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Abstract:  
By taking gravity and joint/link compliances into account, this paper presents a semi-analytical approach for compliance 

analysis of a 3-SPR parallel mechanism which forms the main body of a 5-DOF hybrid manipulator especially designed for 

high-speed machining and forced assembling in the aircraft industry. The approach is implemented in three steps: (1) 

kinetostatic analysis that considers both the externally applied wrench imposed upon the platform and the gravity of all 

moving components; (2) deflection analysis that takes into accounts of both joint and link compliances; (3) formulation of the 

component compliance matrices using a semi-analytical approach. The advantage of this approach is that the deflections of 

the platform caused by both the payload and gravity within the given task workspace can be evaluated in an effective manner. 

The computational results show that the deflection arising from gravity of the moving components may have significant 

influence on the pose accuracy of the end-effector. 
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1. Introduction  

The existing category of five degrees of freedom (DOF) manipulators having hybrid architectures contains two 

families that are composed of a 3-DOF parallel mechanisms plus a 2-DOF rotating head attached to its platform. The 

first family essentially comprises those with a properly constrained active/passive limb plus a number of 6-DOF active 

limbs having six degrees of freedom [1, 2]. Here, an active limb is the limb having at least one actuated joint. A passive 

limb is the limb having no actuated joint. And the word ‘properly’ means that the type and number of DOF of the 

constrained limb are completely identical to those of the platform. Typical examples in this family are the well-known 

Tricept [3], George V [4] and TriVariant [5] among others [6]. Parallel mechanisms belonging to the second family are 

basically composed of three lower mobility limbs having 4 or 5 degrees of freedom. Typical example in this family is 

the Exechon robot [7]. These two families are especially designed for their applicability to light machining (such as 

deburring, drilling, cutting and welding), among other tasks, and they thereby have become of great interest to machine 

tool and aircraft builders in recent years. 

Stiffness is one of the most important performance factors that should be considered for the above-mentioned 5-DOF 

hybrid manipulators when they are used for high-speed machining and/or forced assembling, for which high rigidity and 

high accuracy are crucial requirements. These requirements have led to enthusiastic and extensive investigations into 

stiffness modelling, evaluation and optimization. As far as the stiffness modelling is concerned the approaches available 

to hand can roughly be divided into two groups: numerical approaches by means of finite element analysis (FEA) or 

structure matrix analysis (SMA) [8-9]; and analytical or semi-analytical approaches [10-26] based upon the 

combination of fundamental robotic theory with FEA or structural mechanics. The FEA is the most accurate method 

because the complex 3D geometry of links, contact rigidity of joints, and distributed external forces (self-weight or 

gravity, for example) can be modelled precisely. However, very high computational costs arise as the FE models have to 

be re-meshed over and over again with the changing configurations. Consequently, comprehensive analytical/ 

semi-analytical modelling approaches are required in order to allow stiffness evaluation to be carried out throughout the 

entire workspace in an effective manner either in the preliminary or in the final design stage.  

Analytical/semi-analytical stiffness modelling of parallel mechanisms can be traced back to the work of Gosselin [10] 

in which merely the actuator compliances were taken into account. By taking into account the component compliances 

in terms of tension/compression, bending and torsion, a plenty of work was carried out by Zhang and Gosselin [11-13] 

for the stiffness analyses of Tricept robots. They also proposed the elegant concept of the ‘virtual joint’ to formulate the 

bending compliance of a properly constrained passive limb within the Tricept and its variants, resulting in a simplified 

bending stiffness model represented by three lumped springs. Recently, the concept of ‘virtual joint’ was significantly 

extended by Pashkevich et al [14-16], resulting in a multidimensional lumped-parameter model formulated in terms of 

localized 6-DOF virtual springs for describing the link/joint compliances. The model formulated in this way is a direct 

map from the rigidity of links/joints to the stiffness of the end-effector.  

By dividing the link/joint compliances into two groups associated respectively with actuations and constraints, screw 

theory based approach may serve as a useful tool for analytical/semi-analytical stiffness modelling of lower mobility 

parallel mechanisms. The initiative along this track was taken by Joshi and Tsai [27] in formulating the overall Jacobian. 
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The idea was then extended by Huang and colleagues [28] into the generalized Jacobian. The difference is that the 

generalized Jacobian considers the theoretically inaccessible instantaneous motions between the joint space and 

operation space, which is an important issue in the stiffness and accuracy analysis. Based upon the overall and 

generalized Jacobians, the stiffness analyses of a number of lower mobility parallel manipulators have been investigated 

[17-26]. The advantages of the screw theory based approach is that it enables the Cartesian stiffness matrix to be 

decomposed into two meaningful components associated respectively with actuations and constraints, providing 

designers with clear and useful guidelines for taking appropriate measures to improve static performance of the system.  

It should be pointed out that besides the deflections caused by the payload exerted upon the end-effector, the 

deflections caused by the gravity of the robot structure itself should be considered in the compliance analysis of the 

5-DOF hybrid manipulators, particularly for applications that orient them primarily horizontally. Several attempts have 

been made to deal with this problem by treating gravity as a concentrated force[29-31], or as equivalent pairs of parallel 

forces applied on the adjacent joints[16]. However, these treatments are insufficient in the cases where the link 

compliances are not negligible, thus remaining an open issue to be investigated.  

This paper presents a semi-analytical approach for compliance analysis, applied explicitly to a 3-SPR parallel 

mechanism which forms the main body of a 5-DOF hybrid manipulator especially designed for high-speed machining 

and forced assembling. Having outlined the existing challenges above, the paper is organized as follows. The system 

description and inverse displacement analysis are addressed briefly in Section 2. Section 3 then executes the detailed 

procedure for deflection analysis of the mechanism, concentrating upon: (1) formulation of a linear map between joint 

forces and an externally equivalent applied wrench imposed on the platform; (2) establishment of a precise model for 

the joint deflections; and (3) formulation of the component compliance matrices in the joint space using a 

semi-analytical approach. A numerical example is given in Section 4 to illustrate the effectiveness of the approach and 

conclusions are drawn in Section 5. 

2. System Description and Inverse Kinematics 

Fig.1 shows a 3D view of the 5-DOF hybrid manipulator under consideration, which is essentially composed of a 

3-SPR parallel mechanism plus a 2-DOF rotating head attached to the platform via a trust bearing. The parallel 

mechanism consists of a platform, a base, and three identical SPR limbs. The major distinctions between the current 

design and the Exechon robot [7] are: 1) the use of three identical SPR limbs instead of two UPR plus one SPR limbs, 2) 

the use of fork type joints to reduce the base size, and 3) the use of cants with inclination angles to the base to reduce 

the overhang distance of the centre of the spherical joints and thus avoid interference between the base and limbs. The 

spherical joint contains a rotating fork, a rotating block and a carriage, they are sequentially connected by shafts and 

bearings. In order to achieve a compact design, the rotating block is embedded within the rotating fork and carriage. 

The lead-screw is then placed through the rotating block and the carriage. 

 

Fig.2 shows the schematic diagram of the 3-SPR parallel mechanism. Let 
iB  be the centre of the S joint connecting 

the thi limb with the base, forming an isosceles triangle 
1 2 3B B B , and let

iA  be the centre of the R joint connecting 

the limb with the platform, forming an isosceles triangle 1 2 3A A A . Then, place a reference frame  R  attached to the 

base with O  being located at the centre of 2 3B B such that 
1 2 3z B B B   and 2 3y B B . Meanwhile, place a body 

fixed frame  R  attached to the platform with O  being located at the centre of 2 3A A  such that 
1 2 3z A A A    and 

F
f

Fig.2  Schematic diagram of a 3-SPR parallel mechanism 
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2 3y A A  . For convenience of defining the link/joint compliances within a limb, place a set of body fixed frames 

 ,j iR  attached to one of two elements of the thj  joint in the thi limb with 
,j is  being the unit vector of the joint 

axis. For this particular problem,  ,j iR  is sequentially attached to the axis of the thj  ( =1,2,3j ) revolute joint within 

the spherical joint,  4,iR is attached to the carriage with 
iB  being its origin, and  5,iR  is attached to the limb body 

with 
iA  being its origin. Fig.3 and 4 show the locations of the axes of these frames.  

 
According to the frame settings described above, the joint axes are arranged in the ways 

1, 2, 2, 3, 3, 4, 4, 5,

5,2 5,3 5,1 5,2 5,2 2 3

,   ,  / / ,  ,   =1,2,3

  ,  ,  

i i i i i i i i i

A A

  

 

s s s s s s s s

s s s s s//
                           (1) 

such that 
2 3 3 2B B A A, , ,  are forced to be coplanar. Then, the orientation matrix R  of  R  with respect to  R  can 

be expressed in terms of two Cardan angles, i.e.  about the x axis and  about the y axis, as 

     

cos 0 sin

Rot , Rot , sin sin cos sin cos

cos sin sin cos cos

x y

 

      

    

 
    
 
  

R u v w             
 
(2) 

where u , v  and w  are the unit vectors of the three orthogonal axes of R . 

Given the dimensional parameters and the position of the point P , an inverse displacement analysis is carried out as 

the prerequisite for deflection analysis of the 3-SPR parallel mechanism. As shown in Fig.2, the position vector, 

 
T

x y zr , of the point P can be expressed by 

4,i i i iq  r b s c , 
i i d e  c a v w

                               
(3) 

where 
iq  is the length of the thi  limb; 

ib  and 
ia  are the position vectors pointing from O  to 

iB , and from O  

to 
iA , respectively. Also, 

0i ia Ra , 
0i i iaa s , 

i i ibb s ,  
T

cos sin 0i i i s                      (4) 

1 1a O A , 
2 3 2 3a a O A O A    , 

1 1b OB , 
2 3 2 3b b OB OB    

d O Q , e PQ , 
1 π 2   , 

2 0  , 
3 π   

Note that the geometric constraint 5,2 5,3s s//  given in Eq.(1) restricts OO  to be lying in the plane 
2 3 3 2B B A A  normal 

to v . This consideration leads to 

T 0d v r                                          (5) 

Also, note that 5,1 4,1s s  and 5,1 1 s c  such that 

 T

1 0 u r b                                         (6) 

Fig.3  Body fixed frames of the S joint within the thi limb 
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Solving Eq.(5) and (6) yields 

2 2 2

2arctan      

2arctan                            

z y z d
y d

y d

d
y d

z



   
 
  

 

, 
 1

arctan
cos sin

x

z y b


 

 
     

                (7) 

Then, R can be determined using Eq.(2) and the inverse displacement problem can be solved by 

 

 

4, 3, 4,

T 3, 1,

5,1 5,2 5,3 1, 2,

3, 1,

,   / ,  

,   ,  ,  cos cos cos sin sin , 

i i i i i i i i i

i i

i i i i

i i

q q

    

      


     



r b c s r b c s s

s s
s u s v s v s s

s s

  1 , 2 , 3i          (8) 

where is the inclination angle of the cant in the base. 

3. Compliance Analysis  

This section introduces a semi-analytic compliance model of the 3-SPR parallel mechanism that simultaneously takes 

into account all significant component compliances, including axial and bending compliances of the links, and 

compliances of the S, P and R joints. By assuming the system is linearly elastic in nature, we treat the base and platform 

(including the 2-DOF rotating head) as rigid bodies since superposition can be used wherever required to consider their 

compliances. This analysis also takes into account the deflections induced by gravity of all the movable components. 

 

3.1 Force Analysis 

Force analysis of the 3-SPR parallel mechanism is concerned with the formulation of a linear map between the 

externally applied wrench imposed upon the platform and the reaction forces at 
iB  as shown in Fig.5. By considering 

all forces and by taking the moment of all forces about P, the static equilibrium equations can be expressed as 

 

         

4 4 4

0 0 4 4 4

3

, , 5, , 4,

1

3

4, , 4, , 4, 5, , 4,

1

ˆ ˆ3

ˆ ˆ

B B B

P P L x i i y i i z i i

i

B B B

P P G P L i L i i x i i i i i y i i i i i z i i i

i

m g m g f f f

m g m g l t f q f q f





    

              





f y y n s s

τ R r r y c s n y c s n c s s c s

 (9) 

5, 4,i i i n s s ,  
T

ˆ 0 1 0y  

where Pf  and Pτ  are the externally applied force and moment imposed upon the platform at P ; Pm  is the mass 

and 
0Gr  is the position vector of the mass centre 0G  of the platform evaluated in  R ;  

0

T
= 0P d er ； Lm  is 

the mass and 
Ll ( t ) is the projection of the distance from the mass centre 

iG  of the limb-body assembly onto 
iA  

along 4,is ( in ); ŷ  is placed in the direction opposite to the gravitational field; 
4 ,

B

x if , 
4 ,

B

y if  and 
4 ,

B

z if  are the reaction 

forces along the 4, 4, 4,,  ,  i i ix y z  axes at 
iB . These reaction forces cannot be solved directly because there are nine 

unknowns in the six equilibrium equations. Consider, however, the free-body diagram of the thi  limb-body assembly 

as shown in Fig.6, which exposes the reaction forces and couples in the revolute joint. Then, taking moments of all 

Fig.6  Free body diagram of the thi limb-body assembly 
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forces about
iA gives 

     
5 5 4 4, , 4, 4, 4, , , 5,

ˆA A B B

x i i z i i L i i L i i x i i y i il t m g q f f         n s s n y s n s , 1,2,3i                (10) 

where 
5 ,

A

x i  and 
5 ,

A

z i  denote the reaction couples about the 
5,ix  and 

5,iz  axes respectively. Now, taking the dot 

product on both sides of Eq.(10) with
5,is yields  

 
4

T

, 4,
ˆ+B L

x i i L i

i

m g
f t l

q
  s n y , 1,2,3i                                  (11) 

Substituting Eq.(11) into Eq.(9) and rewriting in matrix form results in 

T

w w J ρ$                                         (12) 

where 

, , ,P Lw w E w G w G  $ $ $ $ , 
,

P

w E

P

 
  
 

f

τ
$ , 

 
0 0

,

ˆ

ˆPw G P

G p

m g
 
  
  
 

y

R r r y
$  

     

3
T T

, 4,

4, 4, 4,1

ˆ
ˆ ˆ

ˆ+L

i iL

w G L i i

i L i i i i i i i i i ii i i

l t
m g

l t q qq q

      
                          


y n n

n y s y
c s n y c s n c s n

$  

w$  is the resultant externally applied wrench imposed at P  with , Pw G$  and , Lw G$  being the components produced 

by the gravity of the platform and limb-body assemblies, respectively; and 

T
T T

a c
  J J J= , 

T

4,1 4,2 4,3

1 4,1 2 4,2 3 4,3

a

 
  

   

s s s
J

c s c s c s
, 

     

T

5,1 5,2 5,3

1 1 4,1 5,1 2 2 4,2 5,2 3 3 4,3 5,3

c q q q

 
  

      

s s s
J

c s s c s s c s s
 

 
T

T T

w wa wcρ ρ ρ ,  
T

,1 ,2 ,3wa wa wa wa  ρ , 
4, ,

B

wa i z if  ,  
T

,1 ,2 ,3wc wc wc wc  ρ , 
4, ,

B

wc i y if   

J is the overall or generalized Jacobian [27, 28] with 
aJ  and 

cJ  being the components associated respectively with 

actuations and constraints; and 
wρ  is the joint force vector with 

waρ  and 
wcρ  being those corresponding to 

aJ  and 

cJ . Since each row of 
aJ (

cJ ) represents a unit wrench, Eq.(12) can be interpreted physically as meaning that the 

externally applied wrench imposed upon the platform must be equilibrated by all wrenches of actuations and constraints 

imposed by all limbs.  

3.2 Deflection Analysis 

Deflection analysis of the 3-SPR parallel mechanism is concerned with the formulation of the linear map between 

deflection twist of the platform and the virtual linear deflections at 
iB . Utilizing the reciprocal theorem in elastic 

mechanics, readily proves the relationship that 

  
4 4 44, , , 5, , 4,

B B B

i i i x i i y i i z i iq         r α c s n s s , 1,2,3i                       (13) 

where  r  and α  are the linear deflection at P  and the angular deflection of the platform; and 
4 ,

B

x i , 
4 ,

B

y i  and 

4 ,

B

z i  are the virtual infinitesimal displacements at 
iB  along the 4,ix , 4,iy  and 4,iz  axes when the joint constraints at 

iB  are assumed to be released to free the elastic deformation energy stored in the system. 

  Taking dot products on both sides of Eq.(13) with 
4,is  and 

5,is  respectively yields  

 

  

4

4

T
T

4, 4,i ,

T
T

5, 4, 5,i ,

B

i i z i

B

i i i i y iq

  

   

s r c s α

s r c s s α

  

  
, 1,2,3i                          (14) 

Rewriting Eq.(14) in matrix form finally results in 

t tJ ρ$                                          (15) 

 
T

T T

t   r α$ ,  
T

T T

t ta tcρ ρ ρ  

 
T

,1 ,2 ,3ta ta ta ta  ρ , 
4, ,

B

ta i z i  ,  
T

,1 ,2 ,3tc tc tc tc  ρ , 
4, ,

B

tc i y i   
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where 
t$  represents the deflection twist of the platform at P ; 

tρ  denotes the joint deflection vector with 
taρ  and 

tcρ  being those associated with 
aJ  and 

cJ . Note that 
taρ  and 

tcρ  should be further decomposed into two 

components, i.e.  

ta ta ta
  ρ ρ ρ ,  

T

,1 ,2 ,3ta ta ta ta     ρ ,  
T

,1 ,2 ,3ta ta ta ta     ρ                (16) 

tc tc tc
  ρ ρ ρ ,  

T

,1 ,2 ,3tc tc tc tc     ρ ,  
T

,1 ,2 ,3tc tc tc tc     ρ                (17) 

where ,ta i ( ,tc i ) is caused by the compliance of the thi  limb under the action of the force 
,wa i ( ,wc i ), and 

,ta i (
,tc i ) is caused by the compliance of the thi  limb under the action of the distributed gravity of the limb itself. 

The procedure to evaluate 
,ta i  and 

,tc i  will be addressed in Section 3.5 

3.3 Compliance Modelling  

Having developed the two linear maps above, the deflection model of the mechanism is easily obtained. Assuming 

each individual component is linearly elastic, Hooke’s law gives 

, , , , ,ta i aa i wa i ac i wc ic c     , 
, , , , ,tc i cc i wc i ca i wa ic c     ,  1,2,3i                    (18) 

where 
,aa ic  (

,cc ic ) can be interpreted physically as the deflection along the 
4,iz  (

4,iy ) axis produced by a unit 

joint force 
,wa i  (

,wc i ) in the thi  limb; 
, ,( )ac i ca ic c denotes the coupled deflection along the 

4,iz (
4,iy )axis 

produced by a unit joint force 
,wc i (

,wa i ); And 
, ,ac i ca ic c  because the system is assumed elastic linear in nature. 

Note that 
,aa ic , 

,cc ic  and 
,ac ic (or 

,ca ic ) are usually not constants but configuration dependent . Rewriting Eq.(18) 

in matrix form results in 

ta aa wa ac wc
  ρ C ρ C ρ , 

tc cc wc ac wa
  ρ C ρ C ρ                            (19) 

,1

,2

,3

aa

aa aa

aa

c

c

c

 
 

  
 
 

C , 

,1

,2

,3

cc

cc cc

cc

c

c

c

 
 

  
 
 

C , 

,1

,2

,3

ac

ac ac

ac

c

c

c

 
 

  
 
 

C  

where 
aaC  (

ccC ) is referred to as the compliance matrix of actuations (constraints) in the joint space. 
acC  denotes the 

coupled compliance matrix between the directions of actuations and constraints. Substituting Eqs.(12) and (19) into 

Eq.(15) and assuming J  is non-singular [32] finally results in the deflection model of the 3-SPR parallel mechanism 

which accounts for the gravity of the platform and limb-body assemblies. Thus, 

1

t w t

  C J ρ$ $ ,  
1

T 1


C J C J , aa ac

ac cc

 
  
 

C C
C

C C
,  

T
T T=t ta tc

  ρ ρ ρ                  (20) 

where C  is referred to as the compliance matrix in the Cartesian space. It is easy to see that model developed here 

contains two components, i.e., the deflection caused by resultant externally applied wrench imposed upon the platform 

and that caused by the deflections 
t
ρ  arising from the distributed gravity of the limb-body assemblies. Obviously, 

t$  

in Eq.(20) can also be decomposed into another two components, i.e., 

, ,t t E t G $ $ $                                         (21) 

where , ,t E w EC$ $  is the deflection twist of the platform caused by the externally applied wrench ,w E$  imposed 

upon the platform, leading to a conventional compliance model neglecting gravity; and ,t G$  is that caused by the 

gravity of the movable components. Of course, further decomposition can also be made on ,t G$  such that  

 , , ,=
P Lt G t G t G$ $ $ , , ,P Pt G w GC$ $ , 

1

, , +
L Lt G w G t

 C J ρ$ $                           (22) 

where , Pt G$  and , Lt G$  are the deflection twists associated respectively with the gravity of the platform and limb-body 

assemblies. For simplicity, the two components , Lw GC$  and 1

t

 J ρ  in , Lt G$  are hereinafter denoted by , Lt G
$  and 

, Lt G
$  respectively.  



7 

3.4 Formulation of 
aaC ,

ccC  and
acC  

 For simplicity, we temporarily omit the subscript ‘i’ during this evaluation of the elements in 
aaC , 

ccC  and 
acC ; 

the process applies equally to each limb. For a general link/joint, the compliance matrix should be symmetrical and 

have off-diagonal elements by considering the coupled deflections between different directions.Then the compliance 

matrix of a link/joint evaluated in  jR  with respect to its origin D can be formulated as  

 
T

, ,

, ,

D D

j t j trD

j
D D

j tr j r

 
 
 
 

C C
C

C C
                                      (23) 

where ,

D

j tC ( ,

D

j rC ) denotes the linear (angular) compliance matrix, ,

D

j trC  denotes the coupled matrix between the linear 

and angular compliance. The linear compliance matrix expressed in our limb reference frame  4R  then follows the 

well-known compliance (or stiffness) transformation (see Fig.7), typically derived by the principle of virtual work. This 

consideration gives 

 
T

T T T T

4, 4 , 4 4 , 4 4 , 4 4 , 4

B D D D D

t j j t j j j r j j j tr j j j tr j   C R C R pR C R p pR C R pR C R                    (24) 

where 4 4 4 4j j j j
   R u v w  denotes the orientation matrix of  jR with respect to  4R , and p  denotes the skew 

matrix of the vector p  pointing from B  to D  as shown in Fig.7. In this particular problem, the point D  is either 

the centre of the spherical joint B or the centre of the revolute joint A ; p  has zero length in the former case, while the 

relative orientation is the same for the both. 

At the same time, since only the directions of actuations and constraints are taken into account, the compliance matrix 

of the same link/joint evaluated in  4R  with respect to B can be modelled as  

4 4 4 4

4 4

4,

sym

B B B

t y y z y

B

z z

c c

c

 
 

  
 
  

C                                    (25) 

Note that “ ”means the compliance coefficient along the x4 axis is infinite, meaning that the virtual displacement 

along the x4 axis is a rigid body motion for fulfilling the compatibility conditions as all limbs share the same platform. 

4 4

B

y yc , 
4 4

B

z zc  and 
4 4

B

y zc (or 
4 4

B

z yc ) denote the linear rigidities in the directions of actuations (
4z ) , constraints (

4y ) and 

the coupling between them, respectively. 

To evaluate the component compliances, we group all the parts within an SPR limb into one of two sub-assemblies. 

Referring to Fig.8, the first sub-assembly comprises the R joint and the limb body, whereas the second sub-assembly 

comprises the prismatic joint (including the lead-screw assembly with its supporting bearings and the motor) and the 

spherical joint. The elements in aaC , ccC and acC  can then be modelled by 

4 4

2

,

1

B

aa z z k

k

c c


 , 
4 4

2

,

1

B

cc y y k

k

c c


 , 
4 4

2

,

1

B

ac y z k

k

c c


                           (26) 

D

B
4x

4y

4z

jy

jzjx

p

Fig.7  A link model for compliance evaluation and transformation 
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where 
4 4 ,

B

y y kc  (
4 4 ,

B

z z kc ) denotes the linear compliance coefficient of the kth sub-assembly evaluated at B  along the 
4y  

(
4z ) axis. 

4 4 ,

B

y z kc  denotes the corresponding coupled compliance coefficient between the two directions. 

 

For the first sub-assembly, expansion of Eq.(24) yields  

4 4 4 4 5 5 5 5

2

,1 , _ , _ , _

B B A A

y y y y L body y y R joint x R jointc c c q c    , 
4 4 4 4 5 5,1 , _ , _

B B A

z z z z L body z z R jointc c c  ,  
4 4 4 4,1 , _

B B

y z y z L bodyc c        (27) 

where 
4 4 , _

B

y y L bodyc  and 
4 4 , _

B

z z L bodyc  are the linear compliance coefficients of the limb-body evaluated at B along the 
4y  

and 
4z  axes; 

5 5 , _

A

y y R jointc  and 
5 5 , _

A

z z R jointc  (
5 5 , _

A

x R jointc  ) denote the linear (angular) compliance coefficients of the 

revolute joint evaluated at A  along the 
5y  and 

5z  axes (about the 
5x  axis); 

4 4 , _

B

y z L bodyc is the coupled compliance 

coefficient of the limb-body between the 
4y  and 

4z  axes. Note that 
5 5 , _

A

y y R jointc , 
5 5 , _

A

z z R jointc  and 
5 5 , _

A

x R jointc   are 

constants while the others are functions of the limb length.  

Similarly, expansion of Eq.(24) for the second sub-assembly leads to the following expressions  

4 4 4 4 4 4,2 , _ , _

B B B

y y y y S joint y y P jointc c c  , 
4 4 4 4 4 4,2 , _ , _

B B B

z z z z S joint z z P jointc c c  , 
4 4 4 4,2 , _

B B

y z y z S jointc c                (28) 

where 
4 4 , _

B

y y S jointc  (
4 4 , _

B

y y P jointc ) and 
4 4 , _

B

z z S jointc  (
4 4 , _

B

z z P jointc ) are the linear compliance coefficients of the spherical 

(prismatic) joint along the 
4y  and 

4z  axes; 
4 4 , _

B

y z S jointc  is the coupled compliance coefficient of the spherical joint 

between the two directions. Note that 
4 4 , _

B

y y P jointc  is constant while the others are configuration dependent and can be 

further formulated as  

 
4

3
T T

, _ 4 , _ 4

1

ˆ ˆ   B B

y S joint j j R joint j

j

c


 
  

 
y R C R y                              (29) 

 
4

3
T T

, _ 4 , _ 4

1

ˆ ˆ B B

z S joint j j R joint j

j

c


 
  

 
z R C R z                               (30) 

 
4

3
T T

, _ 4 , _ 4

1

ˆ ˆ B B

yz S joint j j R joint j

j

c


 
  

 
y R C R z                               (31) 

4 4

2

0

, _
2π

B b

z z P joint nut bearing motor

q L l
c c c c

EA

  
     

 
                           (32) 

where 

, _ , _ , _

, _ , _ , _

, _sym

j j j j j j

j j j j

j j

B B B

x x R joint y x R joint z x R joint

B B B

j R joint y y R joint z y R joint

B

z z R joint

c c c

c c

c

 
 
 
 
 
 

C ,  
T

ˆ 0 1 0y ,  
T

ˆ 0 0 1z  

, _j j

B

x x R jointc , , _j j

B

y y R jointc  and , _j j

B

z z R jointc  are the linear compliance coefficients of the thj  ( 1,2,3j  ) revolute joint 

within the spherical joint along the ,  ,  j j jx y z  axes, respectively; while , _j j

B

x y R jointc ( or , _j j

B

y x R jointc ), , _j j

B

x z R jointc ( or 

, _j j

B

z x R jointc ) and , _j j

B

y z R jointc  (or , _j j

B

z y R jointc ) are the coupled linear compliance coefficients between the three orthogonal 

Fig.8  A limb model for compliance evaluation 

Motor 

R joint 

Rear bearings 

Carriage 
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Limb body 
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0L

S joint 
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axes; EA  and 
bl  are the tensile modulus and lead of the lead screw, respectively; 

bearingc  and 
nutc  are the 

compliance coefficients of the nut and support bearing; 
motorc  is the equivalent torsional compliance of the motor; and 

0L  denotes the distance between the R joint and the support bearing. 

3.5 Formulation of 
ta
ρ and 

tc
ρ   

Continuing the approach used for the compliance components associated with the two sub-assemblies discussed in 

Section 3.4, 
,ta i and

,tc i  given in Eqs.(16) and (17) can be expressed as 

4

2

, , ,

1

= B

ta i z i k

k

 


  , 
4

2

, , ,

1

= B

tc i y i k

k

 


                                  (33) 

where 
4 , ,

B

y i k   (
4 , ,

B

z i k  ) is the deflection at 
iB  along the 

4,iy  (
4,iz ) axis caused by the compliance of the kth 

sub-assembly under the action of its own gravity. Note that, in practice, 
4 , ,2

B

y i   and 
,ta i
  will be much smaller in value 

than 
4 , ,1

B

y i
  and 

,tc i
  and can be neglected. Therefore, we take into account only the deflection 

4 , ,1

B

y i
  which depends 

mainly upon two factors, i.e.,  

4 4 4, ,1 , , _ , , _

B B B

y i y i R joint y i L body
                                       (34) 

 
4 5 5

T

, , _ , _ , _ 5,
ˆB A A

y i R joint L y R joint L i R joint im g c l q c     s y  

where 
4 , , _

B

y i R joint   is the deflection at 
iB  along the 

4,iy  axis caused by the compliance of the revolute joint under the 

action of the gravity of the limb-body assembly; 
4 , , _

B

y i L body
  is that caused by the compliance of the limb-body 

assembly under the action of its own gravity, which can be modeled as a function of iq  by an interpolation technique 

using data obtained from finite element analysis. 

4. An Example 

Equipped with the compliance model developed in Section 3, we take the 5-DOF hybrid manipulator shown in Fig. 1 

as an example to investigate the payload and gravity of the platform and limb-body assemblies on the pose accuracy of 

the end-effector. As shown in Fig.2, the task workspace 
tW  of the manipulator is a cylinder of radius R and height h 

with a distance H  from the x-y plane to its inner (right-hand) bound and an offset f  along the y  axis. Partially 

referencing the current design of the Exechon 700 robot [7], the dimensions, component compliance coefficients, 

masses and center of mass locations of the relevant components are given in Tables 1-5. All the data are extracted from 

the 3-D model and evaluated by finite element analysis and/or product specifications. 

 

 

Table 1  Dimensions and workspace of the 3-SPR parallel mechanism 

1a (mm) 
2a (mm) 

1b (mm) 
2b (mm) d (mm) e (mm)  ( ) H (mm) R ( mm) h ( mm) f (mm) 

240 220 570 550 20 477 12 1300 750 240 200 

 

 
Table 2  Compliance coefficients of the first sub-assembly evaluated in the body fixed frames (units : 310 ) 

4 4 , _

B

y y L bodyc ( m / N ) 
4 4 , _

B

z z L bodyc ( m / N ) 
4 4 , _

B

y z L bodyc ( m / N ) 
5 5 , _

A

y y R jointc ( m / N ) 
5 5 , _

A

z z R jointc ( m / N ) 
5 5 , _

A

x R jointc  ( rad / Nm ) 

4.431~7.592 1.6 0.021~0.024 0.862 0.508 2.816 510  

 

Table 3  Compliance coefficients of the S joint evaluated in the body fixed frames (units: 310 m / N  ) 

1 1 , _

B

x x R jointc  
1 1 , _

B

y y R jointc  
1 , _

B

z z R jointc  
2 2 , _

B

x x R jointc  
2 2 , _

B

y y R jointc  
2 2 , _

B

z z R jointc  
3 3 , _

B

x x R jointc  
3 3 , _

B

y y R jointc  
3 3 , _

B

z z R jointc  

3.045 2.678 0.711 0.897 0.470 0.426 0.483 1.039 2.146 
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For convenience, let , ( )t G i$
 

( 1,2, ,6i  ) be the thi  element of 
,t G$  sequentially representing the linear 

(angular) deflection along (about) the three orthogonal axes of  R . For example, , (1)t G$  ( , (4)t G$ ) represents the 

translational (rotational) deflection along (about) the x  axis. Fig.9 plots how these elements vary within the 

workspace, showing that , (2)t G$ , , (3)t G$ , and , (4)t G$  are symmetrically distributed with respect to the y-O-z plane, 

with , (2)t G$
 

and , (4)t G$  being almost axially symmetric. However, , (1)t G$ , , (5)t G$ , and , (6)t G$  are 

anti-symmetrically distributed with respect to the y-O-z plane. It also shows that , (2)t G$ , , (3)t G$  and , (4)t G$  are the 

key factors dominating the linear and angular deflections.  

 
In order to compare the deflection , ( )t G i$  caused by gravity with that , ( )t E i$ caused by external force, according to 

[16], give the special applied forces as 215NxF  , 10NyF   , 25NzF   , 1NmxM  , 21.5NmyM  , which are 

caused by groove milling. Table 6 shows the result when the manipulator stays at configuration(1) (i.e 

 0 0.5f H h  r ). It shows that the deflection caused by gravity is not negligible since it is even bigger than the 

deflection caused by the cutting force, especially for the translational deflection along the y axis and the rotational 

deflection about the x  axis. 

Fig.9  The distribution of 
,t G$  within 

tW , 1: z H , 2: 0.5z H h  , 3: z H h   

1

(m)y (m)x

3

, (1) (mm)t G$

2

(a) 

1

3

2

, (2) (mm)t G$

(m)y (m)x

(b) 

, (3) (mm)t G$

(m)y (m)x

3

2

1

(c) 

3

1

2

(d) 

(m)y (m)x

4

, (4) (10 rad)t G


$

123

(e) 

(m)y (m)x

4

, (5) (10 rad)t G


$

123

(f) 

(m)y (m)x

4

, (6) (10 rad)t G


$

Table 5  Parameters of the lead-screw and motor 

bearingc ( nm / N ) 
nutc ( nm / N ) 0L (mm) EA (MN) bl (mm) 

motorc ( rad / Nm ) 
4 4 , _

B

y y Pc joint  

1.191 0.7 480 161 12 3 610  0.062 

Table 6  Masses and their locations of the platform and limb-body assembly 

0,G xr (mm) 0,G yr (mm) 
0,G zr (mm) 0m (kg) Lm (kg) Ll (mm) t (mm) 

-2.51 -6.66 181.26 144.5 174 935.1 72.43 

        
T

0 0, 0, 0,=G G x G y G zr r rr  

Table 4  Coupled compliance coefficients of the S joint evaluated in the body fixed frames (units: 310 m / N  ) 

1 1 , _

B

x y R jointc  
1 1 , _

B

x z R jointc  
1 1 , _

B

y z R jointc  
2 2 , _

B

x y R jointc  
2 2 , _

B

x z R jointc  
2 2 , _

B

y z R jointc  
3 3 , _

B

x y R jointc  
3 3 , _

B

x z R jointc  
3 3 , _

B

y z R jointc  

0.0615 0.0472 0.0251 0.0524 0.0253 0.0367 0.0147 0.0738 0.0154 
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Fig.10 shows the distributions of , (2)t G$ , , (3)t G$  and , (4)t G$  in the middle layer of 

tW  due to the gravity of the 

platform and limb-body assemblies. Clearly, the three elements , (2)t G$ , , (3)t G$  and , (4)t G$  are all heavily affected 

by the gravity of the platform. A lightweight design is, therefore, absolutely necessary for reducing the platform 

deflection.  

Fig.11 shows the distributions of , (2)t G$ , , (3)t G$  and , (4)t G$  in the middle layer of 
tW  caused separately by the 

gravity of the limb body assemblies that is transmitted to the platform and by the compliances of the limbs under the 

actions of their own distributed gravity. In the three , (2)t G$ , , (3)t G$  and , (4)t G$  the effects of the distributed gravity 

are smaller but also important compared with those caused by the lumped gravity transmitted to the platform. In fact, 

Between them, which one is bigger or smaller is depended on the structure of the limb body. As a result, their 

distribution, in return, can provide guidance for improving the design. For example, the results obtained by Fig.11 may 

show that there is room for improvement through reducing the weight of the limb body assembly. 

In order to identify the weak links within the limb body assembly, the following global indices are defined 

,

,

(2)
(2)= t

t G
W

t G

dV

V

 $
$ , 

,

,

(3)
(3)= t

t G
W

t G

dV

V

 $
$ , 

,

,

(4)
(4)= t

t G
W

t G

dV

V

 $
$                  (33) 

where V denotes the volume of 
tW , , (2)t G$ , , (3)t G$  and , (4)t G$  represent the mean values of , (2)t G$ , , (3)t G$  

and , (4)t G$  throughout 
tW . As seen from Fig.12, the compliances of the spherical joint have the major effect on the 

three 
, (2)t G$ , , (3)t G$  and 

, (4)t G$ , with sequentially smaller influences from the active prismatic joint (including the 

lead screw assembly), the limb body, and the revolute joints. These observations indicate that: (1) the rigidity of the 

spherical joint should be improved for resisting against gravity of the platform and limbs; (2) the weight of the 

limb-body assembly at the same time should be reduced without losing too much its bending rigidity. Therefore, to 

Fig.11  The distribution of , Lt G
$  and , Lt G

$  at 0.5z H h  , 1: , , Lt G t G
$ $ , 2: , , Lt G t G

$ $  
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
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Fig.10  The distribution of , Pt G$  and , Lt G$  at 0.5z H h  , 1: , , Pt G t G$ $ , 2: , , Lt G t G$ $  
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
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Table 7  The deflection respectively caused by the cutting forces and gravity at configuration(1) 

i  1(mm) 2(mm) 3(mm) 4( 410 rad ) 5( 410 rad ) 6( 410 rad ) 

, ( )t E i$  0.0162 -0.002 41.6698 10   0.0138 0.1163 0.0082 

, ( )t G i$  67.97 10  -0.328 41.72 10  1. 37 0.0015 0.0020 

 

 



12 

ensure a light weight yet rigid design of the overall system (given a maximum allowable deflection of the platform 

within the entire task workspace), two of the open issues that remain to be investigated are: how to achieve compact yet 

rigid design of these joints; and how to balance the weights and rigidities of all the movable components. These issues 

must, however, be addressed in a separate paper.  

 

 

 

Table 8  Results obtained by the semi-analytic method and by FEA (units: mm) 

 , (2)t G$  , (2)
Pt G$  , (2)

Lt G$  
, (3)t G$  , (3)

Pt G$  , (3)
Lt G$  

Configuration 

 (1) 

Semi-Analytic -0.328 -0.211 -0.117 -0.00185 0.00041 -0.00226 

FEA -0.305 -0.196 -0.112 -0.0017 0.00038 -0.0021 

Errors 7.5% 8.1% 4.5% 8.8% 7.9% 7.6% 

Configuration 

 (2) 

Semi-Analytic -0.538 -0.288 -0.250 0.257 0.149 0.108 

FEA -0.483 -0.262 -0.223 0.255 0.145 0.105 

Errors 11.3% 9.9% 12.1% 0.78% 2.8% 2.9% 

 

.  In order to validate the results obtained by the semi-analytical approach, an FEA deflection analysis is implemented 

by ANSYS®, at two typical configurations; i.e. Configuration (1) with  0 0.5f H h  r  and Configuration (2) 

with  0.5R f H h  r . It should be pointed out that in the FE modelling of the manipulator the base and the 

platform (including the 2-DOF rotating head) are treated as rigid bodies in order to match the boundary conditions 

assumed in the semi-analytic analysis. Meanwhile, the bushing joint defined in ANSYS® is used to model the rigidities 

of either a revolute or a prismatic joint along/about three orthogonal axes in its own local body-fixed frame. Please note 

S Joint 

P Joint 

Limb body 

R Joint 

(a) contribution to 
, (2)t G$  (c) contribution to

, (4)t G$  

Fig.12  Contributions of the main component compliances to global deflection 

(b) contribution to 
, (3)t G$  

(a) (b) (c) 

 
Fig. 13  Deflections along the y axis arising from gravity of (a) the platform and limb-body assemblies  

(b) the platform (c) the limb-body assemblies at configuration(2)  

(a) (b) (c) 

 Fig. 14  Deflections along the z axis arising from gravity of (a) the platform and limb-body assemblies  

(b) the platform (c) the limb-body assemblies at configuration(2)  
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that the compliance coefficients of a joint are set in such a way that they are identical to those used in the semi-analytic 

analysis. Figs. 13 and 14 show the deflections of the manipulator in the direction of the y and the z axes arising from 

gravity of the platform, the limb-body assemblies, and the both, respectively; and Table 7 summarizes the simulated 

deflections of point P in the corresponding directions. It can be seen that the results obtained by the semi-analytic 

approach match very well with those evaluated by FEA for the three cases at different configurations, thus convincing 

the validity of the proposed semi-analytic approach.  

5. Conclusions 
By taking gravity into account, we propose a semi-analytic approach for compliance analysis, applied to a 3-SPR 

parallel mechanism. The following conclusions are drawn. 

(1) Kinetosatic analysis confirms the benefits of treating contributory components in groups related to different 

functional aspects of the machine. The resultant externally applied wrench imposed upon the platform contains 

two components, one associated with the payload and gravity of the platform, the other with the lumped gravity of 

the limb body assemblies. The resultant deflection twist of the platform also contains two components, one 

associated with the joint deflections arising from the resultant externally applied wrench, and the other from the 

limb body assemblies under the action of their distributed gravity. 

(2) The semi-analytical approach proposed for formulating and computing the actuated and constrained components 

compliance and the joint deflections due to the distributed gravity of the limb body assemblies allows the 

deflection of the platform within the entire task workspace to be evaluated in an efficient and accurate manner.   

(3) For the considered 5-DOF hybrid manipulator, the gravity of moving components, especially the platform 

(including the 2-D rotating head) is a key factor strongly affecting the pose accuracy of the end-effector, leading to 

an issue in need of considerable further investigation for achieving a light weight yet rigid design of the limb-body 

assemblies and the 2-D rotating head. This, however, deserves to be addressed in separate papers.  
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