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Introduction

In recent decades, the increased sophistication of statistical 
analysis software packages has broadened the statistical 
modelling options available to data analysts. The appropriate 
substantive interpretation of modelling results (especially the 
detailed interpretation of parameter estimates from statistical 
models) is by no means trivial however (Berk, 2004). There 
are numerous guides to the mathematical interpretation of 
parameter estimates (e.g. Allison, 1999; Menard, 2002). An 
important point that we wish to raise is that the communica-
tion of results from statistical models hinges upon which 
aspects of the model results the analyst chooses, rightly or 
wrongly, to emphasise (Berk, 2004). Goldstein (1993) pro-
vides cautionary advice which we paraphrase here. He argues 
that one of the useful things about statistical models is that so 
long as researchers state the assumptions clearly and follow 
the rules correctly, conclusions can be reached that are, in 
their own terms, beyond reproach. The awkward thing about 
statistical models is the snares they set for the casual user, the 
person who needs conclusions but is untrained in question-
ing model assumptions. What makes things more difficult is 

that, in trying to communicate modelling results the data 
analyst will often feel obliged to simplify technical issues 
and gloss over statistical complexities. As Goldstein (1993) 
concludes, it is hardly surprising that such an enterprise is 
fraught with difficulties, even when the attempt is genuinely 
one of honest communication.

There are many statistically orientated texts which describe 
how to estimate statistical models (e.g. Hardin and Hilbe, 
2007; Hosmer and Lemeshow, 2000; McCulloch and Neuhaus, 
2001; Montgomery et al., 2012). There are also a number of 
advanced methodological texts which outline the post-estima-
tion techniques that a secondary analyst might undertake (e.g. 
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2 Methodological Innovations

regression diagnostics) to evaluate the validity of their models 
(e.g. Belsley et al., 2005; Fox, 1991; Pregibon, 1981). These 
texts are orientated towards statistical analysis rather than the 
more practical, and often prosaic, activities associated with the 
secondary analysis of social survey datasets. There is usually 
little or no discussion of the issues surrounding selecting social 
science variables, assessing their scope and limitations and 
including them in statistical models. Most texts use specially 
selected and highly polished datasets to aid clear communica-
tion. We are aware of only a handful of texts which fully 
embrace the messiness of genuine social science data (e.g. 
Longhi and Nandi, 2014; Milliken and Johnson, 2002; 
Treiman, 2009). In practice, analysts of large-scale social sur-
vey datasets are likely to encounter challenges when incorpo-
rating key variables into their analyses which are not ordinarily 
covered in conventional reference sources.

In the next sections of this article, we outline two often 
neglected issues that are relevant to a great many applications 
of statistical models based upon social survey data. The first 
is known as the reference category problem and is related to 
the interpretation of categorical explanatory variables. The 
second is the interpretation and comparison of effects from 
models for non-linear outcomes. We then discuss a number of 
other common complexities in using statistical models for 
social science research which include the non-linear transfor-
mations of variables, and considerations of intersectionality 
and interaction effects. We end with a focus on two important 
elements of the social survey data analysis process, sensitiv-
ity analysis and documentation for replication, which we 
have emphasised throughout this special section.

The reference category problem

Interpreting the effects of a multiple category explanatory 
variable is not as tractable as interpreting the effects of a met-
ric explanatory variable in most statistical models. In this 
sub-section, we provide an extended discussion of how to 
consider, and how best to interpret, the effects of key varia-
bles and other measures that are included within statistical 
models as multiple category explanatory variables. In stand-
ard statistical models, the effects of a categorical explanatory 
variable are assessed by selecting one category as a bench-
mark against which all other categories are compared. This 
benchmark category is usually referred to as the ‘reference’ 
or ‘base’ category. The reference category coefficient is arbi-
trarily fixed to zero in the model estimation procedure, and 
the coefficients of the other categories are interpreted as the 
additional impact of a survey respondent not being in the 
reference category. Standard statistical software undertakes 
formal comparisons of whether or not each coefficient dif-
fers from the reference category (which is set to zero). These 
comparisons can be made through either the well-known p 
values, through t or z values, through inspection of a confi-
dence interval1 or even by other benchmarks.2 These com-
parisons with the reference category tell us nothing about 

whether other categories are different from each other. In 
some analyses, the reference category might be a substan-
tively appropriate benchmark, but in others, it might be a 
relatively special case. A common example of this is when 
measures of educational qualifications are included in a sta-
tistical model. Researchers often work with a derived multi-
category measure, the lowest of which is ‘no qualifications’. 
The ‘no qualification’ category might seem an obvious 
choice of reference category, and in older birth cohorts it 
might be appropriate. In many contemporary societies, this 
category is problematic for more recent birth cohorts because 
typically only very few people have ‘no qualifications’, and 
when they do it often reflects unusual circumstances. As a 
reference category, the influence of another qualification 
tested against the ‘no qualifications’ category is not an opti-
mal comparison, as it may involve different social circum-
stances for different age cohorts.3

In theory, the reference category problem can be addressed 
by presenting results that compare other pairs of categories. 
It is formally possible to test the difference between the coef-
ficients for any two levels of a categorical explanatory vari-
able by undertaking a t test, given in equation (1) (for more 
details, see Hardy and Reynolds, 2004)
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Calculating the standard error of this difference is not 
straightforward however. The standard error of the differ-
ence is conventionally calculated from equation (2)

s e var var cov. β β β β ββ� � � � � �
2 3 2 3 2 32−( ) = ( ) + ( ) − −( )( )   (2)

The standard error of the difference between β2  and β3  
is based on information on the ‘covariance’ of the two param-
eters. This information is generated in the model estimation 
procedure and is stored in the variance–covariance matrix of 
the parameter estimates, and in most conventional data anal-
ysis software packages (e.g. Stata and SPSS) this informa-
tion is available. In social science journal articles, the 
variance–covariance matrix is seldom reported.4 Without 
access to the variance–covariance matrix, it is not possible 
for anyone other than the researcher estimating the model to 
compare a pair of categories which do not include the refer-
ence category. Hardy and Reynolds (2004) note that a com-
mon short-cut to undertaking formal tests between categories 
involves the analyst simply repeating the model estimation 
with a variety of alternative choices of reference category, 
and therefore building up a series of all possible contrasts to 
the reference category. This can prove a sensible strategy for 
the data analyst, but again it is not available to others such as 
the reader of a published output. In analyses with a large 
number of multiple category explanatory variables, there 
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will inevitably be an extremely large number of possible 
comparisons. Given the constraints usually imposed on the 
length of published work, the original data analyst will still 
need to make a choice over which level of the variable they 
ultimately present as their reference category.

The estimation of quasi-variance based standard errors 
has been proposed as a practical solution to the reference cat-
egory problem in several statistical papers (see Firth, 2000, 
2003; Firth and Menezes, 2004). Quasi-variance statistics 
can be reported along with standard outputs from statistical 
models in order to enable readers to make comparisons 
between categories which do not include the reference cate-
gory. The method of estimating quasi-variances provides a 
neat solution to the reference category problem.

In essence, Firth’s method (see Firth, 2000, 2003) uses an 
approximation in order to allow for an easier calculation of 
the test statistic for the difference between any two catego-
ries.5 A single approximation statistic, known as the quasi-
variance, is calculated for each category of a categorical 
explanatory variable (including the reference category). This 
statistic may then be used to generate an alternative standard 
error (the quasi-variance based standard error) which can be 
reported for each coefficient and which now has the more 
attractive quality of facilitating the evaluation of differences 
between any pair of coefficients.

Using the quasi-variance method, the calculation for 
equation (2) becomes

 s e quasi var quasi var. ( )β β ββ� � � �
2 3 2 3−( ) ≈ + ( )  (3)

As long as the quasi-variance statistic for each level of the 
explanatory variable is reported, a conventional assessment 
of difference using the t test can be undertaken. This is 

especially helpful to the reader of a journal article who 
wishes to understand a contrast between categories of a cat-
egorical explanatory variable that have not been focussed 
upon in the presentation of the modelling results.

Gayle and Lambert (2007) offer an accessible introduc-
tion to the quasi-variance approach for social science 
researchers, and they provide a number of Stata and SPSS 
syntax files and an Excel calculator6 to help secondary data 
analysts produce and present quasi-standard errors in their 
work. Firth (2000) provides an online quasi-variance calcu-
lator7 as well as the R package qvcalc, which computes 
quasi-variances.8 Recently Chen (2014) has developed the 
program -qv- for Stata which can be used to calculate quasi-
variances and generate plots of point estimates and confi-
dence intervals based on quasi-standard errors in an efficient 
manner.

In Figure 1, we highlight the benefit of estimating quasi-
variances. In this analysis, we estimate a linear regression 
model of children’s scores on a reading test taken in the 
fourth wave of the UK Millennium Cohort Study (MCS), 
when the children in the study were around 7 years old9 (for 
more details of the MCS, see Connelly and Platt, 2014).

A measure of highest parental National Statistics Socio-
Economic Classification (NS-SEC) and a dummy variable 
for gender are included in the model. We are interested in 
interpreting the association between parental NS-SEC and 
reading test scores. Our reference category for parental 
NS-SEC is category 2 (Intermediate occupations) and using 
conventional standard errors (shown in green) we are able to 
compare the reading test performance of children in this cat-
egory with those in the other NS-SEC categories. Using only 
conventional standard errors, we are not able to compare 
children in NS-SEC categories which do not include the ref-
erence category. For example, we are not able to compare 

Figure 1. An example of the use of quasi-standard errors in an analysis of the UK Millennium Cohort Study.
Source: UK Millennium Cohort Study, Wave 4 (Age 6), n=13,103.
Notes: Adjusted for Survey design and non-response. Model also contains gender.
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children in NS-SEC category 3 (Small employers and own 
account workers) and those in NS-SEC category 4 (Lower 
supervisory and technical occupations). With the use of 
quasi-standard error based comparison intervals10 (shown in 
red), we are able to make comparisons between all possible 
combinations of NS-SEC categories. We can see, for exam-
ple, that there are not significant differences between the 
reading test scores of children in NS-SEC categories 3 and 4, 
but there are significant differences between children in 
NS-SEC categories 3 and 5. Making comparisons across dif-
ferent categories in this way would not be possible if only 
regression coefficients and conventional standard errors 
were presented because a conventional error is not calculated 
for the reference category.

The example above illustrates the utility of estimating 
quasi-variance based measures. Reporting quasi-variance 
measures will increase the transparency of secondary data 
analyses. The facility to make additional comparisons is 
especially valuable when replicating analyses with other 
datasets and when undertaking reviews or meta-analyses 
where statistical models have been constructed with alterna-
tive parameterisations. Quasi-variance based statistics can 
now be routinely calculated as part of the statistical model-
ling process in both Stata and R, and results can conveniently 
be graphed. Therefore, we advocate that data analysts who 
are working with categorical explanatory variables routinely 
report quasi-variance based measures in their modelling 
results.

Parameter estimates in logistic regression models

Many data analysis modules within undergraduate and post-
graduate sociology programmes introduce linear regression 
after bivariate correlations (and associated items such scatter 
plots). This is a pedagogically logical place in the curriculum 
to position this topic. Topics such as logistic regression will 
often be introduced on courses after linear regression. One 
example of this ordering is illustrated in the excellent instruc-
tional text by Marsh and Elliott (2008).

Linear regression models (often called multiple regres-
sion) are a reasonable starting point in learning about statisti-
cal models, but they are seldom used in applied sociological 
research. Even a cursory review of empirical analyses of 
social surveys reveals that logistic regression models are far 
more commonly used. Linear regression models are relatively 
uncommon in sociological research because there are so few 
social science outcome variables that are measured on metric 
scales. By contrast, there are an inordinate number of out-
come variables that lend themselves to measurement on cat-
egorical scales. In particular, many social science outcome 
variables are discrete binary measures. These measures fre-
quently take the form of ‘no’ or ‘yes’ or relate to the presence 
or absence of some condition. Logistic regression models  
are very commonly used in empirical analyses using large-
scale social science datasets in disciplines such as sociology, 

social policy, politics and geography. By contrast, the probit 
model is ubiquitous within economic research. These models 
are simply special cases within the generalised linear model 
(GLM) framework11 (Nelder and Wedderburn, 1972). Both 
are more complex compared with the linear regression  
model, and the complexities of these models are not always 
well understood by sociologists.

In this section, we provide a discussion of the complexi-
ties involved in presenting and interpreting the results of 
logistic regression models. Throughout this section, we illus-
trate these methodological points with a series of models 
estimated using data from the 1970 British Cohort Study.12 
Our example focuses on children’s performance on a maths 
test taken at around age 10 (in 1980). We have categorised 
performance on this test to 1 = above average scores and 
0 = average and below average scores. Our explanatory vari-
ables are the seven category version of father’s NS-SEC, a 
binary variable indicating whether the child’s parents own 
their own home (1 = yes and 0 = no), and a binary variable of 
whether the child’s mother is rated as being very interested in 
her child’s education (1 = yes and 0 = no). In general, within 
regression models it is desirable that explanatory variables 
are not extremely highly correlated (i.e. collinear) (see Fox, 
1991; Treiman, 2009: 108). In the current example, the three 
explanatory variables used have weak associations with each 
other and satisfy standard tests for multicollinearity.13

The effects of the individual explanatory variables in 
logistic regression models are far less intuitive than in a 
standard linear regression model. In the case of a linear 
regression model, the effect of a continuous explanatory var-
iable can be interpreted in a relatively straightforward man-
ner. This is because a one unit change in the explanatory 
variable leads to a change in the outcome variable equal to 
the value of the coefficient (the beta). There is not an equiva-
lent simple interpretation of the effect of a single explanatory 
variable in a logistic regression model because estimation is 
undertaken using a transformation and results are presented 
on the log odds scale.

Table 1 reports the results of two statistical models. Model 
1 is a linear regression of maths test scores and model 2 is a 
logistic regression of maths test scores categorised as 
1 = above average and 0 = average and below. When inter-
preting the coefficients of the linear regression model, we can 
see that children whose fathers are in NS-SEC category 2 on 
average score 2.09 points lower than children with fathers in 
NS-SEC category 1, net of all other variables in the model.

The interpretation of model 2 is less straightforward. In 
statistical terms, children whose fathers are in NS-SEC cat-
egory 2 have a decreased log odds of 0.30 of achieving an 
above average score on the maths test, compared with chil-
dren who have fathers in NS-SEC category 1, net of all other 
variables in the model. Although this tells us that the more 
advantaged children in NS-SEC category 1 perform better on 
the maths test. In our experience, many sociologists find that 
the further interpretation of log odds is far from intuitive.
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Odds ratios

There are several alternative ways in which the results of a 
logistic regression model can be presented, which we illus-
trate in Table 2. The use of odds ratios is frequently advo-
cated (see Rubin, 2012; Tolmie et al., 2011). Odds ratios are 
calculated by exponentiating estimates of log odds for the 
explanatory variables. In model 2, the odds of getting an 
above average score on the maths test is 0.74 for children 
whose fathers are in NS-SEC category 2 compared with chil-
dren who have fathers in NS-SEC category 1, net of other 
variables in the model.

Odds ratios are a convenient means of understanding the 
effects of explanatory variables in logistic regression models. 
A hidden consequence of converting coefficients measured 
on the log odds scale to odds ratios is that the transformation 
is not linear. In our experience, this is not widely appreciated 
by sociological researchers. Table 3 illustrates that log odds 
from −4.60 to 0 (column 2) are transformed into odds from 
0.01 to 1.00 (column 1). By contrast, log odds from 0 to 
+4.60 (column 2) are transformed into odds from 1.00  
to 99.00 (column 1). Therefore, some caution should be 
applied when using odds ratios to communicate the effects 
of explanatory variables in logistic regression models. Some 
researchers present odds ratios in graphical formats to aid 
interpretation. When odds ratios that are both greater and less 

than 1 are simultaneously presented, the non-linear nature of 
odds ratios will be visually misleading. It is worth noting that 
while log odds map onto odds asymmetrically, they map on 
to probabilities symmetrically (see Table 3 column 3). 
Therefore, we conclude that in general presenting coeffi-
cients as log odds values is usually more appropriate than 
presenting them as odds ratios.

Gelman and Hill (2008) suggest that as a rule of conveni-
ence, analysts should take logistic regression coefficients 
(other than the constant term) and divide them by 4 to get an 
upper bound of the predictive difference corresponding to a 
one unit change in the explanatory variable. We illustrate this 
approach in column 3 of Table 2. The log odds reported in 
column 1 of Table 2 are divided by 4. Although this tech-
nique is not widely known, it appears to provide a quick and 
easy substantive interpretation of estimates reported on a log 
odds scale.14

Marginal effects

The use of marginal effects to interpret statistical models is 
well known in economics (see Greene, 2008), but less known 
in other social science disciplines. Expressed simply, mar-
ginal effects are statistics that are presented to aid the inter-
pretation of modelling results. They are calculated from  
a regression model at fixed values of some explanatory 

Table 1. An example of a linear regression model (model 1) and a logistic regression model (model 2). The outcome of model 1 is 
score on a maths test. The outcome of model 2 is the score on the same maths test categorised into above average (1) and average and 
below attainment (0).

Model 1 Model 2

 Linear regression coefficients 
(standard errors)

Logistic regression coefficients 
log odds (standard errors)

Father’s NS-SEC 1.  Large employers, higher 
managerial and professional

Ref. Ref.

2.  Lower managerial and 
professional

−2.09*** (0.50) −0.30** (0.10)

3.  Intermediate −2.52*** (0.55) −0.34** (0.11)
4.  Small employers and own 

account workers
−4.38*** (0.52) −0.67*** (0.10)

5.  Lower supervisory and 
technical

−5.34*** (0.48) −0.82*** (0.09)

6.  Semi-routine −5.77*** (0.50) −0.89*** (0.10)
7.  Routine −6.80*** (0.49) −0.95*** (0.09)

Home owner  3.53*** (0.27) 0.53*** (0.05)
Mother very interested in child’s 
education

 5.29*** (0.26) 0.74*** (0.05)

Constant 44.19 (0.46) 0.01 (0.09)
Adjusted R2 0.15  
McFadden’s adjusted R2 0.07
McKelvey and Zavoina’s R2 0.13
Cragg and Uhler’s R2 0.13
n 8198 8198

NS-SEC: National Statistics Socio-Economic Classification. * p < 0.05, ** p < 0.01, *** p < 0.001.
1970 British Cohort Study, age 10 survey.
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variables and/or averages of other explanatory variables (for 
extended discussion, see Long and Freese, 2006; Williams, 
2012).15

We depict two examples of marginal effects. The first are 
usually known as conditional marginal effects (a terminol-
ogy used in Stata output). In Table 2 column 4, we present 
conditional marginal effects (reported as probabilities) for 
the father’s NS-SEC variable. The marginal effects are cal-
culated with the other explanatory variables held at their 
mean. For example, a child whose parents are from NS-SEC 
2 and who has average characteristics on the other explana-
tory variables will on average have a probability of obtaining 
an above average maths test score of 0.08 lower than a coun-
terpart with parents from NS-SEC 1. This specific form of 
description relates to ‘average characteristics’ on the other 
explanatory variables.16 We conclude that using marginal 
effects provides a convenient and interpretable method of 
reporting the effects of an explanatory variable in logistic 
regression analyses.

The conditional marginal effects presented in Table 2 are 
estimated when the other explanatory variables are held at 
their means, but it is also possible to calculate marginal 
effects when the other variables are fixed at substantively 
meaningful levels. One of the authors has positive direct 
experience of communicating results from logistic regres-
sion models to civil servants using marginal effects at repre-
sentative values (see Gayle et al., 2003).

A second form of marginal effect is known as ‘adjusted 
predictions’.17 These measures show probabilities of the out-
come, for a level of the explanatory variable with the other 
explanatory variables set at a specified level (e.g. their 
means). We report the adjusted predictions for model 2 in 
Table 2 column 5. The adjusted predictions are readily inter-
pretable because they are probabilities. For example, the pre-
dicted probability of a child getting an above average score is 
0.67 for the children with fathers in NS-SEC category 1 
(with other explanatory variables at their average values). By 
contrast, the predicted probability of a child getting an above 
average score is 0.44 for the children with fathers in the low-
est NS-SEC category (with other variables set at their aver-
ages). At the time of writing, marginal effects are seldom 
reported outside of economics where they are widely used. 
We concur with Angrist and Pischke (2008) that output from 
non-linear models (such as the logit model) are much more 
interpretable when marginal effects are reported.

Sample enumeration

Although not widely used, another useful alternative way to 
represent the results of logistic regression models is sample 
enumeration (see Davies, 1992; Gayle et al., 2002). This 
method operates in a similar fashion to marginal and pre-
dicted probabilities but is essentially derived from within the 
sample rather than using means or specific values to illus-
trate the effects of other explanatory variables in the model. 
Sample enumeration allows researchers to quantify the sub-
stantive importance of statistically significant explanatory 

Table 3. Conversion of log odds, odds and probabilities.

1 2 3

Odds Log odds (logit scale) Probabilities

99.00 4.60 0.99
19.00 2.94 0.95
9.00 2.20 0.90
4.00 1.39 0.80
2.33 0.85 0.70
1.50 0.41 0.60
1.00 0.00 0.50
0.67 −0.41 0.40
0.43 −0.85 0.30
0.25 −1.39 0.20
0.11 −2.20 0.10
0.05 −2.94 0.05
0.01 −4.60 0.01

Table 2. An example of the different presentation of parameter estimates from a logistic regression model of maths test scores (model 
2 in Table 1).

Father’s NS-SEC 1 2 3 4 5

Log odds Odds ratio Gelman and Hill 
(probability)

Conditional marginal 
effects (probability)

Adjusted prediction 
(probability)

1.  Large employers, higher 
managerial and professional

Ref. Ref. Ref. Ref. 0.67

2.  Lower managerial and professional −0.30** 0.74** −0.08** −0.07** 0.60
3.  Intermediate −0.34** 0.71** −0.09** −0.08** 0.59
4.  Small employers and own account 

workers
−0.67*** 0.51*** −0.17*** −0.16*** 0.51

5.  Lower supervisory and technical −0.82*** 0.44*** −0.21*** −0.20*** 0.47
6.  Semi-routine −0.89*** 0.41*** −0.22*** −0.21*** 0.46
7.  Routine −0.95*** 0.39*** −0.24*** −0.23*** 0.44

NS-SEC: National Statistics Socio-Economic Classification. * p < 0.05, ** p < 0.01, *** p < 0.001.
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variables in a logistic regression model. The use of measures 
such as odds ratios does not immediately address the issue of 
how much of the observed relationship is explained by one 
variable in the model (e.g. father’s NS-SEC) compared to 
how much is explained by the other explanatory variables in 
the model.

In the present example, the sample enumeration approach 
allows us to ask the question,

what percentage of children in the least advantaged NS-SEC 
category would have achieved an above average score on the 
maths test if they had been in the most advantaged category, 
given their other characteristics which are measured by other 
variables included in the model?

Through sample enumeration, we hypothetically move all of 
the children in the least advantaged NS-SEC category to the 
most advantaged category. Using the logistic regression 
model results, we can then estimate the proportion of these 
children who would have achieved an above average test 
score given their other characteristics (measured by the other 
explanatory variables included in the model).

A detailed example of the sample enumeration process is 
given in Gayle et al. (2002). In our present example, sample 
enumeration first involves extracting children from the least 
advantaged NS-SEC category in the sample. Results from 
the full logistic regression model (with all cases included) 
are then used to predict the outcome for each child in the 
least advantaged NS-SEC category, but with the NS-SEC 
effect set to zero. This is analogous to promoting each child 
in the least advantaged NS-SEC category to the most advan-
taged category. This allows us to estimate the probability of 
each of these children gaining an above average test score if 
they were moved into the most advantaged NS-SEC, but 
with their other characteristics remaining exactly the same. 
Summing these individual predicted probabilities allows us 
to construct expected frequencies (and therefore expected 
proportions) of children achieving an above average test 
score having eliminated the direct effect of NS-SEC.

The results of the sample enumeration are reported in 
Table 4. They show that 39% of those in the least advantaged 

NS-SEC category attained an above average maths test score 
(the observed rate). The sample enumeration rate is 53%, and 
this figure can be interpreted as the percentage of children in 
the least advantaged NS-SEC category that would have 
achieved an above average score on the maths test if they had 
been in the most advantaged category, given their other char-
acteristics which are measured by other variables included in 
the model.18 The sample enumeration method has isolated 
the direct effect of NS-SEC, 14% in this case. The observed 
or ‘original’ difference between the rates of children attain-
ing an above average test score in the most advantaged 
NS-SEC and in the least advantaged NS-SEC was 33% 
(72%–39%). This figure is the observed difference or ‘short-
fall’ between the rates of attainment of above average scores 
in these two groups. Through sample enumeration, we are 
able to report that 14% of the original 33% shortfall is due to 
the effect of NS-SEC. We can therefore conclude that 19% of 
the original shortfall is due to the combined effects of the 
other explanatory variables in the model.

Although the sample enumeration approach has not been 
widely used in sociological research, we are convinced that it 
provides an attractive means of quantifying the substantive 
importance of the effect of key variables in a form that may 
be relatively easily understood. We also suspect that this 
approach might be useful when communicating logistic 
regression results to researchers and other stakeholders 
whose interests may be substantive but who may not have an 
especially sophisticated understanding of concepts such as 
log odds or odds ratios.

The presentation of logistic regression results

There are no strict protocols for presenting the results of sta-
tistical models, and there is a large amount of variation 
between the formats used in academic publications. From the 
discussions provided above, we can make several sugges-
tions on reporting information from logistic regression mod-
els. Log odds (i.e. coefficients) should be presented as this 
information conveys both the direction and the size of the 
effect. Conventional standard errors should be reported as 

Table 4. Sample enumeration results for father’s NS-SEC in the logistic regression model (model 2 in Table 1).

NS-SEC Observed rate Estimated rate 
through sample 
enumeration

Observed 
difference

Estimated shortfall

Due to effect Due to other 
variables in the model

1 72% – – – –
2 65% 64%  8% −1%  9%
3 62% 62% 11% 0% 11%
4 50% 58% 22% 8% 15%
5 47% 58% 26% 11% 14%
6 42% 55% 30% 13% 17%
7 39% 53% 33% 14% 19%

NS-SEC: National Statistics Socio-Economic Classification.
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they indicate the precision of the effect. In combination with 
coefficients, the reporting of standard errors allows readers 
to formally assess significance and makes other statistics 
such as p values and z values redundant. Some researchers 
might be uncomfortable with the suggestion that p values are 
not required and as a compromise they might choose to also 
include asterisks (*) to indicate levels of significance.

We strongly advocate reporting quasi-variance based 
standard errors because these measures facilitate the calcula-
tion of comparison intervals and therefore address the refer-
ence category problem. Table 5 illustrates a format where 
there is sufficient space to report both quasi-variance stand-
ard errors and comparison intervals. We also consider that 
conditional marginal effects (probabilities) should routinely 
be reported as this greatly aids the interpretation of the effects 
of explanatory variables. We consider that there is additional 
benefit in reporting the lower and upper bounds of this 
measure.

In addition to these statistical measures, it is always good 
practice for data analysts to report sample sizes (n) and 
model fit statistics. Smithson (2003) pithily remarks that 
there has been something of a cottage industry in model fit 
statistics for logistic regression. Long and Freese (2006) pro-
vide an excellent overview of the scope and limitations of 
these measures. Software packages such as Stata report a 

wide range of pseudo R2 measures.19 We are not persuaded 
that any single pseudo R2 should be routinely preferred 
above all others. At the current time, we suggest that research-
ers should report a few alternative measures in published 
research but provide as many pseudo R2 measures as practi-
cable in the documentation of their workflow. When compar-
ing nested models, there is a compelling case for using a 
measure that accounts for parsimony such as the Bayesian 
Information Criterion (BIC)20 which was proposed by 
Raftery (1986).

Comparing nested models

It is often useful to present results as a series of nested mod-
els. Looking again at the example of children’s scores on 
the maths test, we may first seek to examine the association 
between father’s NS-SEC and whether a child attained an 
above average test score. We may then seek to investigate 
the extent of the effect of father’s NS-SEC when other  
factors are also included in the model (e.g. parental home 
ownership and maternal interest in the child’s education, 
see Table 6).

The comparison of coefficients in nested models is rela-
tively straightforward when analysing linear outcome varia-
bles. If a coefficient of one explanatory variable is observed 

Table 5. An example of the ideal presentation of a logit model.

Log odds SE QV SE QV SE CI 
 

Conditional 
marginal 
effects 
(probability)

Conditional 
marginal effects 
(95% CI)

 Lower Upper Lower Upper

Father’s NS-SEC 1.  Large employers, 
higher managerial 
and professional

Ref. – 0.00 −0.18 0.18 – – –

2.  Lower managerial 
and professional

−0.30** (0.10) 0.10 −0.45 −0.15 −0.07** −0.11 −0.02

3. Intermediate −0.34** (0.11) 0.11 −0.52 −0.17 −0.08** −0.13 −0.03
4.  Small employers 

and own account 
workers

−0.67*** (0.10) 0.10 −0.82 −0.52 −0.16*** −0.21 −0.12

5.  Lower supervisory 
and technical

−0.82*** (0.09) 0.09 −0.95 −0.70 −0.20*** −0.24 −0.16

6. Semi-routine −0.89*** (0.10) 0.10 −1.02 −0.75 −0.21*** −0.26 −0.17
7. Routine −0.95*** (0.09) 0.09 −1.07 −0.83 −0.23*** −0.27 −0.19

Home owner 0.53*** (0.05) – – – 0.13*** 0.11 0.16
Mother very interested in child’s education 0.74*** (0.05) – – – 0.19*** 0.16 0.21
Constant 0.01 (0.09) – – – – – –
n 8198  
McFadden’s adjusted R2 0.07  
McKelvey and Zavoina’s R2 0.13  
Cragg and Uhler’s R2 0.13  
BIC null model 11,364  
BIC full model 10,574  

SE: standard error; QV: quasi-variance; CI: confidence interval; NS-SEC: National Statistics Socio-Economic Classification; BIC: Bayesian Information 
Criterion. * p < 0.05, ** p < 0.01, *** p < 0.001.
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to decline after another explanatory variable is added to the 
model, this has the convenient interpretation that its effect on 
the outcome variable is not as substantial once the new vari-
able has been included in the analysis. Unfortunately, the 
interpretation is not so straightforward for non-linear mod-
els, a point that is not widely understood (for extended dis-
cussion, see Mood, 2010). This issue arises because 
non-linear models have what is known as a fixed variance 
(the fixed variance in the logit model is π2 / 3). Adding vari-
ables to the model can change the estimated coefficients, 
even when the explanatory variables are not related. This 
means that for nested non-linear models, the size of coeffi-
cients for the same variables may differ simply because of 
the rescaling of the model that arises when additional varia-
bles are added and should not be given a simple substantive 
interpretation (Kohler et al., 2011).

When examining the series of nested logistic models pre-
sented in Table 6, we may naively interpret the reduction in 
the log odds for the least advantaged NS-SEC category as 
evidence that part of the this effect has been explained by the 
additional variables that have been added to the model. We 
are unable to conclude this from the details presented in 
Table 6, however. This is because the changes in the log odds 
observed may be the result of the rescaling of the model 
rather than a genuine substantive effect.

Several different solutions have been proposed to deal 
with the problem of comparing coefficients across nested 
non-linear models (see Erikson et al., 2005; Winship and 

Mare, 1984; Wooldridge, 2010). Karlson et al. (2012) and 
Breen et al. (2013) demonstrate that previous approaches to 
this problem are suboptimal and they have developed the 
Karlson–Holm–Breen (KHB) method as a more effective 
solution. This technique can be implemented through the 
-khb- program in Stata (see Kohler et al., 2011). KHB esti-
mates the changes in the coefficients of a logit model that are 
the result of rescaling when new variables are introduced to 
the model. This allows the analyst to determine the total 
effect of a variable (e.g. NS-SEC in the example above) into 
direct effects and indirect effects.

Table 7 presents the results of the KHB technique applied 
to our example. As in Table 6, model 2 contains father’s 
NS-SEC and home ownership, and model 3 contains 
NS-SEC, home ownership and mother’s interest in the child’s 
education. The KHB method allows us to interpret the effect 
of a key variable, in this case father’s NS-SEC, taking into 
account the effects of rescaling.

Table 7 shows the estimated effect of father’s NS-SEC in 
the reduced model (e.g. model 1 in Table 6), the estimated 
effects in the full model (e.g. model 2 in Table 6) and the dif-
ference between the effect of father’s NS-SEC in these two 
models. The estimated effect of the key variable on the out-
come variable is called the direct effect (see Figure 2). When 
we add additional explanatory variables to the model, some 
of this direct effect may be accounted for by these additional 
variables, this is called the indirect effect (see Figure 3). In 
Figure 3, the direct effect of father’s NS-SEC may be partly 

Table 6. An example of a series of logistic regression models. The outcome is score on the same maths test categorised to above 
average (1) and average and below attainment (0).

Model 1 Log 
odds (SE)

Model 2 Log 
odds (SE)

Model 3 Log 
odds (SE)

Father’s NS-SEC 1.  Large employers, higher 
managerial and professional

Ref. Ref. Ref.

2.  Lower managerial and 
professional

−0.36*** (0.10) −0.30** (0.10) −0.30** (0.10)

3. Intermediate −0.49*** (0.11) −0.37*** (0.11) −0.34** (0.11)
4.  Small employers and own 

account workers
−0.97*** (0.10) −0.78*** (0.10) −0.67*** (0.10)

5.  Lower supervisory and 
technical

−1.10*** (0.09) −0.93*** (0.09) −0.82*** (0.09)

6.  Semi-routine −1.27*** (0.09) −1.02*** (0.10) −0.89*** (0.10)
7. Routine −1.41*** (0.09) −1.11*** (0.09) −0.95*** (0.09)

Home owner 0.66*** (0.05) 0.53*** (0.05)
Mother very interested in child’s education 0.74*** (0.05)
Constant 0.97 (0.07) 0.41 (0.09) 0.01 (0.09)
McFadden’s adjusted R2 0.04 0.05 0.07
McKelvey and Zavoina’s R2 0.06 0.09 0.13
Cragg and Uhler’s R2 0.07 0.10 0.13
n 8198 8198 8198

SE: standard error; NS-SEC: National Statistics Socio-Economic Classification. * p < 0.05, ** p < 0.01, *** p < 0.001.
1970 British Cohort Study, age 10 survey.
Model 1 is the reduced model, containing only the key variable of interest (father’s NS-SEC).
Models 2 and 3 are full models, containing the key variable (father’s NS-SEC) and additional explanatory variables.
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explained by the inclusion of parental home ownership, or 
due to rescaling. Using only conventional logistic regression 
results, we are unable to determine whether the direct effect 
of father’s NS-SEC may be partly explained by the inclusion 
of parental home ownership, or due to rescaling. The crux of 
the KHB method is to ensure that the estimated indirect and 
direct effects are better understood and can be given more 
substantively meaningful interpretations.

We can see from Table 7 model 3 that the log odds of 
gaining an above average score are decreased by 0.37 for 
children with fathers in NS-SEC category 2 compared to 
those in the reference category (NS-SEC category 1). 
Controlling for home ownership and mother’s interest in the 
child’s education, the direct effect of being in the most 
advantaged NS-SEC category is reduced to 0.30, leaving an 
indirect effect of 0.07. To aid in the interpretation of these 
effects, Karlson et al. (2012) suggest reporting three meas-
ures, the confounding ratio, confounding percentage and the 
rescaling factor (shown in Table 8).

The confounding ratio for model 3 indicates that the total 
effect (i.e. the sum of the direct and indirect effects) for the 
NS-SEC category 2 is 1.23 times larger than the direct effect 
(i.e. the effect of NS-SEC that remains after controlling for the 
additional variables). The confounding percentage for model 3 
indicates that 19% of the total effects of being in NS-SEC cat-
egory 2 is due to the additional explanatory variables added to 

Table 7. An example of the use of the KHB method to interpret the effect of father’s NS-SEC in a series of nested logistic regression 
models. The outcome is score on the same maths test categorised to above average (1) and average and below attainment (0).

Model 2 Model 3

 Log odds SE Log odds SE

1.  Large employers, higher 
managerial and professional

Reduced Ref. Ref.  
Full  
Difference  

2.  Lower managerial and 
professional

Reduced −0.36*** (0.10) −0.37*** (0.10)
Full −0.30** (0.10) −0.30** (0.10)
Difference −0.06* (0.03) −0.07 (0.05)

3.  Intermediate Reduced −0.49*** (0.11) −0.50*** (0.11)
Full −0.37*** (0.11) −0.34** (0.11)
Difference −0.11*** (0.03) −0.15** (0.05)

4.  Small employers and own 
account workers

Reduced −0.98*** (0.10) −1.00*** (0.10)
Full −0.78*** (0.10) −0.67*** (0.10)
Difference −0.20*** (0.03) −0.33*** (0.05)

5.  Lower supervisory and 
technical

Reduced −1.11*** (0.09) −1.14*** (0.09)
Full −0.93*** (0.09) −0.82*** (0.09)
Difference −0.18*** (0.03) −0.32*** (0.05)

6.  Semi-routine Reduced −1.29*** (0.09) −1.32*** (0.10)
Full −1.02*** (0.10) −0.89*** (0.10)
Difference −0.27*** (0.04) −0.43*** (0.05)

7.  Routine Reduced −1.43*** (0.09) −1.46*** (0.09)
Full −1.11*** (0.09) −0.95*** (0.09)
Difference −0.31*** (0.04) −0.51*** (0.05)

KHB: Karlson–Holm–Breen; SE: standard error; NS-SEC: National Statistics Socio-Economic Classification. * p < 0.05, ** p < 0.01, *** p < 0.001.
1970 British Cohort Study, age 10 survey.

Figure 2. The effect of father’s NS-SEC in the reduced model 
(Table 6, model 1).
NS-SEC: National Statistics Socio-Economic Classification.

Figure 3. The effect of father’s NS-SEC and parental home 
ownership in the full model (Table 6, model 2).
NS-SEC: National Statistics Socio-Economic Classification.
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the model. Iannelli (2013) neatly demonstrates an application 
of the KHB method, and the use of the confounding percent-
age, in her analysis of the National Child Development Study. 
In order to investigate the extent to which school type and 
school curricula mediate the effect of social background fac-
tors on entry to the service class, she utilises the KHB method 
to compare the coefficients of origin, social class and parental 
education across a series of models. She concludes that taken 
together, school type and curricula can provide an additional 
advantage in the process of social mobility (Iannelli, 2013). 
We envisage that the KHB approach is especially attractive in 
studies where researchers are interested in understanding the 
effects of mediating variables. There are many examples of 
this in social stratification research which follows from the 
classic work of Blau and Duncan (1967). Although the KHB 
technique is relatively new, there are a growing number of 
social science studies which utilise this method (e.g. see 
Gabay-Egozi et al., 2015; Gracia et al., 2013; Iannelli, 2013; 
Pais, 2014; Whelan and Maître, 2014).

Non-linear associations

In some secondary data analyses, the association between an 
explanatory variable and a dependent variable is non-linear. 
Treiman (2009) highlights the example of the association 
between age and income because in many countries (e.g. the 
United States) income generally increases with age up to a 
certain point and then begins to fall. Non-linear relationships 
between explanatory and dependent variables provide inter-
pretational challenges in simple regression models. 
Fortunately, there is a straightforward solution to this prob-
lem, because the analyst can operationalise suitable transfor-
mations of the independent variables.

Within sociological research, transformations are some-
times appropriate, such as power transformations (i.e. squar-
ing or cubing the variable), or using a log transformation 

(see Treiman, 2009: 140–145). In some cases, the relation-
ships between variables are highly complex and not captured 
with simpler variable transformations. In such scenarios, 
analysts could consider the use of a spline function. The use 
of splines results in a series of linear or curvilinear associa-
tions, with points of disjuncture (i.e. knots) where the degree 
of association is changed (see Marsh and Cormier, 2002). 
Splines can be implemented quite easily with conventional 
software (i.e. using dummy variables and polynomial expres-
sions), although in some empirical circumstances extended 
thought will be required when interpreting results.

There are very many situations in sociological analysis 
when the use of non-linear transformations makes for a use-
ful explanation of observed patterns of association (Treiman, 
2009). In particular, in the case of exploring trends through 
time with educational and/or occupational measures, it is 
plausible that the relationship follows some form of non-
linear or step relationship, which can be captured by a non-
linear transformation. Such relationships would be described 
sub-optimally if this was not represented in the analysis. For 
example, the use of non-linear transformations in the analy-
sis of educational inequality over time in the Netherlands is 
demonstrated by Buis (2009). The downside of the use of 
non-linear transformations is that they can be very difficult 
to interpret substantively. We suggest that this may be aided 
by the use of graphical or visual representation of modelling 
results.

Intersectionality and interaction effects

When modelling the effects of multiple explanatory varia-
bles, it is important to remember that influences can be sepa-
rated between those that are independent of the values of 
other explanatory variables (i.e. ‘main effects’), and those 
that are conditional upon values of other explanatory factors 
(i.e. ‘interaction effects’) (see Dubrow, 2008; Steinbugler 

Table 8. Confounding ratio and confounding percentage from the KHB method to interpret the effect of father’s NS-SEC in a series of 
nested logistic regression models. The outcome is score on the same maths test categorised to above average (1) and average and below 
attainment (0).

Model 2 Model 3

 Confounding 
ratio

Confounding 
percentage

Rescaling 
factor

Confounding 
ratio

Confounding 
percentage

Rescaling 
factor

1.  Large employers, higher managerial 
and professional

Ref. Ref. Ref. Ref. Ref. Ref.

2. Lower managerial and professional 1.20 17 1.00 1.23 19 1.03
3. Intermediate 1.31 23 1.00 1.45 31 1.02
4.  Small employers and own account 

workers
1.25 20 1.01 1.49 33 1.03

5. Lower supervisory and technical 1.20 17 1.01 1.38 28 1.04
6. Semi-routine 1.26 21 1.01 1.49 33 1.04
7. Routine 1.28 22 1.01 1.53 35 1.04

KHB: Karlson–Holm–Breen; NS-SEC: National Statistics Socio-Economic Classification.
1970 British Cohort Study, age 10 survey.
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and Dias, 2006; Treiman, 2009; Warner, 2008). In particular, 
the total influence of a given explanatory factor is best under-
stood as the combination of its main effect and that of any 
relevant interaction effects. Interaction effects can generally 
be interpreted as the distinctive outcome associated on aver-
age with being in a certain combination of circumstances 
across the various relevant factors. Statistical interaction 
effects are very similar in character to the concept of ‘inter-
sectionality’ that is widely used to describe the interplay 
between different dimensions of difference in people’s lives 
(e.g. Platt, 2011; see also Davis, 2008).

Examining the interactions between variables that iden-
tify multiple characteristics of individuals (e.g. their gender, 
ethnicity and social class) is a methodological strategy for 
examining intersectionality. Strand (2014) provides a dem-
onstration of the examination of intersectionality using inter-
action effects. He notes that analysts generally investigate 
main effects when studying educational inequalities but  
that it may be misleading to consider these main effects in 
isolation. He investigates the effects of the combination  
of ethnicity, social class and gender on General Certificate  
of Secondary Education (GCSE) attainment using the 
Longitudinal Study of Young People in England.21 He finds 
a complex picture of interactions between these variables 
and emphasises, in particular, the low attainment of White 
children from low social class groups. Strand’s (2014) results 
highlight the additional insights which can be gained by 
explicitly attempting to explore intersectionality by includ-
ing interaction effects within statistical models.

Models can be estimated that include numerous interac-
tion terms, and higher-order interactions are possible. 
Hypothetically, a ‘saturated’ model could be estimated that 
included all possible interaction effects between explana-
tory variables (including higher-order interactions). A 
potentially useful model fit statistic could be based on the 
difference between the saturated model and a current sub-
stantive model. In sociological applications where numer-
ous explanatory variables are often relevant, fitting 
saturated models is seldom practicable because these mod-
els are unwieldy and they are often impossible to estimate 
with desktop computers and standard software packages. 
Data analysts generally recognise a trade-off between par-
simony and interpretability when considering interaction 
terms, and for this reason it is commonly considered good 
practice to introduce interaction terms sparingly within the 
model building process.

Consider a model which included a seven category 
measure of NS-SEC and a two category measure of gender 
as explanatory variables. An interaction effect between 
these two explanatory variables will require six extra 
parameters. As the number of categories in each explana-
tory variable increases, effects become very difficult to 
interpret. Multi-way interactions are often also hard to rep-
licate and sometimes tricky to compare across studies. One 
recommendation, highlighted in the previous papers in this 

special section, is that the use of metric (i.e. scale) rather 
than categorical variables greatly improves the parsimony 
of interaction effects and their ease of interpretation.

Analysts may also consider modelling categorical differ-
ences related to key variables through more advanced 
Generalised Linear Mixed Models (GLMM). Gelman and 
Hill (2007) suggest comparing the comparative aspects of 
different groupings of a categorical explanatory variable by 
estimating models that partition the variance of the outcome 
across levels of the explanatory variable (e.g. for each cate-
gory of an occupation based socioeconomic variable). This is 
achieved by estimating a random effects model where the 
random effect represents levels of the observed explanatory 
variable. This strategy is not routinely employed in social 
research, but we can foresee situations where this could 
prove insightful, particularly for measures of variables where 
there are potentially a lot of different categories such as 
occupations. Once again, we envisage that this form of 
exploratory activity could also suitably be reported as a com-
ponent of a more extensive sensitivity analysis; even if it did 
not form part of a published output, it should be made acces-
sible for example in a data supplement.

Sensitivity analysis

With a large number of possible forms of key variables meas-
uring occupation, education and ethnicity, it may seem like a 
daunting task to select the correct measure for an analysis. As 
we have stressed in the previous papers in this special sec-
tion, a sensible and defensible solution is to explore several 
different operationalisations of the key variable. We have 
repeatedly suggested that operationalising a measure of 
occupation, education or ethnicity is not a simple case of 
selecting one superlative measure, and there may be many 
plausible candidate measures. The alternatives also might 
often have different functional forms (e.g. categories vs scal-
ing). We recommend that secondary data analysts should 
routinely undertake sensitivity analyses that compare and 
evaluate the performance of alternative measures within the 
statistical models that they are developing.

Sensitivity analysis is the umbrella term for the investi-
gative process of evaluating different analyses, for example, 
alternative statistical models. This involves investigating 
the influence which changes in a model (e.g. the use of dif-
ferent operationalisations of a variable) have on substantive 
results. There are some published examples of sensitivity 
analyses, for instance the comparisons of occupation based 
measures presented by Lambert and Bihagen (2012, 2014), 
Bukodi et al. (2011) and Gayle and Lambert (2011), and the 
comparison of measures of education presented by Feinstein 
et al. (2003). We contend that sensitivity analyses should  
be made as accessible as possible. This can be achieved  
by publishing data supplements, or making files available 
on the researcher’s website or through their institutional 
repositories.
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In most circumstances, a specific sensitivity analysis is 
required for each new project, since the particular features of 
different measures have the potential to be varied for differ-
ent outcome measures or subject areas. Although the process 
of conducting a sensitivity analysis can seem burdensome 
and even uninspiring, modern software capabilities mean 
that at least in principle it is now quite easy to re-run analyses 
using different candidate measures. In much the same way 
that analysts put a great deal of effort into comparing the 
results of different forms of statistical analysis, the same 
could and should be true of comparisons of measures based 
on alternative key social science variables. We believe that 
routinely undertaking sensitivity analyses will mean that the 
substantive results of secondary social survey research will 
be more robust and stable, and will lead directly to improved 
confidence in results.

Documentation for replication

Advances in computer power and statistical software have 
allowed social survey researchers to dramatically increase 
the scale, complexity and sophistication of their analyses. 
The production of textual command based analyses (e.g. 
using .do files in Stata or syntax in SPSS) is the key to pro-
viding an accurate record of data operations (see Kohler and 
Kreuter, 2012; Long, 2009; Treiman, 2009). This documen-
tation also provides a resource for the replication and devel-
opment of research by others. Treiman (2009) states that 
researchers should always carry out analyses using statistical 
code (i.e. syntax), and keep a log of the manipulations which 
are performed on their data. It should also be noted that cen-
tral to producing successful textual command files is the use 
of extensive comments to describe and provide a rationale 
for the work which has been undertaken.

More generally, social survey analysts should maintain a 
consistent workflow in their data analysis (see Long, 2009). 
The workflow of data analysis is a term used to describe the 
entire process of data analysis including the planning of an 
analysis, cleaning the variables ready for analysis, creating 
new variables, producing and presenting statistical analyses 
and ultimately archiving resources. Ideally researchers 
should produce a workflow record which covers each of 
these steps within a coherent textual command file (Long, 
2009), with documentation which links it to data files and 
supporting artefacts which can be archived for later use and 
for distribution to others. In the analysis of key variables, it 
is very important that the process of producing these meas-
ures is clearly documented, for the benefit of both the origi-
nal researcher and for the wider research community.

Conclusion

The analysis of large-scale social science datasets has been 
positively transformed by advances in the power, speed and 
storage capacity of desktop computers. At the same time, 

developments in statistical software packages have greatly 
improved analytical possibilities. We advise that all research-
ers engaged in the analysis of large-scale social science data-
sets must use syntax files (e.g. do files in Stata or .sps files in 
SPSS). The use of syntax files is an essential pillar in produc-
ing suitable supporting documentation. Syntax files are also 
critical for enabling analyses to be replicated, which is an 
indispensable aspect of incremental development within 
social science.

We generally advocate the use of the software package 
Stata (StataCorp, 2015). This is because in our experience 
it is a fast and powerful package that works well with large-
scale social science datasets. Stata is a general purpose 
package that is capable of undertaking all of the data man-
agement and data preparation tasks that are usually required 
when analysing large-scale datasets. Stata can calculate all 
of the exploratory data analyses that sociologists routinely 
require and relevant descriptive and inferential statistics. 
Using Stata data analysts are able to estimate a very wide 
range of statistical models from within the generalised linear 
mixed model family (see Hedeker, 2005). In addition, Stata 
provides a wide range of more exotic statistical models 
including duration models, longitudinal models, structural 
equation models, latent variable models and, more recently, 
Bayesian models. Most notably, Stata supports analyses 
that appropriately take account of survey designs and sam-
pling structures. It is also possible for analysts to produce 
publication ready outputs such as graphs and tables of mod-
elling results.

An on-going theme of this special section is that sociolo-
gists should place a large amount of thought into their analy-
ses. Therefore, we strongly warn against using techniques 
such as stepwise regression (Whittingham et al., 2006), and 
we advocate that researchers should always have a clear and 
substantively informed variable selection and inclusion strat-
egy that does not rely upon an automated algorithm. An over-
all goal for any analysis will be the estimation of a model that 
is parsimonious but which gives a good representation of the 
multivariate nature of the outcome under investigation. 
Model building is usually most effectively achieved by 
beginning with a very simple model with few explanatory 
variables, and gradually introducing additional substantively 
relevant explanatory variables in response to the evaluation 
of relevant model fit statistics.

We acknowledge that in many sociological investigations, 
researchers will be analysing categorical outcome variables. 
Therefore, non-linear models such as logistic regression mod-
els are very common in sociology. Compared with standard 
linear regression models, logistic regression models are trick-
ier to interpret and the effects of individual explanatory vari-
ables are not as readily intuitive. At the same time, many 
statistical models contain categorical explanatory variables. 
Because of the limitations of using odds ratios we advocate 
that analysts report parameter estimates on the log odds scale, 
but also routinely report marginal effects (probabilities) as 
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this greatly aids the interpretation of the effects of explana-
tory variables. We consider that there is additional benefit in 
reporting the lower and upper bounds of marginal effects. We 
strongly advocate reporting quasi-variance based standard 
errors because these measures facilitate the calculation of 
comparison intervals and therefore address the reference cat-
egory problem. We have also illustrated a format where there 
is sufficient space to report both quasi-variance standard 
errors and related comparison intervals.

We conclude that it is always good practice for data ana-
lysts to report sample sizes and model fit statistics. The use 
of goodness of fit statistics such as R2 is relatively unconten-
tious when standard linear regression models are being esti-
mated. There are a number of possible pseudo R2 measures 
suitable for non-linear model such as logistic regression. 
Currently, we are not persuaded that any single pseudo R2 
measure should ordinarily be preferred above all others, and 
at the current time, we suggest that researchers report a set of 
pseudo R2 measures. We consider that there is a compelling 
case for using measures such as the BIC that accounts for 
parsimony when reporting a set of nested models.

Throughout the special section, we have argued that 
researchers should undertake sensitivity analyses and, when-
ever practicable, these analyses should be made as accessible 
as possible. We have argued for a clear and transparent work-
flow with documentation which links the component parts of 
the research process such as data files and outputs. A docu-
mented workflow is critical for transparency and for ena-
bling analyses to be replicated.

In conclusion, we hope that these comments fill a 
neglected gap in the literature on large-scale data analysis in 
sociology. They are intended to provide practical assistance 
for empirical researchers. There will be future developments 
in large-scale surveys, computing power, statistical software 
and statistical modelling. Therefore, these recommendations 
are intended to provide useful guidance and are not intended 
as a final prescription.
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Notes

 1. For example, a 95% confidence interval will be derived from 
the following formula Beta ± 1.96 * Standard error.

 2. For example, the Wald Test provides a formal benchmark 
using the formula (Beta/Standard error)2 compared with the 
Chi-square value at 1.d.f. Another simpler benchmark is that a 
Beta is greater than twice its standard error.

 3. We direct readers who are new to this area to Dale and Davies 
(1994) who provide an instructive introduction to the issues sur-
rounding age, period and cohort effects in social science data.

 4. This is because in a statistical model with q parameters there 
would, in general, be ½ q * (q – 1) covariances to report. 
Therefore, in most genuine analyses with many explanatory 
variables the matrix will be unfeasibly large and impractical to 
report in paper based publications.

 5. We refer to this as Firth’s method but are aware that he notes 
that the initial suggestion that quasi-variance statistics may be 
of value was made by Ridout (1989).

 6. Accessible here: http://www.longitudinal.stir.ac.uk/qv/
 7. Accessible here: http://www2.warwick.ac.uk/fac/sci/statistics/

staff/academic-research/firth/software/qvcalc/
 8. See http://cran.r-project.org/web/packages/qvcalc/index.html
 9. University of London. Institute of Education. Centre for 

Longitudinal Studies, Millennium Cohort Study: Third Survey, 
2006 (computer file). 6th Edition. Colchester, Essex: UK Data 
Archive (distributor), December 2012. Study number (SN): 
5795, http://dx.doi.org/10.5255/UKDA-SN-5795-3

10. Firth suggests this alternative terminology.
11. In our experience, these two models are sufficiently similar 

that they will naturally lead to identical substantive conclu-
sions. Amemiya (1981) proposes a simple transformation of 
estimates between logit and probit models of 1.6. βlogit = (βprobit 
* 1.6) and βprobit = (βlogit/1.6). Alternatively, Aldrich and Nelson 
(1984) suggest a scaling factor of π/√3 = 1.814. Liao (1994) 
asserts that the most accurate value of the conversion factor 
lies somewhere in the neighbourhood of these two values. He 
further asserts that there could be analyses where the logit and 
probit results differ substantially, for example when there are 
an extremely large number of observations heavily concen-
trated in the tails of the distribution. In these circumstances, we 
would advise secondary data analysts to place extra thought 
into which form of generalised linear model (GLM) they esti-
mate and not to simply be guided by disciplinary conventions.

12. Butler, N, Bynner, JM and University of London. Institute 
of Education. Centre for Longitudinal Studies, 1970 British 
Cohort Study: Ten-Year Follow-Up, 1980 (computer file). 
5th Edition. Colchester, Essex: UK Data Archive (dis-
tributor), July 2014. SN: 3723, http://dx.doi.org/10.5255/
UKDA-SN-3723-3

13. The Variance Inflation Factor (VIF) is used as a measure of 
multicollinearity (see Fox, 1991). It indicates the extent to 
which the standard errors of a parameter estimate in linear 
regression are increased due to correlation with other explana-
tory variables. Most commonly a VIF of 10 has been recom-
mended as the maximum tolerable value (see Hair et al., 2006; 
Kennedy, 2003; Neter et al., 1996), although lower values have 
also been suggested (see Rogerson, 2001). The VIF values for 
the explanatory variables in our example are NS-SEC (National 
Statistics Socio-Economic Classification) 2 (1.97), NS-SEC 3 
(1.68), NS-SEC 4 (1.93), NS-SEC 5 (2.21), NS-SEC 6 (2.17), 
NS-SEC (2.47), parental home ownership (1.15), mother’s 
interest in the child’s education (1.10). These values satisfy 
even the most stringent cut-off values.

14. We have found this simple technique to be especially use-
ful when we are in the audience at seminars and conference 
presentations.

15. There are many alternative names for marginal statistics. These 
include estimated marginal means (see Searle et al., 1980), 
predictive margins (see Graubard and Korn, 1999), and aver-
age marginal/partial effects (see Bartus, 2005; Wooldridge, 
2010).

mailto:R.Connelly@warwick.ac.uk
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software/qvcalc/
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software/qvcalc/
http://cran.r-project.org/web/packages/qvcalc/index.html
http://dx.doi.org/10.5255/UKDA-SN-5795-3
http://dx.doi.org/10.5255/UKDA-SN-3723-3
http://dx.doi.org/10.5255/UKDA-SN-3723-3
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16. Keen readers will note that in this example, the rough and 
ready method suggested by Gelman and Hill (2008) (reported 
in Table 2 column 3) provides a good approximation.

17. These measures are sometimes alternatively known as predic-
tive margins. In our view, this terminology does little other 
than guarantee confusion.

18. In addition to the sample enumeration proportion, we have 
estimated a 95% comparison interval via a bootstrapping 
procedure with 1000 replications. For illustration, the esti-
mate of 53% for NS-SEC 7 has a 95% comparison interval 
of 52.9%–53.9%. A full set of results are available from the 
authors by request. We are grateful to Professor Richard B 
Davies (University of Swansea) for suggesting this extension.

19. The command -fitstat- provides a series of alternative pseudo 
R2 measures.

20. We are aware that there are a few ways to calculate Bayesian 
Information Criterion (BIC) statistics. In this example, we have 
used the measure computed by -estat ic- in Stata 13.

21. Department for Education and National Centre for Social 
Research, Longitudinal Study of Young People in England: 
Waves One to Seven, 2004–2010 (computer file). 12th Edition. 
Colchester, Essex: UK Data Archive (distributor), August 
2012. SN: 5545, http://dx.doi.org/10.5255/UKDA-SN-5545-3
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