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Common Macro Factors and Currency Premia

Abstract

We study the role of domestic and global factors on payoffs of portfolios

mimicking carry, dollar carry and momentum strategies. Using factors

summarizing large datasets of macroeconomic and financial variables, we find

that global equity market factors are predictive for carry trade returns, while U.S.

inflation and consumption variables drive dollar carry trade payoffs, momentum

returns are predominantly driven by U.S. inflation factors, and global factors

capture the countercyclical nature of currency premia. We also find predictability

in the exchange rate component of each strategy and demonstrate strong economic

value to risk-averse investors with mean-variance preferences, regardless of base

currency.

Keywords: Foreign exchange; carry trade; momentum; factor analysis; forward-premium puzzle.

JEL Classification: F31, G11, G15.
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I. Introduction

The paper investigates the domestic and global drivers of currency premia. To do that, three

widely used currency investment strategies are examined, namely the carry trade strategy (i.e.

going long in high-interest rate currencies and short in low-interest rate currencies), a dollar

carry trade strategy (i.e. a carry trade strategy relative to the U.S. dollar) and a momentum

strategy (i.e. buy and sell currencies in the forward market that were worth buying or selling in a

recent time period). All of these strategies exploit deviations from the well-known uncovered

interest rate parity (UIP) condition according to which, under risk neutrality and rational

expectations, the forward exchange rate should be an optimal predictor of the future spot

exchange rate. However, many studies (e.g., Bilson (1981), Fama (1984), Froot and Thaler

(1990)) document the empirical rejection of UIP, the so-called ‘forward premium puzzle’ (Froot

and Thaler (1990), Taylor (1995), Sarno and Taylor (2003)), and so the apparent profitability of

carry trade and momentum strategies has captured the attention of many academics and

practitioners. A particularly noteworthy feature of these strategies is the presence of downside

risk, as witnessed by the strong appreciation of low interest rate currencies under periods of

market stress.

While a basic currency carry trade involves taking a short position in low interest rate

(funding) currencies and a corresponding long position in high interest rate (investment)

currencies, Lustig, Roussanov, and Verdelhan (2014) study a slightly different version of the

carry trade - the dollar carry trade - where investors short the dollar when the average short-term

interest rate of foreign currencies is greater than the U.S. short-term interest rate and go long in

the dollar otherwise. These authors show that this strategy is driven by the U.S. business cycle,

since investors tend to sell the dollar just before the start of NBER-dated recessions and purchase
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the dollar after the end of the recession. A momentum strategy, as noted above, is based on the

assumption that currencies that were appreciating well in the past will render higher excess

returns in the future in comparison to currencies with poor past performances; in other words,

investors buy forward foreign currency units that were worth buying forward in a recent time

period.

Despite the fact that a lot of research has been carried out in recent years on carry and

momentum strategies, it is still questionable whether the macroeconomic environment can

explain the average time-series profitability of those strategies. If so, what is the statistical and

economic value of this finding for an investor and how can she protect herself from erratic

macroeconomic conditions? Consequently, the fundamental questions that drive our analysis are,

first, whether the macroeconomic environment plays an economically significant role in

determining currency excess returns and exchange rate changes, and, second, which

macroeconomic or financial variables are driving this phenomenon. Answers to both issues

render crucial implications for our understanding of the forward premium puzzle.

The difficulty of finding a strong empirical link between macroeconomic fundamentals and

currency premia has also been documented (see, e.g., Lustig et al. (2014)), and may be explained

in various ways. First, it may be argued that many macroeconomic variables are imperfectly

measured and that a small number of variables cannot capture the high variability of exchange

rates (Flood and Rose (1995)). Thus, the first principal component of a panel of many different

proxies of the same macro variable may be more informative in this respect than one official

measure of the macro variable itself. Interestingly, Lustig et al. (2014) point out that macro

variables exhibit low predictive power per se, but their common movements could contain

important information for carry trades. Second, carry trade and momentum strategies exploit
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disparities observed in global macroeconomic conditions and especially between debtor and

creditor economies (Plantin and Shin (2011), Della Corte, Riddiough and Sarno (2012)).

Therefore, dynamic factor analysis is a valid methodology to employ in this context as it gives us

the opportunity to confine those disparities in a few unobserved variables.

Taking the U.S. dollar-based investor’s viewpoint, we apply dynamic factor analysis in order

to obtain U.S. (domestic) and global (mainly from G10 countries) factors that capture the

variability of a large panel of macroeconomic and financial variables. This methodology has

extensively been used in different strands of the literature. In particular, Stock and Watson

(2002a), (2002b), (2004), (2006) show that dynamic factor models applied to large datasets can

enhance the forecasting power of many macroeconomic variables. Ludvigson and Ng (2009),

(2010) find that U.S. static factors have strong predictive power for future U.S. excess

government bond returns over and above the information contained in the Cochrane and

Piazzessi (2005) predictor. They also show that static and dynamic factors exhibit similar

predictive power. Bernanke and Boivin (2003) and Bernanke, Boivin, and Eliasz (2005) arrive at

a similar conclusion regarding the forecastability of static and dynamic factors in their analysis

of Federal Reserve policy in a “data-rich environment”. In the foreign exchange literature, Engel,

Mark and West (2012) develop static factors from a panel of exchange rates and employ the

idiosyncratic deviations from the factors as a predictor of exchange rates, although their findings

with regard to predictability are mixed.

A number of recent contributions in the research literature focus on the cross-sectional

variation of carry trade and momentum strategies. In particular, Lustig, Roussanov and

Verdelhan (2011) develop a factor model that resembles the Fama and French (1993) model for

the foreign exchange market; they find that a carry trade factor that goes long a basket of high
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interest rate currencies and short a basket of low interest rate currencies, together with a dollar

factor that is defined as the average return across portfolios each month, can price the cross-

section of currency returns. In the same spirit, Menkhoff, Sarno, Schmeling, and Schrimpf

(2012a) introduce a volatility risk factor and Mancini, Ronaldo and Wrampelmeier (2013) a

liquidity factor that explain most of the cross-sectional variation in monthly carry trade returns.

Similarly, Menkhoff, Sarno, Schmeling, and Schrimpf (2012b) examine a momentum strategy in

a cross-sectional framework. We deviate from these studies, as we focus on the time-series

variability of carry trades.

Our in-sample empirical results indicate that carry trade returns are more exposed to the

global economy rather than to U.S. economic conditions. In particular, we find strong evidence

of predictability in global factors that capture the macroeconomy of the G7 countries as well as

the global stock market. This finding might be related to the exit strategies in the G7 economies

during the financial crisis and the tendency of the domestic currency to depreciate when the

home equity return exceeds its foreign counterpart (Hau and Rey (2006)). Regarding the

domestic economy, we find that real and inflation factors are highly significant. The dollar carry

trade is mainly driven by domestic variables because, as mentioned previously, investors focus

more on the U.S. economy when they form expectations with regard to the dollar carry trade.

Thus, global factors do not seem to provide useful information, but U.S. inflation and

consumption factors have strong predictive power with respect to dollar carry returns.

Momentum returns are mainly driven by U.S. inflation factors. We also find predictable

components in exchange rate returns gathered from the aforementioned strategies. The

forecasting ability of the factors is also verified by out-of-sample tests. Moreover, combination

forecasts emphasize the out-of-sample performance of the individual models and provide an
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overall improvement over the individual predictions.

We also consider a trading rule based on our forecasts in order to evaluate the economic

significance of our results. We find an increase in Sharpe ratios and an improvement in the

skewness of the payoffs for all three strategies as well as for a mixed strategy that invests only on

strategies that are profitable according to signals obtained from our forecasts. Then, we

investigate whether a risk-averse investor with mean-variance preferences would acquire

economic value from the use of the factors. To do that, we estimate the certainty equivalent

return gain and find that a U.S. dollar-based investor would be willing to pay a management fee

in order to benefit from the predictive regression forecasts.

As a point of comparison, our analysis takes into consideration other factors in the literature,

such as the Bakshi and Panayotov (2013) predictors or average forward discounts in order to

estimate conditional predictive regressions of the common factors. We find that our factors can

forecast currency excess returns over and above commodity, volatility, and liquidity factors as

well as average forward discounts. We also test whether our results are due to data snooping

(White (2000)) and perform various robustness checks. In addition, while for ease of exposition

we largely focus on the strategies viewed from a U.S. dollar-based investor’s perspective, we

also demonstrate that our results are robust to using a range of alternative base currencies.

The remainder of the paper is set out as follows. The carry trade, dollar carry trade and

momentum strategies are presented in Section 2. In Section 3 we describe dynamic factor

analysis while in Section 4 we provide a brief description of the data. In Section 5 we discuss the

empirical results of the paper. Section 6 provides an economic evaluation of the forecasts and

Section 7 offers a number of robustness checks on our analysis. Finally, in Section 8 we offer
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some concluding remarks. There is also an Online Appendix which reports a number of

additional supporting and subsidiary results, as well as a detailed description of the data sources

and methods.

II. Multi-Currency Investment Strategies

In this section, we consider currency excess returns of the most profitable investment strategies

in the foreign exchange market. In particular, we construct payoffs of currency portfolios built to

mimic carry trade, dollar carry trade and momentum strategies. Thus, deviating from currency

level approaches, we explore predictable components and potential commonalities in the

variation of the payoffs across basket-level investment strategies.1 As noted above, although, for

ease of exposition, we largely focus on the strategies viewed from a U.S. dollar-based investor’s

perspective, we later show that the results are robust to using a range of alternative base

currencies.

A. Currency Excess Returns

We employ end-of-month series of spot and one-month forward rates. ௧ܵ represents the level of

the nominal exchange rate at time t and ௧ܨ denotes the one-month forward rate, known at time t.

Taking the U.S. dollar-based investor’s perspective, all currencies are expressed in foreign

currency units per U.S. dollar (the foreign price of dollars), meaning that a rise in ௧ܵ implies a

depreciation of the foreign currency. The level of the currency excess return resulting from going

long the foreign currency in the forward market at time t and then selling the same currency at

time t+1 in the spot market can be expressed as:

1 Among others, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011a), Lustig, Roussanov, and Verdelhan (2011), Lustig et

al. (2014), Menkhoff, Sarno, Schmeling, and Schrimpf (2012a), (2012b) provide a very clear description of these strategies.
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(1)
ܴܺ௧ାଵ =

−௧ܨ ௧ܵାଵ

௧ܵ
=
−௧ܨ ௧ܵ

௧ܵ
−

௧ܵାଵ− ௧ܵ

௧ܵ

As can be seen in equation (1), excess returns can be decomposed into two parts: the forward

discount and the change in the spot exchange rate. In addition, under the covered interest rate

parity condition, the forward discount must be equal to the interest rate differential: ௧ܦܨ =

ிି ௌ

ௌ
≈ ଓƸ௧− ௧݅, where ଓƸ௧ is the risk-free interest rate of the foreign country and ௧݅ is the home

country counterpart. 2 Thus, under the assumption that covered interest parity holds, excess

returns are equal to the interest rate differential corrected for the rate of depreciation: ܴܺ௧ାଵ ≈

ଓƸ௧− ௧݅− ( ௧ܵାଵ− ௧ܵ)/ ௧ܵ.

B. Transaction Costs

Our analysis takes into account the implementation cost of the strategies in order to estimate the

actual realized excess returns. In particular, bid and ask quotes are employed for the spot and

forward contracts and the long and short position are modified as follows. The net position of

buying the foreign currency forward at time t using the bid price ௧ܨ)
) and selling it at time t+1 in

the spot market at the ask price ( ௧ܵାଵ
 ) is given by: ܴܺ௧ାଵ

 = ௧ܨ)
 − ௧ܵାଵ

 )/ ௧ܵ
 , whereas the

corresponding short position in the foreign currency (or short in the dollar) will render a net

excess return of the form: ܴܺ௧ାଵ
௦ = ௧ܨ)

 − ௧ܵାଵ
 )/ ௧ܵ

. Throughout the paper we consider only net

2 Many studies (e.g., Taylor (1987), Burnside, Eichenbaum, and Rebelo (2006), Akram, Rime, and Sarno (2008)) have shown

that deviations from covered interest parity are very small and infrequent, when transaction costs are taken into consideration,

and Taylor (1989) shows that deviations during a number of historical turbulent periods tend to be relatively short lived and

located in the longer maturities. Nevertheless, there is evidence that this condition was significantly violated during the 2007-

2008 financial crisis for some currencies, mainly because of liquidity constraints and counterparty risk (see, for example, Baba,

and Packer (2009), Levich (2013)).
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currency excess returns and net exchange rate changes.

C. Carry Trade Portfolios

We build two baskets of currencies. The first basket contains a set of all 48 currencies examined,

which we label “All countries”, and the second basket a subset of 15 developed market

currencies, in order to alleviate problems in the data caused by capital controls, currency pegs,

etc, which we label “Developed countries” (Section 4 provides a detailed description of the

currency baskets). Then, we sort currency excess returns into six (five) portfolios (using the

sample of All countries or Developed countries) based on forward discounts.3 The payoff to a

carry trade strategy (߰௧ାଵ
ுெ ) represents a long position in the last portfolio (with the highest

interest rate) while taking a short position in the first portfolio (the lowest yielding currencies)

each month. A similar procedure is carried out for the exchange rate component of the excess

return.

D. Dollar Carry Trade Portfolios

We also design a different version of the carry trade strategy that was first introduced into the

research literature by Lustig et al. (2014). Specifically, we consider an equally weighted portfolio

that goes long all foreign (non-U.S.) currencies when the average foreign short-term interest rate

of the Developed countries is greater that the home country’s (U.S.) analogue as inferred through

the average forward discount (AFD). The AFD is defined as the mean of the forward discounts

across portfolios each month. In other words, investors short the dollar when the AFD of the

developed countries is positive and go long otherwise. Consequently, the payoff to a dollar

3 Our results are largely the same when sorting currencies of All countries into five portfolios rather than six. However, we follow

this approach in order to be consistent with the literature.
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carry trade (߰௧ାଵ
ௌ ) for both samples is given by:

(2) �߰ ௧ାଵ
ௌ =

⎩
⎪
⎨

⎪
⎧൭

௧ܨ
 − ௧ܵାଵ



௧ܵ
 ൱ if ௧ܦܨܣ > 0,

൭
௧ܵାଵ
 − ௧ܨ



௧ܵ
 ൱���if ≥௧ܦܨܣ 0,

where ௧ܦܨܣ denotes the average forward discount at time .ݐ Results for the resulting exchange

rate returns are reported.

E. Momentum Portfolios

We also construct portfolios of currencies based on recent performance. As before, currency

excess returns are allocated into portfolios each month according to the lagged excess return over

the previous period. Thus, we consider a formation period of one month and investors hold the

portfolio until the next month. The first portfolio corresponds to the loser portfolio and the last

portfolio serves as the winner portfolio. We focus on a momentum portfolio (߰௧ାଵ
ௐ ெ ) that buys

the last portfolio and sells the first basket of currencies each month. An important feature of this

strategy (which also holds for the carry trade) is that it is dollar neutral.4,5

III. Dynamic Factor Analysis

4 Our definition of momentum is slightly different from the purely trend-following definition of momentum used by some

researchers, which is more akin to technical trend-following strategies (see, e.g., Pojarliev and Levich (2008), Allen and Taylor

(1990), Menkhoff and Taylor (2007)). Similarly, we do not explicitly consider ‘value’ trading strategies based on economic

fundamentals (such as purchasing power parity) in our main analysis, although below we do consider generic strategies based on

carry, momentum (trend) and value, using published Deutsche Bank indices, as in Hafeez and Brehon (2010), for example (see

Section 7 and Table 8, below).

5 We also report results for the spot exchange rate component because, consistent with Menkhoff et al. (2012b), and show that it

captures a significant amount of the momentum portfolio’s variability.



11

This section introduces the econometric framework. We consider two large panels of

macroeconomic data6 as well as financial variables and we apply dynamic factor analysis in

order to extract common factors that can capture most of the variability of each panel. The first

panel consists of 127 variables from the U.S. economy and we label the corresponding factors as

domestic factors7 (ℎ௧). The global factors ( ݃௧) are estimated from the second panel, which

comprises 97 variables obtained mainly from G10 countries. The main reason for making the

separation between domestic and global factors is that the strategies of interest would be

expected to be subject to different shocks. In particular, the carry trade strategy might be

expected to be mainly affected by disparities observed between countries and so we expect

global factors to be stronger predictors. On the other hand, the dollar carry trade might be

expected to be driven by U.S. economic conditions, as its risk premia will be negatively

correlated with the U.S. business cycle and domestic factors should therefore be more

informative for this strategy.

The profitability of the momentum strategy, on the other hand, might be expected to be

subject to various factors affecting trading, such as transaction costs, liquidity levels, country risk

and idiosyncratic volatility (Menkhoff et al. (2012b)); we therefore expect both domestic and

global factors to have explanatory power for the momentum payoffs.

A number of methodologies have been proposed in the literature regarding the appropriate

estimation method of factors summarizing large sets of data. In the present analysis, we apply

principal component analysis (PCA), as in Stock and Watson (2002a), (2002b), (2006), for two

reasons. First, in previous studies employing factor analysis, the factors obtained when other

6 The data is winsorized (i.e. outliers are excluded) so as to control against rare events.

7 Recall that we take the U.S. dollar-based investor’s perspective, which means that the U.S. dollar is the domestic currency.
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more computationally demanding methods are employed have not in general rendered stronger

predictive power, because the precision of the factors remains the same (for example, the

Bayesian posterior means are very close to the corresponding PCA estimates). 8 In addition, the

estimation of dynamic factors, using methods such as the EM algorithm or Bayesian approaches

has not improved the forecasting performance of the factors in various contexts, as is also

verified in the literature.9 Therefore, we follow a methodology that has extensively been used in

many other studies (e.g., Ludvigson and Ng (2009), (2010), Bernanke and Boivin (2003),

Bernanke et al. (2005), Kim and Taylor (2011)).10

As discussed in Section 2, we denote the payoff of a strategy at time +ݐ 1 as�߰ ௧ାଵ
 , where ݅=

ܷ,ܮܯܪ ܦܵ ,ܹ ܮܯ for the payoffs to a carry trade, dollar carry trade and momentum strategy

respectively. Therefore, we can assess the in-sample predictive ability of a set of K

predetermined predictors at time ,ݐ provided by a ܭ × 1 vector ௧ܼ
11, by estimating the following

model:

(3)

For example, consideration of the panel of the U.S. macro variables leads to a restrictive model

as the cross-sectional dimension of the panel increases. In particular, assume that we have a ܶ×

ܰ panel of macroeconomic variables, where ܶ denotes the time dimension and ܰ the cross-

8 For more details see Ludvigson and Ng (2010).

9 Bai and Ng (2008) provide a very comprehensive survey on factor models.

10 However, we need to stress here that it is harder to interpret static factors, as they are unobserved. In contrast, it is easier to

explain dynamic factors, since the data is organized into blocks, but they do not allow for cross-sectional correlation of the

idiosyncratic errors and also the precision achieved from those factors is quite similar.

11
௧ܼ could contain the panel of domestic or global variables. We can also include other predictive variables.

߰௧ାଵ
 = +ߙ ᇱߛ ௧ܼ+ ௧ାଵߝ for ݅= HML, ܷ ,ܦܵ WML
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sectional dimension. As N increases the available degrees of freedom decline and, in the limit,

when ܰ + ܭ > ܶ the model runs out of degrees of freedom and standard econometric techniques

are not appropriate. Let us denote by ௧ݔ the i-th element in an ܰ × 1 vector of macro variables at

time t, .௧ݔ We conjecture that ௧ݔ has a factor structure of the form ௧ݔ = ߣ
ᇱℎ௧+ ,௧ݑ where ℎ௧

denotes a ݇× 1 vector of latent common factors (݇≪ ܰ), ߣ
ᇱ represents the corresponding ݇× 1

vector of factor loadings and ௧ݑ is an idiosyncratic error.12 Therefore, we consider the following

regression

(4)

where ௧ܪ is a subset of ℎ௧ and ௧ܼ could be a benchmark.13 As already mentioned, the common

factors (ℎ௧), estimated by principal component analysis, are unobserved so we denote them by

ℎ௧. The main feature of the PCA is that the factor space is estimated precisely as the time series

and cross-sectional dimensions increase significantly (i.e. as ܰ ,ܶ⟶∞). More specifically, the

estimated factors are linear combinations obtained optimally by minimizing the sum of squared

residuals −௧ݔ) Λℎ௧), where ௧ݔ denotes the vector of panel elements and Λ the corresponding

ܰ × ܭ matrix of latent factor loadings.

The number of common factors ( ݇) is determined by the panel information criteria detailed in

Bai and Ng (2002). More precisely, a random number ݇ ௫ is selected in such a way that is not

greater than the minimum of ܶ and ܰ . Then, we obtain the optimal number of common factors

by solving the following optimization problem:

12 A limited cross-sectional correlation among the idiosyncratic errors is allowed. Particularly, the idiosyncratic covariances are

limited to the total variance of x as the cross-sectional dimension of the panel increases.

13 We consider different benchmarks in a later section.

߰௧ାଵ
 = +ߙ +௧ܪᇱߚ ᇱߛ ௧ܼ+ ௧ାଵߝ for ݅= HML, ܷ ,ܦܵ WML
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(5) ݇= argmin
ஸஸ ௫

ℎ( )݇ = ln൫ܸ ( )݇൯+ ݇݃ (ܰ ,ܶ),

where ݃(ܰ ,ܶ) denotes a penalty function14 and the average sum of squared residuals with k

factors (ܸ( )݇) could be expressed as ܸ( )݇ =
ଵ

ே்
∑ ∑ −௧ݖ) መߣ

ℎ௧
)ଶ்

௧ୀଵ
ே
ୀଵ , where ℎ௧

 is a matrix of

݇ factors and መߣ
 is the vector of the corresponding factor loadings. Thereafter, we estimate the ݇

common factors with principal component analysis, as described above. In addition, we employ

different information criteria in order to determine the most informative set of static factors for

currency premia.15 In particular, we form different subsets of the factors and for each candidate

subset we project the ߰௧ାଵ onto ௧ܪ = ℎൣଵℎଶ…ℎ൧�and compute the Bayesian Information

Criterion ( ܥܫܤ ), Akaike Information Criterion ( (ܥܫܣ , log-likelihood ( (ܮܮ and adjusted

coefficient of determination, ( തܴଶ). The ܮܮ and the തܴଶ are used as decision tools in case of

inconsistency between the ܥܫܤ and the ܥܫܣ criteria.16 According to Stock and Watson (2002a),

(2002b), (2006), we can obtain the optimal set of factors ,௧ܪ by choosing the minimum BIC

estimates. We also estimate the global factors in the same way by replacing ௧withܪ .௧ܩ

Thus, our analysis focuses on two regression models. In the first model we examine the

unconditional predictive power of the domestic and global factors. This version of the model

tests whether the coefficients of the factors in the following model are statistically different from

zero,

14 i.e. ݃(ܰ ,ܶ) =
ேା்

ே்
ln

ே்

ேା்
.

15Although nonlinear analysis is not the main focus of the present paper, we include nonlinear (i.e. squared or cubed terms) as

well as linear and lagged factors, for completeness and in order to be consistent with the previous literature (see, e.g., Ludvigson

and Ng (2009), (2010)).

16 We also try to identify the optimal set of factors in a forecasting context. However, we find that the two methodologies lead to

the same subset of factors in most of the cases.
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(6) ߰௧ାଵ
 = +ߙ +௧ܪᇱߚ +௧ܩᇱߛ ௧ାଵݑ for ݅= HML, ܷ ,ܦܵ WML

where ⊃௧ܪ ℎ௧ represents the optimal subset of the U.S. static factors, and ௧ܩ represents the

optimal subset of global factors, all at time .ݐ Later, we consider the performance of the static

domestic and global factors conditional on the information provided by other predictors in the

literature. It is apparent that the use of dynamic factor analysis for the estimation of the optimal

set of common factors should lead to a parsimonious model that helps capture the common

trends of the major economies that are involved in our sample. Indeed, this is perhaps true almost

by construction, since we are explicitly building factors that are designed to explain currency

premia, although it need not be assured out of sample.

IV. Data

A. U.S. Data

The domestic data set consist of a large balanced panel of 127 monthly macroeconomic and

financial series for the U.S. economy spanning the time period 1985:07-2012:03; the data was

downloaded from DataStream. Moreover, the panel covers a variety of categories of the U.S.

economy: real output, employment, consumption, housing start, orders, stock prices, exchange

rates, interest rates, money and credit quality aggregates, price indices, earning, international

trade, capacity utilization and ‘miscellaneous’. In addition, the raw data have been standardized

and transformed according to simple stationarity tests. Table B.1 in the Appendix offers a

detailed description of the data.17

17 Our data set spans almost three decades. However, the inclusion of observations before 1985 leads to an unbalanced panel,

since many variables have missing values, which is common when dealing with macroeconomic data. There are many different



16

B. Global Data

The global variables comprise a panel of 97 macroeconomic and financial variables collected

(mainly) from G10 countries for the period 1985:07-2012:03. The reasoning behind the inclusion

of G10 countries corresponds to the tradability of their currencies. In particular, the G10

currencies are the most actively traded currencies in the foreign exchange market, and thus we

suspect that the macroeconomic and financial environment of those countries would affect the

variability of our strategies and reveal potential commonalities. 18 The data cover a broad

spectrum of the macroeconomic and financial environment of the economies in question, namely

real output, employment, consumption, stock prices, price indices, interest rates, international

trade, reserves and aggregate variables of the G7 countries.19 All the series are transformed based

on unit root tests and standardized prior to estimation of the global factors. Table B.2 in the

Appendix provides a detailed description of the global data.

C. Spot and Forward Exchange Rates

We begin with daily spot and 1-month forward exchange rates vis-à-vis the U.S. dollar for the

period 1985:07-2012:03. The data are available on DataStream from WM/Reuters and Barclays

Bank International (BBI). Moreover, we create end-of-month series of spot and forward rates

(i.e. we take the last business day of each month) as in Burnside et al. (2011a). Afterwards, bid,

middle and ask quotes are employed, so as to take into consideration transaction costs. The

ways of tackling this problem, such as interpolation, EM algorithm, or Kalman filter methods. However, we exclude the

unbalanced panel and apply the methodology only on the balanced panel, since all of these methodologies smooth the data.

18 According to BIS triennial Survey 2010 the top 10 currencies account for almost 90% of the average daily foreign- exchange

turnover that reached $4 trillion.

19 United States, Japan, Germany, UK, France, Canada, and Italy.
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whole sample consists of the following 48 currencies: Australia, Austria, Belgium, Brazil,

Bulgaria, Canada, Croatia, Cyprus, Czech Republic, Denmark, Egypt, Euro area, Finland,

France, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Iceland,

Japan, Kuwait, Malaysia, Mexico, Netherlands, New Zealand, Norway, Philippines, Poland,

Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea,

Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine and United Kingdom. We label this

sample “All countries”. The inclusion of some of the above currencies could, however, be

problematic because of capital constraints or the fact that some of them are pegged to other

currencies, so that investors may experience difficulties trading some of the currencies in

significant volumes despite the availability of forward contracts. In order to tackle this problem

and make our analysis more realistic, we also consider a smaller sample of 15 “Developed

countries”, namely: Australia, Belgium, Canada, Denmark, Euro Area, France, Germany, Italy,

Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, and the United Kingdom. The

Euro Area currencies are excluded from the sample after the introduction of the Euro in January

1999 and thus the sample is narrowed down to the G10 currencies. This sample is similar to the

one employed by Lustig et al. (2011), (2014) and Menkhoff et al. (2012). Consistently with other

studies, we delete observations for which we observe significant deviations from the covered

interest parity condition.20

V. Empirical Results

In this section we offer descriptive statistics of the payoffs as well the common factors before

turning to the in-sample and out-of-sample analysis. We also provide an economic interpretation

20 In particular, we remove the following data: South Africa for the periods 1985:07-1985:08 and 2001:12-2004:05; Indonesia for

the periods 1997:06-1998:03, 2001:01-2002:09 and 2008:11-2009:02; and Kuwait for the period 2001:03-2001:04.
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of the factors that were selected for the optimal samples.

A. Summary Statistics of the Currency Excess Returns

1. Carry Trades

Table 1 presents descriptive statistics of the payoffs to carry trade (i.e. ߰ுெ ) and dollar carry

trade (i.e. ߰ௌ�) strategies. We report annualized estimates of the mean, standard deviation,

Sharpe Ratio and Sortino Ratio. The annualized mean of the carry trade is 4.24% (2.79%) with a

Sharpe ratio of 0.46 (0.27) for the group of All (Developed) countries. The currency excess

returns exhibit left skewness and excess kurtosis, which is in line with other studies in the

literature such as Brunnermeier, Nagel, and Pedersen (2008) and Burnside et al. (2011b).

1ܴܣ represents the first order autocorrelation coefficient, and is 0.20 (0.11) for the case of All

(Developed) countries. Thus, we can infer that the carry trade payoffs exhibit positive

autocorrelation with low persistence. The annualized mean of the dollar carry trade strategy is

3.93% (5.86%) for the All (Developed) countries with a Sharpe ratio of 0.55 (0.69).21 As in the

case of the carry trade, the dollar carry trade displays negative skewness and excess kurtosis with

negative and low autocorrelation. We also report the corresponding summary statistics for the

exchange rate component of the strategies.

2. Momentum

Table 1 also reports summary statistics for the momentum strategy (߰ௐ ெ  ) returns. The

21 As pointed out in Lustig et al. (2014), the strategies under consideration are not highly correlated (not reported in the table) and

deliver significantly different mean returns and thus Sharpe ratios. That is, the dollar carry trade is more exposed to the U.S.

economy, since investors short the dollar before the NBER recessions and go long the dollar right after the end of the U.S.

recessions while the carry trades are more affected by global economic conditions.
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annualized mean is 5.17% (1.57%) and the annualized standard deviation is 9.57 (8.74) yielding

a Sharpe ratio of 0.54 (0.18) for the full sample (Developed countries). The payoffs exhibit

positive skewness and excess kurtosis with almost zero first-order autocorrelation for both

samples. We also report descriptive statistics for the exchange rate changes. Figure 1 displays

annualized payoffs of the strategies and the shaded areas represent the NBER recessions for the

U.S. economy.22

[Table 1 and Figure 1 about here.]

B. Summary Statistics and Optimal Subsets of the Factors

Table 2 reports summary statistics for the domestic and global factors. The Bai and Ng (2002)

criterion suggests the use of nine factors in the case of the domestic data and three factors for the

global data. 23 Nevertheless, as can be seen from the table, the first three domestic factors capture

more than 60% of the total variation in the U.S. data, while three global factors capture less than

25% of the variation of the global data. Table 2 also reports the first-order and second-order

autocorrelation coefficients of the common factors. Thus, there is substantial heterogeneity

across factors as depicted in the high dispersion of the coefficients. In particular, the first order

autocorrelations coefficients (AR1) in the case of the domestic factors range from 0.03 to 0.97,

whereas the corresponding range for the global factors goes from 0.11 to 0.95.

22 The summary statistics for the currency excess returns reported in this section are in line with those reported elsewhere for

similar generic strategies (see, e.g. Hafeez and Brehon (2010), who use data on generic value, momentum and carry strategies

available on Bloomberg).

23 The first factor in each case explains the largest proportion of the total variation in the panel and then each factor explains the

largest fraction of the variation conditional on the information provided by the previous factors. In other words, the ܴ
ଶ is defined

as the sum of the first l݅argest eigenvalues divided by the sum of the eigenvalues of the panel ,ݔ′ݔ which determines the total

variation of the panel.
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[Table 2 about here.]

As mentioned in Section 3, the optimal subset of factors represents the candidate subset that

has the minimum value of the corresponding ܥܫܤ and .ܥܫܣ The log likelihood function and the

തܴଶ are used as decision tools if there is an inconsistency between the two information criteria.

More specifically, we first estimate all the combinatorial subsets of the factors in sets of ,݊ where

݊ = 2, … , ݇− 1 and then make the final decision based on ܥܫܤ and .ܥܫܣ

Table C1 in the Appendix presents information criteria and തܴଶ for each competing set of

factors for each strategy. Thus, the optimal subsets of global factors ⊃௧ܩ) ො݃௧ ) are the

following:24ܩ�௧
ுெ  = ( ො݃ଶ௧)′ ௧ܩ�,

ௌ = ( ො݃ଷ௧)′, ௧ܩ
ௐ ெ  = ( ො݃ଷ௧)′. The sets of domestic factors for

the three currency strategies ⊃௧ܪ) ℎ௧) are given by ௧ܪ
ுெ  = (ℎଶ௧, ℎଷ௧, ℎସ௧, ℎ௧)′ ௧ܪ�,

ௌ =

(ℎ௧, ℎ௧)′, ௧ܪ
ௐ ெ  = (ℎଵ௧, ℎସ௧)′, and the corresponding subsets of all factors ܩܪ) ௧⊂ ℎ݃ ௧) are

ܩܪ ௧
ுெ  = (ℎ௧, ො݃ଶ௧, ො݃ଷ௧)′, ܩܪ ௧

ௌ = (ℎ௧, ℎ௧, ො݃ଷ௧)′, ܩܪ ௧
ௐ ெ  = (ℎଵ௧, ℎସ௧, ො݃ଷ௧)′ . Later, we also

examine nonlinear and lagged forms of the factors.

C. In-Sample Analysis

In this section we conduct the in-sample analysis. The main advantage of this approach has to do

with the fact that all the available information in the sample can be used, whereas the out-of

sample tests use only a part of the available information which lowers their power and increases

the forecast error significantly, a phenomenon which is amplified in smaller samples.

Tables 3 and 4 report in-sample prediction regressions of the form of equation (6) for

24 We report results for the full sample. Table C in the Internet Appendix also shows results for the group of the Developed

countries.
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currency excess returns as well as exchange rate changes. We take into consideration

transactions costs in any case.25 Thus, we present estimates of the slope coefficients of the

regressions, the corresponding t-statistics and adjusted ܴଶ for each regression. NW denotes t-

statistics 26 with asymptotic standard errors that are corrected for heteroskedasticity and

autocorrelation (HAC) based on the Newey and West (1987) correction, with the optimal number

of lags selected following Andrews (1991). B denotes two-sided p-values based on a wild

bootstrap with 10,000 bootstrap iterations in order to account for potential small-sample bias in

the inference about the models in use.27 The use of bootstrapping is very important because of

the persistence of the predictors, which can lead to biased slope coefficients with greater

dispersion than the asymptotic distribution (Bekaert, Hodrick and Marshall (1997), Stambaugh

(1999)). Below the R-squares we report the corresponding ߯ଶ and p-values for joint tests of

parameter significance.

1. Carry Trades

Table 3 reports in-sample predictions for the carry trade using the optimal subset of factors

analyzed in the previous section. Panel A reports results for the excess returns and Panel B

reports estimates for exchange rate changes. Firstly, we consider predictive regressions with

25 The results for logarithmic returns are very close to those presenting here for raw returns.

26 Our results are also verified by the estimation of Hansen and Hodrick (1980) standard errors. Those results are not reported in

order to save space, but they are available upon request.

27 Our bootstrap procedure is similar to that used by Mark (1995), Killian (1999), Killian and Taylor (2003), Amihud, Hurvich

and Wang (2009) and Bakshi and Panayotov (2013). In particular, we estimate the bias-adjusted standard errors by simulating a

data generating process (DGP) that generates 10,000 samples (with replacement) of the payoffs and factors from a vector auto

regression (VAR) under the null of no predictability. The number of lags in the VAR is determined by information criteria (i.e.

.(ܥܫܤ
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global factors. As can be seen, the slope coefficients are highly statistically significant, yielding

an adjusted R-square of 0.05 (0.04) for All countries (Developed countries), which, while quite

small, compares well to corresponding goodness-of-fit statistics reported in previous studies (see,

e.g., Bakshi and Panayotov (2013), p. 147, Lustig et al. (2014)). However, the domestic factors

provide even smaller R-squares (i.e. 0.02-0.03), verifying our assumption concerning the

exposure of carry trades to the global environment rather than the domestic. The inclusion of

both domestic and global factors provides similar results.

2. Dollar Carry Trades

Table 3 also displays results for the dollar carry trade strategy when considering the most

informative set of factors. Here we observe results that are in many ways converse to those

reported above. In particular, the global factors are not statistically significant, yielding an

adjusted R-square of 1%, whereas the set of domestic factors (ℎ, ℎ) provide high t-statistics and

R-squares around 4% both for excess returns and exchange rate changes. The consideration of

both global and domestic factors leads to highly significant estimates and an R-square around

5%. These results are verified from the bootstrapped p-values and results are in line with our

conjecture regarding the exposure of the dollar carry trade to the U.S. economy and to lesser

extent the global environment, consistent with Lustig et al. (2014).

3. Momentum

Table 4 provides estimates of the predictive regressions when considering momentum returns.

We find that ො݃ଶ (for Developed countries) and ℎସ contain valuable information for currency

momentum profits at the 10% significance level, offering adjusted R-squares of 2-4%. Overall,

we find weak evidence of predictability for currency momentum that it is mainly driven by U.S.
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macro factors.

[Table 3 and Table 4 about here.]

D. Economic Interpretation of the Factors

In this section we attempt to provide some economic intuition behind the common factors. We

need to be careful when analyzing the factors because they are unobserved since they capture the

variation of the whole panel and thus absorb information from all of the economic variables.

Thus, labeling the predictors could be problematic, as we cannot link the factor directly with

specific economic series, such as unemployment or consumption. However, some factors seem

to load heavily on particular economic or financial variables, which help us make inferences with

regards to the identity of the factors.28 Panel A (Panel B) of Figure 2 provides a graphical

illustration of the marginal R-squares from regressing each of the 127 (97) economic and

financial series onto each domestic (global) factor. The individual series are grouped into more

general categories, as in the Appendix (tables B.1. and B.2.) and follow the same numbered

ordering. Table 2 displays the names of the economic series that exhibit the highest correlation

with the common factors. Once again, we use this table as a verification tool of the marginal R-

squares and we do not try to link particular series with the factors.

1. Domestic Factors

Panel A of Figure 2 displays marginal R-squares of the domestic factors that were selected for

the optimal subsets. The second factor (ℎଶ) may be identified as an interest rate factor as it

exhibits higher marginal R-squares for interest rates. In addition, ℎଷ and ℎ଼ load heavily on series

that measure real output, employment and consumption, but also on measures of money and

28 Ludvigson and Ng (2009) follow a similar procedure.
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credit and price indices. A similar pattern is observed for ℎହ with slightly lower correlations.

Thus, we label ℎଷ, ℎହ and ℎ଼ real factors. The fourth factor (ℎସ) loads heavily on price indices,

money and credit variables and to a lesser extent on real variables (e.g. U.S. personal income)

and, thus, we label it as inflation factor. Finally, ℎ and ℎ load heavily on measures of

consumption and thus we label them consumption factors.

2. Global Factors

Panel B of Figure 2 shows graphically the marginal R-squares for the global factors. The first

global factor ( ො݃ଵ) loads heavily on variables that measure international trade and is highly

correlated (77%) with variables that measure employment, so we label ො݃ଵ as international trade

factor. The factors ො݃ଶ and ො݃ଷ contain information for the global stock market and they load

heavily on interest rates and reserves. In the same vein, the marginal R-squares provide the same

information, as we obtain R-squares around 40% for stock market indices as well as interest

rates. Therefore, we label them money & credit factors. As we saw in the previous section, the

second global factor seems to be a very strong predictor, especially for the carry trades. This is

not surprising as the link between the global stock market and the foreign exchange market is

quite strong.29

[Figure 2 about here.]

E. Out-of-Sample Analysis

In this section we report the results of out-of-sample analysis in order to assess further the

29 For example, Hau and Rey (2006) show empirically and theoretically that under circumstances of incomplete hedging in the

foreign exchange market that the foreign currency appreciates when the return in the home equity market is greater than the

foreign counterpart.
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forecasting power of the common factors.30 More precisely, we employ recursive estimates of

the factors and parameters using data up to time inݐ order to forecast at time +ݐ 1, accounting in

this way for potential look-ahead bias. We question whether an economic agent can obtain better

forecasts from the use of the factors rather than simply relying on the historical mean. Table 5

reports out-of-sample �ܴ ଶ as in Campbell and Thompson (2008): �ܴ ைைௌ
ଶ = 1 − ∑

൫టశభ
 ିఓෝశభ൯

మ

൫టశభ
 ିఓశభ൯

మ
்ିଵ
௧ୀଵ ,

where Ƹ௧ାଵߤ represents the one-step ahead conditional forecast from the model of interest and

௧ାଵߤ is the historical mean of the payoff. Thus, a positive �ܴ ைைௌ
ଶ statistic means that the

competing model outperforms the benchmark model because it has a lower mean square

prediction error. Then, we test the forecasting ability of the above models using the mean-

squared prediction error statistic (MSPE-adj) following Clark and West (2007). Under the null

hypothesis the mean square error of the competing model is expected to be greater than the mean

square error of the benchmark model. Therefore, we construct መ݂௧ = (߰௧
− (௧ߤ

ଶ− [൫߰ ௧
− Ƹ௧൯ߤ

ଶ
−

௧ߤ) − (Ƹ௧ߤ
ଶ] and then መ݂

௧ is regressed on a constant and rejecting the null hypothesis of a zero

estimated coefficient then implies that the competing model out-performs the benchmark model,

so the factors forecast better that the historical mean.

The in-sample period spans the first 180 observations (out of 321) that correspond to the

period 1985:07-2000:05.31 The factors are fixed and we follow an expanding window approach.

The recursively estimated factors provide positive �ܴ ைைௌ
ଶ but not as high as those obtained from

30 A particularly noteworthy feature of this approach has to do with the implications for the scapegoat theory developed by

Bacchetta and van Wincoop (2004), (2013), and empirically tested (in a different context) by Fratzscher, Sarno, and Zinna

(2012). This approach also provides information regarding data mining, overfitting, structural changes or model instability as

well, as it resembles the behavior of an investor in real time.

31 Many different in-sample periods have been employed and render similar results.
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the fixed factors. Table 5 offers out-of-sample �ܴ ைைௌ
ଶ as well as one-sided p-values of the MSPE-

adj statistic for the competing models described against the benchmark model. All the sets of

factors that are statistically significant in the in-sample test pass the out-of-sample test with

�ܴ ைைௌ
ଶ that range from 1%-10%, all statistically significant. Furthermore, most of the one sided p-

values of the MSPE-adj statistics are not greater than 0.05, verifying further the forecasting

ability of the factors. Table A.9. shows similar results for exchange rate changes.

The out-of-sample results are reinforced by combination forecasts, following Stock and

Watson (2004).32 Therefore, we consider mean predictions as well as weighted predictions based

on the performance of the predictions in the holdout period, . In particular, as in Rapach,

Strauss, and Zhou (2010), each prediction ݅at time isݐ associated with a weight ߱௧
, such that

߱௧
=

ଵ/థ


∑ (ଵ/థ
ೕ
)ಿ

ೕసభ

, where ߶௧
= ௧ିߠ ଵି∑ (߰ାଵ

 − Ƹାଵߤ
 )ଶ௧ି ଵ

ୀ and Ƹାଵߤ
 is the i-th individual

prediction for the ݇+ 1 month and the discount factor ߠ is less than unity providing a higher

weight to the latest prediction. Here, we consider a holding period of = 180 months and a

holdout period of 141 months. In addition, we set ߠ = 0.9 as in a number of previous studies,

although other values of θ provide similar results. Table 5 also reports results for mean and

weighted forecasts and demonstrates an overall improvement in comparison to those obtained

from individual forecasts.33

[Table 5 about here.]

32 This approach is based on the idea that the weighted averages of the individual predictions obtained from different models may

exhibit a significantly better performance than the individual models.

33 Table A.7 in the Appendix provides out-of-sample results for a different sample that employs information until 2007.12. The

purpose of this exercise is to see whether the factors performed well during the recent financial crisis.



27

F. Testing for Data-Snooping

One might raise concerns regarding the presence of data snooping in our methodology, in the

sense that because we have analyzed large amounts of data in some cases more than once, the

results may be due to selecting an apparently optimal result that is in fact due to chance rather

than any merit inherent in the method yielding the results (see e.g., White (2000)). The reasoning

behind this claim might arise from the way that the factors are extracted from the large datasets,

although some authors have in fact argued that dynamic factor analysis as outlined above,

because it uses a relatively small number of factors based on a simple decision rule rather than

considering the very high number of possible factors, may be largely robust against data

snooping.34 Nevertheless, we examined the robustness of our methodology against data snooping

by utilizing a statistically more powerful approach. Specifically, we follow Clark and

McCracken (2012) who have extended White’s (2000) reality check by using a wild fixed-

regressor bootstrap in order as to account for the fact that the competing models nest the

benchmark model (i.e. the historical average).

In particular, we test the null hypothesis that the MSFE of the historical mean does not exceed

the minimum MSFE of all the competing models (using the maxMSFE-F statistic). To that end,

we simulate the innovation term (i.e. ,(Ƹ௧ߝ obtained from a “kitchen sink” model estimated using

the whole sample so as to generate the pseudo payoffs (i.e. ߰௧
∗) for each strategy (see e.g. Neely

and Rapach (2014)), such that ߰௧
∗ = ்,ߙ + ,Ƹ௧ߝ௧ߟ where ்,ߙ is the sample mean of each strategy

34 See, for example, Ludvigson and Ng (2010). More precisely, in addition to following the simple selection procedure detailed in

Section 3, these authors consider all possible combinations of linear and nonlinear forms of the factors (over 100,000 possible

models) and evaluate the best performing set of factors based on in-sample and out-of-sample information criteria (i.e. BIC); they

find that the optimal set of factors resulting from this extensive search of the data is the same as the one suggested by the initial,

less intense method.
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and ௧ߟ is drawn from a standard normal distribution. Then, the optimal factors are used to

forecast the pseudo samples based on 1,000 replications.

For carry trade excess returns we find a maxMSFE-F statistic of 8.22 for All countries and

4.98 for Developed countries, with p-values of 0.01 and 0.03, respectively. The corresponding

statistics for the dollar carry trade are 10.66 and 7.56, each of which has a p-value close to 0.01.

Regarding the momentum strategy, we find an insignificant maxMSFE-F statistic for All

countries—1.21 with a p-value of 0.25—but significant results for Developed countries

momentum—an maxMSFE-F statistic of 6.07 with a p-value of 0.04; this is perhaps not

surprising because our macro factors exhibit stronger predictive power when we consider the

smaller group of currencies that were not subject to issues such as capital controls, etc. Overall,

however, at a nominal significance level of 5%, the Clark and McCracken (2012) reality check

procedure suggests that the out-of-sample predictive power of the factors for the currency

strategies cannot be linked to data snooping but is indeed due to significant predictive

information in the macro factors.

VI. Economic Evaluation of the Forecasts

A. Decision Rule

In order to assess the economic value of the forecasts, we develop a strategy that resembles a

decision rule. In particular, the investor is involved in one of the strategies at the end of month ݐ

if the forecast of the corresponding strategy is positive for the month +ݐ 1, otherwise she does

not enter into a position. We use the forecasts of domestic and global factors as well as

combination forecasts. Thereupon, we examine the performance of the factors when investing in

all strategies at the same time. In this case, identical weights are assigned to each strategy.
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Table 6 displays Sharpe ratios (Panel A) and skewness (Panel B) of the conditional and

unconditional payoffs. The unconditional payoff embodies the realized value of the payoff, while

the conditional payoff is determined by a decision rule. As can be seen in the table, there is an

overall significant increase in the Sharpe ratios and an improvement in the skewness profile of

the payoffs for both samples. In curly brackets we report p-values estimated based on 10,000

stationary bootstrap samples (Politis and Romano (1994)), for the null hypothesis that the Sharpe

ratios of the conditional strategy do not exceed (statistically) the unconditional counterparts,

which take a position in the FX strategy regardless of the sign of the prediction. With the

exception of the momentum strategy, where there is no big improvement, the forecasts provide

strong out-of-sample economic value for an investor who applies the strategies of interest. A

mixed strategy that combines all the three strategies also verifies the strong predictive power

embodied in our factors.

Figure 3 illustrates rolling Sharpe ratios, using a 12-month window for carry, dollar carry and

momentum strategies as well as the mixed strategy. The solid lines represent rolling Sharpe

ratios of conditional payoffs obtained from the forecasts of the optimal subset of factors (black)

and the combination forecasts (blue). The dashed line displays the realized value of the payoffs.

There is clearly an improvement in the rolling Sharpe ratios, especially during the crisis. Our

decision rule shows that an investor could achieve very high Sharpe ratios during the recent

financial turmoil (2008-2009) if she had taken into account the domestic and global

macroeconomic environment.

B. Dynamic Asset Allocation

The decision rule does not take account of the investor’s risk preferences in the asset allocation

decision. Thus, we ask whether our forecasts can benefit a risk-averse investor with mean-
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variance preferences who allocates her wealth on a monthly basis across risky assets (i.e. equities

and currency strategies) and risk-free assets (i.e. U.S. Treasury bills). In particular, we ask

whether an investor could benefit from a currency investment strategy that it is appended by a

traditional institutional investor’s ‘60/40’ (60% equities, 40% bonds) portfolio. To this end, we

estimate the certainty equivalent return ,(ܴܧܥ) following Campbell and Thompson (2008) and

Ferreira and Santa-Clara (2011). The investor rebalances her portfolio at the end of month ,ݐ

forming the weights of the currency strategies ௧ݓ)
) for investing at time +ݐ 1 as:

(7)
௧ݓ
= ൬

1

ߛ
൰ቆ

߰
௧ାଵ


ො,௧ାଵߪ
ଶ ቇ for ݅= HML, ܷ ,ܦܵ WML

where ߰
௧ାଵ
 is the forecast of the payoff for the i-th strategy, ො,௧ାଵߪ

ଶ the corresponding forecast of

the variance and denotesߛ the investor’s coefficient of absolute risk aversion. Therefore, the

portfolio return at time +ݐ 1 is given by:

(8) ܴ,௧ାଵ
 = ௧ݓ

߰௧ାଵ
 + ܴ/ସ௧ାଵ

for ݅= HML, ܷ ,ܦܵ WML

where ܴ/ସ௧ାଵ
is the return of a traditional 60/40 portfolio that allocates 60% to equities (i.e.

S&P 500) and 40% to risk-free bonds at time +ݐ 1 . As in Campbell and Thompson (2008) the

variance of the payoffs is estimated on the basis of a five-year rolling window, the risk aversion

coefficient is set equal to five and the weights for the risky asset are confined in a particular

interval (i.e. between 0 and 1). In this way, we do not allow for leverage. Thus, the average

realized utility or �isܴܧܥ defined as:

(9)
ܴܧܥ

 = ߤ̂
−

ො,ߪߛ
ଶ

2
for ݅= HML, ܷ ,ܦܵ WML
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where Ƹߤ
 is the mean and ො,ߪ

ଶ is the variance of the portfolio when investing in each of the three

strategies over the out-of-sample period. The certainty equivalent return is the risk-free return

that a mean-variance investor would consider sufficient in order to avoid investing in the

strategy. The ܴܧܥ gain represents the difference between the average realized utility of the

forecasts and the corresponding value of the historical average. It can be interpreted as the fee

that an investor is willing to pay in order to utilize the forecasts rather than relying on the

historical mean. Thus, a positive value of the ܴܧܥ means that the investor prefers the forecasts

over the estimate of the historical mean when forming expectations with regard to the strategies

of interest. Panel C of Table 6 presents positive ܴܧܥ gains for the carry, dollar carry with the

exception of the momentum strategy. Thus, there is a predictable component in the carry and

dollar carry trade strategy that provides strong economic value to a risk-averse investor with

mean-variance preferences.

[Table 6 and Figure 3 about here.]

VII. Robustness and Other Specification Tests

In this section, we offer some additional tests in order to evaluate the robustness of our results.

A. Non-U.S. Dollar Base Currencies

A natural question that arises from our analysis is associated with the explanatory power of our

domestic and global factors when considering alternative investors’ perspectives. In particular,

we evaluate carry trade strategies for alternative non-U.S. dollar base currencies and show that

our results remain robust or improved. Panel A of Table 7 reports in-sample estimates of the

optimal set of factors for carry trade strategies that employ different base currencies, namely the

British pound (GBP), Swiss franc (CHF), Canadian dollar (CAD), Swedish Krona (SEK),

Japanese yen (JPY) and Australian dollar (AUD). We find that our estimates are highly

significant, rendering relatively high R-squares. Panel B of Table 7 assesses the economic value
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of the factors for the alternative payoffs on the basis of their certainty equivalent return. In all

cases we find a positive Δܴܧܥ indicating strong economic value to non-U.S. dollar based

investors.35

[Table 7 about here.]

B. Conditional Predictive Regressions

We assess the predictive ability of the factors conditional on the information provided by the

Bakshi and Panayotov (2013) predictors (hereafter BP), namely commodity, volatility and

liquidity measures ܤܴܥ߂) ߪ߂,
௫

ܫܳܮ߂, ), all estimated on a monthly basis.36 Panel A of Table 8

provides in-sample estimates of the factors in the presence of the ܲܤ variables.37 For the carry

trade strategy the set of common factors are highly significant, rendering an adjusted R-square of

5% (9%) for the full sample (Developed countries). Regarding the dollar carry trade

(momentum), the factors ℎସ, ℎ, ℎ ( ො݃ଶ, ℎ଼ , ℎଽ for developed countries) are significant and among

the ܲܤ predictors only the volatility (commodity) factor explains the behavior of the strategy of

interest.

Lustig et al. (2014) show that average forward discounts (ܦܨܣ) exhibit important information

for dollar carry trade returns. Thus, we examine whether the predictability of our factors remains

after including the .ܦܨܣ Panel B of Table 8 displays results of the predictive regressions for all

the payoffs. In all cases the ܦܨܣ is statistically significant at 10% significance level only for the

sample of the Developed Countries and our factors remain highly significant.38

35 We also find an improvement in the out-of-sample Sharpe ratios and the skewness profiles of the corresponding strategies and

our results are available on demand.

36 We offer a detailed description of the BP predictors in the Appendix.

37 In order to conserve space, we report results only for combined subsets of domestic and global factors. However, results for

domestic or global estimations are available on demand.

38 We obtain similar results with data obtained from Lustig et al. (2014), which are available upon request.
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[Table 8 about here.]

C. Alternative Payoffs

We also look alternative strategies, such as Deutsche Bank’s (DB’s) global and G10 carry trade

indices. Table 9 shows that our factors provide very strong in-sample predictive power for the

excess returns of these indices, as can be seen from the highly significant slope coefficients and

the high R-squares (i.e. 9-14%). In addition, we investigate the variation of two more strategies

that deviate from the scope of the paper, namely DB value and DB momentum (trend-based) and

we again find that domestic factors exhibit strong predictive power. Moreover, we employ

additional payoffs (see Table A.2 of the Appendix) that are available from other studies in the

literature, such as the carry trade excess returns of Lustig et al. (2011) and Bakshi and Panayotov

(2013) (available on their website), with qualitatively similar results.

[Table 8 about here.]

D. Other Tests

We perform a set of additional robustness checks, the results of which are reported in the

Appendix. Firstly, we show that the factors demonstrate strong predictive power for the long and

short components of the strategies (Table A.1.). Moreover, our results remain robust when

considering alternative subsamples (Tables A.2-A.4, longer horizons (Tables A.5-A.6) as well as

alternative asset classes (Table A.8). Figures A.1 and A.2 in the Appendix show that the global

factors (panel A) incorporate information regarding the countercyclical nature of currency

premia, while the domestic factors (panel B) lead to acyclical or reverse results.39 This finding

39 We come to a similar conclusion when we employ other predictors. The results are similar for U.S. and G7 IP growth because

they are highly correlated. We also obtain similar results when, we exclude the U.S. from the sample of the G7 countries.
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might be of interest to policy makers as it could help them adjust currency premia with the

appropriate monetary policy or examine the interaction among risk premia, monetary policy and

the economic environment.

VIII. Conclusions

In this paper we have examined the role of the domestic and global macroeconomy on the returns

to carry trade, dollar carry trade and momentum trading strategies in the foreign exchange

market. We constructed domestic (U.S.) and global (G10) factors that are extracted from large

panels of macroeconomic and financial variables. Thus, the main focus of the paper is on the

time-series predictability of the payoffs and the economic value that can be earned by a U.S.

dollar-based investor from the use of these domestic and global common factors. Later, we show

that our results are robust to the use of other base currencies.

We find very strong evidence of in-sample predictability in carry, dollar carry and momentum

trading strategy returns. In particular, carry trade variability can be explained by global variables

that are exposed to G7 economies and are highly correlated with global stock markets. This

finding shows that carry trade activity depends more on the global environment than on the

domestic (i.e. U.S.) economy, although U.S. real and inflation factors also provide useful

information. On the other hand, as one might perhaps expect, the dollar carry trade is mainly

driven by the U.S. economy and indeed we find that only domestic inflation and consumption

factors have strong predictive power for the dollar carry trade returns. U.S. inflation and to a

lesser extend global money and credit factors are also strong predictors of the momentum

strategy. In addition, very strong evidence of profitability is found in the exchange rate

component of these strategies.
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Further, we find that our results are reinforced by out-of-sample analysis and combination

forecasts and deliver strong economic value to an international investor with mean-variance

preferences. Another striking feature revealed from examination of rolling Sharpe ratios is

associated with very high annualized Sharpe ratios during the recent financial crisis. Finally, our

analysis shows that the common factors are able to forecast the carry and dollar carry trade

returns over and above other factors previously considered in the literature.
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Table 1. Summary Statistics of the Payoffs from Currency Strategies

This table reports descriptive statistics of payoffs to carry trade, dollar carry trade and momentum strategies. Panel A reports

descriptive statistics for currency excess returns and Panel B for exchange rate changes. In particular, ߰ுெ  denotes the carry

trade strategy that goes long (short) a basket of currencies with highest (lowest) forward discounts, ߰ௌ is the dollar carry trade

that shorts the dollar when the average interest rate is greater than the US risk free rate and ߰ௐ ெ  represents the payoff to a

momentum strategy that invests (borrows) on a basket of currencies with the highest (lowest) last month return. All the payoffs

are estimated in the presence of transaction costs and the portfolios are rebalanced on a monthly basis. Finally, the mean,

standard deviation, Sharpe Ratio and Sortino Ratio are annualized (the means are multiplied by 12 and the standard deviation

by √12) and expressed in percentage points. The data span the period 1985:07-2012:03.

Panel A: Currency Excess Returns

߰ுெ  ߰ௌ ߰ௐ ெ  ߰ுெ  ߰ௌ ߰ௐ ெ 

All Countries Developed Countries
Mean 4.24 3.93 5.17 2.79 5.86 1.57
Std. Dev. 9.19 7.18 9.57 10.47 8.48 8.74
SR 0.46 0.55 0.54 0.27 0.69 0.18
SOR 0.62 0.82 0.86 0.36 1.09 0.27
Skew -1.17 -0.39 0.07 -0.96 -0.29 0.03
Kurt 5.23 4.71 5.00 5.66 4.17 4.34
AC1 0.20 -0.04 -0.04 0.11 -0.03 0.01

Panel B: Exchange Rate Returns

All Countries Developed Countries
Mean 7.85 4.18 2.81 1.63 5.56 -1.14
Std. Dev. 9.02 7.22 10.56 10.53 8.51 8.71
SR 0.87 0.58 0.27 0.15 0.65 -0.13
SOR 1.96 0.88 0.41 0.26 1.02 -0.18
Skew 1.23 -0.40 0.37 0.98 -0.28 -0.13
Kurt 5.43 4.80 5.74 0.13 -0.03 0.03
AC1 0.20 -0.04 -0.01 0.01 0.01 0.01
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Table 2. Summary Statistics of the Common Factors ,࢚ࢎ) (࢚ෝࢍ

This table presents summary statistics for the common factors. Panel A reports results for the U.S. data and Panel B for the global

data. Both datasets span the period of 1985:07-2012:03. The domestic panel includes 127 macroeconomic and financial variables

from the U.S. economy and the global panel consists of 98 variables from all the countries that are involved in our portfolio. We

report the first-order and second-order autocorrelation coefficients (AR1 and AR2) for the U.S. and global factors as well as the

relative importance of the factors as it is measured by the ܴ
ଶ. The ܴ

ଶ is estimated as the sum of the eigenvalues of the ith first

factors divided by the sum of the eigenvalues in the data. We also present the macroeconomic or financial series that exhibit the

highest correlation with the domestic and global factors along with the positions of each variable in the panel and a detailed

description of the variables. The variables are transformed according to simple unit root tests40 and they are standardized prior to

estimation. The data is available from DataStream.

Panel A: U.S. Data

Factors (ℎ௧)1ܴܣ (ℎ௧)2ܴܣ ∑ܴ
ଶ Positions Correlations Mnemonics Description

ℎଵ 0.98 0.96 0.39 95 0.55 USOMA002B
U.S. MONEY SUPPLY - BROAD MONEY
(M2) CURA (bil, U.S. $)

ℎଶ 0.97 0.95 0.52 32 0.88 USNEWCONB
U.S. EXISTING HOME SALES: SINGLE-
FAMILY & CONDO (AR) VOLA

ℎଷ 0.75 0.62 0.63 7 0.76 USNAPMNO
US ISM MANUFACTURERS SURVEY:
NEW ORDERS INDEX SADJ

ℎସ 0.64 0.46 0.70 7 0.4 60611444
U.S. PERSONAL INCOME LESS
TRANSFER PAYMENTS (BCI 51) CONA

ℎହ 0.65 0.54 0.75 15 0.38 870004623
US UNEMPLOYED (16 YRS & OVER)
VOLA

ℎ 0.49 0.57 0.79 20 0.44 62244022
U.S. PERSONAL CONSUMPTION
EXPENDITURES - LESS FOOD &
ENERGY CURA

ℎ 0.05 0.11 0.82 20 0.69 62244022
US PERSONAL CONSUMPTION
EXPENDITURES - LESS FOOD &
ENERGY CURA

ℎ଼ 0.12 -0.01 0.85 122 0.33 870011929
U.S. HOURLY EARN: PRIVATE SECTOR
SADJ

ℎଽ 0.16 0.16 0.87 90 0.42 60200205
U.S. 3-MONTH US $ DEPOSITS, LONDON
OFFER

Panel B: Global Data

Factors )1ܴܣ ො݃௧) )2ܴܣ ො݃௧) ∑ܴ
ଶ Positions Correlations Mnemonics Description

ො݃ଵ 0.86 0.94 0.1 7 0.77 100900842
DK UNEMPLOYMENT NET
(METHDOLOGY BREAK APRIL 2000)
VOLA

ො݃ଶ 0.72 0.66 0.18 83 0.6 870015830
U.S. FOREIGN NET LONG TERM FLOWS
IN SECURITIES CURN

ො݃ଷ 0.16 0.001 0.25 97 0.6 CNSHRPRCF G7 MSCI (U.S.$) – PRICE INDEX

40 See the Appendix for more details.
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Table 3. In-sample analysis: Carry Trades & Dollar Carry Trades

The table reports OLS estimates for the carry and dollar carry trade strategies. In Panel A the dependent variable is the currency excess return based on the carry trade

strategy that goes long (short) a basket of currencies with highest (lowest) forward discounts. Panel B reports results for the exchange rate component of the strategy.

Results for carry trades ሺ߰ ுெ ) are reported on the left of each panel and predictive regressions for dollar carry trades ሺ߰ ௌ) are displayed on the right part. NW

represents Newey and West (1987) heteroskedasticity and autocorrelation consistent t-statistics, constructed with the optimal number of lags chosen following

Andrews (1991). B denotes the bootstrap p-values based on 10,000 bootstrap iterations. The data span the period 1985:07-2012:03.

Panel A: Currency Excess Returns

Carry Trades Dollar Carry Trades

݊ܿ ݏ ො݃ଶ ො݃ଷ ℎଶ ℎଷ ℎସ ℎ തܴଶ ݊ܿ ݏ ො݃ଵ ො݃ଶ ℎଷ ℎ തܴଶ ݊ܿ ݏ ො݃ଷ ℎ ℎ തܴଶ ݊ܿ ݏ ො݃ଷ ℎସ ℎ ℎ തܴଶ

All Countries Developed Countries All Countries Developed Countries
(a) 0.35 0.52 0.05 0.43 0.29 0.50 0.32 0.04 0.33 -0.12 0.01 0.49 -0.17 0.00
NW 2.16 2.84 8.08 1.34 1.17 3.34 2.18 4.60 2.90 -0.92 0.84 3.74 -1.07 1.14
B 0.02 0.01 0.00 0.17 0.23 0.03 0.02 0.00 0.00 0.45 0.45 0.00 0.37 0.37
(b) 0.35 0.23 0.30 -0.28 0.21 0.03 0.23 0.44 0.37 0.03 0.32 0.28 -0.35 0.04 0.49 0.29 -0.38 0.03
NW 2.16 1.72 1.22 -1.91 1.48 13.50 1.35 1.48 2.58 7.50 3.11 2.50 -3.12 15.93 3.87 2.20 -3.06 13.89
B 0.01 0.09 0.14 0.05 0.14 0.00 0.16 0.09 0.00 0.02 0.00 0.03 0.01 0.00 0.00 0.04 0.00 0.00
(c) 0.35 0.56 -0.21 0.36 0.06 0.23 0.27 0.54 0.05 0.33 -0.24 0.36 -0.34 0.05 0.49 -0.29 0.17 0.39 -0.36 0.05
NW 2.22 3.17 -1.31 2.02 15.16 1.41 1.23 2.61 11.15 3.13 -1.80 3.10 -3.11 19.47 3.90 -1.91 1.27 2.98 -3.05 18.71
B 0.01 0.00 0.20 0.03 0.00 0.10 0.24 0.02 0.01 0.00 0.15 0.00 0.00 0.00 0.00 0.12 0.19 0.00 0.00 0.00

Panel B: Exchange Rate Returns

All Countries Developed Countries All Countries Developed Countries
(a) 0.66 -0.48 0.03 0.14 -0.18 -0.60 0.04 0.35 -0.17 0.01 0.46 -0.18 0.00
NW 4.16 -2.75 9.78 0.77 -0.73 -2.81 6.88 3.08 -1.29 1.02 3.50 -1.08 1.18
B 0.00 0.00 0.00 0.43 0.44 0.01 0.03 0.00 0.31 0.31 0.00 0.36 0.36
(b) 0.66 -0.08 -0.33 0.25 -0.17 0.02 0.13 -0.47 -0.25 0.02 0.35 0.24 -0.31 0.03 0.47 0.28 -0.38 0.03
NW 4.16 -0.64 -1.61 1.70 -1.20 9.61 0.75 -1.61 -1.61 5.98 3.20 2.09 -2.77 11.63 3.62 2.12 -3.11 14.25
B 0.00 0.54 0.06 0.08 0.27 0.15 0.41 0.08 0.07 0.05 0.00 0.04 0.01 0.00 0.00 0.04 0.00 0.00
(c) 0.66 -0.52 0.16 -0.29 0.05 0.14 -0.16 -0.64 -0.33 0.06 0.35 -0.28 0.34 -0.28 0.03 0.46 -0.30 0.39 -0.36 0.04
NW 4.18 -2.97 1.00 -1.62 14.27 0.79 -0.74 -3.02 -2.17 12.53 3.21 -2.20 2.84 -2.72 16.37 3.65 -1.90 2.91 -3.11 19.41
B 0.00 0.00 0.31 0.09 0.00 0.41 0.48 0.01 0.03 0.01 0.00 0.05 0.00 0.01 0.00 0.00 0.12 0.00 0.01 0.00
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Table 4. In-sample analysis: Momentum

The table reports OLS estimates of the momentum strategy. Panel A reports results of the predictive regressions for the momentum strategy ሺ߰ ௐ ெ ). Panel B

displays the exchange rates component of the strategy. NW represents Newey and West (1987) heteroskedasticity and autocorrelation consistent t-statistics,

constructed with the optimal number of lags chosen following Andrews (1991). B denotes the bootstrap p-values based on 10,000 bootstrap iterations. The data

span the period 1985:07-2012:03.

Panel A: Currency Excess Returns

݊ܿ ݏ ො݃ଷ ℎଵ ℎସ തܴଶ ݊ܿ ݏ ො݃ଶ ℎଷ ℎସ ℎ ℎ଼ തܴଶ

All Countries Developed Countries
(a) 0.43 -0.16 0.01 0.13 -0.38 0.02
NW 3.08 -0.63 0.39 1.05 -2.80 4.15
B 0.00 0.38 0.76 0.34 0.04 0.04
(b) 0.43 -0.17 0.28 0.01 0.13 -0.28 -0.28 -0.22 -0.24 0.03
NW 3.19 -1.23 1.60 3.95 1.05 -2.17 -2.02 -1.54 -1.48 9.56
B 0.00 0.24 0.09 0.10 0.34 0.05 0.06 0.12 0.14 0.05
(c) 0.43 -0.14 -0.16 -0.28 0.01 0.13 -0.43 -0.18 0.30 0.04
NW 3.18 -0.55 -1.00 -1.68 3.22 1.05 -3.04 -1.31 1.81 7.62

B 0.00 0.50 0.34 0.08 0.21 0.35 0.02 0.17 0.07 0.02

Panel B: Exchange Rate Returns

All Countries Developed Countries
(a) 0.23 0.06 0.01 -0.1 0.41 0.02
NW 1.38 0.26 0.01 -0.77 2.89 4.47
B 0.30 0.75 0.75 0.48 0.03 0.03
(b) 0.23 0.12 0.45 0.02 -0.10 0.30 -0.30 0.20 -0.22 0.03
NW 1.42 0.74 2.30 5.55 -0.77 2.29 -2.14 1.46 -1.42 9.54
B 0.29 0.31 0.02 0.05 0.48 0.09 0.05 0.15 0.17 0.05
(c) 0.23 0.04 0.11 0.45 0.02 -0.10 0.45 0.17 -0.28 0.04
NW 1.41 0.19 0.69 2.26 6.87 -0.77 3.11 1.24 1.79 8.06
B 0.15 0.85 0.54 0.02 0.07 0.48 0.02 0.19 0.08 0.02
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Table 5. Out-of-sample analysis: Against the Mean

The table presents out-of sample R-squares �ሺܴ ைைௌ
ଶ ) as it is described in Campbell and Thompson (2008) ��ሺܴ ைைௌ

ଶ = 1 − ∑
൫టశభ

 ିఓෝశభ൯
మ

൫టశభ
 ିఓశభ൯

మ
்ିଵ
௧ୀଵ ) , where

Ƹ௧ାଵߤ represents the one-step ahead conditional forecast from the model of interest and ௧ାଵߤ is the historical mean of the payoff. Thus, a positive �ܴ ைைௌ
ଶ statistic

means that the competing model outperforms the benchmark model because it has a lower mean square prediction error. We also report the one-sided p-values

of the MSPE-adj statistic for the competing models described in the passage against the benchmark model following Clark and West (2007). Panel A reports

results for currency excess returns and Panel B for exchange rate changes. The superscript mean represents the mean combined forecast and the superscript

weighted the weighted counterpart. The in-sample period spans the first 180 observations (out of 321) that correspond to the period 1985.07-2000.05.

Panel A: Currency Excess Returns

߰ுெ  ߰ௌ ߰ௐ ெ  ߰ுெ  ߰ௌ ߰ௐ ெ 

ܴைைௌ
ଶ ܯ ܵܲ ݆݀ܽܧ ܴைைௌ

ଶ ܯ ܵܲ ݆݀ܽܧ ܴைைௌ
ଶ ܯ ܵܲ ݆݀ܽܧ ܴைைௌ

ଶ ܯ ܵܲ ݆݀ܽܧ ܴைைௌ
ଶ ܯ ܵܲ ݆݀ܽܧ ܴைைௌ

ଶ ܯ ܵܲ ܧ ݆݀

All Countries Developed Countries

ଵܥ = [ ො݃ଶ] 0.07 0.00 0.01 0.10

ଶܥ = [ℎଶ,ଷ,ସ,] 0.01 0.01

ଶܥ
ᇱ= [ℎଷ, ] 0.04 0.07

ଷܥ = [ ො݃ଶ,ଷ ℎହ, ] 0.10 0.01 0.04 0.05
ଶ,ଷܥ
  0.08 0.00 0.04 0.05

ଶ,ଷܥ
௪௧ௗ

0.08 0.00 0.04 0.05

ଶܦ = [ℎ, ] 0.07 0.00 0.04 0.00

ଷܦ = [ ො݃ଷ ℎ, ] 0.07 0.00 0.05 0.00

ଶ,ଷܦ
  0.07 0.00 0.05 0.00

ଶ,ଷܦ
௪௧ௗ

0.07 0.00 0.05 0.00

ଶܯ = [ℎଵ,ସ ] 0.01 0.14

ଶܯ
ᇱ = [ℎଷ,ସ,,଼] 0.04 0.03

ଷܯ = [ ො݃ଷ ℎସ ] 0.01 0.12

ଷܯ
ᇱ = [ ො݃ଶ ℎ଼] 0.04 0.04

ଶ,ଷܯ
  0.01 0.12 0.05 0.03

ଶ,ଷܯ
௪௧ௗ

0.01 0.12 0.05 0.03
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Table 6. Out-of-sample Performance Measures based on Decision-Rules

The table presents out-of sample (annualized) Sharpe Ratios (Panel A) based on conditional and unconditional payoffs of

the strategies. The conditional strategies are based on the forecasts when considering the optimal set of factors or combined

forecasts. ߰ுெ  denotes the carry trade strategy, ߰ௌ represents the dollar carry trade, ߰ௐ ெ  is the momentum strategy

and ߰ displays the combination of the previous three strategies with equal weights. Panel B displays the corresponding

Skewness and Panel C the certainty equivalent return gain (ȟܴܧܥ), expressed in annual percentage points. In curly brackets

we report p-values estimated based on 10,000 stationary bootstrap samples (Politis and Romano, 1994), for the null

hypothesis that the Sharpe ratios of the conditional strategy do not exceed (statistically) the unconditional counterparts,

which take a position in the FX strategy regardless of the sign of the prediction. The in-sample period spans the first 180

observations (out of 321) that correspond to the period 1985.07-2000.05.

Panel A: Sharpe Ratios

Multiple
Predictors

Combined
Forecasts

Multiple
Predictors

Combined
Forecasts

All Countries Developed Countries
߰ுெ  1.55 1.74 1.12 1.04

B {0.01} {0.02} {0.01} {0.02}
߰ௌ 0.54 0.51 0.72 0.56

B {0.40} {0.45} {0.38} {0.22}
߰ௐ ெ  0.54 0.54 0.44 0.42

B {0.47} {0.46} {0.24} {0.19}
߰ 1.06 1.12 1.06 1.12

B {0.56} {0.52} {0.57} {0.54}

Panel B: Skewness

All Countries Developed Countries
߰ுெ  -0.52 -0.51 -0.61 -0.54
߰ௌ -0.11 -0.79 0.09 -0.35
߰ௐ ெ  0.34 0.34 0.02 -0.04
߰ 0.75 0.93 0.75 0.93

Panel C: Δܴܧܥ

All Countries Developed Countries
߰ுெ  0.10 0.09 0.04 0.05
߰ௌ 0.12 0.12 0.06 0.06
߰ௐ ெ  -0.07 -0.07 -0.12 -0.06
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Table 7. In-Sample Analysis & Certainty Equivalent Return Gain: Non-U.S. Dollar-
Based Investors – Carry Trades

The table reports results for alternative non-U.S. base currencies, namely the British pound (GBP), Swiss franc (CHF),

Canadian dollar (CAD), Swedish Krona (SEK), Japanese yen (JPY) and Australian dollar (AUD). Panel A shows OLS

estimates for the carry trade strategy for the sample of All Countries. The dependent variable is the currency excess return

ሺ߰ ுெ ) based on the carry trade strategy, or the exchange rate component (ȟݏுெ ) of the strategy. NW represents Newey

and West (1987) corrected for autocorrelation and heteroskedasticity t-statistics with the optimal number of lags following

Andrews (1991). B denotes the bootstrap p-values based on 10,000 bootstrap iterations. The data span the period 1985:07-

2012:03. Panel B presents the certainty equivalent return gain (ȟܴܧܥ), expressed in annual percentage points based on

conditional and unconditional payoffs of the strategies. The conditional strategies are based on the forecasts when

considering the optimal set of factors or combined forecasts. The in-sample period spans the first 180 observations (out of

321) that correspond to the period 1985.07-2000.05.

Panel A: Excess Returns and Exchange Rate Changes

݊ܿ ݏ ො݃ଶ,௧ ො݃ଶ,௧ି ଷ ො݃ଷ,௧ି ଷ ℎଶ ℎ തܴଶ ݊ܿ ݏ ො݃ଶ,௧ ො݃ଶ,௧ି ଷ ො݃ଷ,௧ି ଷ ℎଶ ℎ തܴଶ

GBP CHF
߰ுெ  1.23 0.72 -0.49 -0.37 0.21 0.29 0.07 0.95 0.60 -0.37 -0.34 0.33 0.31 0.08
NW 7.85 2.87 -2.55 -2.54 1.48 2.08 27.53 6.10 2.48 -1.91 -2.22 2.27 2.22 32.80
B 0.00 0.00 0.02 0.00 0.16 0.05 0.00 0.00 0.00 0.10 0.01 0.03 0.02 0.00
Δݏுெ  -0.01 -0.71 0.36 0.32 0.08 -0.24 0.06 0.22 -0.62 0.28 0.31 -0.03 -0.25 0.05
NW -0.08 -3.30 2.10 2.22 0.65 -1.85 23.21 1.55 -2.95 1.56 2.15 -0.25 -1.81 19.91
B 0.93 0.00 0.09 0.01 0.65 0.09 0.00 0.11 0.00 0.24 0.01 0.75 0.07 0.00

CAD SEK
߰ுெ  0.95 0.75 -0.50 -0.39 0.28 0.28 0.09 0.83 0.69 -0.49 -0.39 0.29 0.26 0.08
NW 6.02 2.93 -2.49 -2.67 1.91 1.91 32.87 5.43 2.59 -2.45 -2.59 1.91 1.81 32.76
B 0.00 0.00 0.02 0.00 0.06 0.06 0.00 0.00 0.00 0.02 0.00 0.06 0.07 0.00
Δݏுெ  0.23 -0.73 0.37 0.33 0.00 -0.22 0.06 0.30 -0.67 0.36 0.34 0.00 -0.21 0.05
NW 1.57 -3.45 2.08 2.20 0.00 -1.61 23.15 2.16 -3.02 2.04 2.23 0.01 -1.53 21.03
B 0.11 0.00 0.08 0.01 0.92 0.10 0.00 0.03 0.00 0.10 0.01 0.92 0.13 0.00

JPY AUD
߰ுெ  0.91 0.63 -0.39 -0.34 0.33 0.30 0.08 0.88 0.74 -0.51 -0.34 0.30 0.23 0.09
NW 5.65 3.04 -2.44 -2.45 2.56 2.36 36.46 5.97 2.92 -2.62 -2.67 2.11 1.73 38.82
B 0.00 0.00 0.04 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.00 0.04 0.09 0.00
Δݏுெ  0.24 -0.66 0.29 0.32 -0.04 -0.23 0.05 0.28 -0.71 0.35 0.29 0.02 -0.20 0.06
NW 1.64 -3.57 1.93 2.33 -0.30 -1.80 21.95 2.06 -3.38 2.04 2.22 0.14 -1.53 24.44
B 0.09 0.00 0.17 0.01 0.72 0.09 0.00 0.04 0.00 0.08 0.02 0.98 0.13 0.00

Panel B: Δܴܧܥ

Multiple Predictors Combined Forecasts Multiple Predictors Combined Forecasts

߰ீ

ுெ 

0.32 0.16 0.10 0.12
߰
ுி
ுெ 

0.25 0.20 0.06 0.10
߰

ுெ 

0.27 0.17 0.05 0.08
߰
ௌா
ுெ 

0.21 0.15 0.04 0.06
߰

ுெ 

0.31 0.23 0.05 0.09
߰

ுெ  0.24 0.12 0.05 0.06
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Table 8. Conditional Predictive Regressions

The table reports OLS estimates of conditional predictive regressions. Panel A reports results of the predictive regressions for the carry, dollar carry and

momentum strategies ሺ߰ ுெ ǡ߰ ௌ ǡ߰ ௐ ெ ) in the presence of the Bakshi and Panayotov (2013) predictors ܤܴܥ߂) ǡߪ߂
௫
ǡܫܳܮ߂ ). Panel B offers results of

in-sample estimates of the common factors conditional on the information provided by the average forward discounts .(ܦܨܣ) NW represents Newey and West

(1987) heteroskedasticity and autocorrelation consistent t-statistics, constructed with the optimal number of lags chosen following Andrews (1991). B denotes

the bootstrap p-values based on 10,000 bootstrap iterations. The data span the period 1985:07-2012:03.

Panel A: Bakshi and Panayotov (2013) predictors

݊ܿ ݏ ො݃ଶ,௧ ො݃ଷ,௧ ℎଷ,௧ ℎସ,௧ ℎ,௧ ℎ,௧ ௧ܤܴܥ߂ ௧ߪ߂
௫

ܫܳܮ߂ ௧
തܴଶ ݊ܿ ݏ ො݃ଶ,௧ ො݃ଶ,௧ି ଶ ො݃ଷ,௧ ℎସ,௧ ℎ,௧ ℎ଼ ,௧ ℎଽ,௧ ௧ܤܴܥ߂ ௧ߪ߂

௫
ܫܳܮ߂ ௧

തܴଶ

All Countries Developed Countries
߰ுெ  0.37 0.60 -0.35 0.39 -7.93 -1.25 2.19 0.05 0.15 0.62 -0.65 0.06 21.48 -3.09 1.83 0.09
NW 2.28 3.08 -1.62 2.07 -1.06 1.76 1.41 19.02 1.48 2.45 -3.35 0.33 2.10 -1.90 1.48 21.06
B 0.01 0.00 0.05 0.04 0.42 0.08 0.04 0.00 0.39 0.02 0.00 0.76 0.06 0.06 0.34 0.00
߰ௌ 0.26 -0.29 0.21 0.23 -0.27 6.32 -2.75 0.52 0.06 0.42 -0.29 0.28 -0.28 5.60 -3.52 0.93 0.05
NW 2.42 -1.75 1.87 1.79 -2.65 1.13 -1.82 0.47 28.35 3.21 -1.38 1.97 -2.26 0.80 1.96 0.73 18.61
B 0.03 0.09 0.08 0.06 0.01 0.45 0.05 0.69 0.00 0.00 0.14 0.05 0.02 0.56 0.03 0.53 0.00
߰ௐ ெ  0.44 -0.19 0.28 0.87 -1.27 -1.99 0.01 0.08 -0.59 0.20 0.28 -0.30 14.35 -1.70 -2.27 0.05
NW 3.10 -1.06 1.92 0.09 -0.85 -1.12 6.38 0.63 -3.08 1.52 1.82 -1.62 1.71 -1.19 -1.65 15.52
B 0.00 0.42 0.06 0.93 0.39 0.14 0.27 0.57 0.00 0.20 0.08 0.06 0.10 0.21 0.12 0.02

Panel B: Average Forward Discounts

݊ܿ ݏ ො݃ଶ,௧ ො݃ଷ,௧ ො݃ଷ,௧ି ଷ ℎସ,௧ ℎ,௧ ℎ,௧ ௧ܦܨܣ തܴଶ ݊ܿ ݏ ො݃ଵ,௧ ො݃ଶ,௧ ො݃ଷ,௧ ℎଷ,௧ ℎସ,௧ ℎ,௧ ℎ,௧ ℎ଼ ,௧ ௧ܦܨܣ തܴଶ

All Countries Developed Countries
߰ுெ  0.50 0.46 -0.37 0.43 -1.63 0.07 0.41 0.36 0.40 0.46 -2.00 0.05
NW 2.31 2.09 -2.35 3.14 -1.19 24.62 2.01 1.62 1.91 2.93 -1.56 14.08
B 0.00 0.01 0.00 0.00 0.14 0.00 0.28 0.12 0.10 0.00 0.10 0.01
߰ௌ 0.34 -0.23 0.37 -0.34 -0.18 0.05 0.55 -0.28 0.43 -0.38 -0.76 0.04
NW 2.85 -1.80 2.95 -2.91 -0.22 18.71 3.88 -1.91 3.06 -2.94 -0.80 16.34
B 0.00 0.10 0.00 0.01 0.80 0.00 0.00 0.14 0.00 0.01 0.38 0.00
߰ௐ ெ  0.36 -0.18 0.28 0.85 0.01 0.01 -0.25 0.28 0.30 1.38 0.03
NW 2.40 -0.79 1.74 0.20 4.16 0.06 -1.92 2.01 1.73 1.75 8.94
B 0.03 0.34 0.08 0.36 0.24 0.95 0.24 0.07 0.08 0.08 0.07
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Table 9. Robustness: In-sample analysis - DB Indices

The table reports OLS estimates for Deutsche Bank (DB) indices. In Panel A the dependent variable is the currency excess returns of the DB global and G10

currency carry trade strategies. Panel B reports results for the DB value and momentum strategies. NW represents Newey and West (1987) corrected for

autocorrelation and heteroskedasticity t-statistics with the optimal number of lags following Andrews (1991). B denotes the bootstrap p-values based on 10,000

bootstrap iterations. The data span the period 2000:12-2012:03 for the Global and G10 Carry trade and the period 1989:09-2012:03 for value and momentum.

Panel A: Currency Harvest USD

݊ܿ ݏ ො݃ଶ,௧ ො݃ଶ,௧ି ଷ ℎଶ,௧ ℎଷ,௧ ℎହ,௧ തܴଶ ݊ܿ ݏ ො݃ଵ,௧ି ଵ ො݃ଶ,௧ ො݃ଶ,௧ି ଷ ො݃ଷ,௧ି ଷ ℎଷ,௧ ℎହ,௧ ℎ,௧ തܴଶ

Global G10
(a) 0.52 0.82 -0.76 0.09 1.32 0.84 0.37 -0.84 0.40 0.14
NW 1.77 2.64 -4.31 13.79 3.46 2.90 1.36 -3.98 2.04 14.49
B 0.11 0.01 0.00 0.00 0.02 0.01 0.26 0.00 019 0.00
(b) 0.34 0.40 0.53 0.64 0.07 0.43 0.50 0.42 0.39 0.09
NW 0.97 1.36 1.98 2.79 7.46 2.35 1.92 1.63 2.75 9.46
B 0.46 0.31 0.05 0.05 0.05 0.04 0.10 0.22 0.03 0.02
(c) 0.27 0.37 -0.74 0.61 0.55 0.41 0.12 0.79 -0.70 0.42 0.75 0.37 0.16
NW 0.94 1.24 -4.75 2.35 1.57 2.03 20.91 3.25 -3.89 2.02 3.31 1.68 12.46
B 0.57 0.31 0.00 0.07 0.16 0.06 0.00 0.00 0.01 0.21 0.01 0.26 0.01

Panel B: Value & Momentum

݊ܿ ݏ ො݃ଵ,௧ି ଷ ො݃ଷ,௧ ℎଶ,௧ ℎଷ,௧ ℎସ,௧ തܴଶ ݊ܿ ݏ ො݃ଷ,௧ି ଶ ො݃ଷ,௧ି ଷ ℎଷ,௧ ℎସ,௧ തܴଶ

FX PPP FX Momentum
(a) 0.20 -0.34 0.26 0.02 0.17 -0.41 -0.33 0.04
NW 1.22 -2.48 1.02 6.98 1.10 2.15 -2.21 3.90
B 0.21 0.04 0.17 0.03 0.44 0.03 0.04 0.03
(b) 0.21 0.26 -0.32 0.19 0.02 0.15 -0.25 0.38 0.03
NW 1.30 1.66 -2.33 1.46 9.30 0.94 -0.99 3.15 5.48
B 0.19 0.11 0.02 0.18 0.03 0.37 0.20 0.00 0.06
(c) 0.17 -0.40 0.26 -0.23 0.31 0.04 0.14 -0.42 -0.35 -0.13 0.44 0.07
NW 1.08 -2.77 1.14 -1.39 2.34 14.40 0.93 -2.42 -2.68 -0.58 3.33 16.98
B 0.28 0.02 0.17 0.23 0.05 0.01 0.36 0.00 0.06 0.58 0.00 0.00
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Figure 1. Cumulative Payoffs from Currency Strategies

The figure presents cumulative payoffs for the carry trade, the dollar carry trade and the momentum strategy for the period 1985:07 to 2012:03.
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Figure 2. Marginal R-squares for each Domestic and Global factor

The figure shows the R-squares from regressing the series number given on the x-axis on each factor. Graphs A-G report results for U.S. common factors

(ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ, ℎ, ℎ଼ ) and Graphs H-J display marginal R-squares for the global factors ( ො݃ଵ, ො݃ଶ, ො݃ଷ). The factors are estimated over 1985:07 to 2012:03.
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Figure 3. Rolling Sharpe Ratios of Conditional and Unconditional Strategies

The figures display rolling Sharpe ratios (estimated over each year) of the conditional and unconditional strategies, when using the

optimal set of domestic and global factors as well as combined forecasts. The dashed line represents the unconditional payoffs and

the solid line shows the conditional payoffs when we use the optimal set of factors (black) or combined forecasts (blue). We

consider the group of All countries. The shaded areas represent the NBER recessions of the U.S. economy. The in-sample period

spans the first 180 observations (out of 321) that correspond to the period 1985.07-2000.05.
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Graph B. Dollar Carry Trade
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Graph C. Momentum
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Graph D. Multiple Strategies
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