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Abstract

The Boltzmann equation (BE) is a mesoscopic model that provides a descrip-
tion of how gases undergoing a binary collision process evolve in time, however there
is no general analytical approach for finding its solutions and direct numerical treat-
ment using quadrature methods is prohibitively expensive due to the dimensions of
the problem. For this reason, models that are able to capture the behaviour of
solutions to the BE, but which are simpler to treat numerically and analytically are
highly desirable. The Fokker-Planck collision operator is one such collision model,
which is suited well to numerical solutions using stochastic particle methods, and is
the subject of this thesis.

The stochastic numerical solutions of the Fokker-Planck model su↵er heavily
from noise when the speed of the flow is low. We develop two methods that are
able to reduced the variance of the estimators of the particle method. The first is
a common random number method, which produces a correlated equilibrium solu-
tion where thermodynamic fields are known. The second is a importance sampling
method, where weights are attached to the particles. This means that particles close
to equilibrium do not contribute to the noise of the estimators. We also develop a
randomised quasi-Monte Carlo scheme for solving the di↵usion equation, which has
a faster rate of convergence than simple Monte Carlo methods.

The relative simplicity of the functional form of the Fokker-Planck collision
operator makes it possible to find analytic solutions in simple cases. We consider a
spatially homogeneous, isotropic gas with elastic collisions in the presence of forc-
ing and dissipation and derive self-consistent non-equilibrium steady-state solutions.
Previous numerical evidence exists that suggest such forcing and dissipation mech-
anisms, widely separated, give rise to steady-states of the BE that are close to
Maxwellian, with a direct energy cascade and an inverse particle cascade. Using our
analytic solutions, we are able to investigate the dependence of such solutions on
the forcing and dissipation scales, and find that in the inertial range, the interaction
is non-local. We then show that the “extreme driving” mechanism, responsible for
a family of non-universal power-law solutions for inelastic granular gases, where the
flux of energy is towards lower scales, is also able to produce inverse energy cascades
for the elastic system.
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1

Introduction

“Oh! the little more, and how much it is!

And the little less, and what worlds away!”

– Robert Browning, By the Fireside

The atomistic description of nature has a long history that dates back to Leucip-

pus, Democritus, and Epicurus - natural philosophers born in ancient Greece who

struggled against the prevailing Aristotelian view of the world. Despite attention

from medieval Arabian scholars, and works from the Renaissance period penned by

such influential thinkers as Galileo and Francis Bacon, atoms remained controversial

and largely hypothetical objects up until the beginning of the 19th century, when

scientists such as John Dalton with his “law of multiple proportions”, and Robert

Brown’s dust grains moving erratically on the surface of water, now given the epithet

of “Brownian Motion”, began mounting experimental evidence for the atom. And

so it is perhaps surprising, that without any direct evidence of atoms that Swiss

polymath Daniel Bernouilli in 1738 was able to lay the foundations for the kinetic

theory of gases when he explained the phenomenon of gas pressure using the idea

of tiny high speed particles, whizzing around and colliding according to the known

laws of mechanics.

This would provide the foundations for James Clerk Maxwell and later Ludwig

Boltzmann to develop the theory into the kinetic theory of gases into the form as

it is largely recognised today. The central pillar of which, is Boltzmann’s epony-

mous equation, which provides a link between the dynamic and the thermodynamic

description of gases made of particles that undergo binary collisions.
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Today, the kinetic theory of gases still provides a wide and rich area for aca-

demic research, for practical and theoretical purposes alike. Engineers are concerned

with developing tools that let them predict the behaviour of low density, rarefied

gases, which is becoming increasingly important as technologies for both building

things that are extremely small and also building things that travel at great velocity

through the upper atmosphere are increasingly developed. Having models with the

ability to make calculations and quickly and reliably as possible is of the essence.

Naturally, part of the challenge can be met by the ever increasing processing power,

coming in the form of multicore CPU and GPU supercomputers. It is possible in

the future that computers will one day have the memory and processing power to

evolve Newton’s laws acting on suitably large number of particles with quantum

computing. However, this technological revolution is still some distance away, and

in the mean time being able to tackle these problems by generating understanding

that allows us to make simplifications while keeping the essence of the problems we

are trying to solve, is certainly a worthwhile approach.

For theoretical physicists, the equations of kinetic theory are a route into non-

equilibrium statistical mechanics. In contrast to equilibrium statistical mechan-

ics, where all thermodynamic properties can be derived from a partition function

founded on the principal of equipartition of energy, there is no general theory that

systematically allows one to count and to weight states of a system that is not in

equilibrium. Kinetic models based on microscopic rules, allow an investigation into

such systems where traditional macroscopic models are unable to predict the wide

and diverse behaviour seen in such systems.

In this thesis I contribute to progress in both spheres, by using a model which

approximates the behaviour of the Boltzmann equation. The model is in the form

of a Fokker-Planck equation, which approximates the collision process of a gas by

a non-linear advection and di↵usion process in the velocity space of a distribution

of a single particle. I will begin in Chapter 2 by describing an overview of kinetic

theory as it is applied to rarefied gases, providing historical context for the Fokker-

Planck model and it’s origins in Chapter 3. I will demonstrate it’s applicability as a

model for rarefied gases, by demonstrating that it obeys the conservation laws and

providing an H-Theorem for the model. Finally in Chapter 3 I describe some of the

recent advances allowing for e�cient stochastic particle-based solutions.
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In Chapters 4 and 5 I focus on low-speed applications, where stochastic particle

based simulations su↵er greatly from noise. I will propose novel techniques, including

a common random numbers scheme, an importance sampling algorithm and a quasi-

Monte Carlo method, that can be applied to the particle-based stochastic solutions

in such situations, to help alleviate the e↵ects of noise on computation times.

Later in Chapters 6 and 7, I use the Fokker-Planck model to address the problem

of finding and characterising non-equilibrium steady states. I find analytic solutions

in the presence of a specific form of forcing and dissipation, allowing the locality of

the solutions to be checked. I also derive a Fokker-Planck model equation describing

a gas where the particles collide in-elasticially, where fluxes of energy travel in the

opposite direction to when the collisions are elastic. Solutions to this equation lend

support to the existence of solutions in the presence of an “extreme driving” forcing

mechanism.
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2

Background

“He who has begun, has half done.”

– Horace, Epistles I

2.1 Rarefied gases

A gas, which in this thesis we choose to refer to as a fluid made up of a large

number of interacting particles, where the interaction between particles occurs on

very short length scales, is classified as being rarefied when the ratio of the parti-

cles’ mean free path, the average distance a molecule will travel between collisions

(or interaction), denoted �, to a characteristic length scale of the fluid, L, is not

negligible. This ratio is named after Danish physicist Martin Knudsen (1871�1949),

and is denoted

Kn =
�

L
. (2.1)

The length scale, L, is generally dependent on the geometry of the gas flow in

question. For example, it could be the diameter of tube or the thickness of a

boundary layer. It was Knudsen who was first to notice that it is this dimensionless

quantity, and not solely the mean free path, that is relevant for characterising a

rarefied gas [Rathakrishnan, 2013]. The Knudsen number can be related to two

other important quantities of fluid dynamics, namely the Mach number, Ma (defined

as the ratio of the characteristic speed of the flow to the characteristic speed of an

individual particle) and the Reynolds number (defined as the ratio of the inertial
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forces to the viscous forces within the fluid), Re by

Kn =

r

�⇡

2

Ma

Re
(2.2)

where � is the ratio of specific heats (the ratio of the heat capacity at a constant

pressure to the heat capacity at a constant volume), and Kn and Re are defined

using the same characteristic length scale. Just as it is possible to characterise

flows by the Mach number and Reynolds number, we can also use the Knudsen

number to characterise the flow into di↵erent flow regimes. This characterisation of

degree of rarefaction by the Knudsen number can be summarised as follows. When

Kn < 0.001 the classical hydrodynamic equations, Navier-Stokes-Fourier equations

or Euler, and conventional no-slip at gas-solid interfaces are relevant. Here, the fluid

can be described accurately in terms of closed expressions involving the macroscopic

variables- velocity, pressure, temperature and density.

The range of Knudsen numbers 0.001 < Kn < 0.1 is known as the slip regime.

This is the range of Knudsen numbers that rarefaction e↵ects, that is e↵ects not

predictable using classical fluid mechanics, start to occur. In this range, most of

the non-equilibrium e↵ects in the boundary layer start to appear gradually and

are in general dominated by the phenomenon of ‘slip’, which can be summarised

as the appearance of non-zero velocities and temperature jumps at solid boundary

interfaces. Because the rarefaction e↵ects are dominated by the slip behaviour, the

Navier-Stokes-Fourier (NSF) equations supplemented with the correct slip boundary

condition are able to model the flow with a good degree of accuracy [Schaaf and

Chambré, 1961]. Lockerby et al. [2004] provides a current account of appropriate

boundary conditions to supplement the Navier-Stokes-Fourier or Euler equations,

as a function of Knudsen number.

A rarefied gas that has a Knudsen number in the range 0.1 < Kn < 10, is

considered to be in transition regime, named because it describes the scales between

where the gas can be modelled using traditional computational fluid dynamics and

the collisionless regime. Here the Knudsen boundary layer, where the transfer of

mass, momentum and heat are not well described by the classical hydrodynamic

equations, is large enough for the classical hydrodynamical equations to not provide

physically accurate solutions. In the range 10 < Kn, the collisions within the gas

are so rare that the gas can be considered to be collisionless. Experimental evidence

for this characterisation has been conducted by Tison [1993], and more recently
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Marino [2009], where the authors consider rarefaction e↵ects of gas moving through

micro-tubes.

The inability of the classical hydrodynamics equations, such as the Navier-Stokes-

Fourier equations, to model a gas in the transition regime is often claimed to be a

result of the breakdown of the continuum assumption. This is the assumption that

the gas can be well described as a continuous material, the break down of which

requires a description based upon a more detailed account of the underlying parti-

cle collision process. This is a widespread misunderstanding that has propagated

through the fluid dynamics community (for example, see[White et al., 2013]), in-

deed assuming that the dynamics of the macroscopic quantities of the material in

consideration can be approximated by equations involving spatial and temporal

derivatives does not lead to the NSF equations on its own. Typically even when a

gas is considered rarefied, the flow in consideration will still be comprised of num-

bers greater than 1020 particles per unit volume, and so in principal there is no

reason why equations that govern the transport of smoothly varying hydrodynamic

quantities are less appropriate. A more appropriate explanation of the observation

that the NSF equations fail in the transition regime, is that the linear constitutive

equations relating viscosity, shear stress and strain rate, are not justified when the

local thermodynamic state is not near equilibrium [Gad-el Hak, 2003].

This characterisation of rarefaction in terms of the Knudsen number informs us

that a gas will become rarefied when either the mean free path of the flow, � is

increased, or the characteristic length scale of the flow L is decreased. And so it

follows that the study of rarefied gas dynamics has found its predominant applica-

tion in two main areas: hypersonics and micro/nano scale flows. The use of the

Boltzmann equation in such applications would surely please Boltzmann were he

around today to witness them. He 1905 he stated:

“That is why I do not regard technological achievements as unimportant

by-products of natural science but as logical proofs. Had we not attained

these practical achievements, we should not know how to infer. Only

those inferences are correct that lead to practical success” Ludwig Boltz-

mann, 1905

Whilst I depart from his views on an epistemological level, one cannot deny the

successes that his eponymous equation, which I will go on to describe, have achieved.
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Boltzmann Equation

Navier-Stokes Equations
No Slip With Slip

Euler
Equations

Inviscid Limit Collisionless Limit

0.001 1.00.10.01 10

Slip Regime Transition Regime

Kn

Extended Hydrodynamics

Figure 2.1: Characterisation of flows by Knudsen number, and where di↵erent mod-
els are applicable. The Boltzmann equation in theory is able to model the entire
range. The Euler equations are relevant for very low Knudsen numbers, where vis-
cosity is negligible. The Navier-Stokes-Fourier equations, which are able to describe
viscous flows, are able to model gas flows are up to Kn = 0.001, or if slip boundary
conditions are included, up to Kn = 0.1.
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High speed external flows associated with aviation in the upper-atmosphere are

relevant for interplanetary rocket flight or for orbiting satellites, and so it is perhaps

unsurprising that interest in simulating rarefied gas flows took o↵ in the 1950s. The

flow in such situations is rarefied because the altitude required to fly at hypersonic

speeds means the surrounding gas will be of low density. With the increasing interest

in aircraft with the ability to fly at hypersonic speeds through the upper-levels of

the atmosphere, the need to be able to predict aspects of the flow field also grew.

Because accurate numerical solutions were very di�cult to obtain, the literature had

a large focus on experiment [Bird, 1976]. As the field gradually matured, theoretical

considerations increased and now a vast field of literature exists [Cercignani et al.,

1994].

In the last 20 years engineering advances in the field of micro-electrical mechanical

systems, or MEMS, has driven the e↵ort for modelling gases when the character-

istic length of an internal geometry (and characteristic velocity) are very small.

Such devices include pressure gauges [Górecka-Drzazga, 2009], vacuum generators

for extracting chemical or biological samples [Miao et al., 2006], actuators for active

control of aerodynamic flows [Huang et al., 2004], heat exchangers [Gad-el Hak,

2010], mass flow and temperature sensors [Wang et al., 2009]. Calculations of rar-

efied flows within such small devices pose di↵erent challenges to those encountered

by hypersonic rarefied flows, and this will be main topic addressed within Chapter

3. The remaining sections of this chapter will be devoted to describing the funda-

mentals of gas kinetic theory, leading towards the development of the Fokker-Planck

model which is the focus of this thesis.

2.2 The statistical mechanics of the Boltzmann equa-

tion

The fundamental paradigm of kinetic theory (and indeed statistical mechanics

as a whole) is to renounce the study of a physical system in terms of a detailed

description of the many components that form it. A full description of the system

would involve following the trajectories, specifically the position and momentum, of

roughly 1023 particles. Instead, it is far more sensible to speak about the system

statistically, and introduce probability density P (x,v, t) for a single particle, which

quantifies the chance of finding a particle within dx of a given position x and within

dv of a given velocity v at a time t. It was James Clerk Maxwell who was first to

realise this, and in 1859 produced an argument to derive an expression for P when

8



the distribution is known to be in thermal equilibrium (and hence stationary), which

assumes only that the distribution is isotropic and that velocities of a particle in

orthogonal directions are uncorrelated. From his equilibrium distribution he went

on to calculate viscosities and thermal conductivities, and found that transport

coe�cients were dependent only on the temperature, and not on the density, which

at the time was a surprise to many [Maxwell, 1860]. Maxwell, himself went on then

to perform experiments which confirmed his results.

However, with his ‘Kinetic Theory of Gases’, it was Ludwig Boltzmann who was

first to successfully attempt to explain the properties of dilute gases with knowledge

of the elementary collision process between pairs of molecules [Boltzmann, 1872].

This represented a milestone in theoretical physics, connecting the field of dynamics

to the field of thermodynamics. The underlying assumption of his famous equation,

allowing the closure of the hierarchical equations (both the BBGKY and Boltzmann

hierarchy derived from Newton’s Laws), is that the joint probability density function

of two particles that are about to collide can be factorised as the production of two

one-particle particle density distributions

P
2

(x
1

,x
2

,v
1

,v
2

) = P (x
1

,v
1

)P (x
2

,v
2

). (2.3)

Another way of stating this is that the pre-collision positions and velocities of

any two particles are uncorrelated. This assumption became known as molecular

chaos, and clearly an inappropriate assumption in general (in fact if it was true

in general, collisions would have absolutely no e↵ect on the time evolution of P

since probabilities would necessarily remain constant over trajectories). Clearly, the

positions and velocities of molecules that have only just collided must be correlated,

and so molecular chaos is not an assumption that can be justified from the dynamics

alone. Therefore, the property of molecular chaos must be there for the initial

distribution of the gas and must be preserved by the dynamics in order for the

Boltzmann equation to be a valid description. The mathematical justification of

this is still an open topic of research, however.

For systems with small numbers of particles this assumption clearly breaks down

because collisions between particles will intuitively act to create correlations, but
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in the Boltzmann-Grad limit1 the probability of two preselected particles colliding

diminishes, allowing the assumption to be made. This is ultimately responsible for

the time asymmetry that allowed Boltzmann to discover his famous H-Theorem of

1872, which appeared to predict an increase in entropy from apparently reversible

microscopic dynamics. This observation has become known as Loschmidt’s paradox.

At this stage instead of talking about the one particle probability distribution

P (x,v, t), it becomes useful to multiply P by a constant factor to produce a one

particle mass distribution function f(x,v, t) where f(x,v, t)dxdv represents the

expected number of particles at time t whose position is located within a ball of

radius dx centred on x in space, and whose velocity lies within a ball of radius

dv centred on v. Boltzmann’s famous equation for a dilute gas with hard sphere

interactions is

@f

@t
+ v · r

x

f = Q(f, f) (2.4)

Q(f, f) is the Boltzmann collision operator (where Q is written in a bi-linear form,

which we define more generally in section 2.4), and is given by

Q(f, f) =

Z

R3

Z

S

+

�

f 0f 0
⇤ � ff⇤

�

g�(g,⌦) dv⇤ d⌦, (2.5)

where g = v � v⇤ is the relative velocity of colliding molecules, S+ is the unit

hemisphere, � is the collision cross section (the area around the particle in which

the centre of another particle must be within, in order for a collision to occur), and

f 0 = f(x,v0, t),

f 0
⇤ = f(x,v0

⇤, t),

f = f(x,v, t),

f⇤ = f(x,v⇤, t), (2.6)

where
1

The Boltzmann-Grad limit is the limiting regime of the BBGKY hierarchy, where as the number

of molecules N ! 1, the range of interaction r satisfies Nr2 ! k 2 (0,1). This limit is of

physical relevance; for example let us consider argon, which has a Van der Waals interaction radius

of the order 10

�10m. For an Avagadros number N = 10

26

of particles per cubic metre, we have

N/r2 = 10

6m�2

.
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n
v � v⇤

v� � v�
⇤

x

x⇤

Figure 2.2: The normal vector n bisects the pre and post relative collision velocities.

v0 = v � n (n · g) v0
⇤ = v⇤ + n (n · g) . (2.7)

are the post collision velocities. For simplicity we will restrict our consideration

to the hard-sphere interaction model, which has a collisional cross-section given

by � = d2/4, where d is the molecular diameter. This interaction model gives a

reasonably accurate description of rarefied gas flows, and in general is considered to

be a good compromise between simplicity and accuracy (Hadjiconstantinou [2006]).

Derivations of the Boltzmann Equation, both heuristic and rigorous can be found

in many statistical mechanics text books, and I refer the reader to Cercignani et al.

[1994] for an in-depth discussion. Other general assumptions made in the derivation

are that collisions in the gas are binary, the distribution function f does not change

significantly during a collision and over length scales of intermolecular forces, f is

constant.

2.2.1 Alternative forms of the Boltzmann equation

There are alternative ways of writing the Boltzmann equation, which we will

use in subsequent chapters. One common way to write the collision operator is as

an integral over an independent incoming velocity and independent post collision

11



velocities, with conservation of momentum and energy enforced using Dirac delta

functions. This form is given by:

@
t

f
1

=

Z Z Z

W 34

12

(f
3

f
4

� f
1

f
2

) dv
2

dv
3

dv
4

, (2.8)

where,

W 34

12

= �34
12

�(v
1

+ v
2

� v
3

� v
4

)�(v2
1

+ v2
2

� v2
3

� v2
4

) (2.9)

is a collision rate function, and the velocities have been relabelled v
1

= v, v
2

= v⇤,
v
3

= v0, v
3

= v0⇤, and f
i

= f(x,v
i

). Under the linear change of variables

p = v
1

+ v
2

� v
3

� v
4

g = v
2

� v
1

g0 = v
4

� v
3

, (2.10)

whose Jacobian has a determinant of a 1/2, equation (2.8) becomes

@
t

f
1

=
1

2

Z Z Z

�(p,g,g0) (f
3

f
4

� f
1

f
2

)

⇥�(p)�
⇣⇣

g2 � g
0
2 + 2p · (g + 2v

1

) � p2
⌘

/2
⌘

dp dg dg0.

(2.11)

By using properties of the delta function, and by observing the integrand is only

non-zero when g = g0, we can write the integration over g0 as an integration over

vectors on the unit sphere multiplied by the magnitude of g, and equation (2.11)

becomes

@
t

f
1

=
1

2

Z Z

�(g,⌦)g (f
3

f
4

� f
1

f
2

) dg d⌦, (2.12)

which we may compare with the form of the Boltzmann equation given in equation

(2.5) to see that �(g,⌦) = 2�(g,⌦). Here we note it is customary to drop the

subscripts from f
1

and v
1

, and refer to them simply as f and v.
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Another form of the Boltzmann equation which we will use later in this thesis,

is the Boltzmann equation written in weak form. With some manipulations that

rely on the the transformations (2.7) being their own inverses, it is possible to show

[Cercignani et al., 1994] that for an arbitrary (well behaved) test function �(v),

Z

Q(f, f)�(v) dv =
1

2

Z

R3

Z

R3

Z

S

+

ff⇤
�

�0 + �0⇤ � �� �⇤
�

g�(g,⌦) dv⇤ d⌦ dv. (2.13)

If we let the test function �(v) = �(v�c) then we find (with spatial homogeneity)

that

@
t

f(c, t) =

Z

�(v � c)@
t

f(v, t) dv

=

Z

Q(f, f)�(v � c) dv

=
1

2

Z

R3

Z

R3

Z

S

+

ff⇤
�

�0 + �0⇤ � � � �⇤
�

g�(g,⌦) d⌦ dv⇤ dv. (2.14)

This is a form of collision operator we will revisit when viewing granular gases.

2.3 Moments of the distribution function

Complete knowledge of the mass distribution function often provides a description

that is more detailed than necessary or useful, and in general our interest is limited

to certain moments of the distribution. Because f is the mass distribution function,

it is possible to find the total mass by integrating over the whole phase space

M =

Z

R3

Z

R3

f(x,v, t) dxdv. (2.15)

The mass density is given by

⇢(x, t) =

Z

R3

f(x,v, t) dv, (2.16)

and the mean or bulk momentum is given by

13



⇢u(x, t) =

Z

R3

vf(x,v, t) dv0. (2.17)

The internal energy of the gas may be defined as

⇢e(x, t) =
1

2

Z

R3

|c|2 f(x,v, t) dv0 (2.18)

where c = v � u is the molecular velocity relative to the local mean veloc-

ity.Pressure is related to the internal energy of the gas by the ideal gas law p = ⇢RT ,

where R is the ideal gas constant, and the relationship e = 3/2RT for monatomic

gases. Other moments of physical relevance include the pressure tensor p
ij

and heat

flux q
i

, which are given by

p
ij

=

Z

c
i

c
j

f dv, q
i

=

Z

c
i

|c|2 dv. (2.19)

2.4 Properties of the Boltzmann Equation

2.4.1 Collisional Invariants

Let us consider well-behaved test functions  : R3 ! R. We wish to determine what

functions  are available so that the quantity

Z

 (v)Q(f, f) dv = 0. (2.20)

To achieve this, we use a generalised bi-linear collision operator

Q(f, h) =
1

2

Z

R3

Z

S

+

�

f 0h0⇤ + f 0
⇤h

0 � fh⇤ � f⇤h
�

g�(g,⌦) dv⇤ d⌦, (2.21)

where we notice that when we chose h = f we recover the collision operator (2.5)

that we defined originally. We now study the object.
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Z

 (v)Q(f, h) dv =
1

2

Z

R3

Z

R3

Z

S

+

�

f 0h0⇤ + f 0
⇤h

0 � fh⇤ � f⇤h
�

 (v)g�(g,⌦) dv⇤ dv d⌦.

(2.22)

Interchanging starred and unstarred variables lets us rewrite this as

Z

 (v)Q(f, h) dv =
1

2

Z

R3

Z

R3

Z

S

+

�

f 0h0⇤ + f 0
⇤h

0 � fh⇤ � f⇤h
�

 (v⇤)g�(g,⌦) dv⇤ dv d⌦.

(2.23)

Now, because the transformation given by the collision rules (2.7) is its own inverse,

exchanging the primed (post-collision) and unprimed (pre-collision) variables does

not change the integral, so

Z

 (v)Q(f, h) dv =
1

2

Z

R3

Z

R3

Z

S

+

�

fh⇤ + f⇤h � f 0h0⇤ � f 0
⇤h

0� (v0)g�(g,⌦) dv0⇤ dv0 d⌦.

(2.24)

The absolute value of the determinant of the Jacobian of the transformation (2.7)

is unity, so we are free to replace dv0⇤ dv0 by dv⇤ dv, hence

Z

 (v)Q(f, h) dv =
1

2

Z

R3

Z

R3

Z

S

+

�

fh⇤ + f⇤h � f 0h0⇤ � f 0
⇤h

0� (v0)g�(g,⌦) dv⇤ dv d⌦.

(2.25)

Finally, we may swap the starred and unstarred variables in (2.25) to obtain

Z

 (v)Q(f, h) dv =
1

2

Z

R3

Z

R3

Z

S

+

�

fh⇤ + f⇤h � f 0h0⇤ � f 0
⇤h

0� (v0
⇤)g�(g,⌦) dv⇤ dv d⌦.

(2.26)

Combining (2.22), (2.23), (2.25) and (2.27), and setting h = f , we see that
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Z

 (v)Q(f, f) dv =
1

4

Z

R3

Z

R3

Z

S

+

�

f 0f 0
⇤ � f⇤f

� �

 (v⇤) +  (v⇤) �  (v0) �  (v0
⇤)
�

g�(g,⌦) dv⇤ dv d⌦.

(2.27)

Consequently, it is clear that the collision operator vanishes when

 (v0
⇤) +  (v0) =  (v⇤) +  (v) (2.28)

for all v, v⇤, v0, v0⇤ satisfying Equation (2.7). This can only be satisfied if  (v) =

a+b ·v+ c |v|2, for arbitrary constants a, c 2 R, b 2 R3, the proof of which may be

found in [Cercignani et al., 1994]. Therefore, elements of the linearly independent

set  =
n

1,v, |v|2
o

are known as the collisional invariants.

2.4.2 Conservation

An elementary property that is required of a collision operator, which models

elastic hard sphere interactions, is for it to respect the conservation of mass, mo-

mentum and energy. If we take the derivative of the density, ⇢, with respect to time

it can be seen that

@⇢

@t
+

@

@x
i

(u
i

⇢) =

Z

@

@t
f(x,v, t) dv +

@

@x
i

(u
i

⇢)

=

Z

�v
i

@

@x
i

f(x,v, t) +Q(f, f) dv +
@

@x
i

(u
i

⇢)

= � @

@x
i

Z

v
i

f(x,v, t) dv +
@

@x
i

(u
i

⇢) = 0.

where we have used the fact that 1 is a collisional invariant and have assumed that

f decays quickly at infinity. Similarly one can show that taking time derivatives of

the momentum and energy

@
t

(⇢u
j

) +
@

@x
i

(⇢u
i

u
j

+ p
ij

) = 0, (2.29)

@
t

✓

1

2
⇢ |u|2 + ⇢e

◆

+
@

@x
i

✓

⇢v
i

✓

1

2
|u|2 + e

◆

+ v
j

p
ij

+ q
i

◆

= 0, (2.30)
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which we supply a full derivation of in the Appendices. Because the time derivatives

of these quantities can be written as a divergence, the Divergence Theorem enforces

that when these quantities are integrated over the spatial domain, they are conserved

when there are no fluxes at the boundaries.

2.4.3 Equilibrium and the H-Theorem

Classical statistical mechanics dictates that if the system is closed, and the dis-

tribution is stationary, i.e. there are no net fluxes in the system then the particle

distribution function should be described by the Maxwell-Boltzmann distribution

f
MB

=
⇢

(2⇡RT )3/2
exp

✓

�(v � u)2

2RT

◆

(2.31)

named after both James Clerk Maxwell and Ludwig Boltzmann. If u = u(x, t),

⇢ = ⇢(x, t) or T = T (x, t) then f
MB

(x,v, t) is said to be a local Maxwellian. It can

be shown that

Q(f, f) = 0 () f = f
MB

(2.32)

and so the only stationary distribution is the equilibrium Maxwell-Boltzmann

distribution. Boltzmann’s famous H-Theorem is established when considering the

quantity f log f . Combined with Equation (2.5) we see that

@
t

H + r
x

· JH = S (2.33)

where

H =

Z

f log f dv (2.34)

JH =

Z

vf log f dv (2.35)

S =

Z

log fQ(f, f) dv. (2.36)

It can be shown that S  0, and using the result at the end of §1.3.1 we see that

S = 0 () f = f
MB

. If we assume spatial homogeneity of f , then we see H is a
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functional that decays in time and is strictly bounded below by f
MB

. This is what

has become known as Boltzmann’s H Theorem. It would be tempting to conclude

from this that as t ! 1 f
0

! f
MB

, but strictly mathematically this is not the case

as it presupposes the global existence of solutions for a range of initial data. This is

dealt with by Arkeryd [1972]. When considering the spatially heterogeneous case,

this adds an extra layer of complexity, and considerations such as the boundary

conditions need to be considered. A detailed discussion of the subject can be found

in the lecture notes authored by Cercignani and Sattinger [1998].

The significance of the H theorem is that seemingly from a collision process which

is fundamentally time reversible, there is a function of the state space H that de-

creases in time. That is, a direction of time emerges. There is an analogy to be

drawn between H and the Shannon entropy of thermodynamics, so one might be

tempted to claim that the 2nd law of thermodynamics has been proved from the

dynamics of the particles. However, this is not the case as a direction of time has

been introduced implicitly by assuming the molecular chaos assumption Equation

(2.3).

2.5 Existence of solutions

Before describing methods for numerically finding solutions to the integro/di↵erential

equations (2.4)-(2.5), it is important to briefly mention what is known mathemat-

ically about the solutions. At the time of writing, there is no global existence (or

uniqueness) proof, of solutions to the classical Boltzmann equation [Alexandre et al.,

2011]. However, rigorous mathematical treatment of the Boltzmann equation goes

back to David Hilbert, and so I will briefly mention some of the more significant

results. Carleman [1933] first proved existence and uniqueness of solutions in the

spatially homogeneous setting with radial initial data. Later, Ukai et al. [1974]

proved existence of global solutions to the spatially dependent problem for initial

data close to equilibrium. DiPerna and Lions [1989] established global weak solu-

tions for initial data without size restrictions, by considering collision kernels with an

angular cut-o↵. This was the first global existence result for the Boltzmann equation

which contributed to Pierre-Louis Lions being awarded a Fields Medal in 1994. The

latest significant development was a proof showing global existence and uniqueness

for collision kernels that model long range interactions, without any angular cut-o↵s

([Gressman and Strain, 2011]).
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However despite being in consideration for over a century, existence and unique-

ness in general remains an open problem in the field of the analysis of PDEs, and

seems to be as challenging as establishing existence and uniqueness of global so-

lutions to the Navier-Stokes equations. Nevertheless, just as for the Navier-Stokes

equations it appears that if there are initial conditions for which global solutions do

not exist, these are likely to be a set of zero measure or at least so small as to not

be of practical concern.

2.5.1 Direct numerical solutions

The Boltzmann equation is a fundamentally harder equation to solve numerically

than the Navier-Stokes-Fourier equations, not only because the solution is defined

over a six (plus one) dimensional state space, but because the collision operator is

an integration over 5 dimensions. To illustrate this, suppose you wished to find the

unsteady solution to the Boltzmann equation with a conventional computational

fluid dynamics method, such as a finite di↵erence or finite element method, and

were to discretise each dimension into 100 points. This would require a grid of1014

points. To update the distribution at each point, the collision integral is required

to be evaluated, so a sum must be taken over each of the 1014 points, where each

term is itself a sum over all the collision parameters, with no apriori guarantee

that the resulting distribution conserves the collisional invariants. The only such

methods that rely on CFD approaches are based upon the Nordsieck, Hicks and Yen

1969, 1970 type method, which employs finite di↵erences for the transport terms on

the left hand side of the equation, and employs Monte-Carlo sampling to evaluate

the collision integral. This method was successfully applied to one-dimensional

steady flow problems (Hicks et al 1972) and was developed further by Aristov and

Tcheremissine who applied the method to two-dimensional steady problems.

A di↵erent type of deterministic solver was created by Goldstein et al. [1989] who

developed a method that is now known as the discrete velocity method (DVM). The

method works by discretising the velocity space, allowing the Boltzmann equation

to be written as a set of non-linear hyperbolic di↵erential equations. This e↵ectively

allows the construction of discrete collision mechanics at the nodes of the discreti-

sation. The method was then developed by, however in all cases, the computational

cost is e↵ectively of order MN6 where N is the number of discrete velocities in

each velocity direction, and M is the number of discretisations used to perform the

angular integration, and typically M ⇠ N1/3. It should be noted that the choice

of discrete velocities which allow the DVM to be conservative means that the order
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of accuracy is lower than that obtained by using a standard quadrature [Filbet and

Russo, 2004]. The computational expense required for a fully 3D solution is still pro-

hibitive, however recently Mouhot et al. [2013] have created a method based on the

DVM procedure that has a computational complexity of order N̂3N3 logN where

numerical evidence suggests that N̂ can be taken very small in comparison to N ,

which greatly reduces the computational costs. In theory this method is very well

suited to low speed near continuum flows as it allows the discretisation to be coarser

without sacrificing accuracy, although in the transition and continuum regimes their

solutions are yet to be well validated [Venugopal and Girimaji, 2015].

2.6 Continuum methods

2.6.1 The Chapman-Enskog expansion and Burnett equations

In this section I will briefly discuss the Chapman-Enskog expansion of the collision

operator, which will demonstrate how it is possible to derive macroscopic transport

equations from the Boltzmann equation. As we saw in §2.4.2, it is possible to

derive macroscopic conservation laws from the Boltzmann equation. By themselves,

these conservation laws do not represent macroscopic transport equations as alone

they are not a closed set of equations; p
ij

and q need to be described in terms of

the other macroscopic quantities. The Chapman-Enskog expansion allows one to

close the conservation equations by expanding the distribution function in increasing

powers of the Knudsen number. Let ✏ = Kn, then the Chapman-Enskog expansion

is obtained by writing

f = f (0) + ✏f (1) + ✏2f (2) + . . . (2.37)

Omitting many of the details, which one may find in [Struchtrup], because the

zeroth term has no Kn dependence f
0

is forced to be a local Maxwellian with the

same mass, momentum and temperature as f . Every non-invariant moment of the

distribution function can be found in terms of contributions from the moments of

the expanded functions of f , i.e.

p
ij

= p(0)
ij

+ ✏p(1)
ij

+ ✏2p(2)
ij

+ . . . (2.38)

q
i

= q(0)
i

+ ✏q(1)
i

+ ✏2q(2)
i

+ . . . (2.39)
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If the series is truncated at zeroth order, f = f
MB

, p
ij

= p = 2/3⇢e q
i

= 0,

then the closed set of macroscopic transport equations that is attained are the well

known compressible Euler Equations

@
t

⇢+ r · ⇢v = 0 (2.40)

@
t

u+ (u · r)u+
1

⇢
rp = 0 (2.41)

@
t

T + (u · r)T +
2

3
T r · v = 0 (2.42)

If instead, the series is truncated at first order, we see that the stress (the devia-

toric part of the pressure tensor p
ij

) and the heat flux are given by

�
ij

= �2µ
@u

i

@x
j

and q
i

= � @T
@x

i

(2.43)

which are the Navier-Stokes law and Fourier Law respectively, with viscosity and

heat conductivity

µ = µ
0

✓

T
0

T

◆

!

 =
15

4
µ (2.44)

(where µ
0

is the viscosity at a reference temperature T
0

, and ! = (�+3)/(2��2))

which leads to the experimentally verified Prandtl number Pr = 2/3.

It is clear that for large enough Knudsen numbers a level of decryption beyond

the NSF equations is required. This is what the Burnett (expansion to second order

in Kn) and the super Burnett equations (expansion to 3rd order Kn) attempt to

obtain. However, the closure of the Chapman-Enskog expansion at these orders of

Knudsen number have been shown by Bobylev [1982] to be unstable, so that small

oscillations will blow up in time. Because of this, they have limited practical use.

2.6.2 Moment Methods

Despite the success of the Chapman-Enskog expansion in deriving the Navier-

Stokes and Fourier Laws, higher order expansions such as the Burnett and super

Burnett equations, are demonstrably unstable, and as such have limited practi-

cal use. An alternative class of methods known, as moment methods attempt to
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derive macroscopic transport equations from sets of predetermined moments of

the distribution function. The most famous of these uses the set of 13 moments

{⇢,u, e,�
ij

,q}, was first preposed by Grad [1949] . The basic idea is to write the

distribution function as a series of Hermite polynomials where the coe�cients de-

pend only on the set of moments. By doing this, the conservation laws can be closed

in such a way that makes the resulting set of macroscopic equations uncondition-

ally stable. However, problems arise for larger Mach numbers where solutions to

the equations develop unphysical discontinuous shock profiles. Attempts have been

made to regularise the equations, resulting in a new set of equations the R13 equa-

tions, where shock profiles are continuous at all Mach numbers, however this leads

to di�culties that arise when choosing boundary conditions. This procedure has

also been applied to a larger set of moment, giving the R26 equations [Gu et al.,

2014], which are accurate up to the same order as the Burnett equations.

2.6.3 Direct Simulation Monte-Carlo

As it stands today, the Direct Simulation Monte Carlo (DSMC) method provides

the benchmark for calculations of rarefied flows. It was initially developed by G.A.

Bird during the 1960s and 1970s ([Bird, 1976], [Bird, 1978], [Bird, 1994]), and was

primarily used for aerospace and hypersonic applications. It has also found success

in modelling detonations (Sharma et al. [2002]). What makes it especially attractive

is not only its theoretical underpinning (Wagner [1992]), and its excellent agreement

with experiment (Oran et al. [1998]), but also the intuitive and relatively simple way

that it can be understood.

It is a stochastic process that is derived directly from the collision rules, and as

such the method has a computational complexity of order N , where N is the number

of stochastic particles used. Each simulated particle represents a certain number of

particles n of the real gas that is to be modelled, and has a position x
i

and velocity

v
i

. The position and velocity of each particle are updated during the simulation so

that at any point t 2 [0, T ] they are distributed according to f̂ in the phase space

(x,v), where f̂ is an approximate solution to the Boltzmann equation.

The spatial domain is partitioned into computational cells from which averages

are obtained to create estimates for ⇢, u and T at the centre point of each cell. That

is, for cell k
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⇢
k

= m
N

X

i=1

�
k

(x
i

) (2.45)

u
k

=
1

⇢
k

N

X

i=1

v
i

�
k

(x
i

) (2.46)

T
k

=
1

3k
B

⇢
k

N

X

i=1

(u
i

� v
i

)2�
k

(x
i

), (2.47)

where the membership delta function �
k

returns 1 when particle i is in cell k, and

0 otherwise.Time is discretised and the evolution of (x
i

,v
i

) for each particle is split

into two parts

@f

@t
=
@f

@t
|
move

+
@f

@t
|
coll

, (2.48)

where

@f

@t
|
move

= �v ·�
x

f (2.49)

describes the e↵ect of free motion of the particles, which is computationally ac-

counted for by the advection of each particle so that xi = xi + �tvi. In order to

take the
@f

@t
|
coll

term into account the following collision procedure is conducted.

Considering a computational cell containing a certain number of representative par-

ticles, the probability of collision for a given pair is given by

P = F
N

�
T

c�t/V
c

, (2.50)

where F
N

is the particle weight, � is the collisional cross-section, c is the relative

speed of the sample pair, and V
c

is the cell volume. If there are N particles in a

particular cell, then this would result in ⇠ N2 possible collision pairs from which to

sample. In order to alleviate this problem, Bird’s No Time Counter method allows

this to be done in order N time. The maximum collision probability is estimated as

P
max

= F
N

(�c)
max

�t/V
c

, (2.51)
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where (�c)
max

is a parameter of the calculation, chosen ahead of time. Then the

total number of pairs to check is

1

2
NN̄F

N

(�c)
max

�t/V
c

, (2.52)

and the probability of collisions is

P =
�c

(�c)
max

, (2.53)

so for a given pair, a uniformly distributed random number between 0 and 1 is chosen

and should that random number be less than P , the particles are assigned new

velocities according to the collision model. This procedure was shown by Wagner

to generate solutions that approach the solutions to the full non-linear Boltzmann

Equation in the limit of diminishing cell size, time step, and infinite number of

particles. This operator splitting has been shown to be second order accurate in

time, and also second order accurate in space.

The DSMC algorithm has proved very e↵ective and has been extended to include

chemical reactions, mixtures of gases and polyatomic e↵ects. However it su↵ers from

two main problems. The first is that as Kn ! 0, the number of required collisions

grows like Kn�1. This sti↵ness is problematic when, for example, coupling DSMC

to a Navier-Stokes solver for the purpose of multi-scale problems (Radtke et al.

[2012]). Another problem is the large relative statistical noise present in solutions

to low-speed flows, which we will discuss further in Chaper 4.

2.7 Approximations

2.7.1 Linearised Boltzmann

If one assumes that the distribution function f is very close to a Maxwellian distri-

bution f
MB

then it is possible to obtain the linearised Boltzmann equation. This

assumption is clearly only valid then for low Mach number flows. If the distribution

function is written as

f = f
MB

+ f1/2

MB

h, (2.54)
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where h is an unknown function, then the linearised Boltzmann collision operator

is given by

Lh = 2f�1/2

MB

Q(f1/2

MB

h, f
MB

). (2.55)

This form of the linearisation means that in simple cases variational principals can

be used to find approximate solutions.

2.7.2 BGK Collision Operator

The challenges involved in directly generating numerical solutions to the full-non

linear Boltzmann-Equation have made it desirable to find equations that are able to

reproduce the rich and diverse behaviour captured by the Boltzmann equation, but

do not su↵er from the same high computational costs. The most famous of these is

the BGK collision operator named after Bhatnagar et al. [1954], and is given by

@
t

f + v · r
x

f =
1

⌧
BGK

(f
MB

(v; c, T ) � f(x, v, t)) , (2.56)

where the local Maxwellian f
MB

has the same density, bulk velocity and temperature

as f(x, v, t), and ⌧
BGK

is the relaxation time. It would be fair to mention that

Welander [1954] independently preposed the same model at roughly the same time.

The e↵ect the BGK collision operator (on the right hand side of Equation (2.56))

has on f is to exponentially relax it towards the local Maxwellian distribution, and

hence in the phonon, electron and radiative transport literature it is known as the

relaxation time approximation model [Chen, 2005].

It has many of the desired properties of a collision operator. Firstly, the time

derivative of f is zero if and only if f = f
MB

, it conserves mass, momentum and

energy, and has an H-Theorem. On first inspection it appears that the BGK collision

operator is linear in f , however because f
MB

depends on the moments on f it retains

the property of non-linearity. The BGK collision operator is predominantly used to

make the calculation of the collision operator easier in deterministic solutions for

the evolved PDE. It is also used to provide closures to Chapman-Enskog expansion,

where calculations of the full non-linear Boltzmann equation have to be performed

numerically.
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However, the Prandtl number (the non-dimensional ratio of mass to heat dif-

fusivity) is Pr = µ/c
p

= 1 for the BGK operator, whereas for the Boltzmann

equation Pr = 2/3 (which agrees well with experiment) . This means that the re-

laxation time ⌧ can be adjusted in order to gain the correct viscosity µ or the correct

thermal conductivity , but both correct values cannot be satisfied simultaneously.

Usually the relaxation time ⌧ is set to give the correct viscosity and so this model

is predominantly used for isothermal flows.

Modifications to BGK operator can be applied in order to alleviate this problem.

These modifications generally involve either modifying the collision frequency so

that ⌧ = ⌧(v) which changes the local density, bulk velocity and temperature of the

local Maxwellian, or by making direct alterations to the local Maxwellian (called

ES, or ellipsoidal statistical models). A problem with this type of modification is

that in general it is di�cult to produce H-Theorems for the resulting models.

2.8 Summary

This chapter has provided a brief history and overview of rarefied gases and clas-

sical kinetic theory, as well the numerical methods employed to find approximate

solutions. Inevitably for such a large subject area, certain areas have remained un-

touched in this background chapter. For a more in depth discussion of some of the

topics discussed in this section, and on those not touched upon, for example the

treatment of poly-atomic gases and mixtures, and alternative collision models, the

reader is directed to the text books [Bird, 1994; Cercignani et al., 1994]. In the next

chapter, the Fokker-Planck gas kinetic collision operator will be introduced.
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3

The Fokker-Planck gas kinetic

equation

“Truth... is much too complicated to allow anything but approximations.”

– John von Neumann

3.1 The Fokker-Planck collision operator

An alternative approximation collision operator to the Boltzmann collision oper-

ator, is the Fokker-Planck collision operator, which is the focus of this thesis, and

was first considered (to my current knowledge) as an appropriate collision operator

for a rarefied gas by Lebowitz et al. [1960]. Originally it was proposed to model

the motion of a Brownian particle in a fluid [Chandrasekhar, 1943], but later it was

shown to be more widely applicable to liquids and plasmas [Cowling and Chapman,

1960]. I include two derivations of the Fokker-Planck collision operator, the first

derivation uses a linear form of the Boltzmann Equation in the context of a Raleigh

gas [Chang et al., 1970], the second method considers change of distribution caused

by the mechanics of a Brownian particle interacting with a gas in a heat bath [Green,

1951], in Appendix A and Appendix B respectively. In both cases, the fundamental

assumption that allows for the collision operator to be constructed is that collisions

deflect the colliding particles by small amounts, which can be considered to be a

grazing collision limit. The term Fokker-Planck is synonymous with the Kolmogorov

forward equation, and can be placed in the class of advection-di↵usion operators.

As such the operator can be understood as a di↵usion process in velocity space,

with advection (sometimes referred to as drift).
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The Fokker-Planck collision operator is given by

@f

@t
+ v · r

x

f = �(f), (3.1)

where

�(f) = r
v

· J(f) (3.2)

and

J(f) =
1

⌧
FP

h

cf +
kT

m
r

v

f
i

, (3.3)

and, ⌧
FP

is the relaxation time and c is the relative molecular speed. The collision

operator is formed from two parts. The first that appears is the drift term, which on

it’s own has the e↵ect of advecting the density of the distribution towards its mean.

This dissipates energy, and can be thought of as a source of friction. The second

term, the di↵usive term which is temperature dependent, creates enough energy to

balance exactly the energy dissipated by the drift term, as we shall see in the next

section.

A fully 3-dimensional direct numerical solution based on quadrature methods is

still prohibitively expensive, again, due to the dimensionality of the problem. As

such, this model received minimal attention in the literature, one notable exception

is Cercignani et al. [1994]. However, recently this model has been receiving more

attention due to a new numerical scheme devised by Jenny et al. [2010b]. Before

outlining this scheme, we will first discuss some of the model’s properties.

3.2 Properties of the Fokker-Planck collision operator

Recent contributions regarding the Fokker-Planck gas kinetic collision operator

largely consists of work by Jenny’s group at EHT Zurich. This literature included nu-

merical schemes and extension to correct the Prandtl number [Jenny et al., 2010b,a],

extensions to diatomic molecules [Gorji and Jenny, 2013] and mixtures [Gorji and

Jenny, 2012], and a hybrid scheme where a Fokker-Planck solution is coupled to

DSMC [Gorji and Jenny, 2015]. In the latter paper they make reference to Bogo-
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molov and Dorodnitsyn [2011] where the Fokker-Planck model is obtained in the

low Kn limit of the Boltzmann equation written as a Skorohod-type SDE. This ap-

proach relies on the assumption that a certain class of non-linear Markovian jump

processes can propagate molecular chaos, which is still an open problem [Mischler

and Mouhot, 2013]. In any case, the properties of the collision operator appear

as statements without proof in the later literature, with references to the older lit-

erature. However a review of the older literature shows demonstrations of such

properties missing, assuming that properties like conservation and the H-Theorem

follow directly through their derivations. This is not immediately clear, and so

therefore in this section I will show that the Fokker-Planck collision operator has

the desired properties required of such an operator directly.

3.2.1 Conservation

Conservation follows from the invariance of the collision operator with respect to

the set of quantities  =
n

1,v, |v|2
o

. It is immediate that

Z

�(f) dv =

Z

r · J dv = 0, (3.4)

by using Gauss’s Theorem and the fact that f and its derivatives must decay fast

enough for the density ⇢ to be finite, and so � conserves mass. Similarly, conserva-

tion of momentum also follows from Gauss’s Theorem:

Z

v
i

�(f) dv = �
Z

J · rv
i

dv (3.5)

= �
Z

(v
i

� u
i

)f +
kT

m
r · (e

i

f) dv (3.6)

=
kT

m

Z

r · (e
i

f) dv (3.7)

= 0, (3.8)

where e
i

is a unit vector in the ith direction, and so momentum is also conserved.

Finally, conservation of energy is a result of the balance between the energy gener-

ated from the relaxation towards the mean velocity, and energy dissipated by the

di↵usion operator:
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Z

|v|2�(f) dv = �
Z

J · r |v|2 dv (3.9)

= �2

Z

(|v|2 � |u|2)f +
kT

m
v · rf dv (3.10)

= �6
kT

m
� 2

kT

m

✓

�
Z

f r · v dv

◆

(3.11)

= �6
kT

m
+ 6

kT

m
= 0, (3.12)

which gives the desired result.

3.2.2 Equilibrium and an H-Theorem

It is trivial to check that in a closed system, the collision operator vanishes if and

only if the distribution function is Maxwellian. An H-Theorem, however, is missing

from the literature. For simplicity, and without any loss of generality assume that

the mean velocity u = 0, the density ⇢ = 1, the relaxation time ⌧ = 1. Also, for

simplicity we assume that the distribution is spatially homogeneous. We consider

the time derivative of the entropy-like macroscopic variable S,

dS

dt
=

d

dt

Z

f log f dv

=

Z

@
t

f(log f + 1) dv

=

Z

(log f + 1)r · J dv

= �
Z

J · r(log f + 1) dv

= �
Z

J · rf

f
dv

= �
Z

(vf +RTrf) · rf

f
dv

= �
Z

v · rf +RT
|rf |2
f

dv

=

Z

frv dv � RT

Z |rf |2
f

dv

= 3 � RT

Z |rf |2
f

dv.
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At this point it becomes useful to write f = f
MB

f
d

, where f
MB

is a Maxwellian

with the same temperature as f , and f
d

measures the deviation from Maxwellian.

Then

RT

Z |rf |2
f

dv = RT

Z

1

f
MB

f
d

|f
d

rf
MB

+ f
MB

rf
d

|2 dv

= RT

Z

1

f
MB

f
d

⇣

f2

d

|rf
MB

|2 + f2

MB

|rf
d

|2 + 2f
MB

f
d

rf
d

· rf
MB

⌘

dv

= RT

Z

f
d

f
MB

|rf
MB

|2 + f
MB

f
d

|rf
d

|2 + 2rf
d

· rf
MB

dv

= RT

Z

f

(RT )2
|v|2 + f

MB

f
d

|rf
d

|2 + 2rf
d

· rf
MB

dv

= 3 +RT

Z

f
MB

f
d

|rf
d

|2 + 2rf
d

· rf
MB

dv (3.13)

By using Gauss’s Theorem, it is possible to show
R

rf
d

· rf
MB

dv = 0 and so

RT

Z |rf |2
f

dv = 3 +RT

Z

f
MB

f
d

|rf
d

|2 dv � 3 (3.14)

with equality occurring if and only if f
d

= 1. Putting this together with 3.13 results

in the H-Theorem.

3.2.3 Prandtl number correction

Just like the BGK collision operator, a flaw of then Fokker-Planck collision operator

is that it produces the incorrect Prandtl number. This is unsurprising, given the

Fokker-Planck operator only utilises the first two moments of the distribution. The

simplest way of correcting this is the cubic drift model introduced by Gorji et al.

[2011]. The drift term in the original Fokker-Planck model is given by, A = cf/⌧ ,

and the di↵usion coe�cient is D =
p

RT/⌧ . Instead, if one allows A to depend on

higher order moments then

A = Kc + �
⇣

|c|2 � 3RT
⌘

+ ⇤(c |c|2 � 2q/⇢), (3.15)

where
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⇤ =
�1

⌧(3RT )4⇢3
|det(⇡

ij

)| (3.16)

and K 2 R3⇥3 and � 2 R3 have to be found by determining the solution to the

linear equations,

K
il

p
jl

+ k
jl

p
il

+ 2�
i

q
j

+ 2�
j

q
i

+ 2⇢⇤E[v
i

v
j

v
k

v
k

] = 0. (3.17)

This model requires more e↵ort computationally, and so far does not have an H

Theorem, but has shown to be very accurate at resolving heat fluxes in cavity flows

[Gorji et al., 2011].

3.3 SDE formulation

Recent attention to the Fokker-Planck collision operator has started to grow after the

[Jenny et al., 2010b] paper was published. The novelty was that they presented an

algorithm for solving the equations using particle dynamics, which has the important

property that the scheme is conservative on average. This is a property that general

solution schemes were lacking, which leads to an accumulation in error over time.

It is a corollary of the Feyman-Kac formula that enables us to link the Fokker-

Planck equation to an equivalent stochastic di↵erential equation.

Theorem 3.3.1 Suppose that a, b are bounded smooth functions (a, b: Rn !
Rn). Let X 2 Rn be the solution of the stochastic di↵erential equation dX(t) =

a(t,X(t))dt+ b(t,X(t))dW (t) and let

f(x, t) = E[⇢(X(t))|X(t
0

) = x
0

] =

Z

R
⇢(x)P (x, t;x

0

, t
0

) dy. (3.18)

Then the function f solves the Fokker-Planck equation

@
t

f +
n

X

i=1

@

@x
i

(a
i

f) � 1

2

n

X

i,j=1

@2

@x
i

x
j

((bbT )
ij

f) = 0, (3.19)

f(y, t;x, t) = �(x � y), (3.20)

where � is the Dirac-delta measure centred on zero.
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Alternatively, one can show the same result using Ito’s Lemma. If x, a and b are

defined as follows,

x =

0

B

B

B

B

B

B

B

B

B

@

x
1

x
2

x
3

v
1

v
2

v
3

1

C

C

C

C

C

C

C

C

C

A

, a =

0

B

B

B

B

B

B

B

B

B

@

v
1

v
2

v
3

c
1

/⌧

c
2

/⌧

c
3

/⌧

1

C

C

C

C

C

C

C

C

C

A

, b =

0

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
p

2RT/⌧ 0 0

0 0 0 0
p

2RT/⌧ 0

0 0 0 0 0
p

2RT/⌧

1

C

C

C

C

C

C

C

C

C

A

(3.21)

then (3.20) is just the Fokker-Planck kinetic equation, and so if X = (X(t),V(t)) are

random variables distributed according to f then they solve the following coupled

stochastic di↵erential equation

dX(t) = V(t)dt (3.22)

dV(t) =
1

⌧
(u(t,X) � V(t))dt+

p

2RT (t,X)/⌧ dW(t) (3.23)

where stochastic derivatives are interpreted in the Ito sense, and W(t) is a 3 dimen-

sional Weiner process. We can now define mean velocity and temperature by the

expectations

u(t,x) = E
f

[V(t)|X(t) = x] (3.24)

3RT (t,x) = E
f

[(u(t,x) � V(t))T (u(t,x) � V(t)) |X(t) = x] (3.25)

The advantage of having the equation in it’s SDE form is that it lends itself well

to numerical solution by stochastic particle methods. A stochastic particle method

for this problem means finding a way to evolve a collection of stochastic particles in

time
�

(Xi,Vi)
 

i=1,N

so that in the limit of vanishing discretisation, the SDE 3.23

is recovered. Any such method will require the estimation of u and T , which lends

itself to the grid based estimation as described in the DSMC section.

3.4 Jenny’s solution scheme

Before describing the Jenny solution scheme [Jenny et al., 2010a], it is worth men-

tioning other discretisations of the SDEs (3.22) (3.23) and why they are inappropri-
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ate. Suppose we take the Euler-Maruyama discretisation of (3.22) (3.23), leading to

the set of equations

Xi

t+1

= Xi

t

+�tVi

t

(3.26)

Vi

t+1

= Vi

t

� �t

⌧
Vi

t

+
p

2RT/⌧�Wi

t

(3.27)

where �Wi

t

are independent identically distributed gaussian random variables, with

mean 0 and variance �t. Let us suppose further than f is homogeneous in space,

then the expected temperature

E[3RT̂
t+1

] = E[Vi

t+1

· Vi

t+1

] (3.28)

= (1 ��t/⌧)E[Vi

t

· Vi

t

] + 2RT̂
t

E[�Wi

t

·�Wi

t

]/⌧ (3.29)

= (1 ��t/⌧)E[3RT̂
t

] + E[2RT̂
t

]�t/⌧ (3.30)

6= E[3RT̂
t

]0 (3.31)

and so the Euler-Marayuma scheme on average will not conserve the internal energy

of the simulated particles. This is a pit-fall of other standard higher order SDE

discretisation schemes. In contrast, the Jenny scheme is designed so that energy

is conserved on average. The scheme presented in [Jenny et al., 2010a] can be

summarised as follows:

X
i

(t+�t) = X
i

(t) + U
i

(t)�t+ (V
i

(t) � U
i

(t))⌧(1 � e��t/⌧ ) +
p
B⇠

i,1

(3.32)

V
i

(t+�t) = V
i

(t) � (1 � e�t/⌧ )(V
i

(t) � U
i

(t)) +

r

C2

B
⇠
1,i

+

r

A � C2

B
⇠
2,i

,

where

A = RT (1 � e�2�t/⌧ ) (3.33)

B = RT ⌧2
✓

2�t

⌧
� (1 � e��t/⌧ )(3 � e��t/⌧ )

◆

(3.34)

C = RT ⌧(1 � e�t/⌧ )2 (3.35)

Numerical studies have shown good agreement between this discretisation scheme

and DSMC in examples including cavity flows and channel flows [Jenny et al., 2010b;
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Gorji et al., 2011].

3.5 Discussion

In this chapter we have introduced the Fokker-Planck gas collision operator, and

given a brief account of its origins. We have shown that it obeys the conservation

laws and an H-Theorem, which are minimum requirements for a collision operator

modelling collisions in a rarefied gas. We have described the numerical solution

scheme proposed by [Jenny et al., 2010b; Gorji et al., 2011], who have shown that

the model is able to e�ciently produce accurate numerical results. This is because,

unlike in DSMC, the collisions are not modelled explicitly. This is advantageous,

especially for low Kns, because the time discretisation scheme does not require a

higher resolution to account for the relative increase of number of collisions. Like

DSMC, however, the numerical solution of the Fokker-Planck model is stochastic.

This creates problems in low Mach number regimes, where the noise in numerical

estimates drowns out the signal. In the next chapter, I will describe this problem

further and propose methods which help to reduce the problem of noise.
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4

Variance reduction schemes for

low speed flows

“...there’s plenty of room at the bottom.”

– Richard Feynman, 1959

4.1 Motivating examples

As briefly discussed in the background chapter, recent advances in engineering are

allowing the construction of machines and component parts whose size can be of the

order of nanometers [Karniadakis et al., 2006]. This new paradigm of technology

was predicted by Richard Feynman in his 1959 lecture “There’s Plenty of Room at

the Bottom”, where he prophesied new applications in engineering and physics at

lengths beyond the micro-scale. Today, such novel fabrication methods include bulk

silicon micro machining [Ho↵mann and Voges, 2002], surface silicon micromachining

[Lyshevski, 2013], electro discharge machining (EDM) [Dahmardeh et al., 2011] and

LIGA (Lithographie Galvanoformung Abformung) [Lin et al., 2002]. Further to these

examples, exciting fabrication techniques where sub-micron scale objects which are

able to self-assemble are now possible (Whitesides and Grzybowski [2002], Rycenga

et al. [2011], Grzelczak et al. [2010]).

One particular example of the need to model gases at the nano-scales is within

hard disk drives (HDDs), where in order to compete with the performance of solid

state drives (SDDs) the distances between magnetic disk and the head used to write

and read from the disk has reduced to 5nm. It’s crucial to the design of these heads

to be able to predict the force exerted on them from the pressure distribution of
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Figure 4.1: The emerging sport of micro-car racing. This model of a racing car was
produced by the “two-photon lithography” technique (source: TU Vienna).

the gas [Zhou et al., 2008]. Other examples include actuators [Epstein et al., 1997],

micro turbines [Waitz et al., 1998], gas chromatographs [Tian et al., 2005] and micro

air vehicles (MAVs). [Fan et al., 2001].

4.2 Variance reduction for DSMC

The basic DSMC algorithm, due to it’s stochastic nature, su↵ers from an un-

favourable computational complexity for a given level of statistical error as the Mach

number of the flow goes to zero [Hadjiconstantinou et al., 2003]. Recalling the defi-

nition of the Mach number from Chapter 2, Ma = c/c
0

, where c is a characteristic

velocity of the flow and c
0

is the speed of sound, defined as

c
0

=

r

�kT
0

m
, (4.1)
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with � = c
P

/c
v

the ratio of specific heats, and that if we are close to equilibrium

then the sampling error is approximately

�2
u

⇡ kT
0

mN
, (4.2)

where N is the number of samples, results in the noise-to-signal ratio

�
u

/c ⇠ 1p
NMa

. (4.3)

The absolute statistical error scales as the inverse square root of the number of

independent samples, and so for a given level of uncertainty the number of sam-

ples required scales as Ma2 as Ma ! 0. This scaling is clearly prohibitive when

considering flows when making calculations for flow fields where Ma ⌧ 1.

Because of this scaling, numerical schemes that are able to reduce to variance

when the Mach number is small have become highly desirable. Currently, there

are two modifications developed for DSMC that have the ability to do this. The

first, known as low variance direct simulation Monte-Carlo, or LVDSMC, works by

numerically solving for the part of the distribution f
d

which is a deviation from the

local Maxwellian, that is

f
d

= f � f
MB

. (4.4)

This type of strategy for reducing the variance was first considered by Cheremisin

[2000] to be applied to the discrete velocity method for use in the limit of small

Knudsen numbers where the basic DSMC algorithm becomes sti↵, where the devi-

ation from equilibrium is known to be small. However, only modest computational

gains were achieved. Only later was it seen by Baker and Hadjiconstantinou [2005]

that this method applies when not only for small Knudsen numbers, but also for

small Mach numbers.

By considering deviations of the form of Equation (4.4) Homolle and Hadjicon-

stantinou [2007] were able to simulate only the deviational part of the distribution by

taking advantage of a particular form of the hard-sphere linearised collision integral,

linearised around a spatially varying equilibrium. Radtke and Hadjiconstantinou

[2009] went on to develop the method to be used with the linearised BGK colli-
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sion operator, which was followed by an algorithm for simulating the full non-linear

BGK collision operator, with f
d

the deviation from a global maxwellian distribution

[Hadjiconstantinou et al., 2010]. More recently, Radtke et al. [2011] developed the

algorithm to cope with the variable hard sphere (VHS) collision operator, linearised

around a local Maxwellian. Radtke et al. [2011] went on to extend the method to

also sample from the non-linear part of the distribution, but found that for moder-

ate deviations from equilibrium, the number of particles generated by the method

blows up and so the method is unstable.

In contrast, the second variance reduction scheme developed for DSMC by Al-

Mohssen and Hadjiconstantinou [2010], known as VRDSMC (variance reduced DSMC),

achieves a reduction in the variance of statistical samples without major changes

to the original DSMC algorithm. It does this by applying an importance sampling

technique, which utilises importance weights that biases the Monte-Carlo estima-

tors to sample from an equilibrium distribution, where in theory the hydrodynamic

fields are known analytically. This allows the construction of a new estimator that

exploits the fact that one knows the errors associated with sampling from equilib-

rium, and if the original distribution is close to equilibrium, this equilibrium error

will constitute the majority of the overall error.The non-trivial part of the algorithm

is the evolution of the importance weights in time with the distribution f , which is

achieved by considering the DSMC collision rules.

In this remaining sections of this chapter I will first outline the principle that

many variance reduction schemes for simulated stochastic processes utilise, before

proposing two methods that can be specifically applied to the Fokker-Planck dy-

namics given in the previous chapter.

4.3 General variance reduction

As found by Jenny and co-authors, the numerical solution to the Fokker-Planck

equation outperforms the DSMC algorithm in terms of computational e�ciency

Jenny et al. [2010b]. Both schemes have a computational complexity of order N ,

where N is the total number of particles in the computational calculation, however

the Fokker-Planck solution algorithm requires fewer operations per particle per time-

step. However, because the Fokker-Planck algorithm also produces estimates that

are themselves random variables, it su↵ers from the same unfavourable scaling of

noise-to-signal ratio with Mach number as the DSMC method.
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In this section we outline the general principal that both our proposed variance

reductions scheme utilise. Both methods work by exploiting information about

errors in estimates of known quantities. The general principal is as follows. Suppose

we have a random variable X, and we wish to estimate E[X]. Let our unbiased

estimate of E[X] be donated by X̂, for example the sample mean. Let Y be a

di↵erent random variable with known expectation E[Y ] with an estimator denoted

by Ŷ . Then we can use the identity:

E[X] = E[X + cY ] � cE[Y ], (4.5)

to create a new unbiased estimator for E[X],

X
V R

= X̂ + cŶ � cE[Y ]. (4.6)

The variance of this estimator is

Var[X̂
V R

] = Var[X̂] + c2Var[Ŷ ] + 2cCov[X̂, Ŷ ], (4.7)

and if we minimise this over possible choices of c, then minimiser c⇤is given by

c⇤ = �Cov[X̂, Ŷ ]

Var[Ŷ ]
, (4.8)

hence the variance for this choice of c is

Var[X̂
V R

] = Var[X̂] � Cov[X̂, Ŷ ]2

Var[Ŷ ]
. (4.9)

The only condition required for the variance of the estimator to be less than the

variance of the original estimator is for Cov[X̂, Ŷ ] > 0, and so X̂ and Ŷ being

dependent is a necessary condition. This is all supposing that we already know c⇤,
which presupposes that we already know Cov[X̂, Ŷ ]. In reality, this is something

that is not known a priori and will either have to be estimated throughout the

simulation, or perhaps more practically, a rule of thumb established. Using (4.9)

relies on constructing a stochastic process Y
t

that stays correlated with the stochastic

process X
t

that we are interested in, for a large enough amount of time to take
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estimates within. In the next section we propose schemes that reduce the variance

of the sample mean estimators (which we refer to as the standard Monte Carlo

estimators) in the Fokker-Planck simulations of rarefied gas.

4.4 Common random numbers

The first method I propose is as follows1. The simplest way to exploit the variance

reduction given by equation (4.9) is to produce a solution to a problem where the

answer is already known, in parallel to the solution we wish to reduce the variance

of. If the same set of random numbers are used to produce both solutions then

the solutions will be correlated, and hence we may use equation (4.9) to reduce the

variance. The simplest way to produce a solution that will be correlated, and one

which we know the solution of is to keep the geometry of the original problem and use

the random numbers used in the simulation of the random process we are interested

to simulate one where the distribution is known to be a global Maxwellian. This type

of variance reduction scheme are commonly referred to as common random numbers

schemes (CRN) [Bratley et al., 1983]. Areas where common random schemes have

been employed to reduce the variance of stochastic calculations include financial

mathematics [Broadie and Glasserman, 1996], simulating epidemiological models

[Stout and Goldie, 2008] and optimisation [Kleinman et al., 1999].

4.4.1 Decay to equilibrium

We will demonstrate the e↵ectiveness of this method first with a homogeneous

relaxation to equilibrium, that is for a distribution where f(t,x,v) = f(t,v) has

no spatial component. We start from an initial distribution of particles that has

normally distributed velocities, with zero mean and a standard deviation of c
0

, in

the 2nd and 3rd dimension, and a density in the 1st dimension made from the sum

of two gaussians with means ±c
0

.

f
0

(v) = (1/2) (f
MB

(v
1

, c
0

, c
0

) + f
MB

(v
1

,�c
0

, c
0

)) f
MB

(v
2

, 0, c
0

)f
MB

(v
3

, 0, c
0

),

(4.10)

which we know to relax towards the Maxwellian distribution f
MB

(v,0,
p

(4/3)c2
0

).

1

During the write-up of this thesis, the author became aware that this method has been published

independently [Gorji et al., 2015].
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Figure 4.2: Spatially homogeneous decay to equilibrium. Green squares show stan-
dard Monte Carlo estimate, blue triangles show equilibrium solution with common
random numbers, red diamonds show variance reduced estimate, black line shows
theoretical value at equilibrium.

Figure (4.2) shows the results of the homogeneous relaxation towards equilibrium,

with 500 particles and 500 time-steps. The results show that the CRN estimator is

able to greatly reduce the variance from the standard Monte Carlo estimate. The

particles in the non-equilibrium initial condition are initialised with the same random

numbers as those with the equilibrium initial condition. Because they have di↵erent

initial distributions, it takes a number of time-steps for the solutions to correlate

fully, and so the variance reduction is stronger as time increases. In subsequent

examples of the method, it is possible to initialise the particles with the same initial

conditions.

4.4.2 Channel flows

In the decay to equilibrium, we considered a spatially homogeneous problem,

and so keeping the position of individual particle trajectories correlated is entirely

trivial. In spatially inhomogeneous problems the task is harder, as the dynamics of

each particle is dependent on its position, and so it is possible that particles in both
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Figure 4.3: Steady state Couette flow. Red is standard Monte Carlo estimate of
velocity profile across channel, blue is CRN variance reduced estimator, black dashed
is Navier-Stokes profile with Maxwell boundary conditions. Kn = 1.0, v

wall

= 0.01c
0

.

solutions that start correlated, de-correlate over time. Uniform channel flows are

flows where the fluid is bounded by gas-surface interfaces in at least one dimension,

and the flow fields vary in the dimension parallel to the walls, varying with respect

to the dimension perpendicular to the wall. This means that if the particles in

the equilibrium and non-equilibrium solutions have the same initial conditions, then

their subsequent velocities and positions in the dimension perpendicular to the walls

will be identical, but we expect the velocities in the dimension parallel to the wall

to di↵er.

Figures (4.3-4.4) show variance reduced estimators of the velocity field across

thee channel of steady state planar Couette flows, for Kn = 1.0 and Kn = 0.1

respectively. For each solution 25 particles per cell were used, averages obtained from

1000 time steps. The blacked dashed lines in the figures are Navier-Stokes solutions

supplemented with the standard phenomenological Maxwell boundary conditions,

which provides the slip velocity at the boundary, and are given by
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Figure 4.4: Steady state Couette flow. Red is standard Monte Carlo estimate of
velocity profile across channel, blue is CRN variance reduced estimator, black dashed
is Navier-Stokes profile with Maxwell boundary conditions. Kn = 0.1, v

wall

= 0.01c
0

.

v
s

=
2 � �

a

�
a

r

⇡

2
�
du

dn
, (4.11)

where �i s the mean free path, and n is the normal direction to the wall. �
a

is

the accommodation coe�cient (named as it describes the propensity of the gas to

accommodate to the state of the wall) with �
a

= 0 designating purely specular

reflections and �
a

= 1 designating purely di↵usive gas-surface interactions.

In section 4.5.4 we will quantitively look at the variance reduction in comparison to

the basic Monte-Carlo sampling and the method to be introduced in the next section.

It should be stressed that this type of variance reduction scheme can only work if the

positions of particles within the non-equilibrium and equilibrium calculations remain

correlated over a large enough period of time to gain meaningful samples. This is

quite a strict condition to fulfil and requires symmetry within the geometry that

can be exploited, and in general this method will not be applicable to geometries

more complex than channel flows. In the next section, we propose a scheme where
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this is possible for arbitrary geometries.

4.5 Importance weights

The method we will now propose to reduce the variance of estimators used for

collections of particles evolving according to equation (3.33) uses the same type of

importance sampling as the VRDSMC method [Al-Mohssen and Hadjiconstantinou,

2010], but the implementation di↵ers because of the di↵erent particle dynamics.

The method works in the following way: suppose we are interested in evaluating the

expectation of g(V) where V is distributed according to the distribution function

f . Then given N independent samples {V
1

. . .V
N

} distributed according f the

following definition gives rise to the estimate:

E
f

[g(V)] =

Z

g(v)f(v) dv (4.12)

⇡ 1

N

N

X

i=1

g(V
i

). (4.13)

We now define a function

W (v) =
f
ref

(v)

f(v)
, (4.14)

which is a measure of how likely you are to see this particle with this velocity, relative

to how likely you are to observe this particle if it was distributed to a reference

density f
ref

. This definition is well defined as long as the distribution f is absolutely

continuous with respect to f
ref

, meaning that f
ref

(S) = 0 whenever f(S) = 0 for

any subset S of the state-space. This definition can be viewed as a Radon Nikodym

derivative. It can then be observed that the expectation of g(v) with respect to the

reference distribution can be estimated using the original samples:

45



E
f

ref

[g(v)] =

Z

f
ref

(v)g(v) dv (4.15)

=

Z

f(v)
f
ref

(v)

f(v)
g(v) dv (4.16)

=

Z

f(v)W (v)g(v) dv (4.17)

⇡ 1

N

N

X

i=1

W (V
i

)g(V
i

). (4.18)

This is significant as it allows one to sample from the reference distribution f
ref

, using

the original set of samples from the distribution f . If the reference distribution is

Maxwellian, f
ref

= f
MB

then using equation (4.9) one then has the ability to reduce

variance in the same way, with c = 1. This is made clear by constructing the

estimator

[g(V) =
1

N

N

X

i=1

g(V
i

) � 1

N

N

X

i=1

W (V
i

)g(V
i

) + E
f

MB

[g(V)] (4.19)

=
1

N

N

X

i=1

g(V
i

)(1 � W (V
i

)) + E
f

MB

[g(V)]. (4.20)

When the weight function W ⇡ 1, which occurs when f is close to the Maxwellian

f
MB

, the estimator is mostly formed from the contribution by the pre-determined

equilibrium expectation, which has zero variance. This is good for low speed flows, as

when the Mach number is small, we expect only small deviations from equilibrium.

In order to implement this method, one needs a method of evolving the weights

and velocities {v
i

,W
i

} in time, where W
i

= W (v
i

). For VRDSMC this is possible

because it can be shown directly from the Boltzmann equation, that if two particles

are chosen to collide with weights W
i

and W
j

then the post collision weights must

be equal to 1

2

(W
i

+ W
j

). Because the Fokker-Planck dynamics have no explicit

collisions, a di↵erent way to update the weights in needed.

Weights can be initialised exactly, because the initial velocities of the particles

are distributed according to a prescribed initial distribution f
0

. As time is evolved

during the calculation, the distribution of velocities will change and hence so must

the weights attached to each particle. VRDSMC is able to do this by creating

collision rules that ensure that post collision velocities are still able to sample from
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the same reference distribution. However, these rules are not relevent for the Fokker-

Planck particle dynamics as collisions are not modelled explicitly.

4.5.1 Weight update rule

Instead, let us suppose that a given particle updates its from velocity from V
t

!
V

t+1

, where V
t

is distributed according to f
t

and V
t+1

is distributed according to

f
t+1

, and that we have W
t

= f
eq

(V
t

)/f
t

(V
t

). We can use the law of total probability

f
t+1

(v) =

Z

f
t+1

(v|V
t

= v0)f
t

(v0) dv0, (4.21)

to write

W
t+1

(V
t+1

) =
f
eq

(V
t+1

)

f
t+1

(V
t+1

)
=

R

f
eq

(V
t+1

|V
t

= v0)f
eq

(v0) dv0
R

f
t+1

(V
t+1

|V
t

= v0)f
t

(v0) dv0 . (4.22)

It then remains to approximate this as the distributions f
t+1

and f
t

are in principal

unknown. In principal, there are many ways to achieve this. A simple candidate is:

W
t+1

⇡ cW
t+1

:=
f
eq

(V
t+1

|V
t

)f
eq

(V
t

)

f
t+1

(V
t+1

|V
t

)f
t

(V
t

)
(4.23)

=
f
eq

(V
t+1

|V
t

)

f
t+1

(V
t+1

|V
t

)
W

t

(V
t

). (4.24)

This has approximation immediately has some desirable properties. Firstly, the

error of the approximation decays with �t. Also, it is possible to calculate this

explicitly from the update rule V
t

! V
t+1

given by equation (3.33). This con-

ditional distribution will be a gaussian centred on V
t

plus the deterministic drift,

with a temperature dependent variance. Further to this, it has the correct condi-

tional expectation E(cW
t+1

|W
t

) = W
t

when the distribution is stationary. However,

on its own it is not a suitable choice as if such a rule is repeated the variance of

this approximation diverges, which is a common problem for this type of particle

weight importance sampling method [Swiler and West, 2010]. This is a problem,

because to reduce the variance of our estimators in a meaningful way, we require the

weights to be close to unity. To avoid this problem we use the same kernel density

estimator approach as used in [Al-Mohssen and Hadjiconstantinou, 2010]. Kernel

density estimation (KDE) is a method that allows one to obtain an estimate f̂ of
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a density function f from samples distributed according to that density function in

the following way:

bf(v) =
1

N

N

X

i=1

K
r

(v � V(i)), (4.25)

where K
r

is a kernel function that integrates over the state-space to 1, and r is a

smoothing parameter that controls the width of the kernal function. We use the

same kernels as Al-Mohssen and Hadjiconstantinou [2010]:

K
r

(v) =

(

(4/3⇡r3)�1 if kvk< r

0 otherwise
, (4.26)

which returns a 1 divided by the volume of a sphere of radius r if vi lies within the

sphere of radius r centred on v, and otherwise returns a zero. If we combine this

with (4.24), we arrive at

W
t+1

(Vi) ⇡
P

N

j=1

K
r

(V
i

� Vj)cW
t+1

(Vj)
P

N

j=1

K
r

(V
i

� Vj)
(4.27)

=
1

|S
r

(Vi)|
X

V

j2S
r

(V

i

)

cW
t+1

(Vj), (4.28)

where S
r

(Vi) = {Vj :
�

�Vj � Vi

�

� < r} is the set of samples whose members

lie within the sphere of radius of r centred on Vi. This KDE step has the e↵ect

of smoothing out the variation introduced by using a conditional probabilities to

estimate a marginal probability, and making the scheme more stable. Increasing

the smoothing parameter r results in an estimator with a smaller variance, however

it also increases the bias of the estimation, so ideally r should be chosen to be as

small as possible whilst maintaining an acceptable level of variation.

4.5.2 Boundary conditions

We use the same boundary condition methodology as described in Al-Mohssen and

Hadjiconstantinou [2010] , that is for di↵usely reflecting fully accommodating walls,

with temperature T
wall

and tangential velocity u
wall

. Supposing that the Maxwellian

distribution at the boundary is given by f
wall

(v) = ⇢
wall

P
MB

(v), where P
MB

is a
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Gaussian probability density, and the boundary is the plane x = 0, then the no flux

boundary condition is

⇢
wall

Z

v

x

<0

v
x

P
MB

(v) dv +

Z

v

x

>0

v
x

f(v) dv = 0, (4.29)

and similarly for the equilibrium solution

⇢
wall,eq

Z

v

x

<0

v
x

P
MB,eq

(v) dv +

Z

v

x

>0

v
x

W (v)f(v) dv = 0. (4.30)

The second term of both (4.29)-(4.30) is just the flux of particles, and can be esti-

mated by counting the number of computational particles N
in

that cross through a

wall of area �s in a time period �t by N
in

/�s�t. At equilibrium this is estimated

by
P

N

in

i

W
i

�s�t. The first terms of both (4.29)-(4.30) can be calculated using

analytical properties of the normal distribution,

Z

v

x

<0

v
x

P
MB

(v) dv =
1p
2⇡

r

kT

m
. (4.31)

Hence if after colliding with a wall, a particle changes velocity from V to V0, its
weight changes according to

W 0 = W (V0) =
f
eq

(V0)
f(V0)

(4.32)

=
⇢
wall,eq

P
MB,eq

(V0)
⇢
wall

P
MB

(V0)
(4.33)

=

s

T
wall

T
wall,eq

P

N

in

i

W
i

N
in

P
MB,eq

(V0)
P
MB

(V0)
. (4.34)

The validity of using di↵usive boundary conditions is subject to discussion, which

I will avoid in this thesis, as it is a whole active area of research in itself. In

the remaining sections we will demonstrate the e↵ectiveness of the method.The

importance sampling scheme outlined above will be referred to as variance reduced

Fokker-Planck (VRFP).
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0 0.5 1 1.5 2 2.5 3
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

t /τ

⟨|
x
1
|⟩
/
c
0

 

 
⟨ |x 1|⟩

⟨ |x 1|⟩f
MB

⟨ |x 1|⟩VR
⟨ |x 1|⟩ f

MB
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Figure 4.5: Homogeneous relaxation towards equilibrium, (a) without KDE, (b)
with KDE, smoothing parameter r = 0.05c

0

4.5.3 Homogeneous relaxation to equilibrium

We will demonstrate the e↵ectiveness of this method first with a homogeneous re-

laxation to equilibrium: that is, when f(t,x,v) = f(t,v) has no spatial component.

We start from an initial distribution of particles

f
0

(v) = (1/2)(f
MB

(v
1

, c
0

, c
0

) + f
MB

(v
1

,�c
0

, c
0

))f
MB

(v
2

, 0, c
0

)f
MB

(v
3

, 0, c
0

),

(4.35)

which will relax towards the Maxwellian distribution f
MB

(v,0,
p

(4/3)c2
0

). In fig-

ures (4.5a)-(4.5b) we show how the variance reduced estimator performs against

the standard sample mean estimator, when estimating h|x
1

|i, with and without the

KDE stabilisation procedure. In both cases, the variance of the new estimator is

smaller than the standard estimator, but the estimator with stabilisation from the

KDE reduces the variance even further.

4.5.4 Couette flow

To test the particle weight variance reduction, we have applied to scheme to sam-

ple from a steady-state planar Couette flow, and compared the results to results

obtained using a common random number scheme. A Couette flow is a flow where

the fluid is bounded by two parallel walls moving in opposite directions within their
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Figure 4.6: Couette flow with wall velocity v
wall

= 0.01c
0

, Kn = 0.05, 20 cells and
100 particles per cell.

planes, with velocity ±U
wall

. For Knudsen numbers Kn = 0.05, 0.5, 1.0 respectively,

Figures (4.6), (4.7), (4.8) show the VRFP and standard Monte Carlo estimators of

the steady-state flow velocity field parallel to the wall, v
2

(x
1

), (left) as well as the

temperature profile across the channel T (x
1

), for a Couette flow with wall velocity

v
wall

= 0.01c
0

, where c
0

is the thermal velocity, and Kn = 0.5, 20 cells and 100

particles per cell. All the results show a significant improvement in performance

over the unweighted standard Monte Carlo estimator.

To quantitively compare the performance of the CRN scheme and the importance

sampling estimation against the basic Monte Carlo, we have found solutions to

steady-state Couette flows and recorded the average noise-to-signal ratio across the

channel, for a fixed number of particles and time steps. This was performed over

a range of Mach numbers. Figure (4.9) shows the results. As expected, the basic

Monte Carlo estimator has a noise-to-signal ratio that grows as Ma�1 as Ma ! 0.

The common random numbers scheme maintains the same scaling as the basic Monte

Carlo estimator, but has a reduced variance in comparison over all Mach numbers.

The reduction in variance appears to be fixed over the range of Mach numbers

analysed, with �
MC

/�
CRN

⇡ 10, which corresponds to using 100 times as many

particles. In contrast, the importance sampling scheme appears to achieve a constant

noise-to-signal ratio as the Mach number goes to zero. This results in an unbounded

speed-up over the standard Monte-Carlo estimator as the signal size decreases to

zero. Because of the independence of the signal strength on the noise-to-signal

ratio, there is a signal strength where for larger signal strengths, the CRN scheme
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Figure 4.8: Couette flow with wall velocity v
wall

= 0.01c
0

, Kn = 1.0, 20 cells and
100 particles per cell.
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outperforms the particle weight scheme, and for the steady-state Couette flow we

estimate this to be at a Mach number close to 0.1.
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Figure 4.9: Comparison of noise-to-signal ratio vs signal size, between standard
Monte Carlo, common random numbers, and importance sampling methods.

4.5.5 Lid-driven cavity flow

To further demonstrate the e↵ectiveness of the method, we apply it to a lid-driven

cavity flow, where the fluid is bounded in two dimensions by a square box in the

(x
1

, x
2

) plane, with translational statistical symmetry in the x
3

axis. Three of the

bounding walls are stationary, and one of the bounding walls moves within its plane

at constant velocity U
wall

, giving rise to a circulatory flow within the cavity. The

common random numbers scheme loses much of its e↵ectiveness in such situations,

as the geometry of the problem results in the positions of corresponding particles in

each simulation losing correlation.

Figures (4.10a)-(4.10b) show the velocity and non-dimensional temperature field

(T/T
0

� 1) of the steady-state flow, with a lid velocity of U
wall

= 0.001c
0

for the

standard Monte Carlo and variance reduced sampling schemes. The results have
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(a) Standard Monte Carlo estimate (b) Variance reduced estimate

Figure 4.10: Couette flow at Kn = 1.0, U
wall

= 0.001c
0

, with and without impor-
tance sampling variance reduction.
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Figure 4.11: Comparison of results of cross-section of velocity fields between variance
reduced Fokker-Planck and LVDSMC methods. Cross section taken at y = 0.5
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been averaged over 5000 time-steps, and 10 independent ensembles on a 50 ⇥ 50

grid, with an average of 30 particles per cell. The standard Monte Carlo scheme is

not able to pick up the signal, whereas we see clearly that the importance sampling

scheme is. In Figure (4.11) we compare results from the variance reduced Fokker-

Planck estimator to that from a LVDSMC simulation over a cross-section of the

flow field, taken at y = 0.5, and find that the result are in good agreement. At

this point we note that the LVDSMC algorithm used in Figure (4.11) solves the

linearised hard-sphere collision operator.

In Figures 4.12a -4.12d we show results from lid-driven cavity flows with lid speeds

0.1c
0

, 0.01c
0

, 0.001c
0

and 0.0001c
0

. As was the case with the Couette flow, we find

the level of noise in each calculation is independent of the lid-speed.

4.6 Discussion

In this chapter we have proposed two variance reduction techniques that can be

applied to the Fokker-Planck solution operator. The first, a common random number

scheme, is is e↵ective when there is a symmetry in the spatial geometry of problem,

which can be exploited to keep positions in an equilibrium and non-equilibrium

solution correlated. We find that it is able to reduce the standard deviation of

samples by a factor of 10. Because the signal-to-noise ratio scales with the inverse

square of the number of samples, this would require on the order of 100 times the

number of independent ensembles (or 100 times more particles in the simulation

under the assumption that the distribution is close to equilibrium) to achieve the

same variance reduction without the common random numbers scheme.

The second scheme, is a scheme based on the VRDSMC method, which is able

to reduced the variance of estimates regardless of the geometry using importance

weights. The source of the statistical error for this method is in the approximation

the weight function which allows one to sample from an equilibrium solution. We

find that the errors accrued in approximating the weight function are independent of

the Mach number of the flow as the Mach number decreases. As the Mach number

increases past Mach numbers of O(1), the method is no longer able to accurately

determine the weight function. However, as the Mach number of the flow decreases

to zero, the performance of the algorithm does not degrade.
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Figure 4.12: Lid-driven cavity flows with di↵erent wall-speeds. 50 ⇥ 50 grid, 25
particles per cell on average, 5000 time steps to reach steady-state, thermodynamic
fields averaged from 5000 further time steps. The level of noise is independent to
the wall-speed.
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5

Quasi-Monte Carlo particle

dynamics

“Everything we care about lies somewhere in the middle, where pattern and

randomness interlace.”

– James Gleick, The Information: A History, a Theory, a Flood

The numerical time integration of the SDEs (3.22) (3.23) given by equations

(3.33) is performed in a method that can also be generally termed a Monte Carlo

approach. By this, what we mean is that in the implementation of the scheme,

we repeatedly draw psuedo-random numbers in order to approximate the di↵usion

process. In this chapter we devise a novel method for numerically integrating a

di↵usion process using a quasi-Monte Carlo integration scheme with randomisation.

This method was developed with the view to applying it to spatially inhomogeneous

rarefied gas flows, but we find that the spatial inhomogeneity creates challenges that

23 were not able to overcome.

5.1 The general Monte Carlo approach

A Monte Carlo method is a general term referring to a method for approximating

the integral of a function f : R ! R, R ⇢ Rn, over a subdomain B ⇢ R. Without

loss of generality, we take B = [0, 1]n, the n-dimensional unit hypercube. Consider

the integral

I (f) :=

Z

[0,1]

n

f (u) du. (5.1)
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In order to approximate the integral, the Monte Carlo method takes the sample

mean of f evaluated at independent uniformly distributed samples in B,

Î (f) :=
1

N

N

X

i=1

f (⇣
i

) . (5.2)

The expectation of this random variable is

E[Î (f)] = E
"

1

N

N

X

i=1

f (⇣
i

)

#

(5.3)

=
1

N

N

X

i=1

E[f (⇣
i

)] (5.4)

= E[f(⇣)] (5.5)

= I(f) (5.6)

and so Î is an unbiased estimator of I. Given that we have an unbiased estimator,

the natural question to ask is does this estimator converge. Convergence for this

estimator is established from the strong law of large numbers:

Theorem 5.1.1 Strong Law of Large Numbers (SSLN) Let X
1

, X
2

, . . . be an infi-

nite sequence of independent identically distributed random numbers, with E[X
i

] =

µ < 1. If S
n

=
P

n

i=1

X
i

then

S
n

n
a.s.��! µ as n ! 1

Once we know the estimator converges, it is then natural to ask is how fast do we

expect it to converge? The speed of convergence is provided to us by the Central

Limit Theorem:

Theorem 5.1.2 Central Limit Theorem Let X
1

, X
2

, . . . be an infinite sequence of

independent identically distributed random numbers, with E[X
i

] = µ < 1, and finite

variance. If S
n

=
P

n

i=1

X
i

then

S
n

n
⇠ µ+ n�1/2N (0,�)

These are well known standard results, found in all basic statistical reference books.

In particular the Central Limit Theorem (CLT) tells us that the speed of convergence
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of the Monte Carlo estimator is of order O(n�1/2), which is independent of the

number of dimensions. Stated more simply, if we wish to decrease our expected

error by a factor of a half then we require four times as many sample points.

In one dimension, this speed of convergence is inferior to standard quadrature

methods that use equidistantly spaced points for the set of samples {⇣
i

}, which

typically give an error O(n�k) for k � 1, where n is the number of quadrature points

and k, usually called the “order”, is dependent on the method. For example, in one

dimension, the trapezoidal rule has error of O(n�2). To keep the error constant

as the dimensions of the integration is increased the distance between quadrature

points needs to stay fixed, and the number points required to span a unit hypercube

with equal spacing scales as nd. This results in a error in higher dimensions of

O(n�k/d). This unfavourable scaling with dimension is what has come to be known

as the curse of dimensionality, coined by Bellman et al. [1961]. So, because the

error of Monte Carlo integration is independent of the the number of dimensions, d,

in higher dimensions the Monte Carlo becomes more e�cient than methods relying

on a grid based quadrature.

5.2 Introduction to Quasi-Monte Carlo

As we have seen in the previous section, for high dimensional problems Monte Carlo

methods are able to outperform integration methods that rely on the use of grid

based quadrature. Quasi-Monte Carlo (QMC) methods are able to achieve a still

better rate of convergence, and hence computational e�ciency. By e↵ectively re-

laxing the constraint that the sample points are chosen independently from one

another, but keeping the property that they in some sense uniformly sample the

desired space, we will see in the following sections how this may be possible. This

approach of using quasi-random numbers for a di↵usion problem was first proposed

by Lécot and El Khettabi [1999], who proposed an algorithm and proved conver-

gence for the method. This was later taken up by Venkiteswaran and Junk [2005a],

who adapted the algorithm to solve the di↵usion equation. In this section we de-

scribe the general method, and propose a modification to the scheme proposed by

[Venkiteswaran and Junk, 2005a].

5.2.1 Low discrepancy sequences

Instead of relying on independently identically distributed uniform random numbers

(or rather psuedo-random numbers which are computationally generated), the quasi-
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Monte Carlo method relies on deterministic sequences of random numbers that are

able to cover the unit cube in a way that is more homogenous. Such sequences of

numbers are referred to as low discrepancy sequences. The quantification of the

uniformity or homogeneity is given to us by the discrepancy, where we will use the

Niederreiter [1992] notation. Given a point set P = {⇠
1

, ⇠
2

. . . ⇠
N

} in [0, 1]d, the

extreme discrepancy is defined as:

D
N

(P ) = sup
B2B

�

�

�

�

A(B,P )

N
� �

d

(B)

�

�

�

�

, (5.7)

where B is the family of sets of the form B =
Q

d

i=1

[a
i

, b
i

), for arbitrary a,b 2 [0, 1)d,

a
i

 b
i

, �
d

is the d-dimensional Lebesgue measure and A(B,P ) is the number of

points from P that lie in B. In a general sense, the extreme discrepancy is a worst

case measure of how badly the point set approximates the Lebesgue measure, in

that it measures the error in representing volumes of subsets by fractions of points

in the subsets. Another useful quantity is the star discrepancy, which is defined as

the supremum over the family of sets S of the the form
Q

d

i=1

[0, a
i

)

D⇤
N

(P ) = sup
B2S

�

�

�

�

A(B,P )

N
� �

d

(B)

�

�

�

�

, (5.8)

which is related to the extreme discrepancy by the following proposition:

Proposition 5.2.1 For any point set P = {⇠
1

, ⇠
2

. . . ⇠
N

} in [0, 1)d

D⇤
N

(P)  D
N

(P)  2dD⇤
N

(P) .

The proof of which is relatively simple and may be found here [Dick and Pillichsham-

mer, 2010], which provides an excellent review of discrepancy theory and quasi-

Monte Carlo integration. The star discrepancy is a useful quantity as it bounds the

error of the QMC estimator:
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Theorem 5.2.2 (The Koksma-Hlawka Inequality) Let f have bounded variation

V (f) on Id. Then for any point set P = {⇠
1

, ⇠
2

..⇠
N

}
�

�

�

Î(f) � I(f)
�

�

�

 V (f)D⇤
N

(P ).

V (f) is the total variation of f , and is given by

V (f) =

Z

Rd

|rf | dv, (5.9)

which, importantly, has no dependence on N . The left hand side of the Koksma-

Hlawka inequality is the absolute error, and just like root mean square error of a

Monte Carlo method, is a quantity we would like to decay quickly with N . The

bound given in the inequality is tight in the sense that for a given point set, and

✏ > 0 there exists a function f of bounded variation, with error that lies within ✏

of this bound. In this sense, the Koksma-Hlawka inequality provides the worse case

error. For example, when ⇠
i

⇠ U [0, 1)d Chung [1949] was able to show from the law

of iterated logarithms that

lim
N!1

sup

p
2ND⇤

N

p

log(log(N))
= 1 , (5.10)

and so uniformly random samples have a discrepancy of order O((log(log(N))/N)�1/2),

which is true for any d. This bound is not as informative as the result provided by

the Central Limit Theorem (given that the CLT gives an equality for the root mean

square error). We will go on to see in the next section there are deterministic se-

quences of numbers that achieve a better scaling with N than (5.10). The reason

that it is possible to get better results than independently chosen random samples

is that points chosen in this way tend to clump together, as we can see in Figure

5.1.

5.2.2 Examples of low discrepancy sequences

In this subsection I will briefly describe some of the deterministic sequences that

are able to achieve a better scaling with the number of points in the sequence, N ,

than (5.10), but I will refer the reader again to [Dick and Pillichshammer, 2010]

for precise definitions of the constructions of the sequence, as they are in general

technical. First of all, it might be salient to reiterate that given we are interested in
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uniformly distributed points in [0, 1)d, why not just use the set of N = md regular

lattice points �
m

defined by

�
m

:=
1

m
Zd(mod 1). (5.11)

It can be shown that the star discrepancy of this point set is given by

D⇤
N

(�
m

) := 1 �
✓

1 � 1

m

◆

d

, (5.12)

which satisfies the inequality

1

N1/d

 D⇤
N

(�
m

)  d

N1/d

, (5.13)

which for d = 1 can be shown to optimal [Dick and Pillichshammer, 2010], but for

d � 2 is a suboptimal point set. Instead, let us consider one of the simplest low

discrepancy sequences in one dimension, the Van der Corput sequence, which can be

generalised to higher dimensions. The nth term of the sequence in base b is defined

as

�
b

(n) =

R(n)

X

i=0

a
i

bi+1

, (5.14)

where a
i

are the coe�cients of the powers of b in the expansion of n in base b, that

is

n =
1
X

i=1

a
i

bi, (5.15)

and R(n) is the largest index for which a
R(n)

is not equal to zero. So for example,

the first few terms in the sequence in base 2 is
�

1

2

, 1
4

, 3
4

, 1
8

, 5
8

, 3
8

, 1

16

, 9

16

, . . .
 

. This

sequence can be shown to have a discrepancy of O((logN)/N), which is inferior to

the 1-d regular lattice, but can be generalised into higher dimensions to achieve a

better scaling than lattice points.

62



The Van der Corput sequence generalises in d dimensions to the Halton sequence.

If p
1

, . . . , p
d

are the first d prime numbers, then the terms in the Halton sequence

are given by

⇠
i

= (�
p

1

(i),�
p

2

(i), . . . ,�
p

d

(i)), (5.16)

which results in a discrepancy bounded by

D⇤
N

 C
d

(logN)d

N
+ O

✓

(logN)d�1

N

◆

, (5.17)

where the constant C
d

scales super-exponentially with dimension [Moroko↵ and

Caflisch, 1994]. See Figure (5.2) for the first 1000 terms of the Halton sequence.

Another commonly used set of quasi-random numbers is the Sobol sequence.The

Sobol sequence is generated using the binary expansion of an integer n,

n = n
1

20 + n
2

21 + n
3

22 + . . . (5.18)

This is used to generate the nth element of the jth dimension of the sequence

⇠(n)
j

= n
1

⌫(1)
j

� n
2

⌫(2)
j

� . . . n
m

⌫(m)

j

, (5.19)

where � is the bitwise exclusive or (XOR) addition and ⌫(i)
j

are generated from the

q-term recurrence relation

⌫(i)
j

= a
1

⌫(i�1)

j

a
2

� ⌫(i�2)

j

� . . . � a
q

⌫(i�q+1)

j

� ⌫(i�q)

j

� ⌫(i�q)

j

/2q. (5.20)

The discrepancy of the Sobol sequence is also given by the inequality (5.17), with

the coe�cient in front of the leading term also scaling super-exponentially with

dimension, but still significantly smaller than the Halton sequence [Moroko↵ and

Caflisch, 1994]. See Figure (5.3) for the first 1000 terms of the Sobol sequence.
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5.2.3 (t,m, s)-nets and (t, s)-sequences

There are certain types of low-discrepancy sequences that fulfil a stronger property

of uniformity, which are called (t,m, s)-nets. A set of bm points P is a (t,m, s)-net

in base b if every interval of the form

d

Y

i=1

h

A
i

/bdi , (A
i

+ 1)/bdi
⌘

, (5.21)

where A
i

< bdi for each 1  i  s and with d
1

+ d
2

+ . . . + d
s

= m � t, that is,

intervals with volume bt�m, contain exactly bt points of P. The parameter t 2 N is

called the quality parameter, and the smaller t is, the more uniform the set of points

is. Further, a (t, s)-sequence is defined where for all integers n � 0 and m > t,

all points ⇠
i

2 P satisfying nbm  i  (n + 1)bm form a (t,m, s)-net. The Sobol

sequence is an example of a (t, s) sequence, with t growing super-linearly with s.

One sequence that satisfies the conditions required to be a (0, s)-sequence is the

Faure sequence, which is constructed from a permutation of the Halton sequence

that uses the same base for each dimension [Niederreiter, 1988]. The base of the

sequence is chosen to be the smallest prime greater or equal to the dimension of the

sequence, which restricts the number of particles used in the simulations to powers

of this base. The discrepancy of the sequence is again bounded by (5.17), but unlike

the Sobol and Halton sequences, the Faure has the advantage of having a coe�cient

C
d

that goes to zero with dimension. In the next section we will describe why having

the (o, s)-nets property will be useful for the method.

5.3 QMC applied to the di↵usion equation

We consider the di↵usion equation with constant di↵usion coe�cient, also known

as the heat equation, for f : Rd ⇥ [0, T ] ! R:

@
t

f = �f t > 0 (5.22)

f(v, 0) = f
0

(v). (5.23)

This initial data problem has a well known fundamental solution, or Green’s func-

tion, given by:
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Figure 5.1: Uniformly distributed independent pseudo-random numbers in the unit
square. As sample size increases, samples appear to form “clumps”.
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Figure 5.2: The first 1000 terms of the Halton sequence.
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Figure 5.3: The first 1000 terms of the the Sobol sequence.
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 (v, t) =
1

p

(4⇡t)d
exp

✓

�v2

4t

◆

, (5.24)

and hence the solution is given by the convolution with initial data

f(v, t) =

Z

Rd

 (v � y, t)f
0

(y) dy. (5.25)

In the last section, we saw that by using low-discrepancy sequences, or quasi-

random numbers, it is possible to achieve a greater convergence rate than is possible

when naively using uniformly distributed random numbers. In the next section

we will describe the method first proposed by Venkiteswaran and Junk [2005a]

for solving the di↵usion equation by using low-discrepancy sequences, employing

a technique they gave the epithet quasi-random mixing.

5.3.1 Initialising the particles

In [Venkiteswaran and Junk, 2005a], the authors consider the di↵usion equation

with a Gaussian initial condition

f
0

(v) = (2⇡)�d/2 exp(� |v|2 /2). (5.26)

If the set of points {⇠
1

, . . . ⇠
n

} are a low-discrepancy set in [0, 1)d, then to initialise

a set of V that are distributed according to f
0

, we can use the Gaussian cumulative

distribution function (CDF)

H(x) =
1

2

⇣

1 + erf
⇣

x/
p
2
⌘⌘

, (5.27)

to create such a set by setting

V
(i)

k

= H�1(⇠(i)
k

), (5.28)

where the index i indexes the particle number and the index k indexes the dimension.

In this case the approximation of the initial distribution is
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f
0

(v) ⇡ f̂
0

(v) :=
1

N

N

X

i=1

�
⇣

v � V(i)

⌘

. (5.29)

5.3.2 Evolution in time

Given an initial distribution f̂
0

, it is well known that the solution at a time t = �t

can be obtained by convolving the initial condition with the Gaussian kernel

G
�t

(v) = (4⇡�t)�d/2 exp(�v2/4�t) (5.30)

and so it would be natural estimate f(�t,v) by

f̂
1

(v) =

Z

G
�t

(v � v0)f̂
0

(v0) dv0 =
1

N

N

X

i=1

G
�t

(v � V(i)). (5.31)

However this is a continuous distribution, and we would like to retain a particle

description of the distribution. That is a new set of M particles, say
�

Vi

1

 

such

that

f̂
1

(v) ⇡ 1

M

M

X

i=1

�
⇣

v � V(i)

⌘

. (5.32)

The quality of the approximation given above is determined by the discrepancy, so

for an arbitrary volume B we would like the approximation

Z

B
f̂
1

(v)dv ⇡ 1

M

M

X

i=1

�B(V
(i)

1

) (5.33)

where �B is the characteristic function on B, to be as good as possible. Venkiteswaran

and Junk [2005a] were able to construct the following argument: taking the expec-

tation of �B using (5.31), gives

Z

Rd

�B(v)f̂1(v) dv =

Z

Rd

Z

Rd

�B(v + v0) G
�t

(v)f̂
0

(v0) dv dv0. (5.34)

Under the transformation
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y = H(v/
p
2�t), (5.35)

with H(v) = (H(v
1

), H(v
2

), . . . , H(v
d

)), which gives the Jacobian G
�t

(v), (5.34)

can be written as

Z

Rd

�B(v)f̂1(v) dv =

Z

[0,1]

d

Z

Rd

�B(
p
2⇡H�1(y) + v0).f̂

0

(v0) dv0dy. (5.36)

Now, suppose we have pairs (V
0

, ⇠) where V
0

are independently distributed accord-

ing to f
0

and ⇠ ⇠ U([0, 1)d] respectively. Then it is easy to check that

Z

Rd

�B(v)f̂1(v) dv = E[�B(
p
2⇡H�1(⇠) + V

0

)]. (5.37)

This gives motivation for the creation of new particles

V
1

(i) = V
0

(i) +
p
2⇡H�1(⇠(i)), (5.38)

which is nothing other than the Euler-Marayuma scheme of a discretised simple

Brownian motion. Now, If we wish to use a quasi-Monte Carlo estimate of this

expectation then the naive approach would lead us to the approximation

E[�(
p
2⇡H�1(⇠) + V

0

)] ⇡
N

X

i=1

M

X

j=1

�(V(i)

0

+
p
2⇡H�1(⇠(j)), (5.39)

leading to the creation of NM new particles, which would result in an exponentially

growing population of particles. Clearly this would result in a very impractical

algorithm. The method [Venkiteswaran and Junk, 2005b] proposed can be justified

by considering an arbitrary test function  : Rd ⇥ [0, 1)d ! R:

Z

[0,1)

d

Z

Rd

 (v0,y)f̂
0

(v0) dv0dy =
1

N

N

X

i=1

Z

[0,1)

d

 (V
0

(i),y) dy. (5.40)

By tessellating an s-dimensional unit hypercube Is into N disjoint subsets A
i

of

volume 1/N , and defining �
i

to be the characteristic function (or indicator function)
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on each set A
i

we see that

1

N
=

Z

I

s

�
i

(�) d�, (5.41)

and so,

Z

[0,1)

d

Z

Rd

 (v0,y)f̂
0

(v0) dv0dy =
N

X

i=1

Z

[0,1)

s

Z

[0,1)

d

 (V
0

(i),y)�
i

(�) dy d�. (5.42)

It may not be immediately clear why this is a useful observation to make, however

if we take a quasi-Monte Carlo approximation of this integral by choosing a set of

points (⇠,�) with a low discrepancy in Id+s

N

X

i=1

Z

[0,1)

s

Z

[0,1)

d

 (V
0

(i),y)�
i

(�) dy d� ⇡ 1

N

N

X

i=1

N

X

k=1

 (V
0

(i), ⇠(k))�
i

(�(k)). (5.43)

If we are able to choose low discrepancy points so that �
k

lies in exactly one of the

tessellated sets A
k

then the double sum will have at most N non-zero terms. If

the permutation � : {1, . . . , N} ! {1, . . . , N} maps each k to the to the index i for

which �
i

(�
k

) = 1 then,

1

N

N

X

i=1

N

X

k=1

 (V
0

(i), ⇠(k))�
i

(�(k)) =
1

N

N

X

i=1

 (V
0

(�(k)), ⇠(k)) (5.44)

This property is fulfilled by (0,m, d+s)�nets, where the number of particles requires

is N = bm, where b is the base of the sequence, which must be greater or equal to

the smallest prime number larger than d+ s. So combining equations (5.43) (5.39)

this motivates the quasi-Monte Carlo scheme

V
1

(i) = V
0

(�(i)) +
p
2⇡H�1(⇠(i)) (5.45)

which amounts to relabelling the indices of the particles before adding the quasi-

random increments. In this way we justify the use of the Euler scheme in producing

a low discrepancy estimates. In the same way it is possible to justify the use of

other numerical schemes that discretise a Brownian motion.
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5.4 Quasi-random sorting and mixing

[Venkiteswaran and Junk, 2005b] found that their mixing method alone was not

su�cient for convergence, so in addition Venkiteswaran utilised a technique created

by Lécot and El Khettabi [1999] for solving the di↵usion equation. The approach

that Lécot and El Khettabi [1999] took to remove correlations is a technique called

quasi-random sorting. This can be summarised as the sorting of the particles po-

sition in each dimension sequentially, to produce a permutation � which re-indexes

the particles. This sorting step occurs once during each time-step. The authors

found that the improvement in convergence rate, for the sorting method, degraded

in dimensions higher than two, which was the motivation for the creation of the

quasi-random mixing algorithm. The final method proposed by Venkiteswaran was

to combine sorting in r dimensions and mixing in s dimensions into one algorithm,

given the notation QMC(r, s). They found that QMC(1, 1) achieved the best per-

formance.

Instead of including the step where particles are sorted in 1-dimension, the method

I propose, which I will refer to as a randomised QMC or RQMC, breaks correlations

by introducing a random element back into the algorithm.

5.5 Randomised QMC for di↵usion

A downside of the QMC method is that its deterministic nature fails to give it

the means to provide any information about the error of the outputted estimate.

The Koksma-Hlawka inequality provides in a sense, the worst possible error, but

actually calculating this is di�cult, especially because for the kind of problems we

are considering f will be an unknown function and an estimate will be required

to find its variational bound V (f). Also, it gives the worse possible error, which

might not be representative of the error we expect to see on average. This has led

to the development of randomised QMC methods, which reintroduce an element of

stochasticity into the calculations, allowing statistical error estimates to be obtained.

There are several existing methods to randomise a quasi-Monte Carlo sequence, and

we refer the reader to [LEcuyer and Lemieux, 2005] for a comprehensive guide.

The simplest method of introducing randomness was proposed by Cranley and

Patterson [1976]. In order to randomise the sequence, during every time step we

generate a vector u ⇠ U([0, 1)) and add it modulo 1 to every point in the sequence,

i.e.
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⇠(j)
i

= ⇠(j)
i

+ u
i

mod1. (5.46)

where j indexes the particle number. This method is often referred to as Cranley

Patterson rotation. The addition of the random uniform vector modulo 1 has the

e↵ect of guaranteeing that the estimator is unbiased [Munger et al., 2012]. When a

point set P
n

= {⇠
1

, . . . , ⇠
n

} is randomised Niederreiter [1992] showed that

Var

 

X

i

f(⇠
i

)

!

= E

2

4

 

X

i

f(⇠
i

) �
Z

f(x)dx

!

2

3

5  E[D2(P
n

)]V 2(f) (5.47)

which, so long as Var (f) is finite, means that rate of rate of convergence for the

randomised method has the same bound. To test our RQMC method, we first

apply to solve the di↵usion equation (5.22) in 1-dimension with unit Gaussian initial

condition. That is we compare the Euler-Marayuma discretisation, with

V (i)

t+1

= V (i)

t

+
p
2�t ⇠

i

, (5.48)

⇠
i

⇠ N(0, 1), for i = 1 . . . N , against the RQMC scheme

V (i)

t+1

= V �(i)

t

+
p
2�tH�1 (( 

i

+ u) mod1) (5.49)

where  
i

are terms from a (0,m, 2)-net in [0, 1)2 and u ⇠ U ([0, 1)), where N = bm.

For our 1-dimensional results, we choose a Faure sequence in base b = 2 (with mixing

in 1-dimension) which restricts the number particle numbers to powers of 2. Figure

(5.4) shows the root-mean-square error in estimating the observable E[V
100

] using

both methods. The RQMC method displays an increased rate of root mean square

error (RMSE) convergence, with an exponent that we estimate to be �0.93.

In figure 5.5 we test the method on a di↵usion in 3-dimensions. We use the same

procedure with a Faure sequence in base b = 5, the rate of convergence is estimated

to be on average �0.94. This is a significant improvement to the �1/2 exponent.

The results demonstrate the convergence of the method. In the next section we

apply the method to the Fokker-Planck particle dynamics.
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Figure 5.4: Comparison of mean square error, after 1000 time steps of di↵erent solu-
tions schemes for the 1D di↵usion equation. The RMQC method was implemented
with a 1D Faure sequence.
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Figure 5.5: Comparison of mean square error, after 1000 time steps of di↵erent solu-
tions schemes for the 3D di↵usion equation. The RMQC method was implemented
with a 3D Faure sequence.
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5.5.1 Randomised QMC for a homogeneous Fokker-Planck relax-

ation

In a subsequent paper [Venkiteswaran and Junk, 2005b] went on to apply their

algorithm to solve a Fokker-Planck equation modelling a fluid of polymers, where

molecules are modelled as bead-spring chains. When numerically solving the homo-

geneous in space Fokker-Planck equation with particles, the full advection-di↵usion

operator can be written as the composition of an advection and di↵usion opera-

tor. When considered in this way, this lets us substitute in our RQMC scheme for

di↵usion into the time-discretised approximate dynamics (3.33).

As for the other variance reduction schemes tested in the previous chapter, we

test this method with a homogeneous relaxation to equilibrium, that is f(t,x,v) =

f(t,v) has no spatial component. We start from an initial distribution of particles

f
0

(v) = (1/2)(f
MB

(v
1

, c
0

, c
0

) + f
MB

(v
1

,�c
0

, c
0

))f
MB

(v
2

, 0, c
0

)f
MB

(v
3

, 0, c
0

), which

will relax towards the Maxwellian distribution f
MB

(v,0,
p

(4/3)c2
0

).

Figure 5.6 shows a comparison of mean results from 100 independent realisations

of the MC (blue) and RQMC (red) algorithms with 53 computational particles. The

shaded areas represent the standard deviation of the estimator of |v|/c
0

, and we see

that the relative uncertainty of the RQMC algorithm is significantly lower than that

of the MC algorithm.

5.6 Application to spatially inhomogeneous problems

In spatially homogeneous problems, generally we are interested in estimating an

expectation, for example the mean velocity at a location x

u(x, t) =

Z

vf(x,v, t) dv, (5.50)

and because we have a particle representation of f , we need to discretise the space

into cells. This means that for each cell, indexed by i, we are typically estimating

ui(t) =

Z Z

vf(x,v, t)�
i

(x) dv dx, (5.51)
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Figure 5.6: Comparison of mean square error, after 1000 time steps of di↵erent solu-
tions schemes for the 3D di↵usion equation. The RMQC method was implemented
with a 5D-Faure sequence.

where the membership function �
i

(x) returns 1 if x lies within cell i and 0 otherwise.

This function is not di↵erentiable when x lies on the boundary of a cell, and so if

we had a low discrepancy particle approximation of f(x,v, t), the Koksma-Hlawka

inequality would not guarantee a better than N�1/2 rate of convergence. One way to

avoid this would be to have a non-strict cell assignment i.e. a di↵erentiable function

to replace �
i

(x) that assigns particles to cells in a soft way, whilst still ensuring that

ui converges to u with increasing spatial resolution of the grid of cells. Any attempt

at doing this, however, would mean a compromise between spatial resolution, as

non-strict cell assignment would have the e↵ect of blurring the estimators, and

discrepancy as the stricter the cell assignment, the higher the total-variation of the

integrand is likely to be.
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Another challenge would be creating the low discrepancy particle approximation

of the measure f(x,v, t). This is because each particle’s position X
j

depends on it’s

velocity V
j

, and vice versa. This creates a challenge because the low discrepancy

scheme described in this chapter is designed to solve problems where the di↵usion

can be decoupled from the drift, so it is unclear how to construct a scheme where

the di↵usion is spatially dependent. Also, one would need to be address boundary

conditions and determine how to ensure that after collision with a boundary, the

particles new velocity, contributes to a low-discrepancy approximation. This also

makes developing a QMC algorithm with sub N�1/2 convergence a much harder

task. Addressing these issues will required further research

5.7 Discussion

In this chapter we have adapted a QMC method for solving the di↵usion equation

with particles, by replacing the sorting step in the QMC(1,1) algorithm with a

randomisation technique. We find that the RQMC method achieves a better than

N�1/2 convergence, and have demonstrated the ability of the method to reduce

the variance of estimations of expected quantities for di↵usion and a homogeneous

relaxation to equilibrium. The randomisation of the method means that averages can

be taken over independent ensembles so the error of the method can be measured

statistically. The method is simple to implement and doesn’t require any major

alterations to the basic algorithm.

We have considered applying the method to problems that are not spatially homo-

geneous, but found that the challenges preventing low-discrepancy particle approx-

imations of the in homogenous distribution are great, and it is possible that QMC

is not applicable in such situations. The major problem comes from the coupling

of the particles dynamics in space, and velocity space, and could be an avenue for

further research in the future.
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6

Non-equilibrium steady-states

of the Fokker-Planck kinetic

equation, for elastic collisions

“Lisa get in here... in this house we obey the laws of thermodynamics!”

– Homer Simpson (The Simpsons, Episode 124 )

The remaining chapters of this thesis are devoted to answering the following

question: what might happen in the Simpsons’ household if Homer did not enforce

the laws of thermodynamics? Or more precisely, when the 2nd law of thermody-

namics does not apply. There are clear reasons why Homer might want his house

to obey the laws of thermodynamics, not least that thermodynamic systems, where

the state of the system can be adequately described by variables such as entropy,

temperature, internal energy and pressure, are well understood. But this theory

does not apply for systems which are not isolated, and systems that are observed in

nature rarely are. Specifically, we are interested in the non-equilibrium steady states

of the Fokker-Planck kinetic model, in cases where the presence of non-zero fluxes

of energy and mass prevent the system relaxing to its thermodynamic equilibrium

state.

6.1 Motivation

The hard sphere gas [Hansen and McDonald, 1990] is an idealised model of atomic,

molecular, granular or colloidal gases. Interactions between particles in real gases are

usually strongly repulsive at short separation distances due to volume exclusion and
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weakly attractive at large distances due to Van-der-Waals forces. The hard sphere

model idealises this behaviour with an interaction which is infinitely repulsive at

separations shorter than a characteristic particle core radius and zero for larger

separations. Such particles only interact when they collide. If collisions conserve

energy, the system is said to be elastic. If energy is lost in collisions it is said to be

inelastic (see [Krapivsky et al., 2010b]).

The elastic case is a good model for atomic and molecular gases. An isolated

elastic system relaxes to an equilibrium steady state in which the distribution of ve-

locities is Maxwellian. The inelastic case is more appropriate as a model of granular

or colloidal gases [Brilliantov and Poschel, 2004] in which particles are macroscopic

and can dissipate collisional kinetic energy into their internal degrees of freedom.

An isolated inelastic system relaxes to a state in which velocities are zero since col-

lisions dissipate energy. A non-trivial steady state velocity distribution is possible

only if energy is continually supplied from an external source as occurs, for example,

in vibrated granular gases [Rouyer and Menon, 2000]. Such steady states are inher-

ently far from equilibrium because they result from a balance between two distinct

driving and dissipation mechanisms for which detailed balance is not possible. The

corresponding velocity distributions are generally not Maxwellian [Olafsen and Ur-

bach, 1999; Kudrolli and Henry, 2000] and, at least in the case of vibrated granular

gases, have stretched exponential tails [Rouyer and Menon, 2000].

One might then wonder whether there are circumstances in which a far-from-

equilibrium hard sphere gas can exhibit a scale-invariant steady state. This is a nat-

ural question since scale invariance is a common property of many other driven dis-

sipative systems including hydrodynamic turbulence [Frisch, 1995; Falkovich et al.,

2001], cluster aggregation [Hayakawa, 1987; Takayasu et al., 1991; Connaughton

et al., 2005], wave turbulence [Nazarenko, 2011a; Newell and Rumpf, 2011] and

non-equilbrium Bose gases [Lacaze et al., 2001; Connaughton and Pomeau, 2004;

Spohn, 2010].

This question has been recently addressed by Ben-Naim and co-workers in a series

of papers [Ben-Naim and Machta, 2005; Ben-Naim et al., 2005; Kang et al., 2010]

on the solutions of the Boltzmann equation for the inelastic hard sphere gas with a

source of energy. They have shown that a stationary power-law velocity distribution

is possible provided the driving mechanism is such that energy is supplied only

to particles having very high velocities. Collisions redistribute this energy in the
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phase space to particles having smaller velocities in a scale-invariant step-by-step

process referred to as a “cascade” by analogy with scale-to-scale energy transport

in turbulence. The cascade process generates a power law velocity distribution for

velocities much smaller than the velocity scale of the driving.

These results become puzzling however if one asks what happens in the elastic

limit. For the driven elastic hard sphere gas to reach a steady state, one must add

an additional dissipation mechanism. This is reflected in the fact that the results of

Ben-Naim et al. are singular in the elastic limit. Nevertheless, if this supplementary

dissipation mechanism acts at velocities well separated from the velocity scale of the

driving, then one might expect that the cascade dynamics identified in the inelastic

case could be relevant over an intermediate range of scales and could lead to scaling.

In fact, it has been shown by Kats and coworkers [Kats et al., 1975; Kats, 1976] that

there are no universal self-consistent steady power-law solutions of the Boltzmann

equation in the elastic case. Here, by universal, we mean that such solutions are

determined by one parameter only, namely the flux of energy being transported

through energy space.

Numerical simulations [Proment et al., 2012] strongly suggest that the steady state

is close to Maxwellian. This is somewhat counterintuitive given that the system is

strongly out of equilibrium. Analytic insight into this issue to date is restricted to

partial solutions of a heuristic model called the di↵erential approximation model

[Proment et al., 2011, 2012] which replaces the collision operator with a nonlinear

di↵usion operator having the same scaling properties. Furthermore, simple argu-

ments based on conservation laws suggest that the energy cascade in the elastic case

should be towards higher velocities rather than towards smaller velocities. There-

fore, everything that is known about the elastic case seems orthogonal to what is

known about the inelastic case. In this chapter I provide some analytic arguments

using the Fokker-Planck gas collision operator, supported where appropriate by nu-

merical evidence, which resolve these dichotomies. In particular I investigate the

universality of the solutions, with the aim of determining what characterises the

stationary non-equilibrium states.

6.2 Kolmogorov-Zakharov spectra

Kolmogorov [1941] derived a formula for the energy spectrum of a high Reynolds

number, incompressible turbulent fluid in terms of the wavenumber k, and found it
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to be a power-law,

E(k) = C✏2/3
0

k�5/3, (6.1)

where C is a constant, and ✏
0

is the rate of dissipation. This has become known as

Kolmogorov’s 5/3 law. His calculations rely on the observation that turbulent flows

consist of vortices which themselves consist of even smaller vortices. The vortices,

at the larger scales are generated by an input of energy, for example by a stirring

mechanism, and without this input of energy the motion would eventually settle

down because of viscous dissipation acting on small length scales.

Kolmogorov postulated that in a statistical steady state, the transport of energy

between scales where energy is injected and scales where energy is dissipated, is

constant due to a local cascade process, where energy is transferred only between

vortices of similar sizes. This range of energy scales is often referred to as the

inertial range, as inertial e↵ects are considered to have a much greater e↵ect than

viscous ones. By supposing this flux is constant, Kolmogorov deduced that the

energy that lies in vortices of a specific size must only depend on the wavenumber

k and the rate of dissipation ✏
0

. A simple dimensional analysis then results in the

exponents given in equation (6.1). It is a simple argument but remarkably validated

experimentally numerous times [Benzi et al., 1993; Frisch, 1980]. Deviations to the

�5/3 exponent are commonly found and determining what precisely is universal for

these transitional turbulence flows is an active area of research.

Almost 20 years later after Kolmogorov’s discovery, similar power-law spectra

were also found by Zakharov [Zakharov, 1965; Zakharov and Filonenko, 1967] in

the field of wave-turbulence (WT). Wave turbulence began as field separate from

the study of strong hydrodynamic turbulence, and may be defined as the study

of non-equilibrium non-linear kinetic wave equations [Nazarenko, 2011b]. These

kinetic wave equations describe how systems of weakly interacting waves evolve

according to given resonant interactions, and are called kinetic equations in reference

to Boltzmann’s original kinetic equation where the interaction is between particles

and not waves, and the microscopic conservation laws play the role of resonant

interactions.

Analogously to the hydrodynamic cascade states, these steady-state cascades are

not purely characterised by thermodynamic quantities, such as temperature and
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chemical potential, but rather by constant fluxes of conserved quantities through

phase space. Up until Zakharov’s pioneering work, hydrodynamic turbulence and

wave turbulence were distinct lines of enquiry. Such steady state solutions became

known as Kolmogorov-Zakharov (KZ) spectra. Areas where the theory of WT has

been successfully applied include gravity and capillary waves on the surface of water,

waves that occur in planetary atmospheres and oceans, Rossby waves in atomspheric

dynamics, Bose-Einstein condensates, non-linear optics, plasma waves, and many

more.

6.3 Kolmogorov-Zakharov spectra of the Boltzmann equa-

tion

Like other kinetic models that have two conserved quantities, the homogeneous

isotropic Boltzmann equation (which conserves energy and mass) might be expected

to have two possible solutions that correspond to constant fluxes being transported

through phase space. It was Kats et al. [1975] who first found stationary KZ spec-

tra for the Boltzmann equation which correspond to these constant flux solutions.

Here, we present the dimensional argument that, under the assumption of locality,

results in the scaling exponents of these KZ spectra. We emphasise that the use of

notation and methods from wave-turbulence is not due to an assumption that either

turbulence, or waves, are present within dilute gases. The analogy originates from

the kinetic equations where energy is transferred between scales. We begin with the

spatially homogeneous Boltzmann equation (2.8) in the form:
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For the hard sphere gas, � = �2/m, where � is the molecular diameter, and m

is the molecular mass. If we assume that the gas is statistically isotropic, then it

is possible to write the distribution function f in terms of the energy ! = |v|2,
so that f(x,v, t) = f(!, t). The use of the notation ! = v2 originates from the
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wave turbulence literature, where ! is a frequency. In three dimensions, the particle

distribution in !-space F (!, t) must satisfy F (!, t) = 2⇡!3/2f(!, t) and so the

Boltzmann Equation can be simplified into the form of the homogeneous isotropic

Boltzmann equation (HIBE) [Proment et al., 2012]:

@F
1

@t
=

1
Z

0

1
Z

0

1
Z

0

S12

34

(f
3

f
4

� f
1

f
2

)�(!
1

+ !
2

� !
3

� !
4

) d!
2

d!
3

d!
4

, (6.4)

where F
1

= F (!
1

, t), f
i

= f(!
i

, t) and

S12

34

=
2⇡�2

m
min{p

!
1

,
p
!
2

,
p
!
3

,
p
!
4

}. (6.5)

Boltzmann’s H-Theorem leads to the conclusion that any non-zero initial condi-

tion must relax to an equilibrium state described by the Maxwell-Boltzmann distri-

bution

f
MB

(!) = Ae�!/T (6.6)

where T is the thermodynamic temperature. Collisions in the gas are assumed to

be elastic, resulting in the existence of two invariant quantities, particle density ⇢
M

and energy density ⇢
E

which can be found as moments of the distribution:

⇢
M

= 2⇡

1
Z

0

!1/2f(!) d! (6.7)

⇢
E

=
2⇡

⇢
M

1
Z

0

!3/2f(!) d!. (6.8)

Without the presence of forcing and dissipation, these thermodynamic quantities

will remain constant in time and so the Maxwellian distribution that is relaxed to

will have the same particle and energy density as that of the initial condition. The

KZ spectra for the Boltzmann equation can be found with the following dimensional

argument. We will consider the dimensional quantities in terms of units of energy

[E], length [L], time [t]. The integral of F (!) over !-space is a density so F has

units [E]�1[L]�3, and hence f(!) has units [L]�3[E]�5/2. In general, if we assume
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that S12

34

= ��12
34

, where �12
34

⇠ !� so has units [E]�, and � is a constant with units

designed to keep (6.4) dimensionally consistent, then it is required that:

[E]�1[L]�3[t]�1 = [�][E]�[L]�6[E]�5[E]�1[E]3 (6.9)

and so

[�] = [L]3[E]2��[t]�1. (6.10)

Now, let us suppose that the steady-state solution with constant energy flux, ✏,

is local, and can be written in terms of only the local quantities ⌘, �, and !, i.e.

f = �a⌘b!c. (6.11)

✏ is the energy flux, so has units [E][L]�3[t]�1. Dimensional analysis this requires

that

[L]�3[E]�5/2 = [L]3a[E]a(2��)[t]�a[t]�b[L]�3b[E]b[E]c. (6.12)

Equating powers of [L] gives �3 = 3a � 3b, while equating powers of [t] forces

0 = �a � b, and so a = �1/2 and b = 1/2. Finally, equating powers of [E]

�5/2 = �(2 � �)/2 + 1/2 + c, (6.13)

so

c =
�10 + 4 � 2�� 2

4
. (6.14)

For the hard-sphere particle interaction we know that � = 1/2, so the exponent

c = �9/4. The same argument applied to a constant particle flux ⌘ results in the

exponent c = �7/4.

It is simple to check that the exponent c = �7/4 corresponds to a constant flux

of particles in the positive direction, while the exponent c = �9/4 corresponds to
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a constant flux of energy in the negative direction. In order for such solutions to

be physically relevant, the collision operator must converge when the inertial range

is infinite. However, as originally shown by Kats et al. [1975], the collision integral

fails to converge for these solutions. Further to this, the directions of the flux given

by these solutions do not match up those given by the Fjortoft argument [Fjørtoft,

1953], which we will discuss in the next section.

6.4 The Fjortoft argument

The Fjortoft argument relies on the conservation and the dimensions of conserved

quantities to determine wether the conserved quantities are transported predomi-

nantly in the positive or negative direction. For the HIBE, it takes the following

form. Consider an open system with a forcing scale !
f

and two dissipation scales

!
min

and !
max

which are widely separated, so that !
min

⌧ !
f

⌧ !
max

. We wish to

determine the direction that particles and energy will be transported in. If energy

is injected with a rate ✏ at the forcing scale !
f

, then since dimensionally energy

density and particle density di↵er by a factor of !, the forcing rate of the particles

⌘ must have the relationship ✏ ⇠ !
f

⌘. If energy is dissipated at the smaller scale

!
min

with a rate of the same order of magnitude as ✏, then particles here will be

dissipated at a rate proportional to ✏/!
min

⇠ ⌘!
f

/!
min

� ⌘. In the steady state we

cannot have the dissipation rate greater than the forcing rate, hence it is reasonable

to conclude that energy is mostly dissipated at the higher energy scale and so energy

flux is predominantly in the positive direction. By an analogous argument it can

be concluded that particle flux must be predominantly in the negative direction.

An alternative argument that relies on applying the Cauchy-Schwartz inequality to

certain centroids of the distribution is given by Nazarenko [2011a].

When KZ spectra have the alternate flux direction to that predicted by the

Fjortoft argument, this is generally interpreted as there is no possible forcing and

dissipation mechanism that can be applied in order for these solutions to be realised.

From this it can be concluded that the KZ spectra are not physically relevant solu-

tions for the Boltzmann equation.

6.5 The Boltzmann di↵erential approximation model

Instead it has been proposed that mixed-state cascades, or so called “warm cascades”

must exist for the Boltzmann equation [Proment et al., 2012]. Using a lattice based
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algorithm to numerically solve the HIBE, Proment and co-authors were able to show

that when forcing within a narrow band of energies around a scale !
f

, and dissipation

in the form of a filter which removes particles with energies below a minimum !
min

and above a maximum energy !
min

, were present, solutions to the HIBE occur that

appear very close to the Maxwellian distribution with a well defined temperature.

To investigate such mixed-state solutions, Proment et al. postulated a di↵erential

approximation model (DAM) for the Boltzmann equation. DAMs are simplified

models of kinetic equations which are constructed in order to preserve the scalings

of the original equation, and their solutions. As such, they are a very useful tool for

providing qualitative and quantitative knowledge of the underlying physical system.

For example, such simplified models have been created for the non-linear Schrodinger

equation, the kinetic equations that model Kelvin-waves in quantum turbulence

Nazarenko [2006], a model for water gravity WT [Hasselmann et al., 1985] and

models of cluster aggregation.

In order to simplify the collision operator, Proment et al. made the assumption

that the interactions of the system in it’s steady state are strongly local, that is

the integrand of the collision operator only makes a significant contribution when

!
1

⇡ !
2

⇡ !
3

⇡ !
4

. By making this assumption, the HIBE can be used to derive

the following DAM.

@
t

F (!, t) = �@
!!

R[f(!, t)], (6.15)

where

R[f(!, t)] = �S!13/2f2(!, t)@
!!

log f(!, t). (6.16)

The above DAM has the form of dual conservation law, and it is trivial to check that

the KZ spectra with the exponents ↵ = 9/4, ↵ = 7/4 are solutions that represent

constant energy flux and constant particle flux solutions respectively. By using this

DAM, and matching the front solutions near to the cut o↵s !
min

and !
max

to a

Kats-Kontorovic correction of the form f = f
M

(1 + f
d

), Proment et al. were then

able to make the prediction
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T =
2!

max

7

2

log !

max

!

min

+ log !

max

!

f

� 2 log 9

2

. (6.17)

Surprisingly, they found that their results predicted a temperature of the steady-

state that is independent of the forcing rate ✏ and that the solution scales linearly

with ✏. This is significant as it departs from the dimensional analysis that, due to

the quadratic non-linearity of the collision operator, leads to the scaling f ⇠ ✏1/2.

They compared this prediction to numerical results from the HIBE numerical code,

and found that their prediction agreed qualitatively with the numerics.

6.6 Steady-states of the isotropic Fokker-Planck equa-

tion

We now use of the Fokker-Planck equation to study the same problem. In 3-

dimensions and homogeneous in space it takes the following form

@
t

f =
1

⌧
r

v

· {(v � U)f + T r
v

f} . (6.18)

where ⌧ is a relaxation time. When f = f(!) is isotropic, the equation becomes:

@
t

f =
2⇡

⌧!1/2

@

@!

⇢

!3/2

✓

f + T
@f

@!

◆�

:= I
FP

(f). (6.19)

Since the collision operator conserves mass and energy, we can write (6.19) in

conservative forms for mass and energy:

@
t

!1/2f = � @

@!
J
p

(6.20)

@
t

!3/2f = � @

@!
J
E

(6.21)

where J
p

and J
E

are the fluxes of mass and energy respectively, and are related by

J
E

= !J
p

�
!

Z

0

J
p

(!0) d!0. (6.22)
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The fluxes are defined so that a positive flux means that the flux moves in the

direction of higher energies. As in Proment et al. [2012], we introduce forcing in our

system by adding a source term into the equation governing the evolution of the

distribution of energy F = !3/2f ,

@F

@t
= !3/2I

FP

(f) + F(!). (6.23)

If we add a source term F(!) = ✏�(! � !
f

) where ✏ is the rate of energy forcing,

and !
f

is the forcing scale, then the solution to the steady state ODE is a Greens

function from which solutions to arbitrary forms of forcing may be found. This

form of forcing can be considered to be a constant flux of particles entering the

system with energy !
f

. Dissipation is introduced by enforcing Dirichlet boundary

conditions f(!
max

) = f(!
min

) = 0 for a lower energy cut-o↵ !
min

and higher energy

cut-o↵ !
max

allowing energy and particles to freely leave the system.

Explicitly solving (6.23) for its steady state requires the solution of a non-linear

integro-di↵erential equation. Such equations normally are intractable analytically,

but here we are able to exploit the fact that the equation is transformed into a linear

PDE by supposing T is known. We are then able to find T self-consistently. The

self-consistency assumption leads us to the following Dirichlet problem

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

I
FP

(f(!)) = 0 8! 2 (!
min

,!
f

) [ (!
f

,!
max

),

f(!
min

) = 0,

f(!
max

) = 0,

J
p

(!
max

) � J
p

(!
min

) = ✏/!
f

(6.24)

with the self consistency condition

T =  [f(!;T )]

=
2

3

R

!3/2f(!;T ) d!
R

!1/2f(!;T ) d!
. (6.25)

With the ansatz
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f(!) = e�!/T f
d

(!), (6.26)

where f
d

is a correction to a Maxwellian distribution, an analytic solution can be

found (see Appendix D), and is given by

f(!) =

8

<

:

⌧f
M

(!)J
p

(!)
⇣

f̂(!
min

) � f̂(!)
⌘

: ! < !
f

⌧f
M

(!)J
p

(!)
⇣

f̂(!
max

) � f̂(!)
⌘

: ! � !
f

,

where

f̂(!) =
2
p
⇡erfi(

p

!/T )p
T

� 2e!/T

!1/2

, (6.27)

and the particle flux J
p

is given by

J
p

=

8

>

<

>

:

�✏
!
f

✓ : ! < !
f

✏

!
f

(1 � ✓) : ! � !
f

,

where,

✓(!
max

,!
min

,!
f

, T ) =
f̂(!

max

) � f̂(!
f

)

f̂(!
max

) � f̂(!
min

)
2 (0, 1), (6.28)

and we notice that when we have !
min

⌧ !
f

⌧ !
max

, the predictions given by the

Fjortoft argument are recovered (see Figure (6.6)). The analytic form of the solution

(6.27) illustrates how arbitrarily large fluxes are able to be carried by solutions that

appear close to Maxwellian. The derivative of the deviation f
d

is

d f
d

d!
= !�3/2e!/T , (6.29)

so for ! ⌧ T and ! � T , the derivative is dominated by the polynomial and

exponential terms, and the derivative is large. However, for ! ⇠ O(T ), the derivative

becomes small, with a minimum occurring at ! = 3T/2. It is in this region where the
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deviation appears to be constant and the solution appears to be close to Maxwellian.

6.7 Time dependent solutions

Time dependent solutions were found numerically using the NDsolve function

within the software package Mathematica, which uses the method of lines to dis-

cretize the problem in all but one direction, and then integrates the resulting sys-

tem of ODEs. Figures 6.1-6.2 show the direct cascade, while figures 6.3-6.4 show

the inverse cascade.

6.8 Parameter dependence of the e↵ective temperature

in the non-equilibrium steady state

Given the general solution to the Dirichlet problem, the temperature can be found

self consistently as the solution to (7.19). In agreement with the di↵erential ap-

proximation model, we can see immediately that the temperature is independent

of the forcing rate ✏, and therefore must only depend on the forcing scale !
f

and

dissipation scales !
min

and !
max

, see Fig 6.5.

We compare our predictions from the Fokker-Planck model to numerical results

from the HIBE with the numerical solver created by Asinari [2010], and with predic-

tions from the DAM model. The Asinari algorithm solves the HIBE by discretising

the ! space up to a certain energy scale !
cuto↵

, and integration is performed over

a pre-determined set of resonant energies. Dissipation is included by setting the

distribution above !
max

and below !
min

to zero during each timestep. To prevent

ultraviolet bottleneck e↵ects, we ensure that !
cuto↵

> 2!
max

.

In Fig 6.7, we set !
min

= 450, !
max

= 9850 and !
f

= 1500, and compare the

distributions produced by the Fokker-Planck and HIBE models. Due to di↵erences in

boundary conditions and forcing mechanisms, we observe di↵erences in these regions,

but in general the distributions show the same qualitative behaviour. We then

observe the e↵ect of changing the forcing and dissipation scales on the temperature,

while keeping the other parameters fixed. Fig 6.8 and Fig 6.9 show the e↵ect of

varying the dissipation scales, and Fig 6.10 shows the e↵ect of varying the forcing

scale on the e↵ective temperature. Our results show that there is a good agreement

between the HIFP and the HIBE e↵ective temperate, and an improvement to the

predictions generated from the DAM approximation.
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Figure 6.1: Time dependent solutions to HIFP, !
min

= 10, !
max

= 1000, !
f

= 15.
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Figure 6.2: Time dependent solutions to HIFP, !
min

= 10, !
max

= 1000, !
f

= 15
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Figure 6.3: Time dependent solutions to HIFP, !
min

= 10, !
max

= 1000, !
f

= 990
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Figure 6.4: Time dependent solutions to HIFP, !
min

= 10, !
max

= 1000, !
f

= 990

93



ϵ=10-2

ϵ=100

ϵ=102

ϵ=104

0 1000 2000 3000 4000 5000

10-10

10-8

10-6

10-4

10-2

100

102

104

ω

f(
ω
)

Figure 6.5: Steady state solutions with varying forcing rates, !
min

= 50, !
f

= 500,
!
max

= 5000, ⌧ = 1. T = 746.6 found self consistently.
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Figure 6.6: Particle flux (blue, solid line, left axis), and energy flux (red, dashed line,
right axis) with parameters !

min

= 50, !
f

= 500, !
max

= 5000, ⌧ = 1. T = 746.6.
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Figure 6.7: Fokker-Planck solution (solid) and HIBE solution (dashed) with param-
eters !

min

= 450, !
f

= 1500, !
max

= 9850, ⌧ = 1. T = 1442.6
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Figure 6.8: Comparison of e↵ective temperature, when varying !
max

and keeping
other parameters fixed: !

min

= 4.5, !
f

= 22.5.
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Figure 6.9: Comparison of e↵ective temperature, when varying !
min

and keeping
other parameters fixed: !

f

= 22.5, !
max

= 148.5.
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Figure 6.10: Comparison of e↵ective temperature, when varying !
f

and keeping
other parameters fixed: !

min

= 4.5, !
max

= 148.5.
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As well as finding the temperature numerically, we observe that for any choice of

parameter values, the solution to T =  (T ) appears close to the limit

(6.30)

T ⇤ = lim
T!1

 (T )

=
!3/2

min

!1/2

f

+ !1/2

min

!3/2

f

+ !
min

(!
min

+ !
f

)

5
�p
!
min

!
f

+ !
min

� p
!
max

!
f

� !
max

�

+
�!3/2

max

!1/2

f

� !1/2

max

!3/2

f

� !
max

(!
max

+ !
f

)

5
�p
!
min

!
f

+ !
min

� p
!
max

!
f

� !
max

� .

See figures 6.11-6.12. This gives us the following predictions:

lim
!

max

!1
T

!
max

= c
1

(6.31)

and

lim
!

min

!0

Tp
!
min

= c
2

(6.32)

for positive constants c
1

and c
2

. This predictions appear to be in agreement with

the numerical evidence provided by Figures 6.9 - 6.8.

6.9 Locality

The concept of the locality of the energy spectra is one that has its origins in the

wave turbulence literature [Nazarenko, 2011b]. An energy spectrum is considered

local if in the so-called inertial range, that is, the energy range between forcing and

dissipation scales which are widely separated, the solution is independent of the

details of the source and sink. In particular, this means that if we take the inertial

range to be infinite, the solution will be non-zero and finite. Formally, a spectrum

is local if the collision operator converges when the inertial range is infinite.

The assumption of locality is important, because as a consequence one can assume

that the collision operator converges without a compact support. This allows the

order of integration to swapped for an integral collision operator, and is a key

step in the dimensional analysis technique that allows KZ spectra to be found.

When a Kolmogorov spectrum is found, one can then check in a self consistent

manner that the solution satisfies the criteria of locality. This is the case for the
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Figure 6.11: Comparison of solution to T =  (T ) and T ⇤, with !
min

= 1000,
!
f

= 2000, !
max

= 105.

����� �*����� ����� �����

�

�����

�����

�����

�����

�

ψ(T)

T
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Boltzmann equation. KZ spectra can be found for the Boltzmann equation under

the assumption of locality, but these power-law spectra have exponents which mean

the collision integral does not converge for an infinite inertial range, and so they are

not relevant solutions.

Locality is a somewhat broadly defined property. A stricter definition is provided

by strong locality, which is the assumption that allows the construction of di↵erential

approximation models commonly used in wave turbulence to analyse cascades. The

DAM for the Boltzmann equation, first proposed by Proment et al, is one such

model, directly obtained by assuming that particles with energy ! are assumed to

only interact with particles !+�! where �! is small, allowing the Taylor expansion

of the Boltzmann integrand.

The Fokker-Planck collision operator is an integro-di↵erential operator, and so

it possible that steady-state solutions to the equation could be either local or non-

local. First we consider the direct cascade, and begin by observing the e↵ect on

the solution by increasing the upper dissipation scale, !
max

. Figures 6.13, 6.14

demonstrate that as we take !
max

! 1 and keeping the other parameters fixed,

the solution loses dependence on !
max

. We then observe in figure 6.15 the e↵ect of

decreasing the forcing scale !
f

, and find that as we decrease !
f

the solution scales

like f ⇠ !�1

f

. This is a non-local dependence of the forcing scale on the solution.

Next, we test the locality of the the inverse cascade, which represents a constant

flux of particles. If we want to keep the particle flux constant as we increase the

forcing scale !
f

then since ⌘ = ✏/!
f

, we need the energy forcing to scale like ✏ ⇠ !
f

.

This means that as we increase !
f

, the solution loses it’s dependence on the forcing

scale. So just like the direct cascade, the inverse cascade has a solution in the

inertial range that does not depend on the upper energy scale. Next, we check the

e↵ect on the solution of decreasing the lower cut-o↵ !
min

, whilst keeping the forcing

scale and upper-dissipation scale fixed. Figure 6.16 clearly shows the e↵ect of the

lower dissipation scale on the solution. Again, we conclude that this cascade has a

non-local dependence on the !
min

and so the inverse cascade is also non-local.

6.10 Discussion

In this chapter we have reviewed the existing literature regarding the non-equilibrium

steady-states of the Boltzmann equation. Th KZ spectra that are possible to derive
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increasing !
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. We find that as we keep increasing !
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, the solution at a fixed !
no longer depends on !
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.
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Figure 6.14: The e↵ect on the solution f , at ! = 50 when keeping !
min

= 1, !
f

= 10
fixed, and increasing !

max

. We find that as we keep increasing !
max

, the solution
at a fixed ! no longer depends on !

max

.
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Figure 6.15: The e↵ect on the solution f , at ! = 2 ⇥ 106 when keeping !
min

= 1,
!
max

= 107 fixed, and varying !
f

. We find that the solution scales with the inverse
of the forcing scale.
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. We find that the solution has a strong dependence on
the lower dissipation scale.
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by using dimensional analysis, under the assumption of locality, do not match up

with the flux directions obtained form the Fjortoft argument and also result in a

diverging collision operator, and so are not relevant. We derived a homogeneous

isotropic Fokker-Planck approximation and find self consistent analytic solutions in

the presence of a specific form of forcing and dissipation, and find them to be close

to a Maxwellian distribution. These solutions appear to be qualitatively similar to

the warm cascades found by Proment et al.

Our work suggests that in the steady-state, the both direct and inverse cascades

are non-local. The direct cascade has a solution that depends on the forcing scale

within the inertial range, whereas the inverse cascade has a non-vanishing depen-

dence on the lower cut-o↵ with a solution in the inertial range that depends on the

both dissipation and forcing scales. We have used numerics to compare the solutions

of the HIFP and HIBE, and their temperatures dependence on the forcing and dis-

sipation scales, and find they are in good agreement. Although the results from the

Fokker-Planck model are able to reproduce the behaviour of the Boltzmann equation

more closely than those from the DAM, it is still interesting that the DAM is able

to reproduce the same qualitative behaviour. The fundamental di↵erence between

the two models is that the DAM assumes strong locality of interaction, whereas

the Fokker-Planck model includes a non-local di↵usion coe�cient. It appears that

the local interactions dominate the behaviour as both models exhibit qualitatively

similar steady states, but that there is a non-negligible contribution to the dynam-

ics of the Boltzmann equation from non-local interactions which the Fokker-Planck

model, due to its non-local di↵usion coe�cient is able to approximate to a greater

degree.

In the next chapter, we will see how the Fokker-Planck model behaves in the

elastic limit of an inelastic Maxwell gas, to see if it aligns with what knowledge we

have from existing studies of the Boltzmann equation.
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7

Steady state solutions for an

inelastic gas in 1D with

Maxwell molecules

“I am conscious of being only an individual struggling weakly against the

stream of time. But it still remains in my power to contribute in such a

way that, when the theory of gases is again revived, not too much will have

to be rediscovered”

– Ludwig Edward Boltzmann

7.1 Introduction

So far we have only considered gases where the collisions between particles are

elastic. That is, when the total kinetic energy of particles is conserved during binary

collisions. However, when wishing to model a granular gas, the loss of energy during

each collision needs to be taken into account. This is achieved in the following way.

Supposing again that v and v⇤ are the velocities of two molecules pre-collision, and

n is the impact direction, then the post collision velocities v0 v0⇤ must satisfy

�

v0 � v0
⇤
�

· n = �e (v � v⇤) · n, (7.1)

where e 2 [0, 1] is the inelasticity parameter. e = 1 corresponds to no loss of energy

and collisions are said to be elastic, e = 0 corresponds to complete loss of energy

and collisions are said to be sticky. Often this is written equivalently as
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v0 = v � p ((v � v⇤) · n)n (7.2)

v0
⇤ = v⇤ + p ((v � v⇤) · n)n, (7.3)

with p = 1 � q = (1 + e)/2. Perhaps surprisingly, with even the smallest amount

of inelasticity the long-time dynamics of such systems are vastly di↵erent to the

elastic case. Without the conservation of energy, the governing physical laws allow

rich behaviours such as large-scale clustering and inelastic collapse, which are not

possible for gases that obey the conservation of energy [Krapivsky et al., 2010a].

The physics literature of granular gases is extensive, and we direct the reader to

[Brilliantov and Poschel, 2004] which provides an accomplished overview. We will

summarise some of the major results without going into too many details.

When such systems are left to their own devices, it is clear that energy will

dissipate from the system and asymptotically the distribution of velocities will decay

towards a delta function centred on the mean velocity. Such freely cooling systems

are well understood [Villani, 2006]. For example, it can be shown that from a

dimensional argument that

d T

dt
' T�3/2. (7.4)

This is known as Ha↵’s law [Ha↵, 1983], and suggests that the temperature will

decay like O(t�2) with time and that the solution at time t lies a distance of O(t�1)

away from the Dirac delta function.

Later it was postulated by Ernst and Brito [2002] that such freely cooling systems

at large but finite times, are characterised by their temperature T (t) and an invariant

velocity distribution after rescaling, given by

f(v, t) = T (t)�d/2f̃
⇣

v/T (t)1/2, t
⌘

(7.5)

where, the transformed or rescaled distribution f̃ in the coupled limit t ! 1, v ! 0

with v/T (t)1/2 = c kept constant,
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lim
t!1 f̃ (c, t) = lim

t!1T (t)d/2f(cT (t)1/2, t) := f̃ (c) (7.6)

is in general a heavy-tailed function, which depends on the collision model, inelas-

ticity and dimension. For Maxwell molecules is in 1-dimension, Baldassarri et al.

[2002] showed that the invariant scaling function has the form

f̃(c) =
2

⇡

✓

1

1 + c2

◆

2

, (7.7)

and later, using di↵erent methods it was shown by Krapivsky and Ben-Naim [2001]

that for Maxwell molecules (� = 0)in d-dimensions, the tail of the scaling function

behaves like f̃(c) ⇠ c�� where � = �(d, e). The analysis is harder for the hard-

sphere interaction, as the Fourier transform of the collision operator does not lend

itself towards analytical methods so easily. However Mischler and Mouhot [2006]

were able to prove that for hard-sphere interactions the self-similar solutions have a

scaling function that satisfies

a
1

exp (�a
2

|v|)  f̃(v)  A
1

exp (�A
2

|v|) 8v 2 Rd (7.8)

for constants a
1

, a
2

, A
1

, A
2

> 0. This gives the behaviour of the distribution in the

tail. Another question we can ask, as we did in previous chapter, is what happens

when we introduce a source of energy into the system. Will the system reach a non-

trivial steady state, and if so how are these steady states characterised? It turns

out that, the answer to this, again, can depend on the type of forcing, amount of

inelasticity and dimension.

There are clearly many di↵erent ways to introduce forcing into the system. One

of the most common methods, where energy is injected at all scales, is to introduce

a heat bath into the system, which is done by the addition of a term such as T
e

�
v

f ,

where T
e

> 0 is some external temperature. This type of forcing is sometimes called

white noise forcing. In the hard-sphere case, Van Noije and Ernst [1998] found that

the steady state solution has a tail that behaves like

f(v) ⇠ exp
⇣

�Av3/2
⌘

, (7.9)
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where A ⇠ 1/
p
e with the elasticity e. Later it was shown by Ernst et al. [2006]

that in fact, for general collision models there is a steady state that has a tail that

behaves like f(v) ⇠ e�Av

1+�/2

, where � is homogeneity degree of the collision kernel.

Other ways to introduce forcing include introducing a negative friction term (see

Trizac et al. [2007]), and an extreme forcing mechanism we will describe in the next

section.

7.2 The extreme forcing limit

A surprising result was found by Ben-Naim and Machta [Ben-Naim and Machta,

2005; Ben-Naim et al., 2005; Kang et al., 2010]. By considering the tail of the

Boltzmann equation with a variable hard-sphere collision kernel, they found sta-

tionary power-law solutions to a linearised collision operator of the form

f(!) ⇠ v�↵, (7.10)

where ↵ is the solution of the following transcendental equation,

1 �
2

F
1

�

d+��↵

2

, �+1

2

, d+�

2

, 1 � p2
�

(1 � p)↵�d��

=
�
�

↵�d+1

2

�

�
�

d+�

2

�

�
�

↵

2

�

�
�

�+1

2

� , (7.11)

from which they deduce the bounds

1 + d+ �  ↵  2 + d+ �, (7.12)

where the lower bound is approached in the inelastic limit and the upper bound is

approached in the quasi-elastic limit. The linearised Boltzmann equation they derive

is found by assuming that in the tail the interaction is non-local, that is, high energy

particles only interact with particles of much smaller energies. What makes these

solutions puzzling is that these are non-trivial stationary solutions to a dissipative

system with no explicit forcing term. The authors interpret these solutions heavy

tailed solutions that in e↵ect act as their own heat bath, by a mechanism they call

extreme driving. In e↵ect, these are solutions where the forcing scale has been taken

to infinity. Physically, this is equivalent to particles being given large amounts

of energy at very low rate. These predictions were then verified with stochastic

numerical experiments, for Maxwell molecules (� = 0) and hard sphere molecules
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(� = 1). In these numerical experiments particles collide in-elastically, with the

total number of particles kept fixed. With a rate �, small compared to the collision

rate particles, a particle is randomly selected and reassigned a velocity, so that the

total energy lost between this time and the previous selection, is injected back into

the system.

One of the features of these solutions is that the direction of energy flux is towards

smaller scales. This is the opposite direction to what is known for flux direction of

the energy cascade in the inertial range for the elastic case. The question we will

now answer is whether this is a feature of inelastic gases or could be caused by the

form of the forcing mechanism. Let us recall the form of the flux that was found for

the Fokker-Planck model in the previous chapter

J
p

=

8

>

<

>

:

� ✏

!
f

✓ : ! < !
f

✏

!
f

(1 � ✓) : ! � ! ,

with ✓ = ✓(!
max

,!
min

,!
f

) 2 (0, 1). The pure inverse cascade of particles and direct

cascade of mass can be obtained by taking the limit !
max

! 1 with !
min

!
max

= k

kept constant and !
f

fixed, which results in the particle flux:

J
p

'

8

<

:

�✏
!
f

: ! < !
f

0 : ! � !
f

,

and energy flux

J
E

'
(

0 : ! < !
f

✏ : ! � !
f

.

✓, which is a function of the forcing and dissipation scales, in e↵ect controls the

direction of the particle flux, with ✓ = 1 representing a negative cascade of particles,

and ✓ = 0 representing a direct cascade. Now, if we consider an “extreme driving”

mechanism for the inverse cascade, which we consider to be found by taking the

limit !
max

! 1 with !
f

/!
max

= k < 1 kept constant, and !
min

fixed. In this limit

✓ = 0, and so the direction of the fluxes found in the inertial range is reversed.

This is consistent with the direction of energy flux in the non-universal power-
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law solutions found by Ben-Naim and Machta under the “extreme driving” forcing

mechanism that they considered. However, in the extreme forcing limit we consider,

our solutions remain close to Maxwellian, and the non-universal power-law solutions

like those found by Ben-Naim and Machta are not possible. It is clear then, that

the extreme forcing limits and elastic limit do not commute. One more question one

can ask is to what extent simple Fokker-Planck approximations are relevant for an

inelastic granular gas, in particular we seek to determine if a Fokker-Planck model

is able to model the “extreme driving” mechanism.

7.3 Self-similar solutions of the 1D Fokker-Planck Maxwell

gas

In this section we consider in one-dimension the Maxwell gas (� = 0). We choose to

study Maxwell molecules because the independence of the relative velocity on the

collision rate makes the analysis simpler, and we restrict our analysis to a 1D gas to

remove the complication of angular integration. Using the non-dimensionalisation

given in equation (7.6), in the freely cooling case Pareschi and Toscani [2006] derived

a Fokker-Planck collision operator from the Boltzmann equation and found self-

similar power-law solutions which in the quasi-elastic limit agree with the exponents

found in [Baldassarri et al., 2002] .

We take a similar approach, except we do not non-dimensionalise using the ther-

mal velocity, and seek stationary solutions that can be interpreted as non-trivial

steady states under the mechanism of extreme forcing, in a similar way to Ben-

Naim and Machta. By considering all smooth functions � : R ! R, one can write

the Boltzmann equation for Maxwell molecules in its weak form

d

dt

Z

R
�(v)f(v, t) dv =

�

Z

R2

f(v, t)f(w, t) (�(v⇤) � �(v)) dvdw, , (7.13)

where � is a parameter that makes the equation dimensionally consistent, and post

collision velocities

v⇤ = pv + qw, w⇤ = qv + pw, p, q � 0 (7.14)
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are generated by binary collisions between particles of velocity v and w. The second

order Taylor expansion of �(v⇤) around v

�(v⇤) � �(v) = (qv + (p � 1)w)�0(v)

+
1

2
(qv + (p � 1)w)2 �00(ṽ), (7.15)

where ṽ = ✓v⇤ + (1 � ✓)v, for some 0  ✓  1, allows equation (7.13) to be written

as

d

dt

Z

R
�(v)f(v, t) dv =

�

✓

Z

R2

f(v, t)f(w, t) (qv + (p � 1)w)�0(v) dv dw

+
1

2

Z

R2

f(v, t)f(w, t) ((qv + (p � 1)w)2 �00(v) dv dw

+R(p, q)

◆

(7.16)

where

R(p, q) =

1

2

Z

R2

f(v, t)f(w, t)
�

�00(ṽ) � �00(v)
�

(qv + (p � 1)w)2 dv dw. (7.17)

Defining the macroscopic quantities

⇢(t) =

Z

R
f(v, t) dv (7.18)

⇢E(t) =

Z

R
v2f(v, t) dv (7.19)

and enforcing zero bulk momentum

Z

R
vf(v, t) dv = 0, (7.20)

allows (7.16) to be simplified as
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d

dt

Z

R
�(v)f(v, t) dv = �⇢

✓

q

Z

R
f(v, t)v�0(v) dv

+

Z

R
f(v, t)

�

q2v2 + (p � 1)2E
�

�00(v) dv dw + ⇢�1R(p, q)

◆

. (7.21)

Without forcing, we know that the mass is conserved, and so for all t, ⇢(t) = ⇢
0

,

the density of the initial condition. If we suppose that the remainder term R(p, q)

is small in comparison to ⇢, then (7.21) is just the weak form of the Fokker-Planck

equation

@f

@t
= �⇢

0

✓

q
@

@v
(f(v, t)v) +

@2

@v2
��

q2v2 + (p � 1)2E
�

f(v, t)
�

◆

. (7.22)

As in the elastic case, we can rewrite this equation in terms of the energy ! = v2,

with f(!, t) = f(v2, t). We define a new relaxation time ⌧ = �⇢
0

t, and search for

driven steady-states, where the driving is provided by a delta function centred on

an energy scale !
f

= v2
f

. Hence the equation we are considering becomes

@f

@⌧
= 2

✓

q!1/2

@

@!

⇣

!1/2f(!, t)
⌘

+
@

@!

��

q2! + (p � 1)2E
�

f(!, t)
�

+2!
@2

@!2

��

q2! + (p � 1)2E
�

f(!, t)
�

◆

+ ⌘�(! � !
f

), (7.23)

where ⌘ is the forcing rate. Now, supposing that the long-time behaviour of the

system does not depend on the initial condition, and that there is a unique non-

trivial stationary state, we define

⇢⇤(!
f

) = lim
t!1 ⇢(t) < 1

E⇤(!
f

) = lim
t!1E(t) < 1, (7.24)

where E and ⇢ are found as solutions to (7.23) with forcing at the scale !
f

. Letting

q = 1 � p, we find the steady states by solving the following ODE
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Figure 7.1: Density and energy of the steady-state, as the forcing scale !
f

! 1.
The upper-cut o↵ !

max

= 2!
f

, q = 0.9. We find that the density converges to a
finite value, but the energy diverges, growing linearly with the forcing scale.

2q!1/2

@

@!

⇣

!1/2f(!, t)
⌘

+ 2q2
@

@!
((! + E⇤) f(!, t))

+ 4q2!
@2

@!2

((! + E⇤) f(!, t)) + ⌘�(! � !
f

) = 0, (7.25)

supplemented with the boundary conditions

f(!
max

) = 0, (7.26)

f 0(!
max

) =
�⌘

2!1/2

max

(E⇤ + !
max

)
, (7.27)

the first of which allows energy and mass to dissipate from the system, and the

second enforces that the mass injected into the system is equal to the mass flow

out, which is a necessary condition for the existence of a steady state. This solution

is supplemented with the self-consistency conditions given by (E.1). This equation

admits a stationary solution which can be written in terms of hypergeometric and

Meijer-G functions, which we supply in Appendix F. We are interested in an extreme

forcing limit, that is the behaviour as !
f

! 1. For convenience, we set the the

upper cut-o↵ !
max

= 2!
f

. For finite !
f

, solutions to this equation are self-consistent

(see Figures 7.1a-7.1b), i.e. we are able find finite density and energy numerically.
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In the point-wise limit !
f

! 1, with ⌘!1/2

f

held constant (so the forcing rate

⌘ ! 0), before checking for self-consistency, we find that

f(!) !
✓

1

2q(E⇤ + !)

◆�(1+

1

2q

)

, (7.28)

which in the quasi-elastic limit, q = 1, agrees with the exponents that Ben-Naim

and Machta found for the exponents of their extreme driving steady-state solutions.

This asymptotic solution is not self-consistent, as although it possesses finite density,

it does not have finite energy E. This is significant, because the analysis performed

by Ben-Naim and Machta was unable to find the constant coe�cient in front of their

power-laws, i.e.

f(v) = Av�↵, (7.29)

with A unknown. Our work suggests that in the limiting regime they are considering,

the coe�cient A decays to 0.

7.4 Discussion

In this chapter we have reviewed what is known about the steady-state and self-

similar distributions of inelastic granular gases, including a family of distributions

that are stationary solutions of a system that is forced by a mechanism termed

extreme driving. These non-universal solutions give rise to an inverse flux of energy,

the opposite direction of flux to the known warn cascade solutions of the elastic

Boltzmann equation. We have shown that the steady solutions of the Fokker-Planck

approximation are also able to generate an inverse energy cascade under the extreme

driving mechanism. We conclude that the quasi-elastic limit of an inelastic gas is

in general not commutative, and this limit is not able to be reached from an elastic

gas. Finally, we show how a Fokker-Planck equation can be obtained from the 1D

Boltzmann equation for Maxwell molecules, and show that in the quasi-elastic limit

it exhibits power-law stationary states with exponents that are consistent with those

obtained for the extreme forced Boltzmann equation.
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8

Conclusions and outlook

“All that most maddens and torments; all that stirs up the lees of things;

all truth with malice in it; all that cracks the sinews and cakes the brain;

all the subtle demonisms of life and thought; all evil, to crazy Ahab, were

visibly personified, and made practically assailable in Moby Dick.”

– Herman Melville, Moby Dick

The research presented in this thesis contributes to both the methods and

theory of rarefied gases, where specifically this thesis focusses on the Fokker-Planck

approximation to the Boltzmann equation for dilute gases. Our main contributions

are the following:

• In Chapter 3 we have provided an H-Theorem for the Fokker-Planck gas kinetic

model, which under some assumptions regarding the smoothness of the solu-

tion, shows that in the spatially homogeneous setting the solution will eventu-

ally relax towards the equilibrium Maxwellian distribution. To our knowledge,

this result was missing from the existing literature.

• We have proposed two methods for reducing the variance of a stochastic par-

ticle solution method for the Fokker-Planck model. The first we present in

this thesis is the common random number scheme, which is able to work in

geometries where the correlated equilibrium solution is able to keep individual

particle positions strongly correlated. We find the for the planar Couette flow,

the method is able to reduce the noise of statistical samples by a factor of

close to 10. While writing this thesis, the author was made aware that this

method has been published independently [Gorji et al., 2015].

• The second is an importance sampling scheme. The method is similar to

the variance reduction scheme used in the VRDSMC method, in that weights
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are attached to the computational particles. We presented a novel method

that uses the conditional distributions which are known Gaussians to update

the weights during each time-step. We tested the method on a homogeneous

relaxation, a planar Couette flow and a lid-driven cavity flow. In each case,

the variance of the estimators was greatly reduced, and results indicate for

low-speed flows the noise-to-signal ratio of the method is independent of the

Mach number.

• In Chapter 5 a randomised quasi-Monte Carlo scheme was created for solving

the di↵usion equation with low-discrepancy sequences. We showed that in 1

and 3 dimensions the scheme has a sub N�1/2 convergence rate, and have no

reason to believe that it degrades significantly for higher dimensional problems.

We applied the method to a homogeneous relaxation and found the method

was able to reduce the variance, however our attempts to apply the method to

inhomogeneous problems were not successful. Nonetheless, it may be possible

to apply the method to other problems where the solution can be written

in terms of an integral of a Greens function, for example reaction-di↵usion

equations.

• In Chapter 6 we have presented analytical steady-states to a forced/dissipated

Fokker-Planck gas, where the temperature has to be found self-consistently.

Our results agree qualitatively with numerical evidence found previously using

a di↵erential approximation model. We have shown that the cascades in this

model are non-local. We have also shown that the direction of the fluxes given

by the Fjortoft argument can be reversed, which answers how it is possible

for the quasi-elastic limit of solutions to the inelastic Boltzmann equation to

have an inverse cascade of energy when the forcing mechanism is one of an

“extreme driving” type.

It was the intention when this body of work began, that the research would be

conducted with an interdisciplinary spirit, with ideas and concepts brought in from

a wide range of areas, and then developed, and I hope this has come across in this

thesis. An example of this are the variance reduction chapters. As more appli-

cations for rarefied gas calculations have arisen, interest into developing suitable

numerical methods has grown. Reducing the noise for low-speed flows is one of

the challenges involved in this greater e↵ort. Variance reduction for increasing the

precision of estimates obtained from random samples, is a well developed area of

applied probability, separate from the numerical study of rarefied gases which tends
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to be conducted within engineering departments, and so it is natural that knowledge

from this area has so far di↵used slowly into the rarefied gas methods. The variance

reduction techniques that have been proposed in this thesis are an attempt to help

bridge this gap. The proposed methods, namely the common random number tech-

nique and importance sampling technique, are two relatively simple methods. The

advantage of this is that they are relatively easy to understand and implement, but

it is possible that other refined techniques such as introducing stratified and anti-

thetic sampling could be applied, and this is certainly a possible avenue of future

research.

The work we have presented is significant, as it shows that for low-speed flows

the Fokker-Planck kinetic model has the potential to be a viable alternative to

DSMC which is currently the preferred method of choice. Further research to fully

evaluate how a variance reduced Fokker-Planck method performs in comparison to

the variance reduced DSMC is now needed. Gorji and Jenny [2015] have shown how

the Fokker-Planck particle method can be coupled to DSMC. Another future avenue

of research could be to couple to the model to continuum methods, such as a NSF

solver, for applications where there are multiple length scales that are significant

for the flow field. In such multi-scale problems, a local Knudsen number can be

defined. Using particle methods where the local Knudsen number is close to zero

is very ine�cient in comparison to using NSF solvers, and so it is desirable to have

methods that decompose the domain into regions where the di↵erent gas models are

valid, and a way to couple the solutions so that information is able to pass from one

to the other. The Fokker-Planck particle scheme may have an advantage over DSMC

for this type of coupling, because the thermodynamic fields can be fed directly into

equations of motion for the particles without having to use thermostats.

In Chapters 6 and 7 we have showed that the Fokker-Planck model, as well being

well suited for practical purposes, is able to give answers to theoretical questions

too. One criticism of the work could be to what extent the Fokker-Planck model

is an approximation to the Boltzmann equation. It is not an approximation in the

sense that you can obtain the Fokker-Planck model directly from the Boltzmann

equation from an expansion in terms of a small parameter. In the derivation in

Appendix A this is what is attempted, but crucially it assumes collisions are between

large and small molecules, whereas of course, we are using this model for a one

species gas. This is a fair criticism, but we would not put it into the same class

of purely phenomenological models that, for example, the BGK collision operator
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inhabits and where no attempt can be made to justify the functional form from

the underlying collision process. The Fokker-Planck equation retains the non-linear

quadratic dependence on the distribution function and has been shown to produce

results that agree well with particle solutions of the Boltzmann equation, which we

argue gives weight to the claim that the solutions we find in these chapters mimic

the real solutions of the homogeneous isotropic Boltzmann equation.

The questions addressed in the final chapters were primarily theoretical, in the

sense that quite heavy simplifying assumptions of homogeneity in space and statis-

tical isotropy were made. Nevertheless, there is a connection between these steady-

state solutions and the practical steady-state solutions of physical flows in the earlier

chapters, e.g. the Couette flow. We can interpret the collisions of a particle with

the wall in the non-equilibrium boundary layer as a source of energy and a partic-

ular energy scale. There will also be an upper-cut o↵, with fast moving particles

more likely to leave the non-equilibrium layer. Our results suggest that it may be

possible in this non-equilibrium layer for the velocity distribution to appear close to

Maxwellian, but still retaining the ability to transport energy in a non-equilibrium

manner. This is a connection that could be investigated using the DSMC methods.

Finally, it is worth remarking that within the non-equilibrium steady-state chap-

ters we are implicitly assuming the Boltzmann equation, and in particular its as-

sumption that velocities of particles pre-collision are uncorrelated (molecular chaos),

is valid in such strongly out of equilibrium situations, which is a comment I have

encountered discussing this topic on conferences. Whilst there certainly are non-

equilibrium systems that do display correlations that decay slowly, for example the

Ising model (in dimensions greater than 2) close to its phase transition, flocking

models of birds [Vicsek and Zafeiris, 2012], and chemical reaction-di↵usion systems,

there are plenty of examples of non-equilibrium systems where correlations do decay

quickly, for example the Ising model far from its phase transition. A particularly

good example of a toy model which highlights this is the East model [Faggionato

et al., 2012], whose stationary distribution can be written as a product of inde-

pendent Bernoulli measures despite non-trivial kinetically constrained microscopic

dynamics. This emphasises the need to check the validity of assumptions in models

we use with experiments.
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Appendix A

Derivation of the Fokker-Planck

collision operator from the

Boltzmann equation: the

Raleigh gas

This derivation can be found in Chang et al. [1970]; Ferrari [1982] in the setting of a

Raleigh gas, in which a particles of mass m are surrounded by particles of mass M ,

against which they collide. The surrounding gas is supposed to be at equilibrium at

temperature T , and the equilibrium is not disturbed by the collisions with particles

m. Given this description, the Boltzmann collision operator is given by

Q(f) =

Z Z

�

f 0F 0 � fF
�

|v � V| dVd⌦, (A.1)

where

F (V) = N

✓

M

2⇡kT

◆

3/2

e�MV

2

/2kT (A.2)

is the Maxwellian equilibrium distribution of surrounding gas. The primes refer to

the post collision velocity variables: (v,V) ! (v0,V0). If the particle m is very

heavy in comparison the mass M (m/M � 1) and the velocity v/V is always of

order (m/M)1/2 (satisfied when the velocities are not far from equipartition) then

we can expand the collision operator in powers of the small parameter M/m. This
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occurs in the following manner. First we let

f(v) = f
MB

(v)h(v), (A.3)

where h describes the deviation from equilibrium. By using conservation of energy

it follows that

Q(f) = f
MB

(v)

Z

F (V)

Z

�

h0 � h
�

|v � V| d⌦dV (A.4)

= f
MB

(v)I(h). (A.5)

If we let g = V � v and g0 = V0 � v0 , then conservation of momentum gives

v0 � v = � M

M +m

�

g0 � g
�

⇡ �M

m

�

g0 � g
�

, (A.6)

and since M/m is small, this means v and v0 are close to each other. This allows

h(v0, t) to be expanded around v, so we can write

h(v0, t) � h(v, t) ⇡
3

X

i=1

�

v0
i

� v
i

� @h

@v
i

+
1

2

3

X

i,j=1

�

v0
i

� v
i

� �

v0
j

� v
j

� @2h

@v
i

v
j

. (A.7)

We can also make use of the identity

g = V

✓

1 � 2
v

V
cos�+

v2

V 2

◆

1/2

, (A.8)

which can be expanded up to order (m/M)1/2 as

g ⇡ V
⇣

1 � v

V
cos�

⌘

. (A.9)

The next step is to write the solid angle as d⌦ = sin ✓d✓d�, and consider V written

in a spherical coordinate system. By using the following verifiable identity:
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Z
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i

� B
i

)d� = 2⇡

✓

A

B
cos⇥� 1

◆

B
i

, (A.10)
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(A.11)

(where B is a fixed vector and ⇥, � are the polar angles of A with respect to B)

one can integrate over the azimuthal angle. If we use the dimensionless variables

c =

r

m

2kT
v, C =

r

M

2kT
V (A.12)

the resulting integral can be written

I(h) = 4⇡2
M

m
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2kT
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(A.13)

Performing the integration over the angle � results in

I(h) =
8⇡2

3

M�

m

✓

2kT

M

◆

2

Z

d✓ sin ✓ (1 � cos ✓)
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dCe�C

2
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✓
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◆
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(A.14)

Recombining this with A.5, and reverting back to dimensional coordinates results

in the collision operator

J(f) =
1

⌧

@

@v
i

⇢

v
i

f +
kT

m

@f

@v
i

�

, (A.15)
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where for hard spheres the integration gives the relaxation time

⌧ =
3

8
p
⇡

m

NM�2

r

M

2kT
. (A.16)
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Appendix B

Derivation of Fokker-Planck

equation from Brownian

particle dynamics

This is a di↵erent approach to deriving a Fokker-Planck gas kinetic equation, where

we follow the deviation described by [Green, 1951]. Here we consider the motion of

a Brownian hard-sphere particle in a gas whose molecules interact the particle, but

not with each other. As in Appendix A, it also assumed that the mass of the gas

which the Brownian particle is suspended in is small in comparison to the mass of the

Brownian particle, and that the immersive gas is at equilibrium with temperature

T .

Again, we suppose the f(v, t) is the distribution of the velocity of Brownian

particle at time t. We will mechanically consider how the distribution changes when

the Brownian particle collides with a gas particle. That is, we will equate the rate

of change of the distribution function to the di↵erence of probability of a particle

entering and leaving an elementary volume of phase dv.

We assume that the change of momentum of both the Brownian and gas particle

occurs only in the direction of the normal of the point of contact. If v and v0 are the
pre and post-collision velocity of the Brownian particle of mass m, and V, V0 are
the pre and post collision velocities of the gas particle of mass M , then conservation

of energy and momentum require
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v0 = v +
2Mm

M +m
(V � v) · nn (B.1)

V0 = V � 2Mm

M +m
(V � v) · nn. (B.2)

To calculate the number of molecules entering dv0, one needs to know what

initial velocities v are able to collide with a particle of initial velocity V so that

the final velocity is v0. That is, we require v in terms of V and v0, which can be

obtained from equation (B.1):

v = v0 � 2Mm

m � M

�

V � v0� · nn. (B.3)

Next, the probability that a Brownian particle enters the region dv0 in a time

element dt because of collisions with a gas molecule in the velocity range dv, which

occurs in the neighbourhood dA of its surface, is the product of the probability of the

Brownian particle having a suitable velocity, and that there is a gas particle available

to give the desired collision in a time dt. If such a gas molecule has velocity V then

the normal component to the relative velocity must be such that it encounters the

Brownian particle at dA, and the probability of this occurring for a large number of

particles will approach the expectation. Therefore the probability that a Brownian

particle enters the region dv is given by

�f(v, t)n · (V � v)NM(2⇡kT )�3/2e�MV

2

/2kTdv dV dAdt. (B.4)

A similar argument gives the probability for a particle leaving the region dv0 in a

time dt as

�f(v0, t)n ·
�

V � v0
�

NM(2⇡kT )�3/2e�MV

2

/2kTdv dV dAdt. (B.5)

Now, from B.3 we have

dv =
m+M

m � M
dv0 (B.6)

and B.1 and B.3 together give:
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n · (V � v) =
m+M

m � M
n ·
�

V � v0� . (B.7)

Putting this together with gain and loss in probability, gives the overall change of

probability as

�
"

✓

m+M

m � M

◆

2

f(v, t) � f(v0, t)

#

n ·
�

V � v0�NM (2⇡kT )�3/2 e�MV

2

/2kTdv0 dV dAdt,

(B.8)

where we require n·(V � v0) < 0. To get the total change in probability we integrate

over all such V and surface elements dA, resulting in the rate of change

@f

@t
= � NM(2⇡kT )�3/2

Z Z

"

✓

m+M

m � M

◆

2

f(v, t) � f(v0, t)

#

n ·
�

V � v0� e�MV

2

/2kTdv0 dV dA .

(B.9)

Now, if f is smooth enough to be approximated by a power series, then expanding the

integrand of equation (B.9) around v , truncating at the first term and completing

the integration gives

@f

@t
=

"

✓

m+M

m � M

◆

2

� 1

#

Af +

✓

m+M

m � M

◆

B · rf +

✓

m+M

m � M

◆

2

C : �f, (B.10)

where

A =
2

MN�2
(2⇡kT )1/2 (B.11)

B =
8

3mN�2
(2⇡kT )1/2 v (B.12)

C =
8

3N�2
(2⇡kT )1/2 kT I (B.13)

where I is the unit dyadic. Substitution of these values into B.10, and retaining

only the lowest orders of M/m gives the same result given by Wang-Chang and
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Uhlenbeck in Appendix A.
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Appendix C

Finding KZ spectra: Balks

argument

The KZ spectra for the Boltzmann can be found with the following argument pre-

sented by outline the method presented by Balk [2000] showing (under the assump-

tion of locality) the existence of these KZ spectra. If we write the collision integral

as

I(f
1

) =

Z 1

0

Z 1

0

Z 1

0

S12

34

(f
3

f
4

� f
1

f
2

)�(!
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+ !
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� !
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� !
4

) d!
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d!
3

d!
4

, (C.1)

and we substitute in power-law solutions of the form f = A!�↵, then

(C.2)
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Now if we define

µ = �1

2
+ 2↵� 4 + 1, (C.3)

and include a factor of !µ

1

inside the integral, then the homogeneity degree of the

integrand is zero, and we can write the integral as
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where, crucially, we have implicitly assumed the integrand converges in order to swap

the order of integration, and used symmetry properties of the collision operator.

Now, it is clear that the integrand vanishes precisely when µ = 1 or µ = 0, which

corresponds to the exponents

↵ = 9/4, ↵ = 7/4. (C.5)
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Appendix D

Non-equilibrium steady-state

solutions of the Fokker-Planck

collision operator

In this appendix, we derive the non-equilibrium steady states of the Fokker-Planck

equation. We begin by factorising out a Maxwellian distribution from f ,

f(!) = e�!/T f
d

(!). (D.1)

Now, the particle flux J
p

is given by

J
p

= �!
3/2

⌧
(f + T@

!

f) (D.2)

= �!
3/2

⌧

⇣

e�!/T f
d

(!) + e�!/T (T@
!

f
d

� f
d

(!))
⌘

(D.3)

= �T

⌧
!3/2e�!/T@

!

f
d

. (D.4)

Supposing that particles are injected at the forcing scale !
f

, which induces a con-

stant flux of particles �⌘� to lower energies, and a positive particle flux ⌘
+

then

the deviation from equilibrium solves the following ODE
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Integrating the above ODEs results in a general solution with four unknown con-

stants, ⌘�, ⌘+ and two constants of integration. These can be found by supplement-

ing the ODE with the boundary conditions f(!
min

) = f(!
max

) = 0, the continuity

condition

lim
!!!

�
f

f(!) = lim
!!!

+

f

f(!) (D.6)

and the steady state condition that the particle flux in must be equal to the particle

flux out, that is, ✏/!
f

= ⌘� + ⌘
+

.
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Appendix E

Temperature function

The temperature function

T =  [f(!;T )]

=
2

3

R

!3/2f(!;T ) d!
R

!1/2f(!;T ) d!
, (E.1)

at the steady state can be found to be equal to the expression below, found using

Mathematica with the change of notation !
min

= a, !
max

= b, !
f

= s. It was not

possible to simplify this expression further.
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Appendix F

Inelastic steady-state

The solution to the inelastic Fokker-Planck steady state equation
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can be found using the Mathematica software package, and are given by
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