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Abstract

Characterization of edge tokamak plasma instabilities by measuring
emergent phenomena within a range of frequencies above the ion cyclotron
frequency have been explored in two ways: using the inter-event waiting times
of Edge Localized Modes (ELMs) occurrences in measured time series of JET
plasmas and by performing 2D/3D simulations of filamentary structures dy-
namics using a hybrid model plasma description, i.e. kinetic ion particles and
massless charge neutralizing electron fluid.

The analysis of ELMs time series using characteristic emission lines
Dα of JET tokamak in otherwise similar plasmas was performed with only a
minimal number of drivers such as the gas puffing rate. They have shown a
key role in changing the underlying system mode cycle where a threshold value
revealed its transition from single harmonic behaviour to a transitioning phase
into a total lost of the state and born of a higher frequency resonant mode.

Hybrid simulations of blobs/filaments are performed in 2D/3D to ob-
serve the kinetic evolution of these plasma structures over several ion gyro-
periods. Novel 3D simulations represent the first kinetic simulations of these
structures along the parallel direction using a kinetic description. We have in-
vestigated the evolution and the internal density currents which provide insight
of the effects of finite Larmor radius in the blobs dynamics and evolution.

viii



Chapter 1

Introduction

1.1 Motivation

Nuclear fusion holds the potential for a reliable, long term, and clean power
source. The amount of energy that fusion will produce will exceed by far
the current capacity of fossil fuels, combined with any other green alternat-
ive[Freidberg, 2007]. It has been predicted that global energy demands will
increase by one-third from 2010 to 2035, with China and India accounting for
the 50% of the growth according to IEA [2011]. In addition, our demographic
expansion is accompanied by an increase in energy consumption [Ongena and
Oost, 2012], and therefore increasing the possibility of any near future energy
shortage.

Fusion possess several benefits over traditional sources [Freidberg, 2007;
Ongena and Oost, 2012]; and it will provide the energy needed as new techno-
logies adapt and evolve for electrical consumption. Fusion also produces less
toxic waste reducing the dangers attributed to fission energy. Every major fis-
sion disaster has left a strong public distrust. In 2011 after the ‘Energiewende’,
Germany decided to bring to a complete stop all nuclear power plants by 2022
[WNA, 2015], with the immediate closure of eight reactors that year. The
reasons motivating fusion development are many, and nowadays the field has
evolved into a technology driven one with real impact for both science and
society. More about the next generation fusion project, ITER, is given in
Appendix A.
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1.2 Thesis overview

The main focus of this thesis is to increase understanding of the edge phenom-
ena in tokamak plasmas through the use of experimental data characteriza-
tion and numerical simulations of the non-linear physics of edge instabilities.
The main topic of discussion here is only a small proportion of the numer-
ous instabilities seen in tokamak plasmas [Wesson, 2004]. There is a growing
interest, spanning across theory and modelling, to use High Performance Com-
puter (HPC) simulations and connect their results with data analysis of the
measured phenomena [Pamela et al., 2011; Fenstermacher et al., 2013].

Since plasmas are required for the fusion process, we need to cover some
basic concepts for plasmas in this chapter. In the following sections we will
first discuss the concept of fusion energy, and some of the plasma most im-
portant definitions. Then, we describe single particle motion and drifts, and
we continue with a brief description of the MHD waves in the cold plasma ap-
proximation. Subsequently, we define the tokamak most relevant concepts and
the instabilities of interest for this thesis, introducing Edge Localized Modes
(ELMs) [Zohm, 1996; Kamiya et al., 2007] and blob/filaments [Krasheninnikov
et al., 2008; D’Ippolito et al., 2011], and their role in tokamak plasmas.

In Chapter 2 we explain the methods used to characterize the ELMs
phenomenology, and the methods used to describe the blob/filament dynamics
and their numerical evolution using particle-in-cell (PIC) with a Hybrid model
of plasma. In Chapter 3 we present the results of the analyses in experimental
data from the JET tokamak. In Chapter 4 we present the results of numerical
simulations of general blob/filament plasma structures typically present in the
edge of tokamak plasmas as well as other linear devices. Finally, in Chapter 5
a summary of the main results, conclusions, and suggestions for future work
are given.

1.3 Fusion Energy

Fusion can be achieved through the use of a mixture of deuterium-deuterium
gas (D-D) or deuterium-tritium (D-T) gas. The easiest fusion reaction to
initiate is the D-T reaction[Freidberg, 2007]. This reaction releases 17.6MeV in
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energy or heat, converting with the Einstein energy relation, of which 14.1MeV
is deposited in the neutron, and the other 3.5MeV in the alpha particle. One
limitation of the D-T reaction is that tritium is not naturally available on
Earth, and it has a half-life decay of 12.26 years. The reaction is as follows,

2
1D + 3

1T→ α + n+ 17.6MeV (1.1)

This is macroscopically equivalent to 338 × 106 MJ/kg. The D-T reaction is
the central focus of the fusion research to achieve fusion energy. Experiments
using D-T mixed plasma have been carried in TFTR [Strachan et al., 1997]
and JET during the 1997 [Jacquinot et al., 1999; Thomas et al., 1998] and 2003
campaign, with a record energy in the 1997 campaign reaching a fusion power
of 16.1 MW and Q (gain ratio) of 0.65. JET is currently under preparation for
the next D-T campaign, schedule for start during the period 2017-18 [CCFE,
2014].Altough tritium is not easily found, there are some methods to obtain
tritium, for instance, breeding tritium from lithium in the vessel walls or in
divertor blankets.[Raffray et al., 2002].

Lets consider now the chemical reactions of the D-D plasma[Freidberg,
2007]. This is the most common plasma in current experiments and most
of the research that exist is based on this reaction. The deuterium nuclei
needs closer distances to overcome the Coulomb repulsive potential, and they
require sufficiently high energies as well. The D-D reaction produces fusion
energy via the nuclear interaction of two deuterium nuclei, from one of the
following chemical reactions,

2
1D + 2

1D→ 3
2He + n+ 3.27MeV (1.2)

2
1D + 2

1D→ 3
1T + p+ 4.03MeV (1.3)

Probability distribution function

The averaged velocity cross-section of the nuclear reactions above can be es-
timated by using their thermal velocity distribution. First, we define the
probability distribution function of particles as f(x,v, t) with each ion species
having its own distribution. Particularly in this case, we can describe both
thermal deuterium and tritium with Maxwellian distribution of velocities as

3



follows,

f(xs,vs, t) = n(xs, t)
(
ms

2πT

)3/2
e−msv2

s/2T (1.4)

here s denotes D or T and n(xs, t) and T are the number density and temper-
ature respectively, with v2 = v2

x + v2
y + v2

z . The following quantities: density
and velocity are defined as moments of the probability distribution function,
with a general expectation value 〈W 〉 defined as follows,

n(x, t) =
∫
fdv (1.5)

u(x, t) = 1
n

∫
vfdv (1.6)

〈W 〉 = 1
n

∫
Wfdv (1.7)

We can finally evaluate the reaction rates Rij using the following equation,

Rij =
∫
fi(vi)fj(vj)σij(|vj − vi|)|vj − vi|dvidvj (1.8)

so that,

R12 = n1n2 〈σ12v〉 (1.9)

R11 = 1
2n

2
1 〈σ11v〉 (1.10)

where R12 is the reaction rate for D-T, and R11 for D-D. The factor 1/2
appears because in the integral over the two velocities v1, v2 each collision is
counted twice. Assuming that the cross section σ(v) is known, the reaction
rate can be calculated. For a Maxwellian distribution (1.4) the values for 〈σv〉
vs. T are illustrated in Fig. 1.1. We can observe that D-T has a peak value
at 9 × 10−22m3/s at a temperature of 70keV, much higher than that of D-D,
or any other reaction. We can also see that the energy needed for a D-T
plasma reaction is of the order of 70keV, which is more than a 1000 times the
ionization factor making this gas fully ionized. Interestingly, the collisions in
a power-balanced tokamak plasma will not necessarily need the peak value of
〈σv〉, because most of the fusion reactions occur for particles on the tail of
the distribution function resulting lower temperatures of the order of 15keV
[Freidberg, 2007].
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Figure 1.1: Velocity averaged cross section (〈σv〉 = Rij/ninj) for the D-T, D-
D, and D-He3 fusion reactions as a function of temperature, reproduced from
Wesson [2004].

1.4 Plasma physics

A plasma is a gas of charged particles where the number of positive and neg-
ative particles are equally maintaining charge neutrality. It is also a hot and
highly ionized gas. Because of the collective nature of plasma properties,
such as quasi-neutrality, a plasma must contain a sufficient number of elec-
trons within a spatial scale where the plasma behave in a stationary state and
particles can interact.

1.4.1 Debye length

For a test charge Q, the electron cloud creates a sphere around the positive
charge. Using the Boltzmann’s equation, n(E) = n0 exp(−E/kBT ), where
kB is the Boltzmann constant, n0 is the particle number density, and T the
temperature. The potential φ, that is produced by Q repels the ions and
attract the electrons. The ion and electron densities are then described by,

ni = n0e
−eφ/kBT (1.11)

ne = n0e
eφ/kBT (1.12)

5



The charge density is then,

ρ = e(ni − ne) = −2n0e sinh(eφ/kBT ) (1.13)

Using Poisson’s equation and E = −∇φ, with the charge density, we obtain,

∇2φ = 2n0e

ε0
sinh(eφ/kBT ) (1.14)

Near the limit where the potential decreases up to eφ/kBT � 1 and we can
approximates sinh(eφ/kBT ) ≈ eφ/kBT . Eq. (1.14) is then,

∇2φ = − 2
λ2
D

φ (1.15)

where λD is the Debye length,

λD =
(
ε0kBT

n0e2

)1/2

(1.16)

For typical parameters of a tokamak, see Table 1.1, T = 1keV , n0 = 1019m−3,
so that the Debye length is 7.4× 10−5m. Finally, the potential for the Debye
shielding sphere is,

φ = e

4πε0r
e−
√

2r/λD (1.17)

1.4.2 Plasma frequency

We also need to define another important plasma parameter, the plasma fre-
quency. In a quasi neutral plasma, any perturbation creating a small charge
separation d will give rise to a strong restoring force eE. The electrons have
a fast response to the changes in the electric field E while the ions remained
approximately motionless. The kinetic energy gained by the electrons and the
force eE can be expressed in a single dimension as follows,

mẍ = −eE (1.18)
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Integrating E using Gauss’ theorem
∮
S E · dS = Q/ε0, where Q = −Ldn0e for

a plane of area (Ld), with L the plasma length, we obtain E = n0ed/ε0. Then,

ẍ = −ω2
pex (1.19)

where ωpe is the plasma frequency,

ωpe =
(
n0e

2

mε0

)1/2

(1.20)

For typical tokamak parameters, see Table 1.1, n0 = 1019m−3, the plasma
frequency time is ωpe/2π = 3.5× 10−11s.

1.4.3 A fusion plasma

A fusion plasma is an ionized gas with densities in the order of 1019m−3 and
temperatures between 1-40keV. At these temperatures the thermal motion
exceeds the electrical binding forces in the atoms and the gas becomes ionized.
The electrons and ions will move freely unless other external force is applied.
The different particles will continue to interact under Coulomb forces through
collisions for lengths in the limit λD ∼ 10−4m. In fusion, strong magnetic fields
are applied to confined the particles changing their fundamental free motion
accordingly to the applied forces, this motion is explained in Section 1.4.4. In
Table 1.1 some of the most important parameters in a tokamak are summarized
by existing ranges[Wesson, 2004]. Temperature and density are both very
important parameters, and traditionally most plasmas in the known universe
can be organized according to their value.

If we consider an externally applied magnetic field B = B0b where
b is the unit vector chosen to follow the z−direction. In the presence of this
magnetic field each particle will follow a prescribed path, and the particles will
move principally under the action of the Lorentz force. In the next section we
study the single particle motion, in which the particles gyrate in Larmor orbits
due to magnetic field and drifts under the combined effect of both E and B
fields.
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Plasma volume 1 - 100 m3

Total plasma mass 10−4 - 10−2 gm
Ion concentration 1019 - 1020 m−3

Temperature 1 - 40 keV
Pressure 0.1 - 5 atm
Ion thermal velocity 100 - 1000 km s−1

Electron thermal velocity 0.01 - 0.1 c
Magnetic field 1 - 10 T
Total plasma current 0.1 - 7 MA

Table 1.1: Typical tokamak plasma parameters, reproduced from [Wesson,
2004].

1.4.4 Single particle motion

The motion of particles is constrained by the electromagnetic forces and the
changes in global electromagnetic fields. At the same time the electromagnetic
fields are changing, and so does the particle motion. The particles will gyrate
and translate forming a complex and intrinsic connection with the local fields.
This is known as a self-consistent motion which satisfy the particles equation
of motion and the Maxwell’s equation. To simply understand the basic particle
motion we need first to analyse the following cases.

Particle motion for B = 0

Consider the following equation of motion of a particle moving under the action
of an electric field E.

m
dv
dt

= qE (1.21)

If we take the time integral of Eq. (1.21) and choose the constant of
integration to be v0 at time t = t0, we find then the equation of velocity
Eq. (1.22).

v(t) = q

m
E t+ v(0) (1.22)

The particle will move with an uniform acceleration qE/m in the direc-
tion of the electric field E. The direction is subject to the changes of the sign
for different species. The sign is negative for electrons and positive for ions.
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Gyro-motion for E = 0

The equation of motion of a single particle under the action of the Lorentz
force in the presence of a magnetic field B = B0ẑ is,

m
dv
dt

= q (v×B) (1.23)

where q is the charge of a test particle of positive sign, so that

m
dvx
dt

= qvyB0 (1.24)

m
dvy
dt

= −qvxB0 (1.25)
dvz
dt

= 0. (1.26)

The last equation solution is simply a constant velocity along the magnetic
field. The rest can be combined into one equation if we take the time derivative
of Eq. (1.24) and then substitute dvy/dt from Eq. (1.25) to obtain,

d2vx
dt2

+ Ω2vx = 0 (1.27)

This is the homogeneous differential equation for a harmonic oscillator
of frequency Ω, often called cyclotron frequency, or gyrofrequency, or Larmor
frequency:

Ω = qB0

m
(1.28)

The solution for the velocity is then,

vx(t) = v⊥ sin(Ωt+ θ0) (1.29)

vy(t) = v⊥ cos(Ωt+ θ0) (1.30)

vz(t) = vz0 (1.31)

where v⊥ is the constant speed of the particle in the plane normal to B and
is geometrically v2

⊥ = v2
x + v2

y. The constant of integration is obtained from
tan(θ0) = vx0/vy0. A second time integration of Eqs. (1.29) to (1.31) will return
the equations of a cylindrical helix of constant pitch angle. The angle between

9



B and the direction of motion of the particle is called the pitch angle and is
given by,

α = sin−1
(
v⊥
v

)
(1.32)

where v is the total speed of the particle v2 = v2 + v2
⊥. This notation will be

useful to separate movement along the magnetic field lines, and that perpen-
dicular to it.

Another fundamental quantity in a magnetized plasma that comes from
single particle motion is the Larmor radius or gyroradius. This is the radius
that describes the orbital motion around the centre position (x0, y0) at time
t = t0 as the particle travels along the magnetic field line, i.e.,

rL = v⊥
Ω (1.33)

General solution of the equation of motion

We consider finally the motion of charged particles under the presence of both
electric and magnetic fields, and assumed the fields do not change in time and
also they are homogeneous in space. The equation of motion is then,

m
dv
dt

= q (E + v×B) (1.34)

Taking components parallel and perpendicular to B as,

v = v + v⊥
E = E + E⊥

We obtain the following set of equations,

m
v
dt

= qE (1.35)

m
v⊥
dt

= q (E⊥ + v⊥ ×B) (1.36)

Note in Eq. (1.35) the term (v ×B) cancels out and (v⊥ ×B) has
no parallel component, also it describes an accelerated motion just like in
Eq. (1.22), but with acceleration given by qE /m. Eq. (1.36) is identical to
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Eq. (1.23) after we applied the transform,

v⊥ = v′⊥ + VE×B (1.37)

where VE×B is given by (E×B)/B2. The moving particle describes a circular
motion with the characteristic cyclotron frequency, Ω, and radius, rL. It fol-
lows then, that v′⊥ = Ω× rL where Ω = |Ω|ω̂, and ω̂ is the unit vector in the
direction of gyration. The superposition of this circular motion in the plane
normal to B, plus a uniform motion with constant velocity (E×B)/B2, and
a uniform acceleration qE /m along B can be seen in Fig. 1.2. Finally, the
particle velocity can be expressed in the following form,

v(t) = Ω× rL + E×B
B2 + qE

m
t+ v (0). (1.38)

Figure 1.2: Cycloidal trajectories of ions and electrons in crossed magnetic
and electric fields. The electric field E acting together with the magnetic field
B gives rise to a drift velocity in the direction given by E × B, reproduced
from [Bittencourt, 2004].
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1.4.5 Guiding centre drifts

Lets assume that the perpendicular electric field component in Eq. (1.36) is
parallel to the x axis, E⊥ = Exêx, the components of Eq. (1.36) becomes

dvx
dt

= Ωvy + q

m
Ex (1.39)

dvy
dt

= −Ωvx. (1.40)

Taking the second derivative and combining those equations with 1.28,
we obtain,

d2vx
dt2

= −Ω2
svx (1.41)

d2vy
dt2

= −Ω2
s

(
vy + Ex

B0

)
(1.42)

If we substitute v′y = vy +Ex/B0, we recover the Eqs. (1.24) and (1.25),
where the particles are gyrating about the guiding centre. Thus Eq. (1.41)
describe a gyro-motion with a superimposed drift of the guiding centre in the
−y direction. This drift of the guiding centre is usually called E×B or VE×B,
and has the general form,

VE×B = E×B
B2 . (1.43)

The E × B drift is independent of the sign of the charge and thus electrons
and ions move into the same direction as showed in Fig. 1.2. A general form
for any guiding centre drift can be expressed by the force F as,

VF = 1
Ω

(F
m
× B
B

)
(1.44)

When the field lines are curved, a curvature drift appears. Due to their
parallel velocity v the particles experience a centrifugal force,

FR = mv
Rc

R2
c

(1.45)

where Rc is the local radius of curvature or the inverse of curvature. Inserting
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FR in Eq. (1.44) we obtain the curvature drift,

VR = mv2

q

Rc ×B
R2
cB

2 . (1.46)

Hence, the curvature drift is proportional to the parallel particle energy W =
mv2/2. It creates a transverse current since ion and electron drifts have op-
posite signs. The curvature drift current has the form,

jR = nee(VRi −VRe) = 2ne(Wi +We )
R2
cB

2 (Rc ×B) (1.47)

All particle drifts can be described this way by using the appropriate force
terms, as long as drift velocity is much smaller than its gyro-velocity. For
polarization, and gradient drifts, these forces are FP = −mdE/dt and F∇ =
µ∇B, respectively. Here µ = mv⊥/2B is the magnetic moment. The drift
polarization current and gradient current can be calculated in the same way as
in Eq. (1.47). A summary of the guiding centre drifts is presented in Table 1.2.

E×B : VE×B = E×B
B2 (1.48)

Polarization: VP = 1
ΩB

dE⊥
dt

jP =ne(mi +me)
B2

dE⊥
dt

(1.49)

Gradient: V∇ = mv2
⊥

2qB3 (B×∇B) j∇ =ne(µi+µe)
B2 (B×∇B) (1.50)

Curvature: VR = mv2

qR2
cB

2 (Rc×B) jR =2ne(Wi +We )
R2
cB

2 (Rc×B) (1.51)

Table 1.2: A summary of guiding centre drifts and the associated transverse
currents.

1.4.6 Vlasov equation

We now turn to collective effects of the plasma. Let us consider again the
particles distribution function f(x,v, t) defined in Section 1.3. If no particle
is lost or added to the plasma, the exact phase space density F is conserved
and then the averaged phase space density is the distribution function. Now,
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we can describe the action of perturbations δF in a plasma kinetic equation
as follows,

∂f

∂t
+ v · ∇xf + q

m
(E + v×B) · ∇vf = q

m
〈δE + v× δB · ∇vδF〉 (1.52)

This equation describes the evolution of coarse-grained phase space density in
time and space under the action of average fields with linear perturbations.
Linear perturbations of the type f → f +δF separate the collective quantities
from the perturbations, being these collisions or a self-similar correlation. For
more detail in Eq. (1.52) see Baumjohann and Treumann [1997].

Consider solving Eq. (1.52) with all the correlations between particles
and fields contained in the rhs is a very complicated problem. A way to simplify
this term is by neglecting the correlations between the fields and account
only for correlations between the particles via collisions, this approximation is
known as the Boltzmann equation,

∂f

∂t
+ v · ∇xf + q

m
(E + v×B) · ∇vf =

(
∂f

∂t

)
c

(1.53)

Since space plasmas are collisionless, except in the ionosphere, we can drop the
collision term completely. This is the simplest kinetic equation of a plasma,
called Vlasov equation,

∂f

∂t
+ v · ∇xf + q

m
(E + v×B) · ∇vf = 0 (1.54)

Using the moments defined in Section 1.3, Eqs. (1.5) and (1.6) together
with Eq. (1.54) we can use to determine the evolution of macroscopic quant-
ities such as densities, velocities, and temperatures. The macroscopic single
fluid description for plasmas is called magnetohydrodynamics (MHD), and it
describes an electrically charged fluid under the action of external and internal
electromagnetic fields. Taking the zero (Eq. (1.5)) and first order (Eq. (1.6))
moments we arrived at the continuity and momentum equation, Eqs. (1.55)
and (1.56), respectively.
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1.4.7 Waves in a cold plasma

There is a wide range of existing literature where all ranges of plasma waves are
studied in detail, see for instance Stix [1997]; Swanson [2003]; Wesson [2004];
Freidberg [2007]. Linear theory of plasma waves is derived in various limits,
for example hot and cold plasma, with magnetized and unmagnetized modes.
We restrict our discussion to the most relevant compressional and torsional
Alfvén waves, and the key modes relevant for this thesis. Then the ideal MHD
equation for a magnetized plasma [Wesson, 2004] is as follows,

∂n

∂t
= −∇ · (nv) (1.55)

nm
dv
dt

= −∇p+ j×B (1.56)
dp

dt
= −γp∇ · v (1.57)

∇×B = µ0j (1.58)

∇× E = −∂B
∂t

(1.59)

0 = E + v×B (1.60)

where Eq. (1.60) is the non-resistive Ohm’s law. Here γ is the adiabatic index,
with γ = cP/cV , where c is the specific heat and P, V refer to constant pressure
and volume, respectively. Here, n is the number density, v is the velocity, p
is pressure and j is the density current. For an isotropic distribution function
the pressure is a scalar, and we assume p to follow an adiabatic behaviour
such as d(pρ−γ/dt = 0). By linearising the set of magnetohydrodynamics
ideal equations, with the sum of an equilibrium part and the perturbation we
obtained a linear set of equations, such as that in [Baumjohann and Treumann,
1997, Chapter 9, Section 9.4]. Lets discuss the following modes now. When
plasma oscillations are longitudinal perturbations, in the direction of the wave
vector, we simply recover frequencies w = wpe, this the plasma frequency was
defined in Eq. (1.20). Here the magnetic field does not play a role. At high
frequencies the ion mass is not relevant, but if we consider lower frequencies
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it must be included to obtain,

ω2

k2 = 1
2

[
C2
s + V 2

A ±
(
(C2

s + V 2
A)2 − 4C2

sV
2
A cos2 θ

)1/2
]

(1.61)

where VA = B0/
√
µ0nm is the Alfvén speed, and Cs = γ(pi + pe)/nmi is

the sound speed. These speeds are also solutions of the linearized system;
independent of the direction of k the shear or torsional Alfvén wave satisfies
w = k VA, see Fig. 1.3 top panel. The solutions of Eq. (1.61), where θ is the
angle between k and B, are the magnetoacustic waves. For θ = 0, that is k
parallel to B, the waves are,

ω

k
= VA fast (1.62)

ω

k
= Cs slow (1.63)

For θ = π/2, that is k perpendicular to B the modes are,

ω2

k2 = V 2
A + C2

s fast (1.64)

ω = 0 slow (1.65)

The fast wave is a compressional wave in which both the magnetic field and
the fluid are compressed, see Fig. 1.3 bottom panel.

A generalized Ohm’s law for a collisionless plasma follows from the
electron fluid equation of motion, and assuming charge neutrality n ≈ ne ≈ ni

and with the total current defined as J = Je + Ji, we obtain:

E = −Ji ×B + J×B
ne

− ∇p
ne
− me

e

due
dt

(1.66)

The three new terms in Eq. (1.66) are: i) J×B or Hall term, ii) electron
pressure gradient, and iii) electron inertia. Each of these terms introduces
new physics into the system and has an associated characteristic length scale
[Drake, 1995]. The J×B term describes whistler dynamics and is associated
with the ion skin depth. The electron pressure term describes kinetic Alfvén
dynamics and brings in the effective ion Larmor radius. The electron inertia
terms introduce the electron skin depth. In the case of massless electron
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Figure 1.3: Top panel, torsional Alfvén wave with k parallel to B0. Middle
panel, the magnetoacustic wave has velocity oscillations in the plane containing
B0 and k. Bottom panel, the fast compressional magnetoacustic with k ⊥ B0.
The oscillation involve compression of both the fluid and the magnetic field.
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fluid approximation we drop the third term in Eq. (1.66). For example, in
the Hybrid model of plasma the ions conserve its kinetic scales but the high
frequency modes are not longer present due to the Darwin’s approximation (see
Section 2.3.2.) At least two wave modes coming from the extra terms in Ohm’s
law are important for the Hybrid description, see Section 2.3.2, the Whistler
mode and the ion cyclotron resonant mode, see Fig. 1.4. Their frequencies,
from Baumjohann and Treumann [1997], are respectively,

ω = Ωe

2

(
1 +

ω2
pe

k2c2

)−1 (1 +
4ω2

pi

k2c2

)1/2

+ 1
 (1.67)

ω = Ωe

2

(
1 +

ω2
pe

k2c2

)−1 (1 +
4ω2

pi

k2c2

)1/2

− 1
 (1.68)

1.5 Tokamaks

A tokamak is a plasma confinement device. It confines plasma particles in
close fields lines in the shape of a torus. There are two component fields to
provide stability to particle motion drifts caused by curvature and magnetic
field gradient, the poloidal and toroidal fields. We consider the drift now
and the fields are explained in the next section. The plasma pressure is the
product of the average particle motion and densities, this thermal pressure
needs balance with the magnetic forces. These magnetic forces are those of
magnetic pressure,∇B2/2µo, and field line curvature, B·∇B/µo, in a tokamak.
A measure of the efficiency of confinement of plasma pressure by magnetic
pressure is given by the plasma beta,

β = p

B2/2µ0
(1.69)

One of the drawbacks of the toroidal model is the magnetic field gradient in the
direction of the major radius, and also the curvature in the low-field side. The
particles experience a radially outward directed force FR which is the sum of a
centrifugal force and a ∇B force. As a result a drift motion occurs with drift
velocity VD = V∇ + VR, using Eqs. (1.50) and (1.51), called toroidal drift.
This drift is transverse to both B and ∇B. Because of the different charge
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Figure 1.4: Dispersion relation for a uniform magnetized magneto-spheric
plasma[Pritchett, 2000] simulated using a 3D hybrid code, algorithm de-
scription is in Section 2.3. The theoretical dispersion relations Eqs. (1.67)
and (1.68) for whistler wave and ion cyclotron resonant mode are draw in blue
line, alfvén speed black line, top plot. The perpendicular direction, bottom
plot, shows the compressional magnetoacustic mode from Eq. (1.64).
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signs, electrons and ions experience drifts with opposite direction, giving rise
to an electric field, which produces a destabilizing effect. In this way, adding
the poloidal field is crucial to stop the toroidal drift. The effect is that of
twisting the magnetic field lines helicoidally[Sakharov, 1958]. Here, we also
define the safety factor as,

q = rBφ

RBp

(1.70)

where r, R are minor and major radius respectively. Bφ and Bp are the toroidal
and poloidal magnetic field. The safety factor q has a role in determining
stability. Higher values of q lead to greater stability. If we follow a given
field line many times around the torus a closed flux tube is mapped, and it is
called a magnetic surface. Each magnetic surface has a different q = ∆φ/2π,
where ∆φ is the number of times a point in the field lines will return to the
same poloidal point. For q = 1 the magnetic field line return to its position
after 1 rotation. Then, q = m/n for its combined toroidal m and poloidal n
rotations. Fig. 1.5 gives an schematic view of the main areas of the poloidal
cross section. The outer region is limited by the inner walls, and other plasma
facing components (PFCs) such as limiters and the divertor (at the bottom).
The area between the last closed flux surface (LCFS) or separatrix and the
walls is the scrape-off layer (SOL). The SOL is a thin layer of plasma flowing
both parallel and in the poloidal direction towards the limiter or divertor area.
The area right inside the separatrix is the edge of plasma, and is a small section
of the plasma between 0.9 < r̂ < 1, where r̂ is the normalized minor radius.
As the separatrix reaches the divertor, it forms the X-point, an area where the
field lines reconnect. The X-point is an important section for the recycling of
particles as the ions travel in and out the divertor through the LCFS many
times during a discharge.

Poloidal and toroidal fields

The plasma is a highly conductive gas, and it can carry currents as a result
of the relative drift between ions and electrons. In this way, the poloidal
magnetic field is created by a toroidal current Iφ flowing through the plasma.
The toroidal magnetic field is created by an array of coils in the toroidal
direction, the effective result is a series of nested magnetic flux surfaces.
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Figure 1.5: A tokamak poloidal cross-section showing the core of plasma at
the centre, followed by the separatrix (the boundary between closed and open
field lines), scrape-off layer (SOL) and finally the walls. In this configuration,
a divertor is positioned at the bottom of the machine where the X-point lines
reach the inner/outer divertor target.
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The strongest magnetic field is the toroidal field. In Fig. 1.6 we can see
that the lines showing the direction of toroidal field and toroidal current are
extending along the entire toroidal direction.Also, the particles guiding centre
(GC) follows in part the same toroidal direction, but under the action of the
drift, the toroidal field is not enough to contain the particles and the poloidal
field is required to twist the field lines creating the magnetic flux surfaces
mentioned above. In absence of collisions or turbulence, the particle GC will
remain in their motion. However, these combined fields are not enough for a
sufficiently stable steady state and other means are normally necessary, such
as error field corrections[Wesson, 2004]. The plasma pressure needs to be bal-
anced by the magnetic forces making the necessary poloidal magnetic field and
in turn the toroidal current Iφ increasing at a constant rate during the whole
discharge time. As mentioned above, the poloidal field is mainly produced by
currents within the plasma. In turn, this currents are created either by apply-
ing a constant change of flux through the torus (induction) or by beam injec-
tion; via heating[Wesson, 2004] or neutral beam injection[Wesson, 2004]. New
advances in non-inductive scenarios have also been studied[Litaudon et al.,
2002; Helander et al., 2005; Ju et al., 2000], but overall this is still a great
challenge for the tokamak steady state performance.

Steady state

At steady state, a magnetically confined tokamak plasma comprises a family of
nested magnetic flux surfaces in a smooth or laminar state. Yet, The tokamak
is subject to a number of macroscopic instabilities[Wesson, 2004], for instance:
MARFEs[Baker et al., 1982], Edge Localized Modes (ELMs)[Wagner et al.,
1982], Disruptions[Gorbunov and Razumova, 1964; Sauthoff et al., 1978], Saw-
teeth[Von Goeler et al., 1974]. ELMs are detailed in Section 1.6. The MARFE,
is a radiation instability which sometimes occurs when a dust ‘grain’ reach the
X-point cooling the region by radiation. Sawteeth, are oscillations in the q-
profile corresponding to the core plasma displacements with magnetic surfaces
reconnecting as the core change its position. Disruptions are extreme events
in which the plasma confinement is suddenly destroyed, and there are many
causes known to trigger this event such as low-q profile, an unstable current
profile, and impurity radiation cooling the edge plasma. Disruptions limit the
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Figure 1.6: Schematic diagram of a tokamak. The plasma is contained inside a
torus-shaped vacuum vessel. Poloidal Bp and toroidal Bφ magnetic fields keep
the particles within the boundaries of the plasma in connected orbits and away
from the walls. Particles gyrating (their guiding centre, as they gyrate around
a field line) are also following the helical field lines formed by the combined
toroidal and poloidal magnetic field lines.
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operational range for currents and densities, and also leads to large mechanical
stress and to intense heat loads.

The global steady state in a tokamak plasma is strongly dependent
on: first, the internal balance between thermal pressure and the magnetic
forces, and secondly the shape and plasma positioning controlled by external
coils used during the runtime for reshape and control. The H-mode is a high
confinement scenario characterized by the density pedestal formed at the edge
of plasmas. In Fig. 1.7 a), the plasma pressure is profiled for a Low confinement
mode (L-mode) and H-mode. In H-mode there is the formation of an internal
transport barrier (ITB) that is responsible for the development of the pedestal
and the enhanced confinement, characterized by a threshold plasma pressure
pped. During this stage the MHD limit in the transport barrier is sometimes
exceeded by edge localized modes instabilities that grow beyond the LCFS to
open field lines reaching the machine vessel and divertor target in their own
characteristic times, see Fig. 1.7 b).

1.6 Edge localized modes

Edge localized modes are a form of non-linear relaxation process for the edge
region during the H-mode regime. They have been correlated with energy
and particle loss[Zohm, 1996; Kamiya et al., 2007], and have been measured
in different tokamaks, for example: ASDEX-Upgrade[Wagner et al., 1982],
DIII-D[Fenstermacher et al., 2013], JET[Connor, 1998], JT-60U[Kojima et al.,
2009], and MAST[Wilson et al., 2006].

The detection of ELMs has been associated to the measurement of the
Balmer line, at wavelength 656.3nm, radiated from neutrals which are present
in the SOL. In JET the Dα signal has been the main point of observation for
the inner and outer divertor, only recently it has been replaced by Beryllium
II. ELMs present a characteristic spike-chain clearly visible in different lines
of sight, and in even other diagnostics. One of the imposed limitations of
a steady state under ELMs is their energy deposition in material walls and
divertor targets. The ELM heat flux deposition is currently a great threat to
longer confinement times, imposing limits in both the surface-materials in the
first wall and the lifetime of PFCs. It is also a limiting factor given the current
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Figure 1.7: Two main areas of the mayor radius can be seen in panel (a), the
section of the core where L-mode and H-mode pressure profile decreased in a
similar way, and the dramatic difference in the pedestal zone where a steep
pressure gradient is observed forming during the H-mode. Noticeably, the
arising of one instability is depicted here, the ELM crash, to account for the
sudden lost of pedestal pressure threshold and the return to a similar L-mode
state, with the main difference that the pedestal is then quickly recovered.
(b) We observe here the poloidal cross-section of the plasma and the mag-
netic surfaces with the X-point at the bottom typical of the H-mode plasma.
The ELM time period is depicted at the edge showing two different times for
perpendicular and parallel displacement. Reproduced from [Kamiya et al.,
2007].
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material heat flux limit in machines the size of ITER. This section is dedicated
to provide a brief review of most important ELM features, the current state
of research, and some of the techniques for ELM control and suppression.

Figure 1.8: Typical sequence of ELMs during a power rise in DIII-D: at P ∼
Pthr type III ELMs are found; at higher P , type I ELMs occur.

Phenomenological categorization

There are many types of observed ELMs [Zohm, 1996], see Fig. 1.8. The main
three types of ELMs are:

• Type I, are large in amplitude and narrow in time, characterized by
a minor reduction of energy confinement time, and larger energy loss
∆WELM .

• Type II, is the most desirable mode of operation due to both the release
of impurities and attainment of stable high edge pressure, characteristics
of the H-mode.

• Type III, reaches a low edge-pressure eliminating the benefits from H-
mode operation. This type-III is visible during the L-H transition ramp-
up.
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1.6.1 L-H transition and ELMs

Within the operation of tokamak experiments many regimes exists[Gormezano
et al., 2008], but most common are the lower, and higher confinement. ELMs
were first observed in the ASDEX-Upgrade by Wagner et al. [1982] during
H-mode testing experiments. The amount of external heating power and the
way the plasma makes contact with the material surface are factors amidst
others which facilitates the L-H transition. In terms of material contact, there
are two generic plasma-wall interfaces known as the ‘limiter’ and the ‘divertor’.
The H-mode has been found more accessible in divertor geometries, and the
transition is reproducible on almost every tokamak.

The ELM is, in an unknown way, connected with the temporarily break-
down of the H-mode internal transport barrier, although only for ELMs type-I
this has been suggested Zohm [1996]. What the is cause for these phenomena
is unknown. It is ibserved that during the ramp-up phase, L-mode heating
phase, sawteeth are observed along ELM type - III [Zohm, 1996] and they
stop once the H-mode has been reached, which is probably due to the edge
transport barrier formation. In a very short time range, the ELM triggered
by the pressure-release-mechanism or build-up process, reaches the pressure
threshold limit an then a burst occured. The effect of releasing this pressure is
shown via convective transport of particles (momentum exchange) towards the
midplane and divertor. It has been suggested that this transition represents
a local H-L-H transition, and the pressure a build up release cycle[Kamiya
et al., 2007]. For me moment, understanding the L-H transition’s physical
mechanisms has been reason of an extensive research and it remains partly
unexplained[Fundamenski et al., 2012; Singh et al., 2012].

1.6.2 ELM measurements

The focus has been to understand the properties ELMs type-I in H-mode plas-
mas. Mitigation of ELMs type-I in a steady state of operation have been tested
for instance in MAST[Kirk et al., 2013] where resonant magnetic perturbation
had a 3D effect which works towards ELMs getting smaller amplitude with
more frequent bursts. Hot-ion H-mode plasmas are characterized by an ELM-
free period lasting a few seconds. In JET, during ELM-free H-mode, the
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Figure 1.9: Plot of edge electron temperature versus density for a series of ver-
tical target ELMy H-modes with varying rates of gas fuelling. The temperature
and density values at the pressure gradient limit (diamonds) are representat-
ive of values at the top of the edge electron pedestal taken just prior to an
ELM crash. The edge electron temperature and density at the L-H transition
(circles) and at the end period of the transition ELMs (squares) are shown for
comparison. At highest gas fuelling rates, the edge electron pressure begins to
deviate from the curve of approximately constant pressure (the dashed arrow).
In a few cases, transitions back to L-mode have been observed; here the curve
for the H-mode threshold is schematic. Reproduced from [Horton et al., 1999].
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plasma current was found to be a control parameter for ELM onset and the
changes of the edge barrier width [Nave et al., 2000]. The ELM-free mode is
generally non-stationary, therefore the cyclic ELM behaviour allows for sta-
tionary H-mode operation. In TCV, rapid vertical movement of ELMy H-mode
plasmas were found to affect the waiting times in the ELMs sequences, it was
attributed to the raise of an edge current[Degeling et al., 2003]. A major reason
of concern is that ELMs has been measured to release up to 10% of the stored
energy during the pulse[Zohm, 1996; Kamiya et al., 2007]. Peak power fluxes
of unmitigated ELMs in ITER are expected to reduced the lifetime of divertor
targets and PFCs to a few hundreds discharges with the current experimental
scaling. Therefore, ELM frequency control is an open question whereas to
mitigate the impact to ITER, according to the observed scaling of the energy
released per ELM versus the ELM frequency, ∆WELM ≈ 1/fELM [Zohm, 1996;
McDonald et al., 2008]. Future ITER plasma scenarios will need to include
the impurities accumulation towards the increased risk of disruptions given
ELM suppression or mitigation scenarios. Furthermore, avoiding serious dam-
age in the tokamak PFCs and divertor areas will be a key aspect to avoid
major delays, because their replacement will be carried via remote control.
Controlling the ELM frequency has become critically important for ITER as
well. Gas injection has been studied in JET density peaking technique[Valovic
et al., 2002], this method also works towards achieving high-density H-mode
plasmas required for ITER. The density has been observed to increase during
the heating phase and then remained stationary; finally, it terminates in a
MHD or density limit, which is accompanied by an ELM transition from type-
I to type-III followed by the return to L-mode (see this phases in Fig. 1.9).
Pellet injection has also been used to achieve high confinement with high dens-
ity, proving steady state with densities above the Greenwald limit[Lang et al.,
2002]. ELM frequency has been measured to follow to a great extent the pellet
frequency[Lang et al., 2013, 2011].

1.7 Blobs and filaments

Blobs or filaments are spatially extended structures present in tokamaks and
basic plasma physics experiments. These structures are visible in 2D measure-
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ments in the plane perpendicular to magnetic field B as shown in Fig. 1.10.
Theory and simulations predict that blobs and ELMs [Zohm, 1996] filaments
are the result of the non-linear saturation of the edge turbulence, or coherent
MHD instabilities, respectively[D’Ippolito et al., 2011]. The blobs/filaments
provide a mechanism for the convective radial transport of particles[Krasheninnikov,
2001], heat[D’Ippolito et al., 2002; D’Ippolito and Myra, 2006], momentum[Myra
et al., 2008], and parallel current[Myra, 2007] to the scrape-off layer, increas-
ing the interaction of the plasma with material walls[Krasheninnikov et al.,
2008]. Also, the blob model, with its convective and diffusive transport, in-
corporated to the non-Gaussian statistics observed at the edge of toroidal
plasmas, starting at the separatrix to the far SOL, evidence points to these
coherent structures [Xu et al., 2009; Naulin, 2007]. The existence of apparent
coherent structures in the turbulent SOL was first observed using fast cameras
[Goodall, 1982], around the same year when ELMs were first observer in AS-
DEX[Wagner et al., 1982]. The presence of blobs filaments was also observed
in ASDEX using fast cameras, it was found that filamentary structure may
always be present, but not always visible, and they are only illuminated by
the presence of atoms or ions emitting visible radiation[Goodall, 1982]. Us-
ing different techniques, for instance, gas puff imaging (GPI), beam emission
spectroscopy (BES) and Langmuir probes, these structures have been meas-
ured across many devices; NSTX [Maqueda et al., 2011] and Alcator C-Mod
[Terry et al., 2003] using GPI, DIID-D [Boedo et al., 2003] using BES, and
TORPEX [Furno et al., 2008] using Langmuir probes.

A general definition of the observed objects that arise in theory, simu-
lations, and experiments satisfied the following properties:

1. It has a monopole (single-peaked) density distribution with a peak value
much higher than the surrounding rms1 fluctuations of the background
plasma (typically ≥ 2− 3 times higher).

2. It is aligned parallel to the magnetic field B; the variations along B
are much weaker than those in the transverse direction, i.e, δb/L � 1,
where δb and L are the blob radius and parallel characteristic length,
respectively.

1Root mean square fluctuation.
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Figure 1.10: Blob creation and propagation in NSTX as seen by the GPI
diagnostic. The frame rate is 7.5µs/frame and the camera extension is 25 ×
25cm near the outer midplane separatrix (solid line). The radial convection
towards the limiter (dashed lines) has an approximate velocity of ∼ 1km/s.
Reproduced from Maqueda et al. [2011].

3. It has a dominant convective velocity VE×B in the direction of a charge-
polarizing force, generally due to curvature and∇B in a toroidal plasma,
and an associated potential and vorticity with a dipole structure in the
direction transverse to its propagation, i.e, the tokamak’s poloidal cross
section.

1.7.1 Sheath-limited model of blobs

A 2D simplified model of a blob based on plasma polarization via an arbitrary
force F, see Fig. 1.11, where the force mechanisms can be those of the edge
in toroidal plasmas, namely curvature or ∇B, has been proposed in Krashen-
innikov et al. [2008]; D’Ippolito et al. [2011]; Myra and D’Ippolito [2005]. In
this simple model, the balance of polarization caused by an effective gravity
force F = nmigsp and the dissipation of that polarization through parallel cur-
rent lead to the formation of a coherent structure like blobs. The gsp has the
interpretation of a single particle gravitational acceleration, but its origin is
constrained to forces which yield to b ·∇F ∝ ∂n/∂y, where y is approximately
the poloidal coordinate in slab geometry. If we establish charge conservation,

−∇ · J⊥ = ∇ J (1.71)

where J is the current parallel to the B field and J⊥ perpendicular to it.
The reaction of charge particle drift, see Section 1.4.5, to the external force
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Figure 1.11: A representation of a blob (2D) or filament (3D) on the outer
midplane of the tokamak’s edge plasma. This structure is localized in the
plane perpendicular to magnetic field, but it is extended in the parallel dir-
ection, along B. The blobs are believed to originate of either turbulence or
macroscopic MHD instabilities. Figure is reproduced from D’Ippolito et al.
[2011].

F induces a current (c/B2)F × B, and also polarization inside the blob by
separation of charges with different sign. The charge polarization due to an
effective gravity force, is followed by E × B convection. The perpendicular
current J⊥ in Eq. (1.71) can be written as the sum of the ion polarization-
drift current J⊥,pol and the particle drift induced current, Eq. (1.71) is then
written as follows,

∇ ·
(
nmic

2

B2 ∇⊥φ
)

= ∇ J + c

B
b · ∇ × F (1.72)

where n is the plasma density, mi ion mass, B is the magnetic field stress,
b = B/B, φ is the electrostatic potential, c is the speed of light, d(·)/dt =
∂(·)/∂t+ VE×B · ∇, and VE×B = c(b×∇φ)/B. We also have,

dn

dt
≡ ∂n

∂t
+ VE×B · ∇n ≈ 0. (1.73)

The magnitude of the E field induced by the external force is obtained by bal-
ancing the current source from the F×B drift with the parallel and perpendic-
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ular loss currents, according with the blob ‘electrical circuit’ [Krasheninnikov
et al., 2008; Myra and D’Ippolito, 2005]. For blobs in a tokamak’s SOL the
parallel currents in the circuit model are dependent on the plasma and sheath
resistivities, and magnetic geometry, e.g. the geometry nearby the X-point at
the divertor[D’Ippolito et al., 2011].

At the limit when the blob’s parallel current J = ne2csφ/Te in the
‘circuit model’ is sheath limited to the 2D approximation, it allows for an
analytic solution of Eqs. (1.72) and (1.73). This solution has the form of an
isolated blob of plasma density convecting in the radial (x) direction with the
speed vb,

nb = n(x)(x− vbt)e−(y/δb)2 (1.74)

vb = 2cs
(
ρs
δb

)2 L

R
(1.75)

Here cs and ρs are the sound speed and the corresponding gyroradius, R and
L are the radius of curvature and the sheath-to-sheath parallel connection
length, finally δb is the blob radius in the poloidal (y) coordinate, where the
(x, y, z) denote the local coordinates in the radial, poloidal, and parallel along
B directions, usually called slab geometry.

1.7.2 Simulation of blobs

The numerical evolution of seeded plasma blobs based on Eqs. (1.72) and (1.73)
has been studied extensively in Krasheninnikov et al. [2003]; Myra et al. [2006];
Bian et al. [2003]; Aydemir [2005]; Garcia et al. [2006]; D’Ippolito and Myra
[2003]; Yu and Krasheninnikov [2003]. The plasma density profile of the seeded
blob are usually described as in Eq. (1.74), using a Gaussian profile, where the
peak density npeak is usually an integer factor of the background plasma
density. The results of these simulations have shown that some blobs are
unstable, but they can propagate through convection for large distances. One
of the main factors for blob stability appears to be the blob radius δb. With
a normalized blob radius δ̂ = δb/δ∗, where δ∗ is the critical blob size and v∗ is
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its characteristic velocity defined as,

δ∗ = ρs

(
L2

ρsR

)1/5

(1.76)

v∗ = cs

(
ρ2
sl

R3

)1/5

, (1.77)

the typical regimes for blob propagation are then:

• δ̂ < 1, Kelvin-Helmholtz instability determines the stability of small
scale blobs.

• δ̂ ∼ 1, blobs are stable for radial propagation.

• δ̂ > 1, interchange instability is the controlling instability in this regime.

Although, the available experimental data for small scale blobs is lim-
ited given the constrains in identifying them, numerical simulations in Kelvin-
Helmholtz dominated regime show a clear tendency to develop a mushroom
shape in its evolution [Yu and Krasheninnikov, 2003; Aydemir, 2005; Bian
et al., 2003], see Fig. 1.12. For large blobs, the interchange instability plays the
principal role for the most part of the blob evolution [Yu and Krasheninnikov,
2003; Aydemir, 2005; Bian et al., 2003], where a non-linear phase generates
Rayleigh-Taylor lobes or radial finger structures, as shown in Fig. 1.13.
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Figure 1.12: Contour plot of the evolution of a 2D density blob with small
δb. During the radial motion of the blob the density concentrates at half of
its periphery creating a front. The blob is unstable to the Kelvin-Helmholtz
mode and evolves to a mushroom shape object. Reproduced from Bian et al.
[2003].
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Figure 1.13: blob density profile with large δb in a 2D simulation. During
the radial motion of the blob, it becomes unstable to the curvature-driven
interchange mode. Here the non-linear phase is characterize by the presence
of elongations or fingers as seen across the poloidal direction in slab geometry.
Reproduced from D’Ippolito and Myra [2003].
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Chapter 2

Methods

2.1 Introduction

In the areas of fusion, space and solar plasmas there is a wealth of accumu-
lated data, particularly in fusion, JET tokamak has more than twenty years
of stored data [Layne and Wheatley, 2002; Layne et al., 2012]. The data is
characterized by multiple interacting nonlinear plasma processes. In order to
analyse through such complex nonlinear phenomena one can test a combin-
ation of linear and nonlinear techniques. In the following section we briefly
discuss some basics test before applying nonlinear analysis. Then, we explain
the methods used in the Chapters 3 and 4.

2.1.1 Standard test for linear signals

Modern tools such as Matlab or python are useful to run simple tests for
linear and nonlinear time series [Schreiber and Schmitz, 2000]. First, we define
the autocorrelation function and stationarity. We also provide a very simple
example of their use, with an additional test against the null hypothesis for
randomly distributed signals with QQplots.

Autocorrelation

If we are studying a measurable quantity x(t) which fluctuates in time, usu-
ally two interesting quantities to evaluate are the mean value and the variance.
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They both have a global meaning as the moments of the probability distribu-
tion of the quantity x(t). Yet, if we are interested in the influence of the
value of x at time t on the same variable at time t + τ we can evaluate the
autocorrelation function as follows,

A(τ) = lim
T→∞

∫ T

0
dtx(t)x(t+ τ) (2.1)

This represents the time average of the variable product in two different times
over an arbitrary large time T, which is then allowed to become infinite. We
could also use the autocorrelation function to test a random variable against
the null hypothesis by sampling for different T and then calculate the residual
values.

Stationarity

Stationarity can be defined from considering the ensemble averaged signal,
where the ensemble is the collection of all possible realizations of the variable
x, therefore we may repeat the same measurements many times, and calculate
the averages, this are denoted as 〈 〉. In many systems, the time averaged is
equal to the ensemble average, such systems are known as ergodic. If we have
a stationary process x(t), it is reasonable to expect that the average meas-
urements can be constructed by taking values of the variable x at successive
patches. The new average value is then,

X̄(T ) = 1
2T

∫ T

−T
dtx(t) (2.2)

By averaging X̄(T ) over all times we recover the mean value as in
〈
X̄(T )

〉
T

=
〈x〉. If x(t) is an ergodic system we then have,

〈x(t)x(t+ τ)〉 = A(τ) (2.3)

for which all time dependent averages are equally to those ensemble averaged,
i.e. the probabilistic structure of a completely stationary process is invariant
under a shift in time, and therefore we can use the running average as a test.
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QQplots

A quantile-quantile plot is a technique to compare two different probability
distributions. The QQplot helps in determining if two data sets come from
populations with a common distribution. The most common probability dis-
tribution for random variables is the normal or Gaussian probability distri-
bution, although many others model distribution exists. The central limit
theorem state that with sufficiently large number of realizations in a random
variable, the arithmetic average of the variables will be approximately nor-
mally distributed, regardless of the underlying distribution. Let us consider
an example, the emission (X-ray) coming from a binary pulsar star, in this
case the Cepheus X-4 has shown several detections of outburst, and they have
been measured since it was first catalogued in 1993 by Schulz et al. [1995].
The latest documented outburst was observed in 2002[McBride et al., 2007].
Now, we plot the probability distribution of the time series in Fig. 2.1 and the
QQplot in the right, where the normal distribution test can be seen as a red
straight line. The tails deviate from the Gaussian, and there is no evidence
of the nonlinear bursts. We have also run a simple test for stationarity of
the signal with the mean, variance, and standard deviation. These quantities
are the plotted in Fig. 2.2. We can observe the previous reported bursts, in
1996 and 2002, looking at the running mean value, and from it we can also
infer that there has been a burst of the X-ray binary star in November 2009,
possibly not reported yet.

2.2 ELMs Methods

In the following section we describe the methods for the analysis of the ELM
time series which resulted in Chapter 3.

2.2.1 ELM detection

The Dα radiation at wavelength 656nm is measured to produce the time series
Xn for ELM detection. The identification of ELMs type-I, or any, allow us
to determine the new time series Xt [Schreiber and Schmitz, 2000], where t is
the time of each ELM at its highest peak value. Although standard normal-
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Figure 2.1: On the top left, the Probability distribution of the variable star
Cep X-4 is showed, with bins of 103 points. On the top right, The QQplot
test, see Section 2.1.1, is showing evidence that Cep X-4 does not possess a
Gaussian distribution. Bottom plot, we have fit Cep X-4 distribution with
two different model distributions, in blue a Gaussian distribution, and in red
a t-student distribution which shows a better fit of the signal distribution.
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Figure 2.2: Running mean, variance, and standard deviation. The linear fit,
red line, has the following slope values: from the bottom, variance m = 0.064,
mean m = −0.0013, the standard deviation m = 0.018. We find then semi-
stationary time windows where linear methods can be applied in between
bursts.
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ization, by subtraction of the mean and division by the standard deviation,
is typical, we simply normalized by the mean value as it was observed that
the signal amplitude was saturated on occasions rendering the values negli-
gible, see Fig. 2.4 (plasmas 57867 and 57865). The intensity of the time series
without ELMs or during the inter-event can be relevant for other studies such
as determination of the pedestal conditions [Beurskens et al., 2009]. The JET
plasma discharges ranges from 57855-57874 and 55766-55786. The ELM de-
tection algorithm is applied to the entire length of each dataset. At first, a
critical threshold is identified at Tc = kσ where σ is the signal standard de-
viation and k is a constant. The nonstationary of the signal was observed
leading to optimize the time window where threshold Tc remained within the
range of random noise, ∼ 3σ. Because the amplitude of the ELM bursts typic-
ally raised beyond 3σ two possibilities exists for detection; first, using a peak
finding routine, for instance the ‘peaks’ function in Matlab, or secondly, look-
ing for other regular features. There may be a third, which implies a fitting
model distributions on each peak, but this is computationally expensive. The
routines to find spikes are typical in patterns of neural activity, for instance
the spike-train events in Pipa et al. [2013].

We observed something more particular, each ELM peak revealed a
large gradient and a very short time windows, for instance the slope m =
8.13 × 104 and ELM duration 5.5ms. In Fig. 2.3 we can see the linear fit,
the ratio between ELM duration and the subsequent waiting time is ∆ELM ≈
0.11 for JET plasma 57865. This ratio is closer to 1.0 were gas has higher
concentrations as in JET plasma 57869. Hence, the variations in amplitude
are much faster than those in ∆t, from which is relatively safe to assume that
near the ELM peak mi ≈ ∆yi, where yi is the signal amplitude. Under this
assumption we select points using the following criteria,

ELMs: mi,mi+1,mi+2 > 0 ∧ mi+3 <= 0 (2.4)

Noise: mi,mi+1,mi+2 < 0 ∧ mi+3 <= 0 (2.5)

where i = 1...N and N is the total number of points in the original time series.
We simply detect the change in ascending gradient to descending gradient,
then we threshold for amplitude Tc > 3σ to separate ELMs from noise. We

42



select more than 95% of all ELMs and the algorithm is very fast, yet we have
to mask a few points, which is explained in next section, to ensure accuracy
in the new time series XELM given the reduced number of ELMs per plasma,
ranging approximately from [80 - 150] ELMs per plasma.
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Figure 2.3: Dα line for JET plasma 57865. ELMs are steep and narrow in
time. In this particular case the time width is 5.5ms. A linear fit of the point
used for selection shows a slope m = 8.13× 104.

With higher statistics[Murari et al., 2014] we may tipically observed
long lived trends, but the nonlinearity and its usually fast response can be
absorbed in the averages of quantities. In our collaborative work, independent
algorithms have shown no substantial change for the ELM detection [Calderon
et al., 2013; Chapman et al., 2014, 2015; Webster et al., 2014].

A fitted time window where stationarity is better conserved was key
in refining the number of ELMs in signal like plasmas 57865, 57867, 57869
shown in Fig. 2.4. A more stable time windows can reduce dramatically the
number of ELMs per plasma, at the start and the end of the time series they
are neglected, specifically where the Gas puffing rate is raised to reach the H-
mode, and decrease when the discharge is finished. By simply creating shorter
time windows of similar gas puffing rate in every discharges we can have a

43



better estimation of the underlying process, other key parameters may need
similar investigation.

Figure 2.4: The ELM time series for shots 57865(left), 57867(centre), and
57869(right). The top panels show the full time series for t = 15 − 25s. The
bottom panels highlights t = 18.3 − 18.8s in order to show clearly which
features of the time series are being detected as type-I ELMs.

Delay plots

The new ELM time series is XELM with times tn taken at the ELM’s peak
and N is the number of events. The time interval between successive events,
waiting times, is obtained by taking the difference between the times tn for
each event.

δtn = tn+1 − tn (2.6)

Delay plots are then obtained by plotting the waiting times δtn+i agaist δtn,
with lag times i = 1...N − 2. An indication for optimal lag times may be
inferred from the auto-correlation function of the series x(t) running a broad
range τ . In Fig. 2.5 the same reference JET plasmas (as in Fig. 2.4) are plotted
with delay coordinate δtn+1 vs.δtn. We also test the new series XELM with a

44



histogram and fit a Gaussian probability distribution.

Figure 2.5: Delay plots for shots 57865(left), 57867(centre), 57869(right). The
top panels show delay plots of δtn+1 against δtn colour-coded by their ELM
amplitude. The clustering of points near the horizontal and vertical axis means
that in average the range of waiting time expected after a shorter waiting time
is larger. The bottom panels are histograms of the waiting times values with
a Gaussian fit.

Misidentified ELMs

In some cases an ELM can be misidentified. This can be seen in Fig. 2.6 where
wrong detection can create added noise. In higher statistics above thousands
ELM events [Webster and Dendy, 2013; Murari et al., 2014] wrong detec-
tion gets absorbed by the averages of the quantities. Because typically ELM
detection is based on treating the ELM as nonlinear outlier beyond several
standard deviations, as it can occur to have wrong populations introduced via
misidentification.
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Sometimes, because of the saturated amplitude a few double peaks
ELMs are also detected right next to each other. The algorithm misidentifica-
tion can sometimes be wrongly identified as compound-ELMs. The compound-
ELMs are real ELMs occurring very sharply, one after another, or sometimes
just two, as in Fig. 2.6 (left), whereas the second ELM near the first big ELM
is a wrong detection in Fig. 2.6 (right).
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Figure 2.6: ELMing in JET-57865 and JET-57870, respectively, with red round
marked ELMs. Left: ELMs inside vertical lines exemplify a compound-ELM.
Right: a misidentified double-peak selection.

2.2.2 JET data system

The Joint European Torus (JET) is currently the most powerful tokamak and
the focal point of the European fusion research programme. The new data
storage and retrieval system for JET data took place in June 2001 [Layne
and Wheatley, 2002]. The JET data warehouse consist mainly of two major
frameworks: the JET Pulse File (JPF) server, and the Processed Pulse File
(PPF) system. With the new infrastructure two main aspects can be high-
lighted: first, it allows for users to remotely access the data and secondly it
centralizes the access through one standard API for data retrieval and writes.
The new system is compatible with former Fortran API for user access in most
mainstream open-source and proprietary software, for instance: IDL, Matlab,
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MDSPlus, Python, and more. Because of the higher data creation rate, there
are years of available data, it was already known to be more than 1GB per
plasma discharge when the new system was implemented [Layne and Wheat-
ley, 2002] and now this value has been increased not only with the addition of
new diagnostics, but with higher resolution data. For the purposes of future
work, understanding the database API and the relevant technologies is cru-
cial, as well as the experimental databases containing extracts of experimental
data from every JET plasma experiment. The Data and Coding Team at JET
is currently developing a new interconnected Web and Python interfaces to
access the data. The system is being developed to allow for selective criteria
queries. The ‘JET dashboard’ is the name of the project, which is only a
few months old and is running in beta mode for the moment, where the Web
framework is partially available.

2.3 Hybrid Simulation Methods

2.3.1 Introduction

When the gap between theory and experiment exists we can benefit from nu-
merical simulations. In plasmas where the ion scales are far more relevant than
electron scales, we can use the hybrid model of plasmas[Winske, 1985] under
this assumption. Kinetic/hybrid simulation involves the kinetic description of
positive charges particles and the fluid description for electrons. The Max-
well’s equations are solved for time evolution, based on self-consistent sources,
densities, and currents. These quantities in turn evolve from the variations
in the fields and continue to change the fields around. In Fig. 2.7 we can
see the basic steps for the evolution of any kinetic/hybrid computer simula-
tion. Typically, the particle motion is advanced in a small time step, ∆t, then
the sources are collected to solve the fields, once the fields are obtained the
particles can be move again and the cycle repeats.

2.3.2 Equations system and approximations

The hybrid model describes a plasma using a different treatment for the plasma
components[Winske, 1985]. It is mainly concerned with a intermediate descrip-
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Figure 2.7: Basic steps in kinetic particle/hybrid simulations, reproduced from
[Winske and Omidi, 1996].
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tion between full particle and fluid-MHD models. In the model, all the ions
species s are treated as particles and the particle-in-cell (PIC) scheme is used
to solve the fields at grid points as the particles evolve in their motion. On the
other hand, the electrons are described as a massless charge neutralising fluid.
This massless approximation is characterized by dropping the electron inertia
term, as described in Section 1.4.7. The main implication of this assumption
is the unstable growth of the whistler mode, which requires smoothing of the
fields using a low-pass frequency filter, see Section 2.3.8. The system is then
described by the set of equations (2.7) as follows,

dxs
dt

= vs (2.7a)

ms
dvs
dt

= q (E + vs ×B) (2.7b)
∂B
∂t

= −∇× E (2.7c)

∇×B = µ0J (2.7d)

neme
due
dt

= −neeE + Je ×B−∇pe (2.7e)

pe = nekBTe (2.7f)

The subscript s is for multiple ion species. The ion position xs, ion ve-
locity vs, ion mass ms and charge qs. The fields are, electric field E, magnetic
field B, with magnetic permeability µ0 and current density J. The electron
fluid velocity ue, number density ne, and electronic charge e are put together
into the electronic current density Je = −eneue, and the electron mass is me.
The thermodynamic equation of state, Eq. (2.7f) is described by the electron
fluid pressure where kB is Boltzmann’s constant and the electron temperature
Te. In Eq. (2.7d) we have made use of the Darwin’s approximation, which neg-
lects the displacement current. In this low frequency long wavelengths limit
all the high frequencies modes for frequencies higher that electron cyclotron
frequency are neglected. Eq. (2.7e) is the equation of motion for the elec-
tron fluid. The collectives quantities evaluated for each species are defined as
follows,
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ns =
∫
fs(xs,vs)dvs (2.8)

(nu)s =
∫

vsfs(xs,vs)dvs (2.9)

us = (nu)s /ns (2.10)

%c =
∑
s

nsqs (2.11)

%m =
∑
s

nsms (2.12)

Js = qsnsus (2.13)

Ji =
∑
s

Js (2.14)

J = Ji + Je (2.15)

We denote the particle number density ns and the species ‘velocity dens-
ity’ (nu)s where f(xs,vs) is the probability distribution function of individual
ion species s, with particles mass ms, charge qs. The species fluid velocity
us, charge density %c, mass density %m, the species current density Js, and
ionic current density Ji. The assumption that electrons are a massless charge
neutralizing fluid implies that me ≈ 0 and %c = ene, so charge neutrality is
present in the following condition, nee ≈

∑
s nsqs. From Eqs. (2.7d), (2.7e)

and (2.15) we can recover the following expression for the electric field.

E = −Ji ×B
%c

+ (∇×B)×B
µ0%c

− ∇pe
%c

(2.16)

We observe that E = E(%c,Ji,B, Te) does not depend explicitly of time,
and so it can be obtained at each time step via its independent variables.
Finally, if we substitute Eq. (2.16) into Eq. (2.7c) we obtain,

∂B
∂t

= ∇× Ji ×B
%c

−∇× (∇×B)×B
µ0%c

(2.17)

The first term of Eq. (2.17) describes induction, and the second term disper-
sion. The electron pressure in Eq. (2.7f) does not influence the magnetic field
evolution.

The following quantities are of general interest to understand and de-
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scribe the plasma state. First, the magnetic pressure, as defined in section 1.5,
ionic pressure per species s, and total pressure pi;

pmag = B2/2µ0 (2.18)

ps = %m,s(v2
th)s/2 (2.19)

pi =
∑
s

ps. (2.20)

Here, vth is the ion thermal speed, and we can use the previous definitions,
plus Eq. (2.7f), to set the following plasma betas,

βs = ps
pmag

= (v2
th)s
v2
A

%m,s
%m

(2.21)

βi =
∑
s

βs (2.22)

βe = pe
pmag

= 2nekBTe
%mv2

A

(2.23)

where vA is the Alfvén speed v2
A = B2/µ0%m. Finally, we define the sound

speed in terms of the plasma betas.

c2
s = (pi + pe)

%m
= 1

2 (βi + βe) v2
A (2.24)

The fastest mode present in the hybrid model, the ’whistler’ mode, has
a natural resonance occurring at the limit when this is close to the electron
gyro-frequency Ωe. Because the hybrid model allows for its unstable growth
and we require a numerical control, preventing these modes to grow unstable,
which is non-physical and brakes the CFL condition, see Section 2.3.8.

2.3.3 Normalization

The equation system Eq. (2.7) is normalized according to the following quant-
ities: in a multi-species plasma, units are in terms of a reference plasma of
protons with mass mp and charge e, which has a mass density %m0. In this
reference plasma, the proton number density is n0 = %m0/mp. Dimensionless
simulation values are related to physical values by s = x/u, where s is a sim-

51



ulation variable, x is the corresponding physical variable, and u is a physical
unit value. The list of units is,

mass density %m0
mass %m0 × (unit of length)3

magnetic field B0 Background field
unit of speed vA Alfvén speed
unit of length vA/Ωi = c/ωpi Ion inertial length
unit of time Ω−1

i cyclotron time
charge density n0e
unit of charge n0e× (unit of length)3

electric field vAB0
unit of energy %m0(vA/Ωi)3v2

A

Table 2.1: Normalization units of the hybrid code used in the plasma simula-
tions in Chapter 4.

In the above definitions, c is the speed of light, the gyrofrequency Ωi =
eB0/mp, and the ion plasma frequency ω2

pi = n0e
2/ε0mi. In terms of these

units the proton charge-to-mass ratio is unity. In the simulations, the magnetic
permeability, ionic and electronics betas, and sound speed are considered in
the following way,

µ0 = 1, βs = %sm(v2
th)s, βe = 2τe, c2

s = (βi + βe)/2 (2.25)

where τe = kBTe/e is a measure of the electron temperature, then pe =
%cτe by definition.

2.3.4 Numerical scheme

Hybrid codes have been employed to simulate space plasma for more than three
decades [Harned, 1982; Winske, 1985; Winske and Omidi, 1996], and only re-
cently have been applied to fusion plasmas [Gingell et al., 2012, 2013; Carbajal
et al., 2014]. The three main types of solver include: a direct solver[Lipatov,
2002], the predictor-corrector method scheme[Colella, 1990; Saltzman, 1994],
and algorithms based on the moment method [Winske and Quest, 1988; Mat-
thews, 1994]. Hybrid codes similarity with PIC codes comes from the same
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argument in which the phase space density is constant along the particle tra-
jectories in absence of collisions. This principle

is known as Liouville’s theorem. In this collisionless case, the spatial
and velocity components map forward the distribution function conserving
its phase space density. The advance of particles is done by using the current
advanced method (CAM) [Matthews, 1994], which is a variation of the moment
method [Winske and Quest, 1988].

The magnetic field is advanced using Faraday’s law and using the elec-
tric field as a source at a defined time. The spatial derivatives are approxim-
ated by finite-differences in an interlaced grid[Yee, 1966]. In this grid some
quantities are defined with half-integer at cell centres ( E, %c, J) and others
at cell nodes with full-integer (B), then nx∆x is the full-integer domain and
(nx+1/2)∆x is the half-integer domain representing the interlaced grid points
in one dimension, where ∆x is the cell size, and nx is the number of grid points.

The electric field can be derived from the ions velocity moments and
currents, which means that E can be obtained from the ions density, ions
bulk velocity/current, and B at a given time, without the need to integrate E
in time. Furthermore, existing hybrid codes differ in their approach on how
to solve the fields interdependence in a numerically stable and accurate way.
Our work here involves the use of Hypsi, a hybrid code that uses the CAM-CL
algorithm [Matthews, 1994] and the MPI libraries for domain parallelization.
The numerical scheme of the algorithm is focused in its majority on the follow-
ing aspects: numerical integration of particle velocities and positions solving
the Vlasov equation, time integration of the magnetic fields and advance of
ions moments and currents with the subsequent update of the electric field for
the new currents, a more comprehensive cycle is explain in Fig. 2.9 with all
the simulation steps.

It is important to note that ‘particles’ are not ions, but macroparticles,
each representing a very large number of ions. Therefore, the distribution func-
tion is effectively discretized into a finite number of ion clouds with centres
xs, see Fig. 2.8, where s = 1, 2, ..., N and N is the total number of particles
in the simulation. The discretization of the phase space introduces noise into
the moment arrays. A consequence is that there is always a noise level in the
density and currents acting as a source of small perturbations. Therefore, any-
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thing with physical meaning smaller than the noise is lost, unless the number
of particles is very great. The statistical noise intrinsic in PIC simulations de-
pends on the number of macroparticles N present in the box and it is inversely
proportional to the square root of the number of particles per cell, i.e. in a
100 particles per cell simulation we must increase the number to 400 to only
half the noise, but then the total number of particles will be four times bigger,
therefore decreasing the noise an order of magnitude clearly is impossible to
provide in most HPC system nowadays.

Cloud shape and weighting function

For particles and field interpolation a cloud function of shape S(x, x′) and
weighting functionW (x, x′) is introduced [Hockney and Eastwood, 1988]. The
finite size particle distribution might be written as in Birdsall and Langdon
[1975],

fc(x,v, t) =
∫
f(x,v, t)S(x, x′)dx′ (2.26)

The cloud shape S(x′) of a particle with unit charge represent its charge
density, and x′ measures the distance from the centre of the particle. The
fraction of the charged assigned from a particle with shape S at mesh point
xp is given by the overlap of the cloud shape with the cell p as follows,

Wp(x) =
∫ xp+h/2

xp−h/2
S(x′ − x)dx′ (2.27)

Most common cloud shapes and weighting function are, the nearest grid point
(NGP), cloud-in-cell (CIC), see Fig. 2.8, and triangular-shaped density (TSC)
[Hockney and Eastwood, 1988]. The cloud and assignment functions must
satisfy the charge conservation condition:

Ng∑
i=1

W (xi − x) = 1 and
∫
S(x′ − x)dx = 1 (2.28)

Also, weighting in three dimensions must take the form [Hockney and East-
wood, 1988]

W (x) = W (x, y, z) = W (x)W (y)W (z) (2.29)

to obtain continuity of value (first order), continuity of value and derivative
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(second order), and higher order everywhere.
The effect of gridding the fields, which is assigning values to fields at

grid points by weighted sum over particles, reduced the amount of computation
and memory. Given,

E(xs) =
∑
j

WsjE(xEj ) (2.30)

B(xs) =
∑
j

WsjB(xBj ) (2.31)

where xEj and xBj are positions of grid points in E-grid (half-integer) and B-
grid (full-integer) and Wsj = W (xs,xj) is the weighting function associated to
particle positions xs.

Figure 2.8: The two-dimensional CIC or area-weighting scheme. The fraction
of charge assigned to the four neighbouring mesh points from a particle at
position x is given by the area of overlap of its cloud shape with the cells
containing those neighbouring mesh points.

2.3.5 Current Advance Method

In this method the variables x and v are advanced alternately. A time step ∆t
is introduced and the variables are evaluated at different time levels denoted
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by superscripts, for example: xn+1 = x((n+1)∆t). The differential Eqs. (2.7a)
and (2.7b) are rewritten as difference equations,

x1/2 = x−1/2 + ∆tv0 (2.32)

v1 = v0 + ∆t qs
ms

(
E1/2(x1/2) + v1/2 ×B1/2(x1/2)

)
(2.33)

We first observe the need to do an extra particle ‘push’ given the prob-
lem of having to solve Eq. (2.33) without having v1/2 neither E1/2. Using the
similar time centred integration in 2.33 to the second order in ∆t by making
a first-order half-step from v0 to v1/2

v1/2 = v0 + ∆t
2
qs
ms

(E1/2
∗ + v0 ×B1/2) (2.34)

For the ‘pre-push’ of particles a mixed time level electric field is required E1/2
∗ =

E(%1/2
c ,J0

i ,B1/2, Te). This is fixed by the advance of the ionic current density
J0
i a half-time step to J1/2

i with an appropriate equation of motion. Now,
only one pass through the particle velocity is necessary to solve Eq. (2.33),
since E1/2 is computed as a function of J1/2

i This is called the moment method
[Winske and Quest, 1988], and almost half the computing time because of the
minor number of grid points compared to push all the particles twice. Since
the ionic current density is the quantity advanced this method is called current
advance method [Matthews, 1994] .

Current and charge densities are defined analytically by taking the mo-
ments of the distribution function f(x,v). They are determined at the grid
points x1/2

s by their weighted sum over the particles xj. A weighting function
W

1/2
sj = W (x1/2

s ,xj), where Wsj = Wjs and each particle has unit weight, see
Eq. (2.28). Ionic charge and current density are collected at grid points as,

%c(xj) =
∑
s

W
1/2
sj qs (2.35)

Ji(xj) =
∑
s

W
1/2
sj qsvs (2.36)

with particles and velocities defined at different times, then Ji has velocities
at the beginning of the time step v0

s, and positions at its midpoint x1/2
s . The

‘free-streaming’ [Friedman et al., 1991] ionic current is defined for Eq. (2.36)
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as follows,
J∗i (x1/2,v0

s
s ) =

∑
s

W (x1/2
s )qsv0

s (2.37)

where xs and vs refer to all the particles and all the i to all the grid points.

Advancing the Ionic Current Density

An equation of motion is now derived for advancing Ji to the midpoint of
the time step. Multiply the ‘pre-push’ equation of motion Eq. (2.34) by the
charge qs, and sum the contributions of the terms at the grid point, using
weights W 1/2

sj evaluated at particle positions x1/2
s :

∑
s

W
1/2
sj qsv1/2

s =
∑
s

W
1/2
sj qsv0

S + ∆t
2
∑
s

W
1/2
sj

q2
s

ms

(
E1/2
∗ + v0 ×B1/2

)
(2.38)

J1/2
i = J∗i + ∆t

2 (ΛE1/2 + Γ×B1/2) (2.39)

Λ =
∑
s

W
1/2
sj

q2
s

ms

(2.40)

Γ =
∑
s

W
1/2
sj

q2
s

ms

vs0 (2.41)

where summation is done over ion species s.

2.3.6 Cyclic Leapfrog

The electric field is evaluated as a function of the time-centred charge and cur-
rent densities, E1/2

∗ = E(%1/2
c ,J1/2

i ,B1/2, Te), where the field B(t0) is advanced
from t0 to t0 + ∆t in a cycle of n substeps of size δt = ∆t/n, so that,

Bp = B(t0 + pδt),

B1 = B0 − δt∇× E0,

B2 = B0 − 2δt∇× E1,

:

Bp+1 = Bp−1 − 2δt∇× Ep
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where p = 1, 2, . . . , n− 1. Also,

Bn = Bn−2 − 2δt∇× En−1

B∗n = Bn−1 − δt∇× En

and finally
B(t0 + ∆t) = 1

2(Bn + B∗n) (2.42)

Here, two copies of the magnetic field are used, one for the odd solution and
one for the even solution, which leapfrog over each other. After n steps, defined
during the initialization, the solutions are averaged.

Time-advanced Algorithm

In general, the sequence to move each step from t0 to t1 is made as shown in
Fig. 2.9. The loop sequence is the following:

1. Advance B0 to B1/2, and J∗i (x1/2,v0) to J1/2
i and evaluate

E1/2 = E(%1/2
c ,J1/2

i ,B1/2, Te), using Eqs. (2.39) to (2.41).

2. Advance v0 to v1, and x1/2 to x3/2, using Eqs. (2.33) to (2.34).

3. Collect the moments in the same loop through the particle:

%3/2
c = %(x3/2)

J∗−i = J∗i (x1/2,v1)

J∗+i = J∗i (x3/2,v1)

Λ = Λ(x3/2,v1)

Γ = Γ(x3/2,v1).

4. Obtain averages %1
c and J1

i and advanced B1/2 to B1. B is integrated in
time by cyclic leapfrog, Eq. (2.42).

At the beginning and at the end of the simulations the positions and velocities
are moved to the time level required by the CAM-CL algorithm [Matthews,
1994].
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Figure 2.9: Schematic of the time advance scheme in CAM-CL. At the be-
ginning of the step, x has been advanced to time level 1/2 with v0. Mo-
ments already collected are %1/2

c and the ‘free-streaming’ ionic current density
J∗i (x1/2,v0), as well as %0

c and J0
i . Two solutions of B are advanced by substeps

(cyclic leapfrog) to time level 1/2, with E(%0
c ,J0

i ,B, Te). The current advance
method advances J∗ to J1/2

i , with the fields B1/2 and E(%1/2
c ,J0

i ,B1/2, Te).
The time centred (for v) electric field is now evaluated at time level 1/2,
E1/2(%1/2

c ,J1/2
i ,B1/2, Te). The particles are pushed, v0 → v1, x1/2 → x3/2, and

the moments are collected, %(x3/2), from which %1
c is obtained as an average of

%1/2
c and %3/2

c ; the backward and forward ‘free-streaming’ currents J∗−i (x1/2,v1)
and J∗+i (x3/2,v1), which are averaged to obtain J1

i . Finally, B1/2 → B1 and
the cycle repeats, reproduced from Matthews [1994].
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2.3.7 Particle loading

The loading of nonuniform distributions in space can be expressed as in Lipatov
[2002]. Let us suppose that we need to place particles so as to form a density
d(x), from x = a to x = b . The cumulative distribution function has the form

D(x) =
∫ x
a d(x′)dx′∫ b
a d(x′)dx′

, (2.43)

where D(a) = 0 and D(b) = 1. Equating D(xs) to a uniform distribution
numbers εs, 0 < εs < 1, will produce xs corresponding to the distribution
d(x). In cases where an analytic solution is not possible it is necessary to
use a numerical method to solve xs = xs(εs)[Birdsall and Langdon, 1975].
The inversion problem to find a uniform plasma spatial distribution is simply
provided through an analytic solution of Eq. (2.43).

Loading a Maxwellian velocity distribution

Let us use the system of coordinates which is located in the frame of the bulk
velocity, v = vbulk. a normalized thermal (Maxwellian) distribution is shown
in Fig. 2.10. Most of the particles are within the region inside v = 3vT (99%)
so very often we do not need to place particles beyond 3 or 4vT . Keeping the
particles with sufficiently high v may result in a strong decrease in the integ-
ration time step ∆t due to Courant-Fridrich-Levy (CFL) condition, explained
in next section. Let us suppose that the density is spatially uniform with
the isotropic Gaussian distribution f0(v). Then the cumulative distribution
function for the speed v = |v|,

εs = F (v) =

∫ v
0 exp

(
− v2

2v2
T

)
dv∫∞

0 exp
(
− v2

2v2
T

)
dv

(2.44)

is set equal to a set of uniformly distributed numbers εs, varying form 0 to 1,
in order to obtain the values of v. In the one-dimensional case, the integration
over f(v) cannot be explicitly done, but it is done numerically, as in [Birdsall
and Langdon, 1975, INIT routine in ES1 code], to produce a quiet-Maxwellian
distribution, with thermal velocity, vT . In the case of two or three-dimensional
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isotropic thermal distribution, the integration of Eq. (2.44) can be done expli-
citly. The speed is v =

√
v2
x + v2

y, angle θ = arctan vy/vx, dv = 2πvdv. The
inversion for speed v obtained in terms of ε gives,

vs = vT
√
−2 ln εs. (2.45)

Another set of uniform numbers εm is chosen for the angles θ, over the range
0 to 2π, θm = 2πεm. The third coordinate can be added by repeating one of
the previous axis, although this is a debatable practise.

After all the particles are loaded, we can start moving, or setting the
particles for time ∆t = 0 and collect the moments and solve the fields at t = 0.

Figure 2.10: Normalized thermal velocity distribution.

2.3.8 Stability and CFL condition

The electric and magnetic fields are staggered in half-integer, full-integer,
time step grid to conserve the Maxwell’s laws[Birdsall and Langdon, 1975;
Yee, 1966]. A stability condition can be derived in any PIC code from plane
waves solution into the Maxwell’s equations onto the grid[Courant et al., 1928].

61



Hence, for the scheme to be stable the following condition is necessary,

(c∆t)2 <

(
1

∆x2 + 1
∆y2 + 1

∆z2

)−1

(2.46)

v∆t
∆x <

1√
3

(2.47)

This condition prevents information travelling faster that the limiting speed,
crossing more than one cell in a single time step. The Eq. (2.46) is the Courant-
Friedrichs-Levy (CFL) condition [Courant et al., 1928] which defines the max-
imum time step size to resolve the fastest characteristic velocity. For equal cell
size ∆x = ∆y = ∆z we obtain Eq. (2.47), where v is the characteristic fastest
velocity in the system. In the hybrid model the speed of the whistler wave
mode is the fastest to resolve.

From the generalized Ohm’s law in Section 1.4.7 we retained the Hall
term, responsible for the whistler mode, and the electron pressure term. In
this regime we must resolve the ion motion with grid spacing usually smaller
than the ion Larmor radius. In addition, the massless electron assumption left
the whistler mode unbounded of the previous electron cyclotron cut-off. Alto-
gether, impose a severe constrain on the choosing of the time step ∆t[Pritchett,
2000]. For large wavenumber the whistler frequency scales as ω/Ωi = (kδi)2,
where δi is the ion skin depth. For the largest wavenumber kmax = π/∆x the
new CFL condition gives,

Ωi∆t < (∆x/δi)2/
√
nπ (2.48)

where n is the number of spatial dimensions for the grid. To prevent this un-
stable growth a smoothing technique that works as a low-pass frequency filter
in the frequency domain is applied. A low-pass filter passes signals with a fre-
quency lower than a cut-off frequency, smoothing the higher frequencies above
the cut-off. The amount of attenuation depends on the filter. The smoothing
is done in the time domain by taking advantage of the convolution property
which state that applying the filter in the frequency domain is equivalent to
take the convolution with the inverse transform of the convolution filter. For a
Gaussian filter where g(x) = 1/σ for |x| 6 σ/2, and zero anywhere else. Then
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we have,

g ∗ f(x) =
∫ ∞
∞

g(a)f(x− a)da = 1
σ

∫ σ/2

−σ/2
f(x− a)da (2.49)

The effect of this integral is to take the average of all values of f(x) in a
neighbourhood of size σ around x. For a discrete weighted ε average in one-
dimension of F in a neighbourhood ∆x, the convolved quantity is,

(1− ε)Fδ(xs) + ε

2 (Fδ(xs + ∆x) + Fδ(xs −∆x)) (2.50)

where δ(x) is the Dirac function, and F is the smoothed quantity. Note this
is easily extendible to three dimensions, which is faster than the Gaussian
convolution per grid point.

Round-off error

Computers arithmetic precision can lead to erroneous results, and often this
is extended for large scientific computations. The binary numbering system
(base-2 intrinsic in most computer) can be represented in the base-10 sys-
tem and also using scientific notation. The number 126 in binary 011111102

representation and also,

126 = 1× 102 + 2× 101 + 6× 100 base-10

+ .126 × 103 scientific notation

Using scientific notation the components are stored following the IEEE (In-
stitute of Electrical and Electronic Engineers) convention for binary arith-
metic. Single precision and double precision are the basics floating point or
real numbers inside the machine. However, finite computing power implies
that precision is finite to a certain value ε associated to different machines
or technologies, and it is also different for single and double precision. The
machine ε strongest implication is the effective zero, which means that the
computer can not distinguish from 1.0 + ε! = 1.0 anymore and the calculation
becomes seamless. The ε value for single and double precision in the HPC
cluster used in Chapter 4 are ∼ 6× 10−8 and ∼ 10−16, respectively.
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Chapter 3

Characterization of ELMs in
JET plasmas

The results in this chapter are published in Calderon et al. [2013].

3.1 Parameter space and dimensionality

ELMs time series have been the subject of intensive study in different toka-
mak experiments in order to quantify and extract signatures of the underlying
physical process or processes. Given the highly non-linear nature of these
events [Greenhough et al., 2003; Ikonen and Dumbrajs, 2005; Zvejnieks et al.,
2004] traditional linear analysis has been less successful in describing ELMs
properties and only a few statistical quantities have been more robust in de-
fining the ELMs global behaviour[Calderon et al., 2013; Chapman et al., 2014;
Murari et al., 2014; Webster et al., 2014]. As our understanding of the phenom-
ena improved correlation has been established between ELM frequency with
change of several experimental parameters; collisionality[Zohm, 1996; Kamiya
et al., 2007], pedestal pressure and temperature[Pitzschke et al., 2012; Saibene
et al., 1999] and many other plasma parameters[Degeling et al., 2001; Hill,
1997; Connor, 1998]. A broader parameter space with increased dimension-
ality is then required to fully understand this phenomena. There has been
focus on non-linear properties, relatively to one, two or more dimensions in-
cluding collisionality, q-profile, Neutral Beam Injection (NBI) among others,
to search for deterministic or chaotic behaviour [Degeling et al., 2001; Bak
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et al., 1999; Martin et al., 2002; Ikonen and Dumbrajs, 2005]. In JT-60U early
studies suggested the presence of Unstable Periodic Orbits(UPOs) based on
their recurrence properties and the fixed point transform [Bak et al., 1999].
An unstable periodic solution in a chaotic dynamical system is characterized
by a linear first-order perturbation as the system approach the UPO, and
the subsequent exponentially growing perturbation as the system moves away
from the unstable solution. In TCV a similar study was carried out to identify
UPOs [Degeling et al., 2001; Martin et al., 2002]. It argued that the time
delay between ELMs may be the result of noise only or must be a determin-
istic process as shown by the relative appearance of UPOs in the time series.
The fluctuations in the time delay of continuous ELMs were found to be re-
lated to the variations of the external parameters such as plasma current Ip,
elongation κ, and density ne. While it has not been established whether the
nature of the ELM waiting times is purely random mean-distributed[Adamov,
2008], neither this can be rejected as hypothesis , given the common episodes
of single periodic with random spread, yet, these findings opened the door for
the application of many different non-linear methods traditionally applied in
others areas, for example see the review by Dendy et al. [2007]. In DIII-D ob-
servations of ELMs dynamic have focused on understanding the physics that
independently controls the edge pedestal density and temperature gradients
[Fenstermacher et al., 2005]. Simulation of ELMs using a MHD model [Huijs-
mans et al., 2015] have been partially successful in describing ELM dynamics,
but they are not fully able to account for variations imposed by impurities,
high densities with low pedestal collisionality for plasmas as in the ITER scen-
ario, although nonlinear MHD simulations efforts exists [Fenstermacher et al.,
2013]. In JET the Probability Distributions Functions (PDFs) of ELM bursts
were analysed on a series of discharges to quantify the measured PDFs against
a series of model distribution (Gaussian, inverse exponential, and Poisson) by
Greenhough et al. [2003]. Also recently, Murari et al. [2014] provided an ex-
tensive statistical analysis of JET discharges with the old carbon wall contain-
ing thousands of ELM events, in mostly similar plasmas. Murari et al. [2014]
tested several model distributions on a large set of JET discharges for ELM
type-I and presented a tool (universal multi-event locator, UMEL) to facilitate
the identification of ELM events. Defining a model distribution can help us to
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understand the global ELM time response distribution directly correlating its
changes with key experimental parameters. In addition, ELMs type-III were
studied using model distribution in L-mode/H-mode plasmas characterizing
them mainly with Weibull distributions according to the changes in the inter-
ELM time difference [Webster, 2012]. A quantitative classification of ELMs
statistical properties has been provided in several tokamaks, yet the use of
non-linear techniques to study the strong correlation of the ELM phenomena
with its parameter space has only recently been gaining attention [Calderon
et al., 2013; Chapman et al., 2014, 2015; Webster et al., 2014; Murari et al.,
2014]. Here we discuss the characterization of ELMs inter-event time difference
according to the changes of and its dependence upon a key control parameter,
the gas injection rate in otherwise similar plasmas. During the course of this
thesis, the application of such studies has been recently investigated in real-
time ELM frequency feedback control loop in JET by Lennholm et al. [2015].

3.2 Characterization of ELMs in low dimen-
sional space

Ruelle and Takens [1971] discussed a classical scenario for the transition from
ordered to disordered flow in fluids with increasing driving control parameter
like those in Newhouse et al. [1978]; Trefethen et al. [1993]. This has been
observed in Rayleigh-Bénard convection in fluids by Bodenschatz et al. [2000];
Ahlers [1974]; Gollub and Swinney [1975]; Gollub and Benson [1980]; Libchaber
et al. [1983], and in drift wave turbulence by Klinger et al. [1997] and flute
instabilities in plasmas [Brochard et al., 2006]. Oscillatory behaviour arises
either if there is a constant of the motion, or if there is a limit cycle onto which
the system dynamics is attracted in the presence of damping or dissipation.
In the present case, where the system is the plasma undergoing the ELMing
process, the nature and number of the relevant phase space co-ordinates is
not known from first principles. Progress towards their identification can ne-
vertheless be made by applying techniques of dynamical systems analysis to
visualize changes in the topology of the phase space. A convenient method
is that of ‘delay plots’, see Section 2.2.1, that is, to plot the successive time
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intervals between crossings of a surface of section in the phase space[Matsoukis
et al., 2000; Devine and Chapman, 1996; Schreiber and Schmitz, 2000]. Fig. 3.1
shows how we define a threshold here.

Figure 3.1: For six JET plasmas the counts of ELMs events as a function of
the amplitude threshold (cut every 0.5 of normalized amplitudes). We observe
the vertical dashed line at 3.5 separating noise level. The second vertical line,
with amplitude value 10.0, is chosen to illustrate best the changes in delay
plots (middle panel) of Figs. 3.3 and 3.4 according to the variations of the gas
puffing rate in Fig. 3.5.

In this chapter we report the application of delay plots to the measured
time intervals or inter-event times between successive ELMs. We consider
ELM sequences from six similar plasmas in the JET tokamak, including JET
plasma 57865 where the H-mode closely approaches an ITER operating regime
with respect to some, but not all, key dimensionless parameters [Pamela et al.,
2005]. We obtain evidence that Type I ELMing in these plasmas exhibits
transitions between processes with distinct physical analogues, dependent on
the value of the gas puffing rate as control parameter. In all six plasmas the
toroidal magnetic field density is 2.7T, the plasma current is 2.5MA, neutral
beam and ion cyclotron resonance heating power are 13.5MW and 2.0MW
respectively, and the H98 confinement factor is in the range 0.87 to 1.0. In
all six plasmas, gas puffing terminates at 23.3s and neutral beam heating is
ramped down from 23.5 to 24.5s. The differences in Type I ELM character
are largely determined by the different levels of externally applied gas puffing.
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The intensity of the Dα signal, which sometimes saturates, is not necessarily a
reliable proxy for the magnitude of the underlying ELM plasma phenomenon,
whereas occurrence times are well defined. ELM occurrence and ELM inter-
event times are the primary physical indicators addressed in the present study.
The moment of occurrence of each ELM is inferred from the Dα datasets using
an algorithm similar to that described in Greenhough et al. [2003]; Webster
et al. [2014], which exploits the steep leading edge of each ELM. This procedure
generates a sequence of event times tn for each nth ELM, and hence inter-event
times δtn = tn−tn−1. These sequences are used to construct delay plots, which
are known to capture aspects of the topology of the unknown underlying phase
space evolution of the system [Schreiber and Schmitz, 2000; Matsoukis et al.,
2000; Devine and Chapman, 1996].

3.2.1 Results and discussion

Figures 3.3 and 3.4 show measured Type I ELM signals for a sequence of six
JET H-mode plasmas 578nm, where nm is 72, 71, 70, 65, 67, and 69 in order
of increasing magnitude and duration of the gas puffing rate, shown in Fig.
3.5, which is the key external control parameter. The upper trace in each
panel of Figs. 3.3 and 3.4 plots the time-evolving intensity of Lyman alpha
recombination radiation from deuterium, Dα, measured by a camera directed
at the inner divertor, normalised by the mean measured intensity. The line
of sight can be seen in Fig. 3.2. The two groupings of three plasmas are at
lower (Fig. 3.3) and higher (Fig. 3.4) gas puffing rates. At lower gas puffing
rates (Fig. 3.3) the ELM signal intensity is roughly the same across each time
series, whereas at higher gas puffing rates (Fig. 3.4) this shows a rich structure.
We will investigate this structure by sorting the ELM events that are used to
construct the time series of inter-ELM time intervals (delay times), in terms
of whether they exceed a threshold in signal intensity, see Fig. 3.1 threshold
line is plotted against number of ELMs used for choosing best threshold cut;
the thresholds used (3.5 and 10 ELM amplitude) are indicated by horizontal
lines on the ELM time series (top panel in Figs. 3.3 and 3.4). Each nth Type
I ELM that has signal intensity exceeding a given threshold then forms a set
of events at time tn with the delay between events δtn = tn− tn−1. The middle
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Figure 3.2: Diagram of the JET vessel in poloidal cross section showing di-
vertor (bottom) and walls (grey structure). The line of sight of Dα radiation
emission at 656[nm] in vertical lines is pointing to the inner and outer divertor
spanning across multiple channels, as shown by the broadening of line limits.
At the top, magnetic flux surfaces from EFIT equilibrium reconstruction of
JET plasmas 57872 and 57869 at t ≈ 22s.
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panels of Figs. 3.3 and 3.4 show the delay plots for a given threshold, that is,
δtn+1 versus δtn.

The Dα signal intensity for the ELM at tn is indicated by colour coding.
While these delay plots reflect the topology of the system phase space they
are not a phase space reconstruction. For a trajectory that is approximately
singly periodic the delay plot will exhibit a single concentration of points on
the δtn+1 = δtn line, centred on the mean period τ = δtn+1 = δtn, as shown in
Section 2.2.1. The spread of points about the mean period reflects a combina-
tion, in unknown proportions, of intrinsic and extrinsic sources of irregularity
in a quasi-regular process, and determines the practical resolution limit of this
method. A period-two oscillation will generate two concentrations of points,
symmetrically placed either side of the δtn+1 = δtn line. Dynamical switching
between one period τ1 and another at τ2 will generate four concentrations of
points: at the two distinct periods τ1 and τ2 on the δtn+1 = δtn line, and
at two locations symmetrically placed either side of the line, at (δtn+1, δtn)
coordinates (τ1, τ2) and (τ2, τ1).

The number of ELMs evaluated in these six JET plasmas ranges between
79 and 197. The mean inter-ELM time interval is in the range 25 to 60ms.
The delay plots in Fig. 3.3 are insensitive to the threshold, in marked contrast
to Fig. 3.4, suggesting that these reflect distinct processes. In Fig. 3.3, plas-
mas with successively greater gas puffing rates are shown from left to right.
We can see that increased gas puffing causes the ELMing process to bifurcate
from singly periodic (57872), via transitional behaviour (57871), to a situation
where two periods are present (57870) together, with the plasma switching
between them. This behaviour is approximately analogous to that of small
amplitude oscillations of two weakly coupled pendulums with different natural
frequencies. It is also apparent that a longer delay time δtn before an ELM
correlates statistically with a larger Dα signal intensity. The bottom pair of
plots in each panel of Figs. 3.3 and 3.4 displays the probability density func-
tions (PDFs) for the distributions of measured δtn for the ELM time series
using the same amplitude thresholds as for the delay plots; in Fig. 3.3, unlike
Fig. 3.4, these two panels are identical.

We now turn to Fig. 3.4 which corresponds to higher overall levels of
gas puffing rate. It displays a transition in the ELMing process as the gas
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Figure 3.3: ELM characteristics of three similar JET plasmas 57872, 57871,
57870 at lower gas puffing rates, showing for each plasma: (top of each
panel) the time trace of Dα signal intensity, displaying also the two amp-
litude thresholds used for the centre and bottom plots; (centre of each panel)
delay plots for ELMs, with amplitude colour coded above the higher (lower)
threshold on the left (right); (bottom of each panel) corresponding probabil-
ity density functions for the distributions of measured δtn for the ELM time
series, using the same amplitude thresholds as for the delay plots; the red and
blue curves represent different binning of the same data. The three plasmas
are ordered, from the left, in terms of increasing magnitude of gas puffing, see
Fig. 3.
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Figure 3.4: As Fig. 3.3, for three similar JET plasmas 57865, 57867, 57869
at higher gas puffing rates. The three plasmas are ordered, from the left, in
terms of increasing magnitude of gas puffing, see Fig. 3.5. The bottom panels
from JET plasmas 57867 and 57869 also include an inset panel displaying the
sharp peak in the PDF. The population in this sharp peak increases with the
gas puffing rate, and has the average period τ = 6.7± 6.6× 10−2 (ms).
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puffing rate is increased, which is different to that seen in Fig. 3.3. Each
ELM with large Dα signal intensity is statistically likely to be rapidly followed
by a population of postcursor ELMs with smaller Dα signal intensity. The
likelihood of a postcursor ELM, and their number, increases with gas puffing
rate. As a consequence, the delay plots constructed for different thresholds
now, unlike Fig. 3.3, show different structure. At relatively low gas puffing
rate (left hand plots) most delays fall within a single group on the δtn+1 = δtn

line. However when the threshold is reduced, smaller postcursor events begin
to feature in the time series of delays and result in populations (lines parallel
to the axes) far from the δtn+1 = δtn line, and a new, narrowly constrained
group on the δtn+1 = δtn line at small (δtn+1, δtn). As the gas puffing rate is
increased, these small postcursor events come to dominate numerically. It is
noteworthy that whereas ELMs with large signal amplitude exhibit a broad
inter-ELM time interval distribution, the distribution of the postcursors is
very sharply defined and is invariant between the three JET plasmas, see Fig.
3.4 bottom panels. Its inverse defines a potentially important characteristic
frequency of the ELMing process.

This process, as seen in the delay plots, is analogous to random large
amplitude transient impulses driving a system that has a narrowband resonant
frequency response. Furthermore, through a recent collaboration [Chapman
et al., 2015] new information has expand our understanding of the narrow
band waiting times postcursors, which suggests the hypothesis of an external
natural frequency aligning with possible sequence of prompt ELM[Chapman
et al., 2014], identified as compound ELMs in Fig. 3.4. The complex nature
of the postcursors have provided the argument to evaluate whether the build-
up signature[Chapman et al., 2015] to an ELM that has been either globally
displaced or suffered a bulk motion can be used to explain the compound ELM
behaviour. In Chapman et al. [2014, 2015] the full flux loop voltage signals,
VLD2 and VLD3, located in the vicinity of inner and outer divertor, have been
both exploited to detect temporal phase synchronization during the intrinsic
ELM build-up [Chapman et al., 2015], which suggests a coherent large-scale
plasma perturbation. As further work, provided high resolution on relevant
signatures exists, testing the hypothesis that compound ELMs, as in Fig. 3.4
plasma 57869, are a pattern of successive prompt ELMs and if they arise from
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global plasma motion via self-kick [Chapman et al., 2015] or coupling with the
vertical stabilization control coils in JET[Sartori et al., 2008; De la Luna et al.,
2009].
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Figure 3.5: Time trace of gas puffing rate, Γ, in particles per second, which
is the primary external control parameter for the six otherwise similar JET
plasmas: ordered, from the bottom, in terms of increasing magnitude.

Figure 3.5 displays the gas puffing rates for all six JET plasmas. The
clear changes in ELMing displayed in Fig. 3.3, and for JET plasmas 57867 to
57869, arise under comparatively small changes in gas puffing, while there is a
relative large step (a factor of approximately two) between 57865 and 57867.
Other ELM interval dynamics are in principle possible for other gas fuelling
rates, especially for fuelling rates between those of 57865 and 57867, for these
otherwise identical plasma operating regimes.

3.2.2 Conclusions

Some previous experiments have observed that Type I ELM frequency (mean
inter-ELM interval) increases with gas puffing rate [McDonald et al., 2008].
Moreover, early theoretical studies [Lönnroth et al., 2003] suggested that it
might be possible to explain the experimentally observed transition from Type
I to Type III ELMy H-mode triggered by strong gas puffing, as well as the sub-
sequent increase in ELM frequency and deterioration of plasma confinement,
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as a transition from second to first stability (either ideal or resistive modes).
However, there is still no widely accepted model for the overall ELMing process
or processes.
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Chapter 4

Modelling and evolution of Blob
dynamics

4.1 Introduction

The edge of tokamaks plasmas is a region dominated by transport of heat,
momentum and energy. It is also subject of multiple-scale phenomena and in-
stabilities[Wesson, 2004], see Section 1.5 Different propagating structures have
been observed; blobs/filaments[Krasheninnikov et al., 2008], ELMs [Wagner
et al., 1982; Zohm, 1996] and their dynamics is far more complex as they tend
rotate[Rozhansky and Kirk, 2008; Kamiya et al., 2007] as well as undergoing
radial transport, and down towards the divertor area. The transport mech-
anisms are believed to arise from saturation of nonlinear turbulent processes
or from coherent MHD instabilities thresholds[D’Ippolito et al., 2011]. The
layer where the exchange of energy, momentum and heat occurs extends from
the separatrix to the far SOL. The mechanisms enhancing transport remain
yet unclear, some theories exits that compare the measured quantities with
the expected transport coefficients[Rozhansky and Kirk, 2008; Myra et al.,
2012; Naulin, 2007]. It has been observed that blobs with sufficient radial ve-
locity can reach far SOL areas, and even hit the walls which can be sometimes
compared with ELM behaviour. Yet, their have distinctive formation mechan-
isms. While ELMs are formed by the nonlinear saturation of electromagnetic
ballooning and/or peeling-ballooning modes near the pedestal[Kamiya et al.,
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2007, see Fig. 8], blobs are formed by the nonlinear saturation of electrostatic
edge turbulence near the separatrix[D’Ippolito et al., 2011; Krasheninnikov
et al., 2008]. In the following sections we show novel results of 3D hybrid
simulations using fusion plasmas parameters, with a seeded blob placed to
evolve in a background plasma while convecting in a direction transverse to
the magnetic field.

4.2 Hybrid model

In the hybrid simulations presented here, the particles follow a six-dimensional
phase space evolution and the gridded fields, electric field E and magnetic field
B are evolved in a staggered grid with three-dimensional Cartesian coordin-
ates. The details of the plasma model and the equation system are explain
in Sections 2.3.2 and 2.3.4. Periodic boundary conditions are applied to E
in boundary cells, and they are implied to B, since it is obtained from the
integration of E, at each time step. Moments at opposite boundary points
are added together, and particles crossing a boundary layer re-enter on the
opposite side of the simulation domain.

4.2.1 Initial conditions: plasma parameters

The electromagnetic fields E = E(x,y, z) and B = B(x,y, z) are vector fields
in the space extending in three dimensions to the limits of the simulation
domain, see Table 4.1. All weighted macroparticles within a cell in the three-
dimensional space (3D) are contributing to the density at the cell nodes evalu-
ated in the B-grid. The Background plasma parameters are chosen to be char-
acteristic of edge conditions in a medium size tokamak, e.g., NSTX or MAST.
The background magnetic field Bz,0 = 0.69T, temperature Te = 4 × 106K,
approximately 344eV, and number density 8.1× 1020 are the most important
plasma parameter, small variations in these parameters are relevant in terms
of the numerical evolution of the blob.

To describe the motion of the blobs or filaments we use the following
coordinate system; x is defined as the parallel direction, given the hybrid’s
code internal coordinate system. With the purpose of resembling the blob

77



Simulation domain 300∆x, 150∆y,100∆z
Spatial resolution ∆x,∆y,∆z 0.1ρi
Background magnetic field, B0 0.69T
Internal magnetic field, Bblob 0.54T
Temperature, Te 344 eV
Background ion gyroradius, ρi ∼ 0.004 m
Background ion gyroperiod, tΩi

9.5×10−8s
Background number density, n0 8.1× 1020m−3

Blob peak number density, nblob 2-3 ×n0
Alfvén speed, VA 0.53×106ms−1

Plasma beta, βblob 0.0008
Plasma beta, βbackground 0.002
Total computational particles 5.04×108

Table 4.1: Simulation parameters of a seeded blob in a background plasma
with density n0.

convention direction (from left to right), we have chosen the y-direction as
the radial direction, and the z-direction represents here the poloidal direction.
Our frame of reference differs from that of previous 2D hybrid simulations
[Gingell et al., 2012] in what they defined as a moving frame of reference,
with the background plasma with velocity equal to the blob drift velocity
VD. Hence, a standing observer in this new frame of reference see the blob
moving with −VD. We do not apply this transformation in our simulations,
but instead we have initialized the particles belonging to the filament with a
drift velocity VD = 0.3 in units of Alfvén speed in the y-direction, according
to normalization in Section 2.3.3.

4.2.2 Blob Initialization

We focus briefly in loading the particles in the computational domain. There
is two apparent species, the particles in the background plasma with a specific
density and distribution of velocities, and the particles inside the blob which
are nonuniformly distributed in space, and their thermal velocity distribution
has been shifted in the transversal coordinate by VD, the nature of this drift
velocity is explained in Section 1.7. Both groups of particles have equal charge
and mass, as they are both protons, but we can treat them as two different
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Figure 4.1: Oblique cut of a 3D plasma blob seeded in a background plasma
with number density n0. Colorbar indicates number density in units of the
background plasma n0. The blob is uniformly randomly distributed along its
largest dimension and the cross-section density profile follows a Gaussian pro-
file with blob radius set as the distribution’s FWHM. The cross-section density
profile was initialized with the same conditions as Eqs. (2.44) and (2.45), but
in the spatial dimension to create the inhomogeneity.
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species and calculate their grid-defined quantities as previously explained in
Section 2.3.5; density, and current densities per species.

First, both groups are initialized in space, the background plasma has
a uniform distribution in space with density n0 everywhere, we simply apply
Eq. (2.43). The second group, the particles inside the blob, are initialized in
space nonuniformly with the following distribution[D’Ippolito et al., 2002],

n(y, z)blob = npeake
−((y−y0)2+(z−z0)2)/2δ2

b (4.1)

where (y0, z0) is the pair coordinate where the blob’s centre is initialized inside
the domain, and δb is the blob radius, in which case we are using the Gaussian
distribution full-width at half maximum (FWHM) to quantify the blob radius
consistently. Hence, the total density in space is nblob + n0. Fig. 4.1 shows the
three dimensional blob density and background density through cuts in the do-
main edges, and a oblique cut at 45 degrees passing through the blob’s centre
shows the density distribution along the magnetic field lines. Secondly, in both
groups of particles, the velocity distributions are thermalized following initial-
ization methods applied consistently in existing hybrid simulations [Gingell
et al., 2012, 2013; Carbajal et al., 2014] through the inversion of their cumu-
lative probability distribution[Birdsall and Langdon, 1975], see Section 2.3.7.
The background plasma has a mean thermal speed vth = 0.067VA, and the
blob’s mean thermal speed is vblobth = 0.042VA with the addition of shifting its
velocity in the radial direction according to vbloby ⇐ vbloby + VD .

The magnetic field is initialized uniformly, and then balanced using an
MHD scale condition to balance the forces inside the blob. In a steady plasma
with a scalar pressure the force balance for each species is

nsqs(E + vs ×B) = ∇ps (4.2)

Adding over all species,

E
∑
s

nsqs +
∑
s

nsqsvs ×B = ∇p (4.3)

Since the plasma is quasi-neutral, the first term is negligible, and Eq. (4.3)
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becomes,
J×B = ∇p (4.4)

Using Ampere’s Law, and the vector relation (∇×B)×B = B∇B−∇B2/2
we obtain,

∇p = −∇ B2

2µ0
+ 1
µ0

B · ∇B (4.5)

The last term is due to field line curvature, which we neglect at t = 0. Hence,
we obtain a condition to balance the magnetic field pressure with the plasma
pressure as follows,

p+ B2

2µ0
= constant (4.6)

The electric field is initialized using Eq. (2.16). Fig. 4.2 shows a transversal cut
of the magnetic and electric field at t = 0 with the balance condition Eq. (4.6)
for Bx and the induced Ez by seeding a drift velocity in the blob particles.

4.3 Results

We report kinetic simulations of filamentary structures where the central dens-
ity peak is above the background density between 2−3 n0. The simulations we
performed using the hybrid model of plasma explained in Section 2.3 with ini-
tial parameters matching those of tokamak middle size like MAST or NSTX,
see Table 4.1. The simulations total time ranges between 10.35−17.5tΩi

gyro-
periods.

Since, macroscopic fluid scales have been studied in detail with seeded
blobs in Krasheninnikov et al. [2008]; D’Ippolito and Myra [2006]; Myra et al.
[2006]; Bian et al. [2003] by using a model for blob spatial density distribu-
tion as in Eq. (1.74) with the addition of the background density n0. While
they solved and evolved a coupled equation system composed by Eqs. (1.72)
and (1.73), we focus on the evolution of a seeded ion-gyro scale blob, where
single particles interaction with the background plasma shows a much richer
blob evolution not observable at macroscopic scales as those in existing previ-
ous simulations.
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Figure 4.3: The evolution of the blob number density in a transverse cut at half the blob’s parallel length. The blob
radius is approximately 3.5ρi.
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4.3.1 Simulations of filaments in 3D

The full evolution of a three dimensional blob is shown in Fig. 4.3 through
transversal cuts in the number density at half the blob parallel length. The
initial response is relative to the force balance, right after t = 0, where any
small variation in the initialization is compensated. The blob evolves from
there under two competing processes. The travelling blob’s flow with a dens-
ity higher than the background and the drift convective velocity may drive
Kelvin-Helmholtz instabilities. This may be observed as surfaces modes which
grow amplitude variations restricted to the boundary and consequent nonlinear
amplitude grow is expected at the flanks of the front. This effect was observed
in 2D blob with a radius ∼ 10ρi in previous hybrid simulations[Gingell et al.,
2012]. A related process is the nonlinear steepening of the blob density pro-
file at the leading edge, which in cases where the structures remain coherent
they resemble a shock-wave solution of the Burgers’ equation [Treumann and
Baumjohann, 1997].

We observe that as a result of convective velocity of the blob, the
particles in the background of the blob are quickly released from the blob
given their effective Larmor radius. Particles in the boundary may rapidly
exchange momentum with the background plasma. In the front it is expected
under fluid approximation that particles will be deflected to the sides creating
bipolar structure under the assumption of an incompressible flow ∇ · v = 0.
Yet, this is not an ideal case, and the effective Larmor radius plays a role in
the particles transitioning in/out the blob boundary. Although the streamlines
do partially present the bipolar twin cell vortex when we look at the plasma
density currents in the perpendicular plane.

Because of the initial vorticity the plasma convects faster in the centre
than in the extremes forming what appears as extended flanks which are very
slowly separating form the plasma blob while continue to convect as they are
displaced, resulting in a pile up effect on the upstream edge front, this front
particularly conserve the density peak value for the most part of the evolution
as opposed to 2D evolution in Gingell et al. [2012]. The main interaction
between the two flows is observed at the front of the upstream edge where the
two flows meet. There is first an observable steepening of the edge gradient
facing the radial direction, which continue to enhance the sharp transition
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layer for particles coming in/out the blob. This effect resembles that of a shock
wave, described by Burgers’ equation. The shock wave is typically found in
space plasmas with a thin transitive area, propagating with supersonic speed
in which there is a sharp increase of density, pressure, and speed. The one-
dimensional approximation of the Burgers’ equation,

∂v

∂t
+ v

∂v

∂x
= α

∂2v

∂x2 (4.7)

where α > 0 acting as a diffusion coefficient, and the convective derivative
accounting for the nonlinearity on the lhs. The diffusive second order derivative
(rhs) is compensating for the nonlinearity until the terms are comparable and
the mode transition into a stationary solution. The evidence for dissipation
balancing the wave front can be seen in the formation of normal electric field
near the front on the blob which is not reproduced behind the blob, see Fig. 4.4
top.

We also observe in Fig. 4.4 bottom how the magnetic field strength in
the parallel direction has been carried by the blob particles into the same shape
determined by the particles distribution as the blob is drifting radially in the
y-direction. If the particles can carry the magnetic field lines we think it is
possible to bend the field lines for sections moving with the plasma blob at
different speed in the parallel direction, which is the case for ELM filaments in
which the footpoints do not follow the sheath-to-sheath model and therefore
bending of the field lines requires an electromagnetic model for ELM filaments
[Krasheninnikov et al., 2008].

In Fig. 4.6 we show the evolution of a three dimensional structure corres-
ponding to the interpolated values of the number density at a given threshold,
i.e., an iso-surface obtained from interpolation of density grid points in the
vicinity of the chosen number density threshold nThre = 1.2n0.

We have already discussed how the central section in the blob is moving
faster than the flanks. This is mainly driven by current density inside the blob
structure, also because there is nothing stopping the elongated shaping of the
blob, as the transfer of momentum with background particles is broadening
the front surface. The initial blob’s width ∼ 3.5ρi has now been broaden
to approximately ∼ 8ρi. The convecting particles in the flanks of the blob,
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dissipation processes which are in turn balancing the blob’s convection. The
same is not observed in the space behind the blob.
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Figure 4.5: Current density in the transversal cut of a 3D blob. Background
plasma current density is not plotted here.
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those that are been delayed some distance behind, are still propagating with
the coherent structure as observed in the centre and flanks density currents
of Fig. 4.5. Only the particles initially in the blob (the background is not
plotted here) are still moving radially outwards (y-axis), while others where
completely removed and are now spreading freely behind the blob. Similarly,
there are now particles from the background drifting with the blob in a struc-
ture similar to the one observed in Fig. 4.5, although they tend to complete
the pattern observed, which is something yet to explain. Principally, the mo-
mentum exchange can be understood by the finite Larmor radius interaction
between the two flows. The two flows have distinct velocities distributions,
the blob velocity distribution is shifted in the y-direction by the drift velo-
city, which is imposed by an initial electric field ( due to charge polarization)
moving with the blob’s flow. The ions moving across the front edge surface
and the flanks experience the acceleration, caused by the electric field, which
is in the opposite direction to the initial background flow so as to conserve
momentum after the interaction. We can take the first moment of the Vlasov
equation Eq. (1.54) for each ion population species s by multiplying it by v
and integrating over the velocity space. We arrive at the bulk momentum
equation for ion species (s),

nsms
dvs
dt

= qsns(E + vs ×B)−∇ps. (4.8)

Taking the following Amperè’s law, in the low-frequency limit, yields,

∇×B = µ0J = µ0e

(∑
s

nsvs − nve
)
. (4.9)

Then with the generalized Ohm’s law and the Amperè’s law Eq. (4.9) we can
obtain, for each ion species s, the multi-fluid description as follows,

nsms
Dvs
Dt

= ens

(
vs −

1
n

∑
nsvs

)
×B + ns

n
(J×B−∇pe)−∇ps. (4.10)

Where D(·)/Dt is the convective derivative and ps is each ion species pressure.
The first term on the rhs corresponds to the local momentum transfer between
species, which is significant given the different species velocities in here. This
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term describes the momentum transfer along the v×B direction. Finally, this
term vanishes when we sum over all the species showing momentum conser-
vation. The second term and third term where already described, as the Hall
term which is responsible for the Whistler propagation and the pressure terms
which account for the Alfvén compressional waves, explained in Section 1.4.7.

4.3.2 Simulation of blob dynamics in 2D

Existing 2D hybrid simulations [Gingell et al., 2012] shown the evolution of
blobs with different radius sizes ranging between 1 − 10ρi in an effort to es-
tablish the evolution as one varies the initial blob size. The importance of the
blob radius was already established in Section 1.7.2 where the blob coherence
through convection is directly correlated with the blob size[Krasheninnikov
et al., 2008; D’Ippolito and Myra, 2003; Myra et al., 2006]. Another focus in
Gingell et al. [2012] was to established the resolution limits for resolving the
blob evolution with a minimum number of particles per cell without comprom-
ising most of the observed evolution character. We compare the total number
of particles 2× 107 to the 1.24× 108 required to achieve our simulation with a
radius ∼ 15ρi. For this we have used the minimum suggested of 100 particles
per cell. The main assumptions we adopted to simulate the 2D blobs is that
of negligible curvature and ∇B, this last one particularly given the challenge
in creating acceptable boundary conditions in the kinetic model. We have ini-
tialize the 2D blob with same plasma parameters as in Table 4.1. In Fig. 4.7,
we present the initial parallel magnetic field, and the transverse electric field,
and the initial number density in normalized units.

During the different blob stability regimes, explained in Section 1.7.2, it
was stated that the curvature and∇B played principally three roles in the blob
evolution: a) ‘primary’ instability develops into turbulence (which may lead
to blob creation in areas near the separatrix[Aydemir, 2005]), b) the curvature
drives the blob motion down the magnetic field gradient, and c) the curvature
continues to drive ‘secondary’ instabilities on the propagation structure, when
different conditions for stability applies accordingly to δ̂, as seen in Figs. 1.12
and 1.13. The blob in our simulation consist of larger blob compared to blob
sizes explored in the previous 2D results in [Gingell et al., 2012].
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Figure 4.7: Initial conditions for a 2D blob of radius approximately 15ρi.
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In Fig. 4.8 we observe the evolution of the blob density currents for the
large size ∼ 15ρi 2D blob, where the top panels show with arrows where the
density current direction are in the plane at each grid point. Lets focus first
on the small change suffered by the observable bulk velocities, as shown by
the interpolation values in the bottom panels. Density currents inside the blob
have only little variations, and the finite effect of the ion Larmor radius is
responsible for this small variations in the internal current (centre of the blob)
while the blob is seen to evolve across approximately 5 gyro-periods, yet this
effect does little to perturb the convection velocity as most of the particles
remain within the limit of the blob boundaries providing stability. We have
already mentioned the effect of the particle diffusion caused by the effective
Larmor radius affecting the particles at the bordering surface crossing the
magnetic surface in and out. It is apparent that for this larger blob with size
∼ 2.4cm the evolution is more consistent with measured blobs of similar sizes.
In NSTX the complete evolution of a ∼ 4cm blob measured using Gas puffing
Injection technique with snapshots every 7.0µs shows the blob as a coherent
structure, which is closer with the evolution we observe here in our 2D blob
simulation at approximately 1.6µs. In Fig. 4.9 the blob number density is
show after 17.5 gyro-periods, where little change is observable.

Because we are not currently introducing any model for our blob evol-
ution but simple evolving the coherent structure with particles, there is no
consistent way for us to compare our blob size with the normalized blob size
presented in the sheath-to-sheath model in Section 1.7.1. We can only make an
estimation that the resulting evolution is an early stage of evolution presented
in the sheath model, if we compare evolution time of a 2D blob fluid simula-
tion carried by Yu and Krasheninnikov [2003], see Fig. 4.9. Finally, we find
that for this particular blob size simulated here, the blob is less prompt to fall
into any of the reviewed instability regimes including interchange instability
and Kelvin-Helmholtz (KH) instability. For a blob of a smaller size (∼ 10ρi)
in [Gingell et al., 2012, Fig. 11] we observed the asymmetric growth of a KH
instability at an evolution time of 11 gyro-periods, which provides a point of
reference. Yet, this evolution is not reproduced in the 2D blob here, and also
for smaller size, which is the case of our 3D blob we do not observe the arising
of the KH instability.
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Figure 4.8: The intermediate time evolution of the transversal density current inside the large size 2D blob with radius
δb = 15ρi. The bottom panels are interpolations of the top panels arrows showing the direction of density currents per
grid cell. These currents correspond only to moments for the blob particles.
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4.4 Conclusions

We have investigated the evolution of seeded plasma blobs in a background
plasma with peak densities ranging between 2−3n0. The evolution of plasmas
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with hybrid simulation which involves a kinetic description of ions and fluid
treatment for massless charge neutralizing electrons is extended to a few ion
gyro-periods in plasma parameters matching those of an edge tokamak plasma.
We have performed novel 3D kinetic simulations of ion gyro-scale filaments ex-
tending to a few centimetres on the parallel direction and of approximate cross
section of 1.3cm in the perpendicular plane. We find that previous turbulent
character for 2D blob size ∼ 4ρi developing into Kelvin-Helmholtz instabil-
ity[Gingell et al., 2012] does not reproduce in the 3D case, but instead the
mode survive stable for longer times entering a state which resemble that of
a propagating shock wave[Aydemir, 2005]. We have provided the evolution of
3D number density through a series of iso-surfaces which corresponded to the
grid-chosen values matching the vicinity of a threshold value nThre = 1.2n0.
In addition, simulations in three dimensions suffer a limiting character prin-
cipally constrained by the computational resources, and the small time step in
the case of hybrid codes in fusion plasmas, typically between 10−3 − 10−5tΩi

.
We have also expanded previous 2D results which evolved maximum

blob size up to∼ 10ρi [Gingell et al., 2012]. Our modelled 2D blob has a ra-
dius 15ρi accordingly to our measured FWHM based in Eq. (4.1). We observe
that the coherent character of the blob evolution resembles that of a similar
size experimentally measured blobs[Maqueda et al., 2011], and that during
the evolution time 17.5tΩi

none of the existing instabilities has taken control
of the blob dynamics. Furthermore, we have observed that the balance with
local effects as we see in the front edge dissipation may play a role in allowing
for travelling solitary front. Finally, we conclude that the nonlinear evolu-
tion of blob dynamics is highly dependent on the blob size, as determined by
the normalized blob radius δ̂ as defined in Section 1.7.1, although we cannot
currently offer an estimation of this value in our simulations.
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Chapter 5

Conclusions

Increasing understanding of the underlying mechanisms responsible for in-
stabilities observed in general plasmas and fusion experiments is crucial for the
evolution of current experiments and for the general theory. Though many of
these instabilities are observable they have extremely complex behaviour and
exists typically in multiple lengths and times scales. Also, in fusion experi-
ments there is a wide range of variations among tokamak toroidal geometries
and divertor system, which is found to also play a role to some unknown de-
gree in evolution of edge instabilities. We have performed two different but
complementary studies: the characterization of edge localized modes taking
advantage on its characteristic emission and their relative dependence on the
variations of key control drivers, such as that of gas puffing rate. In addition,
we studied the numerical evolution of typical filamentary structures found in
edge of tokamak plasmas, and other linear devices. Their evolution is charac-
terized by enhancement of transport of particle and energy to areas limiting
with the walls and exhaust system. Both instabilities are characterized by
their nonlinear evolution, and they are currently under intensive research,
principally due to the fusion schedule and the construction of ITER.

5.1 Conclusions of ELMs analysis

We have established already the strong dependence of these instabilities with
many control parameters. In our work here we have found they are strongly
influenced by the changes on a single control parameter, in conditions where
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the system remained mostly constant through the variations in the gas puffin
rate. Also, some previous experiments have observed that Type I ELM fre-
quency (mean inter-ELM interval) increases with gas puffing rate [McDonald
et al., 2008]. Moreover, early theoretical studies [Lönnroth et al., 2003] sugges-
ted that it might be possible to explain the experimentally observed transition
from Type I to Type III ELMy H-mode triggered by strong gas puffing, as well
as the subsequent increase in ELM frequency and deterioration of plasma con-
finement, as a transition from second to first stability (either ideal or resistive
modes). However, there is still no widely accepted model for the overall ELM-
ing process or processes. Furthermore, through recent collaboration [Chapman
et al., 2015] new information has expanded our understanding of the narrow
band waiting times postcursors, which suggests the hypothesis of an external
natural frequency aligning with possible sequence of prompt ELM[Chapman
et al., 2014], identified as compound ELMs. The complex nature of the post-
cursors have provided the argument to evaluate whether the build-up signa-
ture[Chapman et al., 2015] to an ELM that has been either globally displaced
or suffered a bulk motion can be used to explain the compound ELM beha-
viour. In Chapman et al. [2014, 2015] the full flux loop voltage signals, VLD2
and VLD3, located in the vicinity of inner and outer divertor, have been both
exploited to detect temporal phase synchronization during the intrinsic ELM
build-up [Chapman et al., 2015], which suggests a coherent large-scale plasma
perturbation.

5.2 Conclusions of blob simulations

Modelling of blob dynamics present challenges relative to the nonuniform spa-
tial distribution of particles, which creates diamagnetic drifts in a plasma with
backgrounf magnetic field. Also, there current blob models do describe the
physics of blobs completely and there is need for more detailed models. Early
evidence from numerical simulations suggests that blobs and ELM filaments
are created by the non-linear saturation of turbulence or an MHD instabilities
in the edge plasma. In tokamaks the theory predicts that the dominant in-
stability in the SOL is usually a curvature-driven sheath-interchange [Garbet
et al., 1991] or resistive X-point [Myra et al., 2000b,a; Xu et al., 2000] mode loc-
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alized on the low field side. They are both not easily comparable with kinetic
simulations, as those showed here, yet we have found evidence for the con-
sistent evolution of coherent structures with radial velocities comparable with
those measured in experiments. Particularly, to the 2D and 3D simulations
we find that previous turbulent character for 2D blob size ∼ 4ρi developing
into Kelvin-Helmholtz instability[Gingell et al., 2012] does not reproduce in
the 3D case, but instead the mode survive stable for longer times entering a
state which resemble that of a propagating shock wave[Aydemir, 2005]. We
have provided the evolution of 3D number density through a series of iso-
surfaces which corresponded to the grid-chosen values matching the vicinity of
a threshold value nThre = 1.2n0. In addition, simulations in three dimensions
suffer a limiting character principally constrained by the computational re-
sources, and the small time step in the case of hybrid codes in fusion plasmas,
typically between 10−3 − 10−5tΩi

.
We have also expanded previous 2D results which evolved maximum

blob size up to∼ 10ρi [Gingell et al., 2012]. Our modelled 2D blob has a ra-
dius 15ρi accordingly to our measured FWHM based in Eq. (4.1). We observe
that the coherent character of the blob evolution resembles that of a similar
size experimentally measured blobs[Maqueda et al., 2011], and that during
the evolution time 17.5tΩi

none of the existing instabilities has taken control
of the blob dynamics. Furthermore, we have observed that the balance with
local effects as we see in the front edge dissipation may play a role in allowing
for travelling solitary front. Finally, we conclude that the nonlinear evolu-
tion of blob dynamics is highly dependent on the blob size, as determined by
the normalized blob radius δ̂ as defined in Section 1.7.1, although we cannot
currently offer an estimation of this value in our simulations.
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Appendix A

The next step for fusion: ITER

Fusion experiments started around the second half of the twentieth century,
and thanks to the active development we have now a much better understand-
ing of the required experimental conditions an scaling laws that regulate to
some degree how fusion can be sustained in new plasmas scenarios and varied
experimental conditions[Gormezano et al., 2008].

In 2006, the ITER agreement was signed by the ITER parties (European
Atomic Energy Community, China, India, Japan, Republic of Korea, Russia,
and United States of America) for the collaborative effort to achieve fusion by
the year 2050. Fusion development adopted a more structured plan as well,
the fusion road map [Romanelli, 2012]. Here, the most critical steps and mile-
stones were stated; first, to achieve fusion within the ‘Horizon 2020’ period
mainly by focusing all efforts in the ITER experiment. Nonetheless, the best
fusion scenario remains limited by our own understanding of the many fusion
mechanisms and phenomena, and also by the control and fine tuning of ex-
periments. Real plasmas at high temperatures and densities are susceptible
to slight changes, perturbations can give grow to instabilities and subsequent
brake in confinement. Understanding the fusion mechanisms has been pos-
itively influenced by the intertwined development of theory, experiment, and
numerical simulations. However, other critical considerations, such as safety,
energy gain, and costs have set the precedent for past and future constrains
in fusion development. More about the history of the ITER project in ITER1

digital space. With ITER we observe that fusion activity and development are
1www.iter.org
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no longer a local activity but rather that of a global and extended scientific
community.

Many past fusion devices are no longer in use, but they served their
purpose by helping to modernize the designs and better understanding the
physical principles. Some of the most streamline machines that still remain
and evolved are for instance: linear devices, tokamaks and stellarators (see the
book by Freidberg [2007] on magnetic confinement). A variation from the tra-
ditional magnetically confined plasma is the inertial confinement technology
for fusion energy, although is beyond the scope here, it is a very interesting
approach using high end lasers towards the same end. In general, all the above
machines are based on magnetic confinement, they use superconductors car-
rying high currents to generate intense magnetic fields. These magnetic fields
or coils are used to exert strong confining forces over a group of ionized gas
particles contained inside a vacuum vessel. A model of the ITER tokamak
can be seen in Fig. A.1. The fields are the basis of the confinement, but this
does not guaranteed fusion reactions, we also need the right temperature and
densities or we can say the right pressure. Although, these machines are all de-
signed to achieve magnetically confined thermonuclear reactions they provide
only some degree of their combined contributions, and yet it is very difficult to
extrapolate the physics from one machine to another, even among the several
different tokamak experiments. It should be notice that the tokamak is the
chosen candidate for the construction of ITER.
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Figure A.1: Schematic of the ITER project based on the tokamak concept
of magnetic confinement, in which the plasma is contained in a torus-shaped
vacuum vessel. The fuel is a mixture of deuterium and tritium, and is heated
to temperatures over 150 million degree centigrade. Strong magnetic fields
are used to keep the plasma away from the walls; these are produced by su-
perconducting coils and by an electrical current driven through the plasma.
Reproduced from www.iter.org/mach.
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[Horton et al., 1999]. . . . . . . . . . . . . . . . . . . . . . . . 28

1.10 Blob creation and propagation in NSTX as seen by the GPI
diagnostic. The frame rate is 7.5µs/frame and the camera ex-
tension is 25 × 25cm near the outer midplane separatrix (solid
line). The radial convection towards the limiter (dashed lines)
has an approximate velocity of ∼ 1km/s. Reproduced from
Maqueda et al. [2011]. . . . . . . . . . . . . . . . . . . . . . . 31

1.11 A representation of a blob (2D) or filament (3D) on the outer
midplane of the tokamak’s edge plasma. This structure is loc-
alized in the plane perpendicular to magnetic field, but it is
extended in the parallel direction, along B. The blobs are be-
lieved to originate of either turbulence or macroscopic MHD
instabilities. Figure is reproduced from D’Ippolito et al. [2011]. 32

1.12 Contour plot of the evolution of a 2D density blob with small δb.
During the radial motion of the blob the density concentrates
at half of its periphery creating a front. The blob is unstable to
the Kelvin-Helmholtz mode and evolves to a mushroom shape
object. Reproduced from Bian et al. [2003]. . . . . . . . . . . . 35

104



1.13 blob density profile with large δb in a 2D simulation. Dur-
ing the radial motion of the blob, it becomes unstable to the
curvature-driven interchange mode. Here the non-linear phase
is characterize by the presence of elongations or fingers as seen
across the poloidal direction in slab geometry. Reproduced from
D’Ippolito and Myra [2003]. . . . . . . . . . . . . . . . . . . . 36

2.1 On the top left, the Probability distribution of the variable star
Cep X-4 is showed, with bins of 103 points. On the top right,
The QQplot test, see Section 2.1.1, is showing evidence that Cep
X-4 does not possess a Gaussian distribution. Bottom plot, we
have fit Cep X-4 distribution with two different model distri-
butions, in blue a Gaussian distribution, and in red a t-student
distribution which shows a better fit of the signal distribution. 40

2.2 Running mean, variance, and standard deviation. The linear
fit, red line, has the following slope values: from the bottom,
variancem = 0.064, meanm = −0.0013, the standard deviation
m = 0.018. We find then semi-stationary time windows where
linear methods can be applied in between bursts. . . . . . . . 41

2.3 Dα line for JET plasma 57865. ELMs are steep and narrow in
time. In this particular case the time width is 5.5ms. A linear
fit of the point used for selection shows a slope m = 8.13× 104. 43

2.4 The ELM time series for shots 57865(left), 57867(centre), and
57869(right). The top panels show the full time series for t =
15 − 25s. The bottom panels highlights t = 18.3 − 18.8s in
order to show clearly which features of the time series are being
detected as type-I ELMs. . . . . . . . . . . . . . . . . . . . . . 44

2.5 Delay plots for shots 57865(left), 57867(centre), 57869(right).
The top panels show delay plots of δtn+1 against δtn colour-
coded by their ELM amplitude. The clustering of points near
the horizontal and vertical axis means that in average the range
of waiting time expected after a shorter waiting time is larger.
The bottom panels are histograms of the waiting times values
with a Gaussian fit. . . . . . . . . . . . . . . . . . . . . . . . . 45
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2.6 ELMing in JET-57865 and JET-57870, respectively, with red
round marked ELMs. Left: ELMs inside vertical lines exem-
plify a compound-ELM. Right: a misidentified double-peak
selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Basic steps in kinetic particle/hybrid simulations, reproduced
from [Winske and Omidi, 1996]. . . . . . . . . . . . . . . . . . 48

2.8 The two-dimensional CIC or area-weighting scheme. The frac-
tion of charge assigned to the four neighbouring mesh points
from a particle at position x is given by the area of overlap
of its cloud shape with the cells containing those neighbouring
mesh points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9 Schematic of the time advance scheme in CAM-CL. At the be-
ginning of the step, x has been advanced to time level 1/2 with
v0. Moments already collected are %1/2

c and the ‘free-streaming’
ionic current density J∗i (x1/2,v0), as well as %0

c and J0
i . Two solu-

tions of B are advanced by substeps (cyclic leapfrog) to time
level 1/2, with E(%0

c ,J0
i ,B, Te). The current advance method

advances J∗ to J1/2
i , with the fields B1/2 and E(%1/2

c ,J0
i ,B1/2, Te).

The time centred (for v) electric field is now evaluated at time
level 1/2, E1/2(%1/2

c ,J1/2
i ,B1/2, Te). The particles are pushed,

v0 → v1, x1/2 → x3/2, and the moments are collected, %(x3/2),
from which %1

c is obtained as an average of %1/2
c and %3/2

c ; the
backward and forward ‘free-streaming’ currents J∗−i (x1/2,v1)
and J∗+i (x3/2,v1), which are averaged to obtain J1

i . Finally,
B1/2 → B1 and the cycle repeats, reproduced from Matthews
[1994]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.10 Normalized thermal velocity distribution. . . . . . . . . . . . . 61
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3.1 For six JET plasmas the counts of ELMs events as a function
of the amplitude threshold (cut every 0.5 of normalized amp-
litudes). We observe the vertical dashed line at 3.5 separating
noise level. The second vertical line, with amplitude value 10.0,
is chosen to illustrate best the changes in delay plots (middle
panel) of Figs. 3.3 and 3.4 according to the variations of the gas
puffing rate in Fig. 3.5. . . . . . . . . . . . . . . . . . . . . . 67

3.2 Diagram of the JET vessel in poloidal cross section showing di-
vertor (bottom) and walls (grey structure). The line of sight
of Dα radiation emission at 656[nm] in vertical lines is pointing
to the inner and outer divertor spanning across multiple chan-
nels, as shown by the broadening of line limits. At the top,
magnetic flux surfaces from EFIT equilibrium reconstruction of
JET plasmas 57872 and 57869 at t ≈ 22s. . . . . . . . . . . . . 69

3.3 ELM characteristics of three similar JET plasmas 57872, 57871,
57870 at lower gas puffing rates, showing for each plasma: (top
of each panel) the time trace of Dα signal intensity, displaying
also the two amplitude thresholds used for the centre and bot-
tom plots; (centre of each panel) delay plots for ELMs, with
amplitude colour coded above the higher (lower) threshold on
the left (right); (bottom of each panel) corresponding probab-
ility density functions for the distributions of measured δtn for
the ELM time series, using the same amplitude thresholds as
for the delay plots; the red and blue curves represent different
binning of the same data. The three plasmas are ordered, from
the left, in terms of increasing magnitude of gas puffing, see Fig.
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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3.4 As Fig. 3.3, for three similar JET plasmas 57865, 57867, 57869
at higher gas puffing rates. The three plasmas are ordered,
from the left, in terms of increasing magnitude of gas puffing,
see Fig. 3.5. The bottom panels from JET plasmas 57867 and
57869 also include an inset panel displaying the sharp peak in
the PDF. The population in this sharp peak increases with the
gas puffing rate, and has the average period τ = 6.7±6.6×10−2

(ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Time trace of gas puffing rate, Γ, in particles per second, which

is the primary external control parameter for the six otherwise
similar JET plasmas: ordered, from the bottom, in terms of
increasing magnitude. . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Oblique cut of a 3D plasma blob seeded in a background plasma
with number density n0. Colorbar indicates number density
in units of the background plasma n0. The blob is uniformly
randomly distributed along its largest dimension and the cross-
section density profile follows a Gaussian profile with blob ra-
dius set as the distribution’s FWHM. The cross-section density
profile was initialized with the same conditions as Eqs. (2.44)
and (2.45), but in the spatial dimension to create the inhomo-
geneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Top: transversal cut of the parallel magnetic field (x-direction)
at t = 0. Bottom: transversal cut of the electric field in the
poloidal direction (z-coordinate) at t = 0. This Electric field
is in response to the imposed drift velocity VD, although is
the charge polarization the responsible for the creation of this
electric field, and in turn this field E×B the cause of the blob’s
drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The evolution of the blob number density in a transverse cut at
half the blob’s parallel length. The blob radius is approximately
3.5ρi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

108



4.4 Top: transversal cut of the 3D blob’s magnetic field showing
the resultant magnetic rearrangement after the particles carried
the magnetic field lines into the blob’s shape. Bottom: same
transversal cut showing the electric field in the z-direction where
the distinct internal blob profile contrast with the edge front
in which the creation on local electric field is in response to
the dissipation processes which are in turn balancing the blob’s
convection. The same is not observed in the space behind the
blob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Current density in the transversal cut of a 3D blob. Background
plasma current density is not plotted here. . . . . . . . . . . 87

4.6 Time evolution of an iso-surface interpolated from selected grid
number density values in the vicinity of the threshold density
nThre = 1.2n0. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Initial conditions for a 2D blob of radius approximately 15ρi. 91
4.8 The intermediate time evolution of the transversal density cur-

rent inside the large size 2D blob with radius δb = 15ρi. The
bottom panels are interpolations of the top panels arrows show-
ing the direction of density currents per grid cell. These currents
correspond only to moments for the blob particles. . . . . . . 93

4.9 We compare the evolution of a large size 2D blob with an ap-
proximate width of 11.4cm at time t = 17.5tΩi

=∼ 1.6µs with
the evolution of a blob with radius δ̂ in a 2D fluid simulation.
Reproduced from Yu and Krasheninnikov [2003]. . . . . . . . . 94

A.1 Schematic of the ITER project based on the tokamak concept
of magnetic confinement, in which the plasma is contained in a
torus-shaped vacuum vessel. The fuel is a mixture of deuterium
and tritium, and is heated to temperatures over 150 million de-
gree centigrade. Strong magnetic fields are used to keep the
plasma away from the walls; these are produced by supercon-
ducting coils and by an electrical current driven through the
plasma. Reproduced from www.iter.org/mach. . . . . . . . . 101
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