 1 such that if sN is the largest real zero of ∆N

then

|dimH Λ− sN | ≤ CδN
1+1/d

.

4.2 Applications

4.2.1 Schottky groups

Theorem 4.2.1. (Kleinian groups) Let Γ be a finitely generated non-elementary

convex co-compact Schottky or quasifuchsian group, with associated limit set Λ. Let

T : Λ → Λ be the associated dynamical system. For each N ≥ 1 we can explicitly

define a function ∆N , using only the derivatives DTn (z) evaluated at period-n points

z, for 1 ≤ n ≤ N, and associate C > 0 and 0 < δ < 1 such that if sN is the largest

real zero of ∆N then

|dimH (Λ)− sN | ≤ CδN
3/2
.
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Figure 4.1: Julia set for fc (z) = z2 + c, for c = −0.123 + 0.745i.

4.2.2 Julia sets

Proposition 4.2.2. Let f : J → J be a hyperbolic holomorphic Markov map, with

Julia set J . Let Ls be the associated transfer operator. Then

tr (Lns ) =
∑
fnz=z
z∈J

∣∣(fn)′
∣∣−s(1 +

1− 2Re
(
(fn)′ (z)

)∣∣(fn)′ (z)
∣∣2

)−1

Corollary 4.2.3. Let f : J → J be a hyperbolic holomorphic map, with Julia

set J . The corresponding functions ∆N , whose leading zeros give a sequence of

approximations to dimH (J ) , are given by the formula

∆N (s) = 1+

N∑
n=1

∑
(n1,...,nm)

n1+···+nm=n

(−1)m

m!

m∏
l=1

1

nl

∑
fnlz=z
z∈J

∣∣(fnl)′∣∣−s(1 +
1− 2Re

(
(fnl)′ (z)

)∣∣(fnl)′ (z)∣∣2
)−1

.

Corollary 4.2.4. Let fc : Jc → Jc be the quadratic map fc (z) = z2 +c restricted to

the Julia set Jc, where the real parameter c < −2. For each N ≥ 1 we can explicitly

define a function ∆N , using only the derivatives (fnc )′ (z) evaluated at period-n points

z, for 1 ≤ n ≤ N, and associate C > 0 and 0 < δ < 1 such that if sN is the largest

real zero of ∆N then

|dimH (Jc)− sN | ≤ CδN
2
.
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Figure 4.2: Julia set for fc (z) = z2 + c, for c = 0.25.
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Chapter 5

Computing multifractal spectra

The famous Birkhoff Ergodic Theorem shows that given an ergodic measure the

averages of an integrable function along typical orbits converges to the integral of

the function. The multifractal spectrum describes the sets of points for which the

averages converge to another limit. In this note we will consider the specific setting

of conformal repellers and show how to estimate the Hausdorff Dimension of such

sets via approximations to their alternative characterizations as zeros of appropriate

determinant functions.

5.1 Introduction

Given a measurable transformation T : X → X and an ergodic probability measure

µ the Birkhoff Ergodic Theorem tells us that for almost every point the Cesàro av-

erages (or Birkhoff averages) along an orbit converge to the integral. We summarise

this as follows ( cf. Theorem 2.3.2).

Theorem 5.1.1 (Birkhoff, 1931). Let f ∈ L1(X,µ) then for a.e. (µ) we have that

1

N

N−1∑
n=0

f(Tnx)→
∫
fdµ as N → +∞.

However, there is a still a set of zero measure about which Birkhoff’s theorem

gives no information. It is a natural question to ask what is the “size” of the set

of points of zero measure which don’t converge to
∫
fdµ, but to some other given

limit, as N → +∞. We will be interested in a particularly well known family of

maps and invariant probability measures.

Definition 5.1.1. We say that a C2 conformal map T : X → X (X ⊂ Rd) is a

conformal repeller if
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1. T is expanding, i.e., there exists c > 0, λ > 1 such that ‖DTnv‖ ≥ cλn‖v‖,
for all v 6= 0 and n ≥ 1;

2. X is a repeller, i.e., there exists an open set U ⊃ X with X = ∩∞n=0T
−nU .

The conformality automatically holds for interval maps and hyperbolic ratio-

nal maps restricted to their Julia sets, for example. Let f : X → R be a Cω function.

Upper and lower bounds for the range of values of the accumulation points of the

Cesàro averages
{

1
n

∑n−1
k=0 f(T kx) : n ≥ 1

}
of this function come from the following

quantities. We denote

α+ = sup

{∫
fdµ : µ = T − invariant probability

}
and

α− = inf

{∫
fdµ : µ = T − invariant probability

}
.

In particular, for any x ∈ [0, 1] we have that

α− ≤ lim inf
N→+∞

1

N

N−1∑
n=0

f(Tnx) ≤ lim sup
N→+∞

1

N

N−1∑
n=0

f(Tnx) ≤ α+.

It is natural to ask about the size of the set of points for which the limit exists for

α in the range (α−, α+). This leads to the following definition.

Definition 5.1.2. Given α− < α < α+ we let

Λ(f)
α =

{
x ∈ X : lim

n→+∞

1

N

N−1∑
n=0

f(Tnx) = α

}
.

We can now state our main theorem on approximating the values of the

multifractal spectra. In the context of Cω conformal expanding repellers it provides a

very efficient algorithm for the numerical computation of the multifractal spectrum.

We write
∑N−1

n=0 f (Tnx) = SNf (x) .

Theorem 5.1.2. Let T : X → X be a Cω conformal expanding repeller and let

f : X → R be a Cω function. There exists 0 < θ < 1 such that given α ∈ (α−, α+)

we can associate to the set of values DN = {Snf (x) : Tnx = x, n ≤ N} an approx-

imation dN = dN (DN ) such that

dimH

(
Λ(f)
α

)
= dN +O

(
θN

(1+ 1
d)
)
. (5.1)
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The significance of the super exponential error term in ( 5.1) is that it dom-

inates the number of values to be computed in DN , which grows exponentially with

order O(ehN ) (where h > 0 denotes the topological entropy of the map). In the

particular case of expanding Markov interval maps we will have d = 1 and we have

the following corollary.

Corollary 5.1.3. Let T : X → X be a Cω expanding Markov interval map and

let f : X → R be a Cω function. There exists 0 < θ < 1 such that given α ∈
(α−, α+) we can associate to the set of values DN = {Snf (x) : Tnx = x, n ≤ N}
an approximation dN = dN (DN ) such that

dimH

(
Λ(f)
α

)
= dN +O

(
θN

2
)
.

Remark 5.1.4. The Cω hypothesis is crucial in proving these results. If we only

assumed that T is C∞ then we could only establish an exponential error term in

the approximation in Theorem 5.1.2 (i.e., O(θN ) for some 0 < θ < 1). We write

F (f)(α) := dimH

(
Λ

(f)
α

)
.

We will describe the precise algorithm(s) later. In practice, there are two

different approaches:

1. We can solve for α and F (f)(α) independently in terms of a third variable t;

2. We can solve for F (f)(α) in terms of α.

The value dN comes from approximating an exact implicit expression for

dimH

(
Λ

(f)
α

)
. In the specific setting of expanding interval maps, we define a deter-

minant function of two variables:

d2(s, t) = exp

− ∞∑
n=1

1

n

∑
Tnx=x

exp
(
−t
∑n−1

i=0 f(T ix)
)
|(Tn)′(x)|−s

1− (Tn)′(x)−1

 .

This converges for s and t sufficiently large and extends to all values (as an analytic

function). Assume without loss of generality that that d2(1, 1) = 0 (otherwise we

can add a constant to f such that this hypothesis then holds, as we explain in

detail later in §3, and then the multifractal spectrum is merely translated by this

constant). The following gives an exact implicit characterization of the multifractal

spectrum dimH

(
Λ

(f)
α

)
for α− < α < α+.

Theorem 5.1.5. Given α there is sα and tα such that:

1. d2(sα, tα) = 0; and
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2. ∂d2(sα,t)
∂t |t=tα = α∂d2(s,tα)

∂s |s=sα,

and then we can write that dimH

(
Λ

(f)
α

)
= sα + αtα.

Explicit estimates on d2(s, t) allow us to deduce the approximation result in

the previous theorem.

In section 2 we illustrate the numerical application with two concrete exam-

ples, the details of which will be given in a later section. In sections 2-8 we will

restrict to the simpler case that T is the doubling map. In the subsequent sections

we will generalise to where T is a Cω Markov expanding map.

5.2 Two examples

For the moment let us consider two specific examples to help illustrate this result.

In both examples we take X to be the unit interval and let T : [0, 1] → [0, 1]

be the doubling map defined by Tx = 2x (mod 1). This preserves the Lebesgue

measure µ. The two examples will correspond to the specific choices of functions

f(x) = cos(2πx) or f(x) = sin(2πx)

Remark 5.2.1. In these particular cases, it is very easy to see the pointwise conver-

gence to zero for the Cesáro averages without resorting to the use of the full weight

of the Birkhoff theorem. More precisely, we can explicitly compute

∫ 1

0

(
1

N

N−1∑
n=0

f(Tnx)

)4

dx =
1

N4

N−1∑
n1,n2,n3,n4=0

∫ 1

0
f(Tn1+n2+n3+n4x)dx =

2N2 +N

8N4
.

In particular, we can deduce that
∫ 1

0

∑∞
N=1

(
1
N

∑N−1
n=0 f(Tnx)

)4
dx < +∞ and thus

we conclude that for a.e. (µ) x we have that 1
N

∑N−1
n=0 f(Tnx)→ 0 as N → +∞.

Example 5.2.1 (f(x) = cos 2πx). Let f : [0, 1]→ R be defined by f(x) = cos(2πx).

Clearly
∫
f(x)dµ(x) = 0 and thus for almost all points (with respect to Lebesgue

measure) we have the average converges to zero. In this case it is easy to check

that α+ = 1 and α− = −1
2 For any other value α 6= 0 in this range the Lebesgue

measure of the set of points converging to α 6= 0 with be zero, and in fact it will

have Hausdorff Dimension strictly less than 1. We can the estimate the Hausdorff

Dimension of the set of points for which the Birkhoff averages converge to 1
2 is:

dimH

{
x ∈ [0, 1] : limN→+∞

1
N

∑N−1
n=0 cos(2n+1πx) = 1

2

}
= 0.73988277232849810681377573856 . . .
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Figure 5.1: Plots of the Cesàro averages 1
N

∑N−1
n=0 cos(2n+1πx) for (i) N = 1; (ii)

N = 6; and (iii) N = 12.

Example 5.2.2 (f(x) = sin(2πx)). Let f : [0, 1]→ R be defined by f(x) = sin 2πx.

Clearly
∫
f(x)dµ(x) = 0 and thus for almost all points (with respect to Lebesgue

measure) we have the average converges to zero. In this case α+ =
√

15/8 =

0.4841 · · · and α− = −
√

15/8 = −0.4841 · · · (by a result of Bousch [10]). For any

value α 6= in this range the Lebesgue measure of the set of points converging to α

with be zero, and in fact it will have Hausdorff Dimension strictly less than 1. We

can the estimate the Hausdorff Dimension of the set of points for which the Birkhoff

averages converge to 1
4 is:

dimH

{
x ∈ [0, 1] : limN→+∞

1
N

∑N−1
n=0 sin(2n+1πx) = 1

4

}
= 0.90143475104318749821613891644 . . .
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Figure 5.2: Plots of the Cesàro averages 1
N

∑N−1
n=0 sin(2n+1πx) for (i) N = 1; (ii)

N = 6; and (iii) N = 12.

In both of these simple examples we have considered the specific case of the

doubling map. If Tnx = x is a periodic point of period n then we trivially see that

|(Tn)′(x)| = 2n and then we have the simplification

d2(s, t) = exp

− ∞∑
n=1

2−ns

n

∑
Tnx=x

exp
(
−t
∑n−1

i=0 f(T ix)
)

1− (Tn)′(x)−1

 (5.2)

in the complex function used in Theorem 5.1.5. We will return to this point in §6.
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5.3 Hausdorff dimension

We want to begin by describing a standard approach using thermodynamic formal-

ism. For the purposes of exposition, we will first consider the simplified case that T

is the doubling map. We will then explain the modifications needed for the general

case in a later section.

5.3.1 The pressure

We now introduce some notation and recall some standard results. Let g : [0, 1]→ R
be a continuous function.

Definition 5.3.1. We define the pressure function of g by:

P (g) = lim
n→+∞

1

n
log

2n−1∑
j=0

exp

(
n−1∑
k=0

g

({
2k

2n − 1
j

}))
Remark 5.3.1. The definition is in terms of the periodic points for the doubling map.

It is well known that the 2n periodic points of period n are of the form

j

2n − 1
, j = 0, 1, · · · , 2n − 1.

The summation of the function g around the points of the orbit{
2kj

2n − 1

}
for k = 0, · · · , n− 1

where {·} is the fractional part contributes to the pressure function the weight

n−1∑
k=0

g

({
2k

2n − 1
j

})
.

There is an alternative formulation of the pressure using the variational prin-

ciple:

Lemma 5.3.2. We can write

P (g) = sup
m

{
h(m) +

∫
gdm

}
where the supremum is over all T -invariant probability measures m. Moreover,

providing g is Hölder continuous there is a unique T -invariant probability measure

realising the supremum, and called the equilibrium state for g.
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Remark 5.3.3. We observe that when µ is Lebesgue measure we have that h(µ) =

log 2. Moreover, for either f(x) = sin(2πx) or f(x) = cos(2πx) we have that
∫
fdµ =

0. Thus by the variational principle we have that P (−f) ≥ log 2.

Remark 5.3.4. If we replace g by g + C then we see that P (g + C) = P (g) + C.

In principle, we would like to restrict to functions f for which P (−f) = 0.

We would therefore like to “normalise” the function f by adding a constant so as

to obtain a new function f which indeed has this property. This is achieved in the

next lemma.

Lemma 5.3.5. If define f̄ := f + P (−f) then P (−f̄) = 0.

Proof. This follows easily from the definition of pressure, or from the variational

principle. In particular, P (−f̄) = P (−(f + P (−f)) = P (−f)− P (−f) = 0.

We now trivially see that points for which the Cesaro averages of f converge

to α are precisely those points for which the Cesaro averages of f converge to α =

α+P (−f) for f̄ , i.e., F (f)(α) = F (f̄)(ᾱ). We are particularly interested in the value

of the pressure for the following two examples.

Example 5.3.1 (Cosine function). In the particular case f(x) = cos(2πx) ∈ [−1, 1]

we can explicitly compute P (−f) = 0.8575307 · · · and thus we can replace f(x) by

the normalised function f (x) = f (x) + 0.8575307 · · · . The range of f is

[−0.1424693 · · · , 1.8575307 · · · ].

Example 5.3.2 (Sine function). In the particular case f(x) = sin(2πx) ∈ [−1, 1]

we can explicitly compute P (−f) = 0.8933924 · · · and thus we can replace f(x) by

the normalised function f (x) = f (x) + 0.8933924 · · · . The range of f is

[−0.1066076 · · · , 1.8933924 · · · ].

However, obtaining estimates on the Hausdorff Dimension for f is equivalent

to obtaining estimates on f since we see from the definitions that

dimH(Λ(f)
α ) = dimH(Λ

(f)
α+P (−f)).

We complete this section by recalling an important property of the pressure function.

Lemma 5.3.6. There is an analytic dependence of the pressure function P (g) where

g is an element of the Banach space of Hölder continuous functions (with a fixed

Hölder exponent).
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5.3.2 Pressure and the Hausdorff dimension

The pressure is an important ingredient in the general theory of thermodynamic

formalism. Moreover, it plays an important role in the computation of Hausdorff

dimension of certain sets, as is known from the work of Bowen [12] and Ruelle [43]

(cf. [52] and [16]).

We begin by recasting the pressure function in a more convenient form. Let

us assume that f is not cohomologous to a constant.

Definition 5.3.2. We can consider the function P : R→ R defined by

P (t) := P (−tf) (= P (−tf)− tP (−f))

We can consider the unique equilibrium measure µt for the potential −tf .

Lemma 5.3.7. The function P (t) is analytic with P (0) = log 2 and P (1) = 0.

Moreover,

1. P ′(t) = −
∫
f̄dµt;

2. −P ′(t) obtains all the values in (αmin, αmax); and

3. P (t) is strictly convex and P ′′(t) > 0

Proof. These properties follow easily from those of the pressure. For part (1) we

recall that ∂P (−tf)
∂t = −

∫
fdµt from [34], for example. For part (2) we refer to [3].

For part (3), the convexity is well known since f is not cohomologous to a constant

[34].

The connection between the function P (t) and the Hausdorff Dimension

F (f̄)(α) of the level set is given by the following:

Lemma 5.3.8. Given α let us choose the unique t = tα such that P ′(tα) = −α. We

then have that

F (f̄)(α) =
P (tα) + tαα

log 2
.

We state a connecting Lemma relating the Hausdorff dimension of µt to the

Hausdorff dimension of Λ
(f)
α .

Lemma 5.3.9. dimH (µt) = dimH

(
Λ

(f)
α

)
.

The proof depends on the following general proposition of Pesin and Weiss

[36].
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Proposition 5.3.10. Let (X, ρ) be a complete separable metric space of finite

topological dimension with metric ρ, and let µ be a Borel probability measure. If

Aβ = {x ∈ X | dµ (x) = β} and µ (Aβ) > 0, then dimH Aβ = β.

Proof. By definition dimH (µt) is the infimum of dimH A taken over all subsets A

with µt (A) = 1. But µt satisfies µ
(

Λ
(f)
α

)
= 1. Hence µ

(
Λ

(f)
α

)
> 0. By Proposition

( 5.3.10) dimH

(
Λ

(f)
α

)
= α. On the other hand we have dµt (x) = α for all x ∈ Λ

(f)
α

we conclude that dimH (µt) = α.

We revert back to the proof of Lemma ( 5.3.8).

Proof. This is well explained in the article of Pesin and Weiss [37] and the book of

Pesin [38]. The starting point is that we have P (−tf̄ − P (t)) = 0 for any t. By

Lemma ( 5.3.9) we only need to calculate dimH (µt) . The dimension of the measure

µt satisfies

dimH(µt) :=
h(µt)

log 2

=

∫
(tf̄ + P (t))dµt

log 2

=
P (t)− tP ′(t)

log 2

(5.3)

using the variational principle and part (1) of Lemma 5.3.7. Moreover, for almost

all points with respect to µt we have that

lim
n→+∞

1

n

n−1∑
k=0

f̄(T kx) =

∫
f̄dµt = −P ′(t),

by using part (1) of Lemma 5.3.7 again. In particular, setting t = tα and then

substituting α = −P ′(tα) into ( 5.3) gives the required result.

5.4 Determinants and spectra

To address the problem of computing the we need to compute the pressure and the

derivative of the pressure. We can characterize the pressure using the zeta function

and determinant, which in the context that T is the doubling map takes a simple

form.
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5.4.1 Determinant of a single variable

We begin with a complex function of one variable which is useful in estimating

P (−f).

Definition 5.4.1. We formally define a function (for the doubling map) by

d0(z) = exp

(
−
∞∑
n=1

zn

n

2n

(2n − 1)

2n−1∑
k=0

exp

(
−

n−1∑
m=0

f

({
2mk

2n − 1

})))

where z ∈ C.

In particular, we have the following properties for d0(z) which are useful in

estimating P (−f).

Lemma 5.4.1. We have the following properties:

1. The function d0(z) converges to a non-zero analytic function for |z| < e−P (−f);

2. The value e−P (−f) is a simple zero for d0(z);

3. For any ε > 0, there exists C > 0 such that we can expand

d0(z) = 1 +
∞∑
n=1

anz
n

where |an| ≤ C
(

1
2 + ε

)n2

, for n ≥ 1 and an depends on the values

n⋃
m=1

{
f

({
2k

2m − 1

})
: 0 ≤ k ≤ m− 1

}
; and

4. The function d0(z) has an analytic extension to C as an entire function.

Proof. These results can be deduced from Ruelle’s original article [?]. We briefly

explain the construction in the present setting.

Part 1 follows easily from the definitions of P (−f) and d0(z).

For r > 0 the disk D(r) =
{
z ∈ C : |z − 1

2 | < r
}

and then the inverse

branches T0(z) = z
2 and T1(z) = z+1

2 satisfy T0(D(r)) ∪ T1(D(r)) ⊂ D( r2 + 1
4).

Given ε > 0, we choose r sufficiently large that r
2 + 1

4 <
(

1
2 + ε

2

)
r. Let B be the

Banach space of bounded analytic functions on D with the supremum norm. The

operator L : B → B defined by Lw(z) = e−f(T0z)w(T0z)+e−f(T1z)w(T1z) is a nuclear
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operator since we can expand

Lw(z) =
1

2πi

∫
Γ

Lw(ξ)

z − ξ
dξ =

∞∑
n=0

zn
(

1

2πi

∫
Γ

Lw(ξ)

ξn+1
dξ

)

where Γ = {z ∈ C : |z−1
2 | = r−ε}. In particular, we can write Lw =

∑∞
n=0 λnwnln(w)

where wn ∈ B, ln ∈ B∗ with ‖wn‖B = ‖ln‖B∗ = 1 and |λn| ≤ C
(

1
2 + ε

)n
, for n ≥ 0.

It then follows that for z ∈ C we can write

det(I − zL) = 1 +
∞∑
n=1

zn
∑

k1<···<kn

λk1 · · ·λkn det
(
lni(wnj )

)n
i,j=1

Moreover, det(I − zL) = exp
(
−
∑∞

n=1
zn

n tr(Ln)
)

can be identified with d0(z) by

explicitly computing

tr(Ln) =

2n−1∑
k=0

tr(L(n))
k ) =

2n

2n − 1

2n−1∑
k=0

exp

(
−

n−1∑
m=0

f

({
2mk

2n − 1

}))

by using the Taylor expansion at the periodic point 2mk
2n−1 to compute the eigenvalues

of L(n)
k and thus, by summing, the trace tr(L(n))

k ). This completes the sketch of parts

3 and 4.

Finally, L has a maximal eigenvalue eP (−f) [43][34] from which part 2 follows.

As an immediate consequence we have the following.

Corollary 5.4.2. If z0 > 0 is the largest zero for d0(z) then P (−f) = − log z0

Revisiting our previous examples, we can estimate the following.

Example 5.4.1 (Sine function). If f(x) = sin(2πx) then we can estimate

z0 = 0.409264981980930309113375642482 · · · and

P = − log z0 = 0.893392455017504971692687831819 · · ·

In particular, we generate a sequence pm = − log zm, m ≥ 2, converging to P (− sin(2π·)),
where zm is a zero of the polynomial

d
(m)
0 (z) = 1 +

m∑
n=1

anz
n

given by truncating the expansion for d0(z). These approximations are illustrated in
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Table 1 (a), where we can easily see the super exponential convergence coming from

Lemma 5.4.1(3). The implied level of accuracy is already achieved when m = 9.

m pm
2 0.693147180559945286226763982995
3 0.875751917382645683751718479471
4 0.892841703325299884674848271970
5 0.893392687557898357297858638049
6 0.893392428470504484927516841708
7 0.893392455043265032443855488964
8 0.893392455017498754443749930942
9 0.893392455017504971692687831819
10 0.893392455017504971692687831819
11 0.893392455017504971692687831819
12 0.893392455017504971692687831819

m pm
2 0.815264689983832058217672056344
3 0.867255866395854169148549317470
4 0.857241229966777096294094917539
5 0.857525895896090961656454965123
6 0.857530725856244013804996484396
7 0.857530739837428890304238393583
8 0.857530739821697252089904850436
9 0.857530739821700693781281188421
10 0.857530739821700693781281188421
11 0.857530739821700693781281188421
12 0.857530739821700693781281188421

Table 5.1: (a) Approximations pm to P (− sin(·)); and (b) Approximations pm to
P (− cos(·))

Example 5.4.2 (Cosine function). If f(x) = cos(2πx) then we can estimate

z0 = 0.424208270720691171806748798190 · · · and

P = − log z0 = 0.857530739821700693781281188421 · · ·

We again generate a sequence pm = − log zm, m ≥ 2, converging to P (− cos(2π·)),
where zm is a zero of the polynomial

d
(m)
0 (z) = 1 +

m∑
n=1

anz
n

given by truncating the expansion for d0(z). These approximations are illustrated

in Table 5.1 (b), where we can again see the super exponential convergence coming

from Lemma 5.4.1 (3). The inferred level of accuracy is already achieved when

m = 9.

5.4.2 Determinant of two variables

Once we replace f by f̄ := f+P (−f) = f− log z0 we can consider a second function

depending on two variables. This is the function used in giving an expression for

the Hausdorff dimension.

Definition 5.4.2. We formally define a second complex function (for the doubling
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map) by

d1(z, t) = exp

(
−
∞∑
n=1

zn

n

2n

2n − 1

2n−1∑
k=0

exp

(
−t

n−1∑
m=0

f̄

({
2mk

2n − 1

})))

where z ∈ C and t ∈ R.

This converges provided t is sufficiently large and |z| is sufficiently small. We

observe that when t = 1 this reduces to the previous function, i.e., d0(z) = d1(z, 1).

Remark 5.4.3. In the particular case that T is the doubling map then one can also

write z = 2−s and then we will consider instead the complex function d2(z, t) which

satisfies d2(s, t) = d1(2−s, t), as in ( 5.2).

In particular, we have the following properties for d1(z, t) which are analogous

to those for d0(z).

Lemma 5.4.4. We have the following properties:

1. The function z converges to a non-zero analytic function for |z| < e−P(−tf̄);

2. The value e−P(−tf̄) is a simple zero for d1(z, t);

3. For any ε > 0, there exists C > 0 such that we can expand

d1(z, t) = 1 +

∞∑
n=1

an(t)zn

where |an(t)| ≤ C
(

1
2 + ε

)n2

, for n ≥ 1 and an(t) depends on the values

n⋃
m=1

{
f̄

({
2k

2m − 1

})
: 0 ≤ k ≤ m− 1

}
; and

4. The function d1(z, t) has an analytic extension to C as an entire function.

Proof. These results too can be deduced from Ruelle’s original article [?], as in the

proof of Lemma 5.4.1. The only difference is that we need to replace the operator

L by the operators Lt defined by Ltw(z) = e−tf(T0z)w(T0z) + e−tf(T1z)w(T1z). This

is again a nuclear operator on L and we can identify d1(z, t) = det(I − zLt). The

estimates are very similar to those in Lemma 5.4.1.
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5.5 The first algorithm

We can now recast for formulae for the dimension in Lemma 5.3.8 using Lemma

5.4.1. This leads to two different approaches to the dimension. In this section we

consider the first algorithm, where given a parameter t we can associate α = α(t)

and F (f̄) (α(t)).

5.5.1 The algorithm

Given t we can solve implicitly for d1(z(t), t) = 0. In particular, we can then

differentiate this identity in t and write

∂d1

∂z
(z(t), t)

∂z

∂t
(t) +

∂d1

∂t
(z(t), t) = 0. (5.4)

Since by part (2) of Lemma 5.4.4 we have that z(t) = e−P (t) we can differentiate in

t and write

∂z

∂t
(t) = −z(t)P ′(t) > 0. (5.5)

Comparing ( 5.4) and ( 5.5) we can now write

P ′(t) =
1

z(t)

∂d1
∂t (z(t), t)
∂d1
∂z (z(t), t)

< 0.

In particular, can associate to t the value α = α(t) given by α := −P ′(t). We can

then use Lemma 5.4.4 to write

F (f̄)(α) =
P (t) + tα

log 2
=
− log z(t) + tα

log 2

We can now consider different choices of t. For each value of t in a suitable

range we can associate the corresponding value α = α(t) in the multifractal analysis.

We can similarly associate to t the value F = F (f̄)(α(t)). In particular, given t we

can consider the truncations

d
(m)
1 (z, t) = 1 +

m∑
n=1

an(t)zn,

where we can approximate the zero z(t) by the zero z(m)(t) for d
(m)
1 (z, t). We can

then generate two approximating sequences:
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1. A sequence

αm := − 1

z(m)(t)

∂d
(m)
1
∂t (z(m)(t), t)

∂d
(m)
1
∂z (z(m)(t), t)

, m ≥ 2

converging to α; and

2. A sequence

Fm :=
− log z(m)(t) + tα(m)

log 2
, m ≥ 2

converging to F .

5.5.2 Examples

We can consider our two functions f(x) = cos(2πx) and f(x) = sin(2πx) and

examples for different t. In particular, we will consider the cases t = 0.1 and 1.0 for

m = 2, · · · , 9. We begin with the function f(x) = cos(2πx).

Example 5.5.1 (f(x) = cos(2πx) and t = 0.1). When we choose t = 0.1 we can

estimate α = −0.04643747285064925289788106966 · · · then

F(α) = 0.996733657235050252154451300157 · · · . This approximation can be seen

in Table 5.2.

m Fm αm

2 0.999218785219687877230398953543 -0.00831264815020349434604440830
3 0.996718944852279076229706333834 -0.04657526329466277204005564272
4 0.996733667386981769809040088148 -0.04643738789236173669650042939
5 0.996733657235329806312051914574 -0.04643747284846799772140002460
6 0.996733657235051140332871000282 -0.04643747285064514507268995658
7 0.996733657235050252154451300157 -0.04643747285064936392018353217
8 0.996733657235050252154451300157 -0.04643747285064925289788106966
9 0.996733657235050252154451300157 -0.04643747285064925289788106966

Table 5.2: Approximations when t = 0.1

Example 5.5.2 (f(x) = cos(2πx) and t = 1.0). When we choose t = 1.0 we can

estimate α = −0.27261545269624043452694195366 · · · then

F(α) = 0.843854384076045960227929754183 · · · . This approximation can be seen

in Table 5.3.

We next turn to the function f(x) = sin(2πx).

Example 5.5.3 (f(x) = sin(2πx) and t = 0.1). When we choose t = 0.1 we can

estimate α = −0.04969042542904811288195787711 · · · and
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m Fm αm

2 0.784291089580260947222711820359 -0.27163553250298655417083182328
3 0.820382435542054921917554111133 -0.29861009421897766191733580854
4 0.845225458720281763724813117733 -0.27137558631732749958587191941
5 0.843897526688114574255905608879 -0.27258070459071259694638911242
6 0.843854558785547714805375107971 -0.27261531763138413531066817086
7 0.843854383791804329995045463875 -0.27261545290898747673224988830
8 0.843854384076114016899339276279 -0.27261545269618747688866733370
9 0.843854384076035524131498277711 -0.27261545269624520848594784184
10 0.843854384076045405116417441604 -0.27261545269624087861615180373
11 0.843854384076045960227929754183 -0.27261545269624043452694195366
12 0.843854384076045960227929754183 -0.27261545269624043452694195366

Table 5.3: Approximations when t = 1.0

F(α) = 0.996426724035268218671035356238 · · · . This approximation can be seen

in Table 5.4.

m Fm αm

2 0.999999999999999888977697537480 0.0
3 0.996444380964240594700243036641 -0.04952689509082119911909103394
4 0.996426736287734260422155330161 -0.04969032340952528326027959338
5 0.996426724035267330492615656112 -0.04969042542905410808629085295
6 0.996426724035269106849455056363 -0.04969042542904245074453228881
7 0.996426724035268440715640281269 -0.04969042542904711368123571447
8 0.996426724035268218671035356238 -0.04969042542904811288195787711
9 0.996426724035268218671035356238 -0.04969042542904811288195787711

Table 5.4: Approximations when t = 0.1

Example 5.5.4 (f(x) = sin(2πx) and t = 1.0). When we choose t = 1.0 we can

estimate α = −0.334519887980170 · · · then F(α) = 0.806282680953646 · · · . This

approximation can be seen in Table 5.5.

5.6 The second algorithm

In the second algorithm we assume that we are given suitable α and then we want

to solve for F (f̄)(α).
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m Fm αm

2 1.00000000000000000000000000000 0.0
3 0.851206720640423020185494351608 -0.28574037889705949933016881914
4 0.808856384704673581076406208012 -0.33218518078934489157205689480
5 0.806280457685890183938681730069 -0.33452166157234086707461528931
6 0.806283011667093041374698714208 -0.33451963220007796540045319489
7 0.806282680496726800178919347672 -0.33451988832264367701441187819
8 0.806282680953787633804097367829 -0.33451988798006671 022022828765
9 0.806282680953644304011618260120 -0.33451988798017207038526521501
10 0.806282680953646857524574897980 -0.33451988798017073811763566482
11 0.806282680953646968546877360495 -0.33451988798017062709533320231
12 0.806282680953646857524574897980 -0.33451988798017073811763566482

Table 5.5: Approximations when t = 1.0
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Figure 5.3: Superimposed plots for cos(2πx) and sin(2πx) for (i) F(t) as a function
of t; and (ii) α(t) as a function of t.

5.6.1 The algorithm

Given α we can define

P (z, t) = d1(z, t) and

Q(z, t) =
∂d1

∂z
(z, t)zα+

∂d1

∂t
(z, t)

The following simple result gives the Hausdorff Dimension of the level set.

Lemma 5.6.1. Given the solution (zα, tα) ∈ R2 for

P (zα, tα) = Q(zα, tα) = 0

we can write

F (f̄)(α) =
− log zα + tαα

log 2
.

Proof. By part (2) of Lemma 5.4.1, the identity P (zα, tα) = 0 = d1(zα, tα) ensures
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that zα = e−P (tα). In particular, by taking logarithms we can write

P (tα) = − log zα. (5.6)

Locally we have an implicit solution z(t) for d1(z(t), t) = 0 with z(tα) = zα. In

particular, given t we have by part (2) of Lemma 5.4.4 that z(t) = e−P (t). Differen-

tiating this identity with respect to t at tα gives:

∂z

∂t
(tα) = −zαP ′(tα) > 0. (5.7)

Differentiating the identity d1(z(t), t) = 0 with respect to t at tα we can write:

∂d1

∂z
(zα, tα)

∂z

∂t
(tα) +

∂d1

∂t
(zα, tα) = 0. (5.8)

Comparing ( 5.7) and ( 5.8) gives:

∂d1

∂z
(zα, tα)zαα+

∂d1

∂t
(z(t), tα) = Q(zα, tα) = 0, (5.9)

providing α = −P ′(tα). Finally, by Lemma 5.3.8 and ( 5.6) we have that

F (f̄)(α) =
P (tα) + tαα

log 2
=
− log zα + tαα

log 2

as required.

We can consider the truncations of the Taylor series in z for P (z, t) and

Q(z, t).

Definition 5.6.1. Given α and m ≥ 1 we can define

P (m)(z, t) =

m∑
n=1

an(t)zn and

Q(m)
α (z, t) =

m∑
n=1

bαn(t)zn

where bαn(t) = an(t)nα + ∂an
∂t (t) (corresponding to the terms of the Taylor series

expansion for ( 5.9)).

We can then approximate the solution (zα, tα) for P (z, t) = Q(z, t) = 0 by

a solution (z
(m)
α , t

(m)
α ) for P (m)(z, t) = Q(m)(z, t) = 0. We can then generate an
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approximating sequence

Fm :=
− log z(m) + t(m)α

log 2
, m ≥ 2,

converging to F (f̄)(α).

5.6.2 Examples

We will again concentrate on the two basic functions f(x) = cos(2πx) and f(x) =

sin(2πx) We will consider the cases α = 0.1 and 0.25 for m = 2, · · · , 12.

We begin with the function f(x) = cos(2πx).

Example 5.6.1 (f(x) = cos(2πx) and α = 0.1). If we let α = 0.1 then we see that

F(0.1) = 0.986826533447210 · · · . The approximations can be seen in Table 5.6(a).

Example 5.6.2 (f(x) = cos(2πx) and α = 0.25). If we let α = 0.25 then we see

that F(0.25) = 0.92613854650709 · · · . The approximations can be seen in Table 5.6

(b).

Example 5.6.3 (f(x) = cos(2πx) and α = 0.5). If we let α = 0.5 then we see that

F(0.5) = 0.73988277232849 · · · . The approximations can be seen in Table 5.7.

m Fm
3 0.98689768234224228168782078886
4 0.98682643801924750477021109379
5 0.98682653345543771433541984014
6 0.98682653344721068897338782873
7 0.98682653344721057084995889897
8 0.98682653344721001358904053031
9 0.98682653344721089386354338843
10 0.98682653344721040539922453469
11 0.98682653344721047612613835983
12 0.98682653344721013507321708529

m Fm
3 0.92794105886194732473057235603
4 0.92612628563107682553298155683
5 0.92613855638089299462695116826
6 0.92613854650484694052564962604
7 0.92613854650710013162835988062
8 0.92613854650709843282271627189
9 0.92613854650709765562223538437
10 0.92613854650709812219678862622
11 0.92613854650709837436195088373
12 0.92613854650709750369835003272

Table 5.6: Approximations when: (a) α = 0.1 and α = 0.25
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m Fm
3 0.75563703473136142018614163259
4 0.73952399234525433961288453076
5 0.73988403788470085510734083708
6 0.73988277093889877336055887469
7 0.73988277232873744452984157569
8 0.73988277232849432938865800530
9 0.73988277232849558424408253207
10 0.73988277232849866572825436467
11 0.73988277232849862849718837786
12 0.73988277232849810681377573856

Table 5.7: Approximations when: α = 0.5

We now consider the function f(x) = sin(2πx).

Example 5.6.4 (f(x) = sin(2πx) and α = 0.1). If we let α = 0.1 then we see that

F(0.1) = 0.985388104329581 · · · . The approximations can be seen in Table 5.8 (a).

Example 5.6.5 (f(x) = sin(2πx) and α = 0.25). If we let α = 0.25 then we see

that F(0.25) = 0.90143475104318 · · · . The approximations can be seen in Table 5.8

(b).

Example 5.6.6 (f(x) = sin(2πx) and α = 0.45). If we let α = 0.45 then we see

that F(0.25) = 0.512808947 · · · . The approximations can be seen in Table 5.9.

m Fm
3 0.98528409921769489544983732690
4 0.98538792910437795495127142083
5 0.98538810432976287379448653780
6 0.98538810432958044919196928747
7 0.98538810432958056746737725478
8 0.98538810432958068073480286105
9 0.98538810432958165767639685827
10 0.98538810432958101283614678557
11 0.98538810432958118930599334707

m Fm
3 0.89451246656456310702542523567
4 0.90136138862288395497325369619
5 0.90143475603409668847921458858
6 0.90143475083506846869909133680
7 0.90143475104321903950257055274
8 0.90143475104318901948902623184
9 0.90143475104319124889630543175
10 0.90143475104318781565644510264
11 0.90143475104318749821613891644

Table 5.8: Approximations when: (a) α = 0.1 and (b) α = 0.25
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m Fm
3 0.1812229601356249375477266313
4 0.4840947228196257828620133876
5 0.5128737834988011300474102274
6 0.5123408041743669259746629103
7 0.5128359065784551470632610460
8 0.5128085919945035710231220861
9 0.5128089464168128584440899161
10 0.5128089470851906665226114336
11 0.5128089471004681809945847104

Table 5.9: Approximations when: α = 0.45
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Figure 5.4: Plots of F(α) as a function of α for: (a) sin(2πx); and (b) cos(2πx)

5.7 Speed of approximation

We can consider the approximation using some simple estimates. We can approxi-

mate d1(z, t) by the complex function

d
(m)
1 (z, t) = 1 +

m∑
n=1

an(t)zn,

for m ≥ 2, and observe that by the bounds in Lemma 5.4.1 (3), we have

d1(z, t)− d(N)
1 (z, t) = O

((
1

2
+ ε

)m2
)
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on any compact region. Moreover, by a simple application of Cauchy’s theorem we

can bound the derivatives

∂d1(z, t)

∂z
− ∂d

(m)
1 (z, t)

∂z
= O

((
1

2
+ ε

)m2
)

and

∂d1(z, t)

∂t
− ∂d

(m)
1 (z, t)

∂t
= O

((
1

2
+ ε

)m2
)
.

We now have the following result.

Proposition 5.7.1. Given solutions (z
(m)
α , t(m)) for

Q(m)
α (z, t) = P (m)(z, t) = 0.

we can then write

F(α) =
log z

(m)
α

log 2
+
t
(m)
α α

log 2
+O

((
1

2
+ ε

)m2
)

Remark 5.7.2. Although Proposition 5.7.1 gives that the error term tends to zero

at the same super exponential rate, the inferred constant in the Landau O term

may vary. From the proof of Lemma 5.4.1 we can get bounds of the form |an| ≤
Cn(1

2 + 1
4r )n

2/2 and Cn ≤ nn/2
(

sup|z− 1
2
|<r |e−tf(z)|

)n
, for any r > 1

2 . Thus, for |t|
larger the estimate on C, and consequently for an, may be worse. In particular,

the approximation to d1(z, t) by truncating to a given number of terms may give a

worse estimate.

In the explicit case that f(z) = cos(2πz) (or f(z) = sin(2πz)) we can bound

|f̄(z)| ≤ 1
2

(
e2πr + e−2πr

)
. Thus we can bound the nth term in d1(e−P (−tf̄), t) by

nn/2
(
e−P (−tf̄) exp

(
e2πr + e−2πr

))n(1

2
+

1

4r

)n2/2

(5.10)

This explains the observed variation in the accuracy in the numerical approximations

in the examples and can be quantified with a little extra work (to optimise the choice

of r > 0 so as to minimise the contributions from the bound ( 5.10) for n ≥ m, for

a given m).
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5.8 Generalizations

In this final section, we will indicate how these results can be generalised and applied

to other problems.

5.8.1 The case of general expanding interval maps

Thus far, we have concentrated on the simpler case that the underlying transfor-

mation is the doubling map. Let us now outline the modifications for the case of a

general Cω expanding Markov map T .

Definition 5.8.1. We can consider the function Q : R→ R defined implicitly by

P (−tf −Q(t) log |T ′|) = 0
(
= P (−tf −Q(t) log |T ′|)− tP (−f)

)
Remark 5.8.1. It is well known that we always have P (− log |T ′|) = 0.

We can consider the unique equilibrium measure mt for the potential −tf̄ −
Q(t) log |T ′|.

Lemma 5.8.2. The function Q(t) is analytic with Q(0) = 1 and Q(1) = 0. More-

over,

1. Q′(t) = −
∫
fdmt∫

log |T ′|dmt ;

2. −Q′(t) attains all the values in (αmin, αmax); and

3. Q′′(t) > 0

Proof. These properties are easily checked. In particular, Part (1) follows from the

implicit function theorem.

The connection between the function P2(t) and the Hausdorff Dimension

F(α) of the level set is given by the following:

Theorem 5.8.3. Given α let us choose the unique t = tα such that Q′(tα) = −α.

We then have that

F (f̄)(α) = Q(tα) + tαα.

Proof. This is well explained in the article of Pesin and Weiss [37] and the book of

Pesin [38]. We can write

Q′(tα) = −
∂P (−tαf−u log |T ′|)

∂u |u=Q(tα)

∂P (−tf−Q(tα) log |T ′|)
∂t |t=tα

= −
∫
fdmα∫

log |T ′|dmtα

= −α (5.11)
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for t = tα. The essential idea is that for any t we have from the variational principle

that

P (−tf −Q(t) log |T ′|) = 0 = h(mt) +

∫
(−tf −Q(t) log |T ′|)dmt (5.12)

and that the dimension of the measure mt satisfies

dimH(mt) :=
h(mt)∫

log |T ′|dmt

=

∫
(tf +Q(t) log |T ′|)dmt∫

log |T ′|dmt

= Q(t) + t

∫
fdmt∫

log |T ′|dmt

= Q(t) + tα

using ( 5.11) and ( 5.12) and Part (1) of Lemma 5.8.2.

We can define a complex function by:

d0(z) = exp

− ∞∑
n=1

zn

n

∑
Tnx=x

exp
(
−
∑n−1

i=0 f(T ix)
)

1− (Tn)′(x)−1


which converges for |z| sufficiently small. In fact, when T and f are Cω it follows

by work of Ruelle (after Grothendieck) that d0(z) is entire in C2. There is a zero at

z0 = e−P (−f) and we can replace f by f = f + P (−f) = f − log z0.

As explained in the introduction, we can define a complex function by:

d2(s, t) = exp

− ∞∑
n=1

1

n

∑
Tnx=x

exp
(
−t
∑n−1

i=0 f(T ix)
)
|(Tn)′(x)|−s

1− (Tn)′(x)−1


which converges for s, t sufficiently large. In fact, when T and f are Cω it follows

by work of Ruelle (after Grothendieck) that d2(s, t) is entire in C2.

Given α there is t such that there is zero at (s(t), t), i.e., d2(s(t), t) = 0.

Using the Implicit Function Theorem we can write

∂d2(sα, t)

∂t
|t=tα +

∂d2(s, tα)

∂t
|s=sα

∂s

∂t
= 0
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and we want to solve (sα, tα) such that

∂d2(sα, t)

∂t
|t=tα − α

∂d2(s, tα)

∂s
|s=sα = 0

In particular, we can write that

F (f̄)(α) = sα + αtα.

Example 5.8.1. We can consider the simple example T : [0, 1]→ [0, 1] given by

T (x) = 2x+
1

4π
sin(2πx)

and the function f(x) = sin(2πx).

5.8.2 Pointwise dimension of measures

There is a further and natural generalisation of the multifractal spectrum can be

extended to the case that we look at measures and pairs of functions, following the

full version of the analysis of Pesin and Weiss in [37], [38].

The previous ideas are based on the the different possible limits of the

Birkhoff averages 1
N

∑∞
n=1 f̄(Tnx) as n → +∞. The distinction now is that we

fix a reference measure µ and consider instead the limits of

logµ(B(x, r))

log r

as r → +∞. Replacing the Birkhoff ergodic theorem we want the following limiting

result associated to measures

Definition 5.8.2. We say that µ has pointwise dimension α if for almost all (µ)

x ∈ X we have that

dµ(x) := lim
r→0

logµ(B(x, r))

log r
= α

.

Let us assume that µ is a Gibbs measure for a Hölder continuous function

ψ. We can assume without loss of generality that P (−ψ) = 0.

Proposition 5.8.4. If µ is a Gibbs measure for a Hölder continuous function ψ

then there exists α = αµ such that for almost all (µ) x ∈ X we have that dµ(x) = α.

Assume that we have a real value α and that we want to choose a value q
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such that

α =

∫
ψdmq∫

log |T ′|dmq

where t(q) satisfies P (−t(q) log |T ′|−qψ) = 0 and mq is the unique equilibrium state

for −t(q) log |T ′| − qψ. In particular, if

Λα = {x : dµ(z) = α}

then we see that for a.e.(mq), x ∈ Λα we have that

dµ(x) = lim
n→+∞

logµ(In(x))

log |(Tn)′(x)|
=

∫
ψdmq∫

log |T ′|dmq
= α

where In(x) is the dyadic interval containing x, by using the Birkhoff ergodic theorem

for µq.

In particular, we see that mq(Λα) = 1 and then we deduce that dimH(Λα) ≥
dimH(mq). In fact, a simple estimate shows that there is an equality: dimH(Λα) =

dimH(mq). Moreover, we know that:

Lemma 5.8.5. dimH(mq) = t(q) + qα.

Proof. We know that

P (−t(q) log |T ′| − qψ) = 0 = h(mq) +

∫
(−t(q) log |T ′| − qψ)dmq

which allows us to rewrite

dimH(mq) =
h(mq)∫

log |T ′|dmq
= t(q) + qα.

Example 5.8.2. A trivial example would be where we took the measure µ to be

the (p, 1− p)-Bernoulli measure. In this case we let T (x) = 2x(mod 1) and see that

φ(x) =

log p if 0 ≤ x ≤ 1
2

log(1− p) if 1
2 ≤ x ≤ 1

5.8.3 Other examples of conformal repellers

Finally, we briefly mention other familiar examples of repellers to which our results

apply.
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Hyperbolic Julia sets

We let T : Ĉ → Ĉ be a rational map. We define the Julia set to be J to be the

closure of the the periodic points. We say that T : J → J is a hyperbolic rational

map if there exists c > 1 such that |T ′(z)| > c, for all z ∈ J [52]. We can apply the

algorithm(s) to T : J → J and any real analytic map f : J → R.

Figure 5.5: Julia set for fc (z) = z2 + c, for c = −1

Schottky Groups

Let C1, · · · , Ck, Ck+1, · · · , C2k be circles in C with disjoint interiors D1, · · · , D2k.

We can let γi : Ĉ→ Ĉ be a linear fractional transformation which maps Ci to Ck+i,

for i = 1, · · · , k. A Schottky group Γ is generated by γ±1
1 , · · · , γ±1

k and we denote

by Λ the associated Limit set (i.e., the set of accumulation points for the orbits γz0,

g ∈ Γ, for any fixed reference point z0).

We can consider the transformation T : Λ→ Λ defined by

T (z) =

γi(z) if z ∈ Di

γ−1
i (z) if z ∈ Dk+i

for i = 1, · · · , k. There is also associated to this a natural conformal measure µ such

that µ ◦ T = |T ′|δµ, where δ is the Hausdorff Dimension of Λ. It is the possible to

apply the algorithm(s) for T : Λ → Λ and any real analytic function f : Λ → R. It

is also natural to apply the results on point wise dimension multifractal spectrum

to the measure µ.

Remark 5.8.6. In the case of non-conformal expanding maps it is possible to recover

many of these results by replacing the Hausdorff dimension of the sets Λfα by their
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Figure 5.6: A double cusp Fuchsian group

entropy (which is defined in terms of covers by dynamical Bowen-balls, rather than

the standard definition). We have also considered only discrete transformations.

However, for real analytic (semi-)flows many of the results can be modified by using

Markov sections.

5.9 Thermodynamic Formalism

Following the approach of Pesin and Weiss, we can characterise the dimension

F(α) = dimH(Λα) as follows.

Definition 5.9.1. Given q we can consider the function qf − β(q) log |T ′| where

β(q) is chosen to satisfy P (qf − β(q) log |T ′|) = 0.

We can consider the unique equilibrium measure µ for the potential qf −
β(q) log |T ′|, i.e., h(µ) +

∫
(qf − β(q) log |T ′|)dµ = 0.
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We can write

∂d(z, q)

∂z
=
∞∑
n=1

an(q)nzn−1 and
∂d(z, q)

∂q
=
∞∑
n=1

∂an(q)

∂q
zn

and then substituting these expansions into (1) we have

∞∑
n=1

(
an(qα)n(α log 2) +

∂an(q)

∂q
|q=qα

)
︸ ︷︷ ︸

=:bαn(t)

enP (−qαf) = 0. (2)

Lemma 5.9.1. The function β(q) is analytic and strictly convex. Moreover,

1. β′(q) =
∫
fdµ∫

log |T ′|dµ ;

2. −β′(q) obtains all the values in (αmin, αmax); and

3. β′′(q) > 0

Lemma 5.9.2. We have that F(α) = h(µ)∫
|T ′|dµ = β(q) + qα.

We can specialise to the case of the doubling map, where log |T ′| = log 2.

Lemma 5.9.3. In the particular case of the doubling map, we can write β′(q) =
1

log 2
∂P
∂q (−qf).

This leads to the following.

Example 5.9.1. In the case of the doubling map: Given α

1. Find q such that ∂P
∂q (−qf) = α log 2; and

2. Estimate F(α) = β(q) + qα = P (−qf)
log 2 + qα.

5.10 Computing the spectra

To address the original question of computing the we need to compute the pressure

and the derivative of the pressure. We can characterize the pressure using the zeta

function and determinant.

Definition 5.10.1. We formally define a complex function by

d(z, q) = exp

(
−
∞∑
n=1

zn

n

2n−1∑
k=0

exp

(
−q

n∑
m=1

f

({
2mk

2n − 1

})))

z ∈ C.
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In particular, we have the following properties for d(z, q).

Theorem 5.10.1. We have the following properties:

1. The function z converges to a non-zero analytic function for |z| < e−P (−qf);

2. The value e−P (−qf) is a simple zero for d(z, q); and

3. For any ε > 0, there exists C > 0 such that we can expand

d(z, q) = 1 +

∞∑
n=1

an(q)zn

where |an(q)| ≤ C
(

1
2 + ε

)n2

, for n ≥ 1 and an(q) depends on the values{
f

({
2k

2m − 1

})
: 0 ≤ k ≤ m− 1,m ≤ n

}
;

and

4. The function d(z, q) has an analytic extension to C as an entire function.

We can use the implicit function theorem to write

−∂d(e−P (qf), q)

∂z

∂P (−qf)

∂q︸ ︷︷ ︸
=α log 2

e−P (−qf) +
∂d(e−P (−qf), q)

∂q
= 0. (1)

We can write

∂d(z, q)

∂z
= 1 +

∞∑
n=1

an(q)nzn−1 and
∂d(z, q)

∂q
= 1 +

∞∑
n=1

∂an(q)

∂q
zn

then we can substitute into (1) to write

∞∑
n=1

(an(t)nα log 2− a′n(t))enP (tf)︸ ︷︷ ︸
=:bαn(t)

= 0. (2)

Definition 5.10.2. Given α we can define

Qα(z, t) =

∞∑
n=1

bαn(t)zn and P (z, t) =

∞∑
n=1

an(t)zn

We can deduce the following:
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Lemma 5.10.2. Given α, the solution (z0, t0) for Qα(z, t) = P (z, t) = 0, value of

t satisfies ∂P (−qf)
∂q |q=t = α. In particular,

F(α) =
P (−qf)

log 2
+ t0α =

log z0

log 2
+ t0α.

In order to to this we can approximate d(z) by the complex function

dN (z, q) = 1 +

N∑
n=1

an(q)zn

and observe that d(z, q)− dN (z, q) = O
((

1
2 + ε

)N2
)

, on any compact region.

We can write

∂dN (z, q)

∂z
= 1 +

N∑
n=1

an(q)nzn−1 and
∂dN (z, q)

∂q
= 1 +

N∑
n=1

∂an(q)

∂q
zn

then

∂d(z, q)

∂z
−∂dN (z, q)

∂z
= O

((
1

2
+ ε

)N2
)

and
∂d(z, q)

∂q
−∂dN (z, q)

∂q
= O

((
1

2
+ ε

)N2
)
.

In particular, we now proceed as follows.

Definition 5.10.3. Given α and N we can define

Q(N)
α (z, t) =

N∑
n=1

bαn(t)zn and P (N)(z, t) =
N∑
n=1

an(t)zn

• we want to solve for (zN , tN ) such that

Q(N)
α (z, t) = P (N)(z, t) = 0.

• In particular, we can then write

F(α) =
P (−qf)

log 2
+ t0α =

log z0

log 2
+ t0α.

In particular, z(qN ) = z(q) +O
((

1
2 + ε

)N2
)

and tN = t+O
((

1
2 + ε

)N2
)
.

• We estimate F(α) = P (−qNf)
log 2 + qNα+O

((
1
2 + ε

)N2
)
.

There is an implicit characterization of the exact value of the dimension
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dimH(Λ
(f)
α ) using a function defined in terms of periodic points. For simplicity of

exposition, let us

d1(z, t) = exp

− ∞∑
n=1

zn

n

∑
Tnx=x

exp
(
−t
∑n−1

i=0 f(T ix)
)
|(Tn)′(x)|−q

1− |(Tn)′(x)|−1


which converges for t sufficiently large and |z| sufficiently small. In fact, when T

and f are Cω it follows by work of Ruelle (after Grothendieck) that d(z, t) is entire

in C2.

Theorem 5.10.3. Assume for simplicity that d(1, 1) = 0 and T is the doubling

map. Given α ∈ (α−, α+) there is a solution (zα, qα) ∈ R2 to the equations

d1(t, q) = 0 and

∂d1(t, qα)

∂z
|t=zα − α

∂d1(tα, q)

∂q
|q=qα = 0

and then we can write

dimH(Λ(f)
α ) = qα + tαα
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Chapter 6

Further generalisations and

projects

Finally there are several possible further investigations to be carried out in the light

of the main results of Chapter 6.

• Can the multifractal results be generalised to invertible maps - for example,

the perturbations of Arnold CAT map on the torus ( T2)?

Consider the matrix

A =

(
2 1

1 1

)
,

and the 2 - torus T2 = R2/Z2, where any two points (x1, y1) and (x2, y2) ∈ R2

belong to the same class if there exists an integer vector (a, b) ∈ Z2 such that(
x1

y1

)
+

(
n

m

)
=

(
x2

y2

)
.

The matrix A induces an automorphism of the torus T2 and we denote by

TA : T2 → T2 given by,

TA (x, y) = (2x+ y, x+ y) mod 1.

• Can the multifractal results be generalised to conformal maps in higher di-

mensions - for example Julia sets in higher dimension?

At the risk of losing conformality in higher dimension the following theorem
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by Jenkinson and Pollicott in [25] gives a motivation to apply the main result

for these Julia sets.

Theorem 6.0.4. Let X ⊂ M be a locally maximal compact invariant set for

a conformal real-analytic hyperbolic Markov map T : X → X, where M is a

Cω manifold of dimension d ∈ N. For each N ≥ 1 we can explicitly define a

function ∆N , using only the derivatives DTn (z) evaluated at period-n points

z, for 1 ≤ n ≤ N, and associate C > 0 and 0 < δ < 1 such that if sN is the

largest real zero of ∆N then

|dimH Λ− sN | ≤ CδN
1+1/d

.

• Can the multifractal results be generalised to non-conformal dynamical sys-

tems or repellers but ” regular examples” such as the Bedford-McMullen and

related problems?

The one generalisation of the Cantor set on the interval is that of Bedford-

McMullen construction. Consider two nonzero positive integers n ≥ m. We

define the limit set resulting from the following construction,

R =

{( ∞∑
k=1

xk
nk
,

∞∑
k=1

yk
mk

)
: (xk, yk) ∈ R where 0 ≤ xk < n and 0 ≤ yk < m

}
.

This follows the presentations of Bedford in his thesis [6] , McMullen in the

paper [30], Sierpinski in [46] and Mandelbrot’s book [27] on Sierpinski carpets.
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