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Abstract

Condensation is a special class of phase transition which has been observed
throughout the natural and social sciences. The understanding of the critical be-
haviour of such systems is a very active area of current research, in particular a
mathematical description of the formation and time evolution of the condensate. In
this thesis we study these phenomena in several models. In particular we focus on
the recently introduced inclusion process, and we compare it with related classical
mass transport models such as zero range processes.

We first give a brief review of relevant definitions and properties of interacting
particle systems, in particular recent literatures on the condensation and stationary
behaviour of a large class of interacting particle systems with stationary product
measures, which forms the theoretical basis of this thesis.

The second part of this thesis is on the dynamics of condensation in the
inclusion process on a one-dimensional periodic lattice in the thermodynamic limit.
This generalises recent results which were limited to finite lattices and symmetric
dynamics. Our main focus is firstly on totally asymmetric dynamics which have not
been studied before, which we compare to exact solutions for symmetric systems.
We identify all the relevant dynamical regimes and corresponding time scales as
a function of the system size, including a coarsening regime where clusters move
on the lattice and exchange particles, leading to a growing average cluster size.
After establishing the general approach to study dynamics of condensation in totally
asymmetric processes, we extend the results to more general partially asymmetric
cases as well as higher dimensional cases.

In the third part of this thesis we derive some preliminary exact results
on symmetric systems through duality, which recovers heuristic results in previous
chapter and allows us to treat coarsening in the infinite lattice directly.

viii
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Chapter 1

Introduction

Since the fundamental work initiated by Boltzmann in 1870s, the aim of statisti-

cal mechanics has been to understand a large class of phenomena in macroscopic

systems in terms of microscopic components governed by local dynamics. Such sys-

tems exist everywhere in natural and social sciences, from granular materials to

quantum gravity, from molecular and cellular biology systems to generic dynamics

in evolution, from tra�c dynamics to wealth distributions. In principle, microscopic

dynamics in such systems usually follow well-known, relatively simple dynamics and

interactions. Since a precise description of the system at the microscopic level is un-

realistic due to the large number of particles involved, it is possible to approximate

such systems in a probabilistic way. It is neither feasible nor required, to predict

the accurate dynamics of a single component in the system, since they are usu-

ally sensitive to initial conditions and microscopic details. One is rather interested

in understanding macroscopic measurable quantities of the system, such as granu-

lar clustering rates or critical car density on motorways causing tra�c congestion.

Therefore the microscopic components can be approximated as certain postulated

distributions with e↵ective noise. The exact origin of this noise is usually ignored,

since macroscopically behaviour of the system is robust with respect to such details.

Mathematically, expected values of a number of chosen observables corre-

sponding to measurable functions of the microscopic states are often used to describe

the system. These observables are in general determined by macroscopic quantities,

such as temperature, particle density and total energy, in the limit of large sys-

tems and possibly after appropriate equilibration of time. Macroscopic quantities

are usually time invariant or slowly varying with respect to microscopic interact-

ing dynamics, and a system is often observed in a stationary situation. However,

continuously varying system parameters across certain critical values could lead

to a qualitative di↵erences in the stationary behaviour, which is often linked to

1



2

singularities in some thermodynamic functions. This phenomenon is known as a

phase transition. Understanding how the phase transitions, and their associated

macroscopic dynamics, depend on the system’s microscopic dynamics is one of the

fundamental tasks of statistical mechanics, and also the primary aim of this thesis.

Through the past century, there has been a very well developed understand-

ing of systems in equilibrium with their surroundings. In such systems, an energy

function governs the dynamics and the stationary behaviour. The dynamics, if con-

sidered at all, are assumed to be ergodic and reversible with respect to the stationary

distribution. While there is a general theory of phase transitions in equilibrium sys-

tems [2] in the context of Gibbs measures [3], the phase transition of systems out of

equilibrium lacks a general formalism and has drawn great research interests since

the 1970s. To better understand the phenomenon of phase transitions, a branch

of probability theory, namely the interacting particle systems, has been developed

in the 1970s by Spitzer [4]. The original objective of interacting particle systems

was to describe and analyse stochastic models for the temporal evolution of systems

where equilibrium measures are the classical Gibbs states. Then, research in recent

decades has shown that a wide variety of models with similar mathematical struc-

tures can be naturally formulated in the same way. Precisely, interacting particle

systems are defined as continuous-time Markov processes on discrete state spaces

(see details in Chapter 2). The microscopic behaviour is described through certain

dynamics of jumping particles and their interactions. For its applications in natural

and social sciences, the concept of ‘particles’ can be adapted in specific applications

to represent various objectives far beyond physical particles, such as vehicles in a

motorway, birds in a flock, proteins in a biological tissue or even certain information

in a network.

For an interacting particle system, a conservation law is one of the main fea-

tures determining its behaviour, both dynamical and stationary. In many systems,

there are quantities locally conserved with respect to time evolution and can only

be transported to or from other systems through boundaries, for example vehicles

moving in a single direction motorway between two junctions. Systems without

conservation laws are also common, examples include opinions in an election or peo-

ple infected by certain diseases. These systems are often characterised by di↵erent

dynamics and contain phase transitions into absorbing states, such as all patients

are recovered or infected in an infection model. In this thesis, we focus on inter-

acting particle systems defined on lattices with local conservation of the number

of particles. A series of simplified models has been introduced in [4] to provide

insights into the essential features in such systems, which can be divided into two
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basic types depending on the restriction of number of particles per site. The first

type is restricted to maximally one or a finite number of particles per site, and

among them the asymmetric simple exclusion process (ASEP) is the elementary

model, where particles on a one-dimensional lattice can only jump to nearest neigh-

bour empty sites with biased rates. It was first introduced in [5] and then studied

in a large volume of publications summarised in, e.g., [6, 7, 8]. The second type,

without restrictions on particles residing per site, are relatively more complicated,

and have drawn great research interests recently. The most basic such model is the

zero range process (ZRP), where particles jump to other sites on the lattice with

a rate that only depends on the number of particles residing on the departure site

(zero-range interaction). Its simple product form of stationary measures (see details

in Chapter 2) allows for a detailed analysis of its phase transitions on a rigorous

level [9, 10, 11, 12]. Recent results and applications of the ZRP can be found in

[9, 13, 14] and references therein.

The main model in this thesis, the inclusion process, is a recently introduced

interacting particle system, in which particles perform independent random walks on

a lattice and interact via an attractive mechanism. The interaction rates depend on

occupation numbers of both departure and target sites. It was originally introduced

in 2007 as a dual process of a heat conduction model [15], and then further developed

as a bosonic counterpart of the exclusion process in [16]. Besides its application in

energy transportation, this model can also be interpreted as a multi-allele version of

the Moran model [17] which describes generic dynamics in finite populations. It can

also be applied in the field of econophysics as a model of kinetic wealth distribution,

which is a large class of processes modelling the transitions of preserved total wealth

between agents in an economy.

As mentioned above, phase transition is a main research area in statistical

mechanics, and one of the most ubiquitous forms of phase transitions in nature is

condensation. In a narrow sense, condensation is defined as a certain type of matter

transition from a gas form to a liquid form. Fog in a cold morning, water drops on

a bottle of cold beer and rain or snow formation within clouds are all examples of

condensation. It is also widely used in industries such as liquid oxygen production

and oil refinery. In statistical mechanics, the concept of condensation has been gen-

eralised to describe systems where a finite fraction of a conserved quantity becomes

localised in the phase space with respect to real or momentum space. Condensation

in this generalised sense has been observed in a wide variety of fundamental models

of dynamical processes. These include tra�c flow [18, 19, 20, 21], the flow of wealth

[22] and hub formation in complex networks [23, 24], where zero range processes have
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been established as fundamental and minimal models to well describe such systems.

In fact, the condensed phases can have variant forms from the ones described in

those models. For example, the fraction of the total system mass in the conden-

sate can be 1, leading to a complete condensate [25, 26]; the condensed phase can

present a number of smaller mesocondensates [27] or finite-size quasi-condensates

[28]. Notice, the existence of a condensed phase is not unique to models based on

the ZRP or with factorised steady states [29]. A recent study in [30] show that

a non-Markovian simple exclusion process exhibits an immobile condensate phase.

The condensates discussed above are static, in the sense that they reside on certain

parts of space for a long time then dissolve due to large fluctuations and reform

somewhere else [10]. However, mobile condensates are often observed in a variety of

physical models, and models with moving condensates are in general less well un-

derstood compared with the static ones, and so far there is no general theory about

this phenomenon. The inclusion process studied in this thesis is thought to be one

fundamental model to understand such systems. A similar model with interactions

in a non-linear form has also been studied recently in [31, 32]. Other related models

that have been studied in this area include the chipping model [33, 34] where all the

mass from a site can move to a neighbouring site while a single unit of mass can

chip o↵ from the departure site and jump to an adjacent site, and a ZRP-like model

with non-Markovian transition rates [35, 36].

In addition to characterising the stationary properties of condensation in in-

teracting particle systems, understanding the dynamics of condensation poses a very

natural and interesting problem. The coarsening behaviour in condensing systems

has been studied heuristically in [11] and subsequent work for ZRP [9, 10, 12, 13, 37]

and related models [38, 39, 40]. There is also a significant literature on the dynamics

of condensation in spatially heterogeneous models (see [14] and references therein).

For the symmetric inclusion process, the dynamics of the condensate formation and

subsequent motion have been studied rigorously in [41] in the limit of infinitely many

particles on a fixed, finite lattice. In this thesis we aim to investigate such dynamics

in more general inclusion processes, both heuristically and rigorously, on one and

two dimensional lattices.

The thesis is organised as follows: In Chapter 2 we give precise definitions

of the models and mathematical tools used in this thesis and summarise results re-

lated to our work. In Chapter 3, we investigate the dynamics of condensation in the

totally asymmetric inclusion process defined on a one-dimensional lattice, character-

ising four dynamical regimes. In Chapter 4, we extend our results to more general

partially asymmetric inclusion process, which exhibit richer interaction mechanisms.
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In Chapter 5 we investigate the dynamics of condensing inclusion process on two

and higher dimensional lattices, with particular emphasis on symmetric systems. In

Chapter 6, we derive some exact results on symmetric systems through duality.



Chapter 2

Interacting Particle Systems

In this chapter we give precise definitions of the stochastic particle systems that

are studied in this thesis, and briefly review some relevant previous results. In Sec-

tion 2.1 we introduce standard notations and results for general stochastic particle

systems, including some key definitions used in this thesis, such as generator, sta-

tionary measure and transition rate. In Section 2.2 we briefly review results on a

family of stochastic particle systems with stationary product measures following a

recent review [42], with a particular emphasis on condensation. In Section 2.3 we

summarise results of several particular models from a series of recent papers.

2.1 Definitions

In this section we give introductory definitions of stochastic particle systems largely

following contents covered in [6, 43]. Definitions and theorems from a more mathe-

matical point of view are put in Appendix A for completeness, and more results on

general Markov chains can also be found in the literature, for example [44, 45].

2.1.1 Interacting particle system, Markov semigroup and generator

Interacting particle systems are continuous time Markov processes defined on dis-

crete state spaces. The dynamics in these processes are specified by giving the

infinitesimal rates at which particle transitions occur.

The state space of a process is the set containing all possible configurations

and is denoted by X = E⇤ , where E is the countable local state space and ⇤ is the

lattice. Throughout this thesis we restrict to E = N and ⇤ to be a finite subset of

Z ˆ

d, and we denote a lattice that contains L sites as ⇤
L

. Configurations are denoted

by ⌘ = (⌘
x

: x 2 ⇤) 2 X , where ⌘
x

2 E is the number of particles on site x 2 ⇤.

6
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The generic probability space ⌦ of a continuous-time Markov chains is the

space of right-continuous paths

⌦ =

(

⌘ : [0, +1)! X

�

�

�

�

�

⌘(t) = lim
s&t

⌘(s)

)

.

For a given ⌘(·) 2 ⌦ the function t 7! ⌘(t) is called a sample path.

Definition 2.1. A continuous-time stochastic process with state space X is a family

(⌘(t) : t � 0) of random trajectories in the path space ⌦. The process is called

Markov if for all A ✓ ⌦

P⌘ [⌘(t + .) 2 A| (⌘(s) : s  t)] = P⌘(t) [⌘(.) 2 A] . (2.1)

If X is discrete, the Markov process is called a continuous-time Markov chain.

The expectation with respect to P⌘ is denoted by

E⌘[f ] =

Z

D[0,+1)

f dP⌘ (2.2)

for any integrable function f on ⌦. The local dynamics of interacting particle

systems are described by a collection of transition rates, denoted by c(⌘,⌘0) � 0,

for every ⌘,⌘0 2 X. It represents the rate at which the system jumps from state ⌘

to state ⌘0. Intuitively we can write

P⌘
⇥

⌘(�t) = ⌘0⇤ = c(⌘,⌘0)�t + o(�t) as �t& 0 for ⌘ 6= ⌘0. (2.3)

The probability of a transition from state ⌘ to state ⌘0 in a small time interval �t is

then c(⌘,⌘0)�t.

A variety of interacting particle systems have been introduced in [4]. Through-

out this thesis we focus on processes with local conservation of particle numbers,

called the lattice gases, where particles move on lattices without being created or

annihilated. For compact local state spaces, there is a general theory on how to

define interacting particle systems through continuous test functions and the Hille-

Yosida theorem [43] even on infinite lattices. One may notice that strictly (2.3) can

only hold on finite ⇤, otherwise the probability on the left hand side is typically 0

for any t > 0. In fact, for infinite systems with non-compact state spaces, which

include the models studied in this thesis, there is no general theory to guarantee

a well defined process. The current method of definition on infinite lattices is case

by case and requires more restrictive assumptions on test functions and transition



2.1. Definitions 8

rates. An example of defining a ZRP on an infinite lattice can be found in [46] .

The symmetric inclusion process on infinite lattices can be defined through duality

(cf. [47]). However for general inclusion processes it is an interesting theoretical

problem which has not been studied so far. In this thesis, we do not define the

models on infinite lattices directly, but only study models defined on finite lattices

in the limit of large system size. In this case, the state spaces are not compact,

but countable. Therefore, we can define our models through standard methods for

Markov chains [43, 45].

Let Cb(X) denote the collection of continuous and bounded functions on X,

Cb(X) := {f : X ! R | f is continuous and bounded} .

Throughout this thesis, we regard functions in Cb(X) as observables, and we study

the dynamics through the time evolution of expected values of particular observables.

For example, we study the dynamics of inclusion processes through second moment

and nearest-neighbour product defined as the following:

Definition 2.2. For translation invariant interacting particle system (⌘(t), t � 0)

defined on a lattice ⇤, we define the second moment as

�2(t) := E[⌘2
x

(t)] for some x 2 ⇤. (2.4)

And the nearest-neighbour product as

c(1, t) := E[⌘
x

(t)⌘
x+1

(t)] for some x 2 ⇤. (2.5)

Both of these observables are x-independent if the initial distribution is trans-

lation invariant, and �2(t) is the simplest observable capturing the temporal evo-

lution of processes defined on lattices with periodic boundary conditions, like most

models studied in this thesis. Generally, it is possible to consider functions outside

Cb(X), however Cb(X) is su�cient to describe the distribution of Markov chains as

a consequence of the Riesz representation theorem (see, e.g., [48, Theorem 2.14]).

For a given process (⌘(s), s � 0) on X and any s � 0, we now define an

operator 1

S(t) : Cb(X)! Cb(X) as S(t)f(⌘) = E⌘ [f(⌘(t))] , (2.6)

to construct the Markov semigroup in the following sense.

1In general f 2 Cb(X) does not imply S(t)f 2 Cb(X), processes that have this property are
called Feller processes (See Appendix A). All processes we consider throughout this thesis are Feller.
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Definition 2.3. A collection of linear operators {S(t), t � 0} on Cb(X) is called a

Markov semigroup if it satisfies the following properties:

(a) S(0) = I, the identity operator on Cb(X).

(b) For every f 2 Cb(X), t 7! S(t)f is right-continuous.

(c) S(t + s)f = S(t)S(s)f for all f 2 Cb(X) and all s, t � 0 (Markov property).

(d) S(t)1 = 1 for all t � 0. 2

(e) S(t)f � 0 for all non-negative f 2 Cb(X).

The importance of Markov semigroups lies in the fact there is an one-to-one

correspondence between a Markov semigroup and a Markov process: for a Markov

process (⌘(t), t � 0), a family of linear operators defined in Definition 2.3 is a

Markov semigroup; on the other hand, for a Markov semigroup {S(t), t � 0} defined

on Cb(X), there exists a unique Markov process (⌘(t), t � 0) such that S(t)f(⌘) =

E⌘ [f(⌘(t))] for all t � 0. Rigorous proofs of this property can be found in many text

books, for example [43]. For a given Markov process, the corresponding semigroup

could fully describe the time evolution of the expected values of observable S(t)f 2
Cb(X), and the expectation of observables at time t > 0 with respect to the initial

distribution µ is given by

Eµ [f(⌘(t))] =

Z

X

(S(t)f) (⇣)µ[d⇣] =

Z

X

S(t)f dµ for all f 2 Cb(X).

Intuitively, one can understand the semigroup defined in Definition 2.3 as

being generated by the ‘time derivative’ of S(t) at time zero, S0(0), in an exponential

form as S(t) = exp(tS0(0)) = 1+ S0(0)t + o(t), as t! 0. Formally, the generator of

{S(t), t � 0} is defined as the following.

Definition 2.4. The (infinitesimal) generator L : Cb(X) ! Cb(X) of a Markov

semigroup {S(t), t � 0} (see Definition 2.3) is given by

Lf = lim
�t&0

S(�t)f � f

�t
for f 2 Cb(X). (2.7)

The Hille-Yosida theorem (see Theorem A.3 in Appendix A) says that, under

certain conditions, there is a one-to-one correspondence between Markov generators

and semigroups on Cb(X). Formally, S(t) = etL in the sense that for every f 2
2Here 1 is the function constantly equal to 1
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Cb(X), S(t)f is the solution of

d

dt
S(t)f = S(t)Lf = LS(t)f (2.8)

which are called forward and backward equation, respectively. On finite state

space X, S(t) = etL can be understood simply in terms of matrix exponentials.

With the transition rate c(⌘,⌘0) in (2.3), we can compute the generator

directly as for small �t& 0,

S(�t)f(⌘) = E⌘ [f(⌘(�t))] =
X

⌘02X
f(⌘0)P⌘[⌘(�t) = ⌘0]

=
X

⌘0 6=⌘

c(⌘,⌘0)f(⌘0)�t + f(⌘)

0

@1�
X

⌘0 6=⌘

c(⌘,⌘0)�t

1

A+ o(�t),

which implies

Lf(⌘) =
X

⌘02X
c(⌘,⌘0)(f(⌘0)� f(⌘)),

where we used c(⌘,⌘) = 0 for all ⌘ 2 X. The definitions of semigroup and generator

implies the following equation to describe the time evolution of expected values of

an observable, which is used in the computations in following chapter,

d

dt
E⌘ [f(⌘(t))] = E⌘ [(Lf)(⌘(t))] .

There is another common equivalent approach to describe above Markov chains

in terms of the master equation, which we also briefly introduce here. Define the

indicator function I⌘ : X ! {0, 1} as

I⌘(⇣) =

8

<

:

1, if ⇣ = ⌘

0, otherwise
,

which is bounded and in fact forms a basis of Cb(X) on finite lattices. Denote the

probability distribution on X at time t starting from initial distribution µ as

p
t

[⌘] =

Z

X

S(t)I⌘dµ, (2.9)
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and substitute it into forward equation (2.8) to get

d

dt
p
t

[⌘] =

Z

X

S(t)LI⌘dµ =
X

⇣2X
p
t

[⇣]
X

⇣02X
c(⇣, ⇣0)(I⌘(⇣0)� I⌘(⇣))

=
X

⇣2X
p
t

[⇣]c(⇣,⌘)� p
t

[⌘]
X

⇣02X
c(⌘, ⇣0).

The last line is indeed the master equation

d

dt
p
t

[⌘] =
X

⇣2X
(p

t

[⇣]c(⇣,⌘)� p
t

[⌘]c(⌘, ⇣)) , (2.10)

where the two terms on the right-hand side are called gain and loss terms, respec-

tively. It can be shown that it is equivalent to the forward equation (2.8) when the

indicator functions form a basis of Cb(X). This is valid on countable state space X

only, which requires the lattice ⇤ to be finite.

2.1.2 Stationary measures

Definition 2.5. A probability measure ⌫ defined on X is stationary or invariant

if

⌫(S(t)f) = ⌫(f), for all f 2 Cb(X).

Here and in the rest of this thesis, we use the notation ⌫(f) =
R

X

f d⌫ for

the expectation of f with respect to a measure ⌫ on the state space X. From the

definition of the stationary measure, with notation (2.9) we have: if ⌫ is stationary

and p
0

= ⌫, then p
t

= ⌫ for all t � 0. Recalling that indicator functions form a basis

of Cb(X) when ⇤ is finite and the master equation (2.10), it can be shown that a

measure ⌫ is stationary if and only if it solves the system of di↵erential equations,

d

dt
⌫[⌘] =

X

⇣2X
(⌫[⇣]c(⇣,⌘)� ⌫[⌘]c(⌘, ⇣)) = 0 , for all ⌘ 2 X.

In terms of the generator, this is equivalent to the following proposition.

Proposition 2.1. A measure ⌫ defined on X is stationary if and only if

⌫(Lf) = 0 for all f 2 C(X)

Proof. See Proposition 2.13 in [43].

Recall the notation of the probability distribution at time t as p
t

given in

(2.9), we define ergodicity and irreducibility of a Markov process as the following:
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Definition 2.6. A Markov process (⌘(t), t � 0) with semigroup {S(t), t � 0} is

ergodic if there exists a unique stationary distribution ⇡ and ,

lim
t!1

p
t

= ⇡ for any initial distribution p
0

.

Definition 2.7. A Markov process (⌘(t), t � 0) is irreducible if for all ⌘, ⌘0 2 X,

P⌘
⇥

⌘(t) = ⌘0⇤ > 0 for some t > 0

Generally, not every Markov process has a stationary distribution. But for

all the models defined on finite state spaces and studied in this thesis, there exists

at least one stationary distribution. Irreducibility of a Markov chain guarantees

all states in the state space can be reached from any initial state. In fact, it also

implies there is at most one stationary distribution (see detailed discussion in [45,

Section 3.5]). An irreducible Markov process defined on a finite state space is always

ergodic, this is the case for most processes we consider in the rest of this thesis.

Definition 2.8. A measure ⌫ is reversible with respect to the semigroup {S(t), t �
0} if

⌫(fS(t)g) = ⌫(gS(t)f) for all f, g 2 Cb(X).

In terms of generator, this is equivalent to

⌫(fLg) = ⌫(gLf) for all f, g,2 Cb(X).

Every reversible measure is obviously stationary, which can by shown by

taking g = 1 in the definition. If ⌫ is stationary, the process ⌘(t) with initial

distribution ⌫ has the same joint distributions as ⌘(t + s) for s 2 [0, +1). It then

can be extended to negative time (�1, +1), and if ⌫ is also reversible, ⌘(t) and

⌘(�t) have the same joint distributions. One can substitute indicator function into

above definition to get the following proposition

Proposition 2.2. A measure ⌫ on a countable state space X is reversible for the

process with transition rates c(·, ·) if and only if it fulfils the detailed balance

conditions

⌫(⌘)c(⌘, ⇣) = ⌫(⇣)c(⇣,⌘) for all ⌘, ⇣ 2 X .

For many problems related to interacting particle systems, proving limit

theorems by developing and using estimates is usually very di�cult and therefore one

often takes advantages of any monotonicity that may be presented in the problem.

We use the natural partial order on the state space X given by ⌘  ⇣ if ⌘
x

 ⇣
x

,
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for all x 2 ⇤. A function f 2 Cb(X) is said to be increasing if ⌘  ⇣ implies

f(⌘)  f(⇣). Two measures are stochastically ordered with µ
1

 µ
2

if for all

increasing function f 2 Cb(X) we have µ
1

(f)  µ
2

(f). A stochastic particle system

on X with generator L and semigroup S(t) is called monotone (attractive) if it

preserves the stochastic order in time, i.e.

⌫
1

 ⌫
2

) ⌫
1

S(t)  ⌫
2

S(t) for all t � 0.

2.2 Condensation and equivalence of ensembles

As mentioned above, we focus on lattice gas models with a discrete, unbounded

local state space E = N = {0, 1, 2, ...}, i.e. without restriction on the number of

particles per site. Examples of such models include zero-range process [4, 46, 49]

and misanthrope processes [50], which is a large class of models containing the

inclusion process and mass transport models [31, 32, 51]. These models with open

boundaries have been studied in a series of papers [47, 52, 53], but in this thesis

we only consider systems with periodic boundary conditions and the number of

particles is a conserved quantity in finite systems. A condensation transition is

said to occur when a non-zero fraction of all the particles typically accumulate on a

vanishing volume fraction of the lattice, which has been the subject of recent research

interest. Condensation phenomena have been observed in above lattice gases under

certain geometries and particle interactions. When the particle density exceeds

a critical value, the system phase separates into a condensed and a homogeneous

or fluid phase. The fluid phase is distributed according to the maximal invariant

measure with critical density and the excess mass concentrates on a subextensive

part of the lattice, constituting the condensed phase. Condensation can be caused

by spatial inhomogeneities or particle interactions in spatially homogeneous systems,

and so far has mostly been studied for systems with stationary product measures.

Condensation in homogeneous systems was firstly studied in [9, 11], and

then attracted research interests in the context of ZRP and related models. In

homogeneous systems, the condensed phase is found to be delocalised, where the

location of condensate is uniformly distributed on the lattice due to symmetry, and

therefore not accessible in the thermodynamic limit under the usual local notions

of convergence. Taking the maximum as a global observable, a series of papers

[12, 26, 54, 55, 56] established rigorous results showing that the condensed phase in

fact concentrates on a single lattice site, covering a relatively large class of systems

with stationary product measures. Condensation in inhomogeneous systems in the
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context of ZRP has been studied in [57, 58, 59, 60], and [61] covers more general

models and provides a comprehensive review of related results on disordered systems.

The condensed phase in such systems is localised on specific sites determined by

geometric e↵ects, such as exit/incoming rates of particles. The combination of

inhomogeneous and interaction driven condensation has been studied in [62] for

a system with a single defect site and more generally in [14, 63, 64]. Results on

homogeneous mass transport models with continuous state space can be found in [65,

66, 67] and reference therein, and on related systems with pair-factorised stationary

measures that give rise to a spatially extended condensates in [29, 68] and references

therein.

In the rest of this section we focus on homogeneous systems and follow a re-

cent review [42] to summarise previous results from a thermodynamic point of view,

formulated in the context of the classical approach of the equivalence of ensembles

[3].

2.2.1 Class of models with stationary product measures

We consider a family of lattice gases where the dynamics are given by the generator

Lf(⌘) =
X

x,y2⇤
p(x, y)u(⌘

x

)v(⌘
y

) [f (⌘x,y)� f(⌘)] (2.11)

with the usual notation ⌘x,y
z

= ⌘
z

� �
z,x

+ �
z,y

for a configuration where one particle

has moved from site x to y. p(x, y) � 0 are transition rates of a single random walk

on ⇤ with p(x, x) = 0, which we assume to be translation invariant p(x, y) = q(y�x).

We restrict the interaction part u, v : N! [0,1) to satisfy

u(n) = 0 if and only if n = 0

v(n) > 0, 8n � 0.

The number of particles is the only conserved quantity and on a finite lattice of size

|⇤| = L the process is irreducible on the subsets

X
⇤,N

=

(

⌘ 2 X :
X

x2⇤
⌘
x

= N

)

, for each N 2 N.

The process is a finite state, irreducible Markov chain on X
⇤,N

, and is therefore

ergodic with a unique stationary measure ⇡
⇤,N

. Processes with such dynamics
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include various models, such as3:

• zero-range processes (ZRP) [4]: u(n) arbitrary, v(n) ⌘ 1;

• Target processes (TP) [69]: u(n) = 1� �
n,0

, v(n) > 0 arbitrary;

• Inclusion processes (IP) [16, 65]: u(n) = n, v(n) = d + n, d > 0;

• Explosive condensation model (ECP) [32]:

u(n) = v(n)� v(0), v(n) = (d + n)� , d, � > 0.

The family of processes (2.11) has some overlaps with the misanthrope pro-

cess [50], which was originally defined on translation invariant lattices with a more

general interaction function g(⌘
x

, ⌘
y

). All translation invariant examples of (2.11)

are essentially special misanthrope processes, but (2.11) can be extended on more

general lattices. It has been shown that (2.11) is attractive if and only if u(n) is

increasing and v(n) is decreasing in n, which is analogous to results for misanthrope

processes [50, 70]. However, condensation in homogeneous systems so far has only

been observed if this condition is violated and the model is not attractive. In fact,

whether the non-attractiveness is a necessary condition for condensation in homo-

geneous systems is an interesting question, recent results on this include [71, 72].

Under certain conditions (see Theorem 2.3 below) the process (2.11) admit

stationary product measures which we denote

⌫⇤

�

[d⌘] =
Y

x2⇤
⌫̄
�

(⌘
x

)d⌘ , (2.12)

and are defined by product densities with respect to the product counting measure

d⌘ on X
⇤

. The marginals turn out to have the form

⌫
�

[⌘
x

= n] = ⌫̄
�

(n) =
1

z(�)
w(n)�n (2.13)

with partition function (normalisation)

z(�) =
1
X

n=0

w(n)�n.

The weights w(n) are given by

w(n) =
n

Y

k=1

v(k � 1)

u(k)
, (2.14)

3Here we only list spatially homogeneous versions of these processes. Generally, the rates u(n),
v(n) can both be site dependent.
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encoding the interaction of the particles through the functional forms of u and v.

Since the number of particles is conserved, the measures can be indexed by

a fugacity parameter � � 0 controlling the average particle density

R(�) = ⌫
�

(⌘
x

) =
1

z(�)

1
X

n=0

nw(n)�n, (2.15)

which is a strictly increasing function with R(0) = 0. This density can also be

computed as R(�) = �@
�

log z(�) since z(�) is a generating function. Existence of

(2.12) requires z(�) <1, so we define the domain of (2.12) as

D⇤

�

= {� � 0 : z(�) <1, } .

Notice z(�) is a power-series in �, the domain of each marginal ⌫
�

is [0, �
c

) or [0, �
c

]

where

�
c

=

✓

lim sup
n!1

w(n)1/n
◆�1

is the radius of convergence of z(�). The domain of (2.12) is then

D⇤

�

= [0, �
c

) or [0, �
c

], (2.16)

and the right boundary of the domain depends on particular processes. For non-

empty D⇤

�

we require �
c

> 0, and a su�cient condition is for example,

1

n
log w(n) =

1

n

n

X

k=1

log
v(k � 1)

u(k)
! ↵ 2 [�1,1), as n!1, (2.17)

where ↵ is some constant. This obviously holds whenever v(n� 1)/u(n) has a finite

limit for all x as n!1. A recent publication [42] summarises su�cient conditions

for process (2.11) to have stationary product measures, from previous literature, for

both spatially homogeneous and inhomogeneous systems. Here we only cover the

homogeneous cases:

Theorem 2.3 (Stationary Product Measures). The processes with generator (2.11)

have stationary product measures ⌫⇤

�

of the form (2.12), provided that one of the

following conditions holds:

1. v(n) = 1, for all n � 0 (zero-range dynamics).

2. p(x, y) = p(y, x) for all x, y 2 ⇤. In this case the measure is in fact re-

versible for the dynamics(2.11).
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3. Incoming and outgoing rates p are the same for each site,

X

y2⇤
p(x, y) =

X

y2⇤
p(y, x), for all x 2 ⇤ ,

and u(n) and v(n) fulfill

u(n)v(m)� u(m)v(n) = v(0)(u(n)� u(m)) for all n, m � 0.

Proof. See, e.g., [42, Theorem 2.1].

Remarks

1. Cases 1 and 3 for ZRP have been covered in [4, 46, 73], and also been discussed

in misanthrope processes [50] with some minor reformulation. Case 2 is anal-

ogous to a result for inclusion process in [74]. Cases 2 and 3 have also been

studied in the context of target processes in [69]. Case 3 has been investigated

in ECP in [32] as well.

2. In many instances, the above measures can be extended to infinite lattices in

a generic way, even without guarantee of the existence of the dynamics of the

process. If the dynamics exist, the measures are stationary for the limiting

dynamics.

3. The result also holds for exclusion processes [43] or K-exclusion type mod-

els with v(k) = 0, 8k > K, which results in restricted state space E =

{0, 1, 2, ..., K} (see [75, Section II.2.4] and reference therein).

4. The theorem can be generalised directly to systems with open boundaries of a

particular type, where each boundary can be described consistently by a single

auxiliary external site [42].

5. If above consistency relations do not hold, the stationary measures are in gen-

eral not in product form. To study such systems, one approach is to describe

the correlation structure using a matrix product formulation, which has been

applied in the exclusion process in [76]. It is an interesting open question

whether this technique can also be extended to the more general class of pro-

cesses as described by (2.11).



2.2. Condensation and equivalence of ensembles 18

2.2.2 Canonical measures and condensation

Results on stationary product measures discussed above can be applied in more

general models, but in this thesis we are only interested in closed finite systems and

their scaling limits. The total number of particles in such systems is conserved and

there is no restriction on the number of particles per site. We further assume the

weights w(n) > 0 are sub-exponential in the sense that

w(n + 1)

w(n)
=

v(n)

u(n� 1)
! 1, as n!1. (2.18)

If the limit is di↵erent from 1, it is equal to �
c

and by rescaling the rates we can

always fix �
c

= 1. The only exception is that w has super-exponential decay, then

�
c

=1 and there is no condensation, so we do not consider this case.

With product measures, the canonical measures ⇡
⇤,N

on irreducible sub-

sets X
⇤,N

have explicit formulae. Since the number of particles is conserved, the

conditioned measures ⌫⇤

�

(d⌘|X
⇤,N

) are also stationary, and since the process is er-

godic on X
⇤,N

, these conditional measures are equal to ⇡
⇤,N

and independent of

the fugacity �. Taking � = 1 for simplicity, we then have

⇡
⇤,N

[d⌘] = ⌫⇤

1

[d⌘|X
⇤,N

] =
1

Z
⇤,N

Y

x2⇤
w(⌘

x

)d⌘ , (2.19)

where Z
⇤,N

= ⌫⇤

1

[X
⇤,N

] is the normalisation.

The set of all stationary measures of processes with dynamics (2.11) is a

convex subset of measures on X
⇤

(see, e.g., [43, Proposition I.1.8]). On a finite

lattice ⇤, the canonical measures ⇡
⇤,N

are the extreme points for this set, and the

grand-canonical product measures ⌫⇤

�

can be written as a convex combination

⌫⇤

�

=
X

N2N
⌫⇤

�

[X
⇤,N

]⇡
⇤,N

,

which are not extremal. On finite lattices, it can be shown that there are no other

extremal measures than the canonical ones, and therefore the full set of stationary

distributions is given by their convex hull. However, on infinite lattice the problem

is more complicated. In spatially homogeneous systems the grand-canonical mea-

sure are extremal, but there may be more non-homogeneous extremal measures,

which are analogous to blocking measures for exclusion process (see, e.g., [43, Chap-

ter.VIII]).
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In the thermodynamic limit

L = |⇤|, N !1, such that N/L! ⇢ � 0,

the grand-canonical measures (with simple product structures) are usually expected

to provide a good approximation to the sequence of canonical measures. In statistical

mechanics this is called the equivalence of ensembles and one convenient way

of quantifying the distance between two distributions is relative entropy. We do

not use this technique directly in this thesis, and for its application in zero-range

processes see [12] and more general discussion in [77]. Notice, for inclusion processes,

we need to consider an adapted parameter-dependent thermodynamic limit to see

the condensation where the equivalence of ensembles technique is not valid, which

is discussed in details in Section 2.3.3.

Recall that the average particle density R(�) (2.15) is strictly increasing in

� with R(0) = 0, we can define its critical limit as the following.

Definition 2.9. The critical density ⇢
c

2 [0,1] is defined as

⇢
c

:= lim
�%�

c

R(�) , with R(�) defined in (2.15), (2.20)

and the system exhibits condensation if ⇢
c

<1.

It is clear that �
c

< 1 is a necessary condition for condensation, see, e.g.,

[73, Lemma II.3.3] for a proof in a special case. If the stationary weights had

super-exponential decay, for example independent random walkers where ⌘
x

are i.i.d

Poisson random variables, we have �
c

=1 and ⇢
c

=1 and there is no condensation.

This general connection between condensation and critical density works well in the

thermodynamic limit for both homogeneous and inhomogeneous systems. It also

works for systems with size-dependent parameters, e.g. inclusion processes. For

other scaling limits such as N ! 1 on a fixed lattice ⇤, the above definition

has to be adapted, see, e.g., [54]. Here we only review results on the connections

between condensation, stationary currents as well as equivalence of ensembles for

homogeneous systems. For results on inhomogeneous or more generalised systems,

see [42, Section 4] and references therein.

Recall marginals (2.13)

⌫
�

[⌘
x

= n] =
1

z(�)
w(n)�n, with z(�) =

1
X

n=0

w(n)�n,
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then the critical density (2.20) is

⇢
c

= R(1) =
1

z(1)

1
X

n=0

nw(n) 2 (0,1].

It is easy to show z(1) =1 implies ⇢
c

=1 (see, e.g., [73, Lemma II.3.3]). Therefore,

the system exhibits condensation with ⇢
c

< 1 if and only if nw(n) is summable,

i.e. w(n) must decay fast enough like a sub-exponential distribution, the measures

are then defined for all � 2 [0, 1] = D
�

and the range of densities is given by

R(D
�

) = [0, ⇢
c

]. Therefore, for ⇢
c

< 1 the range of densities attainable by grand-

canonical measures is a strict subset of [0,1). For typical stationary configurations

under canonical distributions ⇡
⇤,N

with N/L = ⇢ > ⇢
c

, the system phase separates

into a condensed and a fluid phase. It can be shown (see, e.g., a review in [42,

Section 3]) that the bulk phase is distributed as the product measure ⌫
1

at the

critical density ⇢
c

, and that the condensed phase containing a macroscopic amount

of order (⇢� ⇢
c

)L particles concentrates on a vanishing fraction of the lattice. This

result is analogous to classical results on phase separation in the Ising model with

spin-exchange (Kawasaki) dynamics (see, e.g., [43, Chapter 4]), where the main

di↵erence is that the models we discussed above have unbounded local state spaces

and the condensed phase contributes only sub-extensively to the total entropy (or

free energy) of the system. For the special cases where w(n) have power law or

stretched exponential tails, a series of papers [12, 26, 54, 55, 56] have shown that

the condensed phase occupies a single site on the lattice.

The stationary current in a general lattice gas model is defined as the

expected net number of particles crossing a bond in a (specified) positive direction

per unit of time. The full current depends on the lattice geometry and vanishes

for reversible systems, in which case one has to consider the di↵usivity. The main

interest for us will be the average jump rate of a particle per connecting bond. In the

rest of this chapter we will simply call this the current for ease of presentation, even

though in symmetric systems it is rather the activity. Since ⌫⇤

�

is a homogeneous

product measure, the grand canonical current can be defined for an arbitrary

pair of sites x 6= y 2 ⇤ as

j
gc

:= ⌫⇤

�

(u(⌘
x

)v(⌘
y

)) = ⌫1

�

(u)⌫1

�

(v) = �(⌫1

�

(v))2, (2.21)

where for the last representation we have used the following recursive property of
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the stationary measures

⌫̄
�

(n + 1)⌫̄
�

(k � 1)u(n + 1)v(k � 1) = ⌫̄
�

(n)⌫̄
�

(k)u(k)v(n), 8n � 0, k � 1,

which is implied by the form (2.13) and (2.14) of the marginals. Similarly, the

canonical current can be defined as

j
⇤,N

:= ⇡
⇤,N

(u(⌘
x

)v(⌘
y

)), (2.22)

which is still independent of x 6= y 2 ⇤ since the canonical measures are permuta-

tion invariant in homogeneous systems. The thermodynamic limit of the canonical

current

j(⇢) = lim
L,N!1

j
⇤,N

for all ⇢ � 0,

is usually named the current-density relation or the fundamental diagram of

the process.

To compare both currents, it is often convenient to also view the grand-

canonical one as a function of the density using the one-to-one relation ⇢ = R(�) in

(2.21), and in this case we write j
gc

(⇢) which exists only for densities in [0, ⇢
c

].

The following theorem shows the weak convergence of the canonical measure

to the grand-canonical measures on finite lattices. It was first published in [12] in

terms of relative entropy and provided first rigorous results on the equivalence of

ensembles.

Theorem 2.4. 1. We have weak convergence of the canonical measures to the

grand-canonical measures in the sense that, for f 2 Cb(X),

⇡
⇤,N

(f)!

8

<

:

⌫
�

(f) with R(�) = ⇢ for ⇢  ⇢
c

⌫
�

c

(f) for ⇢ > ⇢
c

as L, N !1 and N/L! ⇢ > 0.

2. For all ⇢ > ⇢
c

we also have weak law of large numbers: denote M
L

:=

max
x2⇤ ⌘

x

, then
M

L

(⇢� ⇢
c

)L
! 1 in distribution,

i.e. 8✏ > 0, ⇡
⇤,N

h

�

�

�

M

L

(⇢�⇢

c

)L

� 1
�

�

�

> ✏
i

! 0 as L, N !1, N/L! ⇢ > ⇢
c

.

Above theorem has been generalised in [42] for subcritical and supercritical

cases. This result implies that the canonical measures converge locally to the grand-

canonical measures for ⇢ < ⇢
c

, and for ⇢ > ⇢
c

the canonical measure start to converge



2.3. Models 22

locally to the critical grand-canonical measures, with density ⇢
c

, and the excess mass

accumulates on a vanishing volume fraction. It is consistent with the study of ZRP

in [78], while for IP it has been shown in [74] that ⇢
c

= 0 therefore the above theorem

does not contribute to the study of condensation. We will discuss more details of

both models in the next section.

2.3 Models

2.3.1 Zero range process

The zero-range process (ZRP) is a stochastic particle system with no restriction

on the number of particles per site, and with jump rates depending only on the

number of particles occupying on the departure site. It was originally introduced

by Spitzer [4], and the stationary measure has a simple product structure [4, 46],

as covered in Theorem 2.3. This model has recently drawn great research interests

since a particular class of this model exhibits condensation transitions, which was

established in a series of papers [9, 10, 11, 12]. And more variants of models in

this class have been studied recently, including a non-Markovian version with slinky

condensate motion [35, 79]. Recent reviews of the literature can be found in [14, 42].

If the particle density ⇢ in the system exceeds a critical value ⇢
c

, the system separates

into a fluid phase at density ⇢
c

and a condensate, as explained in the previous section.

The dynamics and time scaling of this condensation have been studied heuristically

in [37]. For a large but finite system, the location of the condensate changes on a

slow timescale and converges to a random walk on the lattice in the limit of diverging

density [80, 81]. Recent extensions include a non-equilibrium version [82, 83] and

models with size-dependent transition rates [84]. The zero range process so far has

been the most studied model in the family of interacting particle systems without

restrictions on local occupation numbers, and provides inspiring ideas to work on

other models including the inclusion process. It is also well known that the zero

range process can be mapped to simple exclusion process if sites are considered as

particles and masses as hole clusters (see, e.g., [6, 85]). In this thesis we do not study

the zero range process directly, but only extract ideas from the relevant work and

extend them to the inclusion process, and in some cases compare these two models.

In this section we give basic definitions and properties of the zero-range process.

For further details see [4, 73].
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x y

p(x, y)g(⌘
x

)

Figure 2.1: Illustration of the dynamics of zero-range process. Particles perform
random walks with rate p(x, y)g(⌘

x

) , which is independent of particles on target
site y.

Definitions

The local state space of zero-range process is E = N, and we focus on finite

translation invariant lattices with periodic boundary conditions. Denote the one-

dimensional torus by T
n

= Z/nZ = {1, 2, 3, ..., n}. We consider zero-range processes

defined on d̂-dimensional torus, ⇤
L

= (T
n

)
ˆ

d, of L = n
ˆ

d sites. In one-dimensional

case this is ⇤
L

= {1, 2, 3, ..., L} with periodic boundary conditions. The state space

is then

X
L

= {⌘ = (⌘
x

)
x2⇤

L

: ⌘
x

2 N} = N⇤

L ,

where ⌘ is the full configuration and ⌘
x

is the local configuration on site x.

Particles on the lattice jump to other sites with rates depending only on the

number of particles residing on departure sites (zero-range). This is a sharp contrast

to the inclusion process and macroscopically makes a significant di↵erence to the

system’s behaviour. The dynamics is described by the generator acting on bounded

test functions f 2 Cb(X), choosing u(n) = g(n) and v(n) ⌘ 1 as given in (2.11)

L
L

f(⌘) =
X

x,y2⇤
p(x, y)g(⌘

x

) (f(⌘x,y)� f(⌘)) , (2.23)

where p(x, y) � 0 are transition rates of an arbitrary, irreducible random walk on

⇤
L

. In this thesis we restrict jumps to be spatially homogeneous,

p(x, y) = q(y � x), for all x, y 2 ⇤
L

, (2.24)

and q(x) is further assumed to be normalised and of finite range,

X

x2⇤
L

q(x) = 1 and q(z) = 0 if |z| > B, for some B > 0, (2.25)
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Figure 2.2: Density and fundamental diagram of zero-range process (2.23) with g(n)
given in (2.26). (a): Density R(�) (2.15) with � = 1, b = 1 and � = 1, b = 4. For
b = 4, ⇢

c

= 1/(b� 2) = 1/2 and �
c

= 1. (b): Fundamental diagram. The canonical
current with � = 1 and b = 4 for various (finite) systems are plotted (see Algorithms
in Appendix C). The black line is the thermodynamic current as a function of the
system density ⇢, given by the inverse of function R(�) for ⇢  ⇢

c

and by v
�

c

(g) = 1
for ⇢ > ⇢

c

using Theorem 2.4.

where B is a bound independent of L. The jump rates g(⌘
x

) are assumed to be

strictly positive on positive integers and have bounded variation,

sup
k2N

|g(k + 1)� g(k)| <1 and g(k) = 0, k = 0.

The process can also be defined on infinite lattices under certain constraints, see

[46, 86] for details.

Stationary measure

As discussed in previous section, the stationary product measures of zero-range

processes are given by (2.12), where the weights can be specified as

w(n) =
n

Y

k=1

g(k)�1 , n > 0.

Since v ⌘ 1 in this model, the grand canonical current (2.21) can be written as

j
gc

= �. Recall the average particle density (2.15) can be computed as R(�) =

�@
�

log z(�). So j
gc

(⇢) in the zero-range process is then simply given by the inverse



2.3. Models 25

x y

p(x, y)⌘
x

(d
L

+ ⌘
y

)

Figure 2.3: Illustration of the dynamics of one-dimensional inclusion process. Parti-
cles perform independent random walks with rate p(x, y)d

L

and attract each other
with rate p(x, y)⌘

x

⌘
y

, which is called the inclusion part of the dynamics.

of R(�). A standard example of zero-range process is given by

g(n) = 1 +
b

n�

, for all n � 1, and g(0) = 0, (2.26)

which was first studied in [9]. Condensation as defined in Section 2.2 occurs for

� 2 (0, 1), b > 0 or � = 1 and b > 2, and the weights show a stretched exponential

or power law decay, respectively (see [9, 12] for more details). Rigorous results

on this transition have been published in a series of papers [12, 26, 54, 55, 56],

and heuristic results on the dynamics have also been obtained in the areas like

equilibration and coarsening [10, 12] and stationary dynamics of the condensate

[37]. Figure 2.2 illustrates the density R(�) (2.15) and the fundamental diagram

of the zero-range process with (2.26) with numerics and the thermodynamic limit.

In Figure 2.2(b) we observe that the canonical currents are converging to j
gc

(⇢), a

consequence of weak convergence in Theorem 2.4.

2.3.2 Inclusion process

The inclusion process is a continuous-time stochastic particle system where parti-

cles perform independent random walks on a lattice and, in addition, interact via

an attractive inclusion mechanism. The rates of the latter are proportional to the

product of occupation numbers of departure and arrival sites. The process was first

introduced in [15] as a dual of a model of heat conduction and has been further

developed as a bosonic counterpart of the exclusion process in [16]. It has been

shown that the system can exhibit a condensation transition in the limit of van-

ishing di↵usion parameter d, which encodes the rates of independent motion of the
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particles. The strong inclusion interaction leads to typical stationary configurations

where a single lattice site contains almost all the particles in the system. This has

been established rigorously on finite lattices in [74] and in the thermodynamic limit

in [87]. Besides applications to energy transport [65], the inclusion process can also

be interpreted as a multi-allele version of the Moran model [17], and condensation

corresponds to fixation of a particular species in the limit of vanishing mutation

rate, which is e↵ectively given by the parameter d. There is also a di↵erent model

[88, 89] that has been named inclusion process, where whole clusters of particles can

jump simultaneously as opposed to the process studied in this thesis.

Definition

The inclusion process (⌘(t) : t � 0) is a lattice gas model defined on a d̂-dimensional

torus ⇤
L

= (T
n

)
ˆ

d, of L = n
ˆ

d sites. The dynamics are defined by the generator

acting on bounded test functions f 2 Cb(X
L

), choosing u(n) = n, v(n) = d
L

+ n as

given in (2.11)

L
L

f(⌘) =
X

x,y2⇤
L

p(x, y)⌘
x

(d
L

+ ⌘
y

)(f(⌘x,y)� f(⌘)) . (2.27)

The parameter d
L

scales with the system size, and determines the relative rate of

the independent random walk of particles in comparison to the interacting inclusion

part given by the product ⌘
x

⌘
y

. The p(x, y) � 0 are transition rates of an arbitrary,

irreducible random walk on ⇤
L

, with the same assumptions of spatial homogeneity

(2.24), normalisation and finite range (2.25) as in the zero-range process. We focus

on three types of nearest-neighbour dynamics (taking one-dimensional models as

examples) :

(i) Symmetric (SIP): p(x, y) = 1

2

(�
y,x+1

+ �
y,x�1

).

(ii) Partially Asymmetric (PASIP): p(x, y)=p�
y,x+1

+q�
y,x�1

, p, q2(0, 1), p+q = 1.

(iii) Totally Asymmetric (TASIP): p(x, y) = �
y,x+1

.

Details of inclusion processes on more general lattices including open bound-

aries can be found in [16, 65, 74, 90].

Stationary measure

Stationary product measures for the SIP were identified in [15, 65] and extended in

[42, 74] to more general spatial rates p(x, y), including the totally asymmetric case.
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Figure 2.4: Density and fundamental diagram of totally asymmetric inclusion pro-
cess (2.27) with d

L

= 1/L2. (a): Density R(�) (2.30) in systems of di↵erent
sizes. (b): Fundamental diagram. The black curve is the grand canonical cur-
rent (2.31), and other (dashed) curves are canonical current for finite systems from
canonical recursion (see algorithms in Appendix C.1), coinciding with the prediction
j
⇤,N

' ⇢2d
L

L! 0 (2.34).

Since we focus on translation invariant systems, we have homogeneous product

measures of the form (2.12) with stationary weights of the form

w(n) =
�(d

L

+ n)

n!�(d
L

)
, (2.28)

where � denotes the gamma function, and the single-site partition function is of the

form

z(�) =
1
X

k=0

w(k)�k = (1� �)�d

L . (2.29)

Since the partition function diverges as � % 1, the measures exist for all � 2 [0, 1)

and constitute the grand canonical ensemble [42, 74]. The average particle density

is given by

R(�) = �@
�

log z(�) =
d
L

�

1� �
. (2.30)

The grand canonical current is

j
gc

(�) = E
�

[⌘
x

(d
L

+ ⌘
x+1

)] = R(�)(R(�) + d
L

) , (2.31)

depending only on the particle density and d
L

, and converges to ⇢2 for d
L

! 0.
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2.3.3 Condensation in inclusion processes

In [87] it has been shown that to observe condensation in the inclusion process,

the di↵usion parameter d
L

has to decay with the system size fast enough such that

d
L

⌧ 1/L, and in the condensed regime all particles will concentrate on a single site.

For L-independent d
L

or not weak enough di↵usion (1/L ⌧ d
L

⌧ 1), there is no

condensation in the system. Therefore, in the rest of this thesis we always consider

the following parameter-dependent thermodynamic limit for inclusion processes:

L, N !1 , d
L

! 0 such that
N

L
! ⇢ > 0, and d

L

L! 0, (2.32)

where we scale d
L

= L�� with � > 1. Under the condition of d
L

! 0, the critical

density (2.30) implies that the grand canonical ensemble degenerates as L ! 1,

R(�) ! 0, for all � 2 D
�

. And therefore the critical density ⇢
c

= 0 and the weak

convergence of the grand canonical measures to the canonical measures stated in

Theorem 2.4 is valid only for bounded local sets. Figure 2.4(b) shows that the

canonical current does not converge to the grand canonical current for ⇢ > 0. The

grand canonical current j
gc

= ⇢2 is given by (2.31), and there is no closed form of the

canonical current but we can use direct computations to calculate it (see detailed

algorithms in Appendix C.1). In the condensed regime, the condensate contains all

particles and can be localised on any site of the lattice. Therefore, the partition

function Z
L,N

(cf.(2.19)) has a simple form as we have L equivalent states in total:

Z
L,N

= L
L

Y

i=1

w(⌘
i

) = Lw(N) = Ld
L

N

Y

i=2

d
L

+ i� 1

i
' Ld

L

N
,

where we used the recursion property of weight w(n) = d+n�1

n

w(n� 1) from (2.28)

and w(0) = 1. With d
L

= L�� , we can consider the following limit as

log Z
L,N

log L
' log L + log d

L

� log N

log L

L!1����! ��, for ⇢ > 0 . (2.33)

And for ⇢ = 0 the limit depends on the scaling of N with L, for example if N = 0 we

have Z
L,N

= w(0)L = 1 and
logZ

L,N

logL

! 0. The above divergence of grand canonical

measures and canonical measures in the inclusion process has been studied rigorously

in [87] through the non-equivalence of ensembles in this model. Indeed, (2.33) is the

same as the result shown in [87, Proposition 6.3], where the above limit is called

the canonical entropy density. Then one can compare it with the grand canonical



2.3. Models 29

entropy density 4 , which is 0 for any ⇢ > 0 in the condensed regime, to prove the

non-equivalence of ensembles. In [87], the authors also studied the case of fixed

di↵usion rate d
L

= d or weak di↵usion but with1/L⌧ d
L

⌧ 1 in IP. However, since

in that case there will not be any condensation in the system and we focus more

on the dynamics of the condensation throughout this thesis, we always study the

thermodynamic limit (2.32) with d
L

⌧ 1/L in the following chapters. In the next

chapter, we will show that in the TASIP in the stationary regime, the jumps of an

isolated condensate containing all the particles will dominate the stationary current

(see Section 3.4.1 for details), and therefore we predict

j
⇤,N

' Nd
L

N

L
' ⇢2d

L

L! 0 as L!1 and
N

L
! ⇢, (2.34)

where Nd
L

is the rate for a cluster to jump, this contributes N/L to the current.

Above prediction is confirmed by numerical results shown in Figure 2.4(b).

4The grand canonical entropy density is defined as the Legendre-Fenchel transform of the grand
canonical pressure (see, e.g., [91])



Chapter 3

Dynamics of Condensation in

the Totally Asymmetric

Inclusion Process

3.1 Introduction

In this chapter we investigate the dynamics of condensation in the totally asymmet-

ric inclusion processes on a one-dimensional periodic lattice in the thermodynamic

limit. Our main focus is on totally asymmetric dynamics which have not been stud-

ied before, and which we also compare to exact solutions for symmetric systems. We

identify all relevant dynamical regimes and corresponding time scales as a function

of the system size, including a coarsening regime where clusters move on the lattice

and exchange particles, leading to a growing average cluster size. The second mo-

ment of occupation numbers is a suitable observable to characterise the transition,

and exhibits a power law scaling in this regime, before saturation to stationarity

following an exponential decay depending on the system size. Our results in this

chapter are based on heuristic derivations for asymmetric systems and exact com-

putations for symmetric systems, and are supported by detailed simulation data.

For the symmetric inclusion process, the dynamics of the condensate for-

mation and subsequent motion have been studied rigorously in [41] in the limit of

infinitely many particles on a fixed, finite lattice. In this chapter we extend these

results in a non-rigorous way to spatially homogeneous, totally asymmetric systems

in the thermodynamic limit, i.e. diverging lattice size with a finite particle density.

For simplicity, we focus on the totally asymmetric system in one dimension with

periodic boundary conditions, and also discuss some aspects of symmetric systems

for comparison. We identify and describe in detail various regimes of the conden-

30
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sation dynamics, including most importantly a coarsening regime where particle

clusters move and exchange particles, following a power law scaling. We also de-

scribe the exponential approach to stationarity in the saturation regime, and the

initial nucleation dynamics where isolated particle clusters form on a fast time scale.

The coarsening behaviour in condensing systems has already been studied

heuristically in [11] and subsequent work for zero-range processes [9, 10, 12, 13, 37]

and related models [38, 39, 40]. A rigorous description of the coarsening dynamics

has also been studied recently in [92]. In contrast to zero-range models, in the inclu-

sion process and related models condensates are mobile on the coarsening time scale

and coarsening is in fact driven by condensate motion and interaction [31, 32, 41, 42].

Further developments in this direction include explosive condensation in a totally

asymmetric model [31, 32] which exhibits a slinky motion of the condensate, also

observed recently in [35] for non-Markovian zero-range dynamics. In this chapter

we are able to give a detailed picture of this phenomenon in the totally asymmetric

inclusion process by studying the interaction of two clusters. Further recent results

on non-condensing inclusion processes include a hydrodynamic scaling limit for the

symmetric system making use of self-duality of the model [93], which is not available

for the totally asymmetric model we consider in this chapter and will be discussed

later in Chapter 6.

3.2 Condensation and dynamical regimes

Recall the dynamics of the inclusion processes are defined by the generator acting

on bounded test functions f : X
L

! R,

L
L

f(⌘) =
X

x,y2⇤
L

p(x, y)⌘
x

(d
L

+ ⌘
y

)(f(⌘x,y)� f(⌘)) . (2.27 revisited)

In this chapter we focus on TASIP and SIP on one-dimensional lattices as introduced

in Section 2.3.2:

p(x, y) =
1

2
(�

y,x+1

+ �
y,x�1

) (SIP)

p(x, y) = �
y,x+1

(TASIP) .

3.2.1 Condensation

For fixed L and d
L

the range of densities is R([0, 1)) = [0,1) and the process does

not exhibit condensation in the usual sense of zero-range processes [9, 12] or related
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models [42], where this range is bounded. But it has been established in [74, 87]

that in the thermodynamic limit (2.32) with vanishing di↵usion rate

L, N !1 , d
L

! 0 such that
N

L
! ⇢ > 0 and d

L

L! 0 ,

the system exhibits complete condensation. In this case,

max
x2⇤

⌘
x

/N ! 1 in distribution ⇡
L,N

, (3.1)

so if the di↵usion rate scales as d
L

⌧ 1/L almost all particles in the system condense

on a single site. Furthermore, in [87] stationary large deviations for the maximum

occupation number are computed in the limit (2.32), and for condensing systems

the most likely value for the maximum scales as the total number of particles N

in the system. We will assume d
L

⌧ 1/L for the rest of the chapter and for all

simulation results presented we use d
L

= 1

L

2 , but have checked the validity also for

other scalings of d
L

.

In contrast to zero-range processes, the condensate and large clusters move

on the same time scale as the system approaches stationarity. The motion and

interaction of clusters dominates the coarsening process, as will be explained in

detail in the following. This has been established rigorously in [41] for the simpler

setting of symmetric systems on fixed lattices. This mechanism is very similar

to recent results in [31, 32] on explosive condensation, where the jump rates are

essentially ⌘�
x

(✏ + ⌘
y

)� with fixed ✏ > 0 and � > 2. In this case domination of

attractive e↵ects and condensation is caused by the non-linearity in the rates. For

the inclusion process it is the scaling d
L

! 0 that causes domination of the attractive

interaction.

To describe the dynamics of condensation we consider the second moment

�2(t) = E
⇥

⌘2
x

(t)
⇤

for some x 2 ⇤
L

, (2.4 revisited)

which does not depend on x since we will assume the initial distribution to be

translation invariant. This is the simplest observable that captures the temporal

evolution of the condensed phase, since the first moment is constant in time due

to conservation of the number of particles. Due to spatial homogeneity, in simula-

tions we measure �2(t) by spatial average
D

1/L
P

L

x=1

⌘2
x

E

to have better statistics,

where h·i denotes averaging over a large number (typically 200 in our simulations)

of realisations.

We consider canonical initial conditions where N particles are placed uni-
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formly and independently on the lattice, which leads to ⌘(0) having a symmetric

multinomial distribution with N trials and success probability 1/L. For L!1 and

N/L! ⇢ the occupation numbers are asymptotically independent Poisson random

variables ⌘
x

(0) ⇠ Poi(⇢), and have second moment �2(0) = ⇢(1 + ⇢). Furthermore,

in stationarity as t!1 we know that up to fluctuations all particles condense on

a single site, and we expect �2

L

(t) ' 1

L

(⇢L)2 = ⇢2L. So we consider the rescaled

variable �2

L

(t)/⇢2L, which increases from very small values of order 1/L to 1 during

the formation of the condensate from homogeneous initial conditions. This process

can be divided into four di↵erent regimes (see Figure 3.1):

(I). Nucleation Regime: Due to the inclusion rate ⌘
x

⌘
y

, neighbouring pairs

of sites exchange particles with order 1 rates until the process reaches a

state where all occupied sites are separated by at least one empty site. This

happens simultaneously everywhere on the lattice and takes at most of order

log L time. After this regime, a fraction of at most 1/2 of all sites is occupied

and particles can only jump to another site by the di↵usion part of the

dynamics with slow rate d
L

. Details can be found in Section 3.3.

(II). Coarsening Regime: Particle clusters formed in regime (I) can move to

empty neighbouring sites or exchange particles at rate ⌘
x

d
L

, but typically do

not split on this timescale. This drives a coarsening process with a decreasing

number of clusters of increasing size, which grow to large clusters of order N

size. This coarsening process happens on a characteristic time scale 1/d
L

, as

explained in detail in Section 3.5. As expected, �2(t) follows an approximate

power law in this regime.

(III). Saturation Regime: The coarsening scaling law no longer holds since the

system reaches its finite size limit, and the remaining clusters merge to form a

single condensate. As expected close to stationarity, the observable �2(t) con-

verges exponentially to its stationary value, as explained in detail in Section

3.5.2. The characteristic time scale for this regime is up to constant factors

the relaxation time of the system, and turns out to be of order ⌧
L

= L/d
L

for the TASIP and L2/d
L

for the SIP (see Section 3.4.3).

(IV). Stationary Regime: Once there is only a single condensate left on the

lattice, it continues to move according to the same rules and time scales as

in regimes II and III. The observable �2 does not detect this motion, but it
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Figure 3.1: Illustration of di↵erent dynamical regimes in the TASIP. The rescaled
observable �2(t)/⇢2L (2.4) is shown against rescaled time t/⌧

L

with ⌧
L

= L/d
L

(cf.
(3.28)) and d

L

= 1/L2. f
1

and f
2

are exponential functions (cf. (3.35)) describing
the long-term asymptotic behaviour, with initial values �2(0) fitted to data for
L = 256, ⇢ = 4 and L = 512, ⇢ = 4, respectively. �2(0) is calculated at the end of
the fast nucleation process explained in Section 3.3. Data points are averaged over
200 realisations, errors are bounded by the size of the symbols.

can be studied by defining the location of the maximum occupation number

as relevant observable as has been done on fixed lattices in [41], or in [80] for

zero-range processes.

In Figure 3.1 we illustrate the condensation dynamics on the total relaxation

time scale ⌧
L

. Details of the time scale will be discussed in Section 3.4.3. As the

nucleation regime occurs on a time scale of at most log L, it finishes immediately

on the time scale of the other regimes and just determines the initial condition for

the coarsening regime. Note that the exponential approximation for the saturation

regime also fits the data in the coarsening regime very well. This is a peculiarity

due to the linear coarsening law for the TASIP as explained in Section 3.5, and does

not hold for the SIP or in general.

3.3 Nucleation regime

The nucleation regime starts with the initial distribution of particles, which we take

to be a uniform multinomial for simplicity. It ends when no particles reside on
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Figure 3.2: Distributions of the ratio of occupied sites R (3.3) (centred and scaled
by
p

L) for TASIP. Black curves are probability density functions of Gaussians with
mean 0 and standard deviations from data sets L = 2048 and corresponding ⇢. The
inset shows r for systems with size L = 512, 1024, 2048 and density ⇢ = 1, 2, 4, 8, 16.
Data collapse confirms that r depends only on ⇢, and has an upper bound 0.5
(⇢!1). Distribution functions from data (2000 realisations) are a kernel density
estimate computed by ksdensity with Matlab.

successive sites which can be defined by the hitting time

T := inf

8

<

:

t � 0 :
X

x2⇤
L

⌘
x

(t)⌘
x+1

(t) = 0

9

=

;

. (3.2)

We denote the (random) fraction of occupied sites at the end of the nucleation

regime at time T by

R :=
1

L

X

x2⇤
L

I{⌘
x

(T ) > 0} , and its expectation by r = E[R] . (3.3)

Under our condition of weak di↵usion d
L

⌧ 1/L, the inclusion e↵ect completely

dominates this regime and the time scale E[T ] turns out to scale as log L, which is

much faster compared to all other regimes. The specific details of the scaling are

therefore not relevant, a simple argument using a toy model can be found in the

following section, we will then take two di↵erent approaches for the TASIP and the

SIP, starting with the simpler symmetric case.



3.3. Nucleation regime 36

3.3.1 Toy model for the nucleation regime

We define a toy model for the number of occupied sites after the nucleation regime

of the TASIP on the lattice ⇤
L

= {1, 2, 3, ..., L} with periodic boundary conditions,

where the modified state variable ⌘
x

2 {0, 1} simply indicates whether site x is

occupied. We consider the simplest uniform initial distribution ⌘
x

(0) = 1 for all

x 2 ⇤
L

. After waiting time T
x

, the mass on site x tries to jump to site x + 1, where

T
x

are i.i.d. random variables. This jump is successful only if ⌘
x+1

(T
x

) = 1, i.e. the

mass on site x + 1 has not moved before, and after the jump we have ⌘
x

= 0 and

⌘
x+1

= 1. This is a simplified model of the inclusion interaction of the process in the

nucleation regime, and keeps track only of occupied sites. The T
x

can be interpreted

as the random times when the full mass in the true TASIP has moved from site x

to x + 1. The distribution of those times is not important for our argument, we

only assume that they are independent, and their order therefore corresponds to a

uniform permutation.

After some time all particles reside on non-successive sites and the toy model

reaches an absorbing state. Such absorbing configurations are constructed of blocks

of di↵erent lengths, where one block consists of empty sites and only one occupied

site on the rightmost site of the block. In other words, the blocks are of the form

000 . . . 001. We denote the length of such a block (indexed by n) by Y
n

2 N, where

2  Y
n

 L and
P

n

Y
n

= L. Assume that the occupied site of one such block is site

z, then ⌘
z�1

= ⌘
z�2

= ... = ⌘
z�k

= 0 where k + 1 is the size of the block. The event

Y
n

� k + 1, i.e. the n-th block size is at least k + 1, is equivalent to the event

T
z�k

< T
z�k+1

< . . . < T
z�1

, (3.4)

since each initial particle must have jumped before its right neighbour, so that all

the mass on these sites moves up to site z. Since the times {T
x

, x 2 ⇤} are given

by a uniform permutation, the probability for (3.4) determines

P(Y
n

� 1 � k) =
1

k!
.

We therefore get the following limiting behaviour for the expectation,

E[Y
n

] =
L�1

X

k=1

1

k!
+ 1! e , as L!1 .

Note that the lengths of successive clusters are independent, so that the (Y
n

: n � 0)
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constitute a renewal process on ⇤
L

, and

n
L

:= max

(

n :
n

X

i=1

Y
i

 L

)

is the number of blocks in the absorbing state, which is equal to the number of

remaining particles. From the standard renewal theorem (see, e.g., Chapter 10.2 in

[94]) we get
n
L

L
! 1

µ
as L!1 almost surely ,

where µ = E[Y
1

] = e is the expected block length. Therefore, we have an approxi-

mation of the ratio of occupied sites (3.3)

r ⇡ 1/e = 0.368 .

This is very close to the observed value in Section 3.3 for small densities ⇢ ⇡ 1, where

we expect the toy model to give the best approximation. For very low densities

r is dominated by the initial number of empty sites, whereas for high densities

correlations build up over long distances leading to striped patterns, and r seems to

grow slowly towards its maximal value 1/2 as ⇢!1.

With the above approach, the time scale for the nucleation regime can be

approximated by the maximum of the order of L i.i.d random variables T
x

. There

is no evidence that the distribution of the T
x

has heavy tails, which leads to a

typical scaling of the maximum of order log(L). This is a good agreement with the

nucleation time scaling which is also supported by unshown numerical results.

Striped patterns and ratio of occupied sites in the nucleation regime

The analysis of the toy model suggests that a striped pattern of the configuration

is formed by the end of the nucleation regime. Indeed, we observe striped patterns

emerging even before the first vacant site appears. The pattern is essentially caused

by the inclusion interaction, and we can roughly understand it as follows. Assume

⌘
x

= ⇢, 8x 2 ⇤
L

at t = 0. Assume ⌘
x

loses some particles to ⌘
x+1

. This leads

to ⌘
x�2

⌘
x�1

> ⌘
x

⌘
x�1

, which makes ⌘
x�1

more likely to gain particles from ⌘
x�2

than to lose particles to ⌘
x

, and thus a striped pattern is formed. The configura-

tions of absorbing states are constructed by pieces of striped patterns in the shape

‘..0⌘
x

0⌘
x+2

0⌘
x+4

...’ connected by a few empty sites. If we denote the length of such

patterns by Z
k

and the number of empty sites connecting them by M , then the
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Figure 3.3: Exponential behaviour of the length of striped patterns (3.5).(a): Em-
pirical tail distribution (complementary cumulative distribution function) of Z

k

with di↵erent system sizes and densities. The full lines are exponential function
f(x) = exp(�↵x) with fitted rate parameters ↵ = 0.1484 for ⇢ = 16 and ↵ = 0.1168
for ⇢ = 32. (b): Power-law behaviour of the exponential rate parameter ↵ against
density ⇢, where ↵ fitted from unshown data with multiple system sizes and den-
sities. The full line is fitted power-law function ↵ = 0.3357⇢�0.3805, support out
estimation ↵ ⇠ ⇢�1/3 in (3.6). Results are averaged over 2000 realisations and
errors are bounded by the size of symbols.

fraction of the occupied sites at the end of the nucleation regime R (3.3) is given by

R =
1

2

P

n

k=1

Z
k

L
and L =

n

X

k=1

Z
k

+ M. (3.5)

Numerical results shown in Figure 3.3 strongly suggest that Z
k

has an exponential

distribution with the rate parameter depends only on density ⇢, i.e.,

Z
k

⇠ exp (f(⇢)) ,

where f(⇢) is a function of density ⇢ and our numerical results suggest that it has

a power-law form as f(⇢) = C⇢� , where C is some positive constant and � ⇡ �1/3.

Currently we do not have a very good argument of the rate parameter f(⇢), which

could be an interesting question for further investigation. But to understand the

asymptotical behaviour of R, it is enough to use the fact Z
k

grows exponentially

and approximately we have

E[Z
k

] ' 1

C
⇢

1
3 . (3.6)
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Therefore, for high density Z
k

converges to its upper bond L, which means the whole

configuration is constructed by a single striped pattern with no extra empty sites.

Then M ! 0 and R ! 1/2, which agrees with previous numerical results of R in

Figure 3.2.

3.3.2 Symmetric case

In the SIP we can derive closed equations for the dynamics of correlation functions

due to the symmetry. We consider the nearest-neighbour product

c(1, t) := E[⌘
x

(t)⌘
x+1

(t)] for some x 2 ⇤
L

, (2.5 revisited)

since the observable ⌘
x

⌘
x+1

vanishes at the end of the nucleation regime. Similar to

�2(t), c(1, t) is also x-independent due to translation invariance and in simulations

we measure c(1, t) by the spatial average
⌦

1/L
P

L

x=1

⌘
x

⌘
x+1

↵

as described earlier.

With our initial conditions we have c(1, 0) = ⇢2 for large L, and c(1, t) ! 0 as

t!1. Applying the generator (2.27) to the test function f(⌘) = ⌘
x

⌘
x+1

for some

x 2 ⇤
L

, we get

L(⌘
x

⌘
x+1

) =
1

2
⌘
x�1

(d
L

+ ⌘
x

)[(⌘
x

+ 1)⌘
x+1

� ⌘
x

⌘
x+1

]

+
1

2
⌘
x

(d
L

+ ⌘
x�1

)[(⌘
x

� 1)⌘
x+1

� ⌘
x

⌘
x+1

]

+
1

2
⌘
x

(d
L

+ ⌘
x+1

)[(⌘
x

� 1)(⌘
x+1

+ 1)� ⌘
x

⌘
x+1

]

+
1

2
⌘
x+1

(d
L

+ ⌘
x

)[(⌘
x

+ 1)(⌘
x+1

� 1)� ⌘
x

⌘
x+1

]

+
1

2
⌘
x+1

(d
L

+ ⌘
x+2

)[⌘
x

(⌘
x+1

� 1)� ⌘
x

⌘
x+1

]

+
1

2
⌘
x+2

(d
L

+ ⌘
x+1

)[⌘
x

(⌘
x+1

+ 1)� ⌘
x

⌘
x+1

]

= �⌘
x

⌘
x+1

+
1

2
d
L

(�4⌘
x

⌘
x+1

+⌘
x�1

⌘
x+1

+⌘
x

⌘
x+2

+⌘2
x

+⌘2
x+1

�⌘
x

�⌘
x+1

) .

In the nucleation regime all occupation numbers are of order 1, so the second

term in the last line is of order d
L

in expectation. Then by the standard evolution

equation1,
d

dt
c(1, t) = E[L(⌘

x

⌘
x+1

)] = �c(1, t) + ⇥(d
L

) . (3.7)

1Throughout this thesis we denote f(n) = ⇥(n) as: k1n < f(n) < k2n, for some constants k1,
k2 > 0 and n su�ciently large.
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Figure 3.4: Exponential behaviour of c(1, t) (2.5) and �2(t) (2.4) for the SIP in the
nucleation regime. (a) Exponential decay of c(1, t)/⇢2 as given in (3.8). Dashed lines
are fluctuation estimates d

L

/r � d
L

/⇢ for L = 512, 1024, where we used numerical
values for the ratio r (3.3): r|

⇢=2

= 0.3747 and r|
⇢=4

= 0.3865. (b) Exponential
convergence of �2(t)/⇢2 as given in (3.14). The deviations for large time are deter-
mined by the finite size corrections in (3.12). Data points are averaged over 2000
realisations. Errors are of the order 10�4.

For large systems, d
L

⌧ 1/L is negligible, and we solve the above ODE with initial

condition c(1, 0) = ⇢2 to get

c(1, t) = ⇢2e�t . (3.8)

Figure 3.4(a) shows a data collapse for c(1, t) confirming this prediction. The large

time plateau is dominated by attempted motion of clusters onto empty neighbouring

sites with slow rate d
L

. This motion leads to temporary nearest-neighbour occupa-

tion and produces finite size fluctuations of the asymptotic values of c(1, t), which

vanish with increasing system size. Their size can be estimated by considering the

contribution to c(1, t) during the step of a cluster as following. We consider a time

t
1

> E[T ] so that we expect to have reached the plateau in Figure 3.4(a). Then we

can estimate c(1, t
1

) by the following ergodic average with duration T
step

c(1, t
1

) ' E


Z

t1+T

step

t1

⌘
x

(s)⌘
x+1

(s) ds

�

�

�

�

⌘
x

(t
1

) > 0

�

P[⌘
x

(t
1

) > 0]

E[T
step

]
, (3.9)

where T
step

is the random time duration for an attempted step of the cluster. It is

not important if the cluster actually moves to site y = x�1 or x+1 or stays at x. As

discussed in detail in Section 3.4.1, T
step

is dominated by the slow rate to move the

first particle, after which all remaining particles quickly follow due to the inclusion

interaction, and we have E[T
step

] ⇠ 1/(d
L

m) where m = E[⌘
x

(t
1

)|⌘
x

(t
1

) > 0] is

the size of a typical cluster. On the other hand, the integral in the numerator

vanishes for most of the time, and the expected holding time in an intermediate state
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(⌘
x

, ⌘
x+1

) = (k, m�k) for k 2 {1, 2, ..., m�1} is simply 1

k(m�k)

. The computation of

c(1, t
1

) (3.9) reduces to a simple random walk problem as is described in Appendix

B. We get

E


Z

t1+Tstep

t1

⌘
x

(s)⌘
x+1

(s) ds

�

�

�

�

⌘
x

(t
1

) > 0

�

= E

2

4

Kstep
X

k=1

k(m� k)

k(m� k)

3

5 = m� 1 , (3.10)

where we used that the expected number of steps K
step

of an excursion starting with

(⌘
x

, ⌘
x+1

) = (1, m � 1) is E[K
step

] = m � 1 (B.6). Recall the expected fraction of

occupied sites at the end nucleation r (3.3). We have P[⌘
x

(t
1

) > 0] ' r and we get

in (3.9)

c(1, t
1

) ' r
m� 1

1/(d
L

m)
= rm(m� 1)d

L

= ⇢2d
L

✓

1

r
� 1

⇢

◆

(3.11)

using also m = ⇢/r for the average size of a cluster. This is confirmed by dashed

lines in Figure 3.4(a). Note (3.11) only makes sense for ⇢ > r, but we are not

interested in very small densities ⇢  r < 1 where a large number of empty sites are

already in the initial configuration and the nucleation dynamics we discussed above

is heavily a↵ected or destroyed .

To understand the evolution of the second moment �2(t) (2.4) we take the

test function f(⌘) = ⌘2
x

, for some x 2 ⇤. Similarly to the above computation we get

L(⌘2
x

)=⌘
x

⌘
x+1

+⌘
x�1

⌘
x

+d
L

✓

�2⌘2
x

+ ⌘
x

+⌘
x

⌘
x�1

+⌘
x

⌘
x+1

+
1

2
⌘
x�1

+
1

2
⌘
x+1

◆

. (3.12)

Again, the terms of order d
L

are negligible for large L and in expectation

d

dt
�2(t) = E[L(⌘2

x

(t))] = 2c(1, t) + ⇥(d
L

) . (3.13)

Integrating with initial condition �2(0) = ⇢(1 + ⇢) we get

�2(t) = 2⇢2(1� e�t) + ⇢2 + ⇢ . (3.14)

Note that this leading order behaviour is independent of L and converges to

�2(t)

⇢2
! 3 +

1

⇢
= �2

0

as t!1 . (3.15)

This is the value of �2 after the nucleation regime on large systems and therefore

gives the initial values �2

0

of coarsening regime up to finite size corrections as con-
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firmed in Figure 3.6.

3.3.3 TASIP

The reason we could get closed equations for correlation functions in the previous

section is related to self-duality of the SIP (see Chapter 6 for more details). Due

to the asymmetry, the TASIP is not self-dual and therefore the above technique

does not lead to closed equations for c(1, t) or other observables. In this sub-section

we will therefore focus mostly on simulations and approximations to understand

the nucleation dynamics in the TASIP. Applying the TASIP generator to the test

function f(⌘) = ⌘
x

⌘
x+1

for some x 2 ⇤
L

we get analogously to the symmetric case

L [⌘
x

⌘
x+1

] =⌘
x

⌘
x+1

(�1 + ⌘
x

� ⌘
x+1

+ ⌘
x�1

� ⌘
x+2

)

+d
L

(⌘
x�1

⌘
x+1

� ⌘
x

⌘
x+1

+ ⌘2
x

� ⌘
x

⌘
x+1

� ⌘
x

)

=⌘
x

⌘
x+1

(⌘
x�1

� ⌘
x+2

+ ⌘
x

� ⌘
x+1

� 1) + ⇥(d
L

) .

Taking expectations and using translation invariance we get

d

dt
c(1, t) = �c(1, t) + E [⌘

x

⌘
x+1

(⌘
x

� ⌘
x+1

)] . (3.16)

This equation involves higher order correlation functions, and simple mean-field type

arguments trying to close it fail to give reasonable predictions. In the nucleation

regime interactions between clusters are strong and complex, and correlations cannot

be ignored. In fact, due to total asymmetry, given two neighbouring occupied sites

the right one has higher occupation numbers on average and therefore the first order

correction term in (3.16) is negative, which leads to a super-exponential decay. For

small times, dominated by the initial conditions before correlations develop, the cor-

rection averages to zero, and we observe an exponential decay as illustrated in Figure

3.5. The bulk decay shows a significant density dependence, but is independent of

the system size L for large enough systems. For large times, however, c(1, t)/⇢2

converges to an L-dependent quasi-stationary value completely analogously to the

symmetric case. Using the same arguments we get

c(1, t)! ⇢2d
L

✓

1

r
� 1

⇢

◆

for large t , (3.17)

as confirmed by dashed lines in Figure 3.5. Note that due to total asymmetry, the

number of required particle moves for a cluster of m particles to hop one step on
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Figure 3.5: Super exponential decay of c(1, t) for the TASIP in the nucleation regime.
Dashed horizontal lines correspond to L-dependent corrections (cf (3.17)). For each
system we give two lines by using the numerical maximal and minimal values of r
and ⇢, where r

max

= 0.4431 for ⇢ = 16 and r
min

= 0.3850 for ⇢ = 2. The inset
shows the initial behaviour which is approximately exponential. Data points are
averaged over 2000 realisations. Errors are bounded by the size of the symbols until
we observe the L-dependent corrections.

the lattice is precisely m� 1, which simplifies the argument.

As is shown in Figure 3.2, the ratio R of occupied sites at the end of the nu-

cleation regime follows a Gaussian distribution with density dependent fluctuations

of order 1/
p

L. The mean, r, monotonically increases with ⇢ from values around

0.35 for small densities ⇢ ⇡ 1. This can be consistently explained using the toy

model of coalescing particles, as presented previously in Section 3.3.1. For large

densities alternating occupied/empty patterns are observed with long correlation

lengths, and in the limit ⇢ ! 1 we expect the system to approach the maximal

theoretical value r = 0.5. The inset in Figure 3.2 shows that this convergence is

slow and is an interesting open question for further investigation. In this chapter

we focus on other aspects of the dynamics, and will use the actual value of r as a

fit parameter in the next sections.

3.4 Condensate motion and interaction

In this section we analyse the motion of an isolated macroscopic cluster which dom-

inates the stationary dynamics of the model. We further study the interaction

between condensates, which is the foundation of understanding the coarsening and
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saturation dynamics as discussed in the next section.

3.4.1 Dynamics of isolated clusters

Totally asymmetric dynamics

Consider an isolated cluster of large size m � 1 on site x, and for simplicity on

an otherwise empty lattice. The only possible transition is that a particle jumps to

site x + 1 with rate d
L

m. Then the single particle could move to site x + 2 at rate

d
L

, or the condensate could lose another particle which happens with much higher

rate, m � 1, due to the inclusion interaction. Thus, given that no particle exits to

site x + 2, the total time T step for all particles to move to site x + 1 is a sum of

independent exponential variables with mean

⌧ step

m

' E[T step] =
1

d
L

m
+

m�1

X

k=1

1

(m� k)k
' 1

d
L

m
+

1

m

Z

(m�1)/m

1/m

1

x(1� x)
dx

' 1

d
L

m
+

2

m
log(m) . (3.18)

Here we omitted terms involving d
L

in the rates, which lead to sub-leading correc-

tions. Due to the quadratic scaling of the inclusion interaction the process speeds

up significantly after the first particle and the remaining time vanishes with respect

to the time of the initial move. In particular T step is dominated by the exponential

time of the first particle, so to leading order T step ⇠ exp(d
L

m). The rate at which

any particle escapes from site x + 1 is bounded above by d
L

m ! 0 with L ! 1.

Thus, in the limit a macroscopic cluster is stable and jumps to the right with van-

ishing rate d
L

m! 0 which is proportional to its size. In general, the time scale for

motion of macroscopic clusters containing order L particles or the stationary single

condensate is

⌧move

L

=
1

d
L

L
(TASIP) . (3.19)

This is consistent with results in [87] on the vanishing stationary current, which is

dominated by the motion of a single condensate as

j(⇢) ' d
L

⇢2L2/L = ⇢2d
L

L . (3.20)

Symmetric dynamics

For symmetric dynamics, a single cluster on an otherwise empty lattice is also stable,

but performs a symmetric continuous-time random walk. Analogous to the above,
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the first particle from site x moves with rate d
L

m to site y = x � 1 or x + 1.

Then the inclusion interaction dominates the dynamics, and particles are exchanged

symmetrically between sites x and y until one of them is again empty. We find

E[T
step

] ' 1

d
L

m
+ ⇥(1) , (3.21)

since the expected number of steps is m� 1 (B.6) and the largest expected waiting

time is 1/(m�1) (see Appendix B). So the step is again dominated by the motion of

the first particle. The jump attempt of the cluster is only successful if all particles

end up on the new site y rather than x, which happens with probability 1/m (B.3).

So the cluster performs a symmetric random walk with e↵ective rate d
L

and the

time scale for cluster motion is

⌧move

L

=
1

d
L

(SIP) . (3.22)

3.4.2 Interaction of two clusters

Totally asymmetric dynamics

In the TASIP, we have seen above that the isolated clusters jump to the right with

rates proportional to their sizes. Therefore, they move freely until a larger and faster

cluster catches up with a smaller one. As soon as they are only one intermediate

lattice site apart they start interchanging particles via a mechanism first observed

in [32]. To describe this situation let ⌘
1

> ⌘
3

at time 0, both of order m � 1, and

⌘
2

= 0 on the intermediate site. Then it is more likely that site 1 loses a particle

to 2 rather than site 3 to 4 and the clusters start interacting. Notice, d
L

> 0 is

necessary for the first particle to move and the two clusters to get in contact and

start interacting. From then on, the inclusion part of the rate ⌘
x

⌘
y

completely

dominates the interaction and results in an e↵ective symmetry. d
L

> 0 only leads

to higher order contributions and therefore does not a↵ect the following argument.

Ignoring jumps away from site 3, the only two events are jumps from site 1 to 2 or

from site 2 to 3 with rates of order ⌘
1

(t)⌘
2

(t) and ⌘
2

(t)⌘
3

(t), respectively. Therefore,

the probabilities for the next event to be a move from site 1 to 2 or site 2 to 3 are

⌘
1

(t)

⌘
1

(t) + ⌘
3

(t)
and

⌘
3

(t)

⌘
1

(t) + ⌘
3

(t)
, respectively. (3.23)

The interaction process continues on the simplex � = {⌘
1

(t), ⌘
3

(t) 2 N | ⌘
1

(t) +

⌘
3

(t)  ⌘
1

(0) + ⌘
3

(0)} following left-up paths due to total asymmetry, until the

cluster on site 3 moves to site 4 which becomes more likely once ⌘
3

(t) > ⌘
1

(t) and
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⌘
2

(t) = 0. Note that the result of the mass redistribution depends only on the

discrete embedded chain with probabilities (3.23), which exhibit a symmetry under

exchanging sites 1 and 3 with invariant diagonal ⌘
1

= ⌘
3

. Since the whole process is

invariant under time and space inversion, the statistics of all paths leading towards

the diagonal for ⌘
1

> ⌘
3

is the same as that of all paths leading away. The cluster

interaction is therefore symmetric, such that in distribution ⌘
1

(T )
dist

= ⌘
3

(0) and

⌘
3

(T )
dist

= ⌘
1

(0) where T is the time when the first particle moves from site 3 to

4 and the interaction terminates. So to leading order the clusters penetrate each

other and just exchange places, and along the way exchange an unbiased amount of

⇥(
p

m) particles due to fluctuations.

Note that the above description is qualitative but exact, and can also be

corroborated by the solution to a scaling limit of the standard evolution equations

for the rescaled masses ⇢
x

= ⌘
x

/N . We consider the situation in which all N particles

in the system reside on 3 sites x = 1, 2, 3, i.e. ⇢
1

+⇢
2

+⇢
3

= 1 and ⇢
x

= 0 otherwise.

Now consider the rescaled process (⇢(t) : t � 0) defined by

⇢(t) := (⌘
x

(t)/N : x 2 {1, 2, 3}) .

This is a Markov process on the simplex �0 =
n

[0, 1]3,
P

x=1,2,3

⇢
x

= 1
o

with gen-

erator

L
N

f(⇢) =
X

x=1,2

N⇢
x

(d
L

+ N⇢
x+1

)

✓

f(⇢� 1

N
e
x

+
1

N
e
x+1

)� f(⇢)

◆

, (3.24)

where e is the Cartesian basis vector and we can again ignore any particle leaving

to site 4. In the beginning, a small initial mass is on site 2: ⇢
2

= ✏ = 1� ⇢
1

� ⇢
3

=

⇥(1/N)⌧ 1. Then assuming f is smooth, Taylor expansion of right hand side gives

L
N

f(⇢)=
X

x=1,2

N⇢
x

(d
L

+N⇢
x+1

)

✓

1

N

�

@
⇢

x+1�@
⇢

x

�

+
1

2N2

�

@
⇢

x+1�@
⇢

x

�

2

◆

f(⇢)+⇥(
1

N3

)

�

,

where we use abbreviation

�

@
⇢

x

� @
⇢

y

�

2

=
@2

@⇢
x

2

� 2
@2

@⇢
x

@⇢
y

+
@2

@⇢2
y

.

For large systems d
L

terms are negligible and for the test functionf(⇢) = (⇢
1

, ⇢
3

)

we get,

1

N
L
N

 

⇢
1

⇢
3

!

= �⇢
1

⇢
2

 

1

0

!

+ ⇢
2

⇢
3

 

0

1

!

+ ⇥(
1

N
) . (3.25)
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Note that to leading order the second order derivative terms cancel, so ⇢
i

(t) is

deterministic, and the order of the fluctuation terms are consistent with the unbiased

exchange of order
p

N particles as discussed above. Ignoring the correction term

and slowing down time by taking t 7! t/N , with (3.25) the evolution equation gives

d

dt

 

⇢
1

(t)

⇢
3

(t)

!

=L
N

 

⇢
1

(t)

⇢
3

(t)

!

=

 

�⇢
1

(t)⇢
2

(t)

⇢
2

(t)⇢
3

(t)

!

=

 

�⇢
1

(t)2 + ⇢
1

(t)⇢
3

(t)� ⇢
1

(t)

�⇢
3

(t)2 � ⇢
1

(t)⇢
3

(t) + ⇢
3

(t)

!

, (3.26)

where we used E[⇢
x

] = ⇢
x

in the first step and ⇢
2

= 1� ⇢
1

� ⇢
3

in the last step. For

initial conditions ⇢
1

(0) and ⇢
3

(0) such that (⇢
1

(0) + ⇢
3

(0)) < 1, 2⇢
1

(0) > 1, we have

the solution:

⇢
1

(t) =
1

2

✓

1�B tanh

✓

Bt

2
�A

◆◆

! 1�B

2
as t!1 ,

⇢
3

(t) =
2⇢

1

(0)⇢
3

(0)

1�B tanh
�

Bt

2

�A
� ! 2⇢

1

(0)⇢
3

(0)

1�B
as t!1 , (3.27)

where B =
p

1� 4⇢
1

(0)⇢
3

(0) and A = tanh�1

✓

2⇢
1

(0)� 1

B

◆

.

We have B =
p

1� 4⇢
1

(0)(1� ✏� ⇢
1

(0))! (2⇢
1

(0)�1) > 0 as ✏! 0, which implies

⇢
1

(t)! ⇢
3

(0) and ⇢
3

(t)! ⇢
1

(0) as t!1, and the clusters exchange places.

Symmetric dynamics

For symmetric dynamics, the mechanism of cluster interaction is di↵erent and has

been established in [41]. Two clusters on next-nearest neighbour sites, say 1 and 3,

of rescaled sizes ⇢
1

, ⇢
3

2 [0, 1] with initially ⇢
1

= ⇢
3

= 1 can continuously exchange

mass on the slow time scale d
L

via the intermediate site according to the Wright-

Fisher-type generator ⇢
1

⇢
3

(@
⇢3 �@

⇢1)
2, which conserves the total mass. In addition,

the two clusters can interact via site 2 in a jump event with rate ⇢
1

+ ⇢
3

, which

includes the merging event. Since both clusters can separate only with site 1 moving

to the left with rate ⇢
1

and site 3 to the right with rate ⇢
3

, the jump event actually

happens with probability 1/2. It can be shown that for each jump event, the two

clusters merge with a probability of the order 1/((⇢
1

N + ⇢
3

N)/2) (see more details

later in Section 4.3.2). Due to the symmetry of the dynamics, for either cluster

to move successfully away and finish one interaction event, it takes order ⇢
1

or ⇢
3

number of such jump events (see Appendix B). Therefore, the merge event during an

interaction event actually happens with probability 1/2. But even without merging,

the continuous exchange will lead to a finite fraction of particles being redistributed

in an unbiased fashion, so that in a typical interaction event of order N particles
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are exchanged, in contrast to
p

N for totally asymmetric dynamics.

3.4.3 Derivation of time scale

The mechanism of cluster interaction together with the time scale for motion ⌧move

L

(3.19) and (3.22) determines the the time scale ⌧
L

of coarsening and relaxation of

the system, which we used in Figure 3.1. For the TASIP, condensates containing

of order ⇢L particles have speed of order d
L

⇢L. Then the relative speed between

any two condensates is also of this order, which leads to the average time between

two encounters to be of order L · ⌧move

L

⇠ 1/(⇢d
L

). Since every interaction leads to

an unbiased exchange of order
p

⇢L particles, order ⇢L exchanges are necessary to

achieve a macroscopic change, and it leads to the time scale

⌧a

L

= L/d
L

(TASIP) , (3.28)

which is independent of the particle density ⇢.

Following the similar argument for the SIP, the average time between succes-

sive encounters becomes L2 · ⌧move

L

⇠ L2/d
L

, since the condensates need to do order

L2 jumps to meet as they perform symmetric random walks with rate d
L

. But as

opposed to the TASIP, condensates can exchange a macroscopic number of particles

so that we only need order 1 such encounters, leading to

⌧ s

L

= L2/d
L

(SIP) , (3.29)

which is again independent of ⇢.

3.5 Coarsening and saturation

3.5.1 Dynamics in the coarsening regime

We use heuristic arguments to derive the coarsening dynamics, based on the dy-

namics of a single ‘typical’ cluster and its interaction with others in a mean-field

approximation.

Totally asymmetric dynamics

Let m(t) denote the typical size of a cluster in the coarsening regime, and n(t)

the typical number of clusters per volume, so that we have n(t) m(t) = ⇢. We

denote the speed of a typical cluster by v(t) = d
L

m(t) and the typical distance of

two clusters is given by s(t) = m(t)/⇢. Then the rate at which two clusters meet is
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v(t)/s(t) = ⇢d
L

. As discussed in Section 3.4.2, when two clusters meet, they make an

unbiased exchange of order
p

m particles. So for one cluster to lose all its particles,

it typically takes of order m(t) exchanges. Therefore, each cluster independently

disappears with rate C
a

⇢d
L

/m(t), where C
a

is a proportionality constant which is

hard to predict and we will just fit it from simulation data. These death events,

which happen typically after time �t = m(t)/(C
a

⇢d
L

n(t)) per unit volume, drive

the coarsening process. Each event e↵ectively increases m(t) by �m(t) = m(t)/n(t)

per unit volume, which leads to

d

dt
m(t) =

�m(t)

�t
= C

a

⇢d
L

. (3.30)

The initial condition is

m(0) =
⇢

n(0)
=

⇢

r
,

where n(0) = r (cf. (3.3)) is the expected ratio of occupied sites after nucleation

which we also fit from the data. The solution to (3.30) is then simply

m(t) = C
a

⇢d
L

t +
⇢

r
. (3.31)

Due to the clustered nature of configurations during the coarsening regime we have

�2(t) =
m2(t)

s(t)
= ⇢ m(t) = C

a

⇢2d
L

t +
⇢2

r
,

which implies
�2(t)

⇢2
= C

a

d
L

t +
1

r
. (3.32)

Note that there is no explicit system size dependence in the above analysis and this

scaling law also holds on infinite lattices (given a fixed small parameter d
L

). On

a finite lattice it only applies in a certain scaling window, after which the system

saturates due to finite size e↵ects (see Figure 3.6(a)), reminiscent of the classical

Family-Viscek scaling for coarsening dynamics in surface growth (see, e.g., Chapter

3.3 in [95]). The time scale ⌧
L

characterises this scaling window and the relaxation of

the system, and is determined by the scaling solution reaching its maximal stationary

value, i.e.

m(⌧a

L

) = C
a

⇢d
L

⌧a

L

+
⇢

r
= ⇥(N) .

This implies ⌧a

L

= ⇥(L/d
L

) and corresponds to the time when all clusters have

merged to a single condensate. This agrees with our previous prediction for the
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Figure 3.6: Power-law scaling of �2(t)/⇢2 in the coarsening regime. (a) Data for
TASIP compared to the prediction (3.32) shown as a full line with fitted constant
C
a

= 1.8961 and initial condition r = 0.3851. (b) Data for SIP compared to the
prediction (3.34) shown as a full line with fitted constant C

s

= 5.7614. Data points
are averaged over 200 realisations. Errors are bounded by the size of the symbols.

asymmetric time scale in (3.28).

Symmetric dynamics

We can apply the same argument to the SIP and get similar results. Since particles

jump symmetrically, the velocity of clusters v(t) = d
L

is indeed the di↵usivity(see

(3.22)) but we keep v(t) with a slight abuse of notation. With s(t) being the typical

distance between clusters, the interaction rate of clusters scales like v(t)/s(t)2 in one

dimension. Unlike the TASIP, a single interaction of two clusters in the SIP leads

to a macroscopic exchange of order m(t) particles as was derived in Section 3.4.2.

Then we have

d

dt
m(t) = C

s

v(t)m(t)

s(t)2
= C

s

d
L

⇢2

m(t)
, (3.33)

where C
s

is again a proportionality constant for cluster interaction. With initial

condition m(0), we have the solution

m(t) =
p

2C
s

⇢2d
L

t + m(0)2 .
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As before, the second moment can be written as

�2(t) = ⇢m(t) = ⇢2
p

2C
s

d
L

t + (�2(0)/⇢2)2,

and for the initial condition we now have the exact result of the nucleation regime

(3.15) where �2(0)/⇢2 = 3 + 1/⇢. This leads to

�2(t)

⇢2
=

s

2C
s

d
L

t +

✓

3 +
1

⇢

◆

2

, (3.34)

where we only have to fit the parameter C
s

. This scaling law is confirmed in Figure

3.6(b), and the scaling window and time scale can again be determined from

m(⌧ s

L

) =

r

2C
s

⇢2d
L

⌧ s

L

+
⇢2

r2
= ⇥(N) .

This implies ⌧ s

L

= ⇥(L2/d
L

) which agrees with our previous prediction in (3.29).

3.5.2 Exponential saturation and stationarity

Having identified the time scales ⌧
L

of the coarsening window for symmetric and

asymmetric dynamics, we expect that the power-law behaviour turns into an ex-

ponential saturation of the system to the stationary value 1 of our observable

�2(t)/(⇢2L), i.e.
�2(t)

⇢2L
' 1� e�C

0
t/⌧

L as t!1 . (3.35)

This is essentially equivalent to the assertion that C 0/⌧
L

is indeed the spectral gap

of the generator of the system, which usually describes the exponential approach to

stationarity in finite systems as shown previously in Figure 3.1.

For symmetric dynamics, we can provide a simple derivation which includes

a rough estimate of the constant C 0
s

. The late stage of the dynamics is dominated

by 2 remaining clusters competing for particles. On average, both of them have

roughly size m ' N/2, and from the derivation of (3.33) in the previous sub-section

we see that under that assumption they meet at rate

C
s

v(t)

s(t)2
= C

s

4d
L

L2

= 4C
s

/⌧ s

L

since s = m/⇢ = L/2 .

As mentioned in Section 3.4.3, at each encounter the clusters can merge with prob-

ability 1/2, which would lead to a single condensate and remaining in a typical

stationary configuration. Since merge attempts are independent, this leads to an
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Figure 3.7: Exponential relaxation in the saturation regime for TASIP (a) and SIP
(b). The predictions (3.35) are shown as a full lines with best fit constants C 0

a

= 2.00
and C 0

s

= 10.51. In both cases we plot the coarsening scaling law (dashed line) for
comparison, which is only valid for short times on the scale ⌧a

L

or ⌧ s

L

. Data points
are averaged over 200 realisations. Errors are of the order 10�4.

e↵ective rate to reach stationarity roughly given by 2C
s

/⌧ s

L

, and we expect

1� �2(t)

⇢2L
' e�C

0
s

t/⌧

s

L as t!1 , (3.36)

with C 0
s

' 2C
s

. This is confirmed in Figure 3.7(b), where we see a good data collapse

with exponential decay with a best fit parameter C 0
s

= 10.51, which is similar to 2C
s

as fitted in Figure 3.6. Given the crude approximation of two equal sized clusters

in our derivation we cannot expect a perfect match of those constants.

For totally asymmetric dynamics two macroscopic clusters cannot merge in

a single interaction event, but exchange only of order
p

L particles in an unbiased

fashion. Still, we expect the approach to stationarity to be governed by an expo-

nential law of the form (3.35), and we can derive the constant by direct comparison

with the coarsening dynamics. Expanding (3.35) for times t⌧ ⌧
L

we get

�2(t)

⇢2L
' 1� e�C

0
a

t/⌧

a

L ' C 0
a

t d
L

L
,

where we used ⌧a

L

= L/d
L

. This matches the scaling law solution (3.32) and we

see that in fact C 0
a

= C
a

. Again this is confirmed in Figure 3.7(a), where the best

fit parameter for C 0
a

is very close to 2 as is C
a

. We currently do not have a good

theoretical explanation to predict this value, but our numerics strongly suggest that

the constant in the asymmetric case seems to be simply 2.

Note that the expansion of the exponential law matches with the coarsening
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law only for the totally asymmetric case, since the coarsening law (3.32) is in fact

linear. This leads to the fact that the whole coarsening and saturation dynamics are

well described by the exponential law, as can be seen in Figure 3.1. For symmetric

dynamics this matching argument would not work, since the coarsening law has ex-

ponent 1/2 and the exponential approximation is simply not valid in the coarsening

window.

For large values of t the deviation from the exponential decay in Figure 3.7

is again a finite size e↵ect. The stationary value of �2/(⇢2L) is slightly smaller than

1, due to the fact that the single condensate continues to move on the time scale

⌧
L

. During a step the mass is temporarily distributed on two lattice sites, which

decreases the stationary average of �2. We have estimated a similar contribution to

nearest-neighbour correlation functions in Section 3.3 using an ergodic average, and

an analogous computation leads to stationary corrections of the order 1��2/(⇢2L) ⇠
d
L

/⇢ for symmetric and totally asymmetric dynamics.

3.6 Summary

We have derived a heuristic description of the dynamics of condensation of the

totally asymmetric inclusion process in the thermodynamic limit. We identified

four dynamical regimes, and the main focus was the derivation of a coarsening

scaling law. Our predictions have been confirmed by extensive simulations and

describe the actual dynamics very well, in particular in the totally asymmetric

case. Our arguments are based on the analysis of the dynamics of a typical cluster

and interaction with others in a mean-field approximation, which is justified by

observations of typical time evolutions of the system. This approach does not work

for the explosive condensation model studied in [31, 32], where the full dynamics

is dominated by a single large cluster and leads to a relaxation time scale that is

decreasing with the system size.

The symmetric dynamics have been included mostly for comparison and to

better understand the complicated dynamics for the totally asymmetric case in the

nucleation regime. Since the symmetric inclusion process is self-dual, time depen-

dent correlation functions can be computed exactly, which we have used indirectly

for the nucleation regime. This holds, however, for the whole dynamics of the pro-

cess, and a more detailed analysis of the duality structure of the process is expected

to lead to a rigorous description of the full time evolution in the thermodynamic

limit, which is discussed later in Chapter 6. A further interesting question arising

for future work is a better understanding of the dynamics of the nucleation regime
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in the totally asymmetric case.



Chapter 4

Results on General Asymmetric

Inclusion Processes

4.1 Introduction

In this chapter, we extend the results of Chapter 3 to more general partially asym-

metric inclusion processes, with focus on the dynamics of condensation in the ther-

modynamic limit. Comparing with the TASIP, in the partial asymmetric case there

is no constraints on the jump direction of particles, which changes the behaviour

of single clusters and their interactions on the microscopic level. We focus on the

nearest-neighbour partially asymmetric inclusion process (PASIP) defined on a one-

dimensional torus ⇤
L

= T
L

of |⇤
L

| = L sites. The transition rates of the underlying

random walk are given by

p(x, y) = p�
y,x+1

+ q�
y,x�1

, p, q 2 (0, 1), p + q = 1, (4.1)

and the generator can be written explicitly as

L
L

f(⌘) =
X

x

n

p⌘
x

(d
L

+ ⌘
x+1

)
⇥

f
�

⌘x,x+1

�

� f (⌘)
⇤

+ q⌘
x

(d
L

+ ⌘
x�1

)
⇥

f
�

⌘x,x�1

�

� f (⌘)
⇤

o

. (4.2)

Partially asymmetric interacting particle systems have drawn large research

interests in the last decade, often as a way to understand the crossover between

symmetric and totally asymmetric models. As mentioned in Chapter 1, there is no

general theory that can fully describe non-equilibrium systems, therefore the work

on partially asymmetric models is also model specific, and the most studied one is

55
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the partially asymmetric simple exclusion process (PASEP) due to its simple inter-

action mechanism. The asymptotic behaviour of the particle current of the totally

asymmetric exclusion process has firstly been studied in [96] then similar results for

the symmetric exclusion process (SEP) have also been established (see, e.g.,[97] and

references therein). In [98, 99, 100], it has been shown that the same asymptotic

description of the current in TASEP is still valid for PASEP with the only modi-

fication of a pre-factor in time variables, but the SEP shows qualitatively di↵erent

behaviour. Then the crossover between the symmetric and asymmetric models,

which corresponds to a weakly asymmetric simple exclusion Process (WASEP), has

been extensively studied, including exact results related to random matrices (see,

e.g.,[101, 102, 103, 104, 105, 106, 107]), as well as the exact crossover scale [108].

The partially asymmetric version of a special class of ZRP has also been studied

in [109], where the hopping rates are set to be site dependent but not occupation

number dependent. Since the ZRP can be mapped to ASEP, the spatial inhomo-

geneity of ZRP can be transformed to particle dependent hopping rates in ASEP

(see [109, 110] and references therein for details).

Although the general dimensionless results on the inclusion process, reviewed

in Chapter 2, are valid for the PASIP, as far as we know there have not been

any results on the dynamics of the condensation. Inspired by the PASEP results,

we expect the dynamical behaviour of condensation in the PASIP to share very

similar features with the TASIP, with fundamental di↵erences to SIP, and a weakly

asymmetric version could provide a crossover. Compared with exclusion process,

the interaction mechanism of inclusion process is more complicated and the local

state space is unbounded. Therefore, one needs to carefully check the influences

of the partial asymmetry on a microscopic level before considering the macroscopic

behaviour of the clusters. We will show that the partial asymmetry slows down the

movement of isolated clusters and also causes additional fluctuations to clusters’

interactions.

The chapter is organised as follows. In Section 4.2 we look at the conden-

sation and dynamical regimes in the PASIP. Mechanical laws of cluster motion and

interaction are investigated in Section 4.3 based on results from previous chapters

and detailed numerical studies. In Section 4.4, we discuss coarsening and saturation

regimes and adapt scaling results in Chapter 3 to partially asymmetric systems. In

Section 4.5 we introduce some interesting aspects for further study, in particular a

weakly asymmetric inclusion process (WASIP) as the crossover between asymmetric

and symmetric systems.
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Figure 4.1: Di↵erent dynamical regimes in a PASIP system with p = 0.75, L =
512. I. Nucleation Regime. II. Coarsening Regime. III. Saturation Regime. IV.
Stationary Regime. The normalised second moment �2(t)/⇢2L is shown against
scaled time t/⌧p

L

, where ⌧p

L

is p-dependent and the exact form is given in (4.24). The
black line is the same exponential prediction (3.35) as in the TASIP with predicted
constant C 0 ⇡ 2. Data points are averaged over 200 simulations and errors are
bounded by the size of symbols.

4.2 Condensation and dynamical regimes

Recall from Section 2.2 (see [74, Theorem 2.1] for further details) that the inclu-

sion process exhibits a family of product stationary measures if p(x, y) is doubly

stochastic modulo a constant, i.e.

X

j2⇤
L

(p(i, j)� p(j, k)) = 0 for all i, k 2 ⇤
L

.

In particular this is the case for p(x, y) in the PASIP (4.1). Therefore, there are

stationary product measures denoted

⌫L

�

[d⌘] =
Y

x2⇤
L

⌫̄
�

(⌘
x

)d⌘ with ⌫̄
�

(n) =
1

z(�)
w(n)�n .
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where

w(n) =
�(d

L

+ n)

n!�(d
L

)
, and z(�) =

1
X

k=0

w(k)�k = (1� �)�d

L .

The stationary distribution of PASIP is independent of the asymmetry p

and is the same as the TASIP and the SIP. Therefore, the same condensation as

discussed with general inclusion processes in Section 2.3.3,

max
x2⇤

L

⌘
x

/N ! 1 in distribution ⇡
L,N

still occurs under the thermodynamic limit (2.32):

L, N !1 , d
L

! 0 such that
N

L
! ⇢ > 0 and d

L

L! 0 ,

where d
L

= L�� and � > 1. Again, for numerical data in the rest of this chapter we

use d
L

= 1

L

2 but have checked the validity of our results also for other scaling of d
L

.

Again, we will use �2(t) as defined in (2.4) to quantify the time evolution towards

condensation.

Although the stationary distribution of the PASIP is the same as for the

TASIP and the SIP, the dynamics of PASIP are fundamentally di↵erent, especially

from the SIP. In the rest of this chapter, we focus on the dynamics of PASIP from

a spatially homogeneous initial distribution to the formation of the complete con-

densate. Without loss of generality, we always assume the particles have a drift

to the right, i.e. p > q in (4.1). Following the analysis in the previous chapter,

the process of the formation of the complete condensate can be qualitatively di-

vided into four di↵erent regimes: the nucleation regime, the coarsening regime, the

saturation regime and the stationary regime, as illustrated with numerical results

in Figure 4.1. In the following sections in this chapter, we can see these regimes

exhibit similar characteristic behaviour as the TASIP, while the partial asymmetry

brings more complicated details into the exact dynamics. Similar to the TASIP as

discussed in Section 3.3, the PASIP does not have a self-duality property due to

the asymmetry, and the correlation functions for clusters in the nucleation regime

do not have closed forms. The same numerical approach as discussed in Section 3.3

for the TASIP can be applied to the nucleation regime, but does not lead to any

significant di↵erences. Although the nucleation itself has dynamics which may be of

independent interest, we focus on the dynamics at larger time scales. Understand-

ing the coarsening and saturation regimes is our main interest here and we will look

at more details in Section 4.3. The stationary regime is a natural outcome of the

isolated clusters movement and will also be discussed in detail in Section 4.3.
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4.3 Condensate motion and interaction

In this section we first investigate the motion of a macroscopic isolated cluster which

dominates the stationary regime. Then we look at the interaction of two clusters

through a more detailed numerical approach, which extends results we have derived

in Section 3.4.

4.3.1 Dynamics of isolated clusters

Consider an isolated cluster of size m = ⇥(L)1 residing on site x of an otherwise

empty lattice ⇤
L

. A single particle could move to site x + 1 with rate pd
L

m, or to

site x� 1 with rate qd
L

m. First, we consider the case that it moves to x + 1, where

it could move one step further to site x + 2 with rate pd
L

, or return to site x with

a much higher rate q(m� 1 + d
L

). In the meantime a particle on site x could move

independently to site x � 1 with rate qd
L

(m � 1), or follow the previous particle

to site x + 1 with a higher rate p(m � 1)(1 + d
L

). Under the condition of small

d
L

, this interaction mechanism is dominated by inclusion rates between site x and

x+1 and lasts until all particles are absorbed on either site. During this interaction,

the rate of any particle escaping from these two sites is pd
L

⌘
x+1

+ qd
L

⌘
x

, which is

bounded above by d
L

m and vanishes as L ! 1. For large clusters, we can omit

the escaping events and the small d
L

in inclusion rates, then the mass distribution

between sites x and x + 1 can be described by a simple asymmetric random walk

on the state space X
m

= {0, 1, 2, ..., m} with jump rates p, q and absorbing sites at

both boundaries. A macroscopic cluster successfully moving one step to the right is

then equivalent to the event that the walker starting from 1 2 X
m

and reaches m

before being absorbed by 0. As derived in Appendix (B.2) the probability for such

a successful step is
1� q/p

1� (q/p)m
! 1� q

p
as m!1, (4.3)

which is now < 1 as opposed to the TASIP.

Analogously, if the first particle jumps left to the site x� 1 with rate qd
L

m,

it will trigger an interaction between particles on sites x � 1 and x, where the

rate of any particle to escape during the interaction is qd
L

⌘
x�1

+ pd
L

⌘
x

. Again,

the escaping rate is bounded by d
L

m and vanishes as L ! 1. Using the same

asymmetric random walk approximation, we have the probability for an isolated

1Recall the notation f(n) = ⇥(n): k1n < f(n) < k2n, for some constants k1, k2 > 0 and n
su�ciently large.
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cluster to move one step to the left as

1� p/q

1� (p/q)m
! 0 as m!1. (4.4)

This shows that the probability of a large cluster moving to the left vanishes since

all particles would have to follow the first one against the bias.

Next, we compute the expected time of one such successful step of the cluster in the

direction of the drift, and compare it with that in the TASIP and the SIP. This pro-

cess is equivalent to a birth-death process on a finite state space X
m

= {0, 1, 2, ..., m}
with site-dependent birth rates ↵

i

and death rates �
i

, i = 0, 1, 2, ..., m, which are

given by the transition rates as

↵
i

= p(m� i)(d
L

+ i), �
i

= qi(d
L

+ m� i), for i = 1, 2, 3, ..., m� 1, (4.5)

and at the boundaries

↵
0

= pd
L

m, �
0

= 0, ↵
m

= 0, �
m

= qd
L

m. (4.6)

Denote the stationary distribution of this chain as µ, then by detailed balance

(Proposition 2.2) we have µ
k

↵
k

= µ
k+1

�
k+1

and then

µ
k

=

 

k

Y

i=1

↵
i�1

�
i

!

µ
0

, for k = 1, 2, ..., n.

The expected hitting time of the boundary m starting from site k is derived in

Appendix B and given by (B.1) as

⌧m

k

=
m�1

X

i=k

1

↵
i

µ
i

i

X

j=0

µ
j

.

Then ⌧m

1

with rates (4.5) (4.6) is the expected waiting time after the first particle

jumps by di↵usion until the whole cluster moves successfully one step to the drifted

direction in the PASIP. Here we first compute a slightly more general formula of ⌧m

k

,

then give an approximation of ⌧m

1

. To compute ⌧m

k

for a given k 2 {1, 2, ..., m� 1},
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using rates (4.5) (4.6) and ignoring d
L

we have

µ
j

µ
i

=

⇣

p

q

⌘

j

⇣

Q

j

l=1

(m�l+1)(d

L

+l�1)

l(d

L

+m�l)

⌘

µ
0

⇣

p

q

⌘

i

⇣

Q

i

l

0
=1

(m�l

0
+1)(d

L

+l

0�1)

l

0
(d

L

+m�l

0
)

⌘

µ
0

(4.7)

'
✓

q

p

◆

i�j i(m� i)

j(m� j)

for j = 1, 2, 3, ..., i and i = k, k + 1, ..., m � 1. For j = 0 we keep one d
L

in the

denominator and use the approximation

µ
0

µ
i

'
✓

q

p

◆

i i(m� i)

md
L

, for i = k, k + 1, ..., m� 1. (4.8)

Notice that ⌧m

k

can be rearranged by µ
j

in the numerators as

⌧m

k

=
µ
0

↵
k

µ
k

+
µ
1

↵
k

µ
k

+
µ
2

↵
k

µ
k

+ ... +
µ
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↵
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+
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0
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µ
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X
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1
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,

then we substitute (4.7) (4.8) and ↵
i

' pi(m� i) into the last line to get

⌧m

k

'

⇣

q

p

⌘

k

✓

1�
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q

p

⌘
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◆
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X
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⌘
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◆
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X
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1
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.

Notice this is a general expression of the expected hitting time starting from k

particles on the target site. To see the motion of the cluster, we take k = 1 and

then the second term of above equation vanishes, then we have the following results
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for large clusters,

⌧m

1

' q

p(p� q)md
L

+
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◆
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1
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.

We can find an upper and a lower bound for the second term as

q

p2

m�2

X

j=1

1

j(m� j)


m�2
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q
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✓
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◆
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X

j=1

1
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.

Applying the same approximation as in (3.18) for the TASIP, we have

m�2
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1

j(m� j)
' 1

m

Z

m�2
m

1
m
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log(m),

and

m�1

X
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1

j(m� j)
' 1

m

Z

m�1
m

1
m

1

x(1� x)
dx ' 1

m
log
�

(m� 1)2
�

' 2

m
log(m),

therefore

⌧m

1

' q

p(p� q)md
L

+
2

m
log(m) .

Recall the first particle jumps by di↵usion rate pd
L

m, the expected total time for

all particles to move one step is therefore given by ⌧ step = 1

pd

L

m

+ ⌧m

1

, with approx-

imation

⌧ step ' 1

pd
L

m
+

q

p(p� q)md
L

+ ⇥

✓

log m

m

◆

=
1

(p� q)md
L

+ ⇥

✓

log m

m

◆

.(4.9)

Comparing with (3.18) in the TASIP, which we repeat here

⌧ step

TASIP

=
1

d
L

m
+

m�1

X

k=1

1

(m� k)k
' 1

d
L

m
+

1

m

Z

(m�1)/m

1/m

1

x(1� x)
dx

' 1

d
L

m
+

2

m
log(m) , (3.18 revisited)

we can see that (4.9) has an extra term q

p(p�q)md

L

which decreases with increasing

p 2 (1/2, 1]. This term corresponds to the event that the first particle, after it leaves

the cluster by di↵usion, jumps back rather than attracts more particles. Then the
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cluster has to wait for the next particle leaving by di↵usion with a lower rate.

Obviously, this event occurs against the drift, and has more impact in a system

with weaker drift strength, i.e. smaller p. In the extreme case when p ! 1, (4.9)

converges to (3.18), and ⌧ step ! ⌧ step

TASIP

, as the system itself converges to the TASIP.

4.3.2 Interaction of two clusters

Clusters move freely as described above until there is only one intermediate lattice

site separating two of them, they then interact via a mechanism which is similar

to but more complicated than the one discussed in Section 3.4.2 for the TASIP.

The asymptotic behaviour of such interactions for large clusters in the PASIP can

be studied following the same approach used for the TASIP, where we restrict all

N particles on three lattice sites x = 1, 2, 3, and consider the rescaled process

⇢(t) := (⌘
x

(t)/N : x 2 {1, 2, 3}) on the simplex �0 =
n

[0, 1]3,
P

x=1,2,3

⇢
x

= 1
o

.

For the PASIP the generator of this process is then

L
N

f(⇢) =
X

x=1,2

pN⇢
x

(d
L

+ N⇢
x+1

)

✓

f

✓

⇢� 1

N
e
x

+
1

N
e
x+1

◆

� f(⇢)

◆

+
X

x=2,3

qN⇢
x

(d
L

+ N⇢
x�1

)

✓

f

✓

⇢� 1

N
e
x

+
1

N
e
x�1

◆

� f(⇢)

◆

. (4.10)

For large systems d
L

terms are negligible and for the test function f(⇢) = (⇢
1

, ⇢
3

)

we get,

d

dt

 

⇢
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(t)

⇢
3
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!

=

 

�(p� q)⇢
1

(t)⇢
2

(t)

(p� q)⇢
2

(t)⇢
3

(t)

!

,

with solution under rescaled time t 7! t/N

⇢
1

(t) =
1

2

✓

1�B tanh

✓

B(p� q)t

2
�A

◆◆

! 1�B

2
as t!1 ,

⇢
3

(t) =
2⇢

1

(0)⇢
3

(0)

1�B tanh
⇣

B(p�q)t

2

�A
⌘ ! 2⇢

1

(0)⇢
3

(0)

1�B
as t!1 ,

where B =
p

1� 4⇢
1

(0)⇢
3

(0) and A = tanh�1

⇣

2⇢1(0)�1

B

⌘

. This is the same result

as (3.27), except for the factor (p� q) in front of time t, which implies that asymp-

totically the interaction between large clusters are the same as TASIP, i.e. when a

bigger cluster catches up with a smaller cluster (both of order L size), they exchange

positions without exchanging a significant number of particles.

However, if we take a closer look at the dynamics in the PASIP, especially
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Figure 4.2: Sketch of the cluster interaction in the PASIP.

for interactions between small clusters (say of the order ⇢) to leading order, the

relevant quantity for the coarsening are the fluctuations which determine the amount

of exchanged particles during a swap. This should increase as compared to the

TASIP, since the interaction takes a longer time which is quantified by the pre-

factor (p� q) in the above equation. Therefore, the mean field approach yields the

same mechanism of swapping positions as for the TASIP, but cannot account for

the increased exchange of particles during that swap. In the rest of this section

we describe this interaction mechanism through a di↵erent approach. The precise

dynamics of this interaction is complicated and relatively di�cult to derive in an

explicit way, thus we first present a description from a more numerical perspective.

Observations

We now define one sub-interaction process starting when the first particle jumps

to the intermediate site and finishing when this site becomes empty again or has

absorbed all particles involved in the interaction (which happens with a very small

probability). In the rest of this section we will refer to this sub-interaction process

as interaction for ease of presentation. Notice, a typical ‘catch up and swap’ scenario

of two clusters discussed above may consist of a number of such interactions. In the

rest of this section, we use t to denote the interaction time and write the size of a

cluster within an interaction as m(t), and use t̄ to denote the system time of the

process. Regardless of the actual positions on the lattice, we always name the cluster

on the left site m
1

containing m
1,

¯

t

particles at time t̄, the one on the right site m
3

containing m
3,

¯

t

particles, and the cluster on the intermediate site m
2

containing m
2,

¯

t

particles during one interaction (see Figure 4.2). Within an interaction, M denotes

the total number of particles involved in one interaction i.e. m
1

(0) + m
3

(0) = M .
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The duration of one interaction is then a stopping time:

T := inf{t > 0, m
1

(t) + m
3

(t) = 0 or m
1

(t) + m
3

(t) = M}. (4.11)

Figure 4.3 shows the observations of cluster interactions recorded in a single

realisation of a full PASIP trajectory starting from a flat initial condition until only

one cluster remains, for di↵erent values of p including p = 0.5 for the SIP and p = 1.0

for the TASIP. We record the ratio of m
1

to M before and after each interaction by

the positions of markers, the size of M by the size of markers and the recorded time

t̄ by the colour of markers. Rich information about the interacting mechanism can

be found in this figure, and we list several important aspects with analysis.

1. Most interactions occur between small clusters and in early stages of the coars-

ening regime (represented by small circles with blue colour in Figure 4.3).

2. Data points located on the main diagonal correspond to those clusters keep-

ing their sizes after the interaction, where typically a particle jumps to the

intermediate site then immediately jumps back to m
1

. In the following we

will refer the lower-left to upper-right diagonal as the main diagonal and

the upper-left to lower-right diagonal as the anti-diagonal. Data around the

main diagonal shows the fluctuations where m
1

loses or gains a small num-

ber of particles. The same fluctuations in the SIP (Figure 4.3(a)) are more

obvious since interaction between two SIP clusters leads to an exchange of a

large number of particles (see discussion in Section 3.4.2), and the data points

distribute symmetrically along the diagonal due to the symmetry of transition

rates. In contrast, there is only a few data points in the region above the

main diagonal for the PASIP, which illustrates the di�culty for a cluster to

gain particles against the drift. Naturally it is impossible for the TASIP by

definition, as one can observe in Figure 4.3(c).

3. In Figure 4.3(b), 4.3(c), many data points are located on or around the anti-

diagonal. This represents the ‘swap’ scenario, where m
1

(T ) ' m
3

(0). The

reason we can only observe such data located on the right half of the diagonal

is that bigger clusters have a higher speed and will catch up with smaller

ones. Once they exchange positions, the bigger cluster tends to move away.

Therefore we always observe m
1

(0) > m
3

(0) ' m
1

(T ) in such interactions.

Also, we find the large clusters prefer to follow the ‘meet and swap’ rule

while small ones are more unpredictable, as indicated by the dispersed small

circles. The pink arrows in 4.3(b) illustrate the following typical event: a large
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Figure 4.3: Scatter plot of normalised m
1

(0)/M and m
1

(T )/M (cf. (4.11)) in a single
realisation of a full trajectory for SIP, PASIP and TASIP with L = 256, N = 512.
Each point represents one interaction event. The number of particles M in these
events varies, and is indicated by the size of the points, where colour indicates the
time of the interaction. Two diagonals are shown as full lines. Purple arrows indicate
a typical succession of interaction events, showing a merge for symmetric (a) and a
flip for asymmetric dynamics (b) at a late stage in the dynamics.
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cluster catches up with a smaller one and starts the interaction. Initially, a few

particles jumps to the intermediate site but are immediately absorbed by either

cluster, and the interaction finishes without significant impact on the mass

distribution (data points on the diagonal close to upper-right corner). Then,

after several such short interactions, one particle triggers a long interaction

which ends up with the two clusters exchanging their positions (data points

close to lower-right corner). Now, m
1

is the smaller cluster by definition and

the bigger m
3

tends to move away with a higher speed. But before that further

short interactions may occur (data points near lower-left corner). Thus, a

typical event is finished, and when the bigger cluster travels around the whole

lattice it will meet the smaller cluster again and start another such event until

only a single cluster remains.

4. Data points located on the lower and upper boundaries indicate merge events.

For the PASIP and the TASIP, a merge is typically observed for small clusters,

and only on the lower boundary, i.e. the clusters did not merge on the left

site 1. While for the SIP, we observe more merge events on both boundaries,

including some big clusters. Note, we only record the change of m
1

, thus the

data on lower boundary (m
1

(T ) = 0) include the merge on both site 3 and the

intermediate site 2. The merge events agree with our previous argument in

Section 3.4.2 that order M particles can be exchanged in an interacting event

in the SIP. Macroscopically, clusters in the PASIP and the TASIP move with

the drift and only exchange a smaller number of particles when they meet. In

contrast, after two clusters in the SIP meet, they typically keep their positions

and interact for a longer time, until they either merge or one cluster moves

away, which occurs with the same probability. In other words, the SIP clusters

spend most of the time searching for other clusters then interact for a while,

and the PASIP and the TASIP clusters meet more often but spend less time

on each interaction. So the SIP interactions are more isolated than the PASIP

and the TASIP in the space of time which is represented by colours in 4.3(a),

and we observe the clustering of data with similar colour in the SIP while the

colours of data in the TASIP and the PASIP are distributed more uniformly.

The pink arrow in the Figure 4.3(a) illustrates a typical merge event in the

SIP, where two big clusters meet and interact. For a long time they only

exchange a few particles (the cluster of data points around the diagonal) until

the merge event occurs (point moves to the lower boundary).

The above observations help us understand the interaction of two clusters
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Figure 4.4: Scatter plot of normalised m
1

(0) and m
1

(T ) for PASIP toy model (4.12)
with uniform initial conditions. Note these data are not from full simulations. 2000
realisations are tested for each system size. Two diagonals are shown as full lines.

in di↵erent regimes qualitatively. But during a realisation, both the number of

interactions and the size of clusters are random. Next, to investigate the interaction

mechanism more precisely, we construct some artificial interacting models with a

fixed number of particles and uniform initial distributions.

Analysis

We construct toy models of an interaction event as follows: First, fix the total

number of particles M = m
1

(0) + m
3

(0) to be relatively large. Then, distribute

these particles on sites 1 and 3 with a uniform distribution

P (m
1

(0) = k, m
2

(0) = 0, m
3

(0) = M � k) = 1/(M � 1), k 2 {1, 2, ..., M � 1}.
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Figure 4.5: Interaction in the SIP. (a): Probability of condensates merging in the
SIP. (b): Fluctuations (4.13) along the m

1

(0) = m
1

(T ) diagonal with tolerance
✏ = 0.1. Fitted linear predictions P[Merge] = 2.9713(1/M) and E2

1

= 0.02733M are
shown as full lines. 20000 realisations are tested for each M .

Pick the first particle from cluster m
1

or m
3

according to the jump rates pd
M

m
1

(0)

and qd
M

m
3

(0), respectively, then start the interaction according to the generator

Lf(m) =
X

x=1,2

pm
x

(d
M

+ m
x+1

)
⇥

f(mx,x+1)� f(m)
⇤

+
X

x=2,3

qm
x

(d
M

+ m
x�1

)
⇥

f(mx,x�1)� f(m)
⇤

, (4.12)

where f : X
M

= N3 ! R is the test function and d
M

⌧ 1/M . This is just the

generator (4.2) restricted to three sites toy model. Then we record m
1

(T ) when

the interaction finishes. Figure 4.4 shows the results for this toy models with a

large number of realisations with di↵erent p. Denote the probability of two cluster

merge within an interaction as P[Merge] = P [m
1

(T ) = 0 or M ], then in the SIP, two

clusters either merge with a small probability P[Merge] ⇠ 1/M (see Figure 4.5 left)

or keep their initial sizes with order
p

M fluctuations (see Figure 4.5 right). The

fluctuations are measured as

E2

1

:=
⌦

|m
1

(T )�m
1

(0)|2I{|m
1

(T )�m
1

(0)| < ✏M}
↵

, (4.13)

where 0 < ✏⌧ 1 is a constant (tolerance) ensuring that we only include data close

to the main diagonal, and h·i denotes the average on a large number of realisations.

Notice, this merge probability is conditioned on the sub-interaction process here

while an previously discussed interaction event, or an ‘catch up and swap’ scenario,
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Figure 4.6: Left: Fluctuations (4.14) after two condensates exchange positions
against system size. Fitted linear predictions E2

2

= (1/a)M with constants a are
shown as full lines. Right: Linear fit rates against parameter p. Fitted linear pre-
dictions a = 2.687p� 1.257 are shown as full lines. 20000 realisations are tested for
each system size.

consists order M such sub-interaction processes, which implies the merge probability

within an interaction event to be of the order 1.

For p > 0.5, there are typically no merge events and we observe exchange

events on the anti-diagonal. In Chapter 3 we predicted that the fluctuations of such

an interaction are of order M in the TASIP (see Section 3.4.2). For the PASIP one

can also measure such fluctuations as

E2

2

:=
⌦

|m
3

(T )�m
1

(0)|2I{m
1

(0) > m
3

(0) and m
1

(T ) < m
3

(T )}
↵

. (4.14)

Figure 4.6(a) shows that the fluctuations are all of order
p

M for di↵erent p.

Intuitively, we observe that the fluctuation after an interaction in the PASIP are the

results of two parts: the same part as in the TASIP and an additional part caused

by the partial asymmetry. The latter is crucial for investigating the coarsening

dynamics. To further study these additional fluctuations, we map the interaction

mechanism to a 2-dimensional random walk.

Each interaction is equivalent to a 2-dimensional random walk S
1

(t) with

adapted jump rates in the (m
1

, m
3

) space. S
1

(t) is defined in the triangular lattice

region D
S

= {m
1

� 0, m
3

� 0, m
1

+ m
3

M}. The initial position of S
1

(0) is on

the line m
1

+ m
3

= M � 1 (one particle has jumped to site 2), and S
1

(t) can be

absorbed by both the line m
1

+ m
3

= M (site 2 is empty again) and the origin

(merge on site 2). At each state (m
1

, m
3

) within this region, the jump rates of S
1

(t)
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Figure 4.7: A sample path (in the up-left direction) of the interaction in the e↵ective
jump field of the interaction M = 128, p = 0.75. Sizes of arrows are proportional to
e↵ective jump rates, which is calculated as the vector norm of rates in Table (4.1)
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in the four directions are shown in Table 4.1.
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� 1) R�
3

= qm
3
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Table 4.1: Transition rates of two-dimensional random walk equivalent to interaction
between two clusters in the PASIP.

For a fixed M we can construct a vector field in D
S

according to the average

drift and an interaction event can be represented by a fluctuating path of S
1

(t) in this

field (see Figure 4.7). In most cases, S
1

(t) is absorbed close to (m
1

(0), m
3

(0)). For

the exchange events in p > 0.5 models, S
1

(t) walks to a site around (m
3

(0), m
1

(0)),

i.e. the symmetric position of S
1

(0) with respect to the main diagonal. Notice, for

the TASIP S
1

(t) can only move left or up while for the PASIP it can move in all four

directions even if it has a left-up drift. Therefore, a typical interaction path in the

PASIP accumulates more fluctuations than in the TASIP. The full distribution of the

path is complicated and hard to predict. Here we only approximate the order of this

additional fluctuation through a projection of S
1

(t) on the �e
m1 +e

m3 direction, i.e.

the anti-diagonal, where we only consider the interactions leading to the exchange
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of clusters. After normalising the jump rates by (m
1

m
2

+ m
2

m
3

), the projection is

equivalent to a one-dimensional random walk of step size 1 defined on a finite lattice

of size ⇥(M) with jump rates p and q, and the initial state is determined by S
1

(0).

Two clusters have exchanged positions when this random walk successfully travels

to the other end of this lattice, with the drift (p � q). The accumulated variance

per step along the path is

Var = p · 12 + q · (�1)2 � (p� q)2 = 4pq. (4.15)

The drift (p � q) leads to ⇥(M/(p � q)) steps. Hence the accumulated fluctuation

along the 1-dimensional walk is approximately of the order
p

4pqM/(p� q). There-

fore, we approximate the fluctuations of interactions between two clusters in the

PASIP by

E
2

' ⇥

 

s

✓

C
1

+
4pq

p� q

◆

m

!

, (4.16)

where C
1

(as for p = 1) is a constant representing the inherent fluctuations as in

the TASIP, and the rest is the fluctuations caused by partial asymmetry. Notice

here we use notation m instead of M to indicate the typical size of a cluster, which

under the mean-field assumption is of the same order as M and will be used in

later analysis of the coarsening dynamics in Section 4.4. This result agrees with the

linear relationship between E2

2

and M shown in Figure 4.6, as well as the slope’s

dependence of p. The fitted numerical values of the fluctuation’s pre-factor in Figure

4.6 are slightly di↵erent from our prediction (4.16), since in (4.16) we only considered

the partial asymmetry’s influences on �e
m1 +e

m3 direction. But the argument used

to derive (4.16) is valid and we will use this prediction to investigate coarsening

regime later in Section 4.4.

Notice Equation (4.15) is derived under the condition that two clusters ex-

change positions. To compute the probability of such exchange event in one interac-

tion, one could project S
1

(t) to the direction �e
m1�em3 and look at a 1-dimensional

random walk with only one absorbing state. This is the subject of the following sub-

section.

Further analysis: probability of swap

During a single interaction, there is a possibility that two clusters remain at their

positions rather than swap, and this is dominated by the event that the first particle

jumping to site 2 is absorbed immediately by one of the clusters. This event can be

mapped to the two dimensional random walk model where the walker starting from
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Figure 4.8: Probability of two clusters remaining in the same positions (red) or
swapping/merging (blue) in the PASIP and the TASIP. Predictions (4.18) are shown
as full lines. Each data point is the empirical probability over 200 realisations with
fixed M and m

1

(0)/M .

m
1

(0) + m
3

(0) = M � 1 jumps one step to the absorbing boundary, rather than

travelling to the mirror point with respect to the main diagonal. To estimate this

probability, we can project the two dimensional random walk on the �e
m1 � e

m3

direction (main diagonal). Then the projection is a one dimensional random walk

S
2

(t) with jump rate

↵ = pm
1

+ qm
3

and � = pm
3

+ qm
1

. (4.17)

Since we are only interested in the probability of S
2

(t) returning to the absorbing

boundary m
1

(t) + m
3

(t) = M , we can approximate ↵, � to be constants only

depending on initial values m
1

(0) and m
3

(0) because this re-absorption happens

relatively quickly. Define

P
k

= P [S
2

(0) = k, S
2

(T ) = 0] ,

then the probability that the first particle on site 2 is absorbed immediately is given

by P
1

, with boundary condition P
0

= 1. The solution is simply P
k

= (�/↵)k (see

(B.3) Appendix B) and with (4.17) writing x = m
1

/(m
1

+ m
3

) we get

P
1

=
p(1� x) + qx

px + q(1� x)
and 1� P

1

=
(p� q)(2x� 1)

px + q(1� x)
. (4.18)

Due to the positive drift (p � q) in the interaction, the exchange event can only

happen when m
1

(0) is larger or of similar size to m
3

(0) and therefore the above

equations only holds for x 2 [1/2, 1]. Simulations with di↵erent p are shown in

Figure 4.8 and show a very good agreement with the prediction in (4.18). If clusters

do not swap position in an interaction event, they will start interacting again after
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a very short time until they finally swap. Since the probability of swapping is of

order 1 as long as m
1

> m
3

, a swap will occur after a finite number of interactions,

the expectation of which is given by 1/(1� P
1

). Initial interaction before swapping

decreases the size of the larger cluster m
1

, but this does not create a significant

bias in the interaction. After the swap, an analogous amount of small particle

exchange takes place in the other direction increasing again the size of the larger

cluster, before it eventually moves away from the smaller one. We see that the

probability of swapping in a given interaction increases with p and is highest in

the TASIP. This only a↵ects the duration of the cluster interaction and not the

number of particles exchanged, which is the main characteristic that determines the

coarsening dynamics, as explained in the next section.

4.4 Coarsening and saturation

The previous section shows that the microscopic dynamics of clusters in the PASIP

is similar to the TASIP. Recall the probabilities given in (4.3) (4.4) of an isolated

cluster move one step successfully to the right and left respectively, the e↵ective

jumping rate to the right is then (1� q

p

)p⌘
x

and proportional to its size, and clusters

step to the left with a vanishing rate except for very small ones. When a larger cluster

catches up with a smaller one, they only exchange a small number of particles given

by (4.16) in an unbiased way. Compared with the TASIP, the speed of clusters is

reduced but the fluctuations during each interaction are enhanced, and they have

opposite e↵ects on the coarsening process. In this section, we extend the arguments

in Section 3.5 and give descriptions of coarsening and saturation dynamics of the

PASIP in a heuristic way with mean-field approximations.

4.4.1 Dynamics in the coarsening regime

Let m(t) denotes the typical size of a cluster in the coarsening regime, and n(t)

the typical number of clusters per unit volume, so n(t)m(t) = ⇢. From (4.3), the

e↵ective speed of a cluster is v(t) = (p � q)d
L

m(t) where we omitted the small

correction (q/p)m and the typical distance of two clusters is s(t) = m(t)/⇢. Then

two clusters meet at rate

v(t)/s(t) = (p� q)⇢d
L

. (4.19)

We denote the unbiased exchange of particles in the TASIP as
p

C
1

m, where C
1

(for p = 1) is a constant and has been approximated as C
1

⇡ 2 in Section 3.5.

Considering the additional randomness caused by partial asymmetry (4.15), the
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number of particles exchanged in the PASIP is of order
p

(C
1

+ 4pq/(p� q)) m(t)

and is unbiased. Thus if k is the number of exchanges required for one cluster

to lose all of its particles, the accumulated variance should be equal to m(t)2, i.e.

k(C
1

+ 4pq/(p � q))m(t) = m(t)2, which implies k = (C
1

+ 4pq/(p � q))�1m(t).

Therefore, each cluster independently dissolves with rate C1+4pq/(p�q)

m(t)

(p � q)⇢d
L

,

which typically happens after a time �t per unit volume given by the inverse of this

expression. These death events e↵ectively increase m(t) by �m(t) = m(t)

n(t)�1

� m(t)

n(t)

⇠
m(t) per unit volume due to the conserved total number of particles. This leads to

d

dt
m(t) =

�m(t)

�t
=

✓

C
1

+
4pq

p� q

◆

(p� q)⇢d
L

. (4.20)

With initial condition m(0) = ⇢/n(0) = ⇢/r, where r (3.3) is the expected ratio of

occupied sites after the nucleation regime which we fitted from data, the solution is

simply

m(t) =

✓

C
1

+
4pq

p� q

◆

(p� q)⇢d
L

t +
⇢

r
, (4.21)

and with s(t) = m(t)/⇢ we have

�2

⇢2
=

m2(t)

s(t)⇢2
=

✓

C
1

+
4pq

p� q

◆

(p� q)d
L

t +
1

r
. (4.22)

The right hand side above converges to (3.32) as p! 1, and we keep the (p�q) terms

to emphasise that this equation does not hold for p = q and the dynamics of SIP are

fundamentally di↵erent from asymmetric cases. Similar to the TASIP, this analysis

applies to infinite systems, given a fixed small parameter d, since there is no explicit

system size dependence. For finite systems, it only applies for a certain scaling

window (see Figure 4.9, 4.10) after which the system convergences exponentially to

the stationary regime. This is shown in Figure 4.9 and 4.10, with agreements of data

and theoretical predictions. Due to the competing e↵ects of decreased cluster speed

but increased interaction strength, the coarsening scaling laws look very similar (see

Figure 4.10(a)), and the subtle di↵erences are explained well by our theory (see

Figure 4.10(b)).
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Figure 4.9: Coarsening dynamics in PASIP. (a): Data of PASIP with fixed p = 0.6,
⇢ = 2 compared to the prediction (4.22) shown as a full line with constants C

1

= 2
and initial condition r = 0.2851. (b): Data for PASIP with fixed p = 0.75, ⇢ = 2
compared to the prediction (4.22) shown as a full line with constants C

1

= 2 and
initial condition r = 0.2856. Data points are averaged over 200 realisations. Errors
are bounded by the size of symbols.
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Figure 4.10: Data of a PASIP with fixed L = 2048, ⇢ = 2 compared to prediction
(4.22). Predictions with di↵erent p are shown as full lines with the same colour
of corresponding data, and C

1

= 2, r = 0.2851. (a): Data and prediction for full
simulations. (b): Data and predictions in coarsening regime window. Data points
are averaged over 200 realisations. Errors are bounded by the size of symbols.
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Comparison with SIP

Recall the coarsening dynamics of SIP derived in Section 3.5

�2(t)

⇢2
=

s

2C
s

d
L

t +

✓

3 +
1

⇢

◆

2

. (3.34 revisited)

Compared to (4.22), one can see the di↵erent scaling behaviour in the coarsening

regimes for the SIP and the PASIP. Indeed, the asymptotic linear scaling in (4.21)

holds even for p relatively close to 1/2, as confirmed in Figure 4.11. However,

simulations in this figure also indicate that in an early time window the scaled

second moment �2/⇢2 in the PASIP and the SIP follow the same function, which

implies that the early coarsening dynamics in both models have similar behaviour.

The reason is that for early stages in the coarsening regime, the typical size of a

cluster m(t) is small so the di↵usion e↵ects cannot be neglected. Indeed, the rate

of two clusters meeting in the PASIP can be written as d
L

/s(t)2 + v(t)/s(t), with

an additional di↵usive contribution d
L

/s(t)2. Note that in the beginning of the

coarsening regime m ' ⇢/r and s ' 1/r, so with (4.19) d
L

/s(t)2 and v(t)/s(t) are of

the same order if ⇢ ' ⇥(1). After some time, the typical distance s(t) grows and the

cluster meeting rate is only dominated by v(t)/s(t) term. So there exists a critical

value s⇤ below which the dynamics in the PASIP are highly a↵ected by the di↵usive

contribution and thus similar to the SIP, and we can estimate the corresponding

critical �⇤2(t) as follows,

d
L

s⇤2
=

v(t)

s⇤
) s⇤ =

1
p

⇢(p� q)
.

Then with ⇢s⇤ = m⇤ and n⇤ = ⇢

m

⇤ we have the (scaled) critical observable

�⇤2

⇢2
' 1
p

⇢(p� q)
. (4.23)

Figure 4.11 shows the numerical results that confirm this prediction.

4.4.2 Saturation and stationarity

Relaxation time scale

The coarsening and saturation regimes can be described through a relaxation time

scale. Recall the derivation of the relaxation time scale ⌧a

L

= L/d
L

for the TASIP

(3.28) and ⌧ s

L

= L2/d
L

for the SIP (3.29) in Section 3.4. One can apply the same
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Figure 4.11: Data of PASIP and SIP with fixed ⇢ = 2. The two full lines above
are prediction (4.22) with corresponding p and fitted r = 0.2858 for p = 0.55 and
r = 0.2866 for p = 0.6 respectively. The full line below is prediction (3.34) with
r = 0.2857 (c.f. (3.15)) and fitted constant C

s

= 2.5888 . The dashed horizontal
line in green is the prediction of critical value �⇤2/⇢2 (4.23) for p = 0.6, above which
the PASIP and the SIP perform di↵erent dynamics. Data points are averaged over
200 realisations. Errors are bounded by the size of symbols.

method to derive ⌧p

L

for partially asymmetric systems as follows. Consider the

situation where only two clusters with size of order ⇢L interact on the lattice. The

previous section indicates that the relative speed of them is of order d
L

(p � q)⇢L,

which leads to the average time between two encounters being of order L/(d
L

(p �
q)⇢L) ⇠ 1/(⇢d

L

(p� q)). And since every interaction leads to an unbiased exchange

of order
p

⇢L(C
1

+ 4pq/(p� q)) particles, it typically takes ⇢L/(C
1

+ 4pq/(p� q))

encounters to achieve a macroscopic change. Therefore, the relaxation time scale of

the PASIP is

⌧p

L

=
L

C
p

d
L

' L

(p� q + 2pq)d
L

, (4.24)

where the parameter C
p

is the pre-factor in partially asymmetric dynamics (4.21)

(with a constant 2 di↵erence in order to agree ⌧p

L

! ⌧a

L

as p! 1),

C
p

=
1

2
(p� q)

✓

C
1

+
4pq

p� q

◆

' p� q + 2pq. (4.25)
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Figure 4.12: Data of PASIP with fixed L = 2048, ⇢ = 2 compared to linear predic-
tion (4.26) shown as full lines with fitted initial condition r = 0.2851. Exponential
convergence function (3.35) for finite systems are shown as dashed lines (with con-
stant C 0 = 2) for comparison. (a): Data and prediction for full simulations. (b):
Data and predictions in coarsening regime window. Data points are averaged over
200 realisations. Errors are bounded by the size of symbols.

Indeed, ⌧p

L

is essentially the same time scale that a typical cluster needs to grow to

size ⇢L following (4.21). With ⌧p

L

and C
1

= 2, we can rewrite (4.22) as

�2

⇢2L
= 2

t

⌧p

L

+
1

rL
, (4.26)

which holds for the coarsening window (see Figure 4.12).

Exponential convergence

Similar to TASIP and SIP dynamics, the derivation of the linear scaling law (4.22)

does not involve explicitly a system size dependence, therefore it also holds on infinite

lattices with a fixed small parameter d
L

. On a finite lattice, the systems will saturate

after the coarsening time window and converge to stationarity exponentially. Recall

the exponential saturation of systems discussed in Section 3.5.2, where the behaviour

of the observable �2(t)/(⇢2L) can be described by equation (3.35):

�2(t)

⇢2L
' 1� e�C

0
t/⌧

L as t!1 , (3.35 revisited)

where C 0 is a constant with estimates C 0
s

⇡ 10 for the SIP and C 0
a

⇡ 2 for the TASIP.

Indeed, C 0/⌧
L

is the spectral gap of the generator of the system, which describes

the exponential convergence to equilibrium of a finite system according to (3.35).

Since the exact form of a spectral gap in an interacting particle systems
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is generally di�cult to derive and the finite size e↵ect is not our main interest,

here we only give numerical results of the exponential convergence with a heuristic

understanding of the p-independence of the dynamics. Recall the derivation of the

scaling law in the coarsening regime (4.22), where we started from studying a typical

cluster. One major di↵erences between the saturation regime and the coarsening

regime is that in the coarsening regime, there are n(t) � 1 clusters on the lattice,

and they provide enough encounters for a cluster to grow. However, in the saturation

regime there are only a few clusters and the dynamics are typically dominated by

competitions between two clusters of similar size. Consider the situation where only

two clusters m
1

, m
2

are left on the lattice and both contain order ⇢L particles,

and denote �m(t) = |m
1

(t) �m
2

(t)| as the di↵erence of two clusters, which is now

�m(t) ' ⇥(1). Then the rate of encounters is of the order

v

s
=

d
L

(p� q)(|m
1

�m
2

|)
L

' d
L

(p� q)�m(t)

L
, (4.27)

where v is the relative speed of m
1

, m
2

and this rate is order L slower than the rate

(4.19) in the coarsening regime. We used (4.16) to estimate the fluctuations of two

clusters’ interactions in the coarsening regime, where this fluctuation consists of two

parts, one is inherent and the other is caused by the partial asymmetry,

E
2

' ⇥

 

s

✓

C
1

+
4pq

p� q

◆

m

!

. (4.16 revisited)

Indeed, the term m in this prediction should be understood as the di↵erences be-

tween the sizes of the two interacting clusters, i.e. �m(t). In the coarsening regime,

we can replace it with the size of a typical cluster m since there is enough encoun-

ters and interactions between di↵erent clusters. However, when only two similar

size clusters remain, this argument is not valid since the size di↵erence between

the two clusters is of order 1 and much smaller than either m
1

or m
2

. Therefore

in (4.16) the order of fluctuation should be adapted to
p

(C
1

+ 4pq/(p� q)) �m(t),

which can be approximated as
p

C 0�m(t) compared with m
1

, m
2

, both of which are

order ⇢L. In other words, the two similar size clusters not only meet less frequently,

but also exchange fewer particles when they meet, compared to the coarsening dy-

namics. This scenario dominates the saturation regime and will only be broken if

the fluctuations leads to an significant di↵erence between the sizes of the clusters,

i.e. where �m(t) grows to the order of 1/(p � q). This scenario can be studied

following the coarsening dynamics, and the only di↵erence is now the death event is

no longer the dissolution of a cluster but just the growth of �m(t) from order 1 to
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Figure 4.13: Exponential relaxation in the saturation regime for PASIP with (a)
fixed p = 0.7 in di↵erent system sizes, and (b) fixed L = 512 with di↵erent p. The
predictions (3.35) are shown as full lines with constant C 0 = 2. The dashed lines are
the linear coarsening scaling law (4.26) for comparison. Data points are averaged
over 200 realisations. Errors are bounded by the size of symbols.

order 1/(p� q). Analogously to the derivation of (4.20), the number of encounters

required is �m(t)/C 0 and the time �t of such an event is then �m(t)

C

0
s(t)

v(t)

. Until �m(t)

grows to the order 1/(p� q) we have the following di↵erential equation

dm

dt
=

�m(t)

�t
= �m(t)

C 0

�m(t)

d
L

(p� q)�m(t)

L
' C 0dL

L
,

where we used �m(t) ' 1/(p� q). The above changing rate of m(t) is much slower

than that of (4.20) in the coarsening regime and only depends on p very weakly

though the constant C 0. Since such dynamics dominate the saturation regime, we

predict the exponential convergence is independent of p in the PASIP, which agrees

well with simulation results as shown in Figure 4.13 where the simulation data

strongly suggests C 0 = 2 independently of p. Notice the time scale used in Figure

4.13 is the p-independent scale L/d
L

instead of ⌧p

L

(4.24).

So far the above analysis only considers the dominating dynamics of two

clusters of the same size, which is not enough to give a precise description of the exact

spectral gap C 0/⌧
L

. Investigating the exact form of spectral gaps of the inclusion

process itself is an interesting question, but as far as we know there are no rigorous

results yet. Spectral gap and exponential convergence on nearest neighbour particle

systems was first studied by Liggett in [111]. Recently there has been a series of

results on certain classes of zero-range processes [112, 113, 114, 115] and exclusion

processes [116], which can be a starting point for studies on the inclusion processes.
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4.5 Further study and summary

4.5.1 Weakly asymmetric inclusion process

An interesting aspect of the PASIP we have not covered in this chapter is the case

when p and q are close such that p�q = ⇥(1/L), namely the weakly asymmetric in-

clusion process (WASIP). Numerical results in Figure 4.14 illustrate that dynamics

in WASIP contain features of both the SIP and the PASIP/TASIP models. Com-

paring Figure 4.14(a) and Figure 4.3 one can see that interactions of the WASIP

are very similar to the SIP, where no cluster swap is observed except for very late

times. Figure 4.14(b) shows the coarsening dynamics of the WASIP follows the SIP

in the coarsening window, then converging to stationarity following a similar dy-

namics as in the PASIP. Intuitively, we can understand this through the movement

of isolated clusters. Recall the e↵ective speed of isolated clusters in the PASIP is

d
L

(p� q)m. In the WASIP, this speed is slowed down to the order of d
L

/L, and so

drift and di↵usion of clusters are on the same scale. Therefore, in the coarsening

regime, where encounters of clusters is rich, the dynamical behaviour of the WASIP

is similar to those in the SIP. However, after this coarsening regime, there are only a

few clusters left on lattice cannot provide enough encounters through di↵usion, and

the asymmetry p�q leads to a drift of cluster movement. Therefore, the interaction

events are more evenly distributed over time as compared to the SIP due to the

weak drift, which leads to more frequent encounters of clusters. Thus, the WASIP

switches to the PASIP-like behaviour in the late stages of the coarsening regime and

then saturates into the stationary state exponentially as discussed in the previous

section.

There has been a large volume of publications studying weakly asymmetric

exclusion process (WASEP) ( e.g. [101, 102, 105, 106, 107, 117]), where the weak

asymmetry was shown to provide a crossover between asymmetric and symmetric

dynamics, and provides an insight into further study on the WASIP and its rela-

tionship with the PASIP and the SIP.

4.5.2 Cluster size distribution

A recent study in [118] has considered a coarsening process on a one-dimensional

cell complex, where cells grow with a speed proportional to the size di↵erence of

neighbouring cells. In this paper, the authors predict the system has an exponential

convergence to the stationary state as e�2t, which could be another approach to

further understanding the saturation regime in the inclusion process. We apply the

idea of this paper to our model and find that at least the numerical simulation shows
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Figure 4.14: Data from simulations of the Weakly Asymmetric Inclusion Process
(WASIP) with fixed L = 512, ⇢ = 2. (a): Scatter plot of normalised m

1

(0)/M
and m

1

(T )/M in a single realisation of a full trajectory until a complete conden-
sate is formed. Data are generated by one full simulation. M may di↵er for each
interaction event. Size of data points scales with M , the total number of particles
involved in the interaction. Colour of data indicates the time of observation. Two
diagonals are shown as full lines. See Figure 4.3 for data on the PASIP and the SIP.
(b): Coarsening dynamics of the WASIP (data points in green), where data and
predictions for the PASIP (4.22) and for the SIP (3.34) are shown as full lines for
comparison. Data points are averaged over 200 realisations. Errors are bounded by
the size of symbols.

very similar results. In Figure 4.15 we measured the histograms of the normalised

cluster sizes when the system first saturates to n clusters, and the cluster size shows

an exponential distribution. This corresponds to a uniform split of the total mass

into n clusters, which is the simplest possible ansatz and turns out to be a good

approximation. Therefore, when the system first reaches a state with n clusters, we

can construct the typical cluster as the following: first generate n�1 uniformly i.i.d

random variables x
1

, x
2

,...,x
n�1

on the interval [0, N ] to separate the total particles

into n clusters, and we take the first one as the typical cluster and its size is given

by X := min{x
1

, x
2

, ..., x
n�1

}. It is easy to show that P(X  x) = 1 �
�

L�x

L

�

n�1

,

which leads to the following equation with normalised x 7! x/L

P(X > x) = (1� x)n�1, (4.28)

and is supported by simulation results in Figure 4.15. It would be interesting to

study this further, in particular to understand the exact form of the saturation

dynamics in finite systems.
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Figure 4.15: Histogram of cluster sizes in a TASIP model when the number of clus-
ters left on the lattice are n = 50, 20, 10, 5, 2. The black dashed lines are predictions
(4.28) with n = 50, 20, 10, 5, 2 respectively.

4.5.3 Summary

In this Chapter we extended results in Chapter 3 to partially asymmetric dynamics

in the thermodynamic limit. Due to the partial asymmetry, dynamics of isolated

clusters are similar to the TASIP but with slowed average speed (4.3). The inter-

action in the PASIP is complicated since particles are allowed to move against the

drift. We study it through a detailed numerical approach and derive an approxima-

tion of the exchanged number of particles during an interaction (4.16). As a result,

the second moment �2(t) follows a p-dependent scaling law (4.22) in the coarsening

window, and then convergences to stationarity exponentially with respect to the

same p-independent function (3.35) as in the TASIP. As in Chapter 3, our heuristic

description has been confirmed by extensive simulations and is based on the analysis

of the dynamics of a typical cluster and interaction with others under a mean-field

approximation.



Chapter 5

Inclusion Processes in Higher

Dimensions

5.1 Introduction

In this chapter, we apply the analysis from previous chapters to inclusion processes

defined on two dimensional lattices, with focus on the dynamics of condensation

in the thermodynamic limit. Results of inclusion processes in the stationary states

as we reviewed in Chapter 2 are independent of dimension and therefore guarantee

the condensation in the two-dimensional models under certain conditions. However,

almost all recent results on non-equilibrium inclusion processes and related models

[31] focus on one-dimensional systems, particularly for the dynamics of condensation

(see review in Section 2.3.2). A few other two-dimensional lattice gas models have

been studied extensively, for example the asymptotic behaviour of the simple exclu-

sion process has been investigated rigorously (see [119, 120] and references therein);

a generalised stationary product measure result of ZRP defined in two and three

dimensional spaces is studied in [121]; the super-di↵usivity of a two-dimensional

energy model, which is the dual process to the inclusion process, has been studied

in [122] as well. In this chapter we will show that the heuristic method based on a

typical cluster as discussed in previous chapters still applies for inclusion processes

defined on two-dimensional lattices, and we will also show the symmetric inclusion

process is closely related to the classic coalescing random walk model, in particular

for the high dimensional cases.

In the rest of this chapter, we define the inclusion process (⌘(t) : t � 0) on a

two-dimensional square lattice ⇤
L

of L sites with periodic boundary conditions, i.e.

a two-dimensional torus of K ⇥K = L ⇢ N sites, where K is the number of sites

85
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+ ⌘
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L

Figure 5.1: Illustration of the dynamics of two-dimensional inclusion process defined
on a 2D torus.

on each side. The total number of particles is denoted by N , and configurations are

still ⌘ = (⌘
x

: x 2 ⇤
L

) 2 X
L

where ⌘
x

2 N is the number of particles at site x 2 ⇤
L

and the state space is X
L

= NL. The dynamics are still defined by generator (2.27)

acting on bounded test functions f 2 Cb(X),

L
L

f(⌘) =
X

x,y2⇤
L

p(x, y)⌘
x

(d + ⌘
y

)(f(⌘x,y)� f(⌘)) , (2.27 revisited)

where ⌘x,y is the configuration after moving one particle from site x to site y and

we scale the di↵usion parameter d = d
L

with system size. Analogously to one-

dimensional inclusion processes, we define three types of nearest-neighbour dynamics

on two dimensional lattice :

(i) Two-dimensional Symmetric (2DSIP): p(x, y) = 1

4

(�
y,x+(1,0)

+�
y,x�(1,0)

+�
y,x+(0,1)

+

�
y,x�(0,1)

).

(ii) Two-dimensional Partially Asymmetric (2DPASIP): p(x, y) = p
1

�
y,x+(0,1)

+

p
2

�
y,x�(0,1)

+ p
3

�
y,x�(1,0)

+ p
4

�
y,x+(1,0)

, where p
i

2 [0, 1) 8i = 1, 2, 3, 4, and
P

4

i=1

p
i

= 1.

(iii) Two-dimensional Totally asymmetric (2DTASIP): p(x, y) = �
y,x+z

, for some

fixed z 2 {(1, 0), (0, 1), (�1, 0), (0,�1)} .

Throughout this chapter we focus on the 2DSIP, since the 2DTASIP is just

K parallel one-dimensional TASIP. For 2DPASIP, it also has a drift in the direction

(p
4

� p
3

, p
1

� p
2

) which is determined by the di↵erences of jump rates in both hori-

zontal and vertical directions. Though particles are restricted to move on the lattice

for each jump, macroscopically they will follow the drifted direction, in particular

for the coarsening regime where clusters are dispersed, and therefore the 2DPASIP
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is merely parallel one-dimensional PASIP in the drifted direction where particles

can jump between these parallel orbits with small probabilities. This chapter is

organised as follows. In Section 5.2 we introduce the stationary measures and the

dynamical regimes, then look at the dynamics in the nucleation regime. In Sec-

tion 5.3 we investigate the coarsening regime following the heuristic method used

in one-dimensional models, and then discuss the link between the two-dimensional

inclusion process and the coalescing random walk model. In Section 5.4 we sum-

marise both methods used and introduce the potential aspects for further study of

inclusion process in higher dimensions.

5.2 Condensation and nucleation dynamics

5.2.1 Stationary distribution, condensation and dynamics

Recall the general results of stationary distributions reviewed in Section 2.3.2, we

can apply them to the two-dimensional inclusion processes and get the same formula.

In [74, Theorem 2.1] it was proved that for an inclusion process defined on a spatial

homogeneous lattice (including the 2-dimensional torus defined above), the product

measure in the form

⌫L

�

[d⌘] =
Y

x2⇤
L

⌫̄
�

(⌘
x

)d⌘ with ⌫̄
�

(n) =
1

z(�)
w(n)�n ,

where

w(n) =
�(d

L

+ n)

n!�(d
L

)
, and z(�) =

1
X

k=0

w(k)�k = (1� �)�d

L

is a stationary measure if p(x, y) is doubly stochastic modulo a constant,

X

j2⇤
L

(p(i, j)� p(j, k)) = 0 for all i, k 2 ⇤
L

.

Obviously p(x, y) defined in this chapter fulfils this condition, and therefore we can

apply results reviewed in Section 2.3.2 to two-dimensional inclusion processes.

Analogous to the one-dimensional inclusion process, the condensation phe-

nomenon can be observed in two-dimensional models under the condition of weak

di↵usion, where a rigorous proof has been given in [74, Theorem 4.1] for homo-

geneous systems. Recall the asymptotic behaviour of the partition function Z
L,N

reviewed in Section 2.3.3 which is independent of the dimension. In addition, the

rigorous results in [42] based on one-dimensional models can be easily extended

to two-dimensional cases since the stationary measures are of the same form. We
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(a) t = 0 (b) t = 0.5

(c) t = 29.72 (d) t = 150.67

Figure 5.2: Snapshots of 2DSIP with L = 256, ⇢ = 1 for (a) t = 0, (b) t = 0.5, (c)
t = 29.72, (d) t = 150.67. After the fast nucleation regime, clusters slowly merge to
a few condensates and finally saturate to the single complete condensate.

conclude that in a finite two-dimensional inclusion process a complete condensation

can be observed if the di↵usion rate is weak enough as d
L

⌧ 1/L (see snapshots of

an example system in Figure 5.2). To keep consistency with previous chapters, we

consider the thermodynamic limit (2.32) for two-dimensional inclusion process

L, N !1 , d
L

! 0 such that
N

L
! ⇢ > 0, and d

L

L! 0, (2.32 revisited)

where we scale d
L

= L�� with � > 1. And in the simulations we use d
L

= 1

L

2 as

in the one-dimensional models but have checked the validity of our results also for

other scaling of d
L

.

Our interests again focus on the dynamics of the formation of the complete

condensation in the two-dimensional model from a translation invariant initial con-

dition in the above thermodynamic limit. In higher dimensions we expect the asym-

metric and the symmetric systems to have the same scaling, as is discussed later

in more details. The generator of the 2DSIP with nearest jumps can be written
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Figure 5.3: Illustration of dynamical regimes of 2DSIP in di↵erent systems. I.
Nucleation Regime. II. Coarsening Regime. III. Saturation Regime. IV. Stationary
Regime. The normalised observable �2(t)/⇢2L is plotted against scaled time t/⌧ s

L

with ⌧ s

L

= L log(L)/d
L

(5.11) and d
L

= 1/L2. Full lines are prediction (5.18) (see
details later in Section 5.3.3) with fitted parameter C

s2

⇡ 6.9040 for L = 1024
and C

s2

⇡ 7.0837 for L = 4096, respectively. Data points are averaged over 200
simulations and errors are bounded by the size of symbols.

explicitly as

L
L

f(⌘) =
X

x2⇤
L

1

4
⌘
x

(d
L

+ ⌘
x+(1,0)

)(f(⌘x,x+(1,0))� f(⌘)) (5.1)

+
1

4
⌘
x

(d
L

+ ⌘
x+(�1,0)

)(f(⌘x,x+(�1,0))� f(⌘))

+
1

4
⌘
x

(d
L

+ ⌘
x+(0,1)

)(f(⌘x,x+(0,1))� f(⌘))

+
1

4
⌘
x

(d
L

+ ⌘
x+(0,�1)

)(f(⌘x,x+(0,�1))� f(⌘)),

for any test function f 2 Cb(X). Following the idea in previous chapters, we again

qualitatively divide the whole condensation formation process into four di↵erent

regimes: the nucleation regime, the coarsening regime, the saturation regime and

the stationary regime (See Figure 5.3). To keep consistency with previous chap-

ters, we again choose �(t)2 = E[⌘2
x

(t)](2.4) as the observable to capture the time

evolution of the condensed phase and assume translation invariant initial condi-
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Figure 5.4: Exponential behaviour of c(1, t) (5.5) and �2(t) (2.4) for the 2DSIP
in the nucleation regime. (a) Exponential decay of c(1, t)/⇢2 as given in (5.6). (b)
Exponential convergence of �2(t)/⇢2 as given in (5.9). Since the fluctuations of �2/⇢2

around its limit could be negative and explore in a log-plot, we plot an equivalent

form of (5.9), 2� 1

4

⇣

�

2

⇢

2 � 1� 1

⇢

⌘

= exp(�1

2

t)+1, to avoid this computational error.

Data points are averaged over 200 realisations. Errors are of the order 10�4.

tions. In numerical results in this chapter we measure �2(t) with the spatial average
D

1/L
P

L

x=1

⌘2
x

(t)
E

as usual, where the h · i denotes averaging over a large number

of realisations. We also consider initial condition where N particles are placed

uniformly and independently on the lattice, which gives ⌘(0) a symmetric multi-

nomial distribution with N trials and success probability 1/L. Then for N/L ! ⇢

the occupation numbers are asymptotically independent Poisson random variables

⌘
x

(0) ⇠ Poi(⇢), with the second moment �2(0) ' ⇢(1 + ⇢).

5.2.2 Nucleation regime

The nucleation regime starts from the initial distribution, which we take to be a

uniform multinomial distribution for simplicity, and it ends when no particles reside

on neighbouring sites. Recall the study of the nucleation regime in the SIP model

in Section 3.3.2 where we gave equations in closed form to describe the exponential

behaviour of observable �2(t). As indicated in Section 3.3.2, the reason behind the

closed equations is that the symmetric inclusion process is a self-dual process (see

more details in Chapter 6). This also holds for the 2DSIP and therefore we can apply

the same ideas as in Section 3.3.2 to analyse the dynamics in this regime. For the

simplicity of notation, in the rest of this chapter we denote the nearest neighbours
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of a given site on the lattice as

A
x

:= {x + (1, 0), x + (�1, 0), x + (0, 1), x + (0,�1)}, 8x 2 ⇤
L

, (5.2)

and then we can characterise the nucleation regime through the hitting time

T := inf

8

<

:

t > 0 :
X

x2⇤
L

X

y2A
x

⌘
x

(t)⌘
y

(t) = 0

9

=

;

. (5.3)

Under the condition of weak di↵usion d
L

⌧ 1/L, this regime is dominated by

the inclusion rate and finishes in a very short time compared with coarsening or

saturation regimes. Therefore, we focus on the dynamics rather than the specific

time scales of this stopping time. Similar to the nearest-neighbour product c(1, t)

defined in (2.5) for one-dimensional models, we use c(1, t) with a slight abuse of

notation in this chapter to denote the product of ⌘
x

with one of its neighbours as

c(1, t) := E[⌘
x

(t)⌘
y

(t)], for some x 2 ⇤
L

, y 2 A
x

, (5.4)

which is x-independent and also y-independent due to the homogeneity of the ini-

tial distributions and the symmetric dynamics. It is equivalent to choose c(1, t) =
1

4

P

y2A
x

E[⌘
x

(t)⌘
y

(t)] but we keep the above definition for simplicity. Therefore,

under our nearest-neighbour setting we write (5.4) as

c(1, t) := E[⌘
x

(t)⌘
x+(1,0)

(t)], for some x 2 ⇤
L

, (5.5)

without loss of generality and the uniform initial condition implies c(1, 0) = ⇢2 and

c(1, t) ! 0 with increasing time in the nucleation regime. We then can apply the

generator (5.1) to the test function f(⌘) = ⌘
x

⌘
x+(1,0)

for some x 2 ⇤
L

and get

L(⌘
x

⌘
x+(1,0)

) = �1

2
⌘
x

⌘
x+(1,0)

+ ⇥(d
L

),

where we used d
L

⌧ 1/L and within the nucleation regime ⌘
x

is of order ⇢. Then

by standard evolution equation we have

d

dt
c(1, t) = E[L(⌘

x

⌘
x+(1,0)

)] = �1

2
c(1, t) + ⇥(d

L

),

and for large system we can omit d
L

and solve the ODE with c(1, 0) = ⇢2 to get

c(1, t) = ⇢2e�
1
2 t, (5.6)
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which is confirmed by simulation results in Figure 5.4. This prediction is same

as the one for the one-dimensional SIP (3.8) with only a constant pre-factor 1/2

in front of t, which is due to our definition of c(1, t). Technically, in the 2DSIP

the equivalent variable to the nearest neighbour product used in the SIP is the

sum of the two nearest-neighbour products in two directions on the lattice, e.g.

ĉ(1, t) = E[⌘
x

⌘
x+(1,0)

+ ⌘
x

⌘
x+(0,1)

], but due to the symmetry both in the dynamics

and the lattice, it is the same as the sum of two c(1, t). Therefore we stick to our

definition of c(1, t) for simplicity, which gives the 1/2 in the convergence rate in

(5.6). Notice, c(1, t) cannot reach precisely 0 in a finite system, particularly in the

simulation where we measure c(1, t) by averaging a finite number of realisations.

The reason is that attempted motion of clusters to neighbouring empty sites with

slower rate d
L

leads to finite size fluctuations of the asymptotic values of c(1, t),

which will vanish with increasing system sizes. The details of this fluctuations is

the same as in the SIP model we analysed in Section 3.3.2, since for any particle

within a cluster in the 2DSIP to jump to a neighbouring empty site the underlying

dynamics is exactly the same as in a one-dimensional SIP model.

We can then further investigate the evolution of our observable �2(t) with (5.6).

Applying the generator (5.1) to the test function f(⌘) = ⌘2
x

for some x 2 ⇤
L

, we

have

L(⌘2
x

) =
1

2

X

y2A
x

⌘
x

⌘
y

+ ⇥(d
L

), (5.7)

and we take expectation and notice c(1, t) = E[⌘
x

⌘
y

], 8y 2 A
x

to get

d

dt
�2(t) = E[L(⌘2

x

)] = 2c(1, t) + ⇥(d
L

). (5.8)

Ignoring d
L

terms for large systems and considering initial condition �2(0) = ⇢(1+⇢)

and prediction (5.6), we have

�2(t) = 4⇢2
⇣

1� e�
1
2 t
⌘

+ ⇢2 + ⇢, (5.9)

and
�2(t)

⇢2
! 5 +

1

⇢
, as t!1. (5.10)

This gives the value of the second moment after the nucleation regime in large

systems which we take as the initial condition of the coarsening regime as discussed

in Section 5.3.2.
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5.3 Condensate interaction and coarsening dynamics

In this section we briefly introduce the dynamics of isolated clusters and the inter-

actions between two clusters, which are similar to one-dimensional models. Then

we study the dynamics in the coarsening regime following the same idea as in the

SIP, as well as a new approximation method from the results of coalescing random

walks on two-dimensional lattices.

5.3.1 Condensate motion and interaction

The dynamics of an isolated clusters moving to an empty site on the lattice are

analogous to those in the SIP for su�ciently large clusters. Consider a cluster of size

m residing on x 2 ⇤
L

and all its four neighbour sites are empty, i.e.
P

y2A
x

⌘
y

= 0.

Then one of the particles could jump to one of the neighbouring sites y 2 A
x

by

di↵usion with rate d
L

m, after which the particles on site x could follow it by inclusion

or jump to a di↵erent neighbouring site z 6= y and in the meantime particles on y

could jump back to x by inclusion or to other neighbouring sites in A
y

\ {x} by

di↵usion. Since we assume the di↵usion rate d
L

is very small compared with the

inclusion rate, this process is dominated by inclusion and the probability of any

particle escapes during the interaction vanishes for large m. Therefore, the motion

of an isolated cluster is essentially the same as in the SIP which we discussed in

Section 3.4.1 except the cluster can move in four directions rather than two. The

expected time of one cluster move to any neighbour site is then the same as (3.21)

E[T
step

] ' 1

d

L

m

+ ⇥(d
L

) and the cluster performs a symmetric random walk with

e↵ective jump rate d
L

. The stationary regime is then dominated by a complete

condensate containing all the particles and moving as a simple symmetric random

walk with speed d
L

.

The interactions of clusters in the 2DSIP is slightly more complicated than

in the one-dimensional models, particularly in the early time. Theoretically, there

could be more than three sites involved in one interaction, even if we ignore the

escaping event. But for coarsening regime where clusters are dispersed, the prob-

ability of an interaction involving more than three sites are negligible as discussed

below. As illustrated in Figure 5.5, we divided the interactions into three types

according to the number of sites involved as

• Type A: Three sites interaction or two clusters exchange particles through the

intermediate site.

• Type B: Four sites interaction or three clusters exchange particles through the
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A:

B:

C:

Figure 5.5: Illustration of multiple cluster interactions in the 2DSIP where the
red particle is the one just jumped from one of the blue clusters. Row 1: type A
interaction between 2 clusters. Row 2: Type B interaction between 3 clusters. Row
3: Type C interaction between 4 clusters. After interaction all the particles will
redistribute on one (all particles merge) or more sites which are not directly linked.

intermediate site.

• Type C: Five sites interaction or four clusters exchange particles through the

intermediate site.

Type A interaction is the same as one-dimensional case which we have discussed

in detail in Section 3.4.2 and Section 4.3.2. If the two clusters are residing on

the sites sharing two neighbouring sites, i.e. two diagonal sites of a size-1 lattice

square, they have 1/2 probability to interact. And if the two clusters share only

one neighbouring site, i.e. they are on the same vertical or horizontal line with

one empty site in between, they have 1/4 probability to interact. Recall previous

discussion in Section 4.3.2 that a typical ‘catch up and swap’ interaction scenario of

two clusters on the lattice consists of order m sub-interaction processes, which start

when the first particle jumps to the intermediate site and finishes when this site

becomes empty again or two clusters merge on it. As the discussion and numerical

results given in Section 4.3.2, during one such sub-interaction process two clusters

merge with a probability of the order 1/m or keep their original sizes, where m is

the typical size of the clusters. Therefore in an interaction event, until the first

time one of the clusters moves away, the particles will coalesce or redistribute in an

unbiased fashion with a probability of order 1 and the number of particles which are

exchanged is of the order m. Type B interaction is much more complicated since

the mechanism also depends on the initial sizes of the clusters and it can transfer
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to type A interaction, e.g. one cluster is absorbed by one of the others during the

interaction, but the inverse transfer is negligible due to the tiny escaping probability.

However, the merge probability in a sub-interaction process is still of the order 1/m

and an interaction event leads to order m particles exchanged. We do not cover the

details of this type of interaction here. For further study, one potential approach

is to apply the similar method as used in the PASIP (see Section 4.3.2) but here

one needs to map type B interaction to a random walk in a three-dimensional space

(rather than two-dimensional space in the PASIP) with absorbing surfaces (rather

than absorbing lines). Similarly, results of a type C interaction include merge or

redistribution with order m particles exchanged, and also it can transfer to type B

or type A interaction. One can also map it to a random walk in a four-dimensional

space with absorbing volumes. In fact, theoretically in the 2DSIP type B and type

C interactions only occur in a short time after the nucleation regime where no

neighbouring sites are occupied but there are su�ciently many clusters left on the

lattice. After clusters started to merge through interactions, the probabilities of type

B or type C interactions vanish for large systems since one (or two) cluster have to

join two interacting clusters and the inclusion-dominated interactions happens in a

much smaller time scale than the di↵usion of any isolated cluster. In fact, due to a

well known e↵ect in coalescing random walks in two-dimensional space the walkers

are anti-correlated (see, e.g., [123, 124] and references therein), which means the

probability of type B and type C interactions is even less than multiple independent

random walk models. Therefore in the rest of this chapter we only consider type A

interaction which is essentially the same as in the SIP.

Derivation of time scales

The time scale of the coarsening and relaxation of the system can be estimated

through previous arguments of the motion of isolated clusters and their interactions.

The total relaxation time is dominated by the dynamics of two similar sized clusters

of the order L. Before these two clusters move to a close enough position where

they share one (or two) neighbouring sites, they perform symmetric simple random

walks on the lattice with di↵usivity d
L

. It is well known result (see, e.g., [125])

that for two simple random walks to meet on a two-dimensional lattice of size

L, it takes order L log(L) steps, which is di↵erent from order L2 steps in a one-

dimensional lattice, and the same scaling as partially asymmetric models, except

for the log corrections. Therefore the two clusters encounter with an e↵ective rate

d
L

/(L log(L)) and exchange order L particles when they meet. Thus, one of the

cluster will be absorbed after order 1 encounters and we have the relaxation time
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Figure 5.6: Scaling of �2/⇢2 in the 2DSIP. Prediction f
1

(black full line) is the nu-
merical solution of (5.14) with fitted constant C

s1

⇡ 6.1146 for L = 4096. Prediction
f
2

(purple full line) is (5.18) with fitted constant C
s2

⇡ 7.0824 for L = 4096. The
grey dashed line is the prediction (5.14) without log part. Data points are averaged
over 200 realisations and errors are bounded by the size of the symbols.

scale as

⌧ s

L

=
L log(L)

d
L

, (5.11)

which is used in Figure 5.3 and is confirmed by the collapse of the simulation data

in it.

5.3.2 Coarsening and saturation regime

Coarsening dynamics

We follow the ideas of typical clusters used in previous chapters and give heuristic

arguments of the coarsening dynamics. As usual we define m(t) as the size of a

typical cluster on the lattice and the number of clusters per unit volume is denoted

by n(t), and we have m(t)n(t) = ⇢. The di↵usivity of clusters is D = d
L

and

we denote the typical volume (area as in two-dimensional space) per cluster as a(t).

Then the rates of interactions are of the order D/(a(t) log(a(t))) in a two-dimensional

lattice, and each interaction leads to exchange of order m(t) particles. Therefore,
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the growth of typical cluster size can be described by the ODE

dm(t)

dt
= C

d
L

a(t) log(a(t))
m(t), (5.12)

where C is some constant. We also denote the expected ratio of occupied sites after

the nucleation regime as r, and the initial value of m(t) is given by m(0) = ⇢/r.

Notice the simple relation a(t) = m(t)/⇢, we can integrate (5.12) from 0 to t and

get

m(t)(log(m(t))� 1� log ⇢) = C⇢d
L

t� ⇢

r
(log r + 1) . (5.13)

This equation does not give an explicit solution for m(t), but we can see that the

time scale of m(t) satisfies m(t) log(m(t)) ⇠ d
L

t. Comparing this time scale with

m(t) ⇠ d
L

t in the TASIP and the PASIP and m2(t) ⇠ d
L

t in the SIP, we can see

the coarsening process is slower than the TASIP or the PASIP by only a logarithmic

factor but faster than the SIP. This is closely related to the di↵erent behaviour of

random walk in one and two dimensional lattices, which is natural since the random

walk can be seen as a basic component constructing the inclusion processes, since

we define p(x, y) in the generator (2.27) as the transition rates of random walks.

Notice the equation �2(t) = ⇢m(t) still holds in the 2DSIP and we can

substitute it into (5.13) to get an equation of �2(t)/⇢2 as

�2(t)

⇢2

✓

log
�2(t)

⇢2
� 1

◆

= C
s1

d
L

t� 1

r
(log r + 1). (5.14)

We can solve this equation numerically and fit C
s1

from data, and it agrees well with

the simulation data in the coarsening window as shown in Figure 5.6. In the figure

we also show the prediction ignoring the log term, i.e. the same linear prediction as

in one-dimensional systems. And the numerical results suggest the log term is not

negligible, as a consequence of the interaction rate between clusters. In addition,

taking m(⌧ s

L

) ! ⇥(⇢L) in (5.13) we can approximate the order of the relaxation

time scale as

⌧ s

L

' L log L

d
L

,

which agrees with our previous prediction (5.11) and is confirmed by the simulation

in Figure 5.3. The above analysis does not have explicit system size dependence and

therefore also holds on infinite lattices with a given small di↵usion parameter d. In

a finite system, the scaling only holds in a certain window after which the system

saturate due to finite size e↵ects.
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Saturation dynamics

After the coarsening window, we expect the system to converge exponentially to the

single condensate state due to the finite system size. Similar to the discussion in

Section 3.5.2 for the one-dimensional model, we predict our observable follows

�2(t)

⇢2L
' 1� e�C

0
t/⌧

s

L , (5.15)

where ⌧ s

L

is the time scale of coarsening and relaxation in the system as shown

in (5.11), and C 0 is a constant. A non-rigorous analysis based on two equal size

clusters similar to the one used in Section 3.5.2 can be applied here, but cannot give

satisfactory estimations of C 0 or the convergence rate. This is because the exact

dynamics in the 2DSIP is also spatially dependent, as seen in Section 5.3.1 that

even the two-cluster interaction has di↵erent merge probabilities. Therefore, here

we only give prediction from simulation that C 0 ⇡ 9.3496 as shown in Figure 5.7.

As in the one-dimensional inclusion processes, C 0/⌧ s

L

in (5.15) can be treated as the

spectral gap of the generator of the system and a starting point to further study the

precise behaviour for dynamics in the saturation regime.

5.3.3 Connection with coalescing random walk

The analysis in the previous subsection is analogous to the one-dimensional models

studied in previous chapters, and the agreements with simulations confirm that our

method is accurate and has the potential to extend to other similar models. We
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also find the symmetric inclusion process shares some common aspects with the

classic coalescing random walk model, and here we briefly give another approach to

approximate the coarsening behaviour in the 2DSIP based on some known properties

of coalescing random walk. In a coalescing random walk model, a set of particles

perform independent random walks on a undirected connected graph and when two

or more particles meet at one site they unite to form a single particle and continue

to make a random walk through the graph. If we start this model from all sites

occupied and denote ⇢CRW(t) as the probability of a given site x occupied at time t,

or equivalently the particle density of walkers in the system at time t, it is easy to

show ⇢CRW(t) ! 0 as t ! 1. And the large time behaviour has been well studied

in a series of papers [126, 127, 128, 129] in which it was shown

⇢CRW(t) ⇠

8

>

>

>

<

>

>

>

:

1p
⇡t

if d̂ = 1

log(t)

⇡t

if d̂ = 2 ,

1

�

d̂

t

if d̂ > 2

as t!1 (5.16)

where d̂ is the dimension of the graph and �
ˆ

d

is the probability a d̂-dimensional

random walk returns to the origin. This model is closely related to the classic voter

model [6], where the connections between these two models in two dimensional

spaces have been studied in [130, 131].

Since in a sub-interaction process of the 2DSIP two cluster merge with a

probability of the order 1/m and an interaction event typically consists of order m

such sub-interaction processes, the merge probability of an interaction event is of

the order 1. However, the probability that any cluster splits is small and vanishes

for large clusters, therefore we can approximate a 2DSIP in coarsening regime as a

coalescing random walk on the same two-dimensional lattice. Take a 2DSIP on a

finite lattice ⇤
L

and approximate it as a coalescing random walk with e↵ective speed

d
L

, then we can approximate the number of occupied sites per unit volume n(t) by

⇢CRM(d
L

t). Notice that the above asymptotic behaviour of ⇢CRW only holds for large

time, and for 2DSIP we have the boundary conditions n(0) = r and n(t) ! 1/L.

Thus, we introduce a constant (assumed to be 1) in the log term and two constant

parameters C 0
1

and C 0
2

in the following prediction in order to accord with boundary

conditions,

n(t) ' C 0
1

log(d
L

t + 1)

d
L

t
+ C 0

2

. (5.17)
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And the equation �2(t) = ⇢m(t) = ⇢2/n(t) gives

�2(t)

⇢2
=

1

n(t)
' C

1

d
L

t

log(1 + d
L

t)
+ C

2

,

where C
1

and C
2

are constants. The initial value of �2/⇢2 can be considered as the

asymptotic limit of the same variable in the nucleation regime, which we derived in

Section 5.2.2 as �2/⇢2 = 5 + 1/⇢ (5.10). With this initial condition we can simplify

the above equation slightly as

�2(t)

⇢2
= C

s2

✓

d
L

t

log(1 + d
L

t)
� 1

◆

+ 5 +
1

⇢
, (5.18)

which agrees well with simulation data in Figure 5.6.

It is also interesting to see that the analogous analysis can also be applied

to one-dimensional model where ⇢CRW ⇠ 1/
p

t which then gives the approximation

�2(t)

⇢2
' C

1

p

d
L

t + C
2

,

which shows the same time scaling as our previous prediction (3.34) derived in

Section 3.5.1. And therefore we expect the same approximation could be extended

to symmetric inclusion processes in higher dimensions with ⇢CRW ⇠ 1/�
ˆ

d

t.

5.4 Further study and summary

5.4.1 Inclusion process in higher dimensions

After extending results from one-dimensional systems to two-dimensional systems,

it would be interesting to investigate higher dimensional systems. The general def-

inition of inclusion process is easy to adapt to a d̂-dimensional torus ⇤
L

= N ˆ

d,

d̂ > 2, and the dynamics is described by generator (2.27). Similarly one can de-

fine symmetric, partially asymmetric and totally asymmetric versions by defining

p(x, y) to be the transition rates of the corresponding type of d̂ dimension random

walk. Similar to the two dimensional cases, the only interesting model would be the

symmetric one since the totally asymmetric one is multiple parallel one-dimensional

TASIP and partially asymmetric model is also parallel one-dimensional PASIP in

the drifted direction with small probability to merge, therefore should behave like

the symmetric one.

The general results of stationary distributions we reviewed in Chapter 2

are independent of the dimension, particularly the product form of the stationary
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measures under some restrictions of p(x, y). In addition, under the condition of

weak di↵usion a complete condensation also exists and one can study the same

thermodynamic limit (2.32). It is then natural to apply the analogous analysis in

this chapter to investigate the dynamics of the condensation formation process in a

higher dimensional SIP model, where �2(t) (2.4) is still an appropriate observable to

capture the temporal evolution in the system and converges to ⇢2L when a complete

condensate is constructed. And if we start with a uniform initial condition and

only consider nearest-neighbour jumps, one can expect a fast nucleation regime

dominated by inclusion and a slower coarsening regime driven by di↵usion. The

nucleation regime has the same absorbing condition where no neighbouring sites on

the lattice are occupied as shown in (5.3), and the set of all nearest-neighbour A
x

contains 2d̂ sites. Then one can apply the analogous analysis as in one and two

dimensional models using generator and test functions f(⌘) = ⌘2
x

, for some x 2 ⇤

to study the behaviour of �2(t) in this regime.

For the coarsening dynamics, one has two approaches to predict the scaling

law of �2(t). The first one is based on the motion of a typical cluster and interactions

between two clusters, where now the expected number of steps of two clusters to

meet is of the order v(t) ([125]), where v(t) is the typical volume of each cluster

occupied. The second approach is to approximate the model as a coalescing random

walk where ⇢CRM = 1/�
ˆ

d

t as shown in (5.16), and then fit the prediction

�2

⇢2
' C

1

�
ˆ

d

d
L

t + C
2

,

where C
1

and C
2

are constants.

5.4.2 Summary

In this chapter we extended previous results to inclusion processes defined on two-

dimensional lattices, particularly the symmetric version (2DSIP). The similar dy-

namical regimes as in the one-dimensional models can still be observed in the 2DSIP,

and we show that the method we used in previous chapters can be applied anal-

ogously, in particular the analysis of the coarsening regime based on motion of a

single typical cluster. Due to the properties of random walk in two dimensional

lattices, the coarsening dynamics exhibits a di↵erent time scaling ⌧ s

L

⇠ L log(L)/d
L

(5.11). We also show that the symmetric inclusion process shares many common

features with the coalescing random walk model, and use the results in this model

to predict the coarsening behaviour in the 2DSIP, which is a promising method to

investigate inclusion processes in higher dimensions.
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For further study, it would also be interesting to see the model defined on

more general two-dimensional graphs such as a lattice with open boundary condi-

tions, and then the specific structure of the graph could be vital to the dynamics.

The one-dimensional inclusion processes with boundary driven generators and closed

finite lattices have been discussed in [16, 65] and [74] respectively, which could be a

starting point for general two-dimensional models. One can also further investigate

the dynamics of the 2DSIP in di↵erent thermodynamic limits, for example such as

the one studied in [41] for one-dimensional model: L fixed, N !1, and d
N

! 0.



Chapter 6

Preliminary Results on

Symmetric Systems with

Duality

6.1 Introduction

Duality of Markov processes with respect to a duality function was firstly introduced

in the literature in late 1940s [132, 133, 134], and has been further investigated

in a series of papers [135, 136, 137, 138, 139, 140, 141]. The method has been

applied in many fields, including interacting particle systems, interacting di↵usions,

queueing theories and mathematical population genetics. However, so far there is no

complete and systematic theory for the duality of Markov process with respect to a

function, even some basic questions such as giving necessary and su�cient conditions

for the existence of a dual process of a given Markov process have not yet been

fully resolved. For the general theories we refer to a recent review [142] where the

authors studied the existence and uniqueness of dual processes through a functional

analytic language. Notice, duality of Markov processes with respect to a measure,

which is a di↵erent but related topic, has been well studied and developed a rather

complete theory (see [143, 144] for recent reviews), but in this thesis we only consider

duality of Markov processes with respect to a duality function and will simply call it

duality in the rest of this chapter. Applications of duality generally focus on certain

aspects or applications of particular fields [43, 138, 145, 146, 147, 148, 149], and

the presentations of the duality are closely related to the fundamental structures

or properties of the specific Markov processes, such as time reversal, symmetries

or conserved quantities. In this thesis, we only focus on duality theory in the field

103
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of interacting particle systems with particular emphasis on the symmetric inclusion

process.

Duality has been a key tool in the study of inclusion processes since the

first appearance of this process was as a dual of the Brownian energy process in

[15]. Then the self-duality of the symmetric inclusion process was proved in [65] and

further studied in [16, 142]. It is also studied in [47] with several other classic inter-

acting particle systems with generalised settings of boundary driven lattices. Recent

studies also illustrate how powerful the duality is to investigate further properties of

the inclusion process, such as the local equilibrium property of the non-equilibrium

steady state [93] and the ergodic measures with finite moments [150]. The study

on the inclusion process also provides a cornerstone for the duality theory of more

general Markov process in [151, 152], where the authors used a deep connection

with symmetries and representations of Lie algebras with a quantum mechanics for-

malisms. The study also includes the self-duality of a special version of asymmetric

inclusion process di↵erent to the one we have studied in previous chapters. The

duality of the inclusion processes has also been applied to other areas, such as the

kinetic wealth exchange models in econophycs [153] and a wide class of population

dynamic models [154]. In this chapter, we first briefly review some of the results of

duality in the inclusion process, then give some exact computations of the correla-

tions in the symmetric inclusion process with the usage of self-duality, which leads

to a more detailed understanding of the dynamics of condensation.

This chapter is organised as follows. In Section 6.2 we give basic definitions of

duality and review some relevant results. In Section 6.3 we compute the covariances

with a dual process containing only two particles. And in Section 6.4 we compute

exact results of the simple two-particle dual process and recover some results in

previous chapters.

6.2 Duality

6.2.1 Definitions and relevant results

Definition 6.1. Let (⌘(t), t � 0), (⇣(t), t � 0) be two interacting particle systems

defined on state spaces X, Xdual, respectively. We say they are dual with respect

to the duality function D : X ⇥Xdual ! R, if

E⌘ [D(⌘(t), ⇣)] = E⇣ [D(⌘, ⇣(t))] , for any t � 0, (6.1)
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where E⌘ denotes the expectation of the process (⌘(t), t � 0) starting from config-

uration ⌘, and E⇣ denotes the expectation in the process (⇣(t), t � 0) starting from

configuration ⇣.

Remark: Here and in the rest of this thesis we assume boundedness of

the duality function D for the sake of simplicity of the expression, but in principle

duality can be defined for unbounded functions as well.

The duality relationship (6.1) implies that expectations of certain functions

for a process of interest (⌘(t), t � 0) can be computed in terms of expectations

of a second, auxiliary process (⇣(t), t � 0). Often the process (⇣(t), t � 0) is

considerably simpler than the process of interest, for example it can be the same

process as (⌘(t), t � 0) but only with a small number (e.g. 1 or 2) of particles,

for which explicit computations are possible. Also, the duality functions often have

a polynomial structure and can be related to correlation functions of the process

(⌘(t), t � 0), as is shown in detail below in Subsection 6.2.2.

The duality relationship can be equivalently presented by semigroups (Defi-

nition 2.3) or generators (Definition 2.4) of the corresponding processes as well. Let

{S⌘(t), t � 0} and {S⇣(t), t � 0} be the semigroups of interacting particle systems

(⌘(t), t � 0) and (⇣(t), t � 0), respectively. Then the duality formula is equivalent

to

S⌘(t)D(·, ⇣)(⌘) = S⇣(t)D(⌘, ·)(⇣), ⌘ 2 X, ⇣ 2 Xdual.

If (⌘(t), t � 0) and (⇣(t), t � 0) have generators L⌘ and L⇣ with domain DL⌘ and

DL⇣ respectively, and we assume D(⌘, ·) 2 DL⇣ , D(·, ⇣) 2 DL⌘ , the above equation

then implies

L⌘D(·, ⇣)(⌘) = L⇣D(⌘, ·)(⇣) 8⌘ 2 X, ⇣ 2 Xdual.

And the converse is true as well, under certain conditions:

Proposition 6.1. Let (⌘(t), t � 0), (⇣(t), t � 0) be interacting particle systems with

generators L⌘, L⇣, let D : X ⇥Xdual ! R be bounded and continuous. If D(⌘, ·),
S⌘(t)D(⌘, ·) 2 DL⇣ for all ⌘ 2 X, t � 0 and D(·, ⇣), S⇣(t)D(·, ⇣) 2 DL⌘ for all

⇣ 2 Xdual, t � 0, and if

L⌘D(·, ⇣)(⌘) = L⇣D(⌘, ·)(⇣) 8⌘ 2 X, ⇣ 2 Xdual,

then (⌘(t), t � 0) and (⇣(t), t � 0) are dual with respect to D.

Proof. See [142, Proposition 1.2].
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An interacting particle system is called self-dual with respect to a duality

function D if for any two versions of the process (⌘(t), t � 0) and (⇣(t), t � 0),

equation (6.1) or its equivalent form hold with this function D. Here ‘version’

denotes processes that are defined on the same state space and governed by the

same dynamics, for example an inclusion process defined on a fixed lattice with

only two particles is a di↵erent version of an inclusion process defined on the same

lattice containing an arbitrary number of particles. The duality functions are model

specific, but it has been shown that many classic interacting particle system are

self-dual under certain conditions, such as the symmetric inclusion process, the

symmetric exclusion process and a system of independent random walks (see [47]

for more details).

6.2.2 Self-duality of the symmetric inclusion process

In the rest of this chapter, we consider the symmetric inclusion process defined on a

one-dimensional lattice, which can be infinite ⇤ = Z or finite with periodic boundary

condition ⇤
L

= Z/(LZ). The dynamics are described by the generator (2.27) with

a more explicit form

Lf(⌘) =
X

x2⇤

X

✏=±1

1

2
⌘
x

(d + ⌘
x+✏

)
�

f(⌘x,x+✏)� f(⌘)
�

for test functions f 2 Cb(X). The SIP is self-dual with the duality function con-

structed in the following way. Define the polynomial

d(k, n) =
n!

(n� k)!

� (d)

� (d + k)

for k, n 2 N. By definition d(k, n) = 0 when k > n, i.e., negative factorials are

interpreted as +1. In particular, we have

d(1, n) =
n

d
, (6.2)

d(2, n) =
n(n� 1)

d (d + 1)
, (6.3)

and d(0, n) = 1, for all n � 0. Then for ⇣ 2 X a configuration with a finite number

of particles, i.e., such that
P

x

⇣
x

<1, and ⌘ 2 X we define

D(⇣,⌘) =
Y

x2Z
d(⇣

x

, ⌘
x

). (6.4)
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The self-duality of the SIP is then given by

E⌘ [D(⇣,⌘(t))] = E⇣ [D(⇣(t),⌘)] , (6.5)

which was first proved in [65], see also [16, 142] for more details on the self-duality

of the SIP.

6.3 Time dependent covariances

As discussed in previous chapters, in the limit d ! 0 a condensation phenomena

occurs in the SIP. In this section, we show some preliminary work in order to under-

stand how coarsening arises, starting from a homogeneous product measure. More

precisely, we are interested in the variances and covariances of the occupation num-

bers, i.e.,

C
xy

(t) := E
⌫

⇢

(⌘
x

(t)⌘
y

(t)) . (6.6)

Here C
xx

(t) ⌘ �2(t) is independent of x and in general C
xy

is only a function of

|x� y| due to translation invariance. Here the initial distribution ⌫
⇢

is a translation

invariant product measure with density ⇢ and second moment �2

0

. For a Poisson

distribution with density ⇢ we have �2

0

= ⇢(1 + ⇢).

With slight abuse of notation, for a configuration ⌘(t) =
P

n

i=1

�
x

i

with parti-

cles at positions x
1

, . . . , x
n

, we denote by E
x1,...,xn

and P
x1,...,xn

the expectation and

probability in the SIP with starting configuration ⌘ respectively. For n = 2, i.e., two

SIP-particles, we denote the corresponding particle positions by X
t

, Y
t

. The follow-

ing easy consequence of self-duality is then the starting point of our computations.

Proposition 6.2. For x 6= y 2 ⇤, and for every initial product measure ⌫
⇢

with

density ⇢ and second moment �2

0

we have

C
xx

(t) = �2

0

P
x,x

[X
t

= Y
t

] +

✓

d⇢(1 + ⇢) + ⇢2

d

◆

P
x,x

[X
t

6= Y
t

] (6.7)

C
xy

(t) =

✓

d(�2

0

� ⇢(1 + ⇢))� ⇢2

d + 1

◆

P
x,y

[X
t

= Y
t

] + ⇢2 . (6.8)

Proof. Consider two SIP processes: a general one (⌘(t), t > 0) starting with initial

state ⌘; another one with only two particles with initial positions x, y 2 ⇤ and

the particle positions are denoted by X
t

, Y
t

. We first compute the second moment

C
xx

(t) by considering the initial condition for the two-particle SIP to be x = y (two

particles are on the same site). Due to the self-duality of SIP, (6.5) holds for these



6.3. Time dependent covariances 108

two specific processes and can be written as

E⌘ [D(2�
x

,⌘(t))] = E
x,x

[D(�
X

t

+ �
Y

t

,⌘)] ,

and the two particles lead to a simple form of the duality function as

D(2�
x

,⌘(t)) =
⌘
x

(t)(⌘
x

(t)� 1)

d(d + 1)
,

according to (6.3). Then we consider the variable ⌘
x

(t)(⌘
x

(t)�1) and use the duality

relation to get

E⌘ [⌘
x

(t)(⌘
x

(t)� 1)]

= d(d + 1)E⌘ [D(2�
x

,⌘(t))]

= d(d + 1)E
x,x

[D(�
X

t

+ �
Y

t

,⌘)]

= E
x,x

[⌘
X

t

(⌘
X

t

� 1)I{X
t

= Y
t

}]

+ E
x,x



d + 1

d
⌘
X

t

⌘
Y

t

I{X
t

6= Y
t

}
�

,

which holds for general ⌘. Now we take the initial distribution to be translation

invariant with density ⇢ and second moment �2

0

, then the above relationship implies

E
⌫

⇢

⇥

⌘
x

(t)2
⇤

� ⇢

= (�2

0

� ⇢)P
x,x

(X
t

= Y
t

) +
d + 1

d
⇢2P

x,x

(X
t

6= Y
t

) ,

which is equivalent to (6.7) after moving the ⇢ on the left hand side to the right.

The correlation C
x,y

(t) can be derived analogously. Taking x 6= y and using

the duality equation

E⌘ [D(�
x

+ �
y

,⌘(t))] = E
x,y

[D(�
X

t

+ �
Y

t

,⌘)] ,

and the specific form of D(�
x

+ �
y

,⌘) = ⌘
x

⌘
y

/d2, we get

E⌘ [⌘
x

(t)⌘
y

(t)]

= d2E⌘ [D(�
x

+ �
y

,⌘(t))]

= d2E
x,y

[D(�
X

t

+ �
Y

t

,⌘)]

= d2E
x,y



⌘
X

t

(⌘
X

t

� 1)

d(d + 1)
I {X

t

= Y
t

}
�

+ d2E
x,y

h⌘
X

t

⌘
Y

t

d2
I {X

t

6= Y
t

}
i

.
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Averaging ⌘ again over the initial distribution ⌫
⇢

, we have

E
⌫

⇢

[⌘
x

(t)⌘
y

(t)] =
d

d + 1
(�2

0

� ⇢)P
x,y

(X
t

= Y
t

) + ⇢2P
x,y

(X
t

6= Y
t

) ,

which is equivalent to (6.8) with P
x,y

(X
t

6= Y
t

) = 1� P
x,y

(X
t

= Y
t

).

6.4 Exact computations for two dual particles

6.4.1 Finite systems

In this section we study the probabilities P
x,x

[X
t

= Y
t

] and P
x,y

[X
t

= Y
t

] for two

dual SIP particles. Their relative position (Z
t

:= |X
t

� Y
t

|, t � 0) is a continuous-

time birth-death chain on the state space X = N
0

for ⇤ = Z or X
L

= {0, . . . , L/2}
for finite ⇤

L

= Z/(LZ) with L even. The generator on X
L

is given by

L
L

f(z) = d
L

I{z = 0}(f(1)� f(0)) (6.9)

+ d
L

I{z + 1 2 X
L

}(f(z + 1)� f(z))

+ d
L

I{z � 1 2 X
L

}(f(z � 1)� f(z)) + d
L

I{z =
L

2
}(f(

L

2
� 1)� f(

L

2
))

+ I{z = 1}(f(0)� f(1)),

where we assume d
L

decays with increasing L. The terms proportional to d
L

in the

above generator correspond to a simple random walk on X with reflecting boundaries

and rate d
L

, and the last term results from the inclusion attraction with an order

1 rate from the distance 1 to 0. With the initial position z = |x � y| we then have

P
x,y

[X
t

= Y
t

] = P
z

[Z
t

= 0] for the expressions in Proposition 6.2. In the rest of this

section we focus on finite systems ⇤
L

and assume L is even.

(Z
t

: t � 0) is a birth-death chain and the rates can be read from the above

generator as

Birth rates: ↵
0

= 2d
L

, ↵
i

= d
L

for i = 1, 2, ...,
L

2
� 1,

Death rates: �
1

= 1 + d
L

, �
i

= d
L

for i = 2, 3, ...,
L

2
� 1, �

L

2
= 2d

L

.

For such a birth-death chain one can compute its stationary distribution µ following
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a standard recursive method (see for example [94, Section 6.11]), which are

µ
0

=

0

@1 +

L/2

X

n=1

↵
0

↵
1

...↵
L/2�1

�
1

�
2

...�
L/2

1

A

�1

=
1 + d

L

1 + d
L

L
, (6.10)

µ
n

=

 

n

Y

i=1

↵
i�1

�
i

!

µ
0

=
2d

L

1 + d
L

L
, for 1  n  L

2
� 1, (6.11)

µ
L/2

=

0

@

L/2

Y

i=1

↵
i�1

�
i

1

Aµ
0

=
d
L

1 + d
L

L
. (6.12)

The stationary distribution implies that in the limit t!1 we have

P
x,y

[X
t

= Y
t

] ! µ(0) =
1 + d

L

1 + d
L

L

P
x,y

[X
t

6= Y
t

] !
L/2

X

n=1

µ(n) =
d
L

(L� 1)

1 + d
L

L
.

Substituting above equations into (6.7) we can get the asymptotic values of the

second moment as

�2

1 = lim
t!1

C
xx

(t) = �2

0

1 + d
L

1 + d
L

L
+

✓

d
L

⇢(1 + ⇢) + ⇢2

d
L

d
L

(L� 1)

1 + d
L

L

◆

(6.13)

= �2

0

1 + d
L

1 + d
L

L
+ ⇢2

L� 1

1 + d
L

L
+ d

L

⇢(1 + ⇢)
L� 1

1 + d
L

L

' �2

0

+ ⇢2(L� 1) + ⇥(d
L

L),

as L!1 with d
L

⌧ 1/L. The initial condition �2

0

still enters this expression since

it determines the total number of particles which is conserved, and the leading order

is given by ⇢2(L� 1). If we start with deterministic initial conditions with �2

0

= ⇢2

we get ⇢2L, for Poisson initial condition it is then ⇢2L + ⇢. In any case, we have

�2

1 ' ⇢2L + ⇥(1),

which is consistent with the normalisation ⇢2L we used in previous chapters.

Analogously, substituting P
x,y

[X
t

= Y
t

] and P
x,y

[X
t

6= Y
t

] into (6.8), the

correlation is given by

�xy

1 = lim
t!1

C
xy

(t) =
d
L

(�2

0

� ⇢(1 + ⇢))� ⇢2

1 + d
L

L
+ ⇢2,

' ⇢2
d
L

L

1 + d
L

L
+ ⇥(d

L

),
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as L ! 1 with d
L

⌧ 1/L. The asymptotic behaviour only weakly depend on

the initial condition (terms of the order d
L

), and the second moment given above

vanishes in the limit L!1, indicating that occupation numbers are strongly anti-

correlated, due to the presence of a complete condensate.

Starting the process Z
t

from z = 0 on a time scale of order 1 and letting

the di↵usion decay with the system as d
L

= L�� , � > 1 , we have P [Z
t

= 0] '
1 � e�2d

L

t ' 2d
L

t due to the exponentially distributed waiting time. After a time

of order 1/d
L

the process is still restricted on the first two sites {0, 1} due to the

high jump rate from 1 to 0. It will reach an intermediate distribution µ0, where

µ0
0

= (1+d
L

)/(1+3d
L

), µ0
1

= 2d
L

/(1+3d
L

) are determined by detailed balance. In

fact, this time scale corresponds to the nucleation dynamical regime as we discussed

in Section 3.3.2, where particles residing on neighbouring sites merge by the strong

inclusion interaction. The intermediate distribution µ0
0

, µ0
1

can be interpreted as the

absorbing state of the nucleation regime where no neighbouring sites are occupied

on the lattice. Substituting µ0
0

and µ0
1

into (6.7), we have

�2(t) ' �2

0

1 + d
L

1 + 3d
L

+
2(d

L

⇢(1 + ⇢) + ⇢2)

1 + 3d
L

' 3⇢2 + ⇢,

if we assume a Poisson initial distribution with �2

0

= ⇢(1+ ⇢) and it agrees with our

previous result (3.15).

Since the analysis based on order 1 time scale above can only describe the

nucleation regime and provides little information of the dynamics after one particle

escape from these two sites, next we consider the dynamics of a higher time scale

1/d
L

, under which Z
t

tries to escape from the first two sites and to reach the

stationary distribution µ. The expected time of this event can be estimated from

the hitting time of the site L/2 starting the chain from 0. In Appendix B, the hitting

time of such a chain on a finite state space X = {0, 1, ..., n} with initial position

k 2 X is derived as

⌧n

k

=
n�1

X

i=k

�n

i

=
n�1

X

i=k

1

↵
i

µ
i

i

X

j=0

µ
j

, (B.1)

where µ
i

, 0  i  n is the stationary distribution of the chain. Notice, under the

time scale 1/d
L

, the birth and death rates are all scaled by 1/d
L

but µ[Z
t

] stays the

same. Therefore, taking k = 0, n = L/2 and substituting (6.10) and (6.11) into the

above equation, we can get the expected hitting time as

⌧
L/2

0

=
1

↵
0

+

L/2�1

X

i=1

1 + d
L

+ 2id
L

2d
L

=
L2

8
+

L� 2

4d
L

, (6.14)
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which depends on L and d
L

. We then rescale above hitting time back to real time by

multiplying above equation by 1/d
L

. Its inverse is then the rate of any two clusters

meet on the lattice, which is dominated by the term of the order d
L

/L2, same as

the rate v(t)/s2(t) = d
L

/L2 used in previous derivation of (3.33).

To estimate the coarsening scaling law, we first write (6.7) as

C
xx

(t) =
d
L

(⇢(1 + ⇢)� �2

0

) + ⇢2

d
L

P
z=0

[Z
t

6= 0] + �2

0

,

then we assume the Poisson initial distribution and take the time derivative to get

dC
xx

(t)

dt
=

⇢2

d
L

p
z=0

(Z
t

6= 0) , (6.15)

where p
z=0

(Z
t

6= 0) is the probability density function of Z
t

starting from 0 and

not returning to 0 at time t. Notice, the exit rate of Z
t

from site 1 to the right is

d
L

/(1 + 2d
L

) and the intermediate distribution of site 1 is µ0[1] = 2d
L

/(1 + 3d
L

),

the total rate of Z
t

escaping the first two site is 2d2
L

/(1 + 5d
L

+ 6d2
L

), which is of

the order d2
L

. After Z
t

moving to site 2, it is then a simple symmetric random

walk on the state space X̄ = {2, ..., L/2} ⇢ X and reflecting at the right boundary.

Therefore, we consider the time scale t/d2
L

, under which Z
t

starting from site 2 is

equivalent to a simple random walk with jump rate 1/d
L

on a finite lattice XSRW =

{0, 1, 2, ..., L/2�1}, starting from site 1 with reflecting barrier L/2�1 and absorbing

barrier 0. And Z
t

starting from 2 and not returning to the two site {0, 1} is equivalent

to the simple random walk on XSRW starting from 1 and not being absorbed by 0

at time t. For su�ciently large system, it is well known that the probability density

of such random walk not being absorbed by the origin at time t decays as
p

d
L

/t

(see, e.g., [126]) where d
L

is the step size of the random walk. Therefore, we can

take t̄ = t/d2
L

and approximate p
z=0

(Z
¯

t

6= 0) ⇠
p

d
L

/t̄ in (6.15), and the solution

of which is then

C
xx

(t) ' C⇢2
p

d
L

t + ⇥(1), (6.16)

where C is some constant and we assume the initial condition C
xx

(0) = �2

0

= ⇥(1).

This approximation is based on large systems and confirms the same scaling law as

our previous result (3.34) derived in Section 3.5.

6.4.2 Infinite systems

Next, we extend the above results to the SIP defined on an infinite lattice ⇤ = Z. On

an infinite lattice, we fix the average particle density to be ⇢ and a small di↵usion
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parameter d, which is now independent of the system size and plays the role of

the scaling parameter. The system does not reach a fully condensed state as the

finite systems, but we can still study the coarsening dynamics which stops after a

window that now depends on d. Recall the time dependent variance C
xx

(t) (6.7)

which also holds for infinite systems, and as t!1 we have P
x,x

[X
t

= Y
t

]! 0 and

P
x,x

[X
t

6= Y
t

]! 1, which leads to

�2

1 = lim
t!1

C
xx

(t) = ⇢(1 + ⇢) +
⇢2

d
, for a fixed d. (6.17)

The asymptotic behaviour is now independent of the initial second moment �2

0

and

has a leading order of ⇢2/d, which depends on d in contrast to the finite system.

We can also write the equivalent limit ⇢2/d
L

in a finite system, but it cannot be

reached if d
L

is su�ciently small since the finite size e↵ect will force the system

to converge to a state where C
xx

(t) ' ⇢2L as discussed in (6.13). It also confirms

we need d
L

⌧ 1/L to see the complete condensation in a finite system, otherwise

⇢2/d
L

 ⇢2L and the system will stay in the state with C
xx

(t) ' ⇢2/d
L

and does not

reach complete condensation with a higher value of C
xx

(t) ' ⇢2L. Now we move

back to the infinite case and look at the covariance C
xy

(t), which has a simple limit

as

�xy

1 = lim
t!1

C
xx

(t) = ⇢2.

In contrast to finite systems this is independent of d and is consistent with the

limiting distribution being a product measure with density ⇢, so that covariances

�xy

1 �⇢2 vanish. Still, we see that the second moment of this measure increases with

decreasing d, leading to rough configurations. Indeed, the distribution reached here

as t ! 1 is actually the grand-canonical stationary distribution with � chosen to

fix the density ⇢. Recalling the average particle density derived in (2.30) as

R(�) = �@
�

log z(�) =
d
L

�

1� �
, (2.30 revisited)

and using the relation

�@
�

R(�) = �2(�)�R2(�),
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with � = ⇢

d

L

+⇢

, we have the following expression of the second moment under the

grand-canonical distribution

�2(�) = R2(�) + �@
�

R(�)

= ⇢2 +
⇢

d
L

+ ⇢

d
L

(d
L

+ ⇢)2

(d
L

+ ⇢)2 � 2⇢(d
L

⇢) + ⇢2

= ⇢(⇢ + 1) +
⇢2

d
L

,

which is the same as (6.17) if we assume d
L

to be fixed.

Now we look at the coarsening dynamics before the system reaches the

stationary state ⌫
�

(⇢) following the above computation with C
xx

(t) ' ⇢2/d. We

can apply the analogous analysis as in the finite system and consider the process

(Z
t

:= |X
t

� Y
t

|, t � 0), where the generator needs to be adapted as

Lf(z) = d(f(z+1)�f(z))+d(f(z�1)�f(z))+I{z = 1}(f(0)�f(1)), z 2 N
0

. (6.18)

Indeed, the argument we used in finite systems to derive the coarsening scaling law

(6.16) can also be applied, since in the previous approximation we assume L to be

su�ciently large. Therefore, the same method leads to the same scaling law as

C
xx

(t) ' C⇢2
p

dt + ⇥(1),

which holds until C
xx

(t) reaches the d-dependent limit (6.17).

6.5 Further study and summary

In this chapter we computed time dependent covariances of the symmetric inclusion

process using the self-duality. Then we recovered heuristic results derived in previous

chapters on nucleation and coarsening dynamics and relevant time scales, which we

expect to turn into rigorous results with this approach in future work. The self-

duality approach we used in this chapter also allows us to treat coarsening dynamics

on infinite lattices directly, and reveals an interesting connection to the dynamics

of two dual particles.

For further study, it would be interesting to investigate the rigorous forms

of di↵erent dynamical regimes as well as symmetric systems in higher dimensions,

where we expect the results derived in Chapter 5 could be recovered as well. The

self-duality in inclusion processes introduced in this chapter relies on the symmetry

of the dynamics, and cannot be directly applied to the asymmetric cases we discussed
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in previous chapters. However, in a recent study [152] the authors constructed a

di↵erent asymmetric inclusion process on finite lattice with Lie algebra and proved it

is self-dual with a non-local self-duality function. This provides insights to construct

self-duality for our asymmetric systems, with which we can further extend results in

this chapter. In addition, it is interesting to apply our approach in previous chapters

to the special asymmetric system and investigate the corresponding dynamics.



Chapter 7

Conclusion and Outlook

In this chapter we summarise the main results of this thesis and give an outlook of

further research, supplementing the summaries and outlook provided at the end of

each chapter in a more general perspective.

In this thesis we introduced several stochastic models that exhibit a condensa-

tion phenomenon, in particular models with stationary product measures, including

the recently introduced inclusion process. We focused on the dynamics of condensa-

tion in the stochastic models under certain conditions, with particular emphasis on

the inclusion process with vanishing di↵usion rates. We generalised previous results

on the symmetric inclusion process on finite lattices to more general asymmetric

and higher dimensional cases in the thermodynamic limit. We identified all dy-

namic regimes during the formation of the condensate, with main focus on deriving

the coarsening scaling law. Our predictions have been confirmed by extensive simu-

lations and describe the actual dynamics very well, in particular in the asymmetric

case. In the first part of this thesis we established a heuristic approach based on

the analysis of the dynamics of a typical cluster and interactions with others in a

mean-field approximation, which is justified by observations of the typical time evo-

lution of the system. Besides this non-rigorous approach, we also give exact results

of symmetric inclusion process in the sense of the nucleation dynamics and time

scales of all dynamical regimes, where we used the self-duality and revealed an in-

teresting connection to a two-particle dual process. The exact results also confirmed

our predictions with the heuristic approach.

We considered the simple totally asymmetric inclusion process (TASIP) in

Chapter 3 and compared to exact solutions for symmetric systems. We first identi-

fied the initial nucleation regime where neighbouring clusters from the initial distri-

bution merge by the strong inclusion interaction. The nearest-neighbour product is

116
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a suitable observable to describe this regime, where it exhibits a super-exponential

decay due to the asymmetry, in contrast to the exact exponential decay in symmetric

case. We then focused on the coarsening regime where clusters move on the lattice

with a speed proportional to their sizes and exchange a small number of particles

unbiasedly when they meet, leading to a growing average cluster size. The second

moment of the occupation number is then a suitable observable here to characterise

the transition, and it exhibits a power law scaling in this regime before saturating

to stationarity following an exponential law depending on the system size. The

interaction between two clusters is similar to the ‘slinky’ motion in the explosive

condensate model as studied in [31, 32], but the approach we established in this

thesis does not work for that model, where the full dynamics is dominated by a

single large cluster and leads to a relaxation time scale that is decreasing with the

system size. Our approach has been used in a recent paper on a symmetric version

of the explosive condensation model, which also exhibits a regime of a coarsening

scaling law with several clusters competing for particles [155].

In Chapter 4 we extended previous results to more general partially asym-

metric inclusion processes (PASIP). Due to the partial asymmetry, particles in the

system can move against the drifted direction, but due to the large size of clusters

they e↵ectively follow a totally asymmetric motion like in the TASIP, only with a

slower speed. The interactions between two clusters are more complicated since the

particles can ‘jump back’ as opposed to the TASIP. To investigate this mechanism,

we mapped it to two-dimensional random walks with site-dependent rates and we

revealed that a higher number of particles are exchanged when two cluster meet.

Macroscopically, the clusters move slower but exchange more particles during inter-

actions, which result in a very similar coarsening behaviour as in the TASIP, where

the second moment exhibits a similar scaling law with a pre-factor depending on

the intensity of the asymmetry in the system. We also studied the weakly asym-

metric inclusion process (WASIP) where the asymmetry decays with the system

size, and we found that it exhibits the features of both the SIP and the PASIP.

This is similar to the classic and simpler results of the weakly asymmetric simple

exclusion process, which has been shown to be a crossover between the symmetric

and asymmetric versions of the simple exclusion process.

In Chapter 5 we looked at inclusion processes in two-dimensional lattices,

with particular emphasis on the symmetric case (2DSIP). We first followed the

heuristic approach used in previous chapters with the analysis of a typical cluster.

We found that the interaction mechanism stayed the same while the rates of clusters

meeting to interact were changed due to the high dimensionality, which we adapted
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according to the underlying two-dimensional simple random walk. Therefore, the

scaling law of the coarsening regime is di↵erent to the one-dimensional model and the

second moment exhibits a logarithmic correction to the scaling. We also found that

the coarsening regime in the 2DSIP is closely related to the classic two-dimensional

coalescing random walk since the merge rates in the 2DSIP are high, and that the

results for coalescing random walk provide satisfying approximations of the coars-

ening laws. The results in this chapter can also be easily generalised for inclusion

processes defined on higher dimensional lattices, in particular the approximation of

coarsening laws through the coalescing random walk. Due to transience of symmet-

ric random walks in higher dimensions, symmetric and asymmetric systems in fact

show the same scaling law as opposed to the results in one dimension.

In Chapter 6 we derived some preliminary exact results on symmetric systems

through duality. We gave exact computations of the time dependent covariance using

the self-duality of symmetric inclusion processes and a two-particle dual process.

By considering this covariance under di↵erent time scales, we were able to recover

previous results on the coarsening regime. With this approach, we expected the

heuristic results in previous chapters can be turned into rigorous results in future

work. More importantly, this approach also allows us to treat coarsening in the

infinite lattice directly within a window depending on the fixed di↵usion parameter,

and reveal the relevant time scales of the nucleation and coarsening in the inclusion

process.

A number of interesting and important open questions follow directly from

the work in this thesis. Firstly, it would be interesting to derive the exact formula of

the spectral gap of the generator in finite systems, which will also provide a rigorous

description of the exponential dynamics in the saturation regime. Secondly, as we

have shown numerically the WASIP stands as a crossover between the SIP and the

PASIP, and one can further study this crossover in a more comprehensive way, where

a reasonable starting point is to find the exact crossover scale. The analysis with

duality also provided insights into the understanding of the inclusion process, and

it posed significant challenges to give rigorous proofs of the dynamics, in particular

for the asymmetric systems.

It is also interesting to further explore the potential applications of this work.

For example, the Moran model in evolutionary genetics describes the competition

between two alleles in a fixed population and is essentially the same as a symmetric

inclusion process defined on a two-site lattice. The inclusion process studied in this

thesis is equivalent to a multi-allele version Moran model with mutation, where the

lattice site represents a phenotype and particles on the site denotes the individuals
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has that phenotype. The pre-factor of transition rate can be understood as the

fitness of the alleles controls that phenotype and the small di↵usion rate represents

mutation rate. The condensation is then equivalent to the genetic fixation of one

certain allele, or the distinction of other alleles. In this case, the work within this

thesis can be applied to investigate some multi-allelic biological systems such as the

self-incompatibility loci in plants and the major histocompatibility complex (MHC)

loci in vertebrates. Another potential application of inclusion process studied in this

thesis is the kinetic wealth distribution in econophysics, which represented simplified

models of an economy, where at random instances agents exchange wealth and the

total wealth is preserved. In this case, the particles can be represented as wealth or

money, and lattice sites are agents. One can the further investigate the wealth con-

centration through the condensation in inclusion processes, as well as more general

properties such as stationary distribution and time dependent correlation functions.



Appendix A

Mathematical Definitions and

Related Results

A.1 Interacting particle system, Markov semigroup and

generator

In this appendix, we introduce the definitions and results of interacting particle sys-

tems, Markov semigroups and generators in a more mathematical sense. Even the

introduction in Section 2.1 provides enough theoretical foundation for the results of

this thesis, we extend these definitions and theories slightly here for completeness.

Comparing with introduction in Section 2.1, we introduce the definition of Feller

process and extend the definition of semigroups to more general continuous func-

tions, and then introduce the Hille-Yosida theorem which presents the one-to-one

correspondence of a Markov semigroup and a Markov generator.

The state space of an interacting particle system is the set of all possible

configurations X = E⇤, where E is the countable local state space and ⇤ is the

lattice (a countable set). Throughout this thesis we restrict to E = N and ⇤ to be

a subset of Zd and denote a lattice of L sites as ⇤
L

. Configurations are denoted

by ⌘ = (⌘
x

: x 2 ⇤) 2 X, where ⌘
x

is the number of particles on site x 2 ⇤. X

is then a metric space with measurable structure given by the �-algebra of Borel

sets. Let D ([0, +1), X) be the set of all functions ⌘(·) on [0, +1) with values in

X which are right continuous and have left limits. t 7! ⌘(t) is a sample path for

a Markov process with state space X. For s 2 [0, +1), the evaluation mapping

⇡
s

from D ([0, +1), X) to X is defined by ⇡
s

(⌘(·)) = ⌘(s). Let F be the smallest

�-algebra on D ([0, +1), X) relative to which all the mappings ⇡
s

are measurable.

For t 2 [0, +1), let F
t

be the smallest �-algebra on D ([0, +1), X) relative to which
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all the mappings ⇡
s

for s  t are measurable. Then ⌦ = (D ([0, +1), X) ,F ,F
t

) is

the filtered probability space of the process.

Definition A.1. A Markov Process on X is a collection {Pn,⌘ 2 X} of proba-

bility measures on D[0, +1) indexed by X with the following properties:

(a) P⌘ [⇣(·) 2 D[0, +1) : ⇣(0) = ⌘] = 1, for all ⌘ 2 X.

(b) The mapping ⌘ 7! P⌘[A] from X to [0, 1] is measurable for every A 2 F .

(c) P⌘ [⌘(s + ·) 2 A|F
s

] = P⌘(s)[A] a.s. (P⌘) for every ⌘ 2 X and A 2 F (Markov

property).

The expectation with respect to P⌘ is denoted by

E⌘[F ] =

Z

D[0,+1)

F dP⌘ (A.1)

for any measurable function F on D[0, +1) which is integrable relative to P⌘.

Let C(X) denote the collection of continuous functions on X, regarded as a

Banach space with

kfk1 = sup
⌘2X

|f(⌘)| .

For f 2 C(X), write the operator S(t) : C(X)! C(X) as

S(t)f(⌘) = E⌘[f(⌘(t))]. (A.2)

Definition A.2. A Markov process {P⌘,⌘ 2 X} is said to be a Feller process if

S(t)f 2 C(X) for every t � 0 and f 2 C(X).

Definition A.3. A family {S(t) , t � 0} of linear operators on C(X) is called a

Markov semigroup if it satisfies the following properties:

(a) S(0) = I, the identity operator on C(X).

(b) The mapping t 7! S(t)f from [0, +1) to C(X) is right continuous for every

f 2 C(X).

(c) S(t + s)f = S(t)S(s)f for all f 2 C(X) and all s, t � 0.

(d) S(t)1 = 1 for all t � 0.

(e) S(t)f � 0 for all nonnegative f 2 C(X).
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Remark. (a) is equivalent to (a) in Definition 2.3 and (b) follows the right

continuity of ⌘ and f . (c) is also the Markov property which is equivalent to (c) in

Definition 2.3.

The importance of Markov semigroups lies in the fact there is a one-to-one

correspondence between Markov semigroups and Markov processes, as stated in the

following theorems.

Theorem A.1. For a Feller Markov process {P⌘ , ⌘ 2 X} on X, the family of

linear operators {S(t) , t � 0} defined in Definition A.3 is a Markov semigroup.

Theorem A.2. For a Markov semigroup {S(t) , t 6= 0} as given in Definition A.3,

there exists a unique Feller Markov process {P⌘ , ⌘ 2 X} such that (A.2) holds for

all t � 0.

Proof. The proofs of above two theorems can be found in many textbooks, for

example [43, Section 1.1].

For a given Markov process, the corresponding semigroup fully describes the

time evolution of expected values of observables f 2 C(X). The expectation of an

observable at time t 6= 0 with respect to initial distribution µ is given by

Eµ [f(⌘(t))] =

Z

X

(S(t)f) (⇣)µ[d⇣] =

Z

X

S(t)f dµ for all f 2 C(X).

It is then natural to introduce Markov generator, which can be intuitively

thought of as the time derivative of semigroup.

Definition A.4. The Markov generator of a Markov semigroup (S(t), t � 0)

defined on C(X) is a linear operator L defined on its domain DL ✓ C(X) as L :

DL ! C(X),

Lf = lim
t&0

1

t
(S(t)f � f) , for every f 2 DL . (A.3)

The resolvent set of a linear operator L is the set of all complex number

� 2 C for which (�I � L)�1 is bounded. The following theorem illustrates the

one-to-one correspondence of a Markov generator and a Markov semigroup.

Theorem A.3 (Hille-Yosida). A linear operator L defined on a linear subspace DL

of C(X) generates a Markov semigroup if and only if

(a) DL is dense in C(X) and ,

(b) every real � > 0 belongs to the resolvent set and for such �

�

�(�I � L)�1

�

�  1

�
.
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For lattice gases with compact local state space, we restrict L : C
0

(X) !
C(X) and u(t) = S(t)f 2 C(X) is the unique solution to the backward equation

d

dt
u(t) = Lu(t), u(0) = f.

Here C
0

(X) ⇢ C(X) denotes the set of cylinder functions, which depend only on

the configuration on finitely many lattice sites. The Markov generator is then given

by

Lf(⌘) =
X

⌘02X
c(⌘,⌘0)

⇥

f(⌘0)� f(⌘)
⇤

. (A.4)

The restriction to cylinder functions is necessary for convergence of the sum of

c(⌘,⌘0).



Appendix B

Results on Birth-Death Chains

and Random Walks

In the following we derive the mean first-passage time of a special birth-death process

with site-dependent rates which was used to calculate the expected time of a single

cluster’s movement in Section 4.3.1. It is essentially equivalent to the discussion in

[87, Section 4.5] and a continuous version of results in [156]. We then state relevant

results of a simplified version which was used to calculate the expected number of

jumps of an interaction in Section 3.4.1 and Section 4.3.1. For detailed discussion

of more general birth-death processes see, e.g., [45, 94].

Consider a birth-death process (S(t), t � 0) as a continuous-time Markov

chain on a finite state space X = {0, 1, 2, ..., n} 2 N with site-dependent birth rates

↵
i

and death rates �
i

, i 2 X, and with boundary conditions ↵
n

= 0, �
0

= 0.

Denoting the expectation of (S(t), t � 0) with initial condition S(0) = k 2 X

as E
k

, the mean first-passage time of S(t) is defined as

⌧n

k

= E
k

[inf{t > 0 : S(t) = n}] , 8k 2 X = {0, 1, 2, ..., n}.

Then we have the recursion equation

⌧n

k

=
↵
k

↵
k

+ �
k

⌧n

k+1

+
�
k

↵
k

+ �
k

⌧n

k�1

+
1

↵
k

+ �
k

, for k = 0, 1, 2, ..., n� 1,

with ⌧n

n

= 0 and 1

↵

k

+�

k

is the mean waiting time on site k. Rearranging this equation

we have

�

⌧n

k

� ⌧n

k+1

� ↵
k

↵
k

+ �
k

=
�

⌧n

k�1

� ⌧n

k

� �
k

↵
k

+ �
k

+
1

↵
k

+ �
k

, for k = 1, 2, 3, ..., n� 1.
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Denoting �n

k

= ⌧n

k

� ⌧n

k+1

, we have

↵
k

�n

k

= �
k

�n

k�1

+ 1,

with �n

0

= ⌧n

0

� ⌧n

1

= 1

↵0
. Denoting the stationary measure for this process µ =

(µ
0

, µ
1

, ..., µ
n

), the detailed balance of stationary measures (Proposition 2.2) is then

µ
k

↵
k

= µ
k+1

�
k+1

, which leads to

µ
k

=

 

k

Y

i=1

↵
i�1

�
i

!

µ
0

, for k = 1, 2, ..., n.

Now we have

�n

1

=
�
1

↵
1

�n

0

+
1

↵
1

=
1

↵
1

✓

�
1

↵
0

+ 1

◆

=
1

↵
1

✓

µ
0

µ
1

+
µ
1

µ
1

◆

,

�n

2

=
�
2

↵
2

�n

1

+
1

↵
2

=
1

↵
2

✓

µ
0

µ
2

+
µ
1

µ
2

+
µ
2

µ
2

◆

.

It is then easy to show by induction that

�n

k

=
1

↵
k

µ
k

k

X

i=0

µ
i

.

Therefore, with ⌧n

n

= 0 we have

⌧n

k

=
n�1

X

i=k

�n

i

=
n�1

X

i=k

1

↵
i

µ
i

i

X

j=0

µ
j

. (B.1)

We only discuss birth-death chains on a finite state space here since in the thesis

we always consider interactions of a finite number of particles. For such birth-death

chains defined on infinite space with X = {0, 1, 2, ...}, one can also find a closed

form for the hitting time of the origin, see, e.g., [45, Theorem 1.3.5]. For transient

or null recurrent chains expectations of hitting times can also be infinite. In the

case of k > n for a birth-death chain restricted on the finite state space 0, .., N with

N > k, we can simply invert the states i by mapping i 7! N � i, ↵
i

7! �
N�i

and

�
i

7! ↵
N�i

, and obtain the formula ⌧n

k

= ⌧ 0N�n

N�k

where ⌧ 0 is given by the formula

(B.1).

In Section 3.4.1 and 4.3.1 in this thesis we also used results from a simplified

version of above process with ↵
i

= p, �
i

= q, for i = 1, 2, 3, ..., n�1, where p+ q = 1

are constants and absorption condition ↵
0

= �
0

= ↵
n

= �
n

= 0. This is indeed the

classic simple asymmetric random walk on a finite lattice with absorption at the
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boundaries, which is also called the gambler’s ruin problem. We briefly introduce

relevant results for completeness here, and more general discussion can be found in

many textbooks, e.g. [45, 94].

For a given random walk (S(t), t � 0) on X, define the hitting time of a set

A 2 X as

TA := inf {t � 0, S(t) 2 A} ,

then the hitting time of either boundaries is given by

T ⇤ := T {0,n} = inf {t � 0, S(t) 2 {0, n}} .

We also define the probability of the random walker starting from site k and being

absorbed at boundary n as

h
k

:= P
S(0)=k

[S(T ⇤) = n] .

First, we consider h
k

, which satisfies the recursion equation

h
k

= ph
k+1

+ qh
k�1

,

with h
0

= 0, h
n

= 1. The characteristic function of the above equation is

s = ps2 + q

with roots s
1

= 1, s
2

= q/p. Therefore, if p 6= q, the general form of h
k

is

h
k

= Ask
1

+ Bsk
2

= A + B

✓

q

p

◆

k

,

and with boundary conditions we have

h
k

=
1�

⇣

q

p

⌘

k

1�
⇣

q

p

⌘

n

. (B.2)

If p = q, then s = s
1

= s
2

= 1 and the general solution is

h
k

= Ask + Bksk = A + Bk,
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with boundary conditions we have

h
k

=
k

n
. (B.3)

In Section 4.3.1, we use (B.2) to derive the e↵ective jump rates (4.3) and (4.4) of a

single cluster in the PASIP.

Now we consider the expectation of the hitting time �
k

= E
k

[T ⇤] with initial

position S(0) = k. �
k

fulfils the recursion

�
k

= p�
k+1

+ q�
k�1

+ 1, k = 1, 2, ..., n� 1 , (B.4)

and terminal condition �
0

= �
n

= 0. Similar to h
k

, we can find the characteristic

equation of the above di↵erence equation to be

s = ps2 + q

with roots s
1

= 1 and s
2

= q/p.

Therefore, if p 6= q, the general solution of the homogeneous version of (B.4)

is

Ask
1

+ Bsk
2

= A + B

✓

q

p

◆

k

.

To obtain a particular solution we try ck, where c is some constant to be determined.

Plugging it into (B.4) we get

ck = pc(k + 1) + qc(k � 1) + 1,

which implies c = 1

q�p

. Then the solution follows as

�
k

= A + B

✓

q

p

◆

k

+
k

q � p
.

And using the boundary conditions we get

�
k

=
k

q � p
� n

q � p

1� (q/p)k

1� (q/p)n
. (B.5)

If p = q = 1/2, s = s
1

= s
2

= 1 and the general solution to the homogeneous

equation is

Ask + Bksk = A + Bk.
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To obtain a particular solution we try ck2, and get

ck2 =
1

2
c(k + 1)2 +

1

2
c(k � 1)2 + 1,

which implies c = �1. It follows that

�
k

= A + Bk � k2,

and with boundary conditions we have

�
k

= k(n� k). (B.6)

Expression (B.5) is used in Section 4.3.1 to derive the waiting time of a single

cluster’s movement in the PASIP, and (B.6) is used in Section 3.4.1 for the SIP. For

the above asymmetric random walk problem, one can also use a di↵erent approach

which defines a martingale Y
n

:= (q/p)S(n). This approach is called De Moivre’s

martingale and details can be found in textbooks, e.g. [94, Section 12.1].
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Numerical Methods

C.1 Canonical measures and current

We summarise some properties of the canonical measures which we use in Chapter

2 to calculate the canonical current following ideas in [87]. The calculations are

possible due to the product form of the reference measures.

Consider an interacting particle system (⌘(t), t � 0) with product measures

defined on a finite lattice ⇤
L

with L sites (see detailed definitions in Section 2.2).

Choosing fugacity � = 1, the reference measures are given by the product of L single

site marginals as

⌫L[d⌘] =
L

Y

x=1

⌫̄[⌘
x

]d⌘.

The canonical measures are defined by conditioning on the total number of

particles N in the system (see details in Section 2.2). And we write the canonical

measure as

⇡
L,N

[d⌘] = ⌫L

"

d⌘

�

�

�

�

�

L

X

x=1

⌘
x

= N

#

=
1

Z
L,N

Y

x2⇤
w(⌘

x

)d⌘,

where Z
L,N

= ⌫L

h

P

L

x=1

⌘
x

= N
i

. The product form of ⌫L leads to

Z
L,N

=
N

X

k=0

⌫L

"

L

X

x=1

⌘
x

= N,
L�1

X

x=1

⌘
x

= (N � k)

#

=
N

X

k=0

⌫̄[k]Z
L�1,N�k

,
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which can be used to calculate Z
L,N

recursively with initial condition Z
1,k

= ⌫̄[k].

One can also divide Z
L,N

into any sub-system in the same way, and for large system

L = 2n for some n 2 N we use a more e�cient form as

Z
L,N

=
N

X

k=0

Z
L/2,k

Z
L/2,N�k

. (C.1)

For the zero-range process (2.23) we have

⌫[n] /
n

Y

k=1

1

g(k)
,

and thus g(k)⌫[k] = ⌫[k � 1]. Therefore the current, defined as the average jump

rate of a single site, can be calculated as

⇡
L,N

(g(⌘
1

)) =
1

Z
L,N

X

⌘

g(⌘
1

)⌫L[⌘]�

 

L

X

x=1

⌘
x

�N

!

=
1

Z
L,N

X

⌘0

⌫L[⌘0]�

 

L

X

x=1

⌘0
x

� (N � 1)

!

=
Z
L,N�1

Z
L,N

.

For the inclusion process, we do not have the simple formula as for the zero-

range process and we use the following recursive method to calculate the canonical

current for a fixed system. For a given system size L + 2, we first fix the di↵usion

parameter d
L+2

= (L + 2)�� , � > 1. Then calculate Z
L,n

as in (C.1) with w(n) =
�(d

L+2+n)

n!�(d

L+2)
for n = 0, 1, ..., N . Then we have

Z
L+2,n

=
n

X

k=0

Z
L,k

Z
2,n�k

, for k = 0, 1, ..., N,

and

J
L+2,n

=
n

X

k=0

Z
L,k

n�k

X

i=0

w(i)w(n� k � i)i(d
L+2

+ n� k � i) ,

and the canonical current is given by

j
L+2,n

=
J
L+2,n

Z
L+2,n

.

Notice during the approximation d
L+2

is a fixed value and therefore for di↵erent
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sized system the whole calculation needs to be done from scratch.

C.2 Simulation methods of Inclusion Process

Throughout this thesis the simulation results for the inclusion processes are produced

using a Gillespie type update algorithm[157, 158] described in this section, extended

in [87] to more general systems. This algorithm is also known as the Bortz-Kalos-

Lebowitz algorithm [159], and mathematically is a variety of a dynamic Monte

Carlo method. It is an exact algorithm giving statistically correct trajectories of the

Markov process.

All the pseudo random numbers in the simulations results were generated

using the Fast Mersenne Twister [160], an improved version of the classic Mersenne

Twister [161].

C.2.1 Exact Algorithm

We first introduce the exact algorithm to simulate inclusion processes as described

by the generator (2.27). The simulation is applied to a system with N particles on

a finite lattice ⇤
L

of L sites with periodic boundary conditions. The state of the

process at time t is denoted by ⌘(t) = (⌘
x

(t))
x2⇤

L

and the di↵usion parameter is a

fixed constant as d
L

= L�� , � > 1. The jump rate of the underlying homogeneous

random walk is q(x) (2.24) with a finite range B. The initial state is uniformly

distributed.

Algorithm 1 Main algorithm for the Inclusion process.

Input: L, N , d
L

and the stopping criteria.
1: {Initialise the system uniformly}
2: t 0
3: for x = 1 to N do
4: Select x 2 {1, 2, ..., L} uniformly
5: ⌘

x

 ⌘
x

+ 1
6: end for
7: Calculate and store the L jump rates o↵ each site in the current state c

x

=
P

y

q(y)⌘
x

(d
L

+ ⌘
y

), x = 1, 2, ..., L.
8: Calculate and store the partial rate sums C

n

=
P

n

x=1

c
x

, for n = 1, 2, ..., L and
C
0

= 0.
9: {The main update loop}

10: while The stopping criteria is not satisfied do
11: Update state ⌘(t) according to Algorithm 2
12: end while
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Algorithm 2 Update algorithm for the Inclusion Process

Input: Current jump rates o↵ each site (c
x

)L
x=1

,
Input: Current partial rate sums (C

n

)L
n=0

.
1: { Sample time increment from exp(C

L

) }
2: dt Exponentially distributed random number with mean 1/C

L

3: t t + dt
4: { Choose to move particle of site x with probability c

x

/C
L

}
5: r  Uniform random number on [0, C

L

)
6: Perform a binary search for x such that C

x�1

 r < C
x

7: ⌘
x

 ⌘
x

� 1
8: { Choose target site according to jump rates }
9: Find all potential target sites A := {y 2 ⇤

L

, |y � x|  R}, M := |A|
10: S

0

= 0
11: for j = 1, 2, ..., M do
12: h

j

= q(y)⌘
x

(d
L

+ ⌘
y

)
13: S

j

= S
j�1

+ h
j

14: j  j + 1
15: end for
16: r  Uniform random number on [0, S

M

)
17: Perform a binary search for j such that S

k�1

 r < S
k

18: and find the y such that h
k

= q(y)⌘
x

(d
L

+ ⌘
y

)
19: ⌘

y

 ⌘
y

+ 1
20: { Update transition rates and partial sums}
21: Update rates for all c

y

that contains ⌘
x

or ⌘
y

22: Update C
n

for n 2 {min{y, c
y

is influenced}, . . . , L}
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Remarks

(1) The stopping criteria in the main algorithm can be adapted to di↵erent aims

of simulations. For example t < t
max

for running within a fixed time interval,
P

x2⇤
L

1{⌘
x

} = 1 for reaching the stationary regime, and
P

x2⇤
P

|y�x|R

⌘
x

⌘
y

=

0 for reaching the absorbing state of nucleation regime, etc.

(2) Since ⌘
x

2 N and 0  ⌘
x

 N , one way to optimise the algorithm is to con-

struct a matrix of all possible (partial) transition rates T
i,j

= i(d
L

+ j), 8i, j 2
{0, 1, ..., N}, then look it up when calculating jump rates as c

x

=
P

y

q(y)T
x,y

and h
x

= q(y)T
x,y

in order to save repeated calculation. The expense of this

optimisation is more memory usage since we have to store this (N +1)⇥(N +1)

matrix for the whole simulation.

(3) The algorithms above can be applied to inclusion processes defined on general

graphs. For the one-dimensional nearest-neighbour ones, R = 1 and choosing

the target site y can be simplified as

• TASIP: y = x + 1 ,

• PASIP: y =

8

<

:

x + 1, with probability p

x� 1, with probability q
,

• SIP: y =

8

<

:

x + 1, with probability 1/2

x� 1, with probability 1/2
.

Also due to the simple spatial structure of a one-dimensional lattice, we can

simplify the computation of C
x

, with an expense of memory usage, by storing

them in a binary tree. It is convenient to consider L = 2n, n 2 N, then we can

construct C
x,y

= C
x�1,2y�1

+C
x�1,2y

for x 2 {0, 1, ..., n} and y 2 {1, 2, ..., 2n�x}
with initial condition C

0,y

= c
y

for y 2 {1, 2, ..., L}. In this case the updates to

the rates can be done by retracing the path followed down the binary tree by

the binary search, which selects the transition to do and reduces the computa-

tion complexity for C
x

from O(L) to O(log L). For systems defined on higher

dimensional lattices or more general graphs, this optimisation cannot be applied

directly but one can follow the idea and find simplification methods adapted to

the specific structure of the graph.

C.2.2 E↵ective Algorithm

In the coarsening regime of the inclusion process dynamics, the above algorithm is

exact but ine�cient particularly for the symmetric case, due to the large number
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of attempted movement of particles to empty sites until successful cluster steps. In

this sub-section we describe a more e�cient algorithm to simulate the coarsening

regime based on e↵ective transition rates. We first simulate the system with the

exact dynamics for a short time to reach the coarsening regime, then replace the

exact dynamics by the e↵ective dynamics depending on the neighbouring sites of the

target site as follows: If the target site has no other occupied neighbouring site, we

move the whole cluster with the e↵ective rates derived in (4.3) or (4.4). And if the

target site has an occupied neighbouring site, the jump triggers an interaction which

we approximate with a random walk on a simplex with absorbing states (see details

in Section 4.3.2). This is based on the strong separation of time scales resulting

from the scaling Ld
L

! 0. The following is an example of this e↵ective algorithm

for one-dimensional PASIP (see details in Section 2.3.2).

Algorithm 3 E↵ective algorithm for PASIP.

Input: L, N , d
L

, p, q and the stopping criteria.
1: {Initialise the system uniformly}
2: t 0
3: for i = 1 to N do
4: Select x 2 {1, 2, ..., L} uniformly
5: ⌘

x

 ⌘
x

+ 1
6: end for
7: Calculate and store the L jump rates o↵ each site in the current state c

x

=
p⌘

x

(d
L

+ ⌘
x+1

) + q⌘
x

(d
L

+ ⌘
x�1

), x = 1, 2, ..., L.
8: Calculate and store the partial rate sums C

n

=
P

n

x=1

c
x

, for n = 1, 2, ..., L and
C
0

= 0.
9: {Run exact dynamics for a short time}

10: while t < t
1

do
11: Update state ⌘(t) with exact dynamics (Algorithm 2).
12: end while
13: {Run e↵ective dynamics for the rest}
14: Update e↵ective rates o↵ a single site c0

x

, for x = 1, 2, ..., L (Algorithm5)
15: Update e↵ective partial sums C 0

n

=
P

n

x=1

c0
x

, for n = 1, 2, ..., L
16: while The stopping criteria is not satisfied do
17: Update state ⌘(t) with e↵ective jump rates (Algorithm 4)
18: end while
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Algorithm 4 E↵ective update algorithm for PASIP

Input: Current e↵ective jump rates o↵ each site (c0
x

)L
x=1

,
Input: Current e↵ective partial rate sums (C 0

n

)L
n=0

.
1: { Sample time increment from exp(C 0

L

) }
2: dt Exponentially distributed random number with mean 1/C 0

L

3: t t + dt
4: { Choose to move particle of site x with probability c0

x

/C 0
L

}
5: r  Uniform random number on [0, C 0

L

)
6: Perform a binary search for x such that C 0

x�1

 r < C 0
x

7: ⌘
x

 ⌘
x

� 1
8: { Choose target site according to jump rates }
9: Compute e↵ective jump rate to the right c0

x,R

and to the left c0
x,L

10: r  Uniform random number on [0, c0
x,R

+ c0
x,L

)
11: if r > c0

x,R

then
12: Target site y is x + 1
13: else
14: Target site y is x� 1
15: end if
16: if If y has no other occupied neighbour then
17: ⌘

y

 ⌘
x

18: ⌘
x

 0
19: else
20: Run interaction (Algorithm 6) with ⌘

x

, ⌘
y

and the other neighbour ⌘
z

, z =
y + 1 or y � 1

21: end if
22: { Update transition rates and partial sums}
23: Update rates for all c0

y

that contains ⌘
x

or ⌘
y

24: Update C 0
n

for n 2 {min{y, c0
y

is influenced}, . . . , L}
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Algorithm 5 E↵ective rates update for PASIP.

Input: p, q, d
L

, ⌘ and departure site x
1: {E↵ective rate jump to the right}
2: if ⌘

x+2

= 0 then

3: c0
x,R

= 1�q/p

1�(q/p)

⌘

x

pd
L

⌘
x

.
4: else
5: c0

x,R

= pd
L

⌘
x

6: end if
7: {E↵ective rate jump to the left}
8: if ⌘

x�2

= 0 then

9: c0
x,L

= 1�p/q

1�(p/q)

⌘

x

qd
L

⌘
x

.
10: else
11: c0

x,L

= qd
L

⌘
x

12: end if
13: {Total jump rate o↵ site x}
14: c0

x

= c0
x,L

+ c0
x,R

Algorithm 6 Two cluster interaction algorithm in PASIP

Input: Departure site ⌘
x

, intermediate site ⌘
y

the other neighbour site ⌘
z

1: If y = x + 1, p0 = p and q0 = q. If y = x� 1, p0 = q, and q0 = p.
2: M = ⌘

x

+ ⌘
z

3: ⌘
x

 ⌘
x

� 1
4: ⌘

y

 1
5: {Run a 2D random walk with site-dependent jump rates and absorb-

ing boundary}
6: while 0 < ⌘

x

+ ⌘
z

< M do
{Update rates for all potential jump events}

7: Event: ⌘
x

 ⌘
x

+ 1, ⌘
y

 ⌘
y

� 1. Rate: R
1

= q⌘
y

(d
L

+ ⌘
x

)
8: Event: ⌘

x

 ⌘
x

� 1, ⌘
y

 ⌘
y

+ 1. Rate: R
2

= p⌘
x

(d
L

+ ⌘
y

)
9: Event: ⌘

z

 ⌘
z

+ 1, ⌘
y

 ⌘
y

� 1. Rate: R
3

= p⌘
y

(d
L

+ ⌘
z

)
10: Event: ⌘

z

 ⌘
z

+ 1, ⌘
y

 ⌘
y

� 1. Rate: R
4

= q⌘
z

(d
L

+ ⌘
y

)
11: R

s

= R
1

+ R
2

+ R
3

+ R
4

12: r  Uniform random number on [0, R
s

)
13: Search for i such that

P

i�1

k=1

R
k

< r <
P

i

k=1

R
k

14: Make the move corresponding to R
i

15: end while
Return: ⌘

x

, ⌘
y

, ⌘
z
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Figure C.1: Exact dynamics (Algorithm 1,2) and e↵ective dynamics (Algorithm
3,4,5,6) for an PASIP model with L = 256, ⇢ = 2, p = 0.75. Data are averaged over
200 realisations. Errors are bounded by the size of symbols.

Remarks

(1) The only di↵erence between the above e↵ective algorithm and the exact algo-

rithm is that the former omits the probabilities of the splitting of a cluster and

any particle escaping during an interaction, or two or more interactions or steps

occurring at the same time. But such probabilities decrease with the system size

(see details in Section 3.4), therefore the e↵ective algorithms are e�cient and

accurate for large systems comparing with the exact ones. Figure C.1 illustrates

the agreement of the e↵ective algorithms with the exact ones.

(2) Above algorithm for PASIP can be easily adapted to TASIP and SIP. For TASIP,

simply take p = 1, q = 0 (or p = 0, q = 1) and restrict the single move direction

of all particles. For the SIP, take p = q = 1/2 and also the e↵ective jump rates

to a site with no other occupied neighbour need to be computed as 1

2

d
L

due to

the symmetry of the dynamics (see analysis in Section 3.4.1).

(3) The same e↵ective algorithms can also be adapted to higher dimensional lattices.

Taking two-dimensional lattices as we studied in Chapter 5 as an example, now

for each departure site there are four potential target sites and to determine the

e↵ective transition rates for each of them we have to check if any of its other
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three nearest-neighbour is occupied. Also the interaction algorithm would be

more complicated since there are possible interactions between three and four

clusters, and we need to map the interactions to site-dependent random walks

in three and four dimensional spaces.
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