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Abstract

In this thesis, Rossby waves are considered within the one-layer Charney-Hasegawa-
Mima (CHM) equation and two-layer quasi-geostrophic (QG) model. They are stud-
ied from a wave turbulence (WT) perspective. Since nonlinearity is quadratic, in-
teractions take place between triplets of waves known as triads. A triad is said
to be resonant if its wave vectors and frequencies satisfy k1 + k2 − k3 = 0 and
ω(k1) +ω(k2)−ω(k3) = 0 respectively. These triads can then be joined together to
form resonant clusters of various sizes. The wave vectors can be continuous, in an
unbounded domain, or discrete, in a bounded domain. Continuous, otherwise known
as kinetic, WT has been extensively studied in the one-layer case. It is known that
three quadratic invariants exist and they take part in a triple cascade in k-space.
This thesis is interested in finding quadratic invariants, of which there can be many,
in the discrete regime. It begins by considering discrete clusters of resonant triads
arising from a Hamiltonian three-wave equation. A cluster consists of N modes
forming a total of M connected triads. It is shown that that finding quadratic in-
variants is equivalent to a basic linear algebra problem, consisting of finding the null
space of a rectangular M ×N matrix A with entries 1, −1 and 0. An algorithm is
then formulated for decomposing large clusters into smaller ones to show how the
quadratic invariants are related to topological parts of the cluster. Specific examples
of clusters arising in the CHM wave model are considered.
The second part of this thesis focusses on the large-scale limit of the CHM equa-
tion. This limit has been studied the least; however, it would appear to be more
relevant since Rossby waves in the ocean are large-scale. Recently a new quadratic
invariant, known as semi-action, has been discovered in this limit. Its density is one
in the meridional region |ky|<

√
3kx and zero in the zonal region |ky|>

√
3kx. As a

consequence of the conservation of semi-action, conditions are placed on the triad
interactions involving zonal (Z) and meridional (M) modes. In this thesis it is proved
directly, without appealing to conservation, that the following triad interactions are
prohibited: M →M +M,M → Z + Z,Z →M + Z and Z →M +M. The cascade
directions are studied of the three invariants, the energy, enstrophy and, depending
whether the initial spectrum is in the meridional or zonal sector, the semi-action
or zonsotrophy respectively. The results are interpreted to explain the formation of
unisotropic turbulence with dominating zonal scales.
In the final part of this thesis, a symmetric form of the two-layer kinetic equation for
Rossby waves is derived using canonical variables, allowing the turbulent cascade of
energy between the barotropic and baroclinic modes to be studied. It turns out that
energy is transferred via local triad interactions from large-scale baroclinic modes to
the baroclinic and barotropic modes at the Rossby deformation scale. From there it
is transferred into large-scale barotropic modes via a non-local inverse transfer.
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Chapter 1

Introduction

1.1 Quasi-geostrophic theory

The Rossby number is a dimensionless number which characterises the strength of

inertial terms (u.∇u ∼ U2

L ) to the Coriolis force terms (Ω×u = ΩU) in the Navier-

Stokes equation. It is defined as:

Ro = U/fL, (1.1)

where U and L are the characteristic horizontal velocity and length scales respec-

tively and f = 2Ωsinϕ is the Coriolis parameter where Ω is the angular speed of the

Earth and ϕ is the latitude. See figure 1.1.

When Ro � 1, inertial accelerations are negligible and Coriolis accelerations

dominate. In this limit the geostrophic approximation can be used. However, for

most large-scale atmospheric and oceanic flows the Rossby number is small but not

so small that the inertial accelerations can be neglected completely. This gives us

quasi-geostrophic (QG) motion.
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Ω

ϕ

x

y

1

Figure 1.1: A rotating sphere.

Until the late 1940’s equations governing atmospheric and oceanic dynamics were

complicated, but in 1947 Charney [5] developed the QG approximation under the as-

sumption that large-scale flows in the atmosphere and oceans were quasi-hydrostatic,

quasi-adiabatic, quasi-horizontal, quasi-geostrophic and incompressible. He derived

a single two-dimensional (2D) partial differential equation (PDE) expressing the con-

servation of potential vorticity (PV), known as the barotropic PV equation or the

Charney-Hasegawa-Mima (CHM) equation:

∂

∂t
(∇2ψ − Fψ) + β

∂ψ

∂x
+ J [ψ,∇2ψ] = 0, (1.2)

where ψ(x, t) is the geostrophic stream function, x = (x, y) is a 2D vector with x

varying in the zonal direction and y in the meridional direction, F = f2

gH is one over

the Rossby radius of deformation squared, β is the Rossby parameter measuring the

variation of the Coriolis force with latitude and the Jacobian term:

J [ψ,∇2ψ] =
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
, (1.3)

represents the nonlinearity. The barotropic PV equation will not be derived in this

thesis, for details on the derivation please refer to [6, 7, 8]; however, much more
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detail will be given in chapter 6 on the derivation of the two-layer QG equations.

The same equation governs drift waves in plasma [9] where F in this case represents

the inverse of the gyroradius squared and β is a constant proportional to the gradient

of the plasma density. Many of the findings discussed in this thesis, in a geophysical

context, are relevant to plasma physics; however, drift waves will not be considered

here.

Equation (1.2) is similar to the 2D Euler equation. It can be written in the form

of an advection equation:

Dq

Dt
= 0, (1.4)

for the PV:

q = ∇2ψ + βy − Fψ, (1.5)

where D
Dt = ∂

∂t + u · ∇ is the advective derivative and u = (ux, uy) = (−∂ψ
∂y ,

∂ψ
∂x )

is the velocity field. Like the 2D Euler equation, the CHM equation conserves two

quadratic invariants, the energy:

E =
1

2

∫
[(∇ψ)2 + Fψ2]dx, (1.6)

and potential enstrophy:

Ω =
1

2

∫
[∇2ψ − Fψ]2dx. (1.7)

However, the CHM equation differs from the Euler equation by the presence of the

linear term, β ∂ψ∂x . This extra term means that the CHM equation can support wave

motions, unlike the Euler equation, and also has a weakly nonlinear limit since the

linear term can be large compared with the nonlinear one.

If we neglect the nonlinear Jacobian in equation (1.2) it admits harmonic solu-

tions of the form:

ψ(x, t) = Re[Ake
i(k·x−ωkt)]. (1.8)

These solutions are called Rossby waves and have the dispersion relation:

ωk = − βkx
k2 + F

. (1.9)

3



1.2 Rossby waves

Rossby waves, also known as planetary waves, were first put forward by Carl-Gustaf

Rossby in 1939 [10]. They are due to the variation of the Coriolis parameter with

latitude (f is zero at the equator and increases towards the poles). This is known

as the beta-effect, where:

β =
∂f

∂y
. (1.10)

They are best understood by considering the conservation of PV for a single layer

of fluid:

q =
ζ + f

H
, (1.11)

where ζ = ∇2ψ is the relative vorticity and f is the planetary vorticity. Any lati-

tudinal displacement of a parcel (north or south) to a region of larger/smaller plan-

etary vorticity will require a decrease/increase in relative vorticity to keep the PV

constant. Hence anti-cyclonic/cyclonic motion develops resulting in westward prop-

agating Rossby waves. See figure 1.2.

Positive relative
vorticity

Negative relative
vorticity

Positive relative
vorticity

Westward propagating

1

Figure 1.2: Rossby wave motion.

In the Earth’s atmosphere Rossby waves are easy to observe as large-scale me-

anders of the jet stream, see figure 1.3. These meanders have a huge effect on the

weather and climate experienced on Earth. This can be seen by considering the

position of the polar jet stream over the United Kingdom. It is usually to the north

of the UK meaning, in summer the weather is warm and settled and in winter it

4



ensures generally mild, and at times wet and windy weather. However, in 2007-2008

and 2009-2010 the jet stream dipped south causing usually wet and cooler summers

and bitter but dry winters, see figure 1.4. One explanation for this is that it coincides

with the El Nino taking place in the Equatorial Pacific, where weaker winds allow

warmer water from the West Pacific to flow east, setting off an atmospheric chain

reaction. The Met Office has already issued warnings of a harsh winter of 2015 as

the El Nino is expected to take place.

In the Earth’s oceans, Rossby waves are much harder to observe as they travel

westward along the thermocline (the boundary between the warm upper layer and

cold lower layer). They are large-scale waves, much longer than the Rossby radius

of deformation, with a horizontal length of the order of hundreds of kilometres [11].

However, the amplitude of oscillation at the sea surface is just a few centimetres.

They propagate slowly, with speed varying with latitude and increasing equator-

ward, but of the order of just a few kilometres per day. This means that at mid-

latitudes it may take several months, or even years, for a wave to cross the ocean.

Figure 1.3: The jet streams normal summer pattern. Sourced from www.bbc.co.uk.

Figure 1.4: The jet stream during summer 2008 and 2010. Sourced from
www.bbc.co.uk.
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Since Rossby waves are dispersive, wave turbulence (WT) theory is applicable

when the waves are weak. In the next chapter a brief introduction to WT is pre-

sented, after which the theory is applied to the CHM equation.
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Chapter 2

Wave turbulence

WT is defined as “out-of-equilibrium statistical mechanics of random nonlinear

waves” [12]. As well as randomness, deviation from thermodynamic equilibrium

and being statistical in nature, WT shares other properties with classical hydrody-

namic turbulence such as conserving several positive quantities and being dominated

by a flux or cascade of energy (or another conserved quantity such as waveaction or

momentum) through the scales. It is often further assumed that waves are weakly

nonlinear and dispersive, therefore allowing them to be approximated by indepen-

dent linear waves for short time intervals. As it will later be seen, this leads to a

systematic mathematical analysis of WT.

2.1 History and examples

The concept of WT originated from Peierls’ work in 1929 [13] who derived what we

now know as the kinetic equation for phonons in anharmonic crystals. However, it

was not until the 1960’s that the kinetic equation was derived for plasma physics [14]

and for water waves [15]. Considerable progress in the area of weak WT was made by

Zakharov in the mid 1960’s when he showed that wave kinetic equations have exact

power law solutions which are similar to Kolmogorov’s spectrum of hydrodynamic

turbulence. These stationary solutions are known as the Kolmogorov-Zakharov (KZ)

spectra and they describe the transport of conserved quantities to small or large

scales [16]. They were first discovered for weak turbulence in plasmas [17] and then

7



in the context of surface waves [18, 19]. Since then WT is a tool that has proved

valuable and effective in a great variety of cases from quantum to astrophysical scales,

i.e. quantum turbulence in superfluid helium [20], surface gravity and capillary waves

[21, 22], magneto-hydrodynamic turbulence in astrophysics and laboratory plasmas

[23, 24] and turbulence in rotating and stratified fluids [25, 26].

2.2 Three-wave resonant interactions

For a system of weakly interacting waves whose leading order nonlinearity is quadratic,

like in the CHM equation, interactions take place between triplets of waves which

form what is known as a triad. For a system with cubic nonlinearity, interactions

would involve four waves and so on. It is convenient to represent the wave field in

the 2D k-space using Fourier coefficients, so let the system be a periodic box, with

length L in all directions. A triad is then made up of three modes with wave vectors

k1,k2,k3 ∈ R2, which satisfy the following three-wave condition:

k1 + k2 − k3 = 0. (2.1)

Each wave vector has an associated frequency, ω(k1), ω(k2) and ω(k3) respectively.

By definition, a triad is called resonant if:

ω(k1) + ω(k2)− ω(k3) = 0. (2.2)

In the limit of weakly nonlinear waves, energy is only exchanged efficiently between

modes which are members of resonant triads.

2.3 Wave turbulence regimes

The wave vectors k can either be continuous or discrete. For waves systems in an

unbounded domain, the k’s are continuous variables. Therefore, any k may be a

member of infinitely many resonant triads. These resonant triads form a network in

Fourier space to transfer energy throughout the system and this is the basis for the

theory of WT [27]. This is the kinetic regime and the energy distribution between
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modes is well described by the wave kinetic equation. WT theory is particularly

well developed in the limit of infinite systems. However, it has become clear that

the predictions of the classical theory of WT based on the continuous limit may not

apply for oceanic Rossby waves bounded by the finite planet radius. The discreteness

of the wavenumber space due to a finite size must be taken into account [28, 29].

Hence, a new regime was introduced - discrete WT. Here the wave vectors are discrete

variables, i.e. k ∈ Z2. As a result, the resonant conditions may be hard to satisfy

and any k may be a member of only a few resonant triads (sometimes it could even

be a single triad). If the energy of the system is initially concentrated in these triads,

then an energy cascade cannot take place. An extreme version of such a situation

is when there are no resonant triads at all, like in the case of the capillary surface

waves [22], in which case turbulence is “frozen”. In other words, mode interaction

weakens or can even disappear completely, meaning no cascade can take place.

Resonant triads which are connected via common modes can be grouped to-

gether to form clusters of various sizes ranging from butterflies, where two triads are

joined via one mode, to a multiple-triad cluster involving a complicated network of

interconnected triads. These clusters have been studied in [1, 30, 31, 32, 33, 34].

These different regimes of weak WT are described in [12] and [29] by differ-

ent relationships between the nonlinear frequency broadening Γ (approximately the

inverse of the nonlinear timescale τNL) and the frequency spacing in the finite box:

∆ω =

∣∣∣∣∂ωk

∂k

∣∣∣∣ 2π

L
∼ ωk

kL
, (2.3)

where L is the length of the box. When wave amplitudes are very small (forcing

is low), so that the nonlinear frequency broadening is much less than the frequency

spacing,

Γ� ∆ω,

WT is discrete with a finite number of modes where only waves that are in resonance

(satisfying both (2.1) and (2.2)) can interact and exchange energy.

If the wave system’s amplitudes are gradually increased (higher forcing but not

too high so that the nonlinearity is still weak) the nonlinear frequency broadening
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will eventually become large,

Γ� ∆ω,

and WT becomes continuous. Alternatively, this condition may be realized by taking

the infinite box limit while keeping the wave amplitudes constant. For example, if

L → ∞ then the frequency spacing ∆ω decreases meaning the frequency spectrum

becomes more dense and hence continuous.

For larger amplitudes originally isolated clusters may become connected via

quasi-resonances, that is, resonances with small enough frequency detuning:

|ω(k1) + ω(k2)− ω(k3)|. Γ. (2.4)

This will allow energy to be transferred between waves which are not exactly reso-

nant; however, this is less efficient than energy transfer between waves which are in

exact resonance. It is also worth mentioning that the effects of frequency broadening

also appear in the presence of dissipation for real systems.

On the other hand if,

Γ ∼ ∆ω,

then both types of WT - discrete and kinetic may coexist and the system may

oscillate in time (or parts of the k-space) between the two regimes giving rise to a

new type of WT - mesoscopic [12, 29]. This so called sandpile behaviour and was

first presented in [35]. Consider WT that is initially in the discrete regime with very

weak intensity. If wave energy is permanently supplied at small k it will accumulate

until the frequency broadening ΓD becomes of order of the frequency spacing ∆ω.

An “avalanche” is then triggered and the turbulent cascade is released to higher k.

This is characterized by kinetic interactions, where Γ = ΓK � ΓD. At this point the

mean wave amplitude will lower and the broadening ΓK will become less than the

frequency spacing ∆ω. Thus, the system returns to the discrete WT regime, where

energy accumulates and thus the cycle starts again.

The sandpile behaviour described here only occurs in forced systems. In this

thesis we will be considering examples when forcing is absent or not important. It
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is hypothetical and not known whether sandpile behaviour is realized or not in the

CHM example since no one has considered it numerically yet; however, it would

be interesting to consider in future work. From here onwards we will focus on the

discrete and kinetic regimes.

2.4 Application of wave turbulence theory to the Charney-

Hasegawa-Mima equation

Let us begin by putting the CHM equation (1.2) in Fourier or k-space. For a 2D

periodic box with period L in all directions, the Fourier transform of the stream

function is:

ψ(x, t) =
∑
k

ψ̂(k, t)eik·x, (2.5)

with Fourier coefficients:

ψ̂(k, t) =
1

L2

∫
Box

ψ(x, t)e−ik·xdx. (2.6)

The CHM equation becomes:

∂tψ̂k = −iωkψ̂k +
∑
k1,k2

Tk
k1,k2

ψ̂k1ψ̂k2δ
k
k1,k2

, (2.7)

where:

Tk
k1,k2

= −(k1 × k2)z(k
2
1 − k2

2)

k2 + F
, (2.8)

is the nonlinear interaction coefficient and δkk1,k2
≡ δ(k− k1 − k2) is the Kronecker

symbol which is one if k − k1 − k2 = 0 and zero otherwise. The densities of the

energy and enstrophy in Fourier space become:

Ek = (k2 + F )|ψ̂k|2, (2.9)

Ωk = (k2 + F )2|ψ̂k|2. (2.10)
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Now let us introduce the waveaction variable:

ak =
k2 + F√
|βkx|

ψ̂k, (2.11)

which is defined in order to relate the waveaction density:

nk =

(
L

2π

)2

|ak|2, (2.12)

to the energy density Ek by the relation Ek = |ωk|nk. Substituting (2.11) into

equation (2.7) gives:

ȧk = −iωkak + sign(kx)
∑
12

Wk
12a1a2δ

k
12, (2.13)

where
∑
12
≡ ∑

k1,k2

, a1 ≡ ak1 , a2 ≡ ak2 , ȧk denotes the derivative and the nonlinear

interaction coefficient is now:

Wk
12 =

√
β|k1x||k2x|
|kx|

(k1 × k2)z(k
2
1 − k2

2)

(k2
1 + F )(k2

2 + F )
. (2.14)

Such variables arise in the Hamiltonian formulation of the CHM equation which I

will now introduce.

2.4.1 Hamiltonian formulation of the Charney-Hasegawa-Mima equa-

tion

In the limit of small amplitudes, the Hamiltonian H is a power series in the complex

variables ak = a(k, t) and a∗k = a∗(k, t) where ∗ represents the complex conjugate,

iȧk =
δH
δa∗k

, (2.15)

and:

H = H2 +H3 + .... (2.16)

The linear dispersion relation ωk contains all the information that is necessary for

studying the propagation of non-interacting waves [36]. It is a coefficient in the first
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term of the Hamiltonian which is quadratic with respect to the wave amplitudes:

H2 =
∑
kx≥0

ωk|ak|2. (2.17)

H3 is the cubic term which describes the nonlinear wave interactions of a single wave

decaying into two waves or the confluence of two waves into a single one:

H3 =
∑

k1x,k2x,k3x≥0

(V 3
12a1a2a

∗
3δ

3
12 + c.c.). (2.18)

Three-wave interactions dominate wave systems with small nonlinearity provided

thatH3 6= 0, otherwise the leading nonlinear processes may be four-wave interactions

or even higher. We are now considering only half of the k-space, i.e. kx, k1x, k2x ≥ 0.

This is because the CHM equation is for real variables ψ(x, t) and so k and −k

represent the same modes via the property of the Fourier transform of real functions,

ψ̂−k = ψ̂∗k. Rewriting equation (2.13) in Hamiltonian form gives the following three-

wave equation:

iȧk = ωkak +
∑

k1x,k2x≥0

(V k
12a1a2δ

k
12 + 2V 1∗

k2 a1a
∗
2δ

1
k2), (2.19)

which now has the nonlinear interaction coefficient [12]:

V k
12 = i

√
βkxk1xk2x

(
k1y

k2
1 + F

+
k2y

k2
2 + F

− ky
k2 + F

)
. (2.20)

V k
12 is only valid on the resonant manifold, i.e. when ωk = ω1 +ω2 is satisfied. When

this is true, (2.14) and (2.20) are equivalent. V k
12 has the following symmetries:

V k
12 = V k

21 = −V 2
k−1 = −V −k−1−2. (2.21)

2.4.2 Interaction representation

We are considering waves that are weakly nonlinear and so for short time intervals

their amplitudes are sufficiently small and time-independent and therefore can be

approximated by independent linear waves. Over time however, the wave amplitudes
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evolve and nonlinear interactions become apparent. But it is possible to average over

the fast linear times due to the large difference between this nonlinear evolution and

the linear wave period [12].

In order to separate the time scales, variables are introduced that do not change

in the linear approximation, this is known as interaction representation. The inter-

action representation variable is defined as:

bk =
ak
ε
eiωkt, (2.22)

where the parameter ε � 1 is introduced to make the smallness of nonlinearity

explicit. In terms of the interaction representation variable (2.22), the Hamiltonian

(2.19) can be rewritten as:

iḃk = ε
∑

k1x,k2x≥0

(V k
12b1b2δ

k
12e

iωk
12t + 2V 1∗

k2 b1b
∗
2δ

1
k2e
−iω1

k2t), (2.23)

where the triad detuning parameters ωk
12 = ωk − ω1 − ω2 have been introduced to

measure the deviation of each triad from resonance. The linear term ωkak is not

present as it is time independent and there is now explicit time-dependence in the

nonlinear term. For very small amplitudes we can let ei(ωk−ω1−ω2)t = δ(ωk
12) and

Ṽ k
12 = εV k

12δ
k
12δ(ω

k
12), such that only resonant waves are left in equation (2.23) which

becomes:

iḃk =
∑

k1x,k2x≥0

(Ṽ k
12b1b2 + 2Ṽ 1∗

k2 b1b
∗
2). (2.24)

This equation governs the discrete WT regime. Sets of equations (2.24) can be

divided into independent subsets, the so-called resonant clusters. Within each cluster

the waves interact among themselves but not with the waves of the other clusters.

The equations for the simplest possible cluster, shown in figure 2.1 consisting of one

resonant triad only, are:

ḃ1 = W ∗b∗2b3, (2.25)

ḃ2 = W ∗b∗1b3,

ḃ3 = −Wb1b2,
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where W = 2iεV 3
12.
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b1 b2

b3

Figure 2.1: An isolated triad.

Now let us consider larger amplitudes that correspond to the kinetic regime.

The governing kinetic equation can be derived from the Hamiltonian equation (2.23)

using WT theory. The full derivation will not be given here as it is presented for

the two-layer kinetic equation in chapter 6. For more information on deriving the

one-layer kinetic equation see [12]. Below, the main steps are highlighted.

� After separating the linear τL and nonlinear τNL time scales, introduce an

intermediate time T such that τL � T � τNL and seek a solution for the

wave amplitude bk at time t = T using an expansion in the small nonlinearity

parameter ε :

bk(T ) = b
(0)
k (t) + εb

(1)
k (t) + ε2b

(2)
k (t) + .... (2.26)

� The idea is then to substitute the weak nonlinearity expansion into |bk(T )|2,

and average over the random phases and amplitudes, 〈|bk(T )|2〉.

� Now take the large box limit L → ∞, whereby Fourier sums are replaced by

integrals: ∑
12

→
∫
dk1dk2

(
L

2π

)4

. (2.27)

� Finally introduce the waveaction spectrum:

nk =

(
L

2π

)2

〈|bk(T )|2〉, (2.28)

and take the weak nonlinearity limit ε→ 0.
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� As a result the kinetic equation is obtained, which describes the rate of change

of the waveaction spectrum as a result of the spectral redistribution of energy

by nonlinear interactions between waves:

ṅk =

∫
k1x,k2x>0

(<12k −<k12 −<2k1)dk1dk2, (2.29)

where:

<12k = 2π|V k
12|2(n1n2 − nkn1 − nkn2)δk12δ(ω

k
12). (2.30)
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Chapter 3

Quadratic invariants

3.1 Kinetic wave turbulence

The energy and enstrophy densities are defined in equations (2.9) and (2.10) in terms

of the Fourier coefficients ψ̂k, so now let us define them in terms of the waveaction

spectrum nk. The energy and enstrophy become:

E =

∫
kx>0
|ωk|nkdk, (3.1)

Ω =

∫
kx>0

kxnkdk.

where ωk is now the density of the energy and kx the density of the enstrophy.

Generally, one can write for a conserved quantity Φ with density ϕk as:

Φ =

∫
kx>0

ϕknkdk. (3.2)

This can easily be shown using equations (2.29) and (2.30):

Φ̇ =

∫
kx>0

ϕkṅkdk (3.3)

=

∫ ∫ ∫
kx,k1x,k2x>0

(ϕk<12k − ϕk<k12 − ϕk<2k1)dk12dk

=

∫ ∫ ∫
kx,k1x,k2x>0

<12k(ϕk − ϕ1 − ϕ2)dk12dk,
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where the integration variables are changed from k1,k2,k→ k,k1,k2 and k1,k2,k→

k2,k,k1 in the second and third terms in the integrand respectively. This proves

the following theorem [37, 38]:

Theorem 3.1.1 If the spectral density of quantity (3.2) satisfies:

ϕk − ϕ1 − ϕ2 = 0, (3.4)

on the resonant manifold then, Φ is conserved, i.e.

Φ =

∫
ϕknkdk = const. (3.5)

For the energy and enstrophy, the resonant condition (3.4) is obviously satisfied:

k−k1−k2 = 0 and ωk−ω1−ω2 = 0, due to the respective δ-functions in the kinetic

equation (2.29) which proves conservation of these quantities.

For a generic wave system no other invariant besides the energy and enstrophy

has been found. However, it was discovered in [39] for kinetic WT that one extra

conserved quantity exists for the system of Rossby waves. This quantity is conserved

under the same conditions as the kinetic equation, namely weak nonlinearity and

random phases, and it cannot be conserved in interactions of higher order so may be

called the invariant of three-wave systems. It was first discovered in 1990 in the case

of (i) large-scale turbulence (ρ2k2 � 1) and (ii) anisotropic turbulence (|ky|� |kx|)

after which it was generalised to all of k-space in [40] where:

Z =

∫
kx>0

ηknkdk, (3.6)

with density:

ηk = arctan
ky + kx

√
3

ρk2
− arctan

ky − kx
√

3

ρk2
, (3.7)

and ρ = 1√
F

is the Rossby radius of deformation. This extra invariant is unique to

Rossby/drift waves and is known as zonostrophy, because as will be seen later, it

causes energy to cascade to the zonal scales.
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3.1.1 Cascades

In three-dimensional (3D) hydrodynamic turbulence it has long been known that the

energy cascades from small to large wavenumbers [41, 42, 43]. In two dimensions,

the introduction of a second invariant, the enstrophy, causes a dual cascade to form

whereby the energy is transferred from large to small wavenumbers while the enstro-

phy is transferred from small to large wavenumbers [44, 45]. However, for Rossby

waves with an extra invariant, it was found in [39] that the zonostrophy together

with the energy and the enstrophy, are involved in the triple cascade process. Each

of the invariants is forced by the other two to cascade into its own anisotropic sector

of k-space and, in particular, the energy is forced to cascade to large zonal scales.

Fjørtoft’s argument [45] for the direction of the energy and enstrophy cascades in

2D turbulence was generalized in [46] to find the non-intersecting cascade directions

of the three invariants in the case of small-scale turbulence. The non-intersecting

sectors are shown in figure 3.1.

kx

ky

kx/k0x

ky/k0y

Enstrophy

Energy

Zonostrophy

Energy/Enstrophy

Energy/Zonostrophy

Enstrophy/Zonostrophy

1

Figure 3.1: Non-intersecting sectors for the triple cascade as predicted by the gen-
eralized Fjørtoft argument.

In chapter 5, the cascade directions for the large-scale limit will be considered,

where another invariant has recently been discovered.
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3.2 Discrete wave turbulence

For the discrete regime it has been shown in [1], that the search of all quadratic

invariants of system (2.24) is equivalent to a basic linear algebra problem, namely

the search for the null space of a certain constant and sparse matrix, called the

“cluster matrix”.

3.2.1 The cluster matrix - A

Consider a number of triads that are joined together forming a resonant cluster.

Let the cluster consist of M triads and N modes bn(t) where index n = 1, . . . , N

enumerates the modes in the cluster. Each mode n in the cluster has wavenumber

kn. The three-wave resonance conditions for the m-th triad, defined by (2.1) and

(2.2), can be put into the following matrix form:

N∑
n=1

Amnkn = 0 , m fixed, m = 1, . . . ,M, (3.8)

where for each fixed m the set {Amn}Nn=1 contains exactly two elements with value

1, one element with value −1 and the remaining elements are equal to zero. In other

words, the m-th row of the M ×N matrix A = [Amn] corresponds to the three-wave

conditions for the m-th triad, i.e.

Amn1kn1 +Amn2kn2 +Amn3kn3 = 0,

where out of Amn1 , Amn2 and Amn3 , two have value 1 and the third has value −1.

From here on the matrix A will be referred to as the cluster matrix.

Definition 3.2.1 The null space of the cluster matrix A is the linear vector space

generated from a basis of linearly independent vectors ϕ(j) ≡ (ϕ
(j)
1 , ϕ

(j)
2 , . . . , ϕ

(j)
N )T

for which:

Aϕ(j) = 0, (3.9)

where j = 1, . . . , J and J is the dimension of the null space of A.
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3.2.2 Constructing quadratic invariants

The following theorem allows all of the independent quadratic invariants to be found.

Theorem 3.2.2 Consider a resonant cluster of N interacting modes belonging to

M triads. Let ϕn ≡ ϕkn be a real function of the wavenumbers of the modes in the

cluster, such that the vector ϕ ≡ (ϕ1, ϕ2, . . . , ϕN )T is in the null space of the cluster

matrix: Aϕ = 0, or, in components:
N∑
n=1

Amnϕn = 0 for all triads in the cluster, i.e.

for all m = 1, . . . ,M. Then,

I =
N∑
n=1

ϕn |bn(t)|2= const., (3.10)

i.e. I is a quadratic invariant.

Conversely, let I =
N∑
n=1

ϕn |bn(t)|2 be a quadratic invariant of system (2.24), i.e.

İ = 0 for all values of the complex amplitudes bn(t) such that (2.24) hold. Then the

variables ϕn satisfy
N∑
n=1

Amnϕn = 0, for all m = 1, . . . ,M.

Proof. To show I is indeed an invariant, take the time derivative of (3.10):

dI

dt
=

N∑
n=1

ϕn(ḃnb
∗
n + bnḃ

∗
n). (3.11)

Substitute for ḃn using equation (2.24) to get:

İ =
N∑
n=1

ϕnb
∗
n

∑
12

(−i)(Ṽ n
12b1b2 + 2Ṽ 1∗

n2 b
∗
2b1) + c.c.

= −i
∑
123

(ϕ3b
∗
3b1b2Ṽ

3
12 − ϕ1b

∗
1b
∗
2b3Ṽ

3∗
12 − ϕ2b

∗
2b
∗
1b3Ṽ

3∗
12

+ϕ3b3b
∗
1b
∗
2Ṽ

3∗
12 − ϕ1b1b2b

∗
3Ṽ

3
12 − ϕ2b2b1b

∗
3Ṽ

3
12)

= −i
∑
123

(ϕ3 − ϕ1 − ϕ2)(b∗3b1b2Ṽ
3

12 + c.c.).

It is clear that İ = 0 because ϕ3 − ϕ1 − ϕ2 = 0 is guaranteed by equation (3.8) for

every term in the sum.

The converse statement follows directly from the last equation for İ indeed be-

cause each individual term in the sum depends on amplitude b which can be arbi-

trarily chosen. In general there can’t be cancellation between these terms and the
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result in general would be nonzero unless ϕ3 − ϕ1 − ϕ2 = 0 in each term separately.

�

3.2.3 Quick counting the number of independent quadratic invari-

ants

The dimension J of the null space of the cluster matrix A was shown in theorem 3.2.2

to be equal to the total number of independent quadratic invariants of the cluster

system (2.24). Direct application of linear algebra gives:

J ≡ N −M∗ ≥ N −M, (3.12)

where M∗ is the number of linearly independent rows in A. In practice, this means

that a quick counting is possible of the number of independent invariants, J, of a

given cluster. Just take the number of modes involved minus the number of triads

involved, and this gives a lower bound for J.

3.2.4 Connectivity of triads in a cluster and number of independent

quadratic invariants

There are three general results in terms of connectivity:

(i) In order for the triads to be connected into a cluster, the following obvious

condition must be satisfied:

2M + 1 ≥ N.

For example, consider the triple-chain in figure 3.2. If 2M + 1 < N, then N must be

greater than 7. The only way to achieve this without adding a fourth triad to the

cluster is to disconnect a triad from the chain.
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b3a

b1a b2a = b1b

b3b

b2b = b1c

b3c

b2c

a b c

Figure 3.2: A triple chain.
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(ii) If a cluster is formed exclusively by one-common-mode connections between tri-

ads, then one has N = 2M + 1. Using (3.12), J ≥ M + 1. Most of the resonant

clusters known in the literature are of this form. Therefore it is expected that the

number of quadratic invariants increases with the number of triads.

(iii) If a cluster is formed exclusively by two-common-mode connections between

triads, then one has N = M + 2. Using (3.12), J ≥ 2. Most of the quasi-resonant

clusters known in the literature are of this form. In these cases a small number of

invariants are expected, but two of them always survive, up to the kinetic regime.

Three-common-mode connections between triads make no sense physically, so this

ends the analysis in terms of connectivity properties of a cluster. In a general cluster,

N will be between M + 2 and 2M + 1, so J will vary accordingly.

3.2.5 Excluded cluster matrices

In real-life applications and numerical simulations, large clusters with many triads

and modes are encountered. Therefore, it makes sense to try to understand the basic

structures appearing within a cluster in terms of properties of the cluster matrix A.

Presented below are three physical requirements of the cluster matrices and their null

spaces, so that the clusters represent physically sensible sets of interacting modes.

By writing out the resonant conditions for each triad from (3.8), one must admit

only the matrices Amn for which the solution set of wavenumbers kn , n = 1, . . . , N,

is physically sensible.

1. The first physical requirement is that in the solution of (3.8), no two wave

vectors are equal, (i.e. kn 6= kn′ if n 6= n′).

For example, any two rows Am, Am′ with m 6= m′, must not have the same

values in more than one column. The reason being that two rows having equal

values in two columns would imply that the corresponding columns of the third

wave vector should be equal, so the two rows would represent exactly the same

triad. Therefore the following matrices are not physically sensible:
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 1 1 −1 0

1 1 0 −1



k1 + k2 − k3 = 0,

k1 + k2 − k4 = 0,

=⇒ k3 = k4.

 1 1 −1 0

1 0 −1 1



k1 + k2 − k3 = 0,

k1 − k3 + k4 = 0,

=⇒ k2 = k4.

The triads corresponding to these kind of cluster matrices are known as kites,

with the first example pictured in figure 3.3.
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Figure 3.3: A kite.

2. Second, if the underlying PDE is for a real function, so that there is an iden-

tification between the wave vectors k and −k, such as in the case of the CHM

equation, then an extra requirement is that in the solution of (3.8), no two

wave vectors add up to zero, (i.e. kn 6= −kn′ if n 6= n′).

For example, any two rows Am, Am′ with m 6= m′, must not have values of

opposite sign in two columns. If this was to happen the corresponding k of the

third non-zero column of row Am should be equal to minus the k of the third

non-zero column of row Am′ . If the wave field is real in the physical space, as is

the case for Rossby waves, the k and −k represent the same mode via b−k = b∗k

and therefore the two triads are identical. Consequently, the following matrix

is not physically sensible:
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 1 1 −1 0

−1 0 1 1

 k1 + k2 − k3 = 0,

k3 + k4 − k1 = 0,

=⇒ k2 = −k4.

3. Third, in cases when the zero-mode must be excluded, one must require that

in the solution of (3.8), no wave vector is the zero vector, (i.e. kn 6= 0 for all

n).

In the case of triad interactions, the violation of the third requirement will

imply the violation of either the first or the second requirement for some modes.

To see this, notice that, for example, if k1 + k2 − k3 = 0 and k3 = 0, then

k1 = −k2.

An example of this third case is an excluded type of cluster which has the

shape of a tetrahedron (see figure 4.4). This has the following cluster matrix:


1 −1 0 1

−1 0 1 1

0 1 −1 1


k1 − k2 + k4 = 0,

−k1 + k3 + k4 = 0,

k2 − k3 + k4 = 0,

=⇒ k4 = 0,

=⇒ k1 = k2 = k3.

This cluster is discussed in more detail in chapter 4.

3.3 Examples of low-dimensional clusters

3.3.1 An isolated triad

The cluster matrix corresponding to the resonant conditions for an isolated triad is:

A =

[
1 1 −1

]
.
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Its null space, the set of vectors ϕ(j) for which Aϕ(j) = 0 is:

Φ =


1 1

0 −1

1 0

 .

A triad has J = N −M = 2 independent quadratic invariants. Each column of Φ

gives a quadratic invariant of the dynamical system:

I1 = |b1|2+|b3|2, (3.13)

I2 = |b1|2−|b2|2.

These are known as Manley-Rowe invariants. They can also be derived using theorem

3.2.2 where I takes the form:

I = ϕ1|b1|2+ϕ2|b2|2+ϕ3|b3|2. (3.14)

Here, the resonant condition ϕ1 +ϕ2−ϕ3 = 0 is clearly satisfied when ϕ1 = ϕ3 = 1,

ϕ2 = 0 and ϕ1 = 1, ϕ2 = −1, ϕ3 = 0 respectively.

Physically, this means that the energy (ωk), the two components of momentum

(kx, ky) and the zonostrophy (ηk) will not be independent of one another. Only two

may be linearly independent, e.g. kx and ωk or ky and ηk etc.

3.3.2 Double-triad clusters - butterflies

Two triads can be connected via one mode to form a butterfly. One example is

shown in figure 3.4.

Its cluster matrix is:

A =

b1a b2a b3a b2b b3b 1 1 −1 0 0

1 0 0 1 −1

,
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Figure 3.4: A butterfly.

and it’s null space is:

Φ =





0 −1 1 b1a

1 1 −1 b2a

1 0 0 b3a

0 1 0 b2b

0 0 1 b3b

.

This system has N −M = 3 independent quadratic invariants of the form:

I1 = |b2a|2+|b3a|2, (3.15)

I2 = |b2a|2+|b2b|2−|b1a|2,

I3 = |b1a|2−|b2a|2+|b3b|2.

As a result zonostrophy does not appear as an extra invariant to the energy, and

momentum components. However, any three of the four invariants will be linearly

independent. The situation becomes more interesting for larger, three-triad clusters,

which have four invariants. The zonostrophy in these cases does appear as an extra

invariant as all four of kx, ky, ωk and ηk are linearly independent of one another. For

even bigger clusters there may be many more invariants than these four.
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3.4 Application to the Charney-Hasegawa-Mima model

Resonant clusters have been found in [1] and [34] for the CHM equation in two limits,

the small-scale limit and the large-scale limit.

3.4.1 Small-scale Rossby waves (ρk →∞)

Let the frequency be that of small-scale Rossby waves, ρk → ∞. The dispersion

relation can be obtained by putting F = 1/ρ2 = 0 in (1.9) which gives:

ωk = − βkx
k2
x + k2

y

. (3.16)

In the small-scale limit, the general expression for the zonostrophy density (3.7)

becomes:

ηk =
k3
x

k10
(k2
x + 5k2

y). (3.17)

Considering the region 1 ≤ kx ≤ 100 and −100 ≤ ky ≤ 100 a total of thirty-four

clusters (seventeen clusters plus their mirror images) were found numerically by

searching for sets of wave vectors that satisfy the resonant conditions in the box.

This consists of twenty-four isolated triads, four butterflies, two triple-chains, two

seven-triad clusters and two thirteen-triad clusters, as shown in figure 3.5.
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Figure 3.5: Small-scale Rossby waves in the region 1 ≤ kx ≤ 100, −100 ≤ ky ≤ 100.

Consider the biggest cluster found in the small-scale limit, shown in the top left

corner of figure 3.5, which is made up of thirteen triads, twenty-seven modes and

has fourteen linearly independent invariants. Its cluster matrix and null space are

as follows:
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A =



1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1



,
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Φ =



−1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 −1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

It can be seen from the null space that it has six Manley-Rowe invariants in columns

1,4,6,9,11 and 14.

3.4.2 Large-scale Rossby waves (ρk → 0)

Now consider large-scale Rossby waves, ρ2k2 � 1, with the frequency obtained from

the general dispersion relation:

ωk = − βρ2kx
1 + ρ2k2

, (3.18)
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by Taylor expansion in small ρ2k2:

ωk = −βkxρ2(1− ρ2k2). (3.19)

Since the first part in this expression is equal to kx, for the purpose of finding the

resonances a simpler expression can be used:

ωk = kxk
2. (3.20)

In the region 1 ≤ kx ≤ 20 and −20 ≤ ky ≤ 20 a total of four clusters were found.

This consists of two isolated triads, one ten-triad cluster and one 104-triad cluster,

as shown in figure 3.6.
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Figure 3.6: Large-scale Rossby waves in the region 1 ≤ kx ≤ 20, −20 ≤ ky ≤ 20.

It can be seen that in a much smaller domain of the large-scale limit there is
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already a much larger cluster than in the small-scale limit. This tells us that the

resonance conditions are much easier to satisfy in the large-scale limit than in the

small-scale limit.

In the next section we will study both the thirteen-triad cluster from the small-

scale limit and the 104-triad cluster from the large-scale limit in more detail and

see how, in symbolic cluster space, the invariants are related to specific parts of the

cluster.

3.5 Comparison of quadratic invariants in kinetic and

discrete wave turbulence

In this chapter we have considered the conservation of quadratic invariants in both

kinetic and discrete WT. It turns out that the condition for conservation is very

similar in both regimes - the k-space density of the quadratic invariant must satisfy

the same resonance conditions as does the wave vectors (2.1) and frequencies (2.2).

The kinetic regime has well known quadratic invariants, the energy with density

ϕk = ωk and the momenta with density ϕk equal to each of the d components of

the wave vector k. These invariants along with a more recently discovered additional

invariant for Rossby waves, zonostrophy, take part in a triple cascade. However, in

the discrete regime many more invariants may be conserved. The total number of

independent quadratic invariants of the cluster is equal to J ≡ N −M∗ ≥ N −M

where M∗ is the number of linearly independent rows in the cluster matrix A. The

resonance conditions are much harder to satisfy in a discrete system and therefore

there are fewer triads than in the kinetic case. Hence N −M increases and there

are many more invariants in discrete WT than kinetic WT.

It is not yet known how the presence of numerous additional quadratic invari-

ant affects the turbulent cascades in k-space. It would therefore be interesting to

simulate numerically WT in large discrete clusters, such as the one in figure 3.6, to

see how their behaviour is different from their counterparts in kinetic WT. Equally,

quasi-resonant clusters contain more triads than resonant clusters. Thus, as the

detuning in a cluster increases, N −M decreases, and generally there will be fewer
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invariants. Therefore, it would also be interesting to study the dynamical conse-

quences of such a loss of the quadratic invariants when triads with higher frequency

detuning start to become available due to an increase in the nonlinearity of the WT.
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Chapter 4

Relating the quadratic

invariants to the topological

properties of the cluster

As we have seen, finding the cluster matrix of a system of interacting triads is a

straightforward matter, regardless of the size of the cluster. Moreover, finding its null

space takes seconds using basic linear-algebra commands from computer programs

such as Matlab. What is less trivial is that the number of these invariants is deeply

related to the structure of the cluster in symbolic space. In [1] an algorithm was

found for decomposing large clusters into smaller ones to show how various quadratic

invariants are related to certain parts of a cluster. The full details of the algorithm

are presented below.

Part 1

� Consider a cluster, like in figure 4.1, with an unconnected mode, call it mode

1 for simplicity. Being unconnected, means that mode 1 will not be joined to

any other triad in the cluster other than the one it belongs to, call it triad 1.

� Consider the cluster matrix A. Since mode 1 is unconnected, the rest of column

1 in the cluster matrix will contain zeros. Here n and m denote the positions

of the non-zero entries in row 1 (other than the first position).
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Figure 4.1: A cluster before reduction.

� Delete column/mode 1 and row/triad 1 to leave a new reduced matrix A′ with

M ′ = M − 1 rows and N ′ = N − 1 columns:

A =

1 n m



1 0 0 −1 0 1 · · ·

0 . . . . . .

0 .

0 . A′

0 .

0 .

.

36



� Consider a vector from the null space of A (a column of matrix Φ):

1 n m



1 0 0 −1 0 1 · · ·

0 . . . . . .

0 .

0 . A′

0 .

0 .



ϕ1

ϕ2

.

ϕn

.

ϕm

.

.

.

.

ϕN



= 0.

� Solve A′


ϕ2

...

ϕN

 = 0, to find the null space of A′.

� Then solving for ϕ1 gives:

ϕ1 − ϕn + ϕm = 0 −→



ϕ1

ϕ2

.

.

.

ϕN


=



ϕn − ϕm
ϕ2

...

ϕN


. (4.1)

Thus finding the null space of A is reduced to finding the null space of a

smaller matrix A′. By eliminating one row which is linearly independent from

the rest of the rows in A, and eliminating the respective column, the null

space dimension has not been changed. Therefore, the number of independent

invariants is the same for A and the smaller matrix A′.

� Two situations may arise:
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1. Triad 1 has one unconnected mode. A′ is a cluster matrix of a cluster

obtained from A by eliminating triad/row 1 and column/mode 1 only. It

is clear that such reduced clusters will have the same number of invariants

as the original bigger cluster.

2. Triad 1 has two unconnected modes, e.g. 1 and m in the example below:

A =

1 n m



1 0 0 −1 0 1 · · ·

0 . . . . 0 .

0 . 0

0 . A′ 0

0 . 0

0 . 0

.

In this case there is a column of zeros in matrix A′ (column m). Thus,

one can now choose ϕm arbitrarily as follows:



ϕ1 = ϕn − ϕm
ϕ2

...

ϕm
...

ϕN


=



ϕn

ϕ2

...

0

...

ϕN


+ c



−1

0

...

1

...

0


. (4.2)

The second contribution here, [−1, 0, ..., 1, ..., 0]T , gives one of the linearly

independent invariants of A, and all the other columns in the null space

of A must have zero entries in the position number m. Note that this

invariant is an attribute solely of the triad with two unconnected ends

which are being eliminated and in fact it has a simple Manley-Rowe form,

I = |bm|2−|b1|2. Equally if modes 1 and n are unconnected then we have

the Manley-Rowe I = |b1|2+|bn|2.
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� Hence a triad with two unconnected ends will contribute a Manley-Rowe invari-

ant which depends only on the two free modes and so it is “local”. Note that

being local in symbolic cluster space does not imply being local in wavenum-

ber Fourier space. However, being non-local in symbolic cluster space implies

being non-local in wavenumber Fourier space.

� Note that removing triads with unconnected modes may possibly disjoin the

remaining cluster into independent clusters, which must then be treated sepa-

rately.

� Repeat until only fully connected cluster(s) are left, i.e. one in which all modes

are connected to more than one triad.

� If matrix A′ cannot be reduced any further via this method move to part 2.

Note however, that some clusters can be fully decomposed by repeating part

1 only and part 2 will not be necessary.

Part 2

Suppose in the remaining cluster there are two triads (triad 1 and 2 in figure

4.2 below) that are joined together by two modes and that these modes are not

connected to any other triad.
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n

Figure 4.2: A cluster after all unconnected ends have been removed by part 1.

� Rearrange the rows/columns of A′ to form a 2× 2 matrix in the top left hand

corner, (i.e. renumber the modes in the triad in an appropriate way). The only
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2 × 2 matrix possible is

 1 1

1 −1

 or any permutation of it because it must

satisfy the exclusion principles in section 3.2.5, meaning the following matrices

are not allowed:

 1 1

1 1

,

 1 −1

1 −1

,

 1 −1

−1 1

 .
� Delete the pair of modes in column/row 1 and 2 to get matrix A′′ as follows:

A′ =

n m



1 1 0 −1 0 0 · · ·

1 −1 0 0 1 0 · · ·

0 0 . . . . .

0 0 .

0 0 . A′′

0 0 .

.

� This 2×2 matrix is always non-degenerate, i.e. it has a non-zero determinant.

� Removing a pair of connected triads may disjoin the remaining cluster into

two independent clusters, in which case each must be treated separately. Or

the remaining part may stay as a single cluster.

� Solve A′′


ϕ3

...

ϕN

 = 0, to find the null space of A′′.

� Then solving for ϕ1 and ϕ2 gives:
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ϕ1 + ϕ2 − ϕn = 0 and ϕ1 − ϕ2 + ϕm = 0

−→



ϕ1

ϕ2

ϕ3

.

.

.

ϕN



=



1/2(ϕn − ϕm)

1/2(ϕn + ϕm)

ϕ3

...

ϕN


. (4.3)

Therefore, the null space of A is uniquely constructed from the null space of

A′′ and has the same dimension. In other words, by eliminating two triads as

described above, it leads to a smaller cluster (or two disjoint clusters) whose

total number of independent invariants is equal to the number of independent

invariants in the original cluster.

It is not possible to have any zero columns in A′′ since these should have been

eliminated in part 1. The necessity to remove zero columns may arise only at

the level of eliminating single triads and not at the level of triad pairs.

� Look at A′′ (single or two disjoint clusters) and again search for unconnected

single modes (part 1) and triad pairs (part 2) of the type

 1 1

1 −1

 . Repeat

the procedure until part 1 and part 2 cannot be applied any more.

Part 3

After a number of successive applications of part 1 and part 2 one inevitably

arrives at reduced cluster(s) for which the steps of neither part 1 nor part 2 can be

carried out. Such reduced cluster(s) are usually significantly smaller than the original

one but will still have the same number of invariants. Moreover the invariants for

the big cluster can be easily reconstructed from the respective invariants of such a

reduced cluster by expressing the entries of the eliminated modes in the null space
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as shown in (4.1), (4.2) and (4.3). Because of the fact that this smaller cluster will

completely determine the conservation properties of the original large cluster it is

called the “cluster kernel” of the original cluster. Note that not all clusters will have

kernels as they can be taken apart completely by the steps of part 1 and part 2.

� Consider a cluster kernel (irreducible by parts 1 and 2). Following the logic of

part 1 and part 2 now consider 3×3 blocks in the top left hand corner (arising

after appropriate renumbering of the rows/triads and columns/modes) such

that the rest of the entries below the 3× 3 block contains zeros only, e.g.

A′′ =



1 1 −1 0 0 0 · · ·

1 −1 0 0 1 0 · · ·

1 0 1 0 −1 0 · · ·

0 0 0 . . . .

0 0 0 . A′′′

0 0 0 .


.

Call these 3× 3 blocks A3×3. Of course A3×3 must again satisfy the exclusion

principles discussed above. Either A3×3 is:

1. non-degenerate with a non-zero determinant, in which case the system

of equations for ϕ1, ϕ2, ϕ3 has a unique solution and consequently the

complete system has the same number of invariants as A′′′.

2. or degenerate with a zero determinant, in which case, one or two inde-

pendent solutions are to be obtained by putting ϕ4 = .... = ϕN = 0.

Further solutions are to be sought for (ϕ4, ...., ϕN ) given by solutions of

A′′′(ϕ4, ...., ϕN )T = 0. For each of these solutions, the resulting system of

equations for ϕ1, ϕ2, ϕ3 has either:

(a) a unique solution,

(b) infinite solutions or

(c) no solutions at all.

This can be determined by the following Rouché-Capelli theorem [47].
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Theorem 4.0.1 A system of linear equations with n variables has a so-

lution if and only if the rank of its coefficient matrix A3×3 is equal to

the rank of its augmented matrix [A3×3|b]. If the number of unknowns

n = rank(A3×3), the solution is unique, otherwise there are an infinite

number of solutions.

Situation 2 is new with respect to 1 × 1 and 2 × 2 matrix eliminations

above, since only starting at the 3× 3 matrix level can we get degenerate

matrices.

In case (2b) the system A′′ has more invariants than A′′′. Note that the

value of N −M is the same for matrix A′′′ as for the original matrix A

because the size of A′′′ is less than the size of A by an equal amount of

rows and columns. This means that in case (2b) the number of linearly

independent rows in the original matrix A, M∗ is less than the total

number of rows M, i.e. the number of independent invariants of the full

system is: J = N−M∗ > N−M. An example of (2b) can be found figure

4.3.
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b3b = b1d b2b = b1c

b2a = b3c
b2c = b2d

Figure 4.3: A cluster demonstrating case (2b) where M∗ < M.

It has the cluster matrix:

A′′ =



1 1 −1 0 0 0

1 0 0 1 −1 0

0 −1 0 1 0 1

0 0 −1 0 1 1


.
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This cluster is fully connected and cannot be reduced by part 1 or part

2. Rearrange A′′ to form a 3× 3 matrix, A3×3, in the top left corner:

A′′ =



1 1 0 −1 0 0

1 0 1 0 −1 0

0 −1 1 0 0 1

0 0 0 −1 1 1


.

Since the determinant of A3×3 is zero, the Rouché-Capelli theorem can

be used. The rank of A3×3 is two. From A′′′ (the lower-right part in

A′′) it can be seen that ϕ4 = ϕ5 + ϕ6. So there are two independent

solutions, either ϕ4 = ϕ5 = 1, ϕ6 = 0 or ϕ4 = ϕ6 = 1, ϕ5 = 0. To find b

corresponding to these solutions, multiply the rectangular matrix in the

top-right of A′′ by (ϕ4, ϕ5, ϕ6)T . So either:

b1 =


−1 0 0

0 −1 0

0 0 1




1

1

0

 =


−1

−1

0

 ,

or

b2 =


−1 0 0

0 −1 0

0 0 1




1

0

1

 =


−1

0

1

 .
Using these in the augmented matrix [A3×3|b] it can be seen that the

rank is again two. Since both have the same rank there exists at least

one solution by theorem 4.0.1. And since their rank is less than the num-

ber of unknowns, the latter being three, there are an infinite number

of solutions. Hence, the number of linearly independent rows of M∗ = 3

is less than the number of rows M = 4 and hence A has an extra invariant.
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This explains why the null space for A,

Φ =



−1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1


,

doesn’t satisfy the rule J = N −M = 2 but instead J = N −M∗ = 3,

i.e. J = N −M∗ ≥ N −M.

In case (2c), solutions may be “lost”, i.e. extra solutions gained by solving

for ϕ1, ϕ2, ϕ3 with ϕ4 = .... = ϕN = 0 may be compensated by an equal

or larger loss because some solutions (ϕ4, ...., ϕN ) of A′′′(ϕ4, ...., ϕN )T = 0

do not correspond to any solution of the full system A. Therefore in case

(2c) the number of independent solutions of the original cluster A may

be the same or less than A′′′. To see this take the following “tetrahedron

cluster”:
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Figure 4.4: A tetrahedron cluster.

This cluster is unphysical (since the resulting null space is such that k4 =

0, thus violating the third physical requirement in subsection 3.2.5) but

for illustrating case (2c) it is a simple example to consider. The cluster

matrix which has been rearranged to form a 3 × 3 matrix, A3×3, on the
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left-hand-side (LHS) and a column b on the right is:

A′′ =


1 −1 0 1

−1 0 1 1

0 1 −1 1

 .

The determinant of A3×3 is zero. Now in order to solve the system of

equations: 
1 −1 0 1

−1 0 1 1

0 1 −1 1





ϕ1

ϕ2

ϕ3

ϕ4


= 0,

form an augmented matrix
[
A3×3|b

]
with b = (ϕ4, ϕ4, ϕ4), i.e.

A3×3


ϕ1

ϕ2

ϕ3

+ ϕ4b = 0.

Since there is no A′′′ in this case, ϕ4 can be chosen arbitrarily, e.g. ϕ4 = 1.

The rank of the coefficient matrix A3×3 is two and the rank of the aug-

mented matrix [A3×3|b] is three. Hence, by the Rouché-Capelli theorem

no solutions exist.

Now let ϕ4 = 0 and solve A3×3(ϕ1, ϕ2, ϕ3)T = 0. Since the rank of A3×3

is two, there exists one independent solution, (ϕ1, ϕ2, ϕ3) = (1, 1, 1). Con-

sequently, the tetrahedron cluster has N −M = 1 invariant and its null

space is:

Φ =



1

1

1

0


.

Therefore, for the tetrahedron cluster the number of invariants corre-

sponds to the “N −M” rule (which holds for non-degenerate cases) even
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though its A3×3 matrix is degenerate.

4.1 Applying the algorithm to the two Charney-Hasegawa-

Mima examples

Let us apply the algorithm to the two CHM examples from section 3.4.

All the clusters given in the example for the small-scale Rossby waves (figure

3.5) can be fully decomposed by part 1 of the algorithm. In particular the largest

(thirteen-triad cluster) has a total of fourteen invariants. From these, six are local,

each depending only on a pair of loose ends. These are indicated via bold print

in the cluster matrix in section 3.4. From the null space, it is clear that triads

with two loose ends have Manley-Rowe invariants. These triads are eliminated in

the first application of part 1 after which a seven-triad chain remains which will be

further reduced by successive elimination of triads with double unconnected ends.

Of the remaining eight invariants, four depend on three modes each and another

four on four modes each. All of the invariants in this example are relatively local

within the cluster. Their existence is probably imposing severe restrictions on moving

energy in and out of these triads and propagating them throughout the cluster. It is

expected that invariants involving three or four modes are a bit more efficient than

the invariants involving two modes, in stirring the energy through the k-space.

Applying this algorithm to the largest 104-triad cluster in the large-scale limit

(figure 3.6) leads to two cluster kernels after applying three times the procedure

part 1. The two reduced cluster kernels are made up of eight triads each and twelve

modes as shown in figures 4.5 and 4.6. Note that each of these clusters are mirror

symmetric, i.e. each cluster maps onto itself when transformation ky → −ky is

applied. The fact that both clusters are the same size is interesting but probably

coincidental. When applying the algorithm further to each of these clusters, we

conclude that for each of these “kernel” clusters the null space basis contains one

extra vector, and so the 104-triad cluster will contain two extra invariants in total.
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Figure 4.5: The first cluster kernel taken from figure 3.6 such that each triad is
connected to other triads and neither part 1 or part 2 can be applied.

 

Figure 4.6: The second cluster kernel taken from figure 3.6.

Both of these kernels appear to be so tightly linked that no further reduction is

possible by removing triad pairs, triple- or even four-triad blocks. This brings us

straight to considering 5× 5 blocks.

48



Figure 4.5: A′′ has been rearranged to form a 5 × 5 matrix in the top left hand

corner:



1 1 −1 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 1 0 0 0

0 1 0 0 0 1 −1 0 0 0 0 0

0 0 0 −1 1 0 0 1 0 0 0 0

0 0 1 −1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0 −1 1

0 0 0 0 0 −1 0 0 0 1 0 1



.

The determinant of A5×5 is zero and the rank is four. Now find the vector b from

A′′′:

−ϕ7 + ϕ9 + ϕ11 = 0, (4.4)

ϕ8 − ϕ11 + ϕ12 = 0,

−ϕ6 + ϕ10 + ϕ12 = 0.

One independent solution is ϕ7 = ϕ8 = ϕ9 = ϕ10 = 1, ϕ12 = −1 and ϕ6 = ϕ11 = 0.

So:

b =



0 0 0 0 0 0 0

0 0 0 1 0 0 0

1 −1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0





0

1

1

1

1

0

−1



=



0

1

−1

1

1


.

The rank of [A5×5|b] is four. So by the Rouché-Capelli theorem the cluster kernel

in figure 4.5 has an infinite number of solutions and since the rank of the coefficient
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matrix is one less than its size, one extra invariant. The null space for figure 4.5 is:

Φ =



−1 1 0 0 1

1 0 −1 0 −1

0 1 −1 0 0

1 0 0 −1 0

0 1 0 −1 1

0 0 1 0 1

1 0 0 0 0

0 0 0 1 −1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



.

Figure 4.6: Once again A′′ has been rearranged to form a 5× 5 matrix in the top

left hand corner:



1 1 −1 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 1 0 0 0 0 0 0

0 0 −1 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 −1 0 0 0

0 0 0 1 −1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 −1

0 0 0 0 0 0 1 1 0 0 −1 0

0 0 0 0 0 1 0 0 1 0 0 −1



.

The determinant of A5×5 is zero and the rank is four. Now find the vector b from
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A′′′:

ϕ10 + ϕ11 − ϕ12 = 0, (4.5)

ϕ7 + ϕ8 − ϕ11 = 0,

ϕ6 + ϕ9 − ϕ12 = 0.

One independent solution is ϕ6 = ϕ7 = ϕ10 = ϕ12 = 1, ϕ8 = −1 and ϕ9 = ϕ11 = 0.

So:

b =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 0 1 0 0





1

1

−1

0

1

0

1



=



0

1

1

−1

1


.

The rank of [A5×5|b] is four. So by the Rouché-Capelli theorem the cluster kernel

in figure 4.6 has an infinite number of solutions and since the rank of the coefficient

matrix is one less than its size, one extra invariant. The null space for figure 4.6 is:

Φ =



1 0 −1 1 0

0 −1 1 0 0

1 −1 0 1 0

1 0 0 1 −1

0 0 −1 0 1

1 0 0 0 0

0 −1 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 1

0 0 0 1 0

0 0 0 0 1



.
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Thus, both kernels have an additional invariant each. Therefore, the original

104-triad cluster has two extra invariants, J = N −M + 2 = 178− 104 + 2 = 76.
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Chapter 5

An additional invariant in the

large-scale limit

Much of the research into WT has concentrated on the small-scale limit of the CHM

equation. This limit is applicable to the atmosphere, where the Rossby radius of

deformation is of the order of thousands of kilometres. However, the Rossby radius

of deformation in a middle-latitude ocean is tens of kilometres and since Rossby waves

can be hundreds of kilometres in length, the large-scale limit is more appropriate.

The large-scale limit is also more relevant to plasma physics since the gyroradius is

very small, of the order of just a few millimetres, whereas the tokamak diameter is

much larger being tens of metres. So now let us turn our attention to the large-scale

limit.

Since all large-scale waves travel at the same speed in the x-direction, it is con-

venient to work in a coordinate frame moving with them. Therefore, let us Doppler

shift the frequency using the x-component of the phase speed ck as follows:

Ωk = ωk − ckkx (5.1)

= ωk + βρ2kx

= −βkxρ2 + βρ4kxk
2 + βρ2kx

= βρ4kxk
2.

Therefore, assuming for simplicity that βρ4 = 1, we can replace the dispersion
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relation (??) with a simpler expression:

ωk = kxk
2 +O(ρ2). (5.2)

The waveaction variable for the large-scale limit is:

ak =
ψ̂k√
|kx|

, (5.3)

which when substituted into the CHM equation in Fourier space (2.7) gives us equa-

tion (2.13) but now with the interaction coefficient:

Wk
12 =

∣∣∣∣k1xk2x

kx

∣∣∣∣1/2 (k1 × k2)z(k
2
1 − k2

2). (5.4)

This can be rearranged as follows:

∣∣∣∣k1xk2x

kx

∣∣∣∣1/2 (k1xk2y − k1yk2x)(k2
1 − k2

2) (5.5)

=

∣∣∣∣k1xk2x

kx

∣∣∣∣1/2 ((k1x + k2x)k2y − (k1y + k2y)k2x)(k2
1 − k2

2)

= −2|k1xk2xkx|1/2
(
k2y −

kyk2x

kx

)
k2

2

= −|k1xk2xkx|1/2
(
k2yk

2
2 −

kyk2x

kx
k2

2 + k1yk
2
1 −

kyk1x

kx
k2

1

)
.

Assuming that the frequency resonance condition is satisfied, i.e. k1xk
2
1 + k2xk

2
2 =

kxk
2, we get:

V k
12 = −

√
|k1xk2xkx|(k1yk

2
1 + k2yk

2
2 − kyk2), (5.6)

which is only valid on the resonant manifold. In the large-scale limit, the zonostrophy

density becomes:

ηk =
k3
x

k2
y − 3k2

x

. (5.7)

It has recently been discovered in [48] that this expression arises in O(ρ1) in the

Taylor expansion of (3.7) for ρk2 → 0 and another invariant arises in O(ρ0). This
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additional invariant is defined as follows:

ϕk =


1 for |ky|<

√
3kx,

0 for |ky|>
√

3kx,

1
2 for |ky|=

√
3kx.

(5.8)

Both invariants are conserved independently for ωk = kxk
2 since this expression for

the frequency is valid up to order ρ2 corrections in the original expression (1.9). The

new expression has since been named semi-action in [49] because its density coincides

with the one of waveaction in the sector where it is not zero. Figure 5.1 shows the

distribution of ϕk in 2D wavenumber space. The dividing line is |ky|=
√

3kx, ϕk is

equal to zero in the shaded region (|ky|>
√

3kx) which is the zonal region with zonal

(Z) modes and ϕk is equal to one outside this region (|ky|<
√

3kx) where the modes

are meridional (M) modes.

kx

ky

ky =
√
3kx

−ky =
√
3kx

Z

M

Z

M

1

Figure 5.1: The distribution of ϕk in 2D wavenumber space.

In order for the semi-action (5.8) to be conserved it must satisfy the resonance

condition (3.4), ϕk−ϕ1−ϕ2 = 0. So we have, 1 = 1+0 for triads of type M →M+Z
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and 0 = 0 + 0 for Z → Z +Z. In other words, an excitation that is in a M-mode can

transfer to a M- and a Z-mode but not to two M-modes (1 6= 1 + 1) or two Z-modes

(1 6= 0 + 0) otherwise (3.4) would not be satisfied. On the other hand, an excitation

that is in a Z-mode can only move to other Z-modes and not to M-modes. This

behaviour follows from the conservation of semi-action, but in this thesis we would

like to prove the following proposition directly.

Proposition 1 Let M stand for meridional modes and Z stand for zonal modes

of the system with frequency ωk = kxk
2. Then the following triad processes are

prohibited:

1. M →M +M,

2. M → Z + Z,

3. Z →M + Z,

4. Z →M +M.

Depending on whether we are considering the kinetic or discrete regime, either one or

both of the following triad processes may be realised, M →M+Z and/or Z → Z+Z.

5.1 Proof

Let k = (p, q), p > 0 and ω = p(p2 + q2). Let us begin by writing out the resonance

condition:

ω = ω1 + ω2, (5.9)

p(p2 + q2) = p1(p2
1 + q2

1) + (p− p1)((p− p1)2 + (q − q1)2), (5.10)

where we rewrote p2 = p− p1 and q2 = q − q1. Rearrange to get a quadratic for q1:

pq2
1 + 2(p1 − p)qq1 + 3pp2

1 − 3p2p1 − p1q
2 = 0, (5.11)
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from which we can find the discriminant:

D

4
= (p1 − p)2q2 − 3p2p2

1 + 3p3p1 + p1pq
2 (5.12)

= p2
2q

2 + 3p2p1p2 + p1pq
2, (5.13)

and the roots:

q1± =
p2q

p
± 1

p

√
D

4
. (5.14)

Taking q > 0 we can see that q1+ > 0 and q1− < 0. Using q2± = q − q1± gives:

q2± =
p1q

p
∓ 1

p

√
D

4
, (5.15)

where q2+ < 0 and q2− > 0.

We must first prove that q1±
p1

and q2±
p2

are monotonic functions in the interval

0 < p1,2 < p, i.e. they have no local extrema in this range. So from equation (5.14):

q1±
p1

=
p2q

pp1
± 1

pp1

√
D

4
(5.16)

=
q

p1
− q

p
± 1

pp1

√
(p2

1 − p1p+ p2)q2 + 3p2p1(p− p1). (5.17)

Differentiating with respect to p1 gives:

∂

∂p1

(
q1±
p1

)
= − q

p2
1

∓
√

(p2
1 − p1p+ p2)q2 + 3p2p1(p− p1)

pp2
1

(5.18)

± q2(2p1 − p) + 3p3 − 6p2p1

2pp1

√
(p2

1 − p1p+ p2)q2 + 3p2p1(p− p1)
= 0.

Rearrange to get:

∂

∂p1

(
q1±
p1

)
= p2

1(q4 − 3p2q2 − 9

4
p4 +

3

2
q2p2 − 1

4
q4) = 0, (5.19)

from which it can be seen that p1 = 0 is the extremum location for both q1+
p1

and

q1−
p1

and hence no extrema exist in the range 0 < p1 < p. Now do the same for q2±
p2
.
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Rewriting equation (5.15) using p1 = p− p2 gives:

q2±
p2

=
(p− p2)q

pp2
∓ 1

p

√
q2 +

3(p− p2)p2

p2
+
p(p− p2)q2

p2
2

(5.20)

=
q

p2
− q

p
∓ 1

pp2

√
q2(p2

2 + p2 − pp2) + 3p3p2 − 3p2
2p

2. (5.21)

Differentiate with respect to p2 to get:

∂

∂p2

(
q2±
p2

)
= − q

p2
2

±
√
q2(p2

2 + p2 − pp2) + 3p3p2 − 3p2
2p

2

pp2
2

(5.22)

∓ q2(2p2 − p) + 3p3 − 6p2p
2

2pp2

√
q2(p2

2 + p2 − pp2) + 3p3p2 − 3p2
2p

2
= 0.

Rearrange to get:

∂

∂p2

(
q2±
p2

)
= p2

2(q2 − q2

4
− 9

4

p4

q2
+

3

2
p2 − 3p2) = 0, (5.23)

from which it can be seen that p2 = 0, so again there are no extrema in the range

0 < p2 < p, which is the same as 0 < p1 < p.

Secondly, we need to find out whether q1±
p1

and q2±
p2

are increasing or decreasing

functions of p1. To do this we must compare their values at p1 → 0 and p1 → p.

1. p1 → 0 (p2 → p)

From (5.17):

q1±
p1
→ q

p1
− q

p
± pq

pp1

√
1 +

(−pq2 + 3p3)

p2q2
p1, (5.24)

where we have ignored p2
1 terms since they are very small. Taylor expanding

we get:

q1±
p1
→ q

p1
− q

p
± q

p1

[
1 +

(3p2 − q2)

2pq2
p1

]
. (5.25)

Therefore we can see that:

q1+

p1
→ 2q

p1
→ +∞, (5.26)
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since p1 → 0 and:

q1−
p1
→ −q

p
− 3p2 − q2

2pq
. (5.27)

Similarly, we find:

q2±
p2
→ ∓q

p
. (5.28)

2. p1 → p (p2 → 0)

From (5.21), ignoring p2
2 terms:

q1±
p1
→ p2q

pp1
± pq

pp1

√
1 +

(−pq2 + 3p3)

p2q2
p2. (5.29)

Taylor expanding and letting p1 → p gives:

q1±
p1
→ p2q

p2
± pq

p2

[
1 +

(3p2 − q2)

2pq2
p2

]
, (5.30)

and letting p2 → 0 gives:

q1±
p1
→ ±q

p
. (5.31)

Similarly, we find:

q2−
p2
→ 2q

p2
→ +∞, (5.32)

q2+

p2
→ −q

p
− 3p2 − q2

2pq
. (5.33)

Therefore we can see that q1±
p1

are increasing functions and q2±
p2

are decreasing func-

tions.

Let us now denote x = q
p > 0. Substituting this into equations (5.27) and (5.33)

gives:

f(x) = −1

2
x− 3

2x
. (5.34)

By taking the derivative and putting it equal to zero we find that there is an ex-

tremum at x =
√

3. And since the second derivative is less than zero we know that

this is a maximum. Hence, the maximum value of q1−
p1

and q2+
p2

is −
√

3. It can also
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be seen that:

q1+

p1
>
q

p
>
√

3 and
q2−
p2

>
q

p
>
√

3. (5.35)

Putting this all together, we get the following graph for the case when q > p
√

3,

i.e. k ∈ Z.

p2

↗ +∞

√
3

q
p

q2−
p2

q1+
p1

0 p

−
√
3

− q
p

q2+
p2

q1−
p1

Z Z

Z Z

Z Z

Z Z
− q
p
− 3p2−q2

2pq

1

Figure 5.2: Graph summarizing the case when q > p
√

3.

Hence we have proved numbers 3 and 4 of the proposition, semi-action already

in a Z-mode must stay in a Z-mode and cannot be transferred to M-modes.

When q < p
√

3, i.e. k ∈M we get the following graph.
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p2

√
3
q
p

q2−
p2

q1+
p1

0 p

−
√
3

− q
p

q1−
p1

q2+
p2

p∗±

M M

Z Z

M M

Z Z
− q
p
− 3p2−q2

2pq

1

Figure 5.3: Graph summarizing the case when q < p
√

3.

We can see that all curves change from M → Z or Z → M at some point p∗

within the range 0 < p1 < p. We need to prove that this point is the same for (1.)

q1+
p1

and q2+
p2

as well as for (2.) q1−
p1

and q2−
p2
.

1.

q1+ =
√

3p1 =
p2q

p
+

1

p

√
D

4
, (5.36)

(
√

3p1p− p2q)
2 = p2

2q
2 + 3p2p1p2 + p1pq

2. (5.37)

Rearranging we get:

p1 =
p+ q√

3

2
. (5.38)

From this we can see that:

p1 < p if p+
q√
3
< 2p→ q < p

√
3. (5.39)
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2.

q2+ = −
√

3p2 =
p1q

p
− 1

p

√
D

4
, (5.40)

(
√

3p2p+ p1q)
2 = p2

2q
2 + 3p2p1p2 + p1pq

2. (5.41)

Rearranging we get:

p2 =
p

2
− q

2
√

3
. (5.42)

We can see that:

p2 > 0 if q < p
√

3 and p2 < p if p− q√
3
< 2p. (5.43)

p1 = p− p2 = p
2 + q

2
√

3
, hence:

p∗± =
1

2

(
p± q√

3

)
. (5.44)

So we have proved numbers 1 and 2 of the proposition.

5.2 Cascade boundaries

Similar to the work carried out by Nazarenko and Quinn in [46], where they found the

cascade paths of the energy, enstrophy and zonostrophy in the small-scale limit, we

will now do the same for the large-scale case taking into account the extra invariant.

It is now qualitatively different depending on which sector the initial spectrum is

in. In the small-scale case all three invariants are positive; however, in the large-

scale case, zonostrophy is not sign definite in the meridional sector so instead we

use the semi-action. When the initial spectrum is in the zonal sector, zonostrophy

is positive.

When the density of the invariant is positive we can apply Fjørtoft’s argument

[45] to find the cascade directions of the three invariants, the energy E, enstrophy

Ω and depending whether the initial spectrum is in the meridional or zonal sector,

the semi-action Φ or zonsotrophy Z, respectively.

Each of the invariants must cascade to the scales where its density is dominant

62



over the densities of the other two invariants and the boundaries between the cascade

sectors are found when the ratios of the invariant densities remain constant. Let us

begin by considering the case when the initial spectrum is in the meridional sector

at k0 = (k0x, k0y).

5.2.1 Initial spectrum in the meridional sector

From the invariant densities:

E =

∫
kxk

2nkdk, (5.45)

Ω =

∫
kxnkdk, (5.46)

Φ =

∫
nkdk for |ky|<

√
3kx. (5.47)

the boundaries are as follows:

� EΩ: k2 = k2
0,

� EΦ: kxk
2 = k0xk

2
0,

� ΩΦ: kx = k0x.

It is clear that the semi-action, Φ must remain in the meridional sector as its

density is zero outside of this sector. However, E and Ω can flow freely from M

to Z modes. The EΩ boundary separates the energy and the enstrophy cascades

which means that E cannot be transferred to k � k0 and Ω to k � k0. Hence

E is dissipated at large k and Ω is dissipated at small k. Further, since the EΦ

and the ΩΦ boundaries are only in the meridional sector, we have k/2 ≤ kx ≤ k.

The boundaries are “soft” in a sense that the invariants are allowed to cross to each

other’s sector but not too deeply, as a result we can take kx ∼ k, and find that all

three boundaries, EΩ, EΦ and ΩΦ, approximately coincide in the meridional sector.

This means that Φ cannot flow to large k, and, assuming that it should move far

from the initial scale k0, it must move to modes with small k (while remaining in M

modes). On the other hand, Ω cannot be transferred to neither large nor small wave

vectors in the meridional sector. The only remaining choice for Ω is to flow to small
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wave vectors in the zonal sector. The latter choice does not contradict conservation

of Φ because its density is zero in the zonal sector. This is depicted in figure 5.4.

kx

ky

k0x

k0y
Z/M boundary

Energy

Enstrophy

Semi-action

1

Figure 5.4: Cascade boundaries and dissipation regions when the initial spectrum is
in the meridional sector.

5.2.2 Initial spectrum in the zonal sector

Let us now put the initial spectrum in the zonal sector. Since the semi-action density

is zero in this sector and the zonostrophy density is positive we will study the cascades

of energy, enstrophy and zonostrophy. The zonostophy in the large-scale limit is:

Z =

∫
k3
x

k2
y − 3k2

x

nkdk, (5.48)

and the boundaries between the three invariants are as follows:

� EΩ: k2 = k2
0,

� ΩZ:
(
ky
kx

)2
=
(
k0y
k0x

)2

� EZ:

[(
ky
kx

)2
− 3

]
k2 =

[(
k0y
k0x

)2
− 3

]
k2

0

The cascade picture is depicted in figure 5.5. It can been seen that the energy

cascades to large k, the enstrophy to small k becoming progressively more zonal and
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the zonostrophy towards the line ky =
√

3kx. Note that no turbulence can leave the

zonal sector otherwise the conservation of Φ is broken.

kx

ky

k0x

k0y E/Ω boundary

E/Z boundary

Ω/Z boundary

Z/M boundary

Energy

Enstrophy
Zonostrophy

1

Figure 5.5: Cascade boundaries and dissipation regions when the initial spectrum is
in the zonal sector.

5.3 Numerics

In order to numerically test the theoretical predictions of this chapter, a pseudo-

spectral code, originally used for the small-scale case in [46], has been used. This

code solves the CHM equation in order to check both the conservation and cascade

directions of the invariants in the case of large-scale turbulence. The initial condition

is defined as follows:

ψ̂k|t=0= Ae
(
|k−k0|2
k2∗

+iφk)
+ image, (5.49)

which is a Gaussian spot centred at k0 with width k∗ and its mirror image with

respect to the kx-axis. φk are random independent phases and A is the constant

amplitude. Again we consider when the initial spectrum is in the meridional sector

and the zonal sector for both weak and strong nonlinearity.
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5.3.1 Meridional sector

Let us begin by putting the initial spectrum in the meridional sector, centred at k0 =

(40, 20) with a width of k∗ = 8. The initial amplitude was chosen as A = 1.875×10−4

so as to make the run weakly nonlinear. The resolution was 2562, β = 10 and the

time step δt = 1.25× 10−8.

Figure 5.6 shows the conservation of the energy, enstrophy, semi-action and

zonostrophy. The energy, enstrophy and semi-action are well conserved to within

0.25%, 0.1% and 1.5% respectively. However, it can be seen that the zonostrophy is

more sensitive; this is probably since its density becomes singular when it reaches

the zonal/meridional boundary, i.e. the denominator of (5.48) is zero on the line

|ky|=
√

3kx.

Figure 5.7 shows the cascade directions of the energy, enstrophy and semi-action.

They are plotted in-terms of the paths followed by the centroids defined as follows:

kE(t) =
1

E

∫
kk2|ψ̂k|2dk, (5.50)

kΩ(t) =
1

Ω

∫
k|ψ̂k|2dk,

kZ(t) =
1

Z

∫
k

k2
x

k2
y − 3k2

x

|ψ̂k|2dk,

kΦ(t) =
1

Φ

∫
k
|ψ̂k|2
kx

dk, for |ky|<
√

3kx.

The centroids are normalised by their initial values so that the centroid paths start

from the same point. It can be seen that each invariant cascades into the sector

predicted in section 5.2.1.

Figure 5.8 shows three successive frames of the ψ spectrum in 2D k-space at the

start, middle and end of the run.
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Figure 5.6: Plot showing the conservation of the energy, enstrophy, zonostrophy and
semi-action when the initial spectrum is in the meridional sector and nonlinearity is
weak.
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Figure 5.7: Plot showing the cascade paths of the energy, enstrophy and semi-action
when the initial spectrum is in the meridional sector and nonlinearity is weak.
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Figure 5.8: Three successive frames of the ψ spectrum in 2D k-space.

To see what happens when nonlinearity is increased the following parameters

were chosen: k0 = (40, 20), k∗ = 8, β = 10, A = 1 × 10−3 and δt = 2.5 × 10−9.

Figures 5.9, 5.10 and 5.11 show the conservation, cascade directions and ψ spectrum

respectively. The zonostrophy line has been removed from the conservation plot

as it quickly looses conservation. On the other hand, the energy, enstrophy and

semi-action are conserved to within 4%, 1% and 17% respectively.
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Figure 5.9: Plot showing the conservation of the energy, enstrophy and semi-action
when the initial spectrum is in the meridional sector and nonlinearity is strong.
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Figure 5.10: Plot showing the cascade paths of the energy, enstrophy and semi-action
when the initial spectrum is in the meridional sector and nonlinearity is strong.

69



 0  20  40  60  80  100

kx

-100

-50

 0

 50

 100

ky

 0  20  40  60  80  100

kx

 0  20  40  60  80  100

kx

 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

Figure 5.11: Three successive frames of the ψ spectrum in 2D k-space.

5.3.2 Zonal sector

Let us now put the initial spectrum in the zonal sector and again consider weak

nonlinearity. Figures 5.12 and 5.13 show the conservation and cascade directions of

the energy, enstrophy and zonostrophy respectively, when we considered a resolution

of 5122 with the following parameters: k0 = (20, 65), k∗ = 8, β = 10, A = 5 × 10−5

and δt = 1.25× 10−8.
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Figure 5.12: Plot showing the conservation of the energy, enstrophy and zonostrophy
when the initial spectrum is in the zonal sector and nonlinearity is weak.
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Figure 5.13: Plot showing the cascade paths of the energy, enstrophy and zonostro-
phy when the initial spectrum is in the zonal sector and nonlinearity is weak.
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It can be seen that the energy and enstrophy are conserved to within 0.55% and

0.1% respectively and the zonostrophy to within 4%. Each invariant cascades into

the sector predicted in section 5.2.2. The zonostrophy follows the Ω/Z boundary.

This has been observed before for energy in the small-scale case.
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Figure 5.14: Three successive frames of the ψ spectrum in 2D k-space.

The ψ spectrum in 2D k-space is shown in figure 5.14 and figure 5.15 shows the

ratio of waveaction nk in the meridional sector to that in the whole of k-space. It

can be seen that ψ remains in the zonal sector and the spectrum evolves towards the

origin with zonal flow forming at low k and also high k. The action plot confirms

that less than 0.2% of semi-action escapes into the meridional sector.
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Figure 5.15: Plot showing the ratio of action nk in the meridional sector to that in
the whole of k-space.

When the amplitude is increased to A = 1×10−3 and the time step decreased to

δt = 2.5× 10−10 so as to make the run strongly nonlinear we get the following plots.
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Figure 5.16: Plot showing the conservation of the energy and enstrophy when the
initial spectrum is in the zonal sector and nonlinearity is strong.
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Figure 5.17: Plot showing the cascade paths of the energy and enstrophy when the
initial spectrum is in the zonal sector and nonlinearity is strong.
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Figure 5.18: Three successive frames of the ψ spectrum in 2D k-space.
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Figure 5.19: Plot showing the ratio of action nk in the meridional sector to that in
the whole of k-space.

Again we have removed the zonostrophy from the conservation and cascade plots
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as it has twice the magnitude and the opposite sign by the middle of the run making

the cascade path very erratic and lacking any structure. It can be seen that the

energy and enstrophy still move in opposite directions but the cascade paths are

not as predicted, crossing the zonal/meridional boundary. Now that nonlinearity

is strong and three-wave resonances no longer dominate, it can be seen that the

spectrum moves into the meridional sector and proposition 1 is no longer valid.

Hence, we have shown, both theoretically and numerically, that proposition 1

holds when nonlinearity is weak and three-wave interactions dominate. If the initial

spectrum is zero outside the zonal sector then it must remain zero else conservation

is violated. We showed numerically that this is indeed the case, when the initial

spectrum is in the zonal sector it remains in the zonal sector. On the other hand,

when the initial spectrum is in the meridional sector, small amounts can move into

the zonal sector, but not all can transfer as otherwise semi-action would be lost.

However, when nolinearity is strong, we showed that the proposition no longer holds.

We considered a continuous k-space; however, our proposition also holds when

wavenumbers take discrete values. In the discrete regime the resonance conditions

are harder to satisfy and hence fewer triads exist. Therefore triads that we proved

don’t exist in the continuous case also don’t exist in the discrete case. However, we

can’t say that if a triad exists in the continuous case it also exists in the discrete

case.

5.4 ρ2 small but finite

We have seen in the previous section, that for the large-scale limit (ρ2 → 0), when

nonlinearity is weak and three-wave interactions dominate, proposition 1 is satisfied.

However, what happens when ρ2 is small but finite?

It turns out that forbidden triads exist. They are concentrated along the zonal/meridional

boundary and their deviation of
ky
kx

from
√

3 shrinks as ρ2 → 0. In other words, as ρ2

increases, the angle containing forbidden triads around the zonal/meridional bound-

ary also increases. See figures 5.20 and 5.21 below. Letting k3 = (cos(θ), sin(θ)), the

closer θ is to the boundary, the bigger the angle containing forbidden triads.
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Figure 5.21: Plot showing for θ = 5π/16, as ρ2 increases the angle containing for-
bidden triads around the zonal/meridional boundary also increases.

It has further been found, that for θ less than the boundary, all forbidden triads

are of the type Z + Z → M. And for θ greater than the boundary no forbidden

triad exist for kx > 0. Hence, the forbidden triads M + M → Z, M + Z → Z and

M +M →M don’t exist for finite but small ρ2 either.
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Chapter 6

Two-layer quasi-geostrophic

turbulence

In oceanography, idealized models of the full equations of motion, such as the CHM

equation (1.2), have proven to be useful tools in the study of large-scale geophysical

flows. On the other hand, barotropic equations often do not adequately represent

reality, as they lack the mechanism for energy injection and generation of turbulence.

The two-layer model first introduced by Phillips in 1951 [50] represents the next level

of realism in describing geophysical fluid dynamics. Indeed, this model allows for

baroclinic motions and as a result baroclinic instabilities (BIs) which are believed to

be the main source of energy for large-scale geophysical turbulence.

Similar to the picture of 2D barotropic motion [44, 45] with the inverse energy

and direct enstrophy cascades, there have been ideas put forward for two-layer baro-

clinic motion. Rhines [51] and Salmon [52, 53] suggested the following. Energy

enters at large horizontal scales, kF , in the baroclinic mode. It then moves towards

higher wavenumbers until it reaches the Rossby deformation scale, kR (one over

the Rossby deformation radius), where eddies generated through BI energise the

barotropic mode, a process known as barotropization. Barotropization refers to the

tendency of a QG flow to reach the gravest vertical mode [54, 55, 56]. Energy then

moves back towards large scales via an inverse barotropic cascade similar to that

of 2D turbulence. At scales smaller than the Rossby deformation scale, there is a

direct enstrophy cascade in each layer until it is scattered into 3D turbulence. If
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planetary rotation is fast enough, the inverse cascade is influenced by the beta-effect

and the large-scale flow becomes anisotropic, leading to the formation of zonal jets

[57, 58, 59].

As we have already seen, in one-layer turbulence energy is transferred between

scales via triplets of modes whose wavenumbers sum to zero. This is also the case for

two-layer QG turbulence, the only difference being, that the vertical wavenumbers

in a triad must also sum to zero. Salmon [3] and Vallis [8] studied the various types

of triads involving barotropic and baroclinic modes. A barotropic triad is made up

of three barotropic modes (with vertical wavenumber zero) and a baroclinic triad is

made up of one barotropic and two baroclinic modes (with vertical wavenumber plus

or minus one). Both Salmon and Vallis studied two layers of equal depth; however,

this is not always the case.

One of the main differences between the ocean and atmosphere, apart from the

Rossby deformation scale lengths, of the order of 1000s of kms in the atmosphere

and 10s of kms in the ocean, is that in the atmosphere the mean stratification is

fairly uniform, whereas in the ocean, the stratification is surface intensified making

Salmons two-layer model with equal layers unrealistic.

Fu and Flierl [60] studied a more realistic model to that of Salmon and Vallis,

considering several baroclinic modes instead of only considering the first baroclinic

mode. They found that most of the energy cascaded from the higher baroclinic

modes into the first baroclinic mode at small scales, rather than directly to barotropic

modes. This energy then remains in the first baroclinic mode as it cascades up to the

Rossby deformation radius. However, they found that once the energy has become

barotropic, it remains barotropic and increases in scale with the energy transferring

into zonal modes as previously predicted.

Smith and Vallis [61] and Arbic [62] found that as the upper layer becomes

thinner, energy is expected to concentrate in the first baroclinic mode and then

transfer to the barotropic mode with reduced efficiency. They stated that with

uniform stratification, energy in high baroclinic modes transfers “directly, quickly

and almost completely” to the barotropic mode. However, for unequal layers, energy

in high baroclinic modes transfers intermediately to the first baroclinic mode, from
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where it transfers “inefficiently and incompletely” to the barotropic mode. This

could help us to understand why, in the ocean, the first baroclinic mode is frequently

energetic.

Until recently it has been very difficult to collect near-simultaneous measurements

of ocean currents covering large regions over long time periods and as a result, this

has made the theory-data comparisons challenging. However, the advent of satellite

altimetry has meant that we can now study turbulence in the oceans more easily.

Scott and Wang [63] provided the first evidence of inverse cascades observed directly

in the South Pacific Ocean using sea surface height measurements from satellites.

They found that, contradictory to previous theory, an inverse energy cascade takes

place in the first baroclinic mode at the ocean surface but this upscale cascade would

only partially reduce the forward flux of baroclinic energy.

Three dimensional general circulation models (GCMs) are currently one of the

most advanced and realistic ways to study physical processes in the atmosphere and

oceans. Using GCMs to study the Earths atmosphere, Schneider and Walker [64]

found that there is no evidence of an inverse energy cascade beyond the scale of the

linearly most unstable baroclinic waves. The barotropic energy spectrum does not

exhibit the −5/3 spectrum at large scales that would be expected in an inverse energy

cascade. They suggest that the scale at which the barotropic energy is maximal is

the same order of magnitude as the Rossby radius of deformation.

Many laboratory experiments have also studied quasi-two-dimensional turbu-

lence. Wordsworth et al. [65] investigated a differentially heated rotating annulus

which was cooled and heated at its inner and outer walls, respectively, causing baro-

clinic instability to develop in the fluid inside. Spectral analysis of the flow indicated

a distinct separation between jets and eddies in wavenumber space, with direct en-

ergy transfer occurring nonlocally between them. Berloff and Kamenkovich [66] later

agreed that the transfer of energy to the jets is most likely nonlocal. Kaspi and Flierl

[67] demonstrated this point by considering a truncated baroclinic model without all

the intermediate length scales. They found that the model qualitatively reproduced

the jets and the associated energy transfers.

Galperin et al. [68] asks how important the inverse energy cascade is for planetary
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dynamics. Some recent studies suggest that energy transfer to the zonal flow need

not necessarily involve an inverse cascade [69, 70] however, this research is only in

its early stages.

It is also interesting to compare these results with what has been discovered

on Jovian planets such as Jupiter and Saturn. Like the ocean, they have Rossby

deformation radii that are very small compared to their size meaning large-scales

are important. However, interior convection is thought to be the dominant forcing

mechanism rather than baroclinic instability and on Jupiter, due to the absence of

a solid surface and hence reduced bottom friction zonal jets can be much stronger.

Schneider and Liu [71] found, using GCMs, that on Jupiter there may be an in-

verse energy cascade from small scales to the Rossby deformation radius [72] but

not beyond it. This is similar to what was observed in the Earths atmosphere in

[64], whereby the fact that the energy-containing scale coincides with the Rossby

deformation radius indicates that the zonal jets form without an inverse cascade of

barotropic energy.

Similar to Salmon, Arbic et al. [73, 74] considered the f-plane, i.e. no beta-effect.

They demonstrated that nonlinearities in a baroclinically unstable mean flow drive

energy toward lower frequencies, alongside the well-known inverse cascade to lower

wavenumbers.

Salmon and Vallis studied the dynamics of the energy exchange within an indi-

vidual non-resonant triad, a triad in which the frequency resonant condition (2.2)

is not satisfied. However, in real geophysical turbulence many modes are excited

simultaneously and therefore many coupled triads are active and mutually interact-

ing. Such complex multi-dimensional systems call for a statistical description and

this brings us to the domain of the WT approach.

For the two-layer baroclinic model, the WT approach was first introduced by

Kozlov et al. [4], who derived kinetic equations for the barotropic and baroclinic

Rossby wave components. They used a direct derivation with the physical variables

for the normal barotropic and baroclinic modes, which meant that the resulting

kinetic equations were complicated, making them difficult to use for further analysis.

In the following sections, we will revisit WT theory for a two-layer ocean model.
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The symmetric form of the Hamiltonian dynamical equations are derived using the

waveaction variables, which allows a kinetic equation to be obtained that is compact

and symmetric and therefore easier to use for modelling. The kinetic equation is then

used to study Salmon’s energy transfer diagram from a WT perspective, in particular

considering the locality of the direct and inverse cascades. Further, we will study the

situation when the baroclinic and barotropic modes are scale separated. This gives

a very simple equation for the baroclinic energy spectrum, which has the form of a

diffusion equation in wavenumber space. This equation can then be used to give a

qualitative description of the coupled two-component system, small-scale baroclinic

waves and large-scale, zonally dominated barotropic turbulence.

Let us begin this chapter by deriving the two-layer QG equations.

6.1 Derivation of the two-layer equations

6

?
6

?
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ρ2

h1

h2

6
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Figure 6.1: The two-layer ocean model.

The derivation of the two-layer QG equations below has the following set-up [3, 75]:

1. Consider two immiscible, i.e. unmixing fluid layers each with constant density.

Let ρ1 denote the upper layer density and ρ2 the lower layer density where ρ1

must be less than ρ2 for gravitational stability.

2. Assume that there is a fluid of negligible density above this so the pressure can

be taken to be zero at the surface.

82



3. Let h1 and h2 be the depth of the upper and lower layer respectively.

4. Assume a rigid-lid approximation and neglect the surface displacements com-

pared to interface displacements.

5. Assume also a flat bottom topography.

6. The depth of the fluid in each layer is much shallower than the horizontal

length and so it is assumed that hydrostatic balance applies and the pressure

at any point may be found by integrating the density times gravity downward.

We start with the shallow-water momentum equation:

Du

Dt
+ (f × u) = −1

ρ
∇p, (6.1)

where u is the horizontal velocity and:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
. (6.2)

The pressure in layer 1 at height z is:

p1 = ρ1g(Z0 − z), (6.3)

and in layer 2 at height z:

p2 = ρ1g(Z0 − Z1) + ρ2g(Z1 − z) = ρ1gZ0 + ρ2g
′
Z1 − ρ2gz, (6.4)

where:

g
′

=
ρ2 − ρ1

ρ2
g, (6.5)

is the reduced gravity. Using p1 and p2, the momentum equations for layers 1 and 2

become:

Du1

Dt
+ (f × u1) = −g∇Z0, (6.6)

Du2

Dt
+ (f × u2) = −ρ1

ρ2
g∇Z0 − g

′∇Z1. (6.7)
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Let us assume the Boussinesq approximation, i.e. that density differences are

sufficiently small to be neglected, except where they appear in terms multiplied by

g, so that ρ1/ρ2 = 1. Now take the curl of the momentum equations (6.6) and (6.7)

to obtain the vorticity equation for each layer:

∂(ζi + f)

∂t
+ ui.∇(ζi + f) = −(ζi + f)∇.ui, i = 1, 2. (6.8)

We can use the mass conservation equation:

Dhi
Dt

+ hi∇.ui = 0, (6.9)

to eliminate horizontal divergence in the right-hand-side (RHS) of equation (6.8)

giving:

∂(ζi + f)

∂t
+ ui.∇(ζi + f) =

ζi + f

hi

Dhi
Dt

. (6.10)

Writing the LHS as a material derivative and using the product rule yields the two-

layer PV equation:

D

Dt
(
ζi + f

hi
) = 0, i = 1, 2. (6.11)

Therefore:

Dqi
Dt

= 0 where qi =
ζi + f

hi
. (6.12)

Let us now put this into QG form. Let the height of each layer hi = Hi+h
′
i where

Hi is the mean and h
′
i is the perturbation and make the following assumptions:

1. The Rossby number is small, i.e. R0 � 1.

2. Variations in thickness of each layer are small.

3. Variations in the Coriolis parameter with latitude are small.

The PV then becomes:

qi =
ζi + f

Hi + h
′
i

=
ζi + f

Hi

(
1 +

h
′
i

Hi

)−1

. (6.13)
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Since |h′i|/Hi � 1 we can Taylor expand to get:

qi =
1

Hi

(
ζi + f − ζih

′
i

Hi
− fh

′
i

Hi

)
. (6.14)

Retaining only terms of order R0 and letting f = f0 since variations in the Coriolis

parameter are small, the PV becomes:

qi = ζi + βy − f0
h
′
i

Hi
. (6.15)

In the QG limit the PV equation reduces to an equation containing a single depen-

dent variable, so use the geostrophic balance equations to rewrite it in terms of the

geostrophic steam function ψi(x, y, t). Letting Z0 = h
′
1 + h

′
2 and Z1 = h

′
2 we get:

f0 × u1 = −g∇(h
′
1 + h

′
2), (6.16)

f0 × u2 = −g∇(h
′
1 + h

′
2)− g′∇h′2. (6.17)

Since the geostrophic stream function is related to the geostrophic velocities by:

ug = −∂ψ
∂y

, vg =
∂ψ

∂x
, (6.18)

the geostrophic stream functions in each layer can be written as:

ψ1 =
g

f0
(h
′
1 + h

′
2), (6.19)

ψ2 =
g

f0
(h
′
1 + h

′
2) +

g
′

f0
h
′
2. (6.20)

Rewriting the layer depths in terms of the stream functions we get:

h
′
2 =

f0

g′
(ψ2 − ψ1), (6.21)

h
′
1 =

f0

g′
(ψ1 − ψ2), (6.22)
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where we have assumed g
′
/g � 1. The relative vorticity ζi can also be rewritten in

terms of the stream function:

ζi =
∂vg
∂x
− ∂ug

∂y
(6.23)

=
∂2ψ

∂x2
+
∂2ψ

∂y2

= ∇2ψi.

Substituting (6.21-6.23) into (6.15) we arrive at the QG version of the PV in terms

of the stream function:

Dqi
Dt

=
∂qi
∂t

+ J [ψi, qi] = 0, (6.24)

where J [a, b] = ∂xa∂yb− ∂ya∂xb is the nonlinear Jacobian and:

q1 = ∇2ψ1 + βy − f2
0

g′H1
(ψ1 − ψ2), (6.25)

q2 = ∇2ψ2 + βy +
f2

0

g′H2
(ψ1 − ψ2). (6.26)

Putting it all together and rewriting ∂
∂tβy as βv = β ∂ψi∂x gives the QG PV equations

for a two-layer fluid:

(6.27)
∂

∂t

[
∇2ψ1 +

f2
0

g′H1
(ψ2 − ψ1)

]
+ β

∂ψ1

∂x
= −J

[
ψ1,∇2ψ1 +

f2
0

g′H1
(ψ2 − ψ1)

]
,

(6.28)
∂

∂t

[
∇2ψ2 +

f2
0

g′H2
(ψ1 − ψ2)

]
+ β

∂ψ2

∂x
= −J

[
ψ2,∇2ψ2 +

f2
0

g′H2
(ψ1 − ψ2)

]
.

6.2 Derivation of the baroclinic kinetic equation

For the kinetic framework to be used, these equations must first be modified so that

each linear part contains only one unknown function. Doing this is equivalent to

introducing normal modes:

ψσ = ψ1 + sσψ2, σ = +,− (6.29)

where ψ+ = ψ1 + s+ψ2 is the barotropic normal mode and ψ− = ψ1 + s−ψ2 is the

baroclinic normal mode. Kozlov et al. [4] used this approach to derive the following
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equation (for the working see appendix A):

∂

∂t
(∇2ψσ − F σψσ) + β

∂ψσ

∂x
= −λ

∑
µν

[pσµνJ(ψµ,∇2ψν) + F σgσµνJ(ψµ, ψν)], (6.30)

where λ = 1
(s+−s−)2

and:

p+
++ = s+ + (s−)2, p+

−− = s+(1 + s+), (6.31)

p−++ = s−(1 + s−), p−−− = s− + (s+)2,

p+
+− = −s+(1 + s−) = p+

−+, p−+− = −s−(1 + s+) = p−−+,

g+
+− = −g+

−+ = −1

2
(s+ − s−) = g−+− = −g−−+.

These are known as the coupling coefficients because they describe the intensity of

coupling between different modes.

F σ =
f2

0

g′H1
− f2

0

g′H2
sσ, (6.32)

where (F σ)−1/2 are the barotropic (σ = +) and the baroclinic (σ = −) Rossby

deformation radii respectively. Here, s± are solutions of the following quadratic

equation:

1

H2
s2 +

(
1

H2
− 1

H1

)
s− 1

H1
= 0, (6.33)

hence:

s+ ' H2

H1
and s− ' −1. (6.34)

6.2.1 Fourier space

Now put equation (6.30) into Fourier space. As before, let the system be in a periodic

box, with period L in both directions. Fourier series representation of the barotropic

and baroclinic stream function is as follows:

ψσ(x, t) =
∑
k

ψ̂σ(k, t)eik·x, (6.35)
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with Fourier coefficients:

ψ̂σ(k, t) =
1

L2

∫
Box

ψσ(x, t)e−ik·xdx. (6.36)

Fourier transforming equation (6.30) gives:

∂

∂t
(−k2 − F σ)ψ̂σk + iβkxψ̂

σ
k = −λ

∑
µν

∑
12

[pσµν(k1xk2yk
2
2 − k1yk2xk

2
2) (6.37)

+F σgσµν(k1xk2y − k1yk2x)]ψ̂µ1 ψ̂
ν
2δ

k
12.

Finally dividing by −(k2 + F σ) we get:

∂tψ̂
σ
k + iωσkψ̂

σ
k = λ

∑
µν

∑
12

Dσµν
12 ψ̂µ1 ψ̂

ν
2δ

k
12, (6.38)

where:

δk12 = δ(k− k1 − k2), (6.39)

ωσk = − βkx
k2 + F σ

, (6.40)

Dσµν
12 =

Cσµν12

k2 + F σ
, (6.41)

Cσµν12 =
1

2
pσµν(k1 × k2)z(k

2
2 − k2

1 + F ν − Fµ). (6.42)

We will now take equation (6.38) and introduce canonical variables then symmetrize

it. Putting it in symmetric form is an important new step with respect to Kozlov

et al. [4] because after symmetrization, as we have seen for the one layer case,

derivation of the kinetic equation becomes a standard operation [12, 27].

6.2.2 Introducing the waveaction variable and symmetrization

Now introduce the waveaction variable:

a±k =
(k2 + F±)√
|βkxs±|

ψ̂±k . (6.43)
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Substituting this into equation (6.38) gives:

ȧσk + iωσka
σ
k = −λ

2
sign(kx)

∑
µν

∑
12

pσµν |k1xk2xkx|1/2āµ1 āν2 |β|1/2
∣∣∣∣sµsνsσ

∣∣∣∣1/2(6.44)

×
(

k2y

k2
1 + Fµ

− k2y

k2
2 + F ν

− k2xky/kx
k2

1 + Fµ
+
k2xky/kx
k2

2 + F ν

)
δk12.

To make the equation more symmetric rewrite the Kronecker delta, δk12 = δ(k −

k1 − k2) as δk12 = δ(k + k1 + k2). In order to do this change k1 → −k1 and

k2 → −k2. Consequently a−k1 = āk1 and a−k2 = āk2 , where ā is now used to denote

the complex conjugate instead of a∗. Finally, symmetrize under the assumption that

dominant interactions occur on the resonant manifold, i.e. the resonant condition

−ωσk = ωµ1 + ων2 is correct to get:

ȧσk + iωσka
σ
k = sign(kx)

∑
µν

∑
12

V σµν
k12 p

σ
µν ā

µ
1 ā

ν
2

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12, (6.45)

where:

V σµν
12 =

λ

2

√
|βkxk1xk2x|

(
k1y

k2
1 + Fµ

+
k2y

k2
2 + F ν

+
ky

k2 + F σ

)
, (6.46)

is the nonlinear interaction coefficient for the waveaction variable. For a more de-

tailed derivation of this see appendix B.

6.2.3 Time-scale separation

Rewrite equation (6.45) in terms of an interaction representation variable:

b±k = a±k e
iω±k t, (6.47)

to obtain the following:

iḃσk = sign(kx)
∑
µν

∑
12

V σµν
k12 p

σ
µν b̄

µ
1 b̄
ν
2e
iωσµνk12 t

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12, (6.48)
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where ωσµνk12 = ωσk + ωµ1 + ων2 . Assume that the wave amplitudes are small and non-

linearity is weak, and separate the linear and nonlinear time scales as follows:

τL =
2π

ωk
� τNL =

2π

ε2ωk
, (6.49)

in order to filter out the fast oscillatory motions and describe the slowly changing

wave statistics. Now introduce an intermediate time T = 2π/εωk and find a solution

for the wave amplitudes b±k at time t = T using the following expansion in the small

nonlinearity parameter ε� 1 [12]:

b±k (T ) = b
±(0)
k + εb

±(1)
k + ε2b

±(2)
k + .... (6.50)

The first term in the expansion O(ε0) corresponds to the linear approximation in

which the interaction representation amplitude is time independent:

b
±(0)
k (T ) = b

±(0)
k (0). (6.51)

Now substitute b
±(0)
k into the RHS of equation (6.48) to get O(ε1):

iḃ
σ(1)
k = sign(kx)

∑
µν

∑
12

V σµν
k12 p

σ
µν b̄

µ(0)
1 b̄

ν(0)
2 eiω

σµν
k12 t

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12, (6.52)

and integrate to get:

b
σ(1)
k (T ) = −i sign(kx)

∑
µν

∑
12

V σµν
k12 p

σ
µν b̄

µ(0)
1 b̄

ν(0)
2 ∆T (ωσµνk12 )

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12, (6.53)

where all time dependence is contained in the integral:

∆T (ωσµνk12 ) =

T∫
0

eiω
σµν
k12 tdt. (6.54)

The O(ε2) term is:

iḃ
σ(2)
k = 2 sign(kx)

∑
µν

∑
12

V σµν
k12 p

σ
µν b̄

µ(1)
1 b̄

ν(0)
2 eiω

σµν
k12 t

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12, (6.55)
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where the two arises due to the symmetry with respect to changing indices 1 ↔ 2.

Substitute b
σ(1)
k from equation (6.53) into (6.55) and integrate to get:

b
σ(2)
k (T ) = −2 sign(kxk1x)

∑
µν

∑
1234

V σµν
k12 V

νσµ
134 p

σ
µνp

ν
σµ|sµ| (6.56)

×b̄ν(0)
2 b

µ(0)
3 b

ν(0)
4 E(ωνσµ134 , ω

σµν
k12 )δk12δ134,

where:

E(ωνσµ134 , ω
σµν
k12 ) =

T∫
0

∆T (ωνσµ134 )eiω
σµν
k12 tdt. (6.57)

We do not need to find higher-order terms in the expansion since a non-trivial closure

arises in the order ε2.

6.2.4 Statistical averaging

Let us now replace the dynamical description of the wave system by a statistical

one in terms of the correlation functions of the field. Begin by carrying out a weak

nonlinearity expansion at the intermediate time T as follows:

〈|b±k (T )|2〉 = 〈|b±(0)
k + εb

±(1)
k + ε2b

±(2)
k |2〉 (6.58)

= 〈|b±(0)
k |2+ε(|b̄±(0)

k b
±(1)
k |+c.c.) + ε2|b±(1)

k |2+ε2(|b̄±(0)
k b

±(2)
k |+c.c.)〉,

where 〈〉 denotes the average. Now perform statistical averaging over the random

phases and amplitudes, starting with the former. The ε1 term using equation (6.53)

is:

〈|b̄±(0)
k b

±(1)
k |〉ϕ = −i sign(kx)

∑
µν

∑
k12

V σµν
k12 p

σ
µν

∣∣∣∣sµsνsσ

∣∣∣∣1/2 (6.59)

×〈b̄±(0)
k b̄

µ(0)
1 b̄

ν(0)
2 〉ϕ∆T (ωσµνk12 )δk12 + c.c.

Wick’s contraction rule [12] states that 〈ψl1, ψl2, ..., ψ̄m1, ψ̄m2〉 is zero unless the num-

ber of ψ’s in it equals the number of ψ̄’s. So by Wick’s contraction rule, since the

correlation function in equation (6.59) has an odd number of terms, it and its com-

plex conjugate are zero.
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The first ε2 term is:

〈|b±(1)
k |2〉ϕ =

∑
µν

∑
1234

V σµν
k12 V̄

σµν
k34 (pσµν)2

∣∣∣∣sµsνsσ

∣∣∣∣ 〈bµ(0)
1 b

ν(0)
2 b̄

µ(0)
3 b̄

ν(0)
4 〉ϕ (6.60)

×∆T (ωσµνk12 )∆̄T (ωσµνk34 )δk12δk34.

Look for combinations of wave vectors in the fourth-order correlator

〈bµ(0)
1 b

ν(0)
2 b̄

µ(0)
3 b̄

ν(0)
4 〉ϕ that give a non-zero phase average. Replacing the four-point

function by a product of two two-point functions gives:

〈bµ(0)
1 b

ν(0)
2 b̄

µ(0)
3 b̄

ν(0)
4 〉 = 〈bµ(0)

1 b̄
µ(0)
3 〉〈bν(0)

2 b̄
ν(0)
4 〉 (6.61)

+〈bµ(0)
1 b̄

ν(0)
4 〉〈bν(0)

2 b̄
µ(0)
3 〉+ 〈bµ(0)

1 b̄
ν(0)
−2 〉〈b̄

µ(0)
3 b

ν(0)
−4 〉,

i.e. wavenumbers k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Since b̄k = b−k,

there is also k1 = −k2 and k3 = −k4. The first two are the same from the 1 ↔ 2

symmetry. The last combination has zero deltas because k1 = −k2 ⇒ k−k2+k2 = 0,

which is impossible since k 6= 0, and similarly for k3 = −k4.

Now define the amplitude:

J±k = |b±k |2, (6.62)

and substitute it into equation (6.60):

〈|b±(1)
k |2〉ϕ = 2

∑
µν

∑
12

|V σµν
k12 |2(pσµν)2

∣∣∣∣sµsνsσ

∣∣∣∣ Jµ1 Jν2 |∆T (ωσµνk12 )|2δk12. (6.63)

The second ε2 term is found using equation (6.56) and is:

〈|b̄±(0)
k b

±(2)
k |〉ϕ = −2 sign(kxk1x)

∑
µν

∑
1234

V σµν
k12 V

νσµ
134 p

σ
µνp

ν
σµ|sµ| (6.64)

×〈b̄±(0)
k b̄

ν(0)
2 b

µ(0)
3 b

ν(0)
4 〉ϕE(ωνσµ134 , ω

σµν
k12 )δk12δ134 + c.c.

Again, look for combinations of wave vectors in the fourth order correlator

〈b̄±(0)
k b̄

ν(0)
2 b

µ(0)
3 b

ν(0)
4 〉ϕ that give a non-zero phase average. There is k = k3 and

k2 = k4 or k = k4 and k2 = k3 or k = −k2 and k3 = −k4. The first two are the

same from the 3↔ 4 symmetry. The last combination is ruled out as the deltas are
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zero, so the second ε2 term becomes:

〈|b̄±(0)
k b

±(2)
k |〉ϕ = −4 sign(kxk1x)

∑
µν

∑
12

|V σµν
k12 |2pσµνpνσµ|sµ| (6.65)

×JσkJν2E(ωνσµ134 , ω
σµν
k12 )δk12.

Finally, perform amplitude averaging and introduce the wave spectrum:

〈J±k 〉 =

(
2π

L

)2

n±k , (6.66)

into equations (6.63) and (6.65). Combining the resulting equations gives:

〈|b±k (T )|2−|b±k (0)|2〉 = 2

(
2π

L

)4∑
µν

∑
12

|V σµν
k12 |2(pσµν)2

∣∣∣∣sµsνsσ

∣∣∣∣ (6.67)

×nµ1nν2 |∆T (ωσµνk12 )|2δk12 − 4

(
2π

L

)4

sign(kxk1x)
∑
µν

∑
12

×|V σµν
k12 |2pσµνpνσµ|sµ|nσknν2E(ωνσµ134 , ω

σµν
k12 )δk12.

Take the large-box limit (L→∞) where:

∑
12

→
∫
dk1dk2

(
L

2π

)4

, (6.68)

to get:

〈|b±k (T )|2−|b±k (0)|2〉 = 2
∑
µν

∫
|V σµν

k12 |2(pσµν)2

∣∣∣∣sµsνsσ

∣∣∣∣nµ1nν2 (6.69)

×|∆T (ωσµνk12 )|2δk12dk12 − 4 sign(kxk1x)
∑
µν

∫
|V σµν

k12 |2

×pσµνpνσµ|sµ|nσknν2E(ωνσµ134 , ω
σµν
k12 )δk12dk12.

Then take the weak nonlinearity limit (ε→ 0) such that intermediate time T →∞,

giving:

|∆T (ωσµνk12 )|2→ 2πTδ(ωσµνk12 ) and E(ωνσµ134 , ω
σµν
k12 )→ 2πTδ(ωσµνk12 ), (6.70)
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in equation (6.69). Next define:

∂n±k
∂t
' 〈|b

±
k (T )|2−|b±k (0)|2〉

T
, (6.71)

and putting it all together gives the two-layer kinetic equation:

∂nσk
∂t

= 4π
∑
µν

∫
|V σµν

k12 |2[(pσµν)2

∣∣∣∣sµsνsσ

∣∣∣∣nµ1nν2 (6.72)

−2pσµνp
ν
σµ|sµ|nσknµ1 sign(kxk2x)]δ(ωσµνk12 )δk12dk12.

Now take the eight different combinations of σ, µ, ν = ±, i.e. {++−}, {−++}, {−−

+}, {+ − −}, {+ − +}, {− + −}, {+ + +}, {− − −} and substitute the coupling

coefficients pσµν from (6.31) into equation (6.72). We finally obtain the two-layer

kinetic equation in symmetric form:

∂nσk
∂t

=
∑
µν

∫
W σµν

k12 n
µ
1 [nν2 + 2nσksign(kxk2x)]δ(ωσµνk12 )δk12dk12. (6.73)

Here:

W++−
k12 = 4π|V ++−

k12 |2(1 + s−)2(s+)2s−, (6.74)

and the same for permutations of +,+ and −.

Symmetrically,

W+−−
k12 = 4π|V +−−

k12 |2(1 + s+)2(s−)2s+, (6.75)

and the same for permutations of −,− and +.

W+++
k12 = 4π|V +++

k12 |2(s+ + (s−)2)s+, (6.76)

and symmetrically,

W−−−k12 = 4π|V −−−k12 |2(s− + (s+)2)s−. (6.77)

We are considering a model of the ocean in which the top layer is significantly

thinner than the bottom layer, i.e. H1 � H2. This is more realistic than equal layers,
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as typical layer depths have a ratio of 1 : 7 [52]. As a result:

s− ' −1 and s+ ' H2

H1
� 1. (6.78)

Substituting s− into W++−
k12 , it can be seen that it vanishes. Since s+ � 1, W+−−

k12 is

the most dominant term, since it contains an (s+)3 term and W+++
k12 and W−−−k12 only

contain (s+)2 terms. Hence, leaving only permutations of {+ − −}, the two-layer

kinetic equation (6.73) reduces to the following:

∂tn
+
k =

∫
W+−−

k12 [n−1 n
−
2 + 2n−1 n

+
k sign(kxk2x)]δ(ω+

k + ω−1 + ω−2 ) (6.79)

×δ(k + k1 + k2)dk12,

∂tn
−
k =

∫
W−+−

k12 [n+
1 n
−
2 + n+

1 n
−
k sign(kxk2x) + n−2 n

−
k sign(kxk1x)] (6.80)

×δ(ω−k + ω+
1 + ω−2 )δ(k + k1 + k2)dk12.

Here, {+ − −} is a triad with two baroclinic components and one barotropic

component. In the barotropic part of the kinetic equation (6.79), k is the barotropic

wavenumber and k1,k2 are the baroclinic wavenumbers. In the baroclinic part

(6.80), k1 is the barotropic wavenumber and k,k2 are the baroclinic wavenumbers.

Equally, it could be W−−+
k12 in (6.80) so that k2 is then the barotropic wavenumber

and k,k1 are the baroclinic wavenumbers.

Equations (6.79) and (6.80) have never been derived or studied before. We will

now go on and use these kinetic equations to better understand the transfer of energy

between the barotropic and baroclinic modes in the two-layer ocean model from a

WT perspective. From their derivation, it can be seen that, in the case of a thin

upper layer, the most dominant triad is {+ − −} and therefore this triad will be

considered in the most detail, even though {+ + +} and {− − −} triads may of

course exist.

95



6.2.5 Conservation of energy and potential enstrophy

The two-layer kinetic equation (6.73) conserves the total (barotropic plus baroclinic)

energy:

E =
∑
σ

∫
|ωσk|nσkdk, (6.81)

and the total potential enstrophy:

Ω =
∑
σ

∫
|kx|nσkdk. (6.82)

To prove this, substitute equation (6.73):

ṅσk =
∑
µν

∫
W σµν

k12 [nµ1n
ν
2 + nσkn

µ
1 sign(ωkω2) + nσkn

ν
2sign(ωkω1)]δ(ωσµνk12 )δk12dk12,

(6.83)

into (6.81) and (6.82):

Ė =
∑
σ

∫
|ωσk|ṅσkdk (6.84)

=
∑
σµν

∫
ωσksign(ωk)W σµν

k12 [nµ1n
ν
2 + nσkn

µ
1 sign(ωkω2) + nσkn

ν
2sign(ωkω1)]

×δ(ωσµνk12 )δk12dk12.

Exchanging k↔ k3 we have:

∑
σµν

∫
W σµν

312 [nµ1n
ν
2ω

σ
3 sign(ω3) + nσ3n

µ
1ω

σ
3 sign(ω2) + nσ3n

ν
2ω

σ
3 sign(ω1)] (6.85)

×δ(ωσµν312 )δ312dk123,

then swapping 3↔ 2 in the second term and 3↔ 1 in the third term gives:

1

3

∫
W σµν

312 n
µ
1n

ν
2sign(ω3)(ωσ3 + ων2 + ωµ1 )δ(ωσµν312 )δ312dk123, (6.86)
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which is zero by the frequency resonance condition. Similarly for the potential

enstrophy:

Ω̇ =
∑
σ

∫
|kx|ṅσkdk (6.87)

=
∑
σµν

∫
kxsign(kx)W σµν

k12 [nµ1n
ν
2 + nσkn

µ
1 sign(kxk2x) + nσkn

ν
2sign(kxk1x)]

×δ(ωσµνk12 )δk12dk12

=
∑
σµν

∫
W σµν

312 [nµ1n
ν
2k3xsign(k3x) + nσ3n

µ
1k3xsign(k2x) + nσ3n

ν
2k3xsign(k1x)]

×δ(ωσµν312 )δ312dk312

=
∑
σµν

∫
W σµν

312 n
µ
1n

ν
2sign(k3x)(k3x + k2x + k1x)δ(ωσµν312 )δ312dk312,

which is zero by the wavenumber resonance condition.

6.3 Non-local interaction between baroclinic and barotropic

modes

6.3.1 Energy transfer in two layers

In the introduction, a schematic construction of energy flow in two layers was men-

tioned, which was first suggested by Salmon in 1978 [52] and has since become the

standard picture in geophysical literature. This picture is summarized in Salmon’s

diagram reproduced in figure 6.2 (except for the diagonal arrow). It is important to

realise that in his work Salmon considered equivalent layers, i.e. equal depth and

equal density. This means that s+ = 1 and s− = −1 and as a consequence only two

types of triads {+ − −} and {+ + +} can exist (this can be seen from equations

(6.74) to (6.77)).

In Salmon’s picture, energy is injected at the largest scale, kF , via wind created

by a temperature difference between the poles and the equator. Baroclinic modes

then transfer this energy via non-local {+ − −} triad interactions to the baroclinic

and barotropic modes at the Rossby deformation scale, kR (one over the Rossby

deformation radius). Being non-local implies that waves interact over a range of

scales. A small proportion of this energy will continue to flow to the smallest scale,
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Figure 6.2: Salmon’s energy flux diagram for a two-layer system. The potential
enstrophy flux present on the original diagram is omitted. The bold diagonal arrow
is new. It indicates the direction that energy is thought to transfer when taking the
WT approach.

kD, where it is scattered into 3D turbulence. However, the majority of the energy

will undergo barotropization at the deformation scale and will be transferred to the

large scales via local {+ + +} triad interactions. By local we mean that interactions

take place between waves which are of approximately the same scale.

We will not consider scales less than the Rossby deformation scale, k > kR,

instead we will concentrate on the energy transfer loop whereby the majority of the

energy is transferred in {+ − −} triads from the large-scale baroclinic mode to the

large-scale barotropic mode in two steps:

1. The energy is transferred from the large-scale baroclinic modes to the baroclinic

and barotropic modes at the Rossby deformation scale, k ∼ kR.

2. It is then transferred from the baroclinic and barotropic modes at the Rossby

deformation scale to the large-scale barotropic modes (indicated by the diago-

nal arrow in figure 6.2).

A frequently discussed candidate mechanism for step 1 of this loop is BI, caused

by a vertical shear, where one layer slides with respect to the other layer. See figure

6.3. The vertical shear is a result of the meridional temperature gradient created by

tropical heating and polar cooling.
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Figure 6.3: Baroclinic flow in a two-layer fluid.

For a derivation of BI in the two-layer equations see [76, 77, 78]. In the latter, it

is shown that a necessary condition for instability is:

U > βk−2
R . (6.88)

However, this does not coincide with the necessary condition for weak WT. Weak

WT is applicable when the nonlinear terms in an equation are much less than the

linear terms. In the case of the two-layer equations this is when:

J [ψ,∇2ψ]� β∂xψ. (6.89)

Letting kx ∼ ky ∼ ∂x ∼ ∂y we can see that:

∂xψ∂y∇2ψ � β∂xψ ⇒ Uk2 � β. (6.90)

Putting together equations (6.88) and (6.90) gives:

βk−2
R k2 < Uk2 � β ⇒ k−2

R k2 � 1, (6.91)

but BI is maximum at kR and this is not described by WT. Thus it can be concluded

that WT and BI cannot operate simultaneously. For BI to be considered a different

WT theory may be needed but this would require a different dispersion relation and
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interaction coefficient and this is something to consider in future work. When BI

isn’t present, other sources of instability could include differential radiative heating

which is forced at large scales or in the case of Jupiter, interior convection. For more

information on these instabilities see [71].

Let us consider the locality of these two transfers. For step 1 of the loop, consider

the possibility of a non-local interaction from a WT perspective. The frequency

resonance condition, ω+
k +ω−1 +ω−2 = 0 (which was not considered in Salmon’s paper)

must be satisfied along with the wavenumber resonance condition, k + k1 + k2 = 0.

If k1 is small (since it is baroclinic), then k2 u −k and the frequency condition gives

ω+
k = ω−k , which cannot be true. Hence, in this case the transfer of energy from the

large-scale baroclinic modes to the Rossby deformation scale cannot be non-local

and instead must be local.

At step 2 of the loop, the energy accumulated at the Rossby deformation scale

will be transferred into large-scale barotropic modes via an inverse transfer. In

the one-layer case [12, 39, 46] the inverse energy transfer becomes anisotropic, with

dominant zonal scales, due to the presence of a third invariant, zonostrophy. This

is known as zonostrophic turbulence which was defined in [59]. Drawing intuition

from the one-layer case, it would be natural to assume that in this two-layer system

the inverse energy transfer to the barotropic mode is also non-local. It may start off

as a local cascade, but will eventually lead to formation of strong (interaction with)

zonal jets, which will become dominant for k ∼ kR modes. This is what we will now

consider, using a similar scale separation technique to that used for the one-layer

model [79, 80], but now for dominant {+−−} triads instead of the one-layer {+++}

triads.

6.3.2 Scale separation and the diffusion equation

Consider a scale separated system in which the barotropic (+) modes have wavenum-

bers much less than those of the baroclinic (-) modes and much less than the Rossby

deformation scale, k+ � k−, kR (see figure 6.4).

First, consider the evolution of the small-scale, baroclinic modes (with wave

vector k) and their non-local interaction with the large-scale zonal flows. To do this,
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k+ k− ∼ kR

+ −−

Figure 6.4: Scale separation with k+ � k−, kR.

take the baroclinic part of the kinetic equation (6.80) where the wavenumbers k, 1, 2

used for simplicity before will be changed back to k,k1,k2 :

∂tn
−
k =

∫
W−+−

k,k1,k2
[n+

k1
n−k2

+ n+
k1
n−k sign(ωkωk2) + n−k2

n−k sign(ωkωk1)](6.92)

×δ(ω−k + ω+
k1

+ ω−k2
)δ(k + k1 + k2)dk12.

The third term, n−k2
n−k , can be neglected because it is quadratic with respect to

the small scales. In the second term, sign(ωkωk2)→ −1, since k1 is the barotropic

wavenumber and small so, from the resonance conditions, k2 ' −k and ωk2 ' −ωk.

Hence equation (6.92) reduces to:

∂tn
−
k =

∫
W−+−

k,k1,−k−k1
n+
k1

[n−−k−k1
− n−k ]δ(ω−k + ω+

k1
+ ω−−k−k1

)dk1, (6.93)

where k2 has been integrated out, writing it as −k− k1. Now let:

∂tn
−
k =

∫
F (k,k1)dk1, (6.94)

where:

F (k,k1) = W−+−
k,k1,−k−k1

n+
k1

[n−−k−k1
− n−k ]δ(ω−k + ω+

k1
+ ω−−k−k1

). (6.95)

Using the symmetries:

W−+−
k,k1,−k−k1

= W−+−
−k−k1,k1,k

,
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and:

W−+−
k,k1,−k−k1

= W−+−
−k,−k1,k+k1

,

gives:

F (k,k1) = −F (−k− k1,k1) = −F (k + k1,−k1), (6.96)

so:

∂tn
−
k =

1

2

∫
(F (k,k1)− F (k + k1,−k1))dk1 (6.97)

=
1

2

∫
(F (k,k1)− F (k− k1,k1))dk1.

Taylor expand F (k−k1,k1) with respect to k1 and neglect terms of O(k2
1) to obtain

the following:

∂tn
−
k =

1

2

∫
k1 ·∇kF (k,k1)dk1. (6.98)

Using Taylor expansion in equation (6.95), F can be rewritten as:

F (k,k1) ≈ W−+−
k,k1,k+k1

δ(ω−k + ω+
k1

+ ω−k+k1
)(k1 ·∇kn

−
k )n+

k1
. (6.99)

Combining equation (6.98) and (6.99) gives:

∂tn
−
k =

1

2

∫
k1 ·∇k

(
W−+−

k,k1,k+k1
δ(ω−k + ω+

k1
+ ω−k+k1

)(k1 ·∇kn
−
k )n+

k1

)
dk1. (6.100)

Similar to work done in the one-layer case in [80], the kinetic equation for the

small scales, n−k , can be written as the following anisotropic diffusion equation in

k-space:

∂n−k
∂t

=
∂

∂ki
Sij

∂n−k
∂kj

, (6.101)

where the diffusion tensor:

Sij =
1

2

∫
W−+−

k,k1,k+k1
δ(ω−k + ω+

k1
+ ω−k+k1

)n+
k1
k1ik1jdk1, (6.102)

depends on the structure of the large scales, n+
k1
. Now look at the delta term, the

102



frequency resonant condition:

ω−k + ω+
k1

+ ω−k+k1
= 0, (6.103)

can be written using the dispersion relations as follows:

kx
F− + k2

+
k1x

F+ + k2
1

+
−kx − k1x

F− + (k + k1)2
= 0. (6.104)

Since F− = F+ ×H2/h1h2 [see 4], F+ � F− so let F+ → 0 and remove it from the

above equation. Assume that the scaling:

k3
1y ∼ k1x, (6.105)

is true. Using this assumption the following is obtained:

kx
F− + k2

+
k1x

k2
1y

− kx + k1x

F− + k2 + 2kxk1x + 2kyk1y + k2
1y

(6.106)

=
kx

F− + k2
+
k1x

k2
1y

+
kx

F− + k2

(
−1 +

2kyk1y

F− + k2

)
+O(k2

1y).

So:

δ(ω−k + ω+
k1

+ ω−k+k1
) = δ

(
k1x

k2
1y

+
2kxkyk1y

(F− + k2)2

)
(6.107)

= k2
1yδ

(
k1x +

2kxkyk
3
1y

(F− + k2)2

)
.

From the bracket:

k1x = −k3
1y

2kxky
(F− + k2)2

, (6.108)

which is much smaller than k2
1y and hence:

k1x � k2
1y. (6.109)

From equation (6.109), terms containing k1x can be removed from the diffusion
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equation (6.101), leaving:

∂n−k
∂t

=
∂

∂k1y
Syy

∂n−k
∂k1y

, (6.110)

which describes diffusion in the ky direction with kx constant. From (6.102):

Syy =
1

2

∞∫
−∞

W−+−
k,k1,k+k1

k2
1yδ

(
k1x +

2kxkyk
3
1y

(F− + k2)2

)
n+
k1
k2

1ydk1xdk1y (6.111)

=
1

2

∞∫
−∞

W−+−
k,k1,k+k1

δ(k1x + θk3
1y)n

+
k1
k4

1ydk1xdk1y, (6.112)

where:

θ =
2kxky

(F− + k2)2
. (6.113)

Since k1x = −θk3
1y, from equation(6.108):

Syy =
1

2

∞∫
−∞

[
W−+−

k,k1,k+k1
n+
k1

]
k1x=−θk31y

k4
1ydk1y. (6.114)

To close the system, baroclinic equation (6.110) has to be complemented by a

barotropic equation, which is obtained from equation (6.79) in which the term n−k1
n−k2

is neglected. This gives:

∂tn
+
k = 2

∫
W+−−

k,k1,k2
n−k1

n+
k sign(kxk2x)δ(ω+

k + ω−k1
+ ω−k2

)δk12dk12. (6.115)

Thus a system of coupled equations (6.110) and (6.115) are obtained for the

small-scale baroclinic component and the large-scale barotropic component. One

can see that the total waveaction is conserved in the small-scale baroclinic compo-

nent alone. This is natural because the non-local process that is considered can be

interpreted as scattering of small-scale baroclinic wave packets off a slowly varying

barotropic flow. The number of wave packets in such a process is conserved. On the

other hand, the total energy in the small-scale component is not conserved. Only the

sum of the energies of the small-scale baroclinic and the large-scale barotropic com-

ponents are conserved. Thus the energy may be exchanged between the small-scale

baroclinic and large-scale barotropic components. The dominant transfer direction
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is from small to large scales. Indeed, consider an initial small-scale spectrum that is

concentrated near the meridional axis with k ∼ (kx0, 0). According to the diffusion

equation (6.110), this spectrum will spread in ky, which means that the frequency

will spread towards larger ky’s with kx remaining fixed. As ky, increases the fre-

quency of the respective modes ω−k = kx/(F
−+k2

x+k2
y) decreases. Considering that

the total waveaction is conserved, this means that the total small-scale baroclinic

energy
∫
ω−k n

−
k dk will decrease. Since the total barotropic plus baroclinic energy

is conserved, the baroclinic energy loss will be compensated by the growth of the

barotropic energy at large scales. As the barotropic waves that interact with the

small-scale baroclinic modes are mostly zonal (6.105), this transfer of energy will be

mostly anisotropic and mostly to the large-scale zonal component (see figure 6.5).

It is possible that a negative feedback loop forms, similar to the one-layer case

[81]. Energy lost by the small scales is transferred to the large-scale zonal flows, which

grow more intense. This will result in a larger diffusion coefficient and consequently

an increased rate of dissipation of small-scale waveaction. Hence, the growth of large

scales may turn off the energy source at small scales. One can answer this by direct

numerical simulation (DNS) of the two-layer model and this is something to consider

in future work.
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Figure 6.5: Diagram to show the direction of waveaction and energy transfer.
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Conclusion

This thesis begins by considering Rossby waves within the one-layer CHM equation

from a WT perspective. Three different regimes of WT exist, kinetic, discrete and

mesoscopic. Discrete WT exists in the limit of very small amplitudes where only

waves that are resonant can interact and exchange energy. As wave vectors are

discrete variables any k may be a member of only a few resonant triads. Conversely,

as wave amplitudes increase, kinetic WT develops whereby the wave vectors are

continuous variables and consequently may be a member of infinitely many resonant

triads.

Kinetic WT for one-layer Rossby waves has been extensively studied. It is well

known that three invariants exist, the energy, enstrophy and zonostrophy and they

undergo a triple cascade with the zonostrophy directing the energy to zonal scales. In

this thesis we considered the problem of finding quadratic invariants in the discrete

regime. It turns out that the condition for existence of an invariant is identical for

both kinetic and discrete WT, namely the k-space density of the quadratic invariant

must satisfy the same resonance conditions as does the wave vector and the frequency.

Finding invariants is equivalent to finding the null space of the cluster matrix A whose

vertical dimension M is given by the number of triads and horizontal dimension

N is given by the number of modes. The total number of invariants is equal to

J ≡ N −M∗ ≥ N −M where M∗ is the number of linearly independent rows in A.

Since the resonance conditions are much harder to satisfy in a discrete system, there

are fewer triads and therefore many more invariants compared to the kinetic case.

An algorithm is presented which allows one to see how the various quadratic

invariants are related to certain parts of a cluster. This is the first time that the
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relationship between the structure of the cluster (in terms of connectivity, geometry,

etc.) and the most efficient interactions has been addressed. It allows local invariants

associated with triads with two loose ends to be identified. In fact it was found

that in symbolic cluster space, typically only a few invariants depend on all triads’

amplitudes. The majority of the invariants are quite local in symbolic cluster space,

involving one or only a few triads. If forcing occurs near a triad with two loose

ends, energy may become trapped in it and if forcing does not occur near it, it may

contain no energy at all. Hence triads with two loose ends restrict energy movement

in the cluster. The more modes involved, the more efficiently the invariant is stirred

through the cluster. The next step would be to find out if global invariants with

many amplitudes involved, like zonostrophy, directs cascades in an anisotropic way,

e.g. making energy transfer to zonal scales, like in kinetic WT. The algorithm also

allows us to construct explicitly cases when the number of independent invariants is

larger than N −M , explaining how these situations are related to the degeneracy

of smaller blocks within the matrix. We illustrate our algorithm by applying it to

the 104-triad cluster arising in the large-scale CHM system, and show that it has

N −M + 2 invariants.

The second part of this thesis considers in more detail the large-scale limit of the

CHM equation, for which a new quadratic invariant, semi-action, has recently been

discovered. As a consequence of its conservation, it was proposed that the following

triads are prohibited: M →M+M,M → Z+Z,Z →M+Z and Z →M+M. In this

thesis it has been shown, both theoretically and numerically, that this proposition

is correct and certain triads are prohibited when nonlinearity is weak. Numerical

simulations showed that if the initial spectrum is in the zonal sector it remains in

the zonal sector. On the other hand, when the initial spectrum is in the meridional

sector, small amounts can move into the zonal sector, but not all can transfer as

otherwise semi-action would be lost. However, when nolinearity is strong and the

three-wave interactions no longer dominate the proposition doesn’t hold. It was also

considered when ρ2 is small but finite and it was discovered that forbidden triads

exist. They are concentrated along the zonal/meridional boundary and the deviation

of ky/kx from
√

3 shrinks as ρ2 → 0.
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In the final part of the thesis we considered Rossby waves in a two-layer QG

ocean. Two-layer models are more realistic than one-layer models when describing

the oceans, as less dense, warmer surface waters float on top of denser, colder waters.

Work on two-layer turbulence in the 1970’s by Rhines [51] and Salmon [52] put

forward a description of energy transfer which is still the standard picture today.

However, they made major assumptions such as equal layers and Salmon only took

into account non-resonant triad interactions.

In this thesis two-layer Rossby waves were studied using WT theory. An ad-

vantage of using WT theory is that since it deals with weakly nonlinear, dispersive

waves, strong interactions can be ruled out which allows us to advance further with

the analysis so we can better understand the spectral energy transfer in the ocean.

Under the assumptions of weak nonlinearity and random phases, it is possible to

derive a kinetic equation. This was done using canonical waveaction variables which

make it simple and symmetric and therefore easier to use in the analysis of energy

transfer in two layers. Another advantage of WT theory is that the waves are in

resonance, meaning that both the wavenumber and frequency conditions must be sat-

isfied. By imposing this extra condition, it can be seen which modes interact and how

strongly. From the interaction coefficient, it is clear that {+ − −} is the dominant

triad interaction, with two baroclinic components and one barotropic component.

The kinetic equation was then used to study the turbulent cascade of energy

between the barotropic and baroclinic modes. It was shown, using the resonant

conditions, that the direct cascade of energy from the large-scale baroclinic modes

to baroclinic and barotropic modes at the Rossby deformation scale is local. It was

then assumed that energy is transferred to the large-scale barotropic modes via an

inverse non-local transfer and this non-locality was studied via scale separation. A

system of coupled equations were obtained for the small-scale baroclinic component

and the large-scale barotropic component. It was found that since the baroclinic

energy of the small scales is not conserved but the total energy (barotropic plus

baroclinic) of the large and small scales together is conserved, the baroclinic energy

lost by small scales will be compensated by the growth of the barotropic energy

at large scales. And using the frequency resonance condition, it was seen that the
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barotropic transfer of energy is in the zonal direction.

This work can be extended to models with more than two layers, which would lead

to longer but conceptually similar kinetic equations. In fact, Soomere [82] suggests

that both barotropic and two-layer models of geophysical flows often inadequately

represent the vertical structure of the ocean as at medium latitudes, the seasonal

thermocline occasionally creates a three-layer structure. With this in mind they

extended Kozlov et als work [4] to a three-layer ocean obtaining explicit analytical

expressions for the coupling coefficients describing energy exchange intensity between

different modes.

The simplifying assumptions of WT, i.e. weak nonlinearity and the extra res-

onance condition, could be too restrictive. However, this approach allows us to

understand important processes occurring in nature using simplified models that are

tractable analytically. In the one-layer case, important predictions were made and

verified numerically regarding the formation of anisotropy and zonal jets. The next

step is therefore to test the theoretical results using numerical simulations.

A lot of studies in the literature have condensed spectral transfer calculations

onto quasi-isotropic one-dimensional (1D) profiles. However, these do not take into

account the anisotropy that results from considering the beta-effect. In this thesis we

have considered three or more invariants and shown that consequently the k-space

can no longer be divided up in an isotropic way. Therefore it would be a good idea

for future studies to take into account triple or multiple anisotropic cascades.
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Appendix A

Deriving Kozlov el al.’s kinetic

equation (6.30)

From the two-layer equations (6.27) and (6.28):

∂

∂t

[
∇2ψ1 +

f2
0

g′H1
(ψ2 − ψ1)

]
+ β

∂ψ1

∂x
= −J

[
ψ1,∇2ψ1 +

f2
0

g′H1
(ψ2 − ψ1)

]
,

∂

∂t

[
∇2ψ2 +

f2
0

g′H2
(ψ1 − ψ2)

]
+ β

∂ψ2

∂x
= −J

[
ψ2,∇2ψ2 +

f2
0

g′H2
(ψ1 − ψ2)

]
,

we want to derive a single equation which contains only one unknown function:

ψσ = ψ1 + sσψ2, σ = +,−.

We begin by writing out M1 + sσM2, where M1 and M2 are the linear parts of the

two-layer equations for layers 1 and 2 respectively, which gives:

∂

∂t

[
∇2ψ1 +

f2
0

g′H1
ψ2 −

f2
0

g′H1
ψ1 + sσ∇2ψ2 + sσ

f2
0

g′H2
ψ1 − sσ

f2
0

g′H2
ψ2

]
+ β

∂ψ1

∂x
+ sσβ

∂ψ2

∂x
.

We now want to write this in terms of ψσ :

∂

∂t

[
∇2(ψ1 + sσψ2)−

(
f2

0

g′H1
− f2

0

g′H2
sσ
)

(ψ1 + sσψ2)

]
+ β

∂

∂x
(ψ1 + sσψ2)

=
∂

∂t
(∇2ψσ − F σψσ) + β

∂ψσ

∂x
,
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where:

F σ =
f2

0

g′H1
− f2

0

g′H2
sσ.

Let us now move on to the working for the nonlinear part. From the RHS of the

two-layer equations we get:

−J
[
ψ1,∇2ψ1 +

f2
0

g′H1
ψ2

]
− sσJ

[
ψ2,∇2ψ2 +

f2
0

g′H2
ψ1

]
= −J [ψ1,∇2ψ1]− J

[
ψ1,

f2
0

g′H1
ψ2

]
− sσJ [ψ2,∇2ψ2]− sσJ

[
ψ2,

f2
0

g′H2
ψ1

]
= −J [ψ1,∇2ψ1]− sσJ [ψ2,∇2ψ2]−

(
f2

0

g′H1
− sσ f2

0

g′H2

)
J [ψ1, ψ2].

Rearranging the normal modes gives:

ψ1 =
s−ψ+ − s+ψ−

s− − s+
and ψ2 =

ψ+ − ψ−
s+ − s− ,

and substituting these in we get:

−J
[
s−ψ+ − s+ψ−

s− − s+
,∇2

(
s−ψ+ − s+ψ−

s− − s+

)]
− sσJ

[
ψ+ − ψ−
s+ − s− ,∇

2

(
ψ+ − ψ−
s+ − s−

)]
−
(

f2
0

g′H1
− sσ f2

0

g′H2

)
J

[
s−ψ+ − s+ψ−

s− − s+
,
ψ+ − ψ−
s+ − s−

]
.
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Take out the fraction as a common denominator:

− 1

(s+ − s−)2
[J [s−ψ+ − s+ψ−,∇2(s−ψ+ − s+ψ−)] + sσJ [ψ+ − ψ−,∇2(ψ+ − ψ−)]

−
(

f2
0

g′H1
− sσ f2

0

g′H2

)
J [s−ψ+ − s+ψ−, ψ+ − ψ−]]

= − 1

(s+ − s−)2
[(s−)2J [ψ+,∇2ψ+]− s−s+J [ψ+,∇2ψ−]

−s+s−J [ψ−,∇2ψ+] + (s+)2J [ψ−,∇2ψ−] + sσJ [ψ+,∇2ψ+]

−sσJ [ψ+,∇2ψ−]− sσJ [ψ−,∇2ψ+] + sσJ [ψ−,∇2ψ−]

−(
f2

0

g′H1
− sσ f2

0

g′H2
)(���

��
��

s−J [ψ+, ψ+]− s−J [ψ+, ψ−]− s+J [ψ−, ψ+] +���
��

��
s+J [ψ−, ψ−])]

= − 1

(s+ − s−)2
[((s−)2 + sσ)J [ψ+,∇2ψ+]− (s−s+ + sσ)J [ψ+,∇2ψ−]

−(s+s− + sσ)J [ψ−,∇2ψ+] + ((s+)2 + sσ)J [ψ−,∇2ψ−]

−(
f2

0

g′H1
− sσ f2

0

g′H2
)(s+ − s−)J [ψ+, ψ−]]

= − 1

λ2

∑
µν

[pσµνJ(ψµ,∇2ψν) + gσµνF
σJ(ψµ, ψν)],

where λ = (s+ − s−) and the coupling coefficients are:

p+
++ = s+ + (s−)2, p+

−− = s+(1 + s+), p+
+− = −s+(1 + s−) = p+

−+,

p−++ = s−(1 + s−), p−−− = s− + (s+)2, p−+− = −s−(1 + s+) = p−−+,

g+
+− = −g+

−+ = −1

2
(s+ − s−) = g−+− = −g−−+.

Putting the linear and nonlinear parts together we get Kozlov et al.’s kinetic equation

(6.30):

∂

∂t
(∇2ψσ − F σψσ) + β

∂ψσ

∂x
= − 1

λ2

∑
µν

[pσµνJ(ψµ,∇2ψν) + F σgσµνJ(ψµ, ψν)].

112



Appendix B

Deriving the two-layer

interaction coefficient (6.46)

Begin by introducing the waveaction variable:

a±k =
(k2 + F±)√
|βkxs±|

ψ̂±k ,

into equation (6.38):

∂tψ̂
σ
k + iωσkψ̂

σ
k =

λ

2(k2 + F σ)

∑
µν

∑
12

pσµν(k1 × k2)z(k
2
2 − k2

1 + F ν − Fµ)ψ̂µ1 ψ̂
ν
2δ

k
12,

to get:

ȧσk

√
|β|
√
|kx|
√
|sσ|

(k2 + F σ)
+ iωσka

σ
k

√
|β|
√
|kx|
√
|sσ|

(k2 + F σ)
=

λ

2(k2 + F σ)

∑
µν

∑
12

pσµν

×(k1xk2y − k2xk1y)(k
2
2 − k2

1 + F ν − Fµ)āµ1 ā
ν
2

|β|
√
|k1x|

√
|k2x|

√
|sµ|
√
|sν |

(k2
1 + Fµ)(k2

2 + F ν)
δk12.
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Rewriting δk12 as δk12 and consequently a−k1 = āk1 and a−k2 = āk2 and rearranging

the above equation gives:

ȧσk + iωσka
σ
k = −λ

2

∑
µν

∑
12

pσµν(kxk2y − k2xky)

×(k2
2 − k2

1 + F ν − Fµ)

(k2
1 + Fµ)(k2

2 + F ν)
āµ1 ā

ν
2 |β|1/2

∣∣∣∣k1xk2x

kx

∣∣∣∣1/2 ∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12

= −λ
2

sign(kx)
∑
µν

∑
12

pσµν |k1xk2xkx|1/2(k2y − k2xky/kx)

×
(

1

k2
1 + Fµ

− 1

k2
2 + F ν

)
āµ1 ā

ν
2 |β|1/2

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12

= −λ
2

sign(kx)
∑
µν

∑
12

pσµν |k1xk2xkx|1/2āµ1 āν2 |β|1/2
∣∣∣∣sµsνsσ

∣∣∣∣1/2
×
(

k2y

k2
1 + Fµ

− k2y

k2
2 + F ν

− k2xky/kx
k2

1 + Fµ
+
k2xky/kx
k2

2 + F ν

)
δk12.

Substituting the resonant conditions k2y = −ky − k1y and k2x = −kx − k1x into the

brackets we get:

ȧσk + iωσka
σ
k = −λ

2
sign(kx)

∑
µν

∑
12

pσµν |k1xk2xkx|1/2āµ1 āν2
∣∣∣∣sµsνsσ

∣∣∣∣1/2 |β|1/2
×
(−ky − k1y

k2
1 + Fµ

− k2y

k2
2 + F ν

− (−kx − k1x)ky/kx
k2

1 + Fµ
+
k2xky/kx
k2

2 + F ν

)
δk12

= −λ
2

sign(kx)
∑
µν

∑
12

pσµν |k1xk2xkx|1/2āµ1 āν2
∣∣∣∣sµsνsσ

∣∣∣∣1/2 |β|1/2
×
( −k1y

k2
1 + Fµ

− k2y

k2
2 + F ν

+
k1xky/kx
k2

1 + Fµ
+
k2xky/kx
k2

2 + F ν

)
δk12.

Finally, symmetrize under the assumption that dominant interactions occur on the

resonant manifold, i.e. the resonant condition −ωσk = ωµ1 + ων2 is correct to get:

ȧσk + iωσka
σ
k = sign(kx)

∑
µν

∑
12

V σµν
k12 p

σ
µν ā

µ
1 ā

ν
2

∣∣∣∣sµsνsσ

∣∣∣∣1/2 δk12,
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where the nonlinear interaction coefficient (6.46) for the waveaction variable is:

V σµν
12 =

λ

2

√
|βkxk1xk2x|

(
k1y

k2
1 + Fµ

+
k2y

k2
2 + F ν

+
ky

k2 + F σ

)
.
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