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Abstract

Condensation is an emergent phenomenon in complex systems that is observed in
both physical and social sciences, from granular polydisperse spheres to macroeconomic
studies. The critical behaviour of condensation in such systems is of continual interest
in research. In this thesis we study this in the context of interacting particle systems, in
particular the recently introduced explosive condensation process.

We firstly provide a review of the mathematical foundations of interacting particle
systems from the aspects of Markov processes. This includes the formulation of factorised
hop rates, stationary product measures, the equivalence of ensembles and how these proper-
ties are related to condensation. Subsequently, we give a review of key interacting particle
systems of interest, namely the zero-range process, inclusion process and the explosive
condensation process. We then introduce two models that have similar stationary weights
scaling as the explosive condensation process and include them in our study in the thermo-
dynamic limit.

The density and the maximum site occupation are derived under the stationary dis-
tribution, and from this we are able to identify the choice of parameters that could lead to
a phase transition. Exact results for these models using the generator are difficult to ob-
tain. For the main results of this study, we therefore analyse the formation of condensate
using a heuristic approach. The microscopic interactions leading to the formation of an
explosive condensate are structurally studied, and this leads to a comprehensive model with
a timescale analysis. The time to condensation is shown to vanish as the thermodynamic
limit is reached, depending on the choice of parameter values.

Throughout the thesis, theoretical results are supported by Monte Carlo simulation
and numerical calculations where appropriate. A modification of the conventional Gillespie
algorithm is proposed. The new algorithm improves efficiencies but is also able to preserve
key stochastic properties, and is used throughout the simulation of the main findings.
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Notation

Below are some important notations used throughout the thesis, listed in chronological

order of introduction:

Λ Countable lattice (p. 5)

XΛ State space XΛ = NΛ (p. 5)

L Size of countable lattice (p. 5)

η = (ηx)x∈ΛL Full configuration (p. 5)

ηx (p. 5)

N Total number of particles in system, i.e.
∑

x∈Λ ηx = N (p. 5)

c(η, η′) Transition rate from configuration η to η′ (p. 5)

ηxy New configuration after a particle is moved from site x→ y in η (p. 5)

L Generator (p. 6)

f (η) An observable over configuration η (p. 6)

R Real numbers (p. 6)

E Expected value of (p. 6)

x, y Typical lattice sites (p. 6)

p(x, y) Adjacency matrix (p. 7)

u(n), v(n) Factorised hop rates of transition rate (p. 7)

φ System fugacity (p. 8)

z Partition function (p. 8)
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W Stationary weights (p. 8)

R(φ) Average number of particles per site (p. 8)

σ2 Second moment of the system (p. 9)

k∞ The∞ denotes k in long relaxation times, or t → ∞ (p. 9)

ρc Critical density (p. 10)

d Diffusive parameter (p. 17)

TSS Time for the system to reach stationarity (p. 20)

ηmax Occupancy of the highest occupied site in the system (p. 28)

G(L, S c) Denoting the Erdős-Re̋nyi graph, where S c = (1/L
∑

x,y∈Λ p(x, y) (p. 34)

c(ηx, ηy) Another form for transition rates, which depends on the local configuration

ηx, ηy (p. 46)

mc Critical occupancy number (p. 49)

τstep Time for an entire cluster to move one lattice space (p. 53)

v(m) = 1/〈τstep〉 Average velocity for an entire cluster to move one lattice space (p. 54)

∆m The transfer of mass from the smaller to the larger cluster when two clusters

collide (p. 58)

psplit Probability of a cluster to spontaneously split up into two separate clusters in

opposed to moving to a neighbouring site. (p. 87)

rsplit = v(m)psplit The rate of a split (p. 88)

Nbr Total number of clusters breaking up in the timescale when a system reaches

stationarity (p. 89)

Ω Total number of steps for a system to reach stationarity (p. 94)
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Below are suffixes used throughout the thesis, that is related to either the graph, model or a

process:

�Wa relating to the model with rates (3.2)

�mod relating to the “modified” model with rates (3.3)

�gen relating to the “generalised” model with rates (6.1)

�sym relating to cases on a symmetric graph

�asym relating to cases on a totally asymmetric graph

�Nu relating to the cluster nucleation phase

�Co relating to the cluster coarsening phase
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Chapter 1

Introduction

Statistical mechanics provides a qualitative connection between macroscopic physical laws

and microscopic rules of interactions for large physical systems using statistical methods.

The origin of statistical mechanics is in thermodynamics, where a class of continuous phys-

ical measures can be explained by atomic interactions using probabilistic arguments. Ex-

tremely large system sizes of the order of 1023 particles lead to very small fluctuations

around the typical behaviour, which can be derived in a thermodynamic scaling limit. Since

its early development, statistical mechanics has become a convenient mathematical tool that

is used for systems with a large number of interacting components, not constrained to phys-

ical models only. Examples include traffic flow, economics, crowd dynamics, etc. In theory,

a microscopic description of such systems is deterministic, but impractical due the number

of degrees of freedom. Due to the robustness of the system on a macroscopic scale with

respect to noise, it is often sufficient to approximate the microscopic behaviour in terms of

randomness with a postulated probability distribution.

With a probabilistic description, the system is characterised by the expected values

of certain observables, which correspond to the microscopic state space measurable func-

tions. For systems in equilibrium in the thermodynamic limit, where the size is very large,

these observables can be calculated by a small number of macroscopic system parameters,

such as density, temperature and pressure. One area that is particularly studied is the ability

of the system to exhibit phase transitions, where qualitative changes in the typical behaviour

of observables occur when some parameters are varied. In such cases, abrupt transitions of

some macroscopic observables can be observed.

For systems with many identical components which are in equilibrium with the sur-

roundings, the stationary long-time behaviour is described by an energy function or the

Hamiltonian. In this scenario the typical value of macroscopic observables is given by

the expected values under the relevant stationary measure. Such systems have been exten-
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sively studied in the physical literature, since the work of Boltzmann, and there is now a

well developed mathematical theory [2, 3]. There is also a well developed mathematical

understanding of phase transitions in such systems in terms of Gibbs measures [4].

Although there are few general physical laws that apply to non-equilibrium systems,

insights can be drawn by studying interacting particle systems. They consists of particles

on a lattice, where the exchange of particles between sites is given by rates that depend on

the system configuration. Mathematically they can be regarded as continuous-time Markov

process on a discrete state space. The rules of interactions can be altered to represent any

microscopic phenomena of interest. These models have been popular in various fields, such

as physics, chemistry, biology, social sciences, etc. The underlying process may be defined

in terms of discrete particles on some lattice, for example cellular growth of cells on a 2-

dimensional surface. Naturally, a phenomenological description is used to describe these

interacting particle models, in the sense that they serve as an approximation to their true

underlying microscopic dynamics. Therefore, interacting particle systems may be regarded

as mesoscopic models. These models are popular in physics and mathematics because of

their broad application and rich non-trivial characteristics despite their simplistic set-up.

A particularly well studied model encompassing these characteristics is the zero-

range process, which is used to explain physical systems such as polydisperse spheres,

quantum gravity and traffic jams [5]. There is no restriction on the number of particles

on each site, and the transition rate is dependent on the occupancy of the departure site

only. Despite its seemingly simple set-up, it displays non-trivial behaviour even in a one-

dimensional geometry. A natural progression from the zero-range model is models with

transition rates that depend on the occupancies of both the departure and receiving sites.

These give rise to increasing research interest for new models such as the inclusion process,

and more recently, the explosive condensation process [6]. Condensation occurs when a

positive fraction of the mass of the system is concentrated on one lattice site. This can

occur for both inhomogeneous and homogeneous graphs. We are particularly interested in

the homogeneous cases of explosive condensation in this study, and we focus on the cases

where the overall mass of the system is a conserved quantity. Explosive condensation is a

phenomena observed in some condensation models, where the time to reach the condensate

goes to zero as the system size L diverges. This is seemingly counter-intuitive as it implies

that stationarity is reached instantly if the system size is infinitely large.

To clarify the ideas mentioned above, we describe a social science analogy of phase

transition in condensation as an example, with one that concerns the trading of wealth in

an agrarian society. Land is the primary source of wealth in agricultural societies, and is

usually conserved. Therefore wealth is largely conserved over long timescales in ancient

societies. Agents are able to exchange wealth as part of the normal economic activity,
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where interactions are biased under the frameworks of information economics. This rule of

exchange is embedded in a global redistribution of wealth in the form of poll tax. A defining

feature is when systems transit from a relatively equal distribution to a phase of great wealth

disparities. It is observed as a historical phenomenon that great wealth disparity is always

the stationary state for relatively prosperous closed societies. Primitive societies are known

to exist for centuries with a largely intact “fluid state” of wealth. At some critical density,

when overall wealth in the society increases, huge wealth disparities would be observed.

The Matthew principle states that the greater wealth in the system, the faster the speed of

wealth condensation [7, 8]. In this situation, wealth is divided between a ubiquitous fluid

state and a condensate.

In Chapter 2 we summarise the results from existing literature on interacting particle

systems, introducing the concepts of generators and stationary product measures. Several

models are reviewed to discuss recent areas of research interest. Models that are similar to

the explosive condensation model are introduced in Chapter 3 and we attempt to retrieve

meaningful results from the generator. In Chapter 4, we study the dynamics of models

introduced in the previous Chapter heuristically in the thermodynamic limit. This gives

rise to a comprehensive explanation of the formation of the explosive condensate, where

distinctive stages of cluster interactions are studied. The nucleation and coarsening driven

model in Chapter 4 also leads to a simpler explanation for previous studies [6]. In Chapter

5, we discuss numerical methods for this study. An algorithm that improves numerical

efficiency yet preserving stochastic properties is introduced. Two variants of the model

studied in Chapter 4 are introduced in Chapter 6, which extend this study to inhomogeneous

graphs and extreme range of certain parameters. The main novel contributions of this thesis

are presented in Chapter 4 with extensions in Chapters 5 and 6.
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Chapter 2

Interacting Particle Systems

2.1 Introduction

Interacting particle systems (IPS) were originally studied as a branch of probability theory

[9, 10], but have since grown and developed rapidly, establishing connections with applica-

tions in physics, biology and social sciences [5]. The original motivation for IPS came from

statistical mechanics. The objective was to describe and analyse stochastic models for the

temporal evolution of systems with classical Gibbs states as their equilibrium measures [11]

[12]. In particular, it was hoped that the study of IPS would lead to a better understanding

of the phenomenon of phase transitions.

Through the works of Liggett [13] and Dobrushin [11], foundations of IPS were

studied in the early 1970s. The introduction of IPS is a natural extension of the estab-

lished theory of Markov processes. A typical set-up of IPS consists of having a finite or

infinite number of particles on a lattice, with some interaction rules outlining how particles

are transferred between sites. The interaction between particles implies that the system is

more complex than simple independent particles, and has to be described on a very high

dimensional state space.

Interacting particle systems have since developed and became an independent study

area that connects the mathematical description of different physical systems; such as neural

networks [14], tumour growth [15], spread of infection [16], wealth distribution models

[17], traffic jams [18, 19] population ecology [20], behavioural systems [21, 22] and many

others. This involves using different types of transition rates on different graphs. A review

of models relevant to this thesis can be found in Sec. 2.3. Even though the set up is generally

simple, a rich complex behaviour can be seen already in one-dimensional systems.

In this chapter, the ideas for the foundations of IPS are described and a brief dis-

cussion of its mathematical foundations is outlined and organized as follows: definitions
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provided in this chapter in Sec. 2.2 will be used throughout this thesis. A standard for-

mulation of an IPS using the generator, definition of transition rates as factorized hop rates

are introduced in Sec. 2.2.1 - 2.2.3. Selected models that have attracted recent research

attention are summarised in Sec. 2.3. These include the classic zero-range process and the

more recently introduced inclusion process and explosive condensation process.

2.2 Definitions

A detailed description of the notation and definitions used throughout this study are pro-

vided in this section. The notation used in this work are largely taken from Chleboun and

Grosskinsky [23], Grosskinsky, Schütz and Spohn [24] and also more distantly from Liggett

[13].

Essentially, interacting particle systems are a class of continuous-time Markov pro-

cesses on discrete state spaces with states given by particle configurations on a lattice or

general graph. Systems with both infinite and finite lattice sizes are possible, but this study

focuses on closed finite systems and their scaling behaviour. The dynamics of these pro-

cesses are typically characterized by infinitesimal transition rates at which transitions be-

tween states occur.

The state space XΛ = NΛ contains all possible particle configurations, where Λ

denotes a countable lattice that can be finite or infinitely large. As this study focuses on

finite systems, usually ΛL = {1, 2, ..., L} is finite and L denotes its finite size. In this study,

we restrict the lattice to being one-dimensional. The configuration of the system is given by

η = (ηx)x∈Λ, such that ηx ∈ N denotes the number of particles at site x . The total number

of particles on a finite system is therefore N =
∑

x∈Λ ηx .

We focus on local jumps, where a single particle changes location, and denote by

ηxy the resulting configuration after a jump from x to y ∈ Λ, where

η
xy
z := ηz − δz,x + δz,y , (2.1)

and δ is the Kronecker delta function and all x, y, z ∈ X. Site x can be regarded as the

departure site and site y is the receiving site. Note that such transitions only occur if site x

has non-zero mass prior to an interaction.

The interaction of the particle system is characterized by transition rates c(η, η′)

for the transition from one configuration to another. These infinitesimal transition rates are

used to define the generator of the process (see Sec. 2.2.1), which uniquely characterises the

time evolution using Markov semigroups and the Hille-Yosida theorem. In the following

we give a short account of these tools, and for a rigorous mathematical formulation of these

tools see Chapters I and II of [10].
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2.2.1 Generator

The transition rate of a system is given by c(η, η′) ≥ 0 which, for all η, η′ ∈ X, describes the

rate at which the system changes from the current state η to a new state η′. The generator

L operating on a general observable f : XΛ → R is defined as

L f (η) =
∑
η′∈X

c(η, η′)( f (η′) − f (η)) , (2.2)

with the convention c(η, η) = 0 for all η ∈ X. The observable f (η) can be any physical

property derived from the configuration, such as the average number of particles, the second

moment of the configuration, etc. The dynamics on a finite lattice ΛL are defined by the

generator, in the sense that

d
dt
E[ f (η)] = E[L f (η)]. (2.3)

This becomes a very convenient tool for studying Interacting Particle Systems,

where the time evolution of any observable of interest can be expressed as a differential

equation. This form is equivalent to the description of the master equation for the IPS.

Denoting the probability distribution on XΛ at time t by pt[η], the master equation is given

by

d
dt

pt[η] =
∑
η∈X

(pt[η]c(η, η′) − pt[η
′]c(η′, η)) , (2.4)

which displays gain and loss terms on the right-hand side and follows from Eq. (2.3) by

using the indicator function f = δη. However, it is convenient to use the generator because

its set up allows us to write down a time-dependent relationship for any designated set of

observables, rather than the general distribution of the configuration. Note that the process

is derived from the generator by constructing a Markov semigroup and closing it using the

Hille-Yosida theorem, for which the rigorous mathematical formulation can be found in

Chapters I and II of [10].

2.2.2 Factorized hop rate

From this point onwards, we deviate from the general IPS set-up and focus on a set of

formulation of the model that has attracted great research attention for the past years (see

e.g. [23] and references therein). For pairwise interactions, the most common form for

interacting particle systems is when the rates of interaction are dependent on the mass of

the departing site x and the receiving site y . We introduce the factorized hop rates, which

for this type of interactions are written as a factorized form

6



c(η, ηxy) = u(ηx)v(ηy)p(x, y) , (2.5)

where u(ηx) and v(ηy) represent the independent contributions from the occupancies of the

departure and receiving sites, respectively. p(x, y) is the adjacency matrix depicting the

connectivity on the graph Λ. The factorized hop rates must satisfy

u(n) = 0 if and only if n = 0,

v(n) > 0 for all n ≥ 0 . (2.6)

The reason why factorized hop rates attracted so much interest in interacting particle

systems research is because of its simplicity and the rich behaviour it demonstrates. It

has also been established that systems with factorized hop rates have stationary product

measures, as outlined in the following sections.

The adjacency matrix is given by the transition rates of a single random walker on

Λ where p(x, y) ≥ 0 and p(x, x) = 0. Note that only irreducible cases are studied to avoid

hidden conservation laws in this thesis. Throughout this thesis, we focus on two specific

cases of the adjacency matrix in the literature, namely the totally asymmetric graph and the

symmetric graph in one dimension. For the totally asymmetric graph,

p(x, y) =

 1 , for y = x + 1

0 , otherwise ,
(2.7)

and for the nearest neighbour symmetric graph,

p(x, y) =

 1 , for |x − y| = 1

0 , otherwise .
(2.8)

The generator in (2.2) is now rewritten as

L f (η) =
∑

x,y∈Λ

p(x, y)u(ηx)v(ηy)( f (ηxy) − f (η)) , (2.9)

which is its full form. Under this specific framework of interacting particle systems listed

above, several examples are reviewed later in this chapter and they are

• zero-range process (ZRP): u(n) arbitrary, v(n) = 1 (see Sec. 2.3.1, with a brief dis-

cussion for its mapping onto the exclusion process),

• inclusion process (IP): u(n) = n, v(n) = d + n, d > 0 (see Sec. 2.3.2), and

7



• explosive condensation process (ECP): u(n) = v(n)− v(0), where v(n) = (d + n)γ, and

d, γ > 0 (see Sec. 2.3.3).

Note that the interaction of particles are characterized by the above generator. Fo-

cusing on the scaling properties of finite systems in the thermodynamic limit, N is the total

number of particles in this system, when for L → ∞ and N → ∞, the density ρ = N/L is

fixed.

2.2.3 Stationary Product Measure and Condensation

A stationary distribution for the process is a probability distribution which is invariant under

the dynamics, where the distribution of the measure at time t converges to when t → ∞.

A measure ν on X is stationary if and only if ν(L f ) = 0 for all observables, for a proof of

this property, see Chapter 2 in [10]. If a system has translation invariant stationary product

measure, it will be written as

νL
φ[η] =

∏
x∈ΛL

νφ(ηx) , (2.10)

defined by product densities w.r.t. the product counting measure dη on XΛ, where the

fugacity φ ≥ 0 is a parameter that controls the density of the system and will be made clear

with the derivation below. The marginals therefore have the form

νφ(n) =
1

z(φ)
W(n)φn . (2.11)

It should be noted in the totally asymmetric and symmetric cases, p(x, y) is translation in-

variant. Since it is assumed that p(x, y) is irreducible, on finite lattices Λ, this is in fact

unique up to normalization and strictly positive. The composition of the weights is deter-

mined by the independent contributions of the factorized hop rates. W(n) is written as

W(n) =

n∏
k=1

v(k − 1)
u(k)

, (2.12)

which contains the factorised form of the rates as illustrated in (2.5). The normalization

z(φ) is a partition function and has the form

z(φ) =

∞∑
n=0

W(n)φn . (2.13)

The density of the distribution is given by
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R(φ) = 〈ηx〉φ =

∞∑
k=0

kνφ[k] =
1

z(φ)

∞∑
n=0

nW(n)(λφ)n , (2.14)

which is a strictly monotonically increasing function with R(0) = 0. For systems with con-

served mass, the measures are therefore indexed by a fugacity parameter φ ≥ 0 controlling

the average number of particles per site.

Moment Generating Function

Since the partition function z(φ) is a moment generating function, (2.14) can also be written

as

∂ log z(φ)
∂φ

=
1

z(φ)

∞∑
n=0

λnnφn−1W(n) . (2.15)

From (2.15), (2.14) is written as

R(φ) = φ
∂

∂φ
log z(φ) . (2.16)

Throughout this study, the second moment is measured as a physical quantity and it can be

derived in a similar fashion. This is further explained in Sec. 3.3. The second moment at

the steady state as t → ∞ is given by

〈σ2
∞(φ)〉 =

1
z(φ)

∞∑
n=0

n2W(n)(λφ)n , (2.17)

and similarly the second moment depicted in (2.17) can be written conveniently as the

moment generator form

〈σ2
∞〉 = φ∂φ

(
φ∂φ log z(φ)

)
. (2.18)

Although it may not be clear why we want to obtain a prediction of the second moment, this

will become an important property in studying the dynamics of the Explosive Condensation

Process, which is the focus of this thesis. The convenience of being able to determine

the second moment of the stationary distribution allows us to estimate important scaling

properties.

Radius of Convergence

The existence of the product measure (2.10) requires z(φ) < ∞, and we denote by
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DΛ
φ = {φ ≥ 0 : z(φ) < ∞ for all x ∈ Λ} (2.19)

the domain of definition. Since z(φ) is a power series in φ, the domain is actually of the

form

DΛ
φ = [0, φ) or [0, φc] , (2.20)

where

φc =

(
λ lim

n→∞
sup W(n)1/n

)−1
. (2.21)

is the radius of convergence of z(φ).

The Particle density ρ has the range [0, ρc) or [0, ρc], with ρ(0) = 0 and ρc =

limφ↗φc R(φ) the critical density. φ → R(φ) is strictly increasing. The inverse of R is

denoted by φ(ρ) on the range [0, ρc). If φc = ∞, then ρc = ∞. Whereas if φc < ∞, both

ρc = ∞ and ρc < ∞ are possible. In the second case, z(φc) < ∞ and νφc is a well defined

probability measure with 〈ηx〉νφc
= ρc. So φ(ρ) is given by

φ(ρ) =

 inverse of R(φ) , for ρ < ρc

φc , for ρ ≥ ρc
. (2.22)

System with Conserved Mass

We are interested in understanding how condensation occurs in systems with fixed size and

mass. For a system with system size L and total mass N ≥ 0, the new state space will be

XL,N =

η ∈ XΛ

∣∣∣∣∣∣∣∑x∈Λ ηx = N

 , (2.23)

on which the system is a finite state irreducible Markov process. The ergodicity of the pro-

cess means there exists a unique stationary measure that belongs to the canonical ensemble.

This stationary measure is written as

πL
N[η] := νφ

η
∣∣∣∣∣∣∣∑x∈Λ ηx = N

 =
1

z(L,N)

∏
x∈ΛL

W(ηx)δ

∑
x∈Λ

ηx − N

 , (2.24)

where the canonical partition function is the finite sum

z(L,N) =
∑
η∈XL

∏
x∈ΛL

W(ηx) . (2.25)
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Equivalence of ensembles

The process is ergodic on the finite set XL,N , and πL,N is the unique stationary distribu-

tion. Condensation can then be understood in terms of the equivalence of canonical and

grand-canonical ensembles in the thermodynamic limit with density ρ ≥ 0. The stationary

distribution in the canonical ensemble can be written as

πL,N →

νφ, R(φ) = ρ ≤ ρc

νφc , ρ ≥ ρc

, as N, L→ ∞ , N/L→ ρ. (2.26)

The physical interpretation is that a condensation transition is said to occur when a

non-zero fraction of all the particles accumulates on a single site. In a homogeneous lattice,

the system separates into a homogeneous background (fluid phase) with density ρc and a

condensate (condensed phase), where the excess particles accumulate on a single randomly

located lattice site. This transition has been established on a rigorous level in a series of

papers [25, 24, 26] for models with stationary product measures in the thermodynamic

limit.

By the choice of jump rates, the grand canonical single site partition function turns

out to converge on the boundary of its domain, and its first derivative is finite. This implies

that the average density under the grand canonical measure is increasing on (0, φc] and

ρc = R(φc) < ∞. So the grand canonical measures only exist for densities up to and

including ρc. The product stationary distributions do not exist with higher average density.

The grand canonical measure with average density ρc is referred to as the critical measure.

Since R(φ) is strictly increasing it is invertible. It has been shown [24] that the

relative entropies between the grand canonical and the canonical probability distributions

converges, hence implying weak convergence of the canonical measure to the grand canon-

ical measure. This result implies that below the ρc, the canonical measure converges locally

to the grand canonical measures as L → ∞. Above the critical density, the canonical mea-

sures converge locally to a product of the critical grand canonical marginals with density

ρc, and the excess mass accumulates on a vanishing volume fraction.

In the thermodynamic limit, a sketch of the relationship between ρ and φ is provided

in Fig. 2.1. φc denotes the radius of convergence, such that a solution for ρc exists for

φ ∈ [0, φc), which corresponds to ρ ∈ [0, ρc). For densities above ρc, there is no finite

solution and this indicates condensation.

Using properties of the stationary distribution, it allows us to calculate the system’s

physical properties in the thermodynamic limit in the grand canonical ensemble. We intro-

duce certain criteria for which the process exhibits stationary product measures,
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ρc

ϕc

R(ϕ)

ϕ

Figure 2.1: Sketch of R(φ) against φ for a model with condensation behaviour. The blue
line indicates the mapping of density on fugacity φ. There is a unique value R(φ) < ∞ for
each fugacity φ ≤ φc and the system splits into a homogeneous fluid state and a condensate
for ρ > ρc.

Criteria for stationary product measures

The properties derived from the grand canonical ensemble and canonical ensemble sta-

tionary measures all depend on the assumption that stationary product measures exist for

the model of study. The sufficient conditions of a model that has stationary product mea-

sures are found in Theorem 2.2.1; for the proof of this theorem, see results in [23] and

[27, 28, 29, 30].

Theorem 2.2.1. Processes with generator (2.9) have stationary product measures of the

form (2.10) provided that one of the following conditions holds:

1. v(n) ≡ 1 for all n ≥ 0

2. The p(x, y) fulfil the detailed balance relation:

p(x, y) − p(y, x) = 0 for all x, y ∈ Λ

In this case the dynamics for (2.9)are in fact reversible.

3. Incoming and outgoing rates p are the same for each site, such that:∑
y∈Λ

p(x, y) =
∑
y∈Λ

p(y, x) for all x, y ∈ Λ (2.27)
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and u and v fulfil:

u(n)v(m) − u(m)v(n) = v(0)(u(n) − u(m)) for all m, n ≥ 0 (2.28)

The first condition takes v(n) = 1 but can be replaced by an arbitrary positive con-

stant, and together with condition 3, they are known from the literature of zero-range models

[9, 31, 32]. An example of the proof for the detailed balance relationship in 2 can be found

in [33]. In homogeneous cases, all rates in symmetric graphs would satisfy condition 2,

as the detailed balance relationship is satisfied, while for asymmetric cases and v(n) , 1,

condition 3 has to be satisfied.

2.3 Examples of IPS models

In this section, we provide a review for common interacting particle systems that have

attracted attention in recent years. We are particularly interested in cases with homogeneous

graphs and where phase transitions are observed.

2.3.1 Zero-Range Process

The zero-range process (ZRP) is one of the earliest interacting particle systems proposed,

where the transition rate is a function of the departure site occupation number only. ZRP is

introduced by Spitzer [9] as an example of an interacting Markov process. The ZRP’s pop-

ularity is marked by its rich non-trivial properties despite being a seemingly simple model.

The ZRP is found to exhibit steady state phase-transition in its one-dimensional form. Hav-

ing factorized hop rates, the ZRP has been studied in the realms of non-equilibrium sta-

tistical mechanics [31, 10, 34], including the role of conservation laws, the range of inter-

actions, constraints in the dynamics and disorder all within the framework of an exactly

solvable steady state [5, 35].

For its applications and a more comprehensive review refer to [36, 5]. Findings

for the zero-range process can be applied to understanding condensation phenomena in a

variety of non-equilibrium systems. The process continues to be of interest; recent work on

variations of the model includes mechanisms leading to more than one condensate [37, 38,

39], or the effects of memory in the dynamics [40].

The ZRP has applications to a number of physical models, including the repton

model of polymer dynamics with periodic boundary conditions [41]; a model of sandpile

dynamics [42]; the backgammon model [43] for glassy dynamics due to entropic barriers;

the drop-push model for the dynamics of a fluid moving through backbends in a porous
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medium [44]; microscopic models of step flow growth [45, 46], a bosonic lattice gas [47],

traffic jam models [18], and the list goes on.

Definition

There is no restriction on the number of particles on each site, in this sense the zero-range

process is a bosonic lattice gas [47]. The local state space will therefore be N = {0, 1, ...}.

We focus on finite translation invariant lattices with periodic boundary conditions. The state

of the system, occupancy numbers all follow the definitions in Sec. 2.2.

Particles jump on the lattice at a rate that depends only on the occupation number of

the departure site, hence the name “Zero-range” is given. A particle jumps off site x ∈ ΛL

after a certain exponential waiting time given by rates u(ηx) and v(ηy) = 1. This moves to a

target site y with adjacency matrix

p(x, y) = q(y − x) for all x, y ∈ ΛL . (2.29)

q(n) also has the restriction that q(0) = 0 and has a finite rate, and note that it is

normalized

∑
y∈ΛL

q(y) = 1 and q(z) = 0 if |z| > r for some r > 0 , (2.30)

where r is independent of the system size L. This process is irreducible such that every

particle can reach any site with positive probability. A useful property of the zero range

process is that it can be mapped to an asymmetric exclusion process. This will be further

explained later on in this section. The transition rate for the ZRP is given by

c(η, ηxy) = g(ηx)q(y − x) , (2.31)

and the generator form of the ZRP is

L f (η) =
∑

x,y∈Λ

g(ηx)q(y − x)( f (ηxy) − f (η)) . (2.32)

For example, if g(k) = k, for all k then the zero-range process reduces to the super-

position of independent random walkers on Λ. If g(k) = 1 for all k > 0 then the zero-range

process reduces to a system of L queues with mean-one exponential random times of ser-

vice.
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Stationary measure

The stationary measure of the zero-range process is derived in previous studies[31, 9, 36].

We focus on the thermodynamic limit L → ∞, N = Lρ → ∞ with fixed proportion of

particles. In the canonical ensemble, the distribution of states is given by

πL
N[η] :=

1
z(L,N)

∏
x∈ΛL

W(ηx)δ(
∑
x∈Λ

ηx = N) . (2.33)

The canonical partition function is written as the finite sum

z(L,N) =
∑
η∈XL,N

∏
x∈ΛL

W(n) . (2.34)

The weights can be written in a recursive form encoding the factorised rates of a interacting

particle system, as outlined in (2.12). Therefore, the stationary weight of ZRP can be written

as

W(n) =

n∏
k=1

g(k)−1, n > 0 . (2.35)

From the stationary weights, the average current is given by a ratio of partition functions

jcan
L (N/L) := πL

N(g(ηx)) =
z(L,N − 1)

z(L,N)
, (2.36)

for which the results would depend on the choice of g.

Condensation in ZRP

It has been shown that condensation can occur in a homogeneous zero-range process if the

hop rates g(n) decay slowly enough with the number of particles n. A prototype model with

rates

g(n) = 1 +
b
nγ

for n = 1, 2, ... (2.37)

has been introduced in [36], where condensation occurs for parameter values γ ∈ (0, 1),

b > 0 or γ = 1, and b > 2. If the particle density ρ exceeds a critical density ρc, the system

phase separates into a homogeneous background and a condensate. The transition has been

established on a rigorous level in a series of papers [25, 26, 24] in the thermodynamic limit.

Dynamical aspects of the transition such as equilibration and coarsening [48, 24] and the

stationary dynamics of the condensate [49] are well understood heuristically.
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Figure 2.2: Equivalence between the zero range process and the exclusion process. The
top is an example of the zero range process and the bottom the exclusion process. The
translation between the two is illustrated in the text.

Mapping to the exclusion Process

An interesting property of the ZRP is that it can be mapped to the exclusion process, which

is a fermionic model. In the exclusion process, the lattice sites are either occupied by a

single particle or are vacant. The general rule of the mapping is illustrated in Fig. 2.2. We

consider the general form of the exclusion process [13] such that rates are dependent on the

overall configuration. The local state space of the exclusion process is E = {0, 1}, where the

site is either occupied or vacant. Transition of particles only occurs when the receiving site

is vacant.

If the size of the lattice for the ZRP is L, then the lattice size of the exclusion process

is L + N, such that the state space is

XEP
L+N =

{
η = (ηx)x∈ΛEP

L+N
: ηx ∈ {0, 1}

}
= {0, 1}Λ

EP
L+N , (2.38)

where N is the number of particles in both processes and is conserved. In the exclusion

process’ mapping of the zero range process, each site on the zero-range process lattice

would be represented by a vacant spot in the state space. The occupancy of a site in the

zero range process represents the number of consecutive non-vacant sites in the exclusion

process. A transition only occurs in the rightmost particle of a chain of particles, where the

rate is dictated by waiting times given by a function of the departure site. For the totally

asymmetric case, the generator of the exclusion process is as

L f (η) =
∑
x∈Λ

(ηx(1 − ηx+1) + ( f (ηx→x+1) − f (η)) . (2.39)

16



2.3.2 Inclusion Process (IP)

The distinctive feature of the ZRP is that its rates depend only on the occupancy of the

departing site. A natural progression to consider is a model with transition rate that is

dependent on both the departure and receiving site occupancies. This is synonymous to

physical systems, where there is a repulsive and attractive term.

The inclusion process is first introduced in [50, 51] as a dual process to the Brown-

ian energy process in 2007. The IP can also be regarded loosely as a bosonic counterpart of

the exclusion process, as there are no restrictions on the number of particles on lattice sites.

The IP is a simple interactive particle model that has received considerable attention

in the last years. The properties of IP on a general graph have been studied in [50, 51, 52].

However, there are two cases of IP that have been specifically studied, namely the nearest

neighbour symmetric inclusion process (SIP) and the totally asymmetric inclusion process

(TASIP). The correlation inequalities in the SIP and the asymmetric inclusion process are

analysed in [52, 53]. The inclusion process is demonstrated to have stationary product

measures under general conditions in [33], where condensation occurs when diffusivity

goes to zero [33, 54]. In contrast to the ZRP, in the IP and related models condensates are

mobile on the coarsening time scale. Although coarsening behaviour is studied heuristically

in ZRP [36, 48, 24, 49, 5] and related models [55, 27, 56], the IP are different as coarsening

is driven by condensate motion and interaction [57, 23].

Definition

We follow the state space and configuration set up as described in Sec. 2.2, where a con-

nected, translational invariant, lattice ΛL of L sites with periodic boundaries is used. The

local state space for the process is the same as for the zero-range process, namely N, so that

the full state space on a system of size L is XL = NΛL . Particles diffuse on the lattice inde-

pendently (performing independent random walks) with diffusion constant d which could

depend on the size of the system. In addition to the diffusive dynamics particles also attract

each other, every particle at site x attracts all particles at site y with rate p(x, y). This is the

so-called ’inclusion’ attraction. The transition rate of the inclusion process is given by

c(η, ηxy) = ηx(ηy + d)p(x, y) , (2.40)

where the generator is written as

L f (η) =
∑

x,y∈ΛL

ηx(d + ηy)p(x, y)( f (ηxy) − f (η)) . (2.41)

A schematic view for TASIP is presented in Fig. 2.3. Note that the generator is used
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Figure 2.3: Schematic view of TASIP on periodic boundary condition. Particles are able to
jump to the right only. The dynamics of the model is characterized by (2.41). Transition
rates are dependent on both departing and receiving sites.

as an example in Sec. 3.3.1 to provide an exact solution on observables in the next Chapter

in Sec. 3.3.1.

Stationary Measure

Stationary product measures for the SIP were derived in [50, 51] and extended in [33, 23]

to more general spatial rates, including TASIP. The translational invariant systems have

homogeneous product measures

νL
φ[dη] =

∏
x∈ΛL

νφdη where νφ[η] =
1

z(φ)
W(n)φn , (2.42)

where νL
φ is the product density with respect to product counting measure dη. φ ≥ 0 is the

fugacity parameter controlling the particle density. The composition of the weight of IP is

determined by the contributions of the factorised components of the rates, as outlined in

Sec. 2.2.3, and we write this as

W(n + 1) =
d + n
n + 1

W(n) . (2.43)

The recursive format of (2.43) can be simplified by collecting the successive products of

the weights. The weight of IP can be written in the form of (2.12) and the weight becomes

W(n) =
Γ(d + n)
n!Γ(d)

. (2.44)

The partition function is written as
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z(φ) =

∞∑
k=0

W(k)φk = (1 − φ)−d. (2.45)

The partition function diverges as φ↗ 1, the measures exist for all φ ∈ [0, 1) and constitute

the grand canonical ensemble. The average particle density is a function of φ, and is given

by

R(φ) =

∞∑
k=0

kνφ(k) = φ∂φ logz(φ) =
dφ

1 − φ
. (2.46)

For the TASIP the average stationary current is given by the average jump rate off a

site, which also determines the corresponding diffusivity for the symmetric system. Under

the grand canonical ensemble this is given by

jgc(φ) = E[ηx(d + ηx+1)] = R(φ)(R(φ) + d) , (2.47)

depending only on the particle density and d.

Condensation in IP

For fixed L and d, the range of densities is R(0, 1) = [0,∞) and the process does not exhibit

condensation in the usual sense of zero-range processes or in related models, where the

range is bounded as explained in Chapter 2.3.3. But it has been established in [33] [58] that

in the thermodynamic limit with vanishing diffusion rate

L,N → ∞, d → 0 such that
N
L
→ ρ > 0 and dL→ 0 , (2.48)

such that R(0, 1) = [0, ρc). Contrary to ZRP, the condensate in IP is mobile. It has been

identified that the stages to condensation can be divided into four regimes. Namely the

nucleation stage, coarsening stage, saturation regime and stationary regime. For d → 0,

coarsening behaviour dominates and hence drives the formation of the condensate.

Significance of the Inclusion Process

The IP is a relatively recent model in IPS literature, yet it has demonstrated that conden-

sation can be achieved with spatial homogeneity. The physical interpretation is that, as the

diffusive rates are so small compared to the rates of exchange between clusters, small clus-

ters are able to gain mass and a condensate is formed. This leads to questions on whether

other models can achieve condensation but with higher diffusive rates, but with a stronger

dependency on the mass of the attractive and repulsive sites. This motivation leads to the
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Explosive Condensation Process.

2.3.3 Explosive Condensation Process (ECP)

A spin-off version of the IP is the explosive condensation process, which is first introduced

in [6] and further studied in [59]. The motivation of this model is to introduce a novel

mechanism of non-equilibrium condensation, where aggregation of particles speeds up in

time as a result of increasing exchange rate of particles. The ECP has stationary product

measures, where the rates are carefully chosen such that W(n) ∼ n−γ and γ > 2. In this

case, condensation can be achieved, and interesting condensation behaviours might result

from this set up. A heuristic study of the formation of the condensate reveals “explosive

condensation” for the totally asymmetric case, where the time to condensate 〈TSS〉 goes to

zero in the thermodynamic limit L → ∞ as is explained in detail in Section 3. Similar to

the dynamic properties of condensation in IP, the formation of a condensate is dependent

on dynamics of various stages of system evolution.

Definition

A totally-asymmetric one dimensional lattice with periodic boundary conditions is consid-

ered, where hop rates occur with rates u(m, n) ∼ (mn)γ, where m and n are the occupancy

of the departure and receiving sites, and γ > 2. The formation of a condensate occurs

extremely quickly so that it is termed explosive and has interesting scaling properties. Fol-

lowing the definitions outlined in Sec. 2.2. the transition rates of the ECP are given by

c(η, ηxy) = ((ηx + d)γ − dγ)(ηy + d)γ for γ > 2 . (2.49)

Note that if γ = 1, the ECP becomes the IP. The generator of the ECP is given by

L( f (η)) =
∑
x∈ΛL

p(x, y)((ηx + d)γ − dγ)(ηy + d)γ[ f (ηxy) − f (η)] . (2.50)

In [6, 59], only the totally asymmetric case is studied, so p(x, y)δy,x+1. Similar models to

the ECP are studied in this thesis; for a derivation of the stationary product measure of a

variant of the ECP that encompasses it, see Sec. 3.4.1.

Explosive condensation in ECP

Condensation is observed in ECP, with the rate of mass accumulation increasing as a site

gains mass. A heuristic analysis of the formation of the condensate has been studied for the

totally asymmetric case. The condensation of ZRP and ECP is compared in [59], where a
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completely different mechanism of condensation can be observed. The scaling of the time

to condensate is reported to be decreasing with system size 〈TSS〉 = C(c2 + c3 ln L)1−γ. This

allows us to arrive at the counter-intuitive conclusion that TSS → 0 for L→ ∞.
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Chapter 3

Condensation in Interacting Particle
Systems

3.1 Introduction

In Chapter 2, we have provided a definition for IPS and introduced common analytical

tools for such systems. A review of key models are also presented, including a discussion

on recent developments of systems that demonstrate the phenomena of explosive condensa-

tion. In this chapter, we will focus on the general properties of condensation and explosive

condensation models.

Condensation is commonly used to depict the transition of gas to its liquid phase

on surfaces. However, in the realms of statistical physics, condensation describes a very

different process albeit conceptual similarities can be drawn. In non-equilibrium statisti-

cal systems, condensation generally means a concentration of system mass on some local

space. The most famous example of condensation in physical systems is the Bose-Einstein

condensate, where a positive fraction of all particles present in the system assumes the low-

est energy state on the momentum space. Other physical examples include the modelling of

polydisperse hard spheres [60], complex network hub formations [61] and quantum gravity

[62]. This type of condensation also extends far into realms of social science models, such

as traffic jam models [19, 18], crowd dynamics and wealth distribution [63].

While condensation behaviours for homogeneous mass interaction models have

been studied for continuous state spaces [51, 64, 28], in this study we focus on models

with discrete state spaces. For the model with particles on discrete state space with no

confinements on mass per site, and mass is conserved with thermodynamic limit N → ∞,

L → ∞ N/L → ρ, condensation means the manifestation of a fraction of system mass on

small volume fraction, typically a single lattice site.
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There are many reasons for why condensation occurs. Condensation in interacting

particle systems was originally studied [65, 66, 67, 68] mostly for spatially inhomogeneous

cases, where geometric set-up of the graphs can lead to the formation of condensates on des-

ignated localized sites. In such geometries, specific sites might have high incoming rates

and slow exit rates, such that a substantial mass can be “stuck” locally in the stationary

state. Contrary to a spatially inhomogeneous geometry, increasing attention has been given

to condensation with spatial homogeneity [69, 36] in recent years. In these cases, conden-

sation dynamics are driven by particle interactions. Typically, rates are multiplicative such

that interactions between large clusters are more frequent than interactions between smaller

clusters. In these cases, large clusters are formed and eventually dominate to become the

condensate. Contrary to the spatial inhomogeneous cases, the site on which the condensate

is formed is distributed uniformly on the lattice due to the symmetric nature of the models.

For both spatially inhomogeneous and homogeneous cases, a rigorous framework

has been formulated for behaviour of such models with stationary product measures [67,

68, 70]. It has been shown that in the spatially homogeneous case, by carefully choosing

the rates of a model such that the weight functions of the stationary product measures have

interesting asymptotic properties, condensation behaviour can be observed [6, 59]. Under

such a framework, interacting particle models are demonstrated to have stationary product

measures under certain conditions (see Sec. 2.2.3), and with the properties of stationary

product measures, the phase transition in condensation behaviour can be studied. Conden-

sation occurs when the system density exceeds some critical density ρc. At condensation,

the mass of the system is separated into a condensate and a fluid phase, where the fluid

phase is distributed according to the maximal invariant measure. The condensate consists

of the “excess mass” (ρ − ρc)L of the system concentrated on a single site. The generator

can be used to derive useful and simple results that describe the condensation of the system.

The description of condensation up to this point is for a general class of models, where

there is no definite characterization on how a condensate forms.

In this thesis, we are interested in the ECP model and its variants, of which the

formation of its condensate is deemed to be “explosive”. Broadly speaking, “explosive

condensation” is a phenomenon caused by the increase in speeds of interaction during par-

ticle assimilation due to multiplicative rates. The average time to condensation 〈TSS〉 for

this model scales very counter-intuitively and implies TSS → 0 for L→ ∞.

This Chapter is organized as follows. We propose two models in Sec. 3.2 that

exhibit “explosive condensation”, where one of them is a generalized form of the model

proposed in [6] and the other is chosen with similar scaling behaviour in the stationary

product measure. The relationship between stationary product measures and condensation

is discussed in Sec. 3.2.1. Certain physical observables for studying the formation of
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condensates are introduced in Sec. 3.3, which would serve as tools for the microscopic

study of the models in Chapter 4. Solving for these observables from the generator is

attempted, and they are compared to results from the inclusion process. The regimes where

the system transitions into condensation for the said models are discussed in Sec. 2.2.3,

where numerical results are compared with these findings.

3.2 The model and its variations

We narrow down from the broad definition of interacting particle systems to specific cases

of interest. For a continuous-time Markov process on a discrete one-dimensional lattice,

where models are characterized by their rates in the generator, we follow the definition of

the state space and interacting rules as described in Sec. 2.2. The models introduced in this

section take inspiration from the mass transport model proposed by Waclaw and Evans [6]

and outlined in Sec. 2.3.3. The model is characterized by the following rates

c(η, ηxy) = ((ηx + d)γ − dγ)(ηy + d)γp(x, y) , where γ > 2, d > 0 . (3.1)

Here d and γ are model parameters that are unchanged during the interaction. The model

characterized by rates (3.1) has factorized rates in the form of (2.5) and also has stationary

product measures, which is further explored in Sec. 2.2.3. Insights into “explosive dynam-

ics” are drawn from this specific model. We are interested in understanding how properties

of the Waclaw and Evans’ model might lead to the phenomena of explosive condensation.

To do this, we start from writing down a general form of the model and study why certain

parameters would lead to explosive condensation. Instead of having the same non-linearity

term γ, we propose a variation where the non-linear terms are separately introduced as γ1

and γ2. The modified model has rates

c(η, ηxy) = ((ηx + d)γ1 − dγ1)(ηy + d)γ2 p(x, y) , (3.2)

where γ1, γ2 > 0, d > 0. Both totally asymmetric and symmetric cases of (3.2) will be

studied. Note that the inclusion process (IP) can be retrospectively regarded as a special

form of (3.2) where γ1 = γ2 = 1.

Bearing the non-linear properties of Eq. (3.2) in mind, we invent another model

with similar γ1 and γ2 scaling that also has stationary product measures (see criteria for

stationary product measures in Sec. 2.2.3). The purpose of introducing another model of

a similar nature is to better understand the properties of explosive condensation, especially

how the diffusive term d would influence the stationary state of the system. The rates of the
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new model is given as

c(η, ηxy) = (ηγ1
x )(ηγ2

y + d)p(x, y) . (3.3)

Note that for γ1 , γ2 the above models only have stationary product measures for symmet-

ric p(x, y), and not for homogeneous asymmetric dynamics.

Range of parameters used in simulation

Before illustrating the schematics of condensation, we briefly outline the reasoning behind

the choice of the range of parameters in our example plots throughout this chapter, for which

a detailed reasoning will be elaborated in Chapter 4 and 5. For the explosive condensation

models, the key parameters are:

• γ: The non-linear factor is taken to be γ > 2, as this is the regime where condensation

is to occur (see Sec. 3.4.1). Saying of which, a high γ would lead to an easy trigger

of explosive condensation (see Sec. 4.3 and 4.4). The development of an explosive

condensate is a multi-stage process, and the overall scaling properties of ECP de-

pends on the dynamics of early stages. Observations of key processes in the system’s

initial stages will be made difficult by rapid particle assimilation introduced by a high

γ. Principally, a high γ makes relatively very little difference in the physical mani-

festation of explosive condensation models. However, γ is kept low for presentation

purposes. From the experience of simulating these models, we choose γ to be within

the range [2, 7) throughout the thesis.

• d: The diffusive parameter d is taken to be of order ∼ O(1), as we are interested in

understanding our models with arbitrary finite diffusivity. The case of vanishing dif-

fusivity d → 0 is studied separately in Sec. 6.2. However, for presentation purposes,

usually a relatively smaller d is taken to provide a clearer separation between differ-

ent stages in the evolution of dynamics. This is further elaborated in Sec. 4.1, 4.3

and 4.4. Therefore d is typically chosen within the range [0.01, 1), but almost always

d > 1/L.

• ρ: The density of the system is taken to be an integer. The density usually satisfies

ρ > ρc, where ρc is numerically computed as outlined in Sec. 3.4, unless otherwise

stated. Bearing this in mind, it can be numerically expensive to simulate systems with

large numbers of particles N = ρL, therefore ρ is usually chosen to be ∼ O(1). A list

of ρc for the system parameters used throughout this thesis is provided in Appendix

D.
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Figure 3.1: For γ = 5, ρ = 2, L = 128, d = 0.01, for the model characterized by rates
(3.2) on a totally asymmetric graph, and particles initiated on the lattice multinomially.
Three instances of the full configuration of the system are plotted. (a) Shortly after the
beginning of the dynamics. (b) Just before the domination of one cluster. (c) Condensate is
formed embedded on the background with some critical density, which can be computed in
(2.14). Compare to the time-dependent cross-section plot of Fig. 3.2, which has different
parameters but outlines the same stages leading up to condensation.

• L: The system size L has to be sufficiently big for the effects of explosive condensa-

tion to be apparent. To have a clear distinction between the fluid and the condensate,

and for ρ ∼ O(1), sizes of systems are usually set to be L > 102. Our simulations do

not go beyond L ∼ 105 due to numerical costs of doing so.

3.2.1 Condensation

To give a schematic illustration of the formation of an “explosive condensate”, the original

Waclaw and Evans’ model as characterized in (3.1) is simulated and plotted in Fig. 3.1,

where the configuration η of the system at three different instances are shown. Particles are

randomly distributed initially, and they transition to an intermediate stage where the dynam-

ics are dominated by a large cluster that eventually forms the condensate. Notice that there

are several particles in the background long after a condensate is formed, corresponding to

a fluid state with density ρc .

In addition to the configuration plots, we plot the location of the three most occupied

sites against time in Fig. 3.2. Note that the parameters used in Fig. 3.1 are different from

Fig. 3.2, but the same stages to stationarity are observed. This is a totally asymmetric

model with periodic boundary conditions, which means that particles can only move in one

direction (upwards along the y-axis of Fig. 3.2 on a torus, as the lattice Λ is mapped on
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Figure 3.2: L = 100, ρ = 4, d = 0.1, γ = 3, totally asymmetric graph, for model character-
ized by rates (3.2). Positions of the maximum occupancy (red), second and third maximum
occupancies (both in black) are plotted against time. Compare with Fig. 3.1 to see full
configuration of occupancies at selected instances. Note that the parameters are different
from Fig. 3.1 because they are arbitrarily chosen, as we are only interested in the schematic
behaviour of explosive condensation.

to the y-axis). The speeds of the largest cluster (in red) can be estimated by its relative

position on the lattice as time proceeds. Although the sizes of clusters are not indicated on

this plot, we know from configuration plots that clusters gain particles as they move across

the lattice.

As the red colour indicates the cluster with the highest number of particles, the fact

that it interchanges between red and black in the range t ∈ [0, 10−4) suggests that clusters are

competing for being the largest cluster. At first, several clusters are competing for particles,

until one cluster dominates at around t = 1.5×10−4 and accelerates. Note that time t is a unit

of time that is obtained as the reciprocal of rates, meaning that the physical length of time is

characterised by the physical units of rates. In this study, we have not attached a definitive

physical measurement to rates, which is the common practice in literatures of this field.

Therefore, t has no physical unit, it is nevertheless a consistent measure used throughout

the thesis that is characterised by the rates of interaction. The dominating cluster gains

speed and mass from interacting with other clusters, and condensation occurs at around

t = 2.25 × 10−4.
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From Fig. 3.2, the speeds of clusters can be estimated by the gradient of the position

of clusters against time. From 0 ≤ t < 1×10−4, two clusters are competing to be the cluster

with the highest mass. This corresponds to the instant at which Fig. 3.1 (b) is measured.

From 1 × 10−4 < t < 2.25 × 10−4, one cluster is evidently dominant and increases in speed.

In this period, the second highest and third highest cluster can be observed to be moving at

a much slower speed. For t > 2.25 × 10−4, the dominant cluster becomes totally dominant

and moves through the system in very little time. The dominating cluster accelerates as it

“eats up” other clusters with an increasing rate. Its speed approaches a constant as its mass

reaches m ∼ (ρ − ρc)L. This corresponds to the instant at which Fig. 3.1 (c) is measured,

where particles can be observed in the background in its steady state.

As the largest cluster moves across the system with increasing speed, there is an

illusion where smaller clusters are moving in the opposite direction, which can be observed

at around t = 2.25 × 10−4 onwards in Fig. 3.2. This characteristic feature is counter-

intuitive, as the graph is totally asymmetric and particles can only move in one direction.

This seemingly backward movement of particles is caused by the stochastic effects in the

transfer of mass between clusters, where part of the condensate is “left behind” after it has

collided with a smaller cluster. For a detailed explanation of this process, see Fig. 4.8 in

Sec. 4.2.2 or [6].

A novel finding of the explosive condensation process is that the time to stationarity

decreases with increasing system size. The scaled maximum occupancy number ηmax/N ,

which is the size of the site with the highest occupancy, is plotted against time in Fig. 3.3.

The system reaches stationarity when almost all particles are concentrated in one cluster.

The time to steady state is heuristically estimated to scale ∼ (ln L)1−γ in [6]. This implies for

L → ∞, steady state is reached instantly. The heuristic derivation of this intriguing result

can be found in Appendix C, and a simpler novel alternative explanation will be introduced

in Chapter 4.

3.3 Tools to characterize explosive condensation

Studying the evolution of the maximum occupancy number ηmax, as outlined in the previous

section, is one of the many methods in observing the various stages of explosive conden-

sation. The maximum occupancy number is the occupancy measurement of one single site

only, and it is not representative of the entire configuration. Step-by-step evolution of sys-

tem configuration cannot be properly understood without a physical description of the entire

system configuration, such as the second moment σ2 of the configuration. In Sec. 3.2, we

will properly define ηmax and σ2, which will be used for analysing the models throughout

this thesis. The time to condensation TSS , which is an important property that charac-
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Figure 3.3: The scaled size of the largest cluster is plotted against time for γ = 5, d = 0.5
for the model with rates (3.1). At ηmas/N → 0, all particles are concentrated on one cluster
site.

terises explosive condensation, is also defined. The numerical efficiency and accuracy in

measuring a reliable TSS is also discussed in this section.

The stages to stationarity using such measurements are subsequently calculated

from the generator for the γ1 = γ2 = 1 case of the ECP or the inclusion process in Sec.

3.3.1. Attempts are made to repeat the same computation for the general ECP model, and

discussions are provided to outline why this is ineffective. Note that the tools introduced in

this section will be used throughout this chapter and Chapter 4.

Maximum Occupancy

The simplest physical measurement is the maximum occupancy ηmax, which is the occu-

pancy of the highest occupied site in the configuration η. This is defined as

ηmax = max
x∈Λ
{η1, η2, ..., ηL} . (3.4)

Although this is not a generic measurement for the entire system, the evolution of

the occupancy of the maximum site ηmax(t) can be a useful description for cluster-driven

dynamics at the later stages of the dynamics (see Sec. 4.2). This is especially useful for

cases with explosive condensation. This is because it provides an accurate measurement

of when the system reaches stationarity with ηmax = (ρ − ρc)L, where only one cluster

dominates. ηmax can also be used to compute the time to steady state 〈TSS〉, which is defined

in (3.5).
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Second moment σ2

The models of study are continuous time discrete space models, where for most cases a

non-equilibrium steady state contains the condensate. It is therefore advantageous to have

global measurements, alongside ηmax, that characterise the system-wide distribution and are

not constrained for local measurement. The second moment σ2 across the system can be

measured and is defined as

σ2 =
1
L

∑
z∈Λ

η2
z . (3.5)

This is the simplest observable that captures the temporal evolution of the con-

densed phase, since the first moment is constant in time due to conservation of the number

of particles. Due to spatial homogeneity, the expectation of (3.5) is equal to the expected

value of η2
x for all x. In simulations we approximate the expectation by averaging over

〈1/L
∑L

x=1 η
2
x〉, denoted by 〈·〉 (typically 100 in our simulations) of realizations. This is par-

ticularly useful in studying the evolution of the system for coarsening dynamics (see Sec.

4.5.2), where several clusters dominate and a single condensate has not been formed yet.

However, we use 〈σ2〉 with caution for monotonic increasing cases that are also extremely

sensitive to waiting times. In fact, for some cases in Chapter 4, regular second moment in-

tervals are averaged over instead of averaging over regular time intervals. This is discussed

in greater detail in Sec. 5.2.

Time to condensate

One of the main findings in ECP studies is that the time to steady state decreases with L

[6, 59], such that for L → ∞, the time to steady state TSS → 0. The time to steady state

is the time required for a system with particles that are initially distributed with uniform

probability on a site reaching its steady state. TSS is written as

Tσ2

SS =

 inft>0
{
t : σ2(t) > (ρ − ρc)2L − a

√
L
}

, if ρ ≥ ρc

∞ , for ρ < ρc ,
(3.6)

where ρc is the critical density of the system, such that when a condensate forms, ρc is the

background density and a
√

L are the expected fluctuations of the system (see Sec. 4.5.1).

Consistent with the characteristics of IPS with stationary product measures having conden-

sation in its steady state, (ρ − ρc)L is the expected mass of the condensate. The critical

density ρc can be predicted by the numerical computation of (2.14) (see Sec. 2.2.3).

Numerically estimating TSS may be computationally expensive for system sizes of

interest. This is due to the characteristics of cluster dynamics being extremely repetitive
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for large clusters. It is difficult to provide a definitive explanation at this stage, but this

would be clearer as properties of cluster dynamics are explained in Sec. 4.2. The issue

with computational costs for large clusters is further elaborated in Chapter 5. Bearing these

in mind, we use several simplifications throughout this thesis when estimating TSS. These

methods can be categorized into two categories.

• For systems with explosive condensation, TSS can be estimated when ηmax reaches

some critical occupancy (see Sec. 4.4), as the cluster would cover the entire lattice in

an extremely rapid time.

• Secondly, for systems with no explosive condensation (such as the case γ1 = γ2 ∈

(2, 3)), the scaling behaviour of TSS with L can be quickly estimated by the time it

reaches a certain level of second moment.

Although these examples do not strictly follow (3.6), they nevertheless provide a

reliable estimate of TSS in the said conditions, and their accuracies discussed in the sections

mentioned.

3.3.1 Example: Inclusion Process

Choosing γ1 = γ2 = 1, the models with (3.2) and (2.40) become the IP, which was intro-

duced in Sec. 2.3.2. Note that this is no longer the ECP and does not have condensation

behaviour for d = O(1). This case is used as a benchmark study to the dynamics of ex-

plosive condensation. In this example, σ2(t) for the IP is solved using the generator in the

complete graph and Erdős-Re̋nyi graph.

The adjacency matrix p(x, y) = 1 for x , y, and 0 otherwise in the complete graph.

Taking the generator of the IP in (2.41), and substituting the observable f (η) = η2
z , the

generator is written as

Lη2
z =

∑
x∈Λ

ηx(ηz + d)[(ηz + 1)2 − η2
z ] +

∑
x∈Λ

ηz(ηx + d)[(ηz − 1)2 − η2
z ] , (3.7)

and this can be expanded and simplified to

Lη2
z =

∑
x∈Λ

ηx(ηz + d)[2ηz + 1] +
∑
x∈Λ

ηz(ηx + d)[−2ηz + 1] . (3.8)

Collecting ηz and taking
∑

x∈Λ, ηz is independent of this summation, so (3.8) be-

comes

Lη2
z = η2

z (−2dL) + ηz(2dN + 2N + dL) + dN. (3.9)
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Recalling the second moment as defined in (3.5), the second moment of the inclusion pro-

cess is obtained by summing over (3.9) and dividing it by L gives

1
L

∑
z∈Λ

Lη2
z =

1
L

(−2dL)
∑
z∈Λ

η2
z +

N
L

(2dN + 2N + dL) +
L
L

dN . (3.10)

Taking the mean-field approximation and recalling the properties of generators in Sec.

2.2.1, (3.10) can be written as a first order ordinary differential equation

d
dt
Eσ2

t =
d〈σ2

t 〉

dt
= −2dL〈σ2

t 〉 +
2dN2

L
+

2N2

L
+ 2Nd . (3.11)

An ansatz solution is used to solve (3.11), which is written as

〈σ2
t 〉 = a + be−λt

d
dt
〈σ2

t 〉 = −λbe−λt . (3.12)

Let k1 = −2dL and k2 = 2dN2

L + 2N2

L + 2Nd for simplicity in manipulation of terms, and

substitute the results in (3.12) to (3.11). Collecting the terms, (3.12) becomes

〈σ2
t 〉 = ρ2 +

ρ2

d
+ ρ +

(
〈σ2

0〉 − ρ
2 −

ρ2

d
− ρ

)
e−2dLt , (3.13)

The early dynamics of the system where 〈σ2
0〉 � ρ2 +

ρ2

d +ρ is dominated by the exponential

decay

〈σ2
t 〉 = 〈σ2

0〉e
−2dLt . (3.14)

Numerical results for 〈σ2
t 〉 compared to (3.13) and (3.14) with varying parameters in Fig.

3.4, where two sets of initial conditions converge to the same scaled second moment.

Taking t → ∞ for (3.13), the second moment of the steady state is obtained

〈σ2
∞〉 = ρ2 +

ρ2

d
+ ρ , (3.15)

to which the numerical results in Fig. 3.4 converge. For d = O(1), 〈σ2
∞〉 is finite. The

convergence of the system to a finite second moment suggests that the inclusion process

does not have condensation behaviour for d = O(1). In the case d → 0, second moment

〈σ2
∞〉 → ∞, which implies condensation as reported in the literature [57, 54] in the said

domain. Numerical results for σ2
∞ are compared with (3.15) in Fig. 3.5, over different

instances of ρ and d.

32



0 1 2 3 4 5 6 7

10
0

10
1

10
2

2dLt

〈σ
2
(t
)〉/

ρ
2

 

 

L= 32, 〈σ2
0〉 = ρ2

L= 64, 〈σ2
0〉 = ρ2

L= 128, 〈σ2
0〉 = ρ2

L= 256, 〈σ2
0〉 = ρ2

L= 32, 〈σ2
0〉 = ρ2L

L= 64, 〈σ2
0〉 = ρ2L

L= 128, 〈σ2
0〉 = ρ2L

L= 256, 〈σ2
0〉 = ρ2L

Analytical 〈σ2
0〉 = ρ2L,L= 256

Analytical 〈σ2
0〉 = ρ2

〈σ2
t 〉 = 〈σ2

0〉e−2dLt,L = 32

〈σ2
t 〉 = 〈σ2

0〉e−2dLt,L = 64

〈σ2
t 〉 = 〈σ2

0〉e−2dLt,L = 128

Figure 3.4: Scaled 〈σ2(t)〉 against scaled t, for the inclusion process, d = 1, on a complete
graph. The solid line follows theoretical results (3.13). The increasing and decreasing
sets of data have different initial conditions. For the decreasing set of data, all particles
are initially all concentrated on one site. For the increasing set of data, all particles are
multinomially distributed initially. Both sets of result converges to σ2

∞, which is given by
(3.15). The x and y-axis are scaled by 2dL and ρ2 respectively. The y-axis is logged to
show the exponential relaxation of the system, as denoted in (3.14).
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Figure 3.5: σ2
∞ is plotted against ρ for the model with rates (2.40) on a totally asymmetric

graph. Theoretical results are given by (3.15). This can be alternately explained using
properties of stationary product measures in Sec. 2.2.3 and the derivation of (2.18). The
error of the numerics are comparable to the marker sizes.

It should be noted that while the results for σ2(t) and the scaling of σ2
∞ are derived

based on mean-field approximations on a complete graph, the results in Fig. 3.5 are ob-

tained from a totally asymmetric graph. The invariance in σ2
∞ can be obtained from any

homogeneous graphs as well. σ2(t) is accurate over different graphs but with a constant

prefactor in time. This property is explained through the derivation of the time-dependent

second moment solution of the generator equation on the Erdős-Re̋nyi graph on the gener-

ator in (3.17).

Inclusion Process on Erdős-Re̋nyi graphs

The Erdős-Re̋nyi graph [71] is a method of generating random graphs with L and S c being

the number of nodes and probability of edges being included, respectively. The graph is

therefore denoted by the notation G(L, S c) . Upholding the mean-field approximation, the

generator can be rewritten with a revision based on a modified adjacency matrix. Taking

(1/L)
∑

x,y∈Λ p(x, y) = S c, (3.7) is rewritten as

Lη2
z = S c

∑
x∈Λ

ηx(ηz + d)[(ηz + 1)2 − η2
z ] + S c

∑
x∈Λ

ηz(ηx + d)[(ηz − 1)2 − η2
z ] , (3.16)

such that S c = 1 denotes the complete graph. The derivation from (3.7) to (3.15) holds with

a rescaling in time. Therefore in the Erdős-Re̋nyi graph, (3.13) has a different equilibra-

tion time teq = 1/2dLS c but converges to the same second moment at steady state as the
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Figure 3.6: Scaled 〈σ2〉 is plotted against t, for the inclusion process, on the Erdős-Re̋nyi
graph. Numerical results with different S c and different initial conditions are compared.
The solid lines indicate theoretical results, which are given in (3.17).

complete graph case

〈σ2
t 〉 = ρ2 +

ρ2

d
+ ρ +

(
〈σ2

0〉 − ρ
2 −

ρ2

d
− ρ

)
e−2dS ct . (3.17)

Fig. 3.6 shows the second-moment for systems of different Erdős-Re̋nyi graphs

being plotted against time. The generator of both the nearest neighbour symmetric and

totally asymmetric cases can also be written in the form of (3.16). In the complete graph

for large L, there are L2 − L ' L2 edges to be included. There are L connected edges for

the totally asymmetric case, so S asym
c = L/L2 = 1/L. For the nearest neighbour symmetric

case, there are 2L edges to be connected. This leads to S sym
c = 2L/L2 = 2/L.

3.3.2 Generator on models with rates (3.2) and (3.3)

Solving the generator for certain observables for the inclusion process can be relatively

straightforward. However for models characterized by rates (3.2) and (3.3), where γ > 1,

there are no clear methods to close the solution. For the model with rate (3.3), the generator

for observable f (η) = η2
z for the complete graph case is written as

35



Lη2
z =

∑
x∈Λ

η
γ1
x (ηγ2

z + d)[2ηz + 1] +
∑
x∈Λ

η
γ1
z (ηγ2

z + d)[−2ηx + 1] , (3.18)

where the combination of linear terms and summation of powers make mean-field solutions

very difficult. For specific values of γ1 = γ2 > 1, there might be solutions as combination

of higher moments, but there is no general solution. A heuristic approach is needed in order

to characterize the formation of a condensate, as shown in Chapter 4.

3.4 Stationary measures for the explosive condensation model

In this section, we study the stationary product measures of the models with rate (3.2)

and (3.3). These results are compared to the stationary product measures of the inclusion

process.

3.4.1 Model with rates (3.2)

This model does not satisfy condition 3 in Theorem 2.2.1 for γ1 , γ2. Therefore, the

general derivation is based on the assumption that the system satisfies detailed balance.

Substituting the rates into the weights (2.12), the weights are written as

Wwa(n) =

n∏
k=1

(k − 1 + d)γ2

(k + d)γ1 − dγ1
, (3.19)

where notations with superscript “Wa” indicates they are derived for the model with rates

(3.2). There is no explicit analytical solution for (3.19). Numerical solution for (3.19) can

be obtained over certain parameter ranges, where physical measurements such as the second

moment as depicted in (2.18) converges. The range of these parameters can be estimated

by studying the asymptotic behaviour of W(n). (3.19) is written in the logarithmic form

Wwa(n) = exp

 n∑
k=1

(ln(k − 1 + d)γ2) − ln[(k + d)γ1 − dγ1]

 . (3.20)

Taking the kγ2 and kγ1 terms as

ln(k − 1 + d)γ2 = ln(1 − 1/k + d/k)γ2 + ln kγ2

and

ln[(k + d)γ1 − dγ1 = ln[(1 + d/k)γ1 − (d/k)γ1] + ln kγ1 ,

Wwa(n) in (3.20) can be written as
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Wwa(n) = exp

 n∑
k=1

ln
(
1 +

d − 1
k

)γ2

− ln
[(

1 +
d
k

)γ1

−

(
d
k

)γ1
]

+ (γ2 − γ1) ln k

 . (3.21)

For n → ∞, there are three scenarios for how Wwa(n) scales, depending on γ2 and

γ1. For γ2 , γ1, for large k the ln k term dominates, so Wwa(n) scales super-exponentially

as

Wwa(n) = exp

 n∑
k=1

(γ2 − γ1) ln k

 = (n!)γ2−γ1 ∼ nn(γ2−γ1) . (3.22)

The physical meaning is that, γ1 and γ2 controls the non-linearity of the factorized hop rates

for the giving and receiving terms respectively. For γ2 > γ1, large clusters will accumulate

much faster than other clusters. Conversely, for γ1 > γ2, large clusters are discriminated

and will give away particles much faster than receiving.

Whether Wwa(n) increases or decreases depends on whether γ2 > γ1 or γ1 > γ2. For

γ1 > γ2, Wwa(n) ∼ nn increases exponentially and there is no convergence. For γ1 = γ2 = γ,

the kγ terms in (3.21) cancel out. Approximating ln(1 ± ε)γ = ln(1 ± γε) = ±γε for ε → 0

as n→ ∞, (3.21) is simplified as

Wwa(n) = exp

 n∑
k=1

(
γ(d − 1)

k
− γ

d
k

) = exp

− n∑
k=1

γ

k

 ∼ n−γ . (3.23)

Note that for γ1 , γ2, the derivation holds only for the symmetric graph as the condition

in theorem 2.2.1 is not satisfied, while the case γ1 = γ2 can be applied also to translation

invariant, asymmetric graphs. In summary, as n > 0, the three ranges for the scaling of

Wwa(n) are

Wwa(n→ ∞) '


n(γ2−γ1)n → ∞ if γ2 > γ1

n(γ2−γ1)n → 0 if γ1 > γ2

n−γ if γ1 = γ2

. (3.24)

For the case when γ2 > γ1, there would be no finite moment solutions as WWa grows

much faster than other terms in the moment generating function

S q(φ > 0) =
1

z(φ)

∞∑
n=0

(λφ)nnqnn → ∞,

where S q denotes the qth moment of the system. In this regime, condensation is always the

steady state for any finite fugacity φ. In the other extreme for γ1 > γ2, Wwa → 0. Therefore,
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there is no condensation for any range of fugacity.

The γ1 = γ2 case for the model with rates 3.2

The interesting case is for γ1 = γ2 = γ. In this special case, the model with rate (3.2)

satisfies criterion 3 in Theorem (2.2.1). Therefore stationary product measures exist for its

general case. From (2.16), the density for the case γ1 = γ2 is given by

ρwa(φ > 0) =
1

z(φ)

∞∑
n=0

(λφ)nn1−γ =

 < ∞ for 0 < φ ≤ 1, γ > 2

∞ if φ > 1
. (3.25)

For γ > 2, the density converges in the region φ ∈ [0, 1], and this corresponds to

ρwa ∈ [0, ρc]. There exists a critical density ρc, where for ρ ≤ ρc, particles are distributed

homogeneously on a fluid state. However, for ρ > ρc, which corresponds to φ > φc = 1, the

system would split into a homogeneous fluid state and a condensate.

The second moment of the system can be calculated in a similar way, and we write

σ2
wa(φ > 0) =

1
z(φ)

∞∑
n=0

(λφ)nn2−γ =

 < ∞ for 0 < φ ≤ 1, γ > 3

∞ if φ > 1
, (3.26)

where a finite σ2 is obtainable only when γ > 3. The interesting case is when γ ∈ [2, 3) for

ρ < ρc. In this regime, condensation is not observed, but the second moment diverges. We

collect the different ranges of critical fugacity in the three ranges of γ1 and γ2 mentioned

above, and we write

φwa
c =


0 for γ2 > γ1

∞ for γ1 > γ2

1 for γ1 = γ2

. (3.27)

Similarly, the critical densities of each range can be written as

ρwa
c =


0 for γ2 > γ1

∞ for γ1 > γ2

finite ρ for γ1 = γ2

. (3.28)

Numerical simulation of ρ(φ) and σ2(φ)

ρ(φ) and σ2(φ) are calculated numerically from (2.14) and (2.17), as there are no clear

analytical solutions. Fugacity is plotted in Fig. 3.7 . The monotonically increasing functions
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Figure 3.7: For γ1 = γ2 = 5, d = 0.3, for the model with rates (3.2) in the γ1 = γ2 case.
(a) ρ(φ) is plotted against fugacity φ, (b) σ2(φ) is plotted against φ, and (c) σ2(φ) is plotted
against ρ(φ). The red line indicates φ = φc = 1, as no finite moments converge for φ > 1.

of ρ(φ) and σ2(φ) are shown in the range φ ∈ [0, 1). For φ > 1, the solution diverges.

We want to confirm the radius of convergence for ρ(φ) and σ2(φ) in the regime of

γ, for the case φ = 1. This is not a straightforward problem, because there is no analytical

solution to (3.25) and (3.26). The numerical approach is problematic in the sense that it

always return a finite number as the solution, which does not capture cases of divergence.

As one can see from (2.14) and (2.17), the numerical evaluation of ρ(φ) and σ2(φ) requires

the summation with an index n. To see convergence numerically, we use two different

ranges of n in computing the density and second moment. If the solution converges, then

there will be no difference in both numerical simulations. If the simulation with a larger

range of n is significantly bigger than the simulation with the smaller range of n, then the

solution diverges at that region.

We plot ρ(φ = 1) and σ2(φ = 1) against γ 3.8. From (3.25) and (3.26), we estimated

that ρ(φ = 1) and σ2(φ = 1) would diverge at γ → 2 and γ → 3, respectively. This can be

observed in the difference of the two numerical simulation in Fig. 3.8, where the ratio of

the two simulations increases at γ → 2 and γ → 3, respectively.

3.4.2 Model with rates (3.3)

For the model that is characterized by rates (3.3), the weights Wmod(n) are written as
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Figure 3.8: For d = 0.4 and the model with rates (3.2) for the γ1 = γ2 = γ case. (a) ρ(φ = 1)
is plotted against γ, and (b) σ2(φ = 1) is plotted against γ. Black markers indicate when
the solution is numerically obtained by evaluating (2.14) and (2.17) from n = 0 to n = 105,
and the red marker is obtained by evaluating the respective partition functions from n = 0
to n = 106. The blue marker is the division of the two results. The blue marker will remain
at 1 unless the numerical results diverge.
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Wmod(n) =

n∏
k=1

(k − 1)γ2 + d
kγ1

, (3.29)

where quantities with superscript “mod” indicates they are derived for the model with rates

(3.3). The model with rates (3.3) does not satisfy condition 3 in Theorem (2.2.1), stationary

product measures only exist for symmetric graphs if γ1 , γ2. Similar to the derivation for

the second moment and mean of the model characterized by rates (3.2) in Sec. 3.4.1, there

is no clear analytical solution if (3.29) is substituted into (2.16) and (2.18). Instead, the

scaling behaviour of Wmod(n) is studied, and (3.29) is written in the logarithmic form

Wmod(n) = exp

 n∑
k=1

ln[(k − 1)γ2 + d] − ln kγ1

 , (3.30)

where kγ2 and kγ1 can be substituted out, and (3.30) can be written as

Wmod(n) = exp

 n∑
k=1

ln
[(

1 −
1
k

)γ2

+
d

kγ2

]
+ ln kγ2 − ln kγ1

 . (3.31)

Similar to the model with rate (3.2), distinctive results are obtained depending on

the choice of γ1 and γ2. For γ1 , γ2, since k � (1− 1/k) for k → ∞, (3.31) is simplified as

Wmod(n) = exp

 n∑
k=1

(γ2 − γ1) ln k

 = (k!)(γ2−γ1) ' nn(γ2−γ1) , (3.32)

which has the same scaling property to the previous example. For γ1 = γ2, and using the

Taylor expansion ln(1 ± ε)γ = ln(1 ± γε) = ±γε for ε → 0 as n→ ∞. So (3.31) becomes

Wmod(n) = exp

− n∑
k=1

γ

k

 ' exp(C − γ ln n) ∼ n−γ . (3.33)

The scaling behaviour for W(n)mod is therefore the same as W(n)wa in (3.24). This

means that the range for which ρc and σ2
c exists are the same as the scaling results from

(3.25) to (3.28).

Condensation

For γ1 > γ2, no condensation is observed numerically. Condensation occurs for the γ2 > γ1

case. TSS is plotted against L in Fig. 3.9. Similar to the results in the literature [6] or for

γ1 = γ2 > 2, Fig. 3.9 implies TSS → 0 for L→ ∞.

For γ1 = γ2, and γ > 2, condensation is observed for a wide range of results. The

analysis of the formation of condensate in the focus of Chapter 4. The critical densities
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Figure 3.9: TSS is plotted against L, d = 0.5, γ2 > γ1 for the model with rate (3.2).
Condensation is observed in these cases. Scaling of 〈TSS〉 is mostly dependent on γ2. γ1 is
non-significant to the speed to stationarity as W(n) ∼ nn.

and critical second moments of numerical results presented in Chapter 4 are presented in

Appendix D.
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Chapter 4

Microscopic analysis of condensation
dynamics

In this Chapter we study the dynamics to stationarity for explosive condensation models,

where above some critical density a fraction of all particles accumulates on a single clus-

ter. This process is deemed “explosive”, because the time to condensation goes to zero

as L → ∞. With an understanding of steady state properties for systems with station-

ary product measures (see Sec. 2.2.3), it should be noted that such methods do not pro-

vide a dynamic picture of how a system evolves to its steady state, nor does it provide

time-dependent solutions to specific physical properties. An alternative approach to system

dynamics at a microscopic level is considered, where different stages of dynamics are iden-

tified. The timescales of such stages are derived, and the interchange between these stages

are explained. This leads to a comprehensive model that is based on cluster nucleation,

coarsening and explosive condensation.

With this model, a coherent explanation for the time to reach steady state and the

evolution of cluster is proposed, and is in line with the description of condensation. Conse-

quently, a simpler derivation for 〈TSS〉 for the totally asymmetric graph is presented, com-

pared to the results by Waclaw and Evans [6, 59]. This model is also extended to the

symmetric graph case, where a similar explosive condensation behaviour is observed as

well as a novel non-explosive regime, depending on parameter values.

The cluster dynamics results in this Chapter lead to an improvement in numeri-

cal efficiencies. This revised method in simulation is used to obtain numerical results for

models of size L > 103 with explosive condensation for the symmetric graph case, where

previously it is difficult to obtain. Details of this numerical method, together with a discus-

sion of its limitations can be found in Sec. 5. It is noted that this type of heuristic study has

also been used in other IPS such as the zero-range process [36, 48, 24, 49, 5], the inclusion
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process [54] and partially in [6, 59].

Summary of Results

This Chapter is organised as follows. In Sec. 4.1 we provide an overview of two different

types of condensation depending on system parameters, namely the explosive condensation

and cluster coarsening. Before analysing the dynamics of these two types of condensation

in depth, we first derive physical properties of cluster dynamics, which is outlined in Sec.

4.2. The early dynamics of the system are analysed in Sec. 4.3. Having understood cluster

dynamics, we focus on the heuristic analysis of the two types of condensation mentioned

above, using tools developed in Sec. 4.2 and Sec. 4.3. In Sec. 4.4, the dynamics of

explosive condensation are studied, and this is followed by a detailed analysis of cluster

coarsening in Sec. 4.5. Finally, we provide an analysis for the stability of clusters in Sec.

4.6.

In this chapter, results are organised by the successive stages in the condensation

process. As there are two models and two graphs studied in this chapter, derivations of

these cases are often presented under the same subsections, which might cause confusion to

some readers. To alleviate the effort of trying to trace the derivation of a single set of results

for a specific model and graph, we organise the key results of each case in Tables 4.1 - 4.3.

These tables are organised as follows:

• Table 4.1 is a summary of results for cluster dynamics and is taken from Sec. 4.2.

• Table 4.2 is a summary of results for explosive condensation and is taken from Sec.

4.4. The explosive condensation is only observed for certain choices of γ, as indicated

near the top of the table. This is one of the two types of condensations observed in

this study. For an overview of the difference of these two types of condensation

processes, see Sec. 4.1.

• Table 4.3 is a summary of results for cluster coarsening and is taken from Sec. 4.5.

Note that cluster coarsening is only observed in symmetric systems for a certain pa-

rameter range, which will be elaborated in the said chapter in detail.

Simplifications in heuristic arguments

In the heuristic arguments used in this Chapter, simplifications are made based on presumed

parameter ranges. We follow the range of parameters outlined in Sec. 3.2. Note that the

regime for condensation to occur is γ > 2 for the totally asymmetric case and γ > 3 for

the symmetric case, as suggested in Chapter 3. The same parameter range are used in this
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General
Model

((ηx + d)γ1 − dγ1)(ηy + d)γ2

(3.2)
(ηγ1

x )(ηγ2
y + d)

(3.3)

Rates
((ηx + d)γ − dγ)(ηy + d)γ

(4.1)
η
γ
x(ηγy + d)

(4.2)

〈τparticle(ηxy)〉
1/((ηx + d)γ − dγ)(ηγy + d)

(4.13)
1/ηγx(ηγy + d)

(4.3)

〈τstep〉asym
(m)−γ(d−γ + C)

(4.15)
m−γ(C′ + d−1)

(4.9)

v(m)asym
mγ dγ

1+Cdγ

(4.16)
(dC′ + 1)mγd−1

(4.10)

〈τstep〉sym
m−γ+1(d−γ + C)

(4.17)
m−γ+1(C′ + d−1)

(4.11)

v(m)sym
mγ−1dγ
dγ+1

(4.18)

dmγ−1

1+C′d
(4.12)

∆masym ∼ 0.5 (Page 58)
∆msym ∼ m (Page 60)

Table 4.1: Summary of results for cluster dynamics, which is a description of how clusters
move and interact. These results can be found in Sec. 4.2.

Rates Both (4.1) and (4.2)
Graph Totally Asymmetric Symmetric
ECP
observed

γ > 2 γ > 3

TNu
∼ (ln L)1−γρ1−2γ

(4.22)
∼ (ln L)2−γρ3−2γ

(4.23)

mc
∼ L1/γ

(4.26)
∼ L2/(γ−1)

(4.25)

〈TSS〉
∼ (ln L)1−γ

(4.27)
∼ (ln L)2−γ

(4.28)

m(t)
[
m3−γ

0 + (3 − γ)Ct
]1/(3−γ)

(4.31)
[C′ (tbu − t)]−

1
γ−3

(4.32)

tbu
∼ L−

(γ−1)
γ

(4.37)
∼ L−

2(γ−3)
γ−1

(4.33)

Table 4.2: Summary of results for the dynamics of explosive condensation. These results
can be found in Sec. 4.4.
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Rates Both (4.1) and (4.2)
Graph Totally Asymmetric Symmetric
Coarsening Condensation
Observed

Not observed 2 < γ < 3

〈TSS〉 NA
L3−γ

(4.39)

m(t) NA Ct
1

3−γ

(4.50)

σ2(t) NA C(ρ − ρc)t
1

3−γ

(4.52)

Table 4.3: Summary of results for cluster coarsening. These results can be found in Sec.
4.5.

Chapter. It should be reiterated that the diffusive parameter d is set to have size d ∼ O(1)

throughout this Chapter, unless otherwise stated. The special case of vanishing diffusivity

d → 0 will be discussed as a separate case in Sec. 6.2.

4.1 Stages to stationarity

Models of interest

In Sec. 3.2, two models are introduced. The parameter regime for these two models, where

phase transition is possible, are discussed in Sec. 3.4. We focus on the specific case of

γ = γ1 = γ2 in this chapter, as this is the range where the stationary weights (3.24) and

(3.31) do not scale super-exponentially. The rates for the models characterized in (3.2) and

(3.3) are rewritten as

c(ηx, ηy) = ((ηx + d)γ − dγ)(ηy + d)γp(x, y), (4.1)

and

c(ηx, ηy) = η
γ
x(ηγy + d)p(x, y) . (4.2)

Recall that p(x, y) represents the adjacency matrix, where only one-dimensional

symmetric and totally asymmetric cases are studied in this chapter. For the numerical results

presented, the corresponding critical densities ρc and second moment σ2
∞(φ = 1) can be

found in Appendix D, which is derived by numerically evaluating (2.14) and (2.17).

It has been demonstrated in the previous chapter that if ρ > ρc, in a system with

conserved number of particles, the system condenses. This leads to a finite critical second
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moment for γ > 3 and a finite critical density for all ρc < ∞ for all γ > 2. Depending on

the parameter γ we observe two regimes:

1. Explosive condensation is observed: for symmetric systems with γ > 3 and asym-

metric systems with γ > 2,

2. Stationarity through cluster coarsening is observed for: symmetric systems with

γ ∈ (2, 3), where the time to stationarity increases with L.

Making the differentiation between the above two paths to stationarity will be justi-

fied by timescale discussions in Sec. 4.3 - 4.5. For both cases, the process from initialization

to reaching stationarity follows a multi-stage process, of which some of the stages have al-

ready been briefly mentioned in Figs. 3.1 and 3.2 in the previous chapter. In this section, we

firstly provide a schematic overview of the dynamics to stationarity for different ranges of

parameters and present a detailed description of each stage, with brief discussions on how

the interchange between stages would occur.

Condensation on symmetric graph for γ > 3

The presence of successive stages for γ > 3 on a symmetric graph is illustrated in Fig. 4.1.

In Fig. 4.1 σ2(t), which is a single value measurement that captures the distribution of the

entire state as introduced in Eq (3.5), is plotted against arbitrary unit time t, from t = 0 to

the system reaching stationarity, for γ = 4.5.

Fig. 4.1 is generated by Monte-Carlo methods using the Gillespie algorithm, where

the details are illustrated in Chapter 5 and Appendix. B.1. This is just a typical example

of explosive condensation for introductory purposes and a detailed explanation on how

parameters affect the outcome will be presented in the following sections.

Only one instance of numerical simulation is shown in Fig. 4.1, as averaged results

render the three stages less distinguishable (See numerical discussions in Sec. 5.2). As

observed in Fig. 4.1 (b), the dynamics first go through a quick assimilation of particles

during the initializing stage. This is followed by a relatively prolonged nucleation stage,

as shown in Fig. 4.1 (a), where particles assimilate neighbours and occupation numbers

change through direct interactions with immediate neighbours. This process is interrupted

when some critical occupancy is reached. At this point a single cluster has gained sufficient

mass to move across the entire lattice extremely rapidly, and swallows up even more mass

in the process. This rapid condensation quickens as the mass of the condensate grows

[6]. Note that the explosive condensation phase is reached directly from nucleation, as the

critical occupancy number remains relatively small.
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model with rates (4.1) on a symmetric graph. (a) From initial stage up to condensation. The
key stages are labelled. (b) The same plot highlighting early dynamics, up to the onset of
explosion and the abrupt initializing phase is labelled.

Condensation on totally asymmetric graph for γ > 2

For the same model and parameters as the results in Fig. 4.1, but on a totally asymmetric

graph, σ2 is plotted in Fig. 4.2. The same three stages occur, although both the initializ-

ing stage and nucleation stage are even quicker, and the critical occupancy number is even

smaller. Therefore TSS occurs several magnitudes quicker than the same case on the sym-

metric graph. This can be qualitatively understood as clusters are able to cover the entire

lattice with fewer steps on the totally asymmetric graph compared to its symmetric coun-

terpart. In both Fig. 4.1 and Fig. 4.2, the dynamics are dominated by a prolonged period

of cluster nucleation, which is succeeded by a sudden hike once a single cluster has gained

sufficient mass to swallow up other fringe clusters quickly. Despite having a different ad-

jacency matrix, the mechanism governing its dynamics to condensation is essentially the

same as in the symmetric case.

Non-explosive condensation, symmetric graph for γ ∈ (2, 3)

The two previous cases shown in Fig. 4.1 and Fig. 4.2, both demonstrate explosive conden-

sation. This is in contrast with models on a symmetric graph having parameters γ ∈ (2, 3),

for which σ2 is plotted against t in Fig. 4.3. From the previous Chapter, it is understood
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Figure 4.2: σ2(t) against t, for a single run, γ = 4.5, ρ = 1, L = 128, d = 0.3, for the model
with rates (4.2) on a totally asymmetric graph. (a) shows simulation from initial stage up to
condensation, and (b) shows the same plot highlighting early dynamics. The labels are the
same as the ones used in Fig. 4.1.

that the condensed phase is formed with mass (ρ − ρc)L, where ρc can be numerically de-

termined from (2.14). For the choice of γ in Fig. 4.3, ρc = 2.65 is considerably higher than

the critical densities in the previous two examples. Therefore fluctuations towards reaching

stationarity are much higher than Fig. 4.1 and Fig. 4.1, despite choosing a higher ρ.

As shown in Fig. 4.3, there is no explosive condensation observed. Contrary to

the two previous examples with explosive condensation, the nucleation finishes extremely

quickly, and the highest occupant of the system does not reach a critical occupancy mc ,

as mc � L for γ ∈ (2, 3) (the estimation of mc can be found in Sec. 4.4.1). Upon the

completion of cluster nucleation, macroscopic clusters of size O(L) are formed, and the dy-

namics is dictated by the interactions of roaming large clusters exchanging particles when

they meet. This process of cluster coarsening is a visibly slower process than cluster nucle-

ation, and the time scale to stationarity is therefore orders of magnitudes slower compared

to the results obtained in Fig. 4.1 and Fig. 4.2. Eventually, stationarity is reached by cluster

coarsening (c.f. Sec. 4.5).

Four stages to steady state

Collecting the observations in Fig. 4.1, to Fig. 4.3, four stages of the system dynamics are

identified:
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Figure 4.3: Second moment σ2(t) against t, for γ = 2.25, ρ = 4, L = 128, d = 0.2, sym-
metric graph, for a single run, for the model with rates (4.1). Nucleation quickly finishes,
subsequently followed by prolonged periods of cluster coarsening. Stationarity is reached
without forming an explosive condensate, contrary to the example presented in the γ > 3
cases in Fig. 4.1 and Fig. 4.2. σ2

∞ is numerically computed with (2.17) and presented in
Appendix D.
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0. Initialization: At time t = 0, particles are arranged uniformly on the lattice such that

E[ηx(t = 0)] = ρ for all x ∈ Λ. Typical cases we consider are to place each particle

independently in a uniformly chosen lattice site, which leads to a multinomial dis-

tribution of the occupation numbers ηx, or we use the deterministic initial condition

ηx = ρ for integer densities ρ. Different types of initialization would not affect the

scaling behaviour of subsequent stages, but might lead to different prefactors (see

Sec. 4.3.1).

1. Nucleation: For supercritical densities ρ > ρc the particles will quickly form clusters

(see Sec. 4.3.2). This regime ends when the system either proceeds to:

(a) Coarsening: for symmetric graph, γ ∈ (2, 3), or

(b) Explosive condensation: for symmetric graph γ > 3 and asymmetric cases γ > 2.

Whether the system proceeds to coarsening or explosive condensation depends on

whether some critical cluster size mc is reached during cluster nucleation, as ex-

plained in Sec. 4.4.1.

2. Coarsening: For symmetric systems with γ ∈ (2, 3) nucleation leads to a phase

separated state, with several clusters of size O(L) and a background configuration

at density ρc. These clusters then move on the lattice (see Sec. 4.2.1) and interact

when they get close by exchanging particles (see Sec. 4.2.2). Clusters may disappear,

and all remaining clusters are stable and do not split into fragments (see Sec. 4.6).

This drives a coarsening process which leads to a single condensate, and the time to

stationarity in this case is increasing with the system size L (see Sec. 4.3 and Sec.

4.5).

3. Explosive Condensation: For symmetric systems with γ > 3 or asymmetric systems

with γ > 2 there exists a critical cluster size mc � L which is subextensive on the

lattice, such that a cluster of that size visits the whole lattice almost immediately (see

Sec. 4.4). If one of the forming clusters reaches that size, nucleation ends and the

largest cluster almost immediately absorbs all the excess mass in the system forming

the condensate. The time to stationarity in this case decreases with the system size L

(see Sec. 4.4.2).

4.2 Cluster dynamics

Before discussing the timescales of the respective stages to stationarity, it is important to

understand more about cluster interactions. Multiplicative rates in models of explosive con-
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densation lead to the quick formation of nucleates. For a system with relatively low back-

ground density, a nucleate will eventually deplete its immediate neighbouring sites of mass.

Clusters of variable sizes roam around the lattice, and this occurs for both the coarsening

stage or the explosive condensation stage. The heuristic arguments for the timescale of the

various stages depend on the physical properties of clusters. Therefore, it is vital to under-

stand how clusters move on the lattice, and how they interact with other clusters. Waclaw

and Evans [6, 59] proposed a brief outline of cluster interactions for the totally asymmetric

case. In this section, we extend this to the symmetric graphs as well. Together with the

heuristic arguments in Sec. 4.3 - Sec. 4.6, we are able to describe fully how explosive and

coarsening condensation takes place.

The arguments in this section are based on the assumption that clusters preserve

mass until collision with other clusters, so each cluster can be treated as an independent

entity. Clusters, however, can spontaneously “break-up” with a small probability. The

ability for clusters to “break-up” is essential to the formation of a non-zero background

density, although it occurs infrequently. For the complete portrayal of cluster dynamics,

this section should be read in conjunction with the study on cluster stability in Sec. 4.6.

This section will be divided into two parts, the transportation of clusters over empty lattices

is discussed in Sec. 4.2.1, and the interactions between clusters are discussed in Sec. 4.2.2.

4.2.1 Cluster stepping time through empty lattice spaces

For a cluster with size ηx = m surrounded by empty sites, let τstep be the time it takes to

move entirely to its neighbouring empty site. For the totally asymmetric case, ηx → 0,

ηx+1 → m. For the symmetric case, particles can move in either direction, so ηx+1 → m or

ηx−1 → m while ηx → 0.

Consider the totally asymmetric case, where a particle from a cluster of size m

jumps into an empty site. If the destination site is also bordered by an empty site, then the

rate for that one particle jumping further to the right is ∼ dγ, which is extremely small com-

pared to the rate of other particles following from the cluster site, which is ∼ (m − 1)γ. The

movement of a cluster moving one step can be mapped into a totally asymmetric random

walk, as illustrated in Fig. 4.4, and the total time for complete transportation of clusters by

one lattice space can be computed by summing the average time for each successive step.

〈τstep〉 for the model characterized by (4.2)

We now estimate the average time for a cluster to completely move one lattice space. Note

that the choice of studying rates (4.2) ahead of rates (4.1) is an arbitrary one. Throughout

this chapter, γ > 2 and d ∼ O(1) < 1. For the model characterized by rates (4.2), the
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Figure 4.4: Mapping cluster movement in the totally asymmetric case to a one-dimensional
asymmetric random walk. For a cluster with size m = 6, after the first step as shown in (a),
the next jump comes from either arrows, such that the rates c(5, 1) � c(1, 0). (b) for the
next step, since c(4, 2) � c(2, 0), the process continues up until (c), when the last particle
moves to the right. This process is mapped to a one-dimensional asymmetric random walk,
as (b) can be mapped to (d) and (c) mapped to (e).

average time for the movement of one particle from x→ y is given by

〈τparticle(ηx→y)〉 =
1

η
γ
x(ηγy + d)

. (4.3)

In the totally asymmetric case, the time for the movement of one cluster is given

by summing the successive time steps for a one-dimensional random walk, as illustrated

in Fig. 4.4. For a cluster with mass m, the average time for a complete transportation of

its own mass along one lattice space 〈τstep〉 is the summation of successive contributions of

〈τparticle(ηx→y)〉,

〈τstep〉 =

m−1∑
i=0

1
(m − i)γ(iγ + d)

, (4.4)

Taking the time contribution of the first step at i = 0 separately to preserve symmetrically

within the summation expression, we get

〈τstep〉 =

m−1∑
i=1

1

m2γ
[
1 − i

m

]γ [(
i
m

)γ
+ d

mγ

] +
1

dmγ
. (4.5)

53



Subsequently the Euler-Maclaurin equation is used, for m � 1, i/m = x → 0 are

regarded as small increments and can be integrated, where the limits are taken to be from

1/m to 1 − 1/m, and noting that dx = di/m we get

〈τstep〉 =
1

m2γ−1

∫ 1−1/m

1/m

dx

(1 − x)γ
(
xγ + d

mγ

) +
1

dmγ
. (4.6)

The term d/mγ � 1 is of the same magnitude with xγ in the lower bounds of the

integral. For large m, the overall scaling property of the integral therefore resembles that of

a symmetric function. Taking this assumption, we rewrite (4.6) as

〈τstep〉 =
1

m2γ−1

∫ 1−1/m

1/m

dx
(1 − x)γ (xγ)

+
1

dmγ
. (4.7)

Due to the symmetry of the integral in (4.7), it is integrated twice over in the range

x = 1/m and x = 1/2. Since the term (1 − x)−γ is bounded above and below by a constant

in the range [1/m, 0.5], it does not affect the scaling with m. Introducing prefactor term C

for the contributions of (1 − x)−γ, one obtains

〈τstep〉 '
2C

m2γ−1

[
x−γ+1

−γ + 1

]1/2

1/m
+

1
dmγ

'
2Cm−3γ

γ − 1
+ m−γd−1 (4.8)

for large m. Therefore the time for a whole cluster to transport to an adjacent site is of the

same order as the time contributed by the first step. Letting C′ = 2Cm−2γ/(γ − 1), we write

〈τstep〉 = m−γ(C′ + d−1) . (4.9)

Note that the derivation of 〈τstep〉 is based on the assumption that d is a general constant of

order 1. For m � 1, C′ � d and 〈τstep〉 scales as m−γd−1. From (4.9), the rate or velocity

v(m) for an entire cluster to transport one step in an asymmetric graph will be

v(m)asym =
1
〈τstep〉

= (dC′ + 1)mγd−1 . (4.10)

Similarly to the totally asymmetric case, cluster movement in the symmetric case

can be mapped to a one-dimensional random walk, as illustrated in Fig. 4.5. For the range

of parameters used in this study, c(a, b) ' c(b, a), where a, b ≥ 1 and the rate for each step

forwards has an approximately equal rate for trekking backwards, with a slight difference

coming from the d dependent part of the rates. For a one-dimensional symmetric random

walk, it takes an average of m tries to hit the right boundary before the left and complete

the step. Therefore the velocity for an entire cluster to move can be estimated by dividing

(4.8) by m. 〈τstep〉sym is therefore
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Figure 4.5: Mapping movement of cluster on symmetric one dimensional random walk for a
cluster with size m = 6. (a) A particle jumped from the left hand side to an adjacent position
on its right. For the next step, rates c(5, 1) and rates c(1, 5) dominate over the diffusive rates
on the two ends. This process can be mapped into (b), for a single particle moves on a
lattice of size m + 1. τstep is therefore the time it takes for all particles to move from one site
to either of its adjacent sites. In (c), particles going left and right have extremely similar
rates for models characterized by rates (4.1) and (4.2). Therefore, the total time in reaching
other sides can be regarded as a symmetric random walk as expressed in (b) and (d).

〈τstep〉sym = m−γ+1(C′ + d−1) . (4.11)

Therefore the rate for an entire cluster to move one step in a symmetrically con-

nected graph is

v(m)sym =
dmγ−1

1 + C′d
, (4.12)

with a different constant C as for the asymmetric case.

τstep for the model characterized by rates (4.1)

The same approach can be used to determine τstep for clusters moving on a lattice in Waclaw

and Evans’ model, which is characterized by rates (4.1). For the totally asymmetric case,

the time 〈τparticle〉 it takes for a single particle to move to its adjacent site is written as

〈τparticle〉 =
1

((ηx + d)γ − dγ)(ηγy + d)
. (4.13)
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Similar to the derivations from (4.4) to (4.12), the time for entire clusters to move

is estimated to be the summation of times for individual steps as illustrated in Fig. 4.4

〈τstep〉 =

m−1∑
i=0

1
[(m − i + d)γ − dγ][i + d]γ

, (4.14)

which is simplified as

〈τstep〉 ' C
m−3γ

γ − 1
+ (md)−γ ' (m)−γ(d−γ + C) . (4.15)

Only d appears with the power γ instead of −1 as before, and the rate of cluster

movement is

v(m)asym = mγ dγ

1 + Cdγ
, (4.16)

This result, together with τstep for the model with rates characterized by (4.2) is compared to

numerical results in Fig. 4.6. The results show for the range of parameters chosen, (4.9) and

(4.15) are very good estimates for 〈τstep〉, and the constant C can be neglected for small val-

ues of d chosen. Similar to the argument in Fig. 4.4 which led to (4.12), the movement over

a symmetrically connected graph is estimated by mapping cluster transportation between

two sites to a one-dimensional random walk. This scales the velocity of the symmetrically

connected graph by 1/m from (4.16). Time for one step is

〈τstep〉 = m−γ+1(d−γ + C) . (4.17)

The rate is therefore

v(m)sym =
mγ−1dγ

dγ + 1
. (4.18)

Similar to Fig. 4.6, the estimate for 〈τstep〉 for models in the symmetric graph is

compared to numerical results in Fig. 4.7. For both graphs, the rate of cluster movement

can be accurately computed. However, it should be noted that the movement of a cluster can

sometimes result in a spontaneous disintegration, although this occurs at a much lower rate,

as discussed in Sec. 4.6. The relatively simple scaling relationship and stability of clusters

allow us to adapt the numerical methods. For large system sizes of L ∼ 103, the numeri-

cal computation of cluster-cluster interaction can become very expensive, and this process

of cluster movement can be simplified by replacing full simulations of steps by effective

movement of complete clusters at certain crucial times of the numerical computation. This

method has been implemented in the numerical simulation for 〈TSS〉 later in this section,

and its reliability is discussed in Chapter 5.

56



2 3 4 5 6 7 8 9 10 11
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

γ

〈τ s
te
p
〉

 

 

Waclaw, m = 50, d = 0.1
Waclaw, m = 75, d = 0.1
Waclaw, m = 100, d = 0.1
Modified, m = 50, d = 0.01
Modified, m = 50, d = 0.05
Modified, m = 100, d = 0.01
Modified, m = 100, d = 0.05
〈τ 〉 = (md)−γ , m = 50, d = 0.1
〈τ 〉 = (md)−γ , m = 75, d = 0.1
〈τ 〉 = (md)−γ , m = 100, d = 0.1
〈τ 〉 = m−γd−1, m = 50, d = 0.01
〈τ 〉 = m−γd−1, m = 50, d = 0.05
〈τ 〉 = m−γd−1, m = 100, d = 0.01
〈τ 〉 = m−γd−1, m = 100, d = 0.05

Figure 4.6: τstep is plotted against γ for different cluster sizes m and diffusive term d. This
is for the models with rates characterized by (4.2) and (4.1) in the totally asymmetric graph.
Numerical results are generated with errors comparable to marker sizes. These are com-
pared to the theoretical results given by (4.9) and (4.15), ignoring C since d is small enough
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Figure 4.7: τstep is plotted against γ for different cluster sizes m and diffusive term d. This is
for the models with rates characterized by (4.2) and (4.1) in the symmetric graph. Numerical
results are generated with errors comparable to marker sizes. These are compared to the
theoretical results given by (4.11) and (4.17), again the constant C can be ignored.
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4.2.2 Cluster Collision and transfer of mass ∆m

“Collision” is the process when two clusters are separated by only one lattice site, a particle

diffuses into the site between them. As a result, interactions take place over all three lattice

sites and some mass ∆m may be exchanged before the two clusters move away from each

other. It is also possible for two clusters to merge into one cluster. When two clusters

“collide”, let m1 be the mass of cluster with higher or equal mass entering the collision and

m2 is the mass of the other cluster. We define m′1 as the mass of the cluster with higher or

equal mass after collision and m′2 is the mass of the other cluster with lower or equal mass

after the collision. The exchange of mass is then

∆m(m1,m2) = m′1 − m1 = −(m′2 − m2) . (4.19)

Total mass M = m1 + m2 = m′1 + m′2 is a conserved quantity, such that if the two cluster

merge, m′1 = M and m′2 = 0.

Note that in this subsection, ∆m is determined by inspecting the most probable

interaction path. This is possible because the non-linear terms γ favours considerably the

exchange of particles between clusters with higher mass. The models with rates (4.1) and

(4.2) converges to the same most probable interaction path due to similar non-linearity

terms. Therefore the following arguments are applicable for both the models (4.1) and

(4.2).

Transfer of mass in the totally asymmetric setting

For the totally asymmetric case, Waclaw and Evans provides a schematic description and

a measurement of ∆m ∼ 0.4 [6]. As part of the extension of the study in [6], Evans and

Waclaw used a deterministic scattering derivation, in which ∆m is estimated by continuous

approximation, and zero mass transfer is predicted [59]. The discrepancies between the

numerical measurement and continuous method of estimating ∆m suggest that stochasticity

is very important in cluster-cluster interactions. A subsequent numerical stochastic analysis

suggests that, for large m1 entering a collision, ∆m ∼ 0.4 − 0.5. We attempt to provide a

qualitative argument, such that for γ � 1 and m1 → ∞, ∆m = 0.5.

We first look at the schematic overview of cluster-cluster interaction in the totally

asymmetric case. It has been observed that clusters entering a collision can leave an “im-

print” of particles that is comparable to the size of the target smaller cluster in the totally

asymmetric graph (see Fig. 3.1). This creates the illusion that the smaller cluster is moving

backwards on a totally asymmetric graph, which is clearly not possible. An explanation of

this is provided in [6], and we give an intuitive idea for the most probable interaction path

in Fig. 4.8 largely following this.
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Figure 4.8: Collision of clusters in the totally asymmetric graph. Particles in blue make
up the original mass of the cluster that enters collision, while red particles form the other
cluster. In (a), a particle diffuses into the empty space and the configuration becomes (b).
The rates for the adjacent sites with more particles are higher, therefore the next step is
likely to be the step with rate c(4, 1). Mass continues to flow from the first to the second
site. This continues until the first and third lattice site contain approximately the same
number of particles, such as the situation in (c). Subsequently, mass will flow from the
second to third site until the second site is unoccupied. (d) This leaves the first site with
around the same number of particles as the third site at the beginning of collision.

As clusters with higher mass travel faster, usually the cluster entering collision is the

cluster with higher mass. For m1 at lattice space x = 1 and m2 at x = 3, and the first transfer

made by a particle travelling from x = 1 to x = 2, then the occupancies for {x = 1, 2, 3} will

be

{m1, 0,m2} → {m1 − 1, 1,m2} .

For both Waclaw and Evans’ model and the model characterized by rates (4.2),

assuming mγ
1 > mγ

2 � d, then the rates c(η1, η2) > c(η2, η3) as long as occupancy η1 > η3.

Particles continue to flow from site 1 to site 2 until η1 = η3, then occupancies for the three

sites will be

{m1 − 1, 1,m2} → · · · → {m2 + 1,m1 − m2 − 1,m2} → {m2,m1 − m2,m2} . (4.20)

From this point onwards, there are two positive scenarios, namely site 1 to site 2

or site 2 to site 3. For both the model with rate (4.1) and (4.2), these two scenarios occur

with equal probabilities if mγ
1 > mγ

2 � d holds. If this case does not hold, then either of

the jumps would be slightly more probable depending on the relative sizes of m1 and m2.

If m1 > 2m2, then the move from site 2 to site 3 is slightly more probable, and vice versa.

However, for simplicity, we will assume that they are of equal probabilities.

In the first case {m2,m1 −m2,m2} → {m2 − 1,m1 −m2 + 1,m2} and then c(η2, η3) >
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Figure 4.9: ∆m against m2, m1 = 100, d = 1, for γ = 3.5, 7 for the totally asymmetric case.
Solid line indicates the predicted ∆ = 0.5 for lower values of m2. (a) Shows the model with
rates (4.1) and (b) the model with rates (4.2).

c(η1, η2). This means that eventually {m2 − 1,m1 − m2 + 1,m2} → {m2 − 1, 0,m1 + 1}, and

∆m = 1. Alternatively with equal probability, the exchange {m2,m1 −m2,m2} → {m2,m1 −

m2 − 1,m2 + 1} can occur. Following the same arguments as before, this eventually leads

to {m2, 0,m1}, where ∆m = 0. Therefore, restricting to the two most probable interaction

paths gives ∆m = 0.5, providing mγ
1 � d. This is compared to numerical results in Fig. 4.9,

where ∆m ∼ 0.5 is observed for m1 > m2. Note that for both scenarios, an imprint of ∼ m2

will be “left behind” creating an illusion of the smaller cluster travelling in the opposite

direction.

However, this does not hold if m1 ≈ m2 are approximately of equal size. Then many

more interaction paths can exist, leading to an increase in ∆m. Increasing γ would minimize

this effect. The same relationship can be found for the model characterized by rates (4.2).

This is observed in Fig. 4.10, where for most of the range of m1 and m2, ∆m ≈ 0.5. But

when m1 ≈ m2, the average particles exchanged are much less predictable.

Transfer of mass in the symmetric setting

The stochastic description of exchanging particles in the totally asymmetric case is based

on the assumption that the larger cluster collides with the smaller cluster from behind, and

exchanges some mass in the process. After this exchange, the larger cluster would continue

to proceed forwards, without colliding with the smaller cluster unless it has visited every

site in the lattice. But as d ∼ O(1) in this study, the separation of clusters after collisions is

hard to determine on the symmetric setting. Therefore, even if the two clusters are separated

by one lattice space after some exchange of mass, it is likely that the two clusters would

quickly interact again due to their proximity. Therefore, the numerical measurement of ∆m

is obtained by measuring the difference in mass between the two clusters, when either of
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Figure 4.10: For γ = 7 and d = 0.1, totally asymmetric graph, for the model with rates
(4.2), a heat graph of ∆m(m1,m2) is plotted against m1 and m2. ∆m(m1,m2) ' 0.5 for a
large area of m1 and m2, and this quickly increases towards m1 ≈ m2.

the following two termination conditions are met. Firstly, if two clusters have drifted away

for a large number of steps from each other. Secondly, if the two clusters have merged. The

numerical results are shown in Fig. 4.11, where the average number of particles exchanged

is proportional to the size of interacting clusters for m1 > m2. This is because there is a

non-zero probability that the clusters merge, which leads to a linear behaviour.

The relationship shown in Fig. 4.11 is clearly linear when m1 is significantly greater

than m2. The slight deviation from the linear relationship when m2 → m1 is caused by the

increased stochasticity in the interaction between the two clusters of similar mass. This

is because, for γ > 3, slight changes in cluster mass result in drastic change in the speed

of cluster movement. Even when m1 is slightly greater than m2, m2 is relatively static

compared to the quick moving m1. However, if m2 → m1, the speeds of the two clusters are

of the same magnitude, and collisions are more frequent, yet the exact path of interaction is

difficult to determine. The exact stochastic effect in the exchange of particles for two high

mass clusters might be investigated in the future. However, as explained in Sec. 4.4 and

4.5, it is very rare to have m1 and m2 both being high in explosive dynamics. For coarsening

dynamics, clusters of the same magnitude do coexist in the system, but very few clusters

have very similar masses due to fluctuations in the initialisation process. Therefore, for the
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Figure 4.11: ∆m against m2 and m1 = 40, on a symmetric graph, d = 1, for the model
characterized by rates (4.1). The red line indicates a linear fit.

heuristic arguments throughout this chapter, the linear behaviour is upheld. This assumption

leads to very accurate results in Sec. 4.4 and 4.5.

4.3 Cluster nucleation

As explained with schematic examples in Sec. 4.1, the rich variety of condensation be-

haviours for models with rates (4.1) and (4.2) are characterized by the timescale of the

nucleation and subsequent explosion or coarsening stage. In this section, the microscopic

properties of cluster nucleation are considered. This includes the initializing stage, mi-

croscopic description of the nucleation stage and terminating conditions for the nucleation

stage. In these three cases, both symmetric and totally asymmetric cases for γ > 2 are

studied. We estimate the time until a cluster reaches a certain size, and together with the

terminating conditions dictating what subsequent stage the model would proceed to. Note

that for the special case when diffusivity reaches zero d → 0, results are provided separately

in Sec. 6.2, and in this section d = O(1) unless otherwise stated.

4.3.1 Effects of the initial distribution

Particle interaction starts when particles are distributed on the lattice either uniformly or

multinomially. For uniform distribution with integer density ρ, occupancies at set up such

that ηx = ρ, ∀x ∈ Λ for t = 0. For particles distributed multinomially, N = ρL parti-

cles are each assigned to a lattice site chosen uniformly. Throughout this study, a uniform

distribution is assumed for particle initialisation unless otherwise stated. The initial dynam-

ics for uniformly distributed initial condition is illustrated in Fig. 4.12, which provides a
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Figure 4.12: Initial dynamics for a symmetrically connected graph. (a) Particles are dis-
tributed uniformly with density ρ = 2, L = 10 at t = 0. The lattice is labelled accordingly.
In the actual model, periodic boundary conditions are implemented but is omitted in this
diagram for simplicity. (b) At a later stage, particles moved are labelled in blue. (c) Dy-
namics are bias towards interactions with non-zero receiving sites, such that rate c2 � c1.
(d) Only for d → 0, that the system evolves to a point where clusters are distinguished from
one another separated by empty spaces locally. Particles that has been transported from
t = 0 are labelled in blue. The absence of a background density in this case is supported by
Table D that ρc becomes small as d → 0.

schematic representation from the initial condition to the nucleation stage on the symmetric

graph. Particles agglomerate around sites with higher occupancies during the early stages

of nucleation, as shown in Fig. 4.12 (c).

For multinomial initial conditions, the occupation numbers at t = 0 fluctuate, which

ensures a quicker initializing phase, as particles agglomerate faster on sites with higher oc-

cupancies due to the multiplicative nature of rates. For cases where ρ > ρc, a quicker nucle-

ation time means that the system reaches critical mass faster (see Sec. 4.4). This contributes

to a prefactor difference in the time scale, where the overall schematics of interaction is the

same. Numerical results are presented in Fig. 4.13, where σ2(t) and configurations of early

dynamics are plotted for the two different initial conditions in the symmetric case. The ini-

tial distribution of particles is irrelevant to the overall scaling of the dynamics, as the short

time profile is similar. It should also be noted that in Fig. 4.13 (c) and (e), local lumps of

nucleated particles coexist with clusters that have separated from the background. This cor-

responds to the prolonged period of nucleation illustrated in Fig. 4.12 (c), and a complete

spatial separation of clusters only occurs for very small d as depicted in Fig. 4.12 (d).

The subsequent evolution of σ2(t) for the two different initial conditions is plotted
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Figure 4.13: (a) σ2(t) against t for γ = 5, ρ = 2, d = 1, L = 512 and the model characterized
by (4.1) for two different initial conditions on a symmetric graph. Only the early dynam-
ics are presented. The blue and red line indicate random and uniform initial distributions,
respectively. The vertical dashed lines represents the times where a section of the configu-
rations is plotted in subsequent plots. Representative part of a configuration for multinomial
initial condition at (b) t = 3 × 10−6 and (c) t = 10−5. (d) Configuration for uniform initial
conditions at t = 10−5, and (e) t = 2.25 × 10−5.
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Figure 4.14: 〈σ2(t)〉 against t, d = 0.5, ρ = 2, L = 32, for the model characterized by rates
(4.2) on a symmetric graph. Different initial conditions are compared for (a) γ = 4 and (b)
γ = 5.

in Fig. 4.14. As predicted, the system with multinomial initial condition reaches station-

arity quicker. When dynamics are near stationarity, clusters of sizes ∼ O(L) are formed

as the background is nearly depleted of particles. For higher γ, the dynamics would be

increasingly dependent on the largest cluster only, as explained in Sec. 4.2. Therefore,

the dynamics towards the end is similar between the two initial conditions in Fig. 4.14 (b)

compared to Fig. 4.14 (a).

4.3.2 Growth of nucleating cluster

Schematic overview of nucleation dynamics

For both totally asymmetric and symmetric graphs, Fig. 4.15 illustrates the key character-

istics of cluster nucleation. For ρ > ρc, clusters do not dissolve into the background, but

instead grow in size as particles are concentrated on local sites since the multiplicative rates

favour the agglomeration of particles. For the totally asymmetric case in Fig. 4.15 (a) and

(b), as particles jump only in one direction, the system is likely to form larger nucleates, and

interactions are more system-wide. But for the symmetric graph, more localized clusters

would be formed, as illustrated in Fig. 4.15 (c) and (d). Despite seemingly different results

due to nucleation, the scaling behaviour of the two graphs are principally the same. In the

absence of a clear separation of timescales between nucleation and subsequent processes,

one must look at the starting conditions for the explosive condensation and the coarsening
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Figure 4.15: Schematic example of cluster nucleation for particle systems characterized by
rates (4.1) and (4.2). Totally asymmetric graph is shown in (a) and (b), where particles
are allowed to move in one direction only. From (a), in a hypothetical situation, particles
are assumed to make the jumps “step 1” and “step 2”, and the configuration aftermath is
shown in (b). In (b), the most likely jump is the two jumps that are marked c(3, 1). Yet if
site x5 loses a particle, it is most likely that the site behind it x4 would gain a particle from
the move η3 → η4. This means that nucleates of clusters can grow to relatively large piles
and interactions typically span through a larger proportion of the cluster compared to the
symmetric case. (c) shows the same configuration but on a symmetric graph, and particles
are assumed to make the jumps “step 1” and “step 2”. In (d), the four most likely jumps
are marked, and it is shown that particles are agglomerated along sites x3 to x5 until one
site dominates. Nucleates are therefore relatively smaller in size, and interactions are more
local.

regime to determine the completion of the nucleation regime.

Cluster nucleation begins as the particles are initialized and start to agglomerate

locally as occupied sites are directly neighbouring each other. In condensation for the in-

clusion process as d → 0, there is a clear separation of time scales for the termination of

cluster nucleation, as nucleates simultaneously grow to the point where no particles are in

the immediate vicinity of each other, or
∑

x∈Λ ηxηx+1 = 0 [54]. This does not occur for

explosive condensation models with d = O(1). The termination of the nucleation regime

is defined loosely with the onset of subsequent processes, namely coarsening or explosion.

Despite the ambiguity and the absence of separation of time scales, we can still estimate

the approximate nucleation times. Note that the scaling analysis below is applicable to both

models with rates (4.1) and (4.2).
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Figure 4.16: Estimating 〈τasym
Nu 〉. Cluster of m particles travels through a background of

ρ uniformly distributed occupancies. Blue particles indicate the particles that make up a
cluster at the beginning of the interactions. (a) at the start of the dynamics, for m = 6 and
ρ = 2. (b) i is the number of successive steps as cluster m moves through the background.
(c) Interaction finishes.

Nucleation in totally asymmetric graph

For particles distributed multinomially with large L, the distribution of particles is close to

independent binomials, and the maximum of L independent random variables with Poisson

tails is of order log L [72]. For particles distributed uniformly with ρ particles on each

site, the same argument for the Poisson process that govern the initial particle motion on

each site can apply. Since the number of events on each site up to time t is also Poisson

distributed and independent for each cite, there will be a site on the lattice where in any

finite small amount of time ε > 0, a cluster of O(log L) particles is formed by these initial

dynamics. Therefore due to fluctuations, after initialization the largest occupation number

is of order ρ log L. We follow the evolution of this fluctuation into a cluster, and estimate

the time it takes to reach a size M � log L. As explained in Sec. 4.2, the clusters move on

the lattice with rate Cmγ, where the constant C depends on the parameter of the model and

the choice of model with rates (4.1) or (4.2). The derivation in Sec. 4.2 was for a cluster on

an empty lattice, but it can be directly generalized to an environment with density ρ. The

same computation applies and only the prefactor will change depending on the density. As

a constant number of particles are gained through each interaction, the cluster will grow at

rate proportional to mγ. This process is illustrated in Fig. 4.16.

Particles nucleate to form clusters, which move along the asymmetric graph and

gain particles linearly with each successive step, as explained in Sec. (4.2.2). The maxi-

mum occupancy after nucleation, which is also the cluster that is most likely to dominate,

has mass that scales as ρ ln L. The time to reach size M can be estimated by integrating

successive times a cluster spends at size m until reaches M. These times are given by aver-

age inverse growth rates. The time for a cluster to grow from size ρ ln L to εM, where the

constant ε ∈ [0, 1), is given by
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T asym
Nu =

∫ εM

ρ ln L

1
(m)γ

dm . (4.21)

Integration yields

T asym
Nu =

1
1 − γ

m1−γ
∣∣∣∣∣M
ρ ln L

∼ (ln L)1−γρ1−2γ . (4.22)

Note that this timescale is in fact independent of the final size M � ln L, due to the

non-linearly increasing growth rate. This scaling behaviour applies for both the models that

are characterized by rates (4.1) and (4.2) respectively. This is also very similar to the scaling

behaviour obtained by Waclaw and Evans [6], which is explained in section Appendix. C.

The similarity between Waclaw and Evans’ result and T asym
Nu is because the dynamics in

totally asymmetric graphs are dominated by the nucleation process.

Nucleation in a symmetric graph

Recalling the movement of particles on symmetric graph in Fig. 4.5 over empty sites, sim-

ilar behaviour applies for clusters moving over a background with non-zero occupancies.

The rate for a cluster to move one step over the background with non-zero occupancy for

the model characterized by (4.1) or (4.2) is therefore given by Cργmγ−1, where C again

depends on d, γ and ρ.

The duration for nucleation T sym
Nu is the time required for a cluster of size ρ ln L to

grow to εM

T sym
Nu =

∫ εM

ρ ln L

1
ργmγ−1 dm ∼ (ln L)2−γρ3−2γ . (4.23)

Analogous to the totally asymmetric results (4.22), the scaling of cluster nucleation is

strongly dependent on initial fluctuation and independent of the final size of M.

4.3.3 Termination of the nucleation process

As explained in greater detail in Sec. 4.4.4, for models with explosive condensation, the

nucleation regime ends as the largest cluster grows to a critical size mc � L (see Sec.

4.4.1). Therefore both the symmetric and asymmetric nucleation would transit directly

into explosive condensation regardless of whether nucleation results in larger or smaller

nucleates for the different graphs. The exception is when mc � L for γ ∈ (2, 3) on a

symmetric graph, and this example will be explained in greater detail in Sec. 4.5.
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4.4 Explosive condensation

After passing the nucleation stage, the dynamics proceed to either the explosive condensa-

tion stage or the prolonged process of cluster coarsening. In this section, the dynamics of

explosive condensation is studied. Together with the timescale of the nucleation stage, 〈TSS〉

is estimated for both totally asymmetric and symmetric graphs and compared to numerical

results. The time evolution of explosive condensation is also studied, and we compare this

to the results obtained by Waclaw and Evans [6], which focus on explosive condensation

for the totally asymmetric graph. This is extended to the symmetric graph in this study. The

insights obtained from observations for various stages of the dynamics (Sec. 4.1) provides a

framework towards a simpler argument for a similar scaling behaviour of 〈TSS〉 as Waclaw

and Evans’ results (see Appendix. C). It should be noted that the time-scale analysis of this

subsection focuses on the large cluster relationship, and therefore are applicable for both

rates (4.1) and (4.2).

4.4.1 Explosive condensation and critical occupancy

Explosion occurs when a single cluster reaches some critical occupancy number mc, after

which it is fast enough to move across the whole lattice at a fraction of the elapsed system

time up to that point. As condensation occurs, the mass of the system quickly agglomerates

to one cluster, while the mass in the background is still close to its initial distribution at the

early stage of explosive condensation. To help us with understanding the basic key stages

of cluster evolution, we study the configuration plots.

Stage by stage configuration plots for symmetric and totally asymmetric systems

are illustrated in Fig. 4.17 and 4.18, respectively. The more detailed narration of these two

figures are further elaborated in Sec. 4.4.2 and Sec. 4.4.3, respectively. The seemingly

strange characteristic of the existence of background mass is captured in the configuration

plot of Fig. 4.17 (e), (f) for the totally asymmetric case and Fig. 4.18 for the symmetric

case.

From this point onwards, the cluster moves through mostly an empty lattice and

follows the dynamics of cluster movement as explained in Sec. 4.2.1. Note that clusters

on a symmetric graph are moving like a one-dimensional random walk, they have to make

an average of L2 steps to cover the entire lattice. In a non-stationary background and of

density ρ, the critical occupancy mc in the symmetric case is determined by a cluster with

speed (4.12) making L2 steps to cover the entire lattice in a time vanishing as L→ ∞,

L2

mγ−1
c

� TSS . (4.24)
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Figure 4.17: For totally asymmetric graph, model characterized by rates (4.1), γ = 5,
d = 0.1 and ρ = 2. For (a), (b) and (c), L = 32, and L = 512 for (d), (e) and (f). (a)
The second moment is plotted against time. Red and black lines corresponds to the instants
during the interaction where the configuration is plotted on the right hand side. (b) Particles
are concentrated into one cluster through nucleation, corresponding to the moment marked
by the red line in (a). (c) The instant when explosive condensation is about to occur. A
cluster reaches critical mass and is about to move into explosive condensation. (d) The
second moment is plotted against time. The red line corresponds to the point when explosive
condensation begins. The critical mass is reached while clusters are nucleating. (e) The time
when a cluster is about to dominate through explosive condensation. (f) Shortly afterwards,
the condensate continues to grow while the background is still populated by particles.
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Figure 4.18: For the symmetric graph, γ = 7, d = 1, ρ = 2, L = 2048, model characterized
by rates (4.2). (a) The second moment against time in the system is plotted. Explosive
condensation is observed at around t = 3.9 × 10−7. Dashed lines represent the instances
when the configuration of the system is given in (b) and (c). (b) Configuration of the system
at t = 3.56× 10−7 for a selected part of the lattice. (c) Configuration for t = 3.89× 10−7 for
the same part of the lattice.

We are interested in how mc scales in the thermodynamic limit. The scaling relationship of

mc is taken by assuming TSS ∼ O(1). Therefore, the size of critical mass mc scales as

mc ∼ L2/(γ−1) . (4.25)

Recalling that N ∼ L, this confirms that explosive condensation does not occur

for γ < 3 on the symmetric graph, as the critical mass would be mc � N. This means

that the system will not have enough mass to reach critical mass. For the totally asymmetric

case, going through similar arguments but for a cluster with speed (4.10) covering the entire

lattice in L steps, mc is given as

L
mc
� TSS ⇒ mc ∼ L1/γ . (4.26)

For the totally asymmetric case, mc � L for γ > 1. So condensation, which occurs

for γ > 2 (see. Sec. 3.4.1 and 3.4.2), is always explosive.

On symmetric graph, condensation is only explosive for γ > 3, which is schemat-

ically represented in Fig. 4.19. For γ < 3 however, mc is not reached and coarsening

dynamics takes over as nucleation finishes (as explained in Sec. 4.5).
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Figure 4.19: Schematic illustration for models that demonstrate explosive condensation on
a symmetric graph. Blue particles indicate the cluster with the highest occupancies, while
red particles indicate all other clusters. For γ > 3, (a) dashed line represents mc depicted
in (4.25), and is reached during the nucleation regime. This progresses to an explosive
condensation, (b) where black dots represent particles in the cluster that are omitted for
presentation purposes, such that the actual size of the cluster is much larger than the scale
on this diagram. For γ < 3, mc is not reached during the nucleation regime and clusters
∼ O(L) dominate until reaching stationarity.

4.4.2 〈TSS〉 on a totally asymmetric graph

The scaling for the cluster nucleation T asym
Nu ∼ (ln L)1−γ is given in (4.22). By (4.26),

the explosive regime leads to stationarity in a time smaller than some small power of L.

Therefore, 〈TSS〉 is asymptotically dominated by Tnu, and we have

〈TSS〉
asym ∼ (ln L)1−γ . (4.27)

In the thermodynamic limit L→ ∞ and γ > 2, explosive condensation is observed,

as TSS → 0. The range of γ that demonstrates explosive condensation is different to the

cases on a symmetric graph. To illustrate the microscopic difference between the totally

asymmetric and the symmetric case, a schematic example is illustrated in Fig. 4.20 for

L = 32 for γ = 2.5, d = 1 and ρ = 2, where the second moment is plotted against time with

full particle configuration displayed for several different instances. The second moment of

the stationary state is predicted by numerically evaluating (2.17).

Fig. 4.20 should be compared to Fig. 4.25, where the time for nucleation and

coarsening can be observed, instead of undergoing explosive condensation. For the totally

asymmetric case, in Fig. 4.20 (c), explosion dynamics begin to dominate after a relatively

prolonged period of nucleation. In the symmetric case, however, for the same range of γ

nucleation finishes quickly, followed by a prolonged period of coarsening. The scaling of

〈TSS〉 against L for the range γ ∈ [2, 3) is plotted in Fig. 4.21. This result is included

separately from the main results in Fig. 4.22 to highlight that explosive condensation is

observed in the range γ ∈ [2, 3) for the totally asymmetric case, while no explosion is

observed in the symmetric case, as shown in Fig. 4.26.
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Figure 4.20: For totally asymmetric graph, γ = 2.5, d = 1, ρ = 2, model characterized
by rates (4.1). (a) Second moment versus time is plotted. Red dotted line indicates the
second moment of the steady state, which is predicted by numerically evaluating (2.17).
Note that for γ > 3, σ2 diverges, which leads to large fluctuations. The configuration at
different instances are shown from (b) to (e). (b) Initializing and nucleation. (c) Nucleation
continues, and one cluster is beginning to dominate. (d) Approximately the time when mc

is reached by the largest cluster. (e) Steady state: explosive condensation ensures that the
largest clusters dominates, quickly reaching the steady state with the background density.
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Figure 4.21: 〈TSS〉 is plotted against L for γ = 2.5 (blue) and γ = 2.75 (red), d = 1, ρ = 2,
totally asymmetric graph for the model characterized by rates (4.1). Theoretical results
(4.27) for γ = 2.5 and γ = 2.75 are plotted as the solid line.
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The evolution of σ2(t) is compared for γ = 5 on the totally asymmetric graph

in Fig. 4.17, with two different L, alongside with configuration plots at different times

during the interaction. For Fig. 4.17 (a) - (c), notice that nucleation is approaching the end

relatively earlier on, as the overall mass in the system is a limiting factor to reach m0 in

small systems. This is compared to the L = 512 case, for a higher system size, nucleation

dynamics dominates up to the point of a single cluster reaches the critical mass. This is

illustrated in Fig. 4.17 (d) - (f).

The scaling of 〈TSS〉 on the totally asymmetric graph for γ > 3 is presented in Fig.

4.22, where the theoretical results are given by (4.27).

4.4.3 〈TSS〉 on the symmetric graph

The scaling for the cluster nucleation is T sym
Nu ∼ (ln L)2−γ. Since for γ > 3 the critical cluster

size m0 � L, this again dominates the time to stationarity and

〈TSS〉
sym
γ>3 ∼ (ln L)2−γ . (4.28)

The second moment against time for γ = 7, L = 2048 for the model characterized

by rates (4.2) on a symmetric graph is plotted in Fig. 4.18 (a). Configurations of this

simulation are shown in Fig. 4.18 (b) and (c).

For Fig. 4.18 (a), the simulation has been terminated before reaching stationarity,

as it has demonstrated that the highest occupancy has reached the critical mass mc, as made

clear in the subsequent configuration graphs. Explosive condensation is observed at around

3.9 × 10−7, and the configuration is plotted at two instances prior to condensation. In Fig.

4.18 (b), the nucleation process dominates, and a cluster with size ∼ 20 is observed to

be higher than most other occupancies. In Fig. 4.18 (c), the cluster previously observed

has gained sufficient mass to dominate and swallows clusters in its vicinity. Note that the

configuration of the system is largely unchanged otherwise; the scaling of 〈TSS〉 on the

symmetric graph for γ > 3 is presented in Fig. 4.23.

4.4.4 σ2(t) for explosive condensation

Having confirmed numerical results for 〈TSS〉 for models that demonstrate explosive con-

densation, we now look at the time-dependent evolution of the system. The evolution of

σ2(t) is considered for γ > 3 in the symmetric graph case. For the models characterized by

rates (4.1) and (4.2), the rate D of gaining particles from an exchange is given by

D = mγ−1C(d, ρ) ∼ mγ−1 , (4.29)
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Figure 4.22: Plots of TSS against L for totally asymmetric graphs. Columns A-B: For
models characterized by rates (4.1) and (4.2) respectively. Rows 1-4: γ = 5 d = 0.1, γ = 5
d = 1, γ = 7 d = 0.1 and γ = 7 d = 1. Error is comparable to the size of markers if not
indicated. Dashed lines are corresponding theoretical results given by (4.27).
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Figure 4.23: Plots of TSS against L for symmetric graphs. Columns A-B: For models char-
acterized by rates (4.1) and (4.2) respectively. Rows 1-4: γ = 5, d = 0.1, γ = 5, d = 1,
γ = 7, d = 0.1 and γ = 7, d = 1. Error is comparable to the size of markers if not indicated.
Dashed lines are corresponding theoretical results given by (4.28).
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where mγ−1 on the left hand side is the step rate of the cluster derivation in Sec. 4.2.

Note that this is an estimation of D for early stages of nucleation, where 〈ηγx±1〉 ∼ O(1),

as opposed to the stationary state where this would diverge. The critical cluster size was

derived in (4.25) to be mc = L2/(γ−1), which is consistent with (4.29). The evolution of the

occupancy for a typical cluster is given by the differential equation

d
dt

m(t) =
D

m(t)
= Cmγ−2(t) , (4.30)

which can be solved to give

m(t) =
[
m3−γ

0 + (3 − γ)Ct
]1/(3−γ)

. (4.31)

Since γ > 3, this leads to the system having a finite “blow-up time” tbu < ∞, where

as t → tbu m(t)→ ∞. Writing the dynamics in terms of tbu gives

m(t) =
[
C′ (tbu − t)

]− 1
γ−3 , (4.32)

where C′ = (γ − 3)C and tbu = m3−γ
0 /(C(γ − 3)). So the time required for a cluster to

“blow-up” once reaching mc is given by setting m(0) = mc, and substituting (4.30) leads to

tbu ∼ L−
2(γ−3)
γ−1 ↘ 0 . (4.33)

So for γ > 3 and increasing system sizes, the blow-up time vanishes, which is

consistent with explosive condensation. Note that m(t) can never reach infinity due to finite

size and saturates at m(t) = (ρ − ρc)L. Since tbu vanishes as a power with the system

size L, 〈TSS〉 is dominated by initial dynamics to reach mc, which is ∼ (ln L)2−γ. This

is consistent with the timescale analysis in (4.23). The time evolution of the model that

displays explosive condensation is compared to numerical results in Fig. 4.24. This is

derived as

σ2(t) = (ρ − ρc)m(t) = (ρ − ρc)
[
C′ (tbu − t)

]− 1
γ−3 , (4.34)

which gives a theoretical prediction for σ2(t) with (4.32).

The dynamics of a typical cluster in a totally asymmetric system can also be deter-

mined using similar arguments. The dominating cluster move in one direction in the totally

asymmetric graph. The background particles have an average size of 〈ηγx±1〉 ∼ O(1). For a

cluster moving across the lattice with speed mγ with an average ∆m = 0.5 ∼ O(1), as shown

in Sec. 4.2.2, the evolution of the occupancy for a typical cluster is given by
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dm
dt

= Cmγ , (4.35)

which can be solved to give

m(t) =
[
m−γ+1

0 − (γ − 1)Ct
]1/(−γ−1)

. (4.36)

Substituting m0 = mc from Eq. (4.26), the blow up time after reaching critical mass is given

by

tsym
bu ∼ L−

(γ−1)
γ ↘ 0 , (4.37)

and this vanishes for large L, which is consistent to the speed of which explosive condensa-

tion occurs.

4.5 Cluster Coarsening

Cluster coarsening is the period of interaction where clusters of size ∼ O(L) dominate. As

demonstrated in the previous sections, there are two paths to reach the system steady state.

Following from the nucleation stage for γ ∈ (2, 3) on the symmetric graph, we recall that

the critical mass mc � L. This means that nucleation is able to finish completely without

reaching the critical occupancy number required for explosive condensation. Several clus-

ters of macroscopic size O(L) emerge, and they start exchanging particles. The coarsening

process continues until the system reaches stationarity. In this section, the time scales of

coarsening and nucleation are compared and 〈TSS〉 is estimated. This is compared to the

numerical results, and the scaling is distinctively different from the results obtained for ex-

plosive condensation. A time-evolution model for the microscopic interactions during the

coarsening process is then proposed.

4.5.1 〈TSS〉 for γ ∈ (2, 3) on a symmetric graph

For totally asymmetric graphs, cluster velocity scales as v(m) ∼ mγ (see Sec. 4.2.1), and

therefore clusters with higher mass collide with lower mass clusters from behind. In doing

so, a constant amount of mass is gained in each collision (see Sec. 4.2.2). Let the time for

coarsening to finish be TCo. The scaling of TCo can be computed by estimating the time for

a cluster to cover the entire empty lattice.

The step rate of clusters for the model characterized by rates (4.1) and (4.2) on a

symmetric graph are given in (4.12) and (4.18) respectively. Since clusters on a symmetric

graph move like a one-dimensional random walk, they have to make an average of L2 steps

79



0 20 40 60 80
0

20

40

60

80

100

120
(a)

σ
2
(t
)

t

0 10 20 30
0

2

4

6

(b)

x

η(
x
)

t = 0

0 10 20 30
0

2

4

6

8

10

12
(c)

x

η(
x
)

t = 0.3

0 10 20 30
0

5

10

15
(d)

x

η(
x
)

t = 2

0 10 20 30
0

10

20

30

(e)

x

η(
x
)

t = 18

Figure 4.25: For symmetric graph, model characterized by rates (4.1), γ = 2.5, d = 0.1,
L = 32 and ρ = 2. (a) σ2(t) is plotted. Condensation is not observed, and the rapid “hike” in
the second moment in the end corresponds to two clusters merging, which is a characteristic
feature for cluster coarsening. The configuration at different times are plotted from (b) to
(e). (b) At t = 0, particles are initialized on the lattice multinomially. (c) Within a relatively
short period of time compared to overall TSS, the nucleation state is completed, as several
clusters ∼ O(L) are formed and surrounded by empty sites. (c) and (d) Coarsening process
continues for a relatively long period.

to cover the entire lattice. Recalling N ∼ O(L), the estimate for symmetric graph coarsening

time T
sym
Co is given as

T
sym
Co ∼ L2N1−γ ∼ ρ1−γL3−γ . (4.38)

For the symmetric graph for γ ∈ (2, 3), the nucleation and coarsening times are

given by T sym
Nu ∼ (ln L)2−γ, as shown in (4.23), and T

sym
Co ∼ L3−γ respectively. In the thermo-

dynamic limit L → ∞, T
sym
Co � T sym

Nu , which suggests the nucleation stage is followed by a

prolonged coarsening stage. This is illustrated in the numerical example given in Fig. 4.25.

In Fig. 4.25 (a), the second moment versus time for one simulation for γ = 2.5 is plotted,

and the corresponding configuration diagrams are plotted in Fig. 4.25 (b) - (d). Coarsening

dynamics dominate as the process of nucleation finishes much quicker. Since T
sym
Co � T sym

Nu ,

the time to condensation can be approximated by the contributions of the coarsening stage

only

〈TSS〉
sym
γ<3 ∼ L3−γ . (4.39)

Critical densities increase for increasing γ’s, and can reach ρc ≈ O(1). Since γ > 3,
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Figure 4.26: TSS against L for the model characterized by rates (4.1), d = 0.1, ρ = 2,
symmetric graph, γ = 2.5 (blue) and γ = 2.7 (red). The dashed blue and red lines indicate
the scaling behaviour (4.39) for large L. Threshold sensitivity measure a is defined in (4.40).
(a) For d = 0.01, a = 5, (b) for d = 0.01, a = 10, (c) d = 0.1, a = 5 and (d) d = 0.1, a = 5.

the second moment of the background distribution 〈η2
x〉 = ∞ diverges (see Sec. 3.4), and

to account for these fluctuations and constraining computation times, a threshold for which

the system has reached stationarity is used. For the second moment σ2(t), a system is

considered to have reached stationarity when it reaches a threshold value given by

ρ2L − a(ρcL)3−γ , (4.40)

with a correction that is � L, where a is a positive constant that controls the sensitivity

of the system to fluctuations. The scaling behaviour of TSS is compared to the numerical

results in Fig. 4.26. As shown in Fig. 4.26, a relatively low d is chosen since this improves

simulation speed, still d � 1/ρL especially towards the results for large L. The numerical

results show good agreement with the time to steady state scaling in (4.39).

4.5.2 Symmetric Coarsening

The first attempt to solve for the time-dependent second moment is by applying the gen-

erator to the observable η2
x, as analogous to the derivation of the inclusion process in Sec.
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Figure 4.27: Schematic representation of coarsening dynamics for symmetric graph. This
represents a typical but simplified version of cluster coarsening, assuming that explosive
condensation is not reached (see Sec. 4.4). n(t) clusters of average size m(t) are formed,
separated by distance X, and move on a lattice with background density (represented red
particles) exchanging particles between them.

3.3.1. As recalled from (2.9), using f (η) = η2
x

Lη2
x =

[
η
γ
x(d + η

γ
x+1) + η

γ
x(d + η

γ
x−1)

]
(1 − 2ηx)+[

η
γ
x−1(d + η

γ
x) + η

γ
x+1(d + η

γ
x)
]

(1 + 2ηx) ,
(4.41)

and with σ2(η) = 1
L
∑

x∈Λ η
2
x, the following is obtained

Lσ2(η) =
∑
x∈Λ

η
γ
x

[
η
γ
x+1 + d(1 − ηx)

]
. (4.42)

It is hard to see what are the dominating terms and how to close this equation in a

meaningful way. Therefore, an independent mean-field derivation for the average cluster

size m(t) is introduced. Fig. 4.27 is a schematic representation of a typical configuration

for cluster coarsening on a symmetric graph, assuming that explosive condensation is not

reached.

Let there be n(t) clusters of typical size m(t) ∼ O(L) that roam on the lattice embed-

ded in a background density. The total mass contained in clusters is given by

n(t)m(t) = (ρ − ρc)L . (4.43)

The attempted jump rate of a cluster would be given by mγ(d + 〈η
γ
x±1〉). The term 〈ηγx±1〉

signifies stationary expectation of neighbouring sites. Recall from (2.12) that weights W(n)

decay like n−γ. Principally

〈η
γ
x±1〉 =

1
Z

∞∑
n=0

W(n)nγ ∼
1
Z

∞∑
n=0

1 = ∞ . (4.44)
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However, since it is assumed that bulk sites are smaller than clusters of size m(t), as

illustrated in Fig. 4.27, the sum can be stopped at m(t) ∼ L. Therefore, the attempted jump

rate would be mγ+1. Only every 1/mth attempt is successful as discussed in Sec. 4.2, and

the rate of a successful cluster step would be mγ. The time for two clusters to meet on a

symmetric graph is X2/D, where the average distance X between clusters is

X =
L

n(t)
=

m(t)
ρ − ρc

. (4.45)

The rate of two clusters meeting is therefore

1
τ
∼ D/X2 ∼ mγ−2(ρ − ρc)2 . (4.46)

Two clusters merge with possibility 1/m upon collision. Should this occur, the change in

the number of clusters would be given by

n(t)→ n(t) − 1 = nnew(t) . (4.47)

Thus (ρ− ρc)L = nnew(t)mnew(t) = mnew(t)(n(t)− 1), and the average growth of cluster sizes

is given by

mnew(t) − m(t) =
m(t)

m(t) − 1
=

m(t)2

(ρ − ρc)L − m(t)
∼ m(t) . (4.48)

This signifies that the mean cluster size changes proportionally to m(t) when two

merge, which happens with probability 1/m. The time evolution of a typical cluster in

coarsening can then be written as

d
dt

m(t) = C
D
X2

1
m(t)

m(t) =C(ρ − ρc)2mγ−2(t)

=C′mγ−2(t) .
(4.49)

Solving (4.49) with γ ∈ (2, 3), we get

m(t) = Ct
1

3−γ . (4.50)

We now consider the connection of m(t) to 〈σ2(t)〉. Following the description in

Fig. 4.27, where clusters are interacting on a lattice embedded with background density,

σ2(t) is written as

σ2(t) =

〈
1
L

∑
η2

x

〉
=

L − n(t)
L

〈η2
x〉 +

n(t)
L

m2(t) , (4.51)

where once again 〈η2
x〉 = ∞ for γ ∈ (2, 3) but 1

L
∑
η2

x ∼ Lα for some α < 1. So the term
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L−n(t)
L

∑
x∈Λ η

2
x � L can be neglected for non-cluster sites. Using 4.43 σ2(t) = (ρ − ρc)m(t)

is proportional to m(t). The second moment is therefore

σ2(t) = C(ρ − ρc)t
1

3−γ . (4.52)

This is compared to simulated results in Fig. 4.28, where two examples are pro-

vided. We see that the predicted exponents in (4.52) are consistent with the data for large

times. For comparison, other exponents with better fits are also plotted, and a full numerical

confirmation of (4.52) would require data for larger system sizes which are computationally

difficult to obtain. Still, we think that our results in Fig. 4.26 and Fig. 4.28 convincingly

show that 〈TSS〉 diverges with increasing L for γ ∈ (2, 3) on a symmetric graph. Condensa-

tion is therefore not explosive, in contrast to results for totally asymmetric dynamics.

4.6 Cluster Stability

In coarsening dynamics on a symmetric graph for γ ∈ (2, 3), the mass of a cluster is assumed

to be conserved as it travels through empty lattice sites. Clusters may spontaneously “split-

up” and the probability of this occurring is discussed in this section. Cluster splitting-up

is a bi-fold process, where a successful split-up requires a cluster to first disintegrate into

two or more separate clusters, and subsequently fail to re-merge. The second part of the

splitting-up process is characterized by the probability of the two clusters drifting away to

a distance ∼ m apart:

1. Splitting: When a cluster divides without interaction with other clusters, and it forms

two clusters. The two clusters are separated by one empty site.

2. Drifting: For a cluster of mass m and that has already been split into two, drifting

occurs when the two clusters successfully diffuse away from each other, separated by

a distance ∼ m without re-merging with each other in the process.

In this section, the rates of splits on the symmetric graph for the models with rates

(4.1) and (4.2) are computed, and the total number of drifts during coarsening time 〈T 〉sym
Co

are estimated.

For the models studied in this thesis, a schematic representation of the process for

cluster splitting on a symmetric graph is illustrated in Fig. 4.29. As a cluster moves through

the lattice, its mass m is distributed over two lattice sites over some period of time, with sizes

m − k and k, respectively. During this time, a particle may hop in the opposite direction,

which may trigger a break-up step in the other direction, as illustrated in Fig. 4.29 (a) and

(b). Should this step attempt be successful, the cluster splits into two separate clusters, and
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Figure 4.28: 〈σ2(t)〉 against t, symmetric graph, for model characterized by rates (4.2).
Dashed lines represents σ2
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Figure 4.29: Schematic illustration of a cluster splitting on symmetric graph. The occu-
pancy number is labelled at the bottom of each of the sites displayed. (a) A typical scenario
while a cluster with mass m moves along the lattice, a fraction of the cluster’s mass k is
moved to a neighbouring site. The process of a cluster splitting may be triggered if the
red particle hops to the opposite direction (step 1), as opposed to moving in the direction
towards the pile with k particles (step 2). If the red particle has hopped left: (b) In this sce-
nario, the rates of step 3 and 4 are roughly the same. Therefore, the dynamics between the
left and the centre cluster follows a one-dimensional symmetric random walk. The clusters
would successfully split after an average of ∼ m tries. (c) Should a split be successful, the
resulting configuration is illustrated. (d) If “step 2” is taken instead of “step 1”, a similar
argument from (a) to (c) dictates that the purple particle has ∼ 1/m chance of splitting away
from the centre cluster, but now with the split being m − k − 1 and k + 1 in size.

their sizes would be related to the fraction of mass k transported when a particle decides

to hop in the opposite direction. The probability of split is, therefore, the time spent while

the cluster is in the middle of a step multiplied by the rate at which the rest of the jump in

the opposite direction is successful. The notation v(m− k) is the rate of a successful second

jump. We write the probability of split as

psplit =

m∑
k=1

v(m − k)Tk,m . (4.53)

Note that this probability would be a slight overestimate, as the time contributions from the

subsequent steps following a successful second jump are ignored.

In the models of this study, clusters are always embedded in a non-empty back-

ground with density ρc ∼ O(1). Splits with sizes ∼ O(1) do not therefore constitute a part

of the macroscopic dynamics. To ensure that only macroscopic splits are measured, the

window of times for split-up cluster moves is selected as
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psplit =

(1−ε)m∑
k=εm

v(m − k)Tk,m =

(1−ε)m∑
k=εm

v(m − k)
(m − k)γkγ

. (4.54)

ε is introduced to distinguish splits with size ∼ O(m), whose presence can influence the

macroscopic dynamics of the system and contradict the assumption that cluster mass is

almost always conserved. The rate at which the second jump is successful is given by

v(m − k) = (m − k)−1

m−k∑
i=1

1
(m − k − i)γiγ


−1

∼ (m − k)γ−1 . (4.55)

The derivation of (4.55) is similar to the derivation of the velocity of a cluster on

a symmetric lattice, which is computed in (4.17) and (4.18). Substituting this result and

taking k/m = x and dk = mdx, (4.54) can be integrated by taking m → ∞ using the

Euler-Maclaurin equation

psplit =

∫ 1−ε

ε

dx
(1 − x)−1xγ

=

∫ 1−ε

ε

mdx
mγ+1(1 − x)xγ

. (4.56)

This is further simplified to give

psplit = m−γ
∫ 1−ε

ε

dx
xγ − xγ+1 . (4.57)

Given ε ∈ [0, 1) and γ > 2 and that we are interested in the scaling of m only, the leading

term in Eq. (4.57) is integrated over and this gives

psplit ∼ m−γε1−γ . (4.58)

Depending on the choice of ε, psplit is given as

psplit ∼

 m−1 for ε ∼ 1
m

m−γ for ε ∼ 1 .
(4.59)

Measuring psplit numerically requires a choice of ε such that smaller clusters that

contribute to the background density ρc would not be counted. The choice ε = 1/m in (4.59)

represents the probability of all splits, including smaller splits. For the macroscopic splits,

which is the focus of this section, ε ∼ O(1) is used, which means that psplit ∼ m−γ. ε is

carefully chosen such that εm > ρc, where ρc is the critical density of the system.

Numerically, psplit is not determined in a straightforward way, as a cluster may

split into multiple clusters of size O(1) or move along the lattice without ever reaching∑
x∈Λ ηxηx+1 = 0. To estimate psplit, the system is initiated by firstly placing all particles on

site x = 0. The system is allowed to run until:
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γ = 3, symmetric, ǫ = 0.2
γ = 4, symmetric, ǫ = 0.2
km−b, b = 3, k = 90.0
km−b, b = 4, k = 245

Figure 4.30: For d = 1, model characterized by rates (4.2), symmetric graph. psplit for
ε = 0.2 is plotted against initial cluster size m. The theoretical results given in the dashed
lines following (4.59). Critical density is ρc = 0.701 and ρc = 0.212 for γ = 3 and γ = 4,
respectively.

• When (1 − ε)m is found at either one of the two neighbouring sites of x = 0. This

would count as a normal step of a cluster, and no split would be counted, or

• when any two sites of the system have mass that exceeds εm, and these two sites are

not nearest neighbours. This case would count as a split.

The numerical results illustrating the scaling behaviour between psplit and m are

shown in Fig. 4.30. Notice that the scaling in Fig. 4.30 follows (4.59), but has a slightly

quicker rate of decay. This might be a consequence of underestimating the time required

for the cluster to have a successful second step, as indicated when deriving (4.53). Since

the probability of split psplit is the chance that a split would occur when a cluster is moving

one step a lattice, the rate of split is given by

rsplit = v(m)psplit , (4.60)

where v(m) is the rate of a cluster step, which is determined in (4.18). Recalling that m ∼

O(L) towards the end of dynamics, and substituting the second part of (4.59) into (4.60)

gives

rsplit ∼ mγ−1m−γ = m−1 ∼ L−1 . (4.61)
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Figure 4.31: psplit versus m for the model characterized by rates (4.1), d = 0.5, on symmetric
graph. Numerical results for different values of γ are shown with error comparable to
symbol sizes. Theoretical results for γ = 2.25 and γ = 4 are given by (4.59) with ε ∼ 1/m,
plotted as solid lines.

As L → ∞, the rate of split rsplit → 0. Cluster splitting takes part during coarsen-

ing dynamics only, and the coarsening time on the symmetric graph scales as ∼ L3−γ, as

computed in Sec. 4.5. The total number of clusters breaking up Nbr in this time scale is

therefore given by

Nbr ∼ L−1L3−γ = L2−γ . (4.62)

For γ > 2 and L→ ∞, the number of macroscopic splits diminishes. An interesting

case arises when γ < 2, Nbr increases with L. This would lead to a diverging background

density, and corresponds to the results derived from the stationary product measures, where

condensation occurs only for γ < 2 as explained in Sec. 3.4.1. For completion of the

discussion of cluster stability, psplit for ε ∼ 1/m is also numerically measured in Fig. 4.31,

where the difference in scaling behaviour can be compared to Fig. 4.30. The probability of

split scales as psplit ∼ m−1, and no γ dependency is observed.

Similar to the derivation for the rate of splits in (4.61), the rate of splits for ε ∼

1/m would be ∗pε∼1/m
split ∼ mγ−1m−1 = mγ−2 ∼ Lγ−2. The total number of splits during a

coarsening process if smaller split clusters are counted as well. This is given as

Nbr ∼ Lγ−2L3−γ = L . (4.63)
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Note that this result encompasses splits of all sizes, with the majority of them being

clusters with mass ∼ O(1). This means that the rate of particle accumulation of a macro-

scopic cluster is of the same scale as the rate of splitting into smaller clusters of size O(1),

which is consistent with the fact of having non-zero background density.

4.7 Discussion

This Chapter is a study of the microscopic dynamics leading to stationarity for the varia-

tions to the explosive condensation model, where the rates are introduced in (4.1) and (4.2).

We focus on the γ > 2 range, where condensation is expected from the scaling of station-

ary weights (see Chapter 3). It should be noted that the models studied in this Chapter

are translationally invariant, and we consider the thermodynamic limit of diverging lattice

size and particle number with a fixed density. Other heuristic studies of condensation in

homogeneous interacting particle systems include results on the ZRP [24, 26, 69, 73, 74],

IP [23, 54, 57] and the ECP case [6, 59]. We are motivated by the findings of Waclaw

and Evans, and want to find a more detailed characterisation of the formation of explosive

condensates, including also the case of symmetric dynamics which has not been studied so

far.

Explosive condensation and cluster coarsening are two processes observed in mod-

els with rates (4.1) and (4.2), and the dynamics of both processes are largely driven by

cluster interactions. Before going into the timescale studies of each process, we explore

the physical properties of clusters (see Sec. 4.2). Our cluster dynamics findings resembles

Evans and Waclaw in the totally asymmetric case but have extended them for symmetric

graphs as well. We introduce the concept of a critical occupancy number and provide the

scaling with the system size. As a cluster grows to a critical occupancy number, it is able to

cover the entire lattice in a very short period of time and accelerates as it continues to gain

mass. With the understanding of clusters and the scaling of critical occupancy number, a

scaling for the times for coarsening and nucleation are estimated.

The nucleation-coarsening model leads to a straightforward and comprehensive ex-

planation of the scaling of the time to stationarity 〈TSS〉, arriving to the same scaling as

the one proposed in [6] for the totally asymmetric case. The distinction between cluster

nucleation and coarsening is not studied in [6, 59], because this only becomes significant

for symmetric cases. We observe a rich behaviour for symmetric cases, depending on the

system parameter γ. For γ ∈ (2, 3), 〈TSS〉 increases with system size, whereas for γ > 3,

〈TSS〉 → 0 for L→ ∞.

The two scenarios to condensation are presented separately in this Chapter (Sec. 4.3

- Sec. 4.5), in which we often interchange within the discussions with different graphs. To
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have a coherent picture of the paths to stationarity in different ranges of γ and graphs, we

summarize these results in Table 4.4. This can be read in conjunction with Sec. 4.1, where

the multi-stage model leading to condensation is outlined in more detail.

Graph / range of γ 0 < γ < 2 2 < γ < 3 γ > 3

Symmetric
No

Condensation
Coarsening

Condensation
Explosive

Condensation

Totally Asymmetric
No

Condensation
Explosive Condensation

Table 4.4: Summarising results in Chapter 4, listing the paths to stationarity for different
range of γ and graph in the thermodynamic limit. The dynamics of coarsening condensation
is illustrated in Sec. 4.5 and explosive condensation in Sec. 4.4. For the dynamics for γ < 2,
where there is no condensation, which is established in Chapter 3.

From this multi-stage model, the explosive condensation scaling behaviour for 〈TSS〉

is derived (4.27) for the totally asymmetric case, and is extended to the symmetric case in

(4.28). For both results, the time to condensate goes to zero as L → ∞, which is counter-

intuitive from a physical perspective. This was first proposed in [6], but is confirmed for

both symmetric and totally asymmetric cases with a detailed analysis.

In the future, similar systems for inhomogeneous cases and where mass is not con-

served can be studied. Other variants of the model, such as one where the convergence

critical densities depends on both γ and d can be studied (see Chapter 6).

For the findings of this Chapter, obtaining numerical results for L > 103 for symmet-

ric graph cases are particularly difficult. To overcome the issue, we introduced a method that

preserves stochasticity in particle exchange but also greatly simplifies simulating a moving

cluster. This method is used for cases with explosive condensation only, and is explained

further in Chapter 5. The main numerical results, such as Fig. 4.14, 4.21 - 4.24 are all

obtained using this method.
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Chapter 5

Numerical methods in explosive
condensation

5.1 Introduction

The standard approach in simulating continuous-time Markov processes is by implement-

ing the Gillespie algorithm, which was first introduced to solve continuous-time chemical

systems [75]. Applications of the algorithm, alongside other numerical techniques [76],

have since been applied to a wide range of simulations including the study of interacting

particle systems. The numerical findings in Chapters 3 and 4 follow the broad strokes of

such methods. However, as heuristic results derived in cluster interactions (see Sec. 4.2)

emerge, several novel simplifications in the numerical methods can be implemented. From

these novel simplifications, we develop a new algorithm for simulating Interacting Particle

Systems. This algorithm can reduce simulation time by several magnitudes yet preserving

the stochastic characteristics of the simulation. The new algorithm is used throughout this

thesis and has also been adopted in other interacting particle systems research [54]. In this

thesis, the new method are used especially for obtaining simulation results for higher L in

the symmetric graph, where there is explosive condensation. In this Chapter, the founda-

tions of the numerical methods in this thesis are outlined, together with discussions of its

accuracy and limitations.

5.2 Exact stochastic simulation

Monte-Carlo simulation in this study uses the Fast Mersenne Twister [77, 78] for generat-

ing pseudo random numbers. Numerically simulating a continuous-time Markov process

requires a reliable method to update times and the occupancy of states with a given set of
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rates. For a one-dimensional particle system with state space X ∈ NΛ, lattice Λ with finite

size L and rates for interactions to take place where state space changes from η to η′, we

can simulate the changes of the occupancy throughout time using the Gillespie method [75]

(or the Bortz-Kalos-Lebowitz algorithm [79]) directly with the information of the profile

of rates c : {ci, where i ∈ Λ} without using the master equation. This method provides a

simple and statistically accurate trajectory for stochastic simulation. This involves a simple

update of the system time, where for the total rates of the system R =
∑

i, j∈Λ rx,y, the update

of the system time is simply

∆t = −R−1 ln(u) , (5.1)

where u is a random number with uniform distribution on u ∈ (0, 1). The exact algorithm is

presented in Appendix B.1. Binary tree search is used to optimize the efficiency of Monte-

Carlo method over a large graph, as depicted in Appendix B.2.

Several issues arise when attempting to obtain numerical results for systems with

explosive condensation. Firstly, while Waclaw and Evans computed results for L ∼ L3 for

the totally asymmetric case, obtaining results for L > 103 in the symmetric case is extremely

difficult. This is explored further in Sec. 5.3, where a new algorithm is introduced. For most

of the results in Chapter 4 with explosive condensation, this new algorithm has been used.

Discussions of its reliability and improved efficiencies are presented in Sec. 5.3.3.

Averaging over regular observable intervals

The other problem is the study of time-evolution observables f (t) in the realms of clus-

ter condensation. Studying observables over pre-defined time-intervals is the standard ap-

proach to studying a converging set of results. However, as computation time drastically

increases for large L during explosive condensation (see Sec. 5.3.1), the problem is twofold.

Firstly, having fixed time intervals means that systems that have reached stationarity would

have to continue to run for a long period of time. Secondly, explosive condensation has a

characteristic long nucleation time followed by an abrupt explosive condensation. Ignoring

negligible effects from a rare split from a moving cluster, observables such as σ2 and ηmax

are strictly increasing functions that are dependent on the evolution of the largest cluster.

Four individual plots of σ2(t) are plotted in Fig. 5.1.

After varying periods of cluster nucleation, the system reaches condensation com-

paratively quickly once ηmax reaches a critical value mc as derived in (4.25). The times to

condensation are evidently strongly dependent on the distribution of nucleation times. Av-

eraging σ2 over time produces a poor estimation of 〈TSS〉 as it discounts the contributions

of distributed nucleation times to TSS. Therefore, for cases with explosive condensation,
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Figure 5.1: Four instances σ2(t), γ = 5, d = 0.1, symmetric graph, ρ = 2, L = 64 for
model characterized by rates Eq. (4.1). Each instant shows a prolonged waiting time and an
abrupt condensation process. Averaging over regular intervals of time would fail to capture
the characteristic abruptness.

we measure the times when regular and successive observables are reached. The averaged

results will be computed by averaging the different times instead of averaging the observ-

able over regular times. This method has been used to obtain results for σ2(t) and ηmax(t)

for cases with explosive condensation.

5.3 Simplification of piles of effective cluster dynamics

For some of the numerical simulations in Chapter 4, simplifications on the original imple-

mentation of the Gillespie method are made. In this section, the method is outlined, together

with a discussion on its efficiency, reliability and limitations.

5.3.1 Simulating large system sizes L

Let Ω be the total number of steps for a simulation to run from start to finish, such that a step

is a numerical process that corresponds to the smallest change on the system configuration

η. In the framework of the Gillespie method, one step corresponds to the movement of a

particle to its neighbouring site. We first discuss the number of steps for the simulations

executed in Chapter 4.

For ρ > ρc, stationarity is reached through two different mechanisms that are out-

lined in Sec. 4.1. Both these methods start from cluster nucleation, where particles of size
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〈m〉 ∼ ρ ∼ O(1) start to interact with each other and grow in size. This process terminates

either by reaching cluster coarsening or explosive condensation, which have cluster sizes

diverging with L.

For the totally asymmetric case, clusters move in the same direction. Clusters grow

by moving across the system. m particles require m steps and there are L steps to cover the

entire lattice, the total number of steps for the nucleation stage is ∼ mL. Since m ∼ O(1) for

the nucleation stage, therefore Ω
asym
Nu ∼ L. However, as the clusters grow and the dynamics

are more cluster-dominated, clusters have size m ∼ O(L). The number of steps to finish

cluster coarsening or condensation is unchanged at ∼ mL. Focusing on the case for a system

with explosive condensation, from Sec. 4.2.2, it is understood that clusters gain ∼ O(1)

particles from each collision. As particles in the background when a single condensate

dominates are of mass ∼ ρ, this means ΩCo
asym ∼ L2. Therefore for large L

Ωasym ∼ L2. (5.2)

For the symmetric case, the same arguments can be used. Since particles can move

in both directions, the movement of a cluster of particles with size m requires m attempts

to successfully move itself across a lattice space. L2 steps are required to cover the entire

lattice. Therefore for the nucleation stage to finish, it requires ∼ m2L2 steps. Similar to the

arguments for the totally asymmetric case, m ∼ O(1), therefore Ω
sym
Nu ∼ L2. For clusters of

size m ∼ O(L) to cover the entire lattice, Ω
sym
Co ∼ m2L2 = L4 steps are required. Therefore

the overall number of steps for a symmetric graph to reach stationarity is given by

Ωsym ∼ L4. (5.3)

For both the symmetric and totally asymmetric case, coarsening and condensation

dynamics would take much longer to complete, when compared with the nucleation dy-

namics. In Waclaw and Evans’ [6, 59] original studies for totally asymmetric cases, they

are typically numerically evaluated up to L ∼ 103 ∼ 104. For original implementations of

the algorithm depicted in Appendix B.1, results beyond L ∼ 102 for the symmetric cases

and L ∼ 103 for the totally asymmetric case were extremely expensive to obtain. In order

to have a better understanding of the scaling behaviour of TSS with L, modifications of the

numerical methods are required.

5.3.2 Interchanging between cluster movement and collision

From Sec. 4.2 and Sec. 4.6, properties of a cluster from a microscopic perspective are better

understood. These properties are vital in adapting the algorithm for greater efficiencies.

Firstly, we note that the mass of clusters are largely preserved until collision. Secondly,
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the rate of entire clusters moving across lattice spaces can be accurately predicted for both

asymmetric and symmetric systems (see Sec. 4.2.1), where clusters with mass m transports

all its mass to a neighbouring site with rate ∼ mγ for the totally asymmetric case, and

∼ mγ−1 for the symmetric case. This property is used to improve numerical efficiencies for

later parts of the dynamics, namely the coarsening and the explosive condensation stage.

For the later parts of system dynamics, where interactions are dominated by clus-

ters, transportation of an entire cluster can be simplified as one step by using the rates of

cluster movement. In this case, the scenario in Fig. 4.4 and Fig. 4.5 can be replaced by

a single numerical step. Clusters are therefore regarded as independent entities each with

non-zero rates, which characterises a separate continuous-time model. Updates on the con-

figuration space would involve the movement of entire clusters instead of a unit of mass.

The interactions thereby enters a purely cluster-centric phase, in which the computationally

intensive process of particle-particle movement of clusters can be substituted by a single

step.

Cut-off and cluster-cluster interactions

There remain two questions. Firstly, switching to a completely cluster-centric model is only

accurate if clusters are well separated. During the nucleation phase, occupants on the con-

figuration are of size m ∼ O(1). The estimation of cluster speeds are only accurate for when

the dynamics are dominated by the movement of large clusters of size m ∼ O(L). Therefore,

a cut-off time for when large clusters dominate should be identified. Our algorithm should

therefore switch from a particle-particle interaction to cluster-cluster interaction upon a

good cut-off time. Secondly, it is true that the movement of clusters over empty lattice

sites can be easily predicted by the said method above. However, the stochasticity of mass

exchange in cluster-cluster interactions is hard to predict (c.f. Sec. 4.2.2).

We first consider the question of the switch-time. In the explosive condensation

model, there is no clear cut-off between cluster nucleation and its subsequent stages. The

simple solution is to use a stricter cut-off condition. The most straightforward method is to

switch methods when there are no two non-zero clusters neighbouring each other. This is

the case when nucleation has strictly finished, such that

∑
x∈Λ

ηxηx+1 = 0 . (5.4)

As explained in Sec. 4.2.2, the transfer of mass ∆m(m1,m2) between clusters with

size m1 and m2 has no simple solution. While for m1 � m2 in the totally asymmetric case,

∆m ∼ 0.5 for mγ
2 � d, there [59]. For the symmetric case, we know that ∆m ∼ m, but

it is difficult to determine the exact solution, as there is a great element of stochasticity.
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Therefore, to preserve the numerical accuracy of ∆m exchanges between clusters, it is best

to preserve interactions between clusters to the full simulation method.

Switching numerical methods and back

The numerical simulation is required to switch from the cluster-movement phase to a cluster-

exchange phase, and revert back during cluster-cluster collision, such that the dynamics

would begin normally; until condition Eq. (5.4) is reached. As this is another continuous-

time Markov process, the Gillespie method can be implemented but with a different set of

rates.

If there are k clusters on a symmetric lattice, each would have rates ri = mγ−1
i d

for the model characterized by Eq. (4.2). For Waclaw’s original model this would be ri =

mγ−1
i dγ. However, if there is another cluster that shares the destination site as neighbour,

the rate for that jump should be given by ri = mγ
i d and mγ−1

i dγ respectively. This is because

that step would trigger another set of dynamics that is reverted back to the original set of

algorithms. Therefore the rates for that specific jump should be the same as original rates

as well. The same idea would apply for the totally asymmetric case. The time update is

given by the same method using the Gillespie time update outlined in Eq. (5.1), but with

R =
∑k

i=1 ri.

If a cluster jumps to a space that is neighboured by another cluster, it would enter

another phase where the interactions between the two clusters are considered independently

from the rest of the dynamics. Note that towards the end of the dynamics, system size is

m ∼ O(L). Consequently, the exchange of mass between two clusters greatly exceeds the

rate of clusters moving into empty spaces, as m2γ � mγd. Therefore, the diffusivity of

clusters can be ignored when there are two clusters exchanging mass.

The interaction between the two colliding clusters can be mapped on the diagram

in Fig. 5.2, where cluster-cluster interaction terminates when either the two clusters merge,

or mass on both sites are conserved. In this process, some mass might be transferred from

one to another. The entire algorithm can be found in Appendix B.3.

5.3.3 Comparing new and old algorithms

The new algorithm provides a much faster simulation of results, especially the dynamics

towards stationarity. An example of the improved efficiencies are illustrated in Fig. 5.3,

where the σ2(t) is plotted for both old and new algorithms.

The results in Fig. 5.3 exhibit explosive condensation, where cluster nucleation

dictates early dynamics until ηmax exceeds some critical occupancy number. From Fig.

5.3 (a) and (b), the rapid increase in number of steps is accompanied by the growth of
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Figure 5.2: The model is adapted to accommodate special cases when clusters interact
with each other for symmetric cases. Clusters are freely moving on empty lattices until
(a) a particle moves into a space with another cluster in its proximity. The computation
is switched to another algorithm depicted, with the values of ηx and ηx+2 before the first
interaction is saved. And this maps into a process where particle performs a random walk
on a two-dimensional lattice as depicted in (b). Rates of the next move are computed and
are represented in (c). The rates are similarly mapped into the lattice as shown in (d), and
the red particle moves accordingly to the rates. This algorithm is stopped only when, either
ηx+1 = 0 or the two clusters are merged. The first absorbing state is depicted in the diagonal
red line, and the latter case is when the particle moves into the dot at origin.
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(a) and (b) are computed using the original algorithm, with (a) σ2 plotted against time.
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of steps plotted against time. (c) and (d) are computed using the new algorithm described
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indicating when explosive condensation starts to dominates.
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condensate and it takes approximately Ω ∼ 106 steps for simulation to complete. In Fig.

5.3 (c) and (d), which is the same simulation but for the new algorithm, there is an initial

rapid increase in steps as ηmax > mc. However, as the cut-off Eq. (5.4) is reached, the

growth of steps is greatly reduced and eventually Ω ∼ 104.

New algorithm for the totally asymmetric case

For the new algorithm in the totally asymmetric case, clusters of size m would take only

one step to move across one lattice space, and it requires L steps to cover the entire lattice.

Therefore total number of steps would be ∼ L and this is comparable to the contribution of

the nucleation part. However, one must also consider the contributions from cluster-cluster

interaction, which requires the transportation of m over L number of clusters of size ∼ O(1).

This results in the overall scaling ∼ mL. Therefore total number steps scales the same as

the previous method:

Ω′asym = L

New algorithm in the symmetric case

For the new algorithm in the symmetric case, clusters of size m would take only one step to

move across one lattice space, and L2 steps are required to reach the entire lattice. However,

one must also consider the effect of cluster-cluster interactions. For clusters of size ∼ O(L),

the number of clusters would be ∼ O(1). When a cluster of mass m ∼ O(L) interacts with

other clusters, it would take m steps to manifest itself on the target cluster, and they would

have a O(1) probability of diffusing away from each other. Therefore the total number of

moves in one collision is given by m. At this stage, the clusters would be separated by a

space of one. In the case of explosive condensation, the background is of the size ∼ O(1)

and has ∼ L clusters. Therefore the number of steps for cluster-cluster interaction would be

given by ∼ L2 as well. So the total number of steps would be

Ω′sym = L2 . (5.5)

The improved efficiency for simulation later parts of the dynamics made it easier

for obtaining results beyond L > 102 in the symmetric case. As results in Fig. 4.23 shows,

numerical simulations for L ∼ 104 can be computed to have a clearer scaling behaviour of

〈TSS〉.
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Figure 5.4: 〈σ2(t)〉 for γ = 5, ρ = 2, L = 32, symmetric graph. The original and the new
algorithm are plotted alongside for each graph. Dashed line indicates the switch time when
the cluster based implementation is used. The two sets of results uses different set of rates
and d. (a) Model characterized by rates Eq. (4.1), d = 0.5 and 1. (b) Model characterized
by rates Eq. (4.2), d = 0.01 and 0.1.

New algorithm for cluster coarsening

Note that this is for the case with explosive condensation only. For cluster coarsening,

the new algorithm can have the same improvement for numerical efficiencies for cluster

transportation on empty lattices. However, as for the case γ ∈ (2, 3) for the symmetric

graph, the new algorithm would fail to capture the characteristic high background densities.

This is because background particles would be regarded as clusters as well, and clusters

are assumed never to split with the new algorithm. Therefore, all results in this thesis for

systems that display coarsening dynamics are obtained using the original method.

Results from old and new algorithm

It remains for us to observe the quality of results for the new algorithm. For systems that

demonstrate condensation and focusing on symmetric cases, σ2(t) is compared in Fig. 5.4

for different models and different d parameters. The results suggest an accurate depiction

of condensation dynamics, especially for d < 1 , when systems have lower background

densities.
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Chapter 6

Variations to the model

In this Chapter, we briefly discuss two variants of the models presented in the main findings

of this study. Firstly, the models in Chapter 3 focus on cases with homogeneous graphs in

the thermodynamic limit, where stationary product measures exist for the models. Weights

can be conveniently written as a recursive function on the factorized transition rates. The

asymptotic behaviour of the weights can therefore be computed and insights on the param-

eters, where the condensation transition occurs, can be found. In the case of the ECP, the

model with rates (4.1) and (4.2), γ controls when condensation occurs. We introduce an-

other model for which a a stationary product measure cannot be written in its general form,

but explosive condensation exists and is controlled by both γ and d. This is discussed in

Sec. 6.1.

Secondly, the IP demonstrates condensation when d → 0, and the formation of the

condensate is driven by the characteristics of cluster coarsening. For the models studied in

Chapter 4, we focused on cases where d ∼ O(1). We have a mixture of results. Condensa-

tion can be reached by either nucleation dynamics followed by explosive condensation, or

when coarsening behaviour reaches stationarity. An area of interest is to see how the ECP

models evolve to condensation if d → 0, and comparing them to the results of the IP. This

is discussed in Sec. 6.2

6.1 Generalised model for comparison

We introduce another model that is similar to the models with rates (3.2) and (3.3), with

attractive terms for both departure and receiving sites. The model’s state space, lattice and

update methods follow the set-up outlined in definitions 2.2. The transition rates are given

by
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c(η, ηxy) = (ηγ1
x )(ηy + d)γ2 p(x, y) , (6.1)

where the generator is written as

L( f (η)) =
∑
x∈ΛL

p(x, y)(ηγ1
x )(ηy + d)γ2[ f (ηxy) − f (η)] . (6.2)

6.1.1 Stationary measure for generalised model

The model with rate (6.1) does not satisfy condition 3 in Theorem 2.2.1, so the generalised

model does not have a stationary product measure. However, we can write down a stationary

product measure by restricting our derivation to the symmetric graph case, which satisfies

condition 2 in Theorem 2.2.1. The weights for this model in the form (2.12) are written as

Wgen(n) =

n∏
k=1

(k + d − 1)γ2

kγ1
, (6.3)

and similar to the weights for the previous models, (6.3) has no clear closed form analytical

expression and the scaling behaviour is studied instead. Writing the logarithmic form and

taking the kγ2 term out, (6.3) is written as

Wgen(n) = exp

 n∑
k=1

ln
(
1 +

d − 1
k

)γ2

+ (γ2 − γ1) ln k

 . (6.4)

Within the range γ1 , γ2, the scaling relationship for Wgen(n) is similar to the

models in previous sections, as the (γ2 − γ1) ln k term dominates. The interesting case is

when γ = γ2 = γ. In this case, for n → ∞, ln(1 + (d − 1)/(k))γ → γ(d − 1)/k, where the

contributions of smaller k’s has no effect on the overall scaling. Wgen(n) can be written as

Wgen(n) = exp

 n∑
k=1

ln
(
1 +

d − 1
k

)γ ' exp

 n∑
k=1

γ(d − 1)
k

 ∼ nγ(d−1) . (6.5)

The scaling behaviours of Wgen(n) are collected as

Wgen(n→ ∞) '

 n(γ2−γ1)n if γ2 , γ1

nγ(d−1) if γ1 = γ2 .
(6.6)

Similar to the derivation of ρ(φ) for the model with rate (3.2) in (3.25), the scaling of Wn

can be substituted into the partition function to compute the radius of convergence for the

density and second moment. We write the density as
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ρgen(φ > 0) =
1

z(φ)

∞∑
n=0

(λφ)nnγ(d−1)+1 =

 ρ(φ ≤ 1) for 0 < φ ≤ 1, γ(1 − d) > 2

∞ if φ > 1
,

(6.7)

where the convergence of ρgen depends on both γ and d. The same can be applied to the

second moment, where n2 is summed over instead of n. The second moment converges for

σ2
gen(φ > 0) =

 < ∞ for γ(1 − d) > 3, φ ≤ 1

∞ if φ > 1
. (6.8)

In the case ρ > ρ(φ = 1), the system experiences a phase transition where particles are

divided into a fluid state and a condensate. This result is confirmed in the numerical eval-

uation of critical density ρc and critical second moment σ2
c against d in Fig. 6.1. Note that

γ is fixed at γ = 6 in these cases. Similar to the plot in Fig. 3.8, two results are obtained

by numerically evaluating W(n) with different range of n. From (6.7), there is divergence at

d → 2/3 for the density. Similarly, there is be a divergence for second moment at d → 1/2

from (6.8). Both of these cases can be shown on Fig. 6.1.

6.1.2 Condensation in the symmetric case

Explosive condensation is observed in the symmetric case; σ2(t) is plotted in Fig. 6.2 for

the case γ = 5 and varying values for L. Despite showing signs of nucleation and rapid

condensation, the time to condensation increases with system size, which is different from

the condensation behaviour for the model with rates (4.1) and (4.2). It is unclear whether

this is caused by a different timescale during the nucleation phase or other factors.

We extend our numerical study to the totally asymmetric case, which does not sat-

isfy the criteria in Theorem (2.2.1). Explosive condensation that resembles the results in

Chapter 4 is observed. Cases that display condensation are plotted in Fig. 6.3. From

Fig. 6.3 it implies explosive condensation but it is dependent on both the choice of γ and

d ∼ O(1). The exact scaling of 〈TSS〉 is unclear. Insights on the scaling of 〈TSS〉 might be

obtained through further heuristic studies, where timescale approximations can be approx-

imated using cluster interactions.

6.2 Vanishing diffusivity

The parameter d is regarded as system diffusivity, which controls the rate of particle drift

when particle interactions do not exists. The choice of d ∼ O(1) is used nominally through-

out the heuristic analysis in Chapter 4. In terms of the choice of parameters that lead to
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Figure 6.1: For γ1 = γ2 = γ = 6 and the model with rates (6.1). (a) ρ(φ = 1) is plotted
against d, and (b) σ2(φ = 1) is plotted against d. Black markers indicate when the solution
is numerically obtained by evaluating (2.14) and (2.17) from n = 0 to n = 105, and the red
marker is obtained by evaluating the respective partition functions from n = 0 to n = 106.
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condensation, the range of d is irrelevant as the diffusive terms are negligible in the case

γ1 = γ2 for the stationary weights (3.24) and (3.33).

However, the heuristic arguments of models studied in Chapter 4 with vanishing

diffusivity may have different results. This is implied in the study of Inclusion Process [54],

where condensation does not exist for d ∼ O(1), but condensation is observed for d < 1/N.

In Chapter 4, we have focused on the case d ∼ O(1) because we are interested in the

heuristic arguments for explosive condensation. However, as we can see from the following

arguments the coarsening time is strongly dependent on the choice of d, and condensation

without explosion is observed.

For the model characterized by rates (4.1), the coarsening time (4.38) requires tak-

ing into account that clusters move with speed v(m) ∼ d−γmγ−1. For this model, the time

for coarsening to finish is revised as

T sym
Co ∼ d−γL3−γ (6.9)

for the symmetric case. Similarly, the coarsening time for the totally asymmetric case is

T asym
Co ∼ d−γL1−γ. (6.10)

For d → 0 this clearly indicates that coarsening takes a much longer time to com-

plete compared to the nucleation phase, providing that the critical occupation number is not

reached. The critical occupation number for the symmetric case is given by

L2

dγmγ−1
c

� 1 , (6.11)

and for the totally asymmetric case,

L
dγmγ

c
� 1 . (6.12)

For both cases, mc � L for d → 0. Therefore, the nucleation can never reach

the critical occupancy number. Therefore the system reaches its condensate from cluster

coarsening. A numerical example of this result is shown in Fig. 6.4, which is accompanied

by configuration plots at crucial times of the system.

In Fig. 6.4, coarsening behaviour continues towards reaching the condensate. As

stationarity is reached, the system is still in a coarsening state. The second moment towards

stationarity increases rapidly, followed by a short period of waiting time, which is charac-

teristic of coarsening behaviour. The same heuristic arguments can be used for the system

with rate (4.2), where the factor d−γ is replaced by d−1, for (6.9) to (6.12). Insights to this

case can be explored further by solving the exact evolution of σ2 using heuristic arguments
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Figure 6.4: Schematic representation when d → 0. For γ = 5, d = 10−7, ρ = 2, L = 128,
symmetric graph with rates (4.1). (a) Nucleation finishes at approximately this instant.
Nucleation finishes with clusters at generally low occupancies to examples with higher d.
(b) Coarsening process is a relatively lengthy process compared to the nucleation times.
(c) Moment before reaching stationarity, and clusters of size ∼ O(L) are dominating. (d)
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of which the complete configurations are plotted. The time when nucleation finishes and
the characteristic coarsening increase in second moment are labelled.

108



similar to the ones used in Chapter 4.

6.3 Discussion

In this Chapter, two different variations to the models proposed in Chapter 4 are studied,

where these two cases represent two different directions to proceed from the variants of the

ECP models. It should be noted that for both cases, the number of particles in the system is

conserved and the study is limited to the thermodynamic limit.

For the first case (see Sec. 6.1), the rates are chosen such that the weights of the

stationary measure no longer scale with γ only, but also with d. It should be noted that this

model only has stationary product measures for a specific choice of graph, as the general

case of this model does not hold for condition 3 in Theorem 2.2.1. Interesting transition be-

haviours are observed, as the model condenses in different ranges of d. The model displays

a surprisingly rich variety of behaviour, as both explosive condensation and non-explosive

condensation is observed for different choice of d.

For the second case (see Sec. 6.2), we study the condensation behaviour for the

variants of the ECP model when d → 0. The motivation is that the IP [54] demonstrates

interesting dynamical behaviour in this range. The IP is observed to have a phase transi-

tion only when d → 0, and the microscopic dynamics study suggests that there is a clear

separation between the nucleation and coarsening regime, which is not observed in ECP

for d ∼ O(1). We observe a clearer distinction between nucleation and coarsening for ECP

when d → 0. The formation of the condensate is different from that studied in Chapter 4,

and in particular there is no explosive condensation since the motion of clusters is slowed

down.
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Chapter 7

Conclusion and Outlook

In this chapter we summarise the main findings of the thesis and give a general outlook for

future areas of study. A brief summary of each chapter is provided chronologically, and

areas of studies will be found at the very end.

In this thesis, we considered several interacting particle models that demonstrate

condensation behaviours. We are particularly interested in systems that are ergodic on

finite systems on a homogeneous lattice. The long time behaviour of the system from ar-

bitrary initial conditions to stationarity is characterized by the canonical stationary product

measures. The criteria for the existence of stationary product measures for models with

factorized hop rates are introduced. Large deviations of the maximum site occupation are

discussed. Phase transitions from a homogeneous and uniformly distributed state to one that

has a fraction of mass concentrated at a localized site are studied. Under this set up, conden-

sation transitions for several models in the literature are reviewed, such as the zero-range

process, inclusion process and the explosive condensation process. All three models have

stationary product measures, but with very different dynamic condensation behaviours.

In Chapter 3, we introduce two models that have similar stationary product mea-

sures as the explosive condensation model. By studying the scaling of stationary weights,

we are able to identify the choice of parameters that could lead to a phase transition. Iden-

tifying and isolating the super-exponential cases of the stationary weights, we focus on the

case when γ1 = γ2 = γ for models with rates (3.2) and (3.3). In this regime, finite system

moments exist only for a certain range of γ. The characteristics of explosive condensation

are introduced schematically. Dynamics towards the formation of a condensate are seem-

ingly dominated by distinctive phases. We attempted to solve for exact observable solutions

for these models, but this proves difficult.

In Chapter 4, we use a microscopic approach to study the formation of conden-

sates for the models introduced in Chapter 3. Several stages of the dynamics are identified.
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The formation of condensates depend on a mixture of distinctive nucleation and coarsening

effects, and the system enters an “explosive condensation” stage when some critical occu-

pancy number is reached by the biggest cluster in the system. We provide a detailed study

on the physical properties of clusters. The speed of cluster movement and the stochasticity

property of the exchange of particles are discussed. Understanding the cluster dynamics

is pivotal to heuristic analysis of the timescales of the distinctive stages mentioned above.

This is also useful in the numerical efficiencies, which are discussed in Chapter 5. Two

different paths to condensation are outlined. For both cases the initial distribution of parti-

cles is important for the general scaling of the time to condensation 〈TSS〉. Instantaneous

condensation as L → ∞ is observed for both symmetric and totally asymmetric cases, and

the scaling of 〈TSS〉 is derived. These results are supported by numerical results for L > 104

for both symmetric and totally asymmetric cases.

In Chapter 5, we discuss the issues of costs of numerical simulations, and propose

improvements for numerical simulation for systems that demonstrates explosive conden-

sation. An algorithm is proposed, that simplifies the simulation of a moving cluster yet

preserves stochasticity of particle interactions. The limitations of these methods are dis-

cussed. These methods are shown to be stable for d ∼ O(1) and γ > 3, and are used for

simulating the main results with explosive condensation in Chapter 4. A brief explana-

tion for averaging monotonically increasing observables in explosive condensation is also

discussed.

In Chapter 6, we briefly discuss variations for the models studied in this thesis. This

includes the case d → 0, γ1 = γ2 = γ for the two models introduced in Chapter 3. This case

demonstrates condensation, but the formation of condensate is different in the microscopic

perspective. We also look into a model that is similar to ECP models but with no canonical

stationary product measures. This model is of interest, because for its symmetric case,

explosive condensation is observed and is dependent on both γ and d.

Several interesting and important open questions follow directly from the work in

this thesis. The natural progression of the study is extending the explosive condensation to

inhomogeneous graphs, and observe how phase separation of the fluid state and the con-

densate would manifest in such cases. Also interesting is to study cases where mass of the

system might not be conserved, e.g. in systems with open boundaries. From Chapter 6, the

condensation of the toy model from a microscopic perspective can be studied further, as it

provides insights to condensation where no stationary product measures exists. It is also

particularly interesting to consider the explosive condensation models on wealth distribu-

tion. This is because the set up of explosive condensation system is particularly suitable

for interacting rules in agrarian economies, where total wealth is conserved. This would

be different from the conventional econophysics approach, where the stochasticity of IPS
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would provide better insights on topics such as information economics.
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Appendix A

Criteria for stationary product
measures

Here, we proof that Theorem (2.2.1) is true, the full derivation can be found in Sec. 2 of

[23]. We have to show for expected values w.r.t. νφ that

νΛ
φ (L f ) =

∑
η∈XΛ

∑
x,y∈Λ

p(x, y)u(ηx)v(ηy)( f (ηxy) − f (η))νΛ
φ (η) = 0 (A.1)

for all local observables f . For fixed x, y the change in variable leads to

∑
η∈XΛ

u(ηx)v(ηy) f (ηxy)νΛ
φ (η) =

∑
η∈XΛ

u(ηx + 1)v(ηy − 1) f (ηyx)νΛ
φ (η) . (A.2)

From the partition function derivations in Sec. 2.2.3, the marginals imply that for all x, y ∈

Λ and n ≥ 0, k ≥ 1

νφ(n + 1)µφ(k − 1)u(n + 1)v(k − 1) = νφ(n)µφ(k)u(k)v(n) (A.3)

Plugging this into (A.1),

∑
η∈XΛ

f (η)νΛ
φ (η) =

∑
x,y∈Λ

p(x, y) (u(η)v(η)) (A.4)

and exchanging the summation variables x↔ y in the first part of the equation leads to

νΛ
φ (L f ) =

∑
η∈XΛ

f (η)νφ(η)
∑
x∈Λ

u(ηx)
∑
y∈Λ

v(ηy)(p(y, x)) − p(x, y)) . (A.5)

This clearly vanishes in the first two cases and analogously to the above argument one can
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show that in the second case, detailed balance implies

νΛ
φ ( fLg) = νΛ

φ (gL f ) for local functions f , g , (A.6)

therefore νΛ
φ is reversible. For the homogeneous case 3, we get

νΛ
φ (L f ) =

∑
η∈XΛ

f (η)νφ(η)
∑
x∈Λ

u(ηx)
∑
y∈Λ

(p(y, x) − p(x, y)) , (A.7)

which vanishes due to condition 3 in (2.2.1).
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Appendix B

Computational Methods

In this section, we provide supplementary materials for Chapter 5, which summarises the

numerical methods used for computing the results in Chapter 3, 4 and 6. This section is

comprised of two parts.

Firstly we outline the standard approach to simulate continuous-time Markov pro-

cesses. This includes the supplementary materials to the Gillespie algorithm and the binary

tree method that is used in obtaining the numerical results in this thesis. This corresponds

to the explanation of numerical methods presented in Sec. 5.2.

Secondly, the details of the new algorithm as mentioned in Sec. 5.3 is provided.

The new algorithm is a three-stage process that shortens simulation time by providing an

accurate estimation of cluster speed. Essentially, all three stages uses the standard Gillespie

method, but each stage uses a different set of rates and graph. The interchange between

these stages are controlled by specific cut-off conditions as elaborated in Sec. 5.3. The im-

plementation of this new algorithm ensures improved numerical efficiencies for simulating

EPS, and also preserves key stochastic properties of cluster mass exchange. This method is

first developed in this study, and has been subsequently used in other IPS research [54].
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B.1 Gillespie Algorithm

The Gillespie algorithm [75] (also called the Doob-Gillespie algorithm) is the standard

numerical method to simulate the sample path of a continuous time Markov chain. If (ci)i =

1L are the rates of possible transitions out of the current state, the system waits for an

exponentially distributed time with rate CL =
∑

i ci, and then performs a transition i chosen

with probability ci/C. The detail workings are presented in Algorithm 1.

Algorithm 1 Basic Gillespie Algorithm for totally asymmetric inclusion process

Require: List of the L jumps rates at each site in the current state (ci)L
i=1

Require: The partial sums CL =
∑L

i=1 ci and C0 = 0
{ Sample time increment from exp(CL) }
dt ← Exponentially distributed random number with mean 1/CL

t ← t + dt
{Choose to move particle of site x with probability cx/CL }

r ← Uniform random number on [0,CL)
Perform a binary search for x such that Cx−1 ≤ Cx

ηx ← ηx − 1
ηx+1 ← ηx + 1
{Updating rates and partial sums}
Update rates cx and cx+1
Update partial sum Cnforn ∈ {min{cx, cx+i−1, ..., L}}
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B.2 Binary Search Tree

For large systems, searching through rates of all possible jumps can be numerically ex-

pensive. A binary search tree is used to improve the efficiencies of this process, which is

described in Sec. 5. For a complete graph, a single search will take ∼ L2 steps using linear

search methods. The same process will take ∼ log(L2) steps to complete on a binary search

tree. The computational complexity will be L ln(2)
2 ln(L) . The detail workings of this method are

presented in Algorithm 2.

Algorithm 2 Binary search tree for general IPS models
{Preparing how rates are organised in a binary search tree}

Require: A list Bl
j such that l ∈ {0, 1, 2, ...K}, K = d

2 ln(L)
ln(2) e.

Require: Letting B0
j = r j

for l = 1, l + +, l = K do
Bl

j = Bl−1
2 j + Bl−1

2 j+1
end for
r ← uniform random number ∈ [0, BK

0 ).
{Search through the binary search tree }
j← 0
for l = K, l − −, l = 1 do

If {Bl−1
2 j ≥ ρ}

j← 2 j
Else
j← 2 j + 1
ρ← ρ − Bl−1

2 j
end for
Update η according to jump j
Update r j
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B.3 Cluster dynamics simplification

Algorithm 3 describes the numerical simplification that is introduced in Chapter 5. In a

nutshell, there are three stages.

1. In the beginning it uses the same Monte Carlo method in the original algorithm, where

rates are stored in a binary tree. The initial stages of the dynamics are equivalent to

the conventional IPS numerical method, which is elaborated in Algorithm 1 and 2.

This is terminated when the strict cut-off condition
∑

x∈Λ ηxηx+1 = 0 between the

nucleation and coarsening stage is reached.

2. When clusters are all separated by empty spaces, the dynamics are simplified by

considering the movement of entire clusters as one single step. Therefore, another

separate set of Monte Carlo interactions are simulated using the Gillespie method

based on the cluster interaction rates qi’s. Entire clusters will be moved after each

step, unless the clusters are perceived to be moving to a site shared by another cluster.

In such a scenario, the stochasticity of cluster-cluster interaction has to be considered

and another mechanism is temporarily introduced, as explained in the third stage.

3. To preserve the stochasticity of mass exchange between clusters, a random walk on a

triangle lattice is introduced. The triangle lattice is elaborated in detail in Fig. 5.2. If

the system meets the exit conditions of the random walk (boundaries of the triangle),

then this will revert back to the previous step.
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Algorithm 3 Adopted Algorithm for simulating symmetric nearest neighbour ECP

Require: List of occupancies (ηi)L
i=1 and temporary list (η′i)

L
i=1

Require: Compute list of rates (ci)2L
i=1 and partial sums Cn =

∑n
i=1 ci up to n = 2L

{The first stage: conventional numerical method}
while

∑L
x∈Λ ηxηx+1 > 0 do

r ← uniform random number on [0,C2L)
Perform a binary search for x such that Cx−1 ≤ r ≤ Cx

Updating respective occupancies in η′ (not η)
dt ← Exponentially distributed random number with mean 1/CL

end while
{Second stage: cluster-cluster interactions}
Compute list of rates (si)2L

i=1 such that S n =
∑n

i=1 si, where si’s are computed by cluster
rates
r′ ← uniform random number on [0, S 2L)
Perform search for x′ such that S x′−1 ≤ r′ < S ′x
if For after η′ ← ηxy and

∑L
x∈Λ η

′
xη
′
x+1 = 0 then

{Cluster moving on empty space }
ηx+1 ← ηx+1 + ηx

ηx ← 0
else
{Third stage: random walk on triangle lattice}
a1 ← η′x and a2 ← η′x+1 and A← a1 + a2
while a1 + a2 , A and a1 + a2 , 0 do

Compute list of rates (q j)4
j=1 for a particle to random walk

Compute Qn =
∑n

i=1 qi

r′′ ← uniform random number on [0,Qn)
Perform a search for x′′ such that Qx′′−1 ≤ r′′ < Qx′′

Update a1 or a2 depending on the index associated with x′′

end while
η′x ← a1 and η′x+1 ← a2
ηx ← η′x and ηx+1 ← η′x+1

end if
dt ← Exponentially distributed random number with mean 1/ηγ−1

x
t ← t + dt
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Appendix C

Solution for time to steady state by
Waclaw and Evans

The following is a reproduction of the argument for explosive condensation in [6]. After

the original period of exchange, k = N/m piles of clusters are formed, where N is the total

mass of the system and m is the average mass of one cluster. For a totally asymmetric lattice,

clusters move in the same direction with varying speed and gains mass as collision occurs.

Eventually, a condensate forms as one cluster gains enough mass to move significantly

faster than other clusters.

Each cluster has a respective time to dominance T1,T2,T3 . . . Tk. The time to con-

densate TSS is therefore the minimal time

TSS = min{T1, . . . ,Tk} . (C.1)

In the process of mass gaining, a cluster with mass m gains ∆m in successive steps. The

mass of the cluster at the nth step is therefore

mn = mn−1 + ∆mn , (C.2)

and the corresponding time for successive steps is given by

tn = tn−1 + ∆tn . (C.3)

The ∆tn ’s are exponentially distributed and is given by

pn(∆tn) = λne−λn∆tn . (C.4)

Note that λn ∼ 1/〈∆tn〉 is the rate for the distribution of waiting times ∆tn. The estimation
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of λn by Waclaw and Evans is based on the assumption that each cluster evolves indepen-

dently, and that distances between clusters are negligible. This is often true in certain ranges

of parameters in the totally asymmetric graph and over some parameters for the symmet-

ric case. Fluctuations are ignored. And from this assumption, λasym
n ∝ mγ

n, which is the

reciprocal of the waiting time for one cluster to move one space on the lattice. Note that

∆mn increases mostly linearly for the totally asymmetric case, as explained in Sec. 4.2.2,

therefore mn ∼ n, and λasym
n ∝ nγ.

The probability distribution f (T ), which T = ∆t1 + ∆t2 + ... can be calculated as T

is assumed to be a sum of independent exponential random variables. f (T ) is hypothesized

as having the shape given in Fig. C.1. f (T ) is therefore given as

f (T ) =
1

2π

∫ ∞

∞

dωeiωT f̄ (ω) , (C.5)

where f̄ (ω) is the product of characteristic functions of the exponential distribution Eq.

(C.4)

f̄ (ω) =

∞∏
n=1

p̄n(ω) =

∞∏
n=1

1
1 − iω/λn

. (C.6)

From Eq. (C.6), the large ω behaviour can be found using the saddle point approxi-

mation and the large T behaviour can be recovered using the Fourier transform. Then, using

the definition of TSS in Eq. (C.1) and extreme value statistics, the distribution of TSS can

be obtained, and solved for 〈TSS〉. The details of this derivation can be found in [6] and the

supplementary material to [59]. The time to steady state 〈TSS〉 is estimated as

〈TSS〉asym = c2(c3 + ln(L))1−γ , (C.7)

where c2 and c3 are real positive constants, and c3 can be dependent on the fluctuation of
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the distribution.

The same derivation can be applied to competing clusters on a symmetric graph but

with a cautious consideration on the choice of λsym
n . Assuming particles move through a

largely intact background density without clusters surrounded by empty sites, then λsym
n ∼

mγ−1
n . From Fig. 4.9, it is established that ∆m ∝ m. Clusters exchange a proportion of their

own mass in each collision. For each collision there are kρL particles exchanged, where

constant k represents the average fraction of the particles exchanged. Therefore at the nth

collision, there are mn ∝ nkρL. This gives λn ∝ (nkρL)1−γ. Using the same arguments for

the derivation of P(TSS), 〈TSS〉 is obtained

〈TSS〉sym = c2(c3 + ln(L))2−γ . (C.8)

However, as explained in previous sections, clusters are likely to be separated by

empty sites in the coarsening regime. The derivation of λn is determined from the average

collision time for the totally asymmetric and the symmetric case respectively. Such that:

λ
asym
n = mγ−1

n ρ ∼ mγ−1
n for the totally asymmetric case and λsym

n = mγ−3
n ρ2 ∼ mγ−3

n for the

symmetric case.

While mn ∼ n for both the totally asymmetric case and symmetric cases, as ex-

plained previously. The reciprocal of the waiting times after n collision for the totally

asymmetric case is given by

λ
asym
n ρ ∼ nγ−1 ,

and for the symmetric case

λ
sym
n ∼ nγ−2 .

The 〈TSS〉 scaling for the totally asymmetric case is therefore given by

〈T ′SS〉sym = c2(c3 + ln(L))2−γ , (C.9)

and for the symmetric case this is given by

〈T ′SS〉sym = c2(c3 + ln(L))3−γ . (C.10)

The limitation of this method is that, while mass in the entire system is conserved,

clusters at the later stages do not evolve independently. While Waclaw and Evans focused

on the totally asymmetric graph, the same principles can be applied to the symmetric case.

From Eq. (4.18), the speed of a cluster in symmetric graph scales as v(m) ∝ mγ−1.

Since λn is the normalization term for the distribution of waiting times before suc-
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cessive collisions up to n steps, both the growth of mn and distance travelled before hitting

another cluster should be considered.

Comparison to Waclaw and Evans’ 〈TSS〉 scaling

Waclaw and Evans provided a scaling for the time for the whole model to reach the steady

state 〈TSS〉 [6] and is given in Eq. (C.7). While this provides an accurate description to

the totally asymmetric model that was presented in the original model, this might not hold

for the symmetric graph. The alternative scaling properties are introduced in Eq. (C.8),

(C.9) and (C.10) are used to compare with numerical results in Chapter 4 for 〈TSS〉 for the

model characterized by (3.3) in the symmetric graph. From the results presented in Chapter

4, the scaling properties of Eq. (C.7), Eq. (C.8),Eq. (C.9) and (C.10) may not be easily

distinguishable from numerical data.
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Appendix D

Critical densities and second moment

The critical densities ρc and the corresponding second moment σ2
∞(φ = 1) of the interacting

particle system can be numerically evaluated in Eq. (2.16) and Eq. (2.18), as explained in

Sec. 2.2.3.

Below are tables outlining the critical densities and second moment of some of the

parameters for simulated results throughout this thesis. While only some of the results

are used in simulations presented in this study, other values are provided for comparison.

Critical density diverges at γ ↘ 2 and the finite critical second moment diverges at γ ↘ 3.

For all the simulations in this thesis, densities are typical chosen such that ρ > ρc. It

is also worth mentioning that as d → 0, the rates of (4.1) and (4.2) coincide, and this leads

to the same critical densities and critical second moment.

d/γ 2.25 2.5 2.75 3 4 4.5 5 6 7
10−7 1.99 0.943 0.557 0.368 0.111 0.0683 0.0438 0.0193 0.00892
0.01 2.02 0.958 0.567 0.372 0.112 0.0690 0.0442 0.0194 0.00901
0.05 2.15 1.02 0.607 0.386 0.116 0.0716 0.0459 0.0202 0.00936
0.1 2.31 1.10 0.659 0.403 0.121 0.0749 0.0480 0.0211 0.00980
0.2 2.65 1.27 0.766 0.437 0.132 0.0814 0.0523 0.0230 0.0107
0.3 3.00 1.45 0.877 0.471 0.142 0.0879 0.0565 0.0249 0.0116
0.4 3.38 1.64 0.994 0.505 0.152 0.0943 0.0607 0.0268 0.0125
0.5 3.78 1.83 1.12 0.538 0.162 0.101 0.0648 0.0287 0.0133
1 6.15 2.97 1.81 0.700 0.212 0.132 0.0854 0.0380 0.0177

Table D.1: Critical density for the model characterized by rates Eq. (3.2).
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d/γ 2.25 2.5 2.75 3 4 4.5 5 6 7
10−7 1.99 0.943 0.557 0.368 0.111 0.0683 0.0438 0.0193 0.00892
0.01 2.01 0.952 0.562 0.375 0.113 0.0700 0.0450 0.0199 0.00925
0.05 2.09 0.988 0.583 0.404 0.124 0.0772 0.0500 0.0225 0.0106
0.1 2.20 1.03 0.610 0.440 0.137 0.0865 0.0566 0.0259 0.0125
0.2 2.40 1.13 0.662 0.515 0.166 0.107 0.0710 0.0337 0.0169
0.3 2.60 1.22 0.714 0.594 0.197 0.128 0.0868 0.0425 0.0220
0.4 2.81 1.31 0.766 0.677 0.230 0.152 0.104 0.0523 0.0278
0.5 3.01 1.40 0.817 0.763 0.265 0.177 0.122 0.0631 0.0344
1 4.03 1.84 1.07 1.25 0.460 0.319 0.230 0.129 0.0772

Table D.2: Critical density for the model characterized by rates Eq. (3.3).

d/γ 4 4.5 5 6 7
10−7 0.286 0.131 0.0698 0.0250 0.0104
0.01 0.289 0.132 0.0704 0.0252 0.0105
0.05 0.300 0.137 0.0731 0.0262 0.0109
0.1 0.313 0.143 0.0764 0.0274 0.0114
0.2 0.340 0.155 0.0830 0.0298 0.0125
0.3 0.366 0.167 0.0896 0.0323 0.0135
0.4 0.392 0.179 0.0961 0.0347 0.0145
0.5 0.418 0.191 0.102 0.0370 0.0155
1 0.543 0.249 0.134 0.0488 0.0206

Table D.3: Finite critical second moment σ2(φ = 1) for the model characterized by rates
Eq. (3.2).

d/γ 4 4.5 5 6 7
10−7 0.286 0.131 0.0698 0.0250 0.0104
0.01 0.295 0.135 0.0720 0.0259 0.0108
0.05 0.329 0.151 0.0811 0.0295 0.0125
0.1 0.374 0.173 0.0935 0.0345 0.0149
0.2 0.476 0.222 0.121 0.0460 0.0205
0.3 0.592 0.278 0.153 0.0595 0.0271
0.4 0.723 0.341 0.190 0.0750 0.0350
0.5 0.868 0.412 0.231 0.0926 0.0440
1 1.84 0.882 0.504 0.213 0.108

Table D.4: Finite critical second moment σ2(φ = 1) for the model characterized by rates
Eq. (3.3).
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γ/d 0.1 0.2 0.3 0.4 0.5 0.6
5 0.0789 0.1422 0.264 0.534 1.40 9.20
6 0.0371 0.0696 0.132 0.259 0.575 1.91

Table D.5: Critical density for the model characterized by rates Eq. (6.1).

γ/d 0.1 0.2 0.3 0.4 0.5
5 0.155 0.388 1.36 13.6 N/A
6 0.0542 0.123 0.319 1.17 15.1

Table D.6: Critical second moment for the model characterized by rates Eq. (6.1).
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[30] JM Luck and C Godrèche. Structure of the stationary state of the asymmetric target

process. Journal of Statistical Mechanics: Theory and Experiment, 2007(08):P08005,

2007.

1 citation(s) on 1 page(s): 12,

[31] Enrique Daniel Andjel. Invariant measures for the zero range process. The Annals of

Probability, pages 525–547, 1982.

3 citation(s) on 2 page(s): 13 (2) and 15,

[32] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems,

volume 320. Springer, 1999.

1 citation(s) on 1 page(s): 13,

[33] Stefan Grosskinsky, Frank Redig, and Kiamars Vafayi. Condensation in the inclusion

process and related models. Journal of Statistical Physics, 142(5):952–974, 2011.

5 citation(s) on 4 page(s): 13, 17 (2), 18, and 19,

[34] Ed Waymire. Zero-range interaction at bose-einstein speeds under a positive recurrent

single particle law. The Annals of Probability, pages 441–450, 1980.

1 citation(s) on 1 page(s): 13,

[35] Paul Chleboun and Stefan Grosskinsky. Finite size effects and metastability in zero-

range condensation. Journal of Statistical Physics, 140(5):846–872, 2010.

1 citation(s) on 1 page(s): 13,

[36] MR Evans. Phase transitions in one-dimensional nonequilibrium systems. Brazilian

Journal of Physics, 30(1):42–57, 2000.

6 citation(s) on 5 page(s): 13, 15 (2), 17, 23, and 43,

[37] Sang-Woo Kim, Joongul Lee, and Jae Dong Noh. Particle condensation in pair exclu-

sion process. Physical Review E, 81(5):051120, 2010.

1 citation(s) on 1 page(s): 13,

130



[38] Yonathan Schwarzkopf, MR Evans, and David Mukamel. Zero-range processes with

multiple condensates: statics and dynamics. Journal of Physics A: Mathematical and

Theoretical, 41(20):205001, 2008.

1 citation(s) on 1 page(s): 13,

[39] AG Thompson, J Tailleur, ME Cates, and RA Blythe. Zero-range processes with sat-

urated condensation: the steady state and dynamics. Journal of Statistical Mechanics:

Theory and Experiment, 2010(02):P02013, 2010.

1 citation(s) on 1 page(s): 13,

[40] Ori Hirschberg, David Mukamel, and Gunter M Schütz. Condensation in temporally
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