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Abstract

Common cluster models for multi-type point processes model the aggregation of

points of the same type. In complete contrast, in the study of Anglo-Saxon set-

tlements it is hypothesized that administrative clusters involving complementary

names tend to appear. We investigate the evidence for such a hypothesis by devel-

oping a Bayesian Random Partition Model based on clusters formed by points of

different types (complementary clustering).

As a result we obtain an intractable posterior distribution on the space of

matchings contained in a k-partite hypergraph. We use the Metropolis-Hastings

(MH) algorithm to sample from such a distribution. We consider the problem of

what is the optimal, informed MH proposal distribution given a fixed set of allowed

moves. To answer such a question we define the notion of balanced proposals and

we prove that, under some assumptions, such proposals are maximal in the Peskun

sense. Using such ideas we obtain substantial mixing improvements compared to

other choices found in the literature. Simulated Tempering techniques can be used

to overcome multimodality and a multiple proposal scheme is developed to allow

for parallel programming. Finally, we discuss results arising from the careful use of

convergence diagnostic techniques.

This allows us to study a dataset including locations and placenames of 1316

Anglo-Saxon settlements dated around 750-850 AD. Without strong prior knowl-

edge, the model allows for explicit estimation of the number of clusters, the average

intra-cluster dispersion and the level of interaction among placenames. The results

support the hypothesis of organization of settlements into administrative clusters

based on complementary names.

xi



Chapter 1

Introduction

The starting point of this work is a dataset supplied by John Blair of Queen’s College

Oxford, Professor of History at the University of Oxford. The dataset consists of

the locations and placenames of 1316 Anglo-Saxon settlements dated approximately

around 750-850 AD. Professor Blair’s hypothesis is that those settlements were

organized into administrative districts involving settlements with complementary

roles and that such roles were indicated by the different placenames (see Section

2.1).

If present, such a phenomenon would induce clusters of closely located set-

tlements with different placenames (complementary clustering). On the contrary,

typical cluster models for marked point processes deal with the aggregation of ele-

ments of the same type (or with similar features). In the latter case, one can treat

the marks/types as an additional dimension and perform clustering in a higher di-

mensional space (e.g. two spatial dimensions plus one marks dimension), while in

our scenario the spatial dimensions and the marks/types dimension have different

roles. This has both modeling and computational implications.

We develop a Bayesian Random Partition Model (RPM) to study comple-

mentary clustering phenomena. RPMs provide a general, flexible framework and

allow to make explicit inferences on the unobserved partition. Because of the com-

plementarity requirement, the posterior sample space uses the space of matchings

contained in a k-partite hypergraph. We devote much attention to computational

aspects, both from the theoretical and practical point of view.

The model and algorithm we develop allow the study of the Anglo-Saxon set-

tlements dataset. Without strong prior knowledge, the model allows for explicit es-

timation of the number of clusters, the average intra-cluster dispersion and the level

of interaction among placenames. The results support Professor Blair’s hypothesis
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of organization of settlements into administrative clusters based on complementary

names and provide additional information and insight into such a phenomenon.

Thesis contributions

This work arises out of a specific applied problem presented to us by distinguished

historians. In trying to provide satisfactory answers to their questions, we develop

novel theory and methodology having wider implications, both from the modeling

and especially from the computational point of view.

First we develop a Bayesian Random Partition Model tailored to study com-

plementary clustering scenarios (see Chapter 3). Such a model may have appli-

cations to other scenarios (such as ecology, see e.g. Chapter 8) where clusters of

distinct elements occur, rather than clusters of similar objects. In particular two

prior distributions (see Sections 3.5.1 and 3.7.1) are proposed to model clustering

scenarios with many small clusters with a bounded number of points each. We de-

scribe these models in terms of matchings contained in hypergraphs (Chapter 4),

thus relating computational tasks to the Complexity Theory literature.

Secondly we study Markov chain Monte Carlo (MCMC) algorithms in dis-

crete spaces such as matchings contained in hypergraphs, in particular consider-

ing the problem of designing informed Metropolis-Hastings (MH) proposals in such

spaces. Under some assumptions (satisfied by our model) we derive the class of

asymptotically optimal proposal distributions (Section 5.4). To prove such opti-

mality we use the so-called Peskun ordering (Peskun, 1973), extending it to cases

involving a constant in the off-diagonal comparison (see Theorem 4). These results

motivate the introduction of the apparently new notion of balanced proposals (see

Chapter 5). Such a notion provides a general and coherent way to incorporate lo-

cal information into MH proposal distributions and has the potential to extend the

benefits of gradient-based MCMC algorithms to discrete settings (see Section 8.3).

Finally we describe practical implementations of the ideas in Chapter 5 for

the applied problem under consideration. We discuss various practical issues (tem-

pering, parallel computing, convergence diagnostic) and we study the Anglo-Saxon

settlements dataset, managing to provide informative answers to the historians’

questions (Chapter 7).

Organization of the thesis

Chapter 2 is divided in two parts. The first part describes the historical problem,

the questions of historical interest and the Anglo-Saxon settlements dataset. The

2



second part contains a preliminary analysis of the dataset with traditional spatial

statistics tools such as K-cross functions. This exploratory analysis suggests that

there is some attractive interaction between settlements with different placenames

and motivates further analysis.

In Chapter 3 we define a Bayesian RPM for complementary clustering sce-

narios. Some attention is devoted to the choice of prior distribution for the parti-

tion. This is necessary because the commonly used prior distributions, such as the

Dirichlet Process prior, are not appropriate for this context, for example because

they model situations with few big clusters, while our scenario leads to many small

clusters.

The posterior distribution induced by the model of Chapter 3 is intractable.

To address this more precisely, in Chapter 4 we study the computational complexity

of tasks associated with such a posterior distribution by appealing to known results

from the Complexity Theory literature. To do so we exploit the fact that the poste-

rior distribution is proportional to the weight of a corresponding matching contained

in a weighted k-partite hypergraph. We thus link the problems of sampling from

the posterior and finding the posterior mode (or the maximum likelihood estimator)

to the more classical problems of Data Association and Optimal Assignment.

Given the results discussed in Chapter 4 we need to use approximate meth-

ods to perform inferences on the posterior distribution of interest. Motivated by

the results recalled in Section 4.2.4, we use Monte Carlo methods and in particular

MCMC algorithms. In Chapter 5 we introduce MCMC methods, in particular the

Metropolis-Hastings (MH) algorithm and some theoretical notions related to mea-

suring MCMC efficiency. Then we consider the problem of choosing the optimal

proposal distribution given a fixed set of allowed moves (in a fairly general frame-

work). To solve such a problem we introduce the notions of balanced proposals and

we show that under some assumptions such a family of proposals is optimal in terms

of (asymptotic) Peskun ordering (see Theorems 4, 5 and 6).

In Chapter 6 we return to the applied problem and we describe the actual

MCMC algorithm we use to obtain approximate samples from the posterior of inter-

est. To do so we deal with sampling matchings contained in hypergraphs (a problem

often encountered, for example, in Data Association problems) and we use ideas from

Chapter 5 to speed up such sampling process. We consider convergence diagnostic

issues, we explore the use of Simulated Tempering to overcome multimodality and

we develop a multiple proposal scheme to allow for parallel computation.

In Chapter 7 we analyze the Anglo-Saxon settlements dataset, fitting the

Bayesian RPM of Chapter 3 with the algorithm of Chapter 6. The results sup-

3



port the hypothesis of settlements being organized into administrative clusters and

provide explicit inferences of various quantities of historical interest.

Finally in Chapter 8 we summarize the results and discuss possible direc-

tions of future research. Supplementary material, available at https://sites.

google.com/site/gzanellawebpage/compclust_supp_f.zip, includes the Anglo-

Saxon settlements dataset and the R codes used to perform the data analysis.

4
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Chapter 2

Historical problem and

preliminary analysis

2.1 The historical question under consideration

As already mentioned in Chapter 1, the starting point of this work is the Anglo-

Saxon settlements dataset provided by Professor John Blair, which contains the

locations and placenames of more than a thousand settlements. In the dataset there

are 20 different kinds of placenames in total. Placenames form an important source

of information regarding the Anglo-Saxon civilization and are intensively studied

by the historical community (see for example Gelling & Cole, 2000 and Jones &

Semple, 2012).

In particular, the placenames included in this dataset are often described

as functional placenames, as they were probably used to indicate specific functions

or features of their corresponding settlements. For example Burton is thought to

label fortified settlements having a military role, Charlton the settlements of the

peasants and Drayton the settlements dedicated to portage.

Moreover, historians expect the settlements in this dataset (especially those

having one of the placenames underlined in Table 2.1) to have been formed approx-

imately at the same time and in the same context (specifically, royal administration

in the period c.750-850). This suggests that there could be some coherence in the

distribution of such placenames. In particular Professor Blair’s hypothesis is that

those settlements were not independent units but rather that they were organized

into administrative clusters (or districts) where placenames were used to indicate

the role of each settlement within the district. According to this hypothesis such

clusters would tend to involve a variety of complementary placenames in each of

5



them. For example Figure 2.1 indicates a plausible administrative cluster made of

four settlements, with, for example, a settlement dedicated to military functions

(Burton) and one dedicated to agriculture (Carlton).

Figure 2.1: A cluster of four Anglo-Saxon settlements (circled and highlighted in
green) in the region of Great Glen (written in short as Gt.Glen).

The objective of our statistical approach to the study of settlements names

and geographical locations is to address the following questions: is there statistical

support for Blair’s hypothesis? What is the typical distance between settlements in

the same cluster? How many settlements are clustered together and how many are

singletons? Which placenames tend to cluster together? Can we provide a list of

those clusters that are more strongly supported by the analysis?

Our intention is to provide a useful contribution to historical research on

this topic based on a quantitative approach, bearing in mind the scarcity of textual

evidence regarding the Anglo-Saxon period. Since there is much uncertainty and

controversy regarding the meaning of placenames, even the apparently obvious ones,

we should try to be fairly neutral from the historical point of view, avoiding strong

assumptions on the functions of placenames and relationships among them. This will

help our statistical analysis to be a genuine contribution to the ongoing historical

debate on this topic.

We note that there has already been statistical work related to Anglo-Saxon

placenames. In particular see the work of Keith Briggs on this topic (see http:

//keithbriggs.info/place-names.html for a full list). Nevertheless both the his-

torical questions considered and the statistical methodologies used are substantially

different from ours.

2.2 The AngloSaxon settlements dataset

We now describe the Anglo-Saxon settlements dataset supplied by Prof. John Blair

and the data cleaning operations that we carried out. The dataset (fully available

at https://sites.google.com/site/gzanellawebpage/compclust_supp_f.zip)
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is made of 20 different groups, each of which contains the list of settlements having

one of the 20 placenames (see Table 2.1). The historians involved in the project

Placenames total # of settlements # of couples # of couples
number with less precise (as classified (as classified

location by historians) by proximity)

Aston/Easton 90 0 1 8

Bolton 17 1 1 0
Burh-Stall 29 2 1 0
Burton 108 2 1 7
Centres 46 0 0 0
Charlton/Charlcot 98 3 7 1

Chesterton 9 0 0 0
Claeg 84 13 0 5
Draycot/Drayton 55 1 0 2

Eaton 33 1 1 5
Kingston 71 1 1 1

Knighton 26 1 0 0

Newbold 34 3 1 0
Newton 191 5 4 5
Norton 74 1 8 1
Stratton 37 0 5 0
Sutton 101 2 4 5
Tot 77 17 1 1
Walton/Walcot 51 4 1 0

Weston 85 3 3 2

Total 1316 60 40 43

Table 2.1: Number of settlements in the Anglo-Saxon placenames location dataset
supplied by Prof. Blair. The historians expect the clustering behavior mainly to
involve 13 of those placenames (underlined and emboldened in this table). Settle-
ments with less precise locations (third column) are settlements whose location is
given with 1 km accuracy, rather than 100 m, or having a more uncertain location
(see Section 2.2). The term “couples” (last two columns) refers to multiple records of
the same settlements (see Section 2.2.1 for discussion). The “total number” column
refers to the count after merging the couples classifieds by historians.

expect the clustering behavior to involve 13 of those placenames in particular, indi-

cated in Table 2.1. We refer to the settlements relative to those 13 placenames as

the reduced dataset, and to all the settlements recorded as the full dataset. We will

perform statistical analyses on both datasets.

For each settlement the following variables are given: County, place, Parish

or Township, grid ref and date of first evidence (see Table 2.2).

The locations are expressed through the Ordnance Survey (OS) National

Grid reference system. A set of OS National Grid coordinates, like SU230870,

7



PARISH OR GRID DATE OF
COUNTY PLACE TOWNSHIP REF FIRST

EVIDENCE

BRK Bourton Bourton SU 230870 c. 1200
BUC Bierton Bierton with Broughton SP 836152 DB
BUC Bourton Buckingham SP 710333 DB
CHE Burton Burton (T) SJ 509639 DB
CHE Burton Burton (T) SJ 317743 1152
CHE Buerton Buerton (T) SJ 682433 DB

Table 2.2: Exemplary data available for the first 6 settlement with the name Burton.
The acronym DB stands for Domesday Book, compiled in 1086.

identify a 100m × 100m square on a grid covering Great Britain. Some locations

have just 2 letters and 4 digits (e.g. SU2387) and they identify a 1km×1km square,

and some have a letter c in front of them (e.g. c.SU2387) to indicate that the

location is less accurate (see Table 2.1 for amounts of these).

2.2.1 Data cleaning and data assumptions

Our analysis is concerned with placenames (variable “place”) and geographical lo-

cations (variable “Grid reference”). By considering placenames as marks attached

to points, we model our data as the realization of a k-type point process (also called

k-variate point process), where k is the number of different placenames available

(see Baddeley, 2010 or Section 2.3 for more details on point processes). We convert

the data to a k-type point process form as described below. This data cleaning

process entails historical assumptions on the dataset and thus we have been guided

by the judgment of the subject-specific historians involved in this project in doing

so. Figure 2.2 shows the resulting k-type point pattern for the full dataset, while

Figure 2.3 shows that only for the reduced dataset.

Placenames: we express the variable “place” as a categorical variable with k

possible values (i.e. k types). For the full dataset k equals 20, while for the reduced

dataset k equals 13. By describing the variable “place” as a categorical variable we

ignore minor variations in placenames. For example we consider all the settlements

of Table 2.2 as having placename Burton: their actual recorded placenames vary

amongst Burton, Bourton, Bierton, Buerton.

Four groups (out of 20) are made up of two subgroups each with similar place-

names: Aston/Easton, Charlton/Charlcot, Drayton/Draycot andWalton/Walcot.

We consider placenames within such subgroups to be the same, for example Charlton

and Charlcot are treated as the same placename.
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Settlements configuration (full dataset)
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Placenames

ASTON
BOLTON
BURH−STALL
BURTON
CENTRES
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CLAEG
DRAYTON
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KNIGHTON
NEWBOLD
NEWTON
NORTON
STRATTON
SUTTON
TOT
WALTON
WESTON

Figure 2.2: Plot of the full dataset together with UK coastline. Each point represents
a settlement. Different symbols represent different placenames. The “couples” (see
Table 2.1 and the paragraph “Multiple records” above) have already been merged
and the resulting number of settlements is 1273.
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Figure 2.3: Plot of the reduced dataset with UK coastline. Each point represents a
settlement. Different symbols represent different placenames. The reduced dataset
corresponds to the 13 placenames that historians expect to be more involved in the
clustering behavior. The “couples” (see Table 2.1) have already been merged.
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Figure 2.4 provides a box-plot representation of the observed x and y coor-

dinates divided by placenames. Such a plot provides a crude representation of the

variability in the distribution of settlements across different placenames. Note that,

especially for the reduced dataset (represented with black solid lines in Figure 2.4),

there is no clear suggestion of grouping. In fact, for most couples of placenames,

say A and B, the area with a high density of settlements of type A has a consistent

overlap with that of settlements of type B. Therefore, it does not seem appropri-

ate to divide placenames into groups and to analyze the corresponding settlements

separately.

We will not model the heterogeneity in placenames distribution explicitly

in the cluster analysis (see Section 8.2 for discussion of possible improvements).

Note, however, that we do model such heterogeneity in the null-hypothesis testing

of Section 2.3.2 and the sanity check of Section 7.1.

Locations: we convert OS National Grid coordinates to two-dimensional Eu-

clidean coordinates and each settlement is assumed to be located at the center of

the corresponding OS National Grid square.

Multiple records: it is sometimes indicated in the original dataset that some

couples (or triples) of settlements, with the same placename and very close locations,

have to be considered as multiple records of the same settlement. We replaced such

couples (or triples) of settlements with a single settlement located at their midpoint.

Moreover there are some other pairs of records having very close locations and the

same placename (see Table 2.1 for amounts). It is primarily a matter of historical

interpretation whether these couples have to be considered as single settlements. We

performed the analysis under both hypotheses (keeping them separated or merged)

without seeing significant changes in the results. The analysis presented here is

made with those settlements merged together (3 km is the threshold distance below

which we identify two records of settlements with the same placename).

Observation region W : a point process realization consists of point locations

and of the region W where the points have been observed. Indeed both the K-

cross function analysis of Section 2.3.1 and the Bayesian model of Chapter 3 will

use information about W . In our case we define W as Great Britain (coastline

obtained from the mapdata R package Becker et al. , 2013) cropping the region

where the point process intensity g falls below a certain threshold, approximately at

the borders between England-Scotland and England-Wales. We also added a small

buffer zone of 3 km around the region to include the few points that were falling

outside the region (e.g. because the coastline has moved or because the location was

inaccurate). See Figure 3.1 for a plot of the region.
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Figure 2.4: Boxplots of x and y coordinates (expressed in kilometers with reference
axes given by the national OS grid system) divided by placenames. These plots
provide an indication of the heterogeneity among the locations of settlements with
different placenames. The reduced dataset is on the left (black solid line) and the
rest is on the right (red dashed line).
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2.3 Preliminary analysis of the Anglo-Saxon settlements

dataset

We now perform preliminary analysis on the resulting point pattern using classic

Spatial Statistic tools. As mentioned before, we can model the data as the realization

of a spatial point process. Spatial point processes are random configuration of points

in the plane, or more precisely stochastic processes whose realizations consist of a

finite (or countably infinite) set of points contained in some window W ⊆ R2. For

simplicity we assume the number of points to be finite and all the points to have

distinct locations (i.e. no two points are allowed to be one on top of the other). We

denote a realization of a spatial point process by x = {x1, . . . , xn(x)}. Note that the

set of points is unordered and that the number of points is not fixed.

The most important example of point process is the Poisson point process.

A point process x is a Poisson point process driven by an intensity measure Λ(·),
with Λ(·) being a measure on W ⊆ R2, if for any measurable A ⊆W the number of

points of x belonging to A is a random variable which follows a Poisson distribution

with mean Λ(A). The importance of the Poisson point process is due to the fact

that it is the only possible model where points are completely independent of each

other, meaning that, given A1 and A2 disjoint subsets of W , the number of points in

A1 and A2 are independent random variables. See Daley & Vere-Jones (2002) and

Daley & Vere-Jones (2008) for a rigorous introduction to point processes in terms

of random discrete measures.

Another important class of models is the class of cluster point processes.

Such point processes are built in two stages: first a set of “parents” (or “centers”)

is generated and then, for each center, a “daughter” point process (or “cluster”)

is generated. The cluster point process is then defined as the superposition of all

the daughter point processes. Cluster point processes are typically used to model

scenarios where the clusters consist of the aggregation of closely located points. See

Chiu et al. (2013) and Isham (2010) for more details on models for spatial point

processes.

2.3.1 K-cross function analysis

Second moment functions are a useful tool to investigate inter-point interaction (e.g.

Chiu et al. , 2013). In particular, given a multi-type point pattern, bivariate (or

cross-type) K-functions provide good summary functions of the interaction across

points of different types. The bivariate K-function Kij(r) is the expected number of

points of type j closer than r to a typical point of type i, divided by the intensity λj

13



of the type j sub-pattern of points xj (e.g. Baddeley, 2010, Sec. 6). For testing and

displaying purposes we define a single summary function, a multi-type K-function

Kcross(r), as the weighted average of Kij(r) for i 6= j, where the weights are the

product of the intensities λiλj .

Classical K-functions, however, rely strongly on the assumption that the

point pattern is stationary, which is not appropriate for our dataset. Therefore we

use the inhomogeneous version of the K-functions, where the contribution coming

from each couple of points is reweighted to account for spatial inhomogeneity (Bad-

deley et al. , 2000). Standard estimates of the inhomogeneous bivariate K-functions

K̂ij are obtained using the spatstat R package (Baddeley & Turner, 2005).

2.3.2 Null hypothesis testing

In order to test whether the interaction shown by K-functions is significant or not

we need to define a null hypothesis (representing no-interaction among placenames).

Section 8 of Baddeley (2010) describes three classical null hypotheses for multivari-

ate point processes: random labeling (given the locations the point types are i.i.d.),

Complete Spatial Randomness and Independence (CSRI, the locations arise from a

uniform Poisson point process and the point types are i.i.d.) and independence of

components (points of different types are independent). The random labeling and

the CSRI hypotheses are unrealistic assumptions for our dataset because our point

pattern is clearly not stationary and the distribution of placenames is not spatially

homogeneous (some placenames are more concentrated in the South, some in the

North and so on). The independence of components hypothesis is realistic but, in

order to test it, stationarity of the points pattern is usually assumed. Instead we

define the following no-interaction null hypothesis: each sub-pattern of points xj is

an inhomogeneous Poisson point process (with intensity function λj(·) potentially

varying over j). Note that a more realistic null hypothesis would also include re-

pulsion among points of the same type. In Section 2.3.3 we implement such a null

hypothesis using Strauss point-processes. The results are very similar to the ones

presented here.

Given the null hypothesis we perform the following approximate Monte Carlo

test. First we estimate the intensities λj(·) with λ̂j(·) (see Figures 2.5) obtained

through standard Gaussian kernel smoothing with bandwidth chosen according to

the cross-validation method (e.g. Diggle, 2003, p.115-118), and edge correction

performed according to Diggle (1985). The cross-validation method considers, for

each point xi, the density function estimated using all points apart from xi evaluated

at xi, and then maximizes the product of such values over the bandwidth. Secondly,

14



Figure 2.5: Estimates of the intensity function for each placename obtained through
Gaussian kernel smoothing (and truncation) with bandwidth chosen using the func-
tion bw.relrisk from the Spatstat R package (Baddeley & Turner, 2005), which
is based on the cross-validation method (see for example Diggle, 2003, p.115-118).
Edge correction is performed according to Diggle (1985). The color scales are dif-
ferent for each placename, but they all start from 0. These estimates are used in
Section 2.3.1 to simulate synthetic samples from the no-interaction null hypothesis.

given the intensity estimates, we sample 99 independent multivariate inhomogeneous

Poisson point patterns according to
{
λ̂j(·)

}k
j=1

. Finally we use those samples to plot
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simulation envelopes and to perform a deviation test with significance α = 0.05 using

as a summary function a centered version of the L-function L̂cross(r) =

√
K̂cross(r)

π

for r ∈ (0, rmax), with rmax = 15km. The deviation test (Grabarnik et al. , 2011)

summarizes the summary function with a single value D = maxr∈(0,rmax) L̂cross(r)−
E[L̂cross(r)] and compares it to the ones obtained from the 99 simulated samples.
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Figure 2.6: The centred L-function L̂cross(r)−E[L̂cross(r)] for the observed pattern
is represented by (black) solid lines, the 95% envelopes (gray areas) are obtained
using 99 simulated patterns and the (red) dashed lines indicate the upper deviations.
Deviation test: if the (black) solid line rises above the (red) dashed line then the
interaction can be considered significant at significance level α = 0.05. The values of
E[L̂cross(r)] are estimated using independently simulated point patterns generated
according to the null hypothesis.

The null hypothesis is rejected for both the full and the reduced dataset (see

Figure 2.6). For the reduced dataset this provides evidence of a stronger cluster-

ing effect. The R code used to perform this test and produce Figure 2.6 is given

at https://sites.google.com/site/gzanellawebpage/compclust_supp_f.zip.

Application of the same deviation test on the bivariate L-functions L̂ij(r) provides

an indication of which couples of placenames exhibit significant interaction (see

Figure 2.7). Such a plot allows historians to compare the interaction reported by

the K-function analysis with historical hypotheses and contextual information (see

Section 7.1 for more details).

2.3.3 Null-hypothesis using Strauss point processes

In Section 2.3.2 we defined the following null hypothesis for the distribution of the

marked point process x under consideration: each point pattern x(j) is an inho-

mogeneous Poisson point process with intensity function λj(·). Here x(j) denotes

the type j sub-pattern of points. In order to make such a null hypothesis more

realistic we could introduce some repulsion among points of the same type. In fact
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Figure 2.7: Graphical representation of significant pairwise interaction among place-
names based on K-cross functions. A line connecting two placenames indicates that
the deviation test described in Section 2.3.2 reports significant interaction when ap-
plied to the bivariate L-function corresponding to such two placenames (see Section
2.3.2 for more details).

it is reasonable to expect settlements with the same placename not to be too close

to each other. This could be modeled by assuming that each point pattern xj is

distributed according to an inhomogeneous Strauss process, and x(j) is independent

from x(i) for i different from j. A Strauss point process x(j) = {x(j)
1 , . . . , x

(j)
n(xj)
} has

probability density function

f(x(j)) = αγs(x
(j))

n(x(j))∏
i=1

λj(x
(j)
i ) ,

with respect to the distribution of a unitary homogeneous Poisson point process

(in a Radon-Nikodym derivative sense). Here α is a normalizing constant, γ is a

inhibition parameter between 0 and 1, s(x(j)) is the number of (unordered) couples

of points in x(j) closer than some distance R > 0 apart, and λj(·) is the intensity

function. See Chiu et al. (2013) for more rigorous definitions of the Strauss process

and other Gibbs-type point processes.
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We then perform the same approximate Monte Carlo test of Section 2.3.2,

replacing the inhomogeneous Poisson point process model with the Strauss one (the

estimated intensities λ̂j(·) are obtained as in Section 2.3.2). In order to perform

such a test we need to choose the values of the inhibition parameter γ and the

maximal inhibition distance R determining the distribution of the Strauss process.

We considered γ equal to 0.1, 0.5 and 0.9 (corresponding to strong, medium and

mild interaction). Given the historical context we considered values of the inhibition
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Figure 2.8: Testing the null hypothesis of Section 2.3.3, based on Strauss point
processes, with the procedure described in Section 2.3.2. The centred L-function
L̂cross(r)−E[L̂cross(r)] for the observed pattern is represented by (black) solid lines.
The 95% envelopes (gray areas) are obtained using 99 simulated patterns and the
(red) dashed lines indicate the upper deviations. Deviation test: if the (black)
solid line rises above the (red) dashed line then the interaction can be considered
significant at significance level α = 0.05.

distance R equal to 5, 10 and 20 km. We tried all the 9 resulting combinations of γ

and R. The results did not change significantly from the ones obtained in Section

2.3.2 using the inhomogeneous Poisson point process model. Figure 2.8 shows the

result obtained using γ = 0.1 and R = 20 (the strongest interaction among the ones

we considered). It can be seen that the 95% envelopes with such a null hypothesis

are very similar to the ones obtained in Section 2.3.2. Note that one could try to

estimate R and γ from the data. We did not consider such estimation process to

be necessary at this stage, as the effect of introducing repulsion among same-type

points did not impact the results of the null-hypothesis test.

2.3.4 Conclusion from the preliminary analysis

Our preliminary analysis indicates a clustering interaction between points of different

types. Nevertheless K-functions do not provide explicit estimates and quantification

of uncertainty for the parameters of interest (including the cluster partition itself).
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In the next Chapter we develop a Random Partition Model in order to provide more

informative answers to the questions of historical interest. We regard K-functions as

a useful exploratory tool and the fact that they indicate interaction is a motivation

to pursue further statistical analysis.

We understand that Dr. Stuart Brookes from UCL has already used second

moment functions to do some preliminary analysis on the Anglo-Saxon settlements

dataset presented here (personal communication by Prof. John Blair).
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Chapter 3

A Bayesian complementary

clustering model

3.1 Overview of possible modeling approaches

We can view our problem as a clustering problem based on aggregations of points

of different types. In fact we seek a complementary clustering : each cluster may

contain at most one settlement for each placename. This simplifying requirement

is motivated by the assumption that each placename represents a different admin-

istrative function (role) within the cluster (see Section 2.1). Note that the use of a

clustering model is motivated by the historians’ belief that settlements were orga-

nized into administrative units that can be represented by clusters. See Section 8.2

for a discussion of some alternative modeling approaches.

Our intention is to perform explicit inferences on the partition of settlements

into clusters. As with hierarchical models, it would be desirable to analyze the

dataset all at once, so at not to lose statistical power, and also to provide inferences

at the single cluster level to facilitate visualization and historical interpretation of

the results of the analysis.

We employ Random Partition Models (RPMs), often used in the Bayesian

Nonparametric literature (e.g. Lau & Green, 2007), as they permit natural inferences

on the cluster partition and they have enough flexibility to allow specification of a

useful model for complementary clustering.

Standard approaches for point process cluster modeling, like the Log-Gaussian

Cox Processes (see Lawson & Denison, 2010, Ch.3) or the Neyman-Scott model (e.g.

Loizeaux & McKeague, 2001), are not appropriate here, as such models usually pro-

vide inferences on the cluster centers or on the point process intensity, while we
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seek explicit inferences on the cluster partition. Moreover standard cluster meth-

ods for marked point process consider the marks as an additional dimension and

search for aggregations of points with similar marks. In complete contrast, we seek

aggregations of points of different types.

Diggle et al. (2006) seek evidence for repulsion among points of different

types in a bivariate spatial distribution of amacrine cells. They use a pairwise

interaction model, which has theoretical limitations preventing its use for clustering.

While this approach could be extended to our case by using area-interaction point

processes, which can model clustering (Baddeley & Van Lieshout, 1995), it would

not provide us with explicit estimates of the cluster partition and it would not easily

allow complementary clustering specification (at most one point of each type in each

cluster).

Multi-target tracking involves the Data Association problem, that is to group

together measurements recorded at different time intervals to create objects tracks

(e.g Oh et al. , 2009). This problem is similar to the problem of performing comple-

mentary clustering of a k-type point process. In Data Association problems, how-

ever, the interest is to find the best association, while we are interested in assessing

the strength of clustering and the level of interaction between different placenames,

and in quantifying the uncertainty of our estimates. In fact the modeling aspects we

have to be careful about are different from the ones of Data Association problems,

though the computational challenges are similar (see Chapters 4 and 6).

3.2 Random Partition Models

We present Random Partition Models (RPMs) in the specific context of planar k-

type point processes. For more general and detailed discussions see Lau & Green

(2007) and Müller & Quintana (2010). Let ρ be a partition of an ordered set

of marked points x =
(
(x1,m1), . . . , (xn(x),mn(x))

)
, with each (xi,mi) belong-

ing to R2 × {1, . . . , k}. Thus ρ can be represented as an unordered collection

{C1, . . . , CN(ρ)} of disjoint non-trivial subsets of the indices {1, . . . , n(x)} whose

union is the whole set {1, . . . , n(x)}. RPMs are used to draw inferences on the

partition ρ given the observed points x. Given Cj =
{
i
(j)
1 , . . . , i

(j)
sj

}
we define

xCj =

((
x
i
(j)
1

,m
i
(j)
1

)
, . . . ,

(
x
i
(j)
sj

,m
i
(j)
sj

))
for j running from 1 to N(ρ). We call xCj cluster and sj the size of the cluster.

Given the partition ρ, we suppose that locations in each cluster xCj are generated
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independently of locations in other clusters, according to a probability density func-

tion h(sj ,σ)(·) depending on sj and on a global intra-cluster dispersion parameter σ.

Thus the probability density function of x conditional on ρ and σ is

π(x | ρ, σ) ∝
N(ρ)∏
j=1

h(sj ,σ)(xCj ) .

We assign independent prior distributions to ρ and σ. With a slight abuse

of notation, we denote them by π(ρ) and π(σ) respectively. We require π(ρ) to be

exchangeable with respect to the point indices {1, . . . , n(x)} to reflect the fact that

point labels are purely arbitrary and have no specific meaning. This is a common

requirement in the RPMs literature. We obtain the following expression for the

posterior density function

π(ρ, σ|x) ∝ π(ρ) π(σ)

N(ρ)∏
j=1

h(sj ,σ)(xCj ) .

3.3 Likelihood function

Given ρ and σ, each cluster xCj is constructed as follows. First an unobserved center

point zj is sampled from the observation region W ⊆ R2 with probability density

function g(·). Then the observed points x
i
(j)
1

, . . . , x
i
(j)
sj

are given by

x
i
(j)
l

= zj + y
i
(j)
l

, l = 1, . . . , sj (3.1)

where y
i
(j)
l

is defined as

y
i
(j)
l

= w
i
(j)
l

− 1

sj

sj∑
l=1

w
i
(j)
l

with w
i
(j)
1

, . . . , w
i
(j)
sj

being independent bivariate N(0, σ
2

π I2) random vectors, where

I2 is the 2× 2 identity matrix. The variance parametrization σ2

π is chosen so that σ

equals the expected distance between two points in the same cluster, independently

of the value of sj . In fact if x1 and x2 belong to the same cluster it holds

E
[√

(x1 − x2)>(x1 − x2)

]
= E

[√
(w1 − w2)>(w1 − w2)

]
=

√
π

2

√
2σ2

π
= σ ,
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where a>a =
∑2

i=1 a
2
i for a in R2, and we used the fact that the euclidean norm of

a two dimensional N(0, η2I2) random vector follows the Rayleigh distribution and

its mean equals
√

π
2 η for η ≥ 0.

Finally the marks m
i
(j)
1

, . . . ,m
i
(j)
sj

are sampled uniformly from the set

Msj =
{

(m1, . . . ,msj ) |ml ∈ {1, . . . , k} and ml1 6= ml2 for l1 6= l2
}
.

The resulting likelihood function is

h(sj ,σ)(xCj ) =
g
(
xCj
)∏

l1,l2∈Cj ; l1 6=l2 1(ml1 6= ml2)

k!
(k−sj)!sj (2σ2)sj−1

exp

(
−
πδ2

Cj

2σ2

)
, (3.2)

where xCj is the Euclidean barycenter of xCj and δ2
Cj

=
∑

i∈Cj
(
xi−xCj

)>(
xi−xCj

)
.

Section 3.3.1 below provides detailed calculations to obtain (3.2).

Note that in this section we are treating g(·) as a known function. For the

purposes of data analysis we will replace g with an estimate ĝ. Note that this re-

placement commits us to the use of a data-driven prior. The estimate ĝ (see Figure

3.1) is obtained using Gaussian kernel smoothing with bandwidth chosen accord-

ing to the cross-validation method (Diggle, 2003, p.115-118) and edge correction

performed according to Diggle (1985). See Section 2.3.1 for more details on the

cross-validation method.

Remark 1. Given the heterogeneity in the number of settlements across different

placenames, the assumption of the marks being sampled uniformly seems not to be

very realistic. In Section 3.7.2 we propose an empirical Bayes approach to include

non-uniformity of marks in the model while maintaining computational feasibility

and we present inferences under that assumption. Here we retain the uniform marks

assumption for simplicity and because the two approaches produce similar inferences.

Moreover the inferences with the uniform marks assumption are more conservative

(see Section 7.2) and therefore preferable in this context.

Remark 2. This model does not constrain x
i
(j)
l

= zj + y
i
(j)
l

to lie in the observation

region W . To make the model more realistic one could condition the distribution of

y
i
(j)
l

in (3.1) on zj+yi(j)l
∈W (which would be an additional form of edge-correction).

Nevertheless in our application the density function g is not concentrated on the

borders (apart from the England-Wales border) and the values of σ are small (below

10 kilometers) compared to the size of W . Therefore most correction terms would

be negligible. Moreover computing a correction term for each center point zj would

result in a consistent additional computational burden for each step of the Markov
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Figure 3.1: Estimate of the density function for the full dataset obtained through
Gaussian kernel smoothing (and truncation) with bandwidth chosen using the func-
tion bw.relrisk from the Spatstat R package (Baddeley & Turner, 2005), which is
based on the cross-validation method (see e.g. Diggle, 2003, p.115-118). Edge cor-
rection has been performed according to Diggle (1985). This function is used as an
estimate of the probability density g(·) of the center process z (Section 3.3).

chain Monte Carlo (MCMC) algorithm in Chapter 6. Therefore we avoid such

correction terms here. Note that, since such correction terms would increase the
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probability of points being clustered, this approximation has a conservative effect.

3.3.1 Derivation of likelihood function

We now provide detailed calculations to derive the likelihood expression in (3.2).

Suppose that x1, ..., xs are random vectors in R2 given by

xl = z + yl , l = 1, ..., s, (3.3)

where z has probability density function g(·) on R2 and

yl = wl −
1

s

s∑
i=1

wi , l = 1, ..., s , (3.4)

with w1, ..., ws being s independent bivariate N(0, σ
2

π I2) random vectors, where I2
is the 2× 2 identity matrix. We need to prove that the probability density function

(pdf) of x = (x1, ..., xs) on R2s is

f(s,σ)(x1, ..., xs) =
g (x)

s(2σ2)s−1
exp

(
−πδ

2
x

2σ2

)
, (3.5)

where x is the Euclidean barycenter of x and δ2
x =

∑s
i=1 (xi − x)2. Expression (3.2)

can be obtained from multiplying (3.5) by

1
k!

(k−sj)!

k∏
i,j=1, i 6=j

1(mi 6= mj) . (3.6)

The expression in (3.6) comes from the probability of obtaining a sequence of marks

(m1, . . . ,ms), that is
∏
i 6=j 1(mi 6= mj) · (k−s)!

k! .

Let yi =
(
y

(1)
i , y

(2)
i

)
for i running from 1 to s. Note that the random vec-

tors
(
y

(1)
1 , . . . , y

(1)
s

)
and

(
y

(2)
1 , . . . , y

(2)
s

)
are independent and identically distributed.

Thus it suffices to consider
(
y

(1)
1 , . . . , y

(1)
s

)
.

If we define y =
(
y

(1)
1 , ..., y

(1)
s

)T
and w =

(
w

(1)
1 , ..., w

(1)
s

)T
then (3.4) can be

expressed as

y = w− 1

s
Hsw,

where Hs is the s × s matrix with 1 in every position. Since the random vector y
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has zero mean then its covariance matrix Σ is

Σ = E[yTy] = E[wTw]− 1

s
E[wTHsw]− 1

s
E[wTHT

s w] +
1

s2
E[wTHT

s Hsw].

Then using the fact that HT
s Hs = sHs and HT

s = Hs we obtain

Σ =
σ2

π
Is −

2

s
E[wTHsw] +

1

s
E[wTHsw] =

σ2

π
Is −

1

s
E[wTHsw] =

σ2

π

(
Is −

Hs

s

)
.

Note that y
(1)
s equals −

∑s−1
i=1 y

(1)
i because

s∑
i=1

y
(1)
i =

s∑
i=1

(
w

(1)
i −

1

s

s∑
j=1

w
(1)
j

)
=

s∑
i=1

w
(1)
i −

s∑
j=1

w
(1)
j = 0.

Therefore we can focus on the distribution of y
(1)
1 , ..., y

(1)
s−1 only. Such random vari-

ables form a Gaussian random vector ys−1 =
(
y

(1)
1 , ..., y

(1)
s−1

)T
with zero mean and

covariance matrix Σs−1 which is the restriction of Σ to the first s− 1 coordinates

Σs−1 =
σ2

π

(
Is−1 −

Hs−1

s

)
. (3.7)

Therefore the joint pdf of ys−1 in Rs−1 is

(2π)−
s−1
2 |Σs−1|−

1
2 exp

(
−1

2
(ys−1)TΣ−1

s−1ys−1

)
,

where |Σs−1| denotes the determinant of Σs−1. Using the fact that H2
s−1 equals

(s− 1)Hs−1 we can show that the inverse of Σs−1 is π
σ2 (Is−1 + Hs−1). In fact

σ2

π

(
Is−1 −

Hs−1

s

)
π

σ2
(Is−1 + Hs−1) = Is−1 + Hs−1 −

Hs−1

s
−

H2
s−1

s
=

Is−1 +
s− 1

n
Hs−1 −

s− 1

n
Hs−1 = Is−1.

The determinant of Σs−1 is 1
s

(
σ2/π

)s−1
. This can be derived by the fact that the

s − 1 eigenvalues of π
σ2 Σs−1 = Is−1 − Hs−1

s are 1
s , 1, ..., 1. An orthonormal basis of

corresponding eigenvectors is given by the rows r1, ..., rs−1 of an (s − 1) × (s − 1)
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Helmert matrix:

r1 = (s− 1)−1/2
(
1, ..., 1

)
,

rk =
(
k(k − 1)

)−1/2(
1, ..., 1, 1− k, 0, ..., 0

)
k = 2, ..., s− 2,

rs−1 =
(
(s− 1)(s− 2)

)−1/2(
1, ..., 1, 1− (s− 1)

)
.

From Hs−1r
T
1 = (s− 1)rT1 and Hs−1r

T
k = 0 for k in 2, ..., s− 1, it follows(

Is−1 −
Hs−1

s

)
rT1 = rT1 −

(s− 1)

s
rT1 =

1

s
rT1

and (
Is−1 −

Hs−1

s

)
rTk = rTk − 0 = rTk k = 2, ..., s− 1.

Therefore the joint pdf of ys−1 in Rs−1 is

2−
s−1
2

√
s

σs−1
exp

(
− π

2σ2
(ys−1)T

(
Is−1 + Hs−1

)
ys−1

)
. (3.8)

Focusing on the exponent we have

− π

2σ2
(ys−1)T

(
Is−1 + Hs−1

)
ys−1 = − π

2σ2

s−1∑
i=1

(
y

(1)
i

)2
+

s−1∑
i=1

s−1∑
j=1

y
(1)
i y

(1)
j

 ,

which equals

− π

2σ2

s−1∑
i=1

(
y

(1)
i

)2
+

(
s−1∑
i=1

y
(1)
i

)2
 .

If we multiply together the joint pdfs of
(
y

(1)
1 , . . . , y

(1)
s−1

)
and

(
y

(2)
1 , . . . , y

(2)
s−1

)
we

obtain the following expression for the pdf of the Gaussian family y1, ..., ys−1 in

(R2)s−1, where yi =
(
y

(1)
i , y

(2)
i

)
s

(2σ2)s−1
exp

− π

2σ2

s−1∑
i=1

|yi|2 +

∣∣∣∣∣
s−1∑
i=1

yi

∣∣∣∣∣
2
 . (3.9)

The pdf of x given in (3.5) can be obtained by linear transformation from the pdf

27



of z and y1, ..., ys−1. Equations (3.3) and (3.4) can be expressed as

xi = z + yi i = 1, ..., s− 1,

xs = z −
s−1∑
i=1

yi ,

or equivalently as

x(j) = z(j)


1

1
...

1

+

 Is−1

−1 · · · −1




y
(j)
1

y
(j)
2
...

y
(j)
s−1

 j = 1, 2,

where the j-th superscript denotes the j-th coordinate and Is−1 denotes the (s −
1) × (s − 1) identity matrix. Thus x(j) is a linear transformation of the random

vector (z(j), y
(j)
1 , ..., y

(j)
s−1)T through the matrix

Js =


1
... Is−1

1

1 −1 · · · −1

 . (3.10)

Therefore the pdf of x in R2s is equal to the pdf of (z, y1, ..., ys−1)T divided by the

squared determinant |Js|2. Using Laplace’s formula on the last row

|Js| = (−1)s+1|Ms,1|+
s∑
j=2

(−1)s+j(−1)|Ms,j | =

(−1)s+1
(
|Ms,1|+

s∑
j=2

(−1)j |Ms,j |
)
, (3.11)

where Mi,j is the matrix obtained from Js by removing the i-th row and the j-th

column. Note that Ms,1 is the identity matrix so its determinant is 1. Moreover

Ms,2 =


1 0 · · · 0

1
... Is−2

1

 ,
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and so its determinant is 1 too. For j = 3, ..., s, note that Ms,j can be obtained

from Ms,j−1 by switching the (j − 2)-th row and the (j − 1)-th one. Therefore

|Ms,j | = (−1)|Ms,j−1| = (−1)j−2|Ms,2| = (−1)j−2 .

Plugging this results in (3.11) it follows

|Js| = (−1)s+1
(

1 +
s∑
j=2

(−1)j(−1)j−2
)

= (−1)s+1s , (3.12)

and therefore |Js|2 = s2. Multiplying together the pdf of z and the pdf of y1, ..., ys−1

obtained in (3.9), and dividing by the Jacobian term we obtain (3.5) and therefore

(3.2).

3.4 Prior distribution on σ

History and context suggest some considerations regarding the expected intra-cluster

dispersion (in particular σ between 3 and 10km). For example, a basic consider-

ation is that settlements of the same cluster needed to be at no more than a few

hours walking distance, in order for the inhabitants of the settlements to interact

administratively and politically. Nevertheless we prefer not to impose strong prior

information on σ, as this gives us the opportunity to see whether our study of geo-

graphical location is in accordance with available contextual information. We use a

flat uniform prior for σ, as recommended for example by Gelman (2006, Sec. 7.1)

σ ∼ Unif(0, σmax) .

We set σmax = 50km. Given the historical context, such an upper bound for σ

constitutes a safe and conservative assumption. We tested other values of σmax,

namely 20 and 100 km, and the inferences presented in Chapter 7 were not sensitive

to such changes, which is in accordance, for example, with Gelman (2006, Sec.2.2).

3.5 Prior distribution on ρ

We need to model a partition made up of many small clusters. In fact each cluster

can contain at most k points (one for each color), and the historians expect most

of the original clusters to have had fewer than 6 settlements. Common RPMs

usually result in clusters with many data points each and therefore do not seem
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to be appropriate to our case (see for example Remark 3). We now define a prior

distribution π(ρ) designed for situations where each cluster can have at most k

points, with k being small compared to the number of points n.

3.5.1 Poisson Model for π(ρ)

In this model the number of clusters N(ρ) follows a Poisson distribution with mean

λ and each cluster size sj is sampled from {1, . . . k} according to a probability

distribution

p(c) = (p
(c)
1 , . . . , p

(c)
k ) ,

with p
(c)
i ≥ 0 and

∑k
i=1 p

(c)
i = 1. Note that, as a consequence, the (unobserved)

point process of centers {z1, . . . , zN(ρ)} is a Poisson point process with intensity

measure λ g(·) and the number of observed points need not equal n. Conditioning

on observing n points, the induced prior distribution on ρ is

π(ρ|λ,p(c)) ∝
N(ρ)∏
j=1

λ |sj |! p(c)
sj . (3.13)

We assign the following conjugate priors to λ and p(c)

λ ∼ Gamma(kλ, θλ) ,

p(c) = (p
(c)
1 , . . . , p

(c)
k ) ∼ Dir(α

(c)
1 , . . . , α

(c)
k ) .

Combinations of the following choices of hyperparameters did not change the poste-

rior significantly: kλ = 0.5, 1, 3; θλ = 100, 300, 600 and (α
(c)
1 , . . . , α

(c)
k ) = (1/k, . . . , 1/k),

(1, . . . , 1) and (1, 1/(k − 1) . . . , 1/(k − 1)). In the data analysis of Chapter 7 we set

kλ = 1 ,

θλ = 300 ,

(α
(c)
1 , . . . , α

(c)
k ) = (1/k, . . . , 1/k) .

Remark 3. In the RPMs literature it is common to assign a Dirichlet Process

(DP) prior to ρ, which is π(ρ | θ) ∝
∏N(ρ)
j=1 θ(sj − 1)! . The parameter θ is often

called the concentration parameter and can either be fixed or random. A DP prior

conditioning on having no cluster with more than k points would be equivalent to

the Poisson model for a fixed p(c), namely p
(c)
s =

(∑k
l=1

1
l

)−1
1
s , for s = 1, . . . , k.

Our experiments suggest that, in this complementary clustering context, the poste-

rior distribution of ρ is highly sensitive to the value of the probability vector p(c).
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Therefore we preferred to provide a prior distribution to p(c) and estimate it, rather

than fixing its value a priori (e.g. by fixing p
(c)
s ∝ 1

s or p
(c)
s = 1

k ).

Remark 4. Note that, for general p(c) and k, the prior distribution π(ρ|λ,p(c))

in (3.13) is finitely exchangeable but not infinitely exchangeable. Although infinite

exchangeability is a desirable property for random partition models (Lau & Green,

2007; Müller & Quintana, 2010) it appears to be too restrictive for this framework.

For example, in our model the size of the clusters of ρ should be upper bounded by

k and this cannot be obtained with an infinitely exchangeable model.

Remark 5. In Section 3.7.1 we define an alternative model for the prior distribution

π(ρ), based on the Dirichlet-Multinomial distribution rather than the Poisson one.

3.6 Model parameters and Posterior Distribution

The model presented above results in the following unknown elements

(ρ, σ,p(c), λ) ∈ Pn × R+ × [0, 1]k × R+,

where Pn is the set of all partitions of {1, . . . , n}. Figure 3.2 provides a graphical

representation of the underlying conditional independence structure. Given the

Figure 3.2: Conditional independence structure of the random elements involved in
the Poisson Model.

prior and likelihood distributions described in Sections 3.3, 3.4 and 3.5, we obtain

the following conditional posterior distributions:

π(ρ | x, σ,p(c), λ) ∝
N(ρ)∏
j=1

g (xCj)λ p(c)
sj

csjσ
2(sj−1)

exp

(
−
πδ2

Cj

2σ2

) ∏
i,l∈Cj , i 6=l

1(mi 6= ml)

 , (3.14)
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π(σ | x, ρ,p(c), λ) ∝
1(0,σmax)(σ)

σ2(n−N(ρ))
exp

π∑N(ρ)
j=1 δ2

Cj

2σ2

 , (3.15)

p(c) | x, ρ, σ, λ ∼ Dir
(
α

(c)
1 +N1(ρ), . . . , α

(c)
k +Nk(ρ)

)
, (3.16)

λ | x, ρ, σ,p(c) ∼ Gamma (kλ +N(ρ) , θλ/(θλ + 1)) . (3.17)

Here, cs =
(
k
sj

)
sj 2sj−1 and 1(0,σmax)(·) is the indicator function of (0, σmax).

The posterior distribution π(ρ|x, σ,p(c), λ) in (3.14) is intractable, meaning

that we cannot obtain exact inferences from it and even performing approximate

inferences is challenging. In fact the posterior sample space Pn is too large (of order

between n! and nn) to perform brute force optimization or integration, and the

complementary clustering condition makes it not easy to move in the state space.

To make these statements more precise in Chapter 4 we describe π(ρ|x, σ,p(c), λ) in

terms of hypergraphs and then we consider complexity theory results regarding its

intractability.

Note that, although we have little hope of solving the problem in its gen-

eral form (see Chapter 4), various methods, such as Monte Carlo ones, can still

give satisfactory results in specific applications. In Chapter 6 we develop Markov

chain Monte Carlo techniques to perform approximate inferences and use careful

diagnostic techniques to monitor its convergence.

Remark 6. One could consider the marginal distribution π(ρ|x) obtained by inte-

grating out σ, p(c) and λ rather than the conditional one π(ρ|x, σ,p(c), λ). However

such a distribution is even more difficult to deal with because it does not factorizes

over clusters as π(ρ|x, σ,p(c), λ) does, see (3.14). In fact the product form of (3.14)

makes computation significantly easier (see Chapters 4 and 5).

3.7 Model extensions

We now describe the model extensions mentioned in Remarks 1 and 5.

3.7.1 Alternative model for the prior distribution of ρ

In Section 3.5.1 we define a model for the prior distribution of the partition ρ based

on the Poisson distribution. As mentioned in Remark 5, we consider an alternative

model for π(ρ) based on the Dirichlet-Multinomial distribution. In this section we

define such a model an we refer to it as Dirichlet-Multinomial model.

Remark 7. In Section 7.2 we compare the results of the analysis of the Anglo-Saxon
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settlements dataset obtained using the two different models. The results are almost

equivalent. However the Poisson model is preferable because its posterior distribution

factorizes over clusters, which drastically simplifies the computations needed at each

MCMC step. We include the Dirichlet-Multinomial model as a form of additional

sensitivity analysis with respect to the prior distribution on partitions.

Dirichlet-Multinomial Model for π(ρ)

For l running from 1 to k, we define Nl(ρ) as the number of clusters of ρ having size

l and Yl(ρ) = l ·Nl(ρ), so that Yl(ρ) is the total number of points in all the clusters

of size l. Note that
∑k

l=1 Yl(ρ) = n(x), where n(x) is the number of points in the

k-type point pattern x. In this model the random vector Y(ρ) = (Y1(ρ), . . . , Yk(ρ))

follows a Dirichlet-Multinomial distribution conditioned on Yl being a multiple of l

(for l running from 1 to k)

Pr(Y1 = y1, . . . , Yk = yk) ∝


n!

y1!···yk!p
y1
1 · · · p

yk
k if

∑k
l=1 yl = n and

yl is a multiple of l,

0 otherwise.

(3.18)

We assume that the parameter vector p = (p1, . . . , pk) is unknown with prior dis-

tribution

p = (p1, . . . , pk) ∼ Dir(α1, . . . , αk) .

The resulting prior distribution of ρ given p, recalling that we want such distribution

to be exchangeable, is

π(ρ | p) ∝ 1

η(ρ)

n(x)!

Y1(ρ)! · · ·Yk(ρ)!
p
Y1(ρ)
1 · · · pYk(ρ)

k , (3.19)

where η(ρ) = #{ρ̃ | Y(ρ) = Y(ρ̃)} = n!
(∏k

l=1(l!)
Yl
l (Yl/l)!

)−1
. Equivalently

π(ρ | p) ∝
k∏
l=1

(
Nl(ρ)!

(lNl(ρ))!

)N(ρ)∏
j=1

(
sj ! p

sj
sj

)
. (3.20)

Note from (3.20) that in the Dirichlet-Multinomial model π(ρ | p) does not factorize

over clusters because of the terms depending on N1(ρ), . . . , Nk(ρ).

Remark 8. This model can be seen as a Dirichlet-Multinomial mixture of k classes

having Y1, Y2, up to Yk points corresponding to singletons, couples, up to k-tuples.

We are therefore converting the problem of finding an unknown number (between n
k
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and n) of small clusters into the problem of finding k big clusters, with k fixed and

relatively small (20 in our case).

Remark 9. Note that pl represents the probability of a point being in a cluster of

size l. Since we conditioned Yl on being a multiple of l, though, this is just an

approximation. Nevertheless for large n(x) (such as n(x) ≥ 10) the approximation

error is negligible.

Model parameters and Posterior Distribution

The Dirichlet-Multinomial model results in the following unknown elements

(ρ, σ,p) ∈ Pn × R+ × [0, 1]k,

where Pn is the set of all partitions of {1, . . . , n}. Figure 3.3 provides a graphical

representation of the underlying conditional independence structure. Given the prior

Figure 3.3: Conditional independence structure of the random elements involved in
the Dirichlet-Multinomial model.

distribution described above and the likelihood distribution described in Section

3.3 we obtain the following conditional posterior distributions for the Dirichlet-

Multinomial model:

π(ρ | x, σ,p) ∝
k∏
l=1

Nl!

(lNl)!
·

·
N(ρ)∏
j=1

g (xCj) (psj )
sj

csjσ
2(sj−1)

exp

(
−
πδ2

Cj

2σ2

) ∏
i,l∈Cj , i 6=l

1(mi 6= ml)

 , (3.21)

p | x, ρ, σ ∼ Dir (α1 + Y1(ρ), . . . , αk + Yk(ρ)) . (3.22)

where cs =
(
k
sj

)
sj 2sj−1. Similarly to the Poisson model, the full conditional posterior

distribution of σ, π(σ|x, ρ,p), depends only on σ, x and ρ and is given by (3.15).
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3.7.2 Dropping the uniform marks assumption

When defining the likelihood function in Section 3.3 we assumed that, given the

number of points s in a cluster xC , the marks m1, . . . ,ms of such points are sampled

uniformly from the set

Ms =
{
{m1, . . . ,ms} ⊆ {1, . . . , k} | ml1 6= ml2 for l1 6= l2

}
. (3.23)

Since the cardinality of Ms is
(
k
s

)
, this leads to the term

1(
k
s

) k∏
i,l=1, i 6=l

1(mi 6= ml) (3.24)

in the likelihood function h(s,σ)(xC) given in (3.2).

Nevertheless, as already mentioned in Remark 1, the assumption of the marks

being sampled uniformly does not seem very realistic because of the heterogeneity in

the number of settlements across different placenames (see Table 2.1). In this section

we develop a model where the marks within each cluster are sampled non-uniformly.

Suppose we have a probability vector on the set of possible marks {1, . . . , k},

p(m) =
(
p

(m)
1 , . . . , p

(m)
k

)
, (3.25)

with p
(m)
i > 0 for any i and

∑k
i=1 p

(m)
i = 1. Then, given the number of points s

in a cluster xC , the marks m1, . . . ,ms are independently sampled from {1, . . . , k}
according to p(m), conditioning on all the marks being different among themselves.

Therefore the probability of a certain configuration m1, . . . ,ms is

p
(m)
m1 · · · p

(m)
ms

Zs

k∏
i,j=1, i 6=j

1(mi 6= mj) , (3.26)

where Zs is a normalizing constant defined as

Zs = Zs(p
(m)) =

∑
{a1,...,as}∈Ms

p(m)
a1 · · · p

(m)
as . (3.27)

Note that if the probability vector p(m) is uniform then (3.26) equals (3.24). Replac-

ing (3.24) with (3.26) in the likelihood function (3.2) we obtain the new likelihood

35



function

h(s,σ)(xC) =
p

(m)
m1 · · · p

(m)
ms g (xC)

∏k
i,j=1, i 6=j 1(mi 6= mj)

Zs s (2σ2)s−1
exp

(
−
πδ2

C

2σ2

)
, (3.28)

where, as in Section 3.3, xC is the Euclidean barycenter of xC and δ2
C =

∑
i∈C

(
xi−

xC
)>(

xi−xC
)
. Since the terms {Zs}ks=1 make the computation hard, in Section 7.2

we consider an Empirical Bayes approach to keep computation feasible.

Note that an even more realistic assumption would be to assume the proba-

bility vector in (3.25) to be spatially dependent. This would be more in accordance

with the heterogeneity in the observed spatial patterns of Figure 2.5. However the

approach of Section 7.2 would not be applicable to this case and therefore it is

not obvious how to perform computationally efficient inferences with a spatially

dependent probability vector in (3.25). See Section 8.2 for this and other research

directions to improve the current modeling approach.
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Chapter 4

Computational complexity of

the posterior

As we already mentioned in Section 3.6, the posterior distribution π(ρ |x, σ,p(c), λ)

in (3.14) is intractable. To make such a statement more precise we describe the dis-

tribution π(ρ |x, σ,p(c), λ) in terms of hypergraphs and then we consider complexity

theory results from the literature related to its intractability. For simplicity we will

denote π(ρ |x, σ,p(c), λ) by π̂(ρ).

4.1 Formulation of the model in terms of hypergraphs

4.1.1 Two-color case

First we consider the model of Chapter 3 in the two-type or two-color case (i.e. k

equal to 2). We describe the model in terms of weighted graphs and the state space

in terms of matchings. We now introduce the basic notions needed.

Bipartite graphs and matchings

In the following we will consider only graphs G = (V,E) which are simple. This

means graphs that are finite, with undirected edges and no loops (i.e. no edges

connecting a vertex to itself). Moreover we consider weighted graphs and we denote

the weight function w : E → R. The value w(e) is the weight of the edge e.

A graph G = (V,E) is bipartite if there exist V1, V2 ⊆ V such that V = V1∪V2

and any edge e ∈ E contains one vertex in V1 and one in V2. A natural way of

representing bipartite graphs is by coloring the vertices of V1 and V2 of two different

colors, say red and blue. Figure 4.1(a) provides a representation of a bipartite graph.
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(a) Bipartite graph with 5
vertices and 4 edges.

(b) Complete bipartite
graph with 5 vertices.

(c) Matching contained in
the graph of Figure 4.1a.

Figure 4.1: examples of bipartite graphs.

A bipartite graph G = (V,E) is complete if for any red vertex v1 and any

blue vertex v2 the edge e = {v1, v2} is contained in E. Figure 4.1(b) represents a

complete bipartite graph with 3 red vertices and 2 blue ones. Suppose G = (V,E)

is a complete bipartite graph with n1 red vertices and n2 blue vertices. Then we

denote the edge connecting the i-th red vertex and the j-th blue vertex by the ordered

couple (i, j). Thus there is a bijection between E and {1, . . . , n1} × {1, . . . , n2}.
Given a graph G = (V,E), a matching of G is a set M ⊆ E such that no

two edges of M share a common vertex. If the edges of a matching M contain all

the vertices of the graph, then we say that M is a complete matching or a perfect

matching. Otherwise we say that M is a partial matching. Figure 4.1(c) represents a

(partial) matching contained in the graph of 4.1(a). We denote the set of matchings

contained in a graph G = (V,E) by

MG = {M ⊆ E | ∀e1, e2 ∈M with e1 6= e2 it holds e1 ∩ e2 = ∅} . (4.1)

If the graph G is weighted then we define the weight of a matching M as the product

of the weights of its edges

w(M) =
∏
e∈M

w(e) ,

and the total weight of G as the sum of the weights of its matchings

w(G) =
∑

M∈MG

∏
e∈M

w(e) .

Connection to the two-color complementary cluster model

In Chapter 3 we defined a Random Partition Model (RPM) to study complementary

clustering of k-type point configurations of the form x = {(x1,m1), . . . , (xn,mn)} ⊆
R2×{1, . . . , k}. When k is equal to 2 there are only two types of points. A two-type
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point configuration x can be associated to a complete bipartite graph Gx where each

point corresponds to a vertex and the two point types induce a partition into red

and blue vertices.

We are interested in studying the posterior distribution π(ρ |x, σ,p(c), λ) de-

fined in (3.14), which we denote by π̂(ρ) for simplicity. The state space of π̂(ρ) is the

space of partitions of {1, . . . , n}. However π̂(ρ) is non-zero only for partitions ρ such

that no cluster of ρ contains two points of the same type (i.e. i1 and i2 belonging to

the same cluster implies mi1 6= mi2). Since we have only two point types, it follows

that a (non-empty) set of points is an admissible cluster if and only if it is a single-

ton or a red-blue couple. If we associate each cluster consisting of a red-blue couple

with the corresponding edge of the complete bipartite graph Gx, then we obtain a

bijection between admissible partitions (i.e. partitions ρ such that π̂(ρ) > 0) and

the set of matchings MGx contained in Gx (see (4.1) for definition). For example

the matching in Figure 4.1(c) corresponds to the partition ρ = {{1, 4}, {3, 5}, {2}}.
Note that each unlinked point is a cluster by itself. From now on we will treat ρ

indifferently as a partition or as a matching, as the two formulations are equivalent.

For each edge e = {x(e)
1 , x

(e)
2 } of Gx we define the weight

w(e) =
(c1)2 λ p

(c)
2 g (xe)σ

−2

c2

(
λ p

(c)
1

)2
g
(
x

(e)
1

)
g
(
x

(e)
2

) exp

(
−π δ

2
e

2σ2

)
, (4.2)

where

xe =
x

(e)
1 + x

(e)
2

2
and δ2

e =

2∑
l=1

(
x

(e)
l − xe

)T (
x

(e)
l − xe

)
.

Given the weights in (4.2), the measure π̂(ρ) is proportional to the weight of the

matching ρ. In fact multiplying
∏
e∈ρw(e) by the term

∏n
i=1

λ p
(c)
1 g(xi)
c1

, which does

not depend on ρ, we obtain

∏
e∈ρ

w(e) ∝
∏

i :xi /∈e ∀e∈ρ

(
λ p

(c)
1 g (xi)

c1

) ∏
e∈ρ

(
λ p

(c)
2 g (xe)

c2 σ2
exp

(
−π δ

2
e

2σ2

))
. (4.3)

Since the right-hand side of (4.3) is the two-color version of π̂(ρ) in (3.14), it follows

that

π̂(ρ) ∝
∏
e∈ρ

w(e) ρ ∈MGx . (4.4)
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Equation (4.4) shows that the state space of π̂(ρ) can be interpreted as MGx , the

space of matchings contained in Gx, and that the probability of each matching ρ is

proportional to its weight. This will be useful in understanding the computational

complexity of tasks associated with the distribution π̂(ρ).

4.1.2 The general k-color case

In Section 4.1.1 we described π̂(ρ) for k = 2 in terms of matchings of a weighted

bipartite graphs. To have an analogous characterization for k ≥ 3 we first need to

recall the notion of a hypergraph.

Complete k-partite hypergraphs

Hypergraphs are the generalization of graphs where each hyperedge can contain

more than two vertices (Berge & Minieka, 1973). More precisely an hypergraph

G = (V,E) consists of two finite sets V and E. The set V is the set of vertices

and the set E is the set of hyperedges. Each hyperedge e ∈ E is a collection of

at least two vertices, such as e = {v1, . . . , v|e|} with v1, . . . , v|e| ∈ V , |e| ≥ 2 and

vi 6= vj for i 6= j. We can visually represent hypergraphs in an analogous way to

graphs. For example Figure 4.2(a) represents an hypergraph with V = {1, 2, 3, 4}
and E =

{
{1, 3}, {1, 2, 3}, {2, 3, 4}

}
. Note that, as for graphs, we consider only

(a) Hypergraph with ver-
tices V = {1, 2, 3, 4} and
edges E = {e1,e2,e3}.

(b) Complete 3-partite hy-
pergraph with V1 = {1},
V2 = {2} and V3 = {3, 4}.

(c) Matching corresponding
to the partition ρ equal to{
{1}, {2, 3, 4}

}
.

Figure 4.2: examples of hypergraphs.

simple hypergraphs, meaning that we do not allow for loops, directed hyperedges or

infinite hypergraphs.

Given k ≥ 2, we say that a hypergraph G = (V,E) is k-partite if there exist

V1, . . . , Vk ⊆ V , with V = V1 ∪ · · · ∪ Vk and Vi ∩ Vj = ∅ for i 6= j, such that

|e ∩ Vi| ≤ 1 ∀ e ∈ E, i ∈ {1, . . . , k} .
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In particular the complete k-partite hypergraph induced by V1, . . . , Vk is defined as

G = (V,E) where V = V1 ∪ · · · ∪ Vk and

E = {e ⊆ V : |e ∩ Vl| ≤ 1 ∀ l , |e| ≥ 2} .

Figure 4.2(b) shows a complete 3-partite hypergraph induced by V1 = {1}, V2 = {2}
and V3 = {3, 4}.

As for graphs, a matching contained in an hypergraph G = (V,E) is a set

M ⊆ E such that no two hyperedges of M share a common vertex. We still de-

note the set of matchings contained in G by MG , see (4.1). Figure 4.2(c) shows

an example of matching contained in the complete 3-partite hypergraph of Figure

4.2(b).

Connection to the k-color complementary cluster model

We now return to the distribution of interest π̂(ρ), in the general case k ≥ 2.

A k-type point configuration x = {(x1,m1), . . . , (xn,mn)} ⊆ R2 × {1, . . . , k} can

be associated to a complete k-partite hypergraph Gx = (V,E) where each point

corresponds to a vertex and the k point types induce a partition into colors. More

precisely Gx is the complete k-partite hypergraph with V = {1, . . . , n} and Vs =

{i : mi = s} for s from 1 to k.

As before, a partition ρ ∈ Pn of n points into clusters has non-zero proba-

bility, π̂(ρ) > 0, if and only if no cluster of ρ contains two points of the same type

(i.e. i1 and i2 belonging to the same cluster implies mi1 6= mi2). Therefore a set of

points is an admissible cluster if and only if the hyperedge connecting such points

belongs to the complete k-partite hypergraph Gx. Every admissible partition ρ can

then be interpreted as a partial matching contained in Gx as follows: each cluster

with at least two points corresponds to a hyperedge and each unlinked point is a

cluster by itself. For example Figure 4.2(c) shows the matching corresponding to

the partition ρ =
{
{1}, {2, 3, 4}

}
. As for the two-color case, the state space space

of π̂(ρ) can be seen as MGx , the space of matchings contained in Gx, and we will

treat ρ indifferently as a partition or as a matching.

We define the weight w(e) for each hyperedge e = {x(e)
1 , . . . , x

(e)
|e| } of the

hypergraph Gx as

w(e) =
(c1)|e|λ p

(c)
|e| g (x)σ−2(|e|−1)

c|e|

(
λ p

(c)
1

)|e|
g(x1) · · · g(x|e|)

exp

(
−π δ

2
e

2σ2

)
, (4.5)
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where

xe =
x

(e)
1 + · · ·+ x

(e)
|e|

|e|
and δ2

e =

s∑
l=1

(
x

(e)
l − xe

)T (
x

(e)
l − xe

)
.

If we multiply
∏
e∈ρw(e) by

∏n
i=1

λ p
(c)
1 g(xi)
c1

, which does not depend on ρ, we obtain

∏
e∈ρ

w(e) ∝
∏

i : i/∈e ∀e∈ρ

(
λ p

(c)
1 g (xi)

c1

) ∏
e∈ρ

 λ p
(c)
|e| g (xe)

c|e| σ2(|e|−1)
exp

(
−π δ

2
e

2σ2

) . (4.6)

It follows from (4.6) and (3.14) that

π̂(ρ) ∝
∏
e∈ρ

w(e) , ρ ∈MGx . (4.7)

4.2 Some complexity theory results from the literature

Given the formulation of π̂(ρ) in terms of matching, see (4.4) and (4.7), we can

exploit known complexity theory results to obtain rigorous statements on the in-

tractability of π̂(ρ). In particular we consider the complexity of the following tasks:

1. finding the normalizing constant of π̂(ρ)

Zπ̂ =
∑

ρ∈MGx

∏
e∈ρ

w(e) ,

2. finding the mode of π̂(ρ)

ρmax = arg max
ρ∈MGx

π̂(ρ) ,

3. sampling from π̂(ρ).

We will distinguish between the two-color case (k = 2) and the multi-color

case (k ≥ 3) because they present substantially different complexity issues. Guided

by the corresponding literature in the theory of algorithms we often refer to those

as two-dimensional case and k-dimensional case respectively, even though in both

cases our points lie on a plane.
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4.2.1 Recalling basic complexity theory notions

First we introduce some basic notions from Computational Complexity Theory.

In particular we recall the basic definitions related to the notion of NP-complete

decision problems. Our aim is just to provide some context for understanding the

implications of the results presented later. For more rigorous and detailed definitions

we refer to Garey & Johnson (1979) and Jerrum (2003).

The class P is the class of decision problems which can be solved in polyno-

mial time (in the size of the input) by a Deterministic Turing Machine (DTM). A

DTM is a basic model for CPU computation. Here we can think at a DTM as a

machine which reads and modifies symbols on a tape according to a set of rules and

is allowed to perform only one operation at a time. See Garey & Johnson (1979,

Sec2.2) for a proper definition. Note that some care should be taken to properly de-

fine the size of the input and to show that the results do not depend on the way the

input is encoded (see Garey & Johnson (1979, Sec2.1) for more details on encoding

schemes).

The class NP is the class of decision problems that can be solved in polyno-

mial time by a NonDeterministic Turing Machine (NDTM). A NDTM is a machine

that first guesses a possible solution to the problem and then verifies (in polynomial

time) with a DTM whether that solution was correct. We say that a NDTM solves

a problem if, when the answer to the decision problem is “yes”, there exists at least

one guess such that the NDTM returns “yes” and if the answer is “no” then there is

no guess such that the NDTM returns “yes”. For this reason the class NP is often

referred to as polynomially verifiable problems, meaning that we can think of NP

as the class of problems for which we can verify in polynomial time with a DTM

whether a proposed solution is correct or not. See Garey & Johnson (1979, Sec2.3)

for a proper definition.

A decision problem is NP-hard if it is at least as hard as any problem in NP

(and NP-complete if it is NP-hard and belongs to NP). By this we mean that if we

can solve such a problem then we can solve any other problem in NP at roughly

the same cost, because we can “transform” any instance of any problem in NP into

an instance of that specific problem (see Garey & Johnson (1979, Sec2.5) for the

notion of polynomial transformation). NP-complete problems are widely believed to

be intractable, meaning that no algorithm is expected to exist that can solve them

in polynomial time. The reason is that, if such an algorithm existed, then it would

also exist for any problem in NP and therefore it would hold P = NP .

Note that the notion of NP-completeness is defined for decision problems,

while we will mainly deal with other kind of problems, such as optimization or
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counting problems. However the basic ideas related to the complexity of decision

problems also extend to the main types of problems investigated here and the basic

intuition is preserved.

For example any optimization problem (e.g. “find the minimum of a real

valued function f”) can be related to a corresponding decision problem (“is the

minimum of f smaller than b?” for some real value b). The corresponding deci-

sion problem is no harder than the original optimization problem and therefore if

the decision problem is NP-complete then, unless P=NP, the optimization problem

cannot be solved in polynomial time either (see Garey & Johnson (1979) for more

details on the relationship between decision and optimization problems).

The #P-complete complexity class for counting problems is analogous to the

NP-complete complexity class for decision problems. See Valiant (1979) and Jerrum

(2003, Ch.2) for more details on the complexity theory of counting problems. Given

the basic intuition on the notion of NP-completeness, we now recall some results

from the Computer Science literature which are related to our problem.

4.2.2 Finding the normalizing constant

The normalizing constant ZG is the sum of the weights of all the matchings ρ

contained in G, that is the total weight of G. The easiest non-trivial version is the

case where k = 2 and the edge weights can only be 0 or 1. In such a case computing

ZG is equivalent to counting the number of partial matchings in a bipartite graph.

Even in this easiest version, this problem is an #P -complete counting problem

(Valiant, 1979). Therefore the more general problem of computing the total weight

of a weighted k-partite hypergraph is also #P -hard.

4.2.3 Finding the posterior mode

Finding the mode of π̂(ρ) is related to the k-dimensional optimal assignment prob-

lem, which can be formulated as follows.

Problem 1. (k-dimensional optimal assignment problem)

Instance: k sets I1,. . . ,Ik of size n and a cost function C : I1 × · · · × Ik → R.

Problem: find an assignment A, i.e. a subset A ⊆ I1×· · ·× Ik containing each point

of I1,. . . ,Ik exactly once, that minimizes
∑

(i1,...,ik)∈AC(i1, . . . , ik).

We show how to reduce the problem of finding ρmax to a k-dimensional

optimal assignment problem. First note that by taking a log-transform

ρmax = arg max
ρ∈MGx

∑
e∈ρ

log (w(e)) = arg min
ρ∈MGx

−
∑
e∈ρ

log (w(e)) .
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We then need to express a matching ρ as an assignment for some choice of I1, . . . Ik.

Suppose that V is made of n1, . . . , nk vertices of colors 1, . . . , k respectively, inducing

a partition V1, . . . , Vk. Construct a graph G̃ containing G as follows. First define

Ṽ1, . . . , Ṽk by adding n−ni auxiliary points to Vi for i from 1 to k. Define G̃ = (Ṽ , Ẽ)

as the complete k-uniform k-partite hypergraph induced by Ṽ1, . . . , Ṽk. The graph

G̃ inherits the weight function from G in such a way that the auxiliary points do

not contribute to any weight. More precisely the weight of ẽ ∈ Ẽ equals the weight

of e = ẽ ∩ V if e ∈ E (meaning that ẽ has two or more vertices in V ) and equals

1 if e /∈ E (meaning that ẽ has zero or one vertex in V ). Each partial matching ρ

of G can then be seen as a complete matching ρ̃ in G̃ by adding auxiliary points to

the edges (and to the singletons) of ρ in such a way that each resulting hyperedge

has exactly k vertices. Note that the resulting ρ̃ (which is not unique) has the same

weight of ρ. Finally, noting that a complete matching in G̃ can be interpreted as

assignment A ⊆ I1 × · · · × Ik with Ii = Ṽi for i from 1 to k, we obtain Problem 1.

When k = 2 Problem 1 becomes the classical (2-dimensional) optimal assign-

ment problem. Such a problem is efficiently solvable, for example in O(n3) steps

using the Hungarian Algorithm (Kuhn, 1955), which is based on concepts from

Optimal Transportation Theory (Villani, 2009).

In contrast for k ≥ 3 Problem 1 is an NP-hard optimization problem. Even

more, unless P=NP, there is no deterministic polynomial-time approximation al-

gorithm for a general cost function, meaning that the problem is not in the class

APX (see Ausiello et al. , 2012, Def.3.9 for a definition of APX). The same holds

even if the cost function C is decomposable as C(x1, . . . , xk) =
∑

i 6=j d(xi, xj). Some

polynomial time approximation algorithms exist if d satisfies the triangle inequality

(see, for example, Crama & Spieksma (1992) and Bandelt et al. , 1994) but this is

not our case. Balas & Saltzman (1991) propose an heuristic algorithm for a general

cost function C, but no constant of approximation is provided and only the case

k = 3 is considered.

Finally De la Vega et al. (2003) propose a polynomial time approximation

scheme to partition n points of Rd in m clusters that minimize the sum of the

intra-clusters squared Euclidean distances. This problem is similar to ours but

unfortunately the running time of their algorithm is polynomial in n but exponential

in m and in our context it seems reasonable to suppose m to be roughly of the same

order of n.

In conclusion the literature does not appear to provide a generic bounded-

complexity method to obtain (or approximate) ρmax. Heuristic methods could still

work well in our particular case.
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4.2.4 Approximate sampling

We now consider the problem of drawing approximate samples from π̂(ρ). By ap-

proximate samples we mean samples drawn from some distribution close to π̂(ρ),

for example in total variation distance (see (5.2) for definition). Such a task is often

accomplished using Monte Carlo methods, for example Markov Chain Monte Carlo

(MCMC) algorithms, which we describe more in details in Chapter 5.

Being able to draw approximate samples from π̂(ρ) is an important task as

it allows us to approximate expectations with respect to π̂(ρ). See Chapter 5 for

more details.

Two-color case

When k equals 2, sampling from π̂(ρ) can be related to monomer-dimer systems.

In Statistical Physics a monomer-dimer system is a collection of n sites covered

by molecules occupying one site (monomers) or two sites (dimers), which can be

described with the following model.

Model 1. (monomer-dimer system)

Instance: A simple graph G = (V,E) with non negative edge weights w : E → [0,∞)

such that w(e) > 0 for at least one e ∈ E.

State space: the set MG of matchings contained in G.

Probability distribution: π̂(ρ) ∝
∏
e∈ρw(e).

Although monomer-dimer systems are usually considered in lattice frame-

works, the two-dimensional version of our model is indeed the monomer-dimer sys-

tem corresponding to the weighted complete bipartite graph Gx, see (4.4). Jerrum

& Sinclair (1996) propose a Metropolis-Hastings (MH) random walk algorithm (see

Chapter 5) to obtain approximate samples from monomer-dimer systems distribu-

tions in polynomial time. Using a canonical paths argument they prove that for any

starting state ρ0 the mixing time of their Markov Chain satisfy

τρ0(ε) ≤ 4(#E)(#V )w′2
(
log(#E)#E + log

(
ε−1
))
, (4.8)

where w′ = max {1,maxe∈E w(e)}. Here the mixing time τρ0(ε) can be thought as

the number of steps needed by the algorithm to draw a sample from a distribution

close to π̂(ρ) (namely whose distance is smaller than ε in total variation distance).

See Section 5.1.1 for more details. Huber & Law (2012) consider the same Markov

Chain starting from the mode ρmax (which can be found in O(#V )3 by the Hun-
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garian algorithm) and slightly improve the bound (4.8) to

τρmax(ε) ≤ 4(#E)(#V )w′2
(
log(2)#E + log

(
ε−1
))
. (4.9)

Remark 10. The bounds (4.8) and (4.9) seem to be very conservative in practice. In

fact these bounds are often not tight enough to be used in applications. For example

in the framework of Section 6.1.3 the bound in (4.9) is of order 109 (depending weakly

on ε). Convergence diagnostic methods, though, suggest that order 105 steps are

enough to approximate π̂(ρ). The apparent slackness of (4.8) and (4.9) is coherent

with the fact that bounds obtained using canonical path techniques are typically over-

conservative (see e.g. Jerrum & Sinclair, 1996).

k-color case

Can we approximately sample from π̂(ρ) in polynomial time for k ≥ 3 too? This

is related to approximate count matchings in hypergraphs in polynomial time (see

Chapter 3 of Jerrum (2003) for the relationship between approximate sampling

and approximate counting). Unfortunately, as far as we are aware, there are not

many results in this field. Karpinski et al. (2012) try to extend the methods

of Jerrum & Sinclair (1996) to a hypergraph setting but they managed to do it

only for a specific class of sparse hypergraphs that do not include our case. They

also prove a negative result: unless NP=RP (RP is the analogous of P but for

randomized decision algorithms), there cannot be any FPRAS (Fully Polynomial

Random Approximation Scheme, see for example Jerrum, 2003, Sec. 3.1) to obtain

approximate samples from the k-dimensional version of the monomer-dimer system

for k ≥ 6 (see Proposition 3 of Karpinski et al. , 2012). Strictly speaking, this still

does not imply that such a scheme cannot exist for our problem even if NP6=RP,

because our problem is constrained by additional conditions that they do not assume

in their negative result (e.g. our hypergraph is k-partite).

4.2.5 Summary of intractability situation

Assuming P6=NP, we should not expect to perform exact posterior inferences in

polynomial time. In fact finding the normalizing constant of π̂(ρ) is NP-hard even

for k = 2 and the posterior mode ρmax can be efficiently computed for k = 2, but it

is an NP-hard problem for k ≥ 3 (although heuristic algorithms exist).

Polynomial-time algorithms to sample from π̂(ρ) exist for k = 2 (although

they are not practically feasible), while some results suggest that, unless P=NP,

they cannot exist for k ≥ 6 (see Section 4.2.4). Theoretical results of this kind do

47



not rule out the possibility of obtaining approximate samples in specific situations,

but do exclude the possibility of finding a scheme that does so (in polynomial time)

for arbitrary instances of a certain class of distributions. Since the problem we

consider is by no means arbitrary it is feasible that special methods may produce

good approximate samples.

In Chapter 6 we propose an MCMC algorithm for the two-color case and one

for the k-color case. As a consequence of the results presented in this Section it is

clear that additional care must be taken when empirically studying MCMC mixing

properties.
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Chapter 5

Theory and methodology from

MCMC

In Chapter 3 we defined a Bayesian Random Partition Model to study complemen-

tary clustering of Anglo-Saxon settlements (see Chapter 2). The resulting posterior

distribution (see Section 3.6) is intractable. The difficult part is the full conditional

distribution of the partition ρ, namely π(ρ |x, σ,p(c), λ), which we denote by π̂(ρ).

The theoretical results presented in Chapter 4 suggest that we have little hope of

being able to perform exact inferences regarding π̂(ρ), such as evaluating posterior

probabilities or expectations. However we might still obtained reliable approximate

inferences. In particular, Monte Carlo methods constitute a broad and powerful

class of tools to perform such approximate inferences.

In this chapter we first provide the relevant background on Monte Carlo

methods and in particular Markov chain Monte Carlo (MCMC) algorithms (Section

5.1) and the Metropolis-Hastings (MH) algorithm (Section 5.1.1). For a more gen-

eral and detailed discussion of Monte Carlo methods we refer to Robert & Casella

(2005). Then we consider the question of what is an appropriate way to design

informed MH proposal distributions in discrete spaces, such as the state space of

π̂(ρ). To provide an answer, we introduce a class of informed proposals, which we

call balanced proposals, and we show that under some assumptions they are optimal

in an asymptotic Peskun sense (see Theorems 4, 5 and 6). Such a class of proposals

will be directly relevant to our applied problem as they will significantly speed up

of the algorithm we will use to analyze our dataset (see Section 6.1.3).
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5.1 Markov chain Monte Carlo algorithms

The basic idea of Monte Carlo methods is to approximate a deterministic quantity

by expressing it as the expectation of some random variable X and then estimate it

with the empirical average of samples of X.

More precisely suppose we can express the quantity of interest as

Eπ [h] =

∫
Ω
h(x)π(dx) <∞

for some probability measure π on a sample space Ω and some function h : Ω→ R.

The basic Monte Carlo approach consist in estimating Eπ [h] with

ĥN =

∑N
i=1 h(Xi)

N

a.s.−→ Eπ [h] (5.1)

where X1,. . . , XN are independent and identically distributed (i.i.d) samples from

π. The almost sure convergence as N →∞ in (5.1) follows from the Strong Law of

Large Numbers. If in addition Eπ
[
h2
]

is finite, the Central Limit Theorem implies

that the Monte Carlo error |ĥN − Eπ [h] | goes to 0 at rate O( 1√
N

).

In practice, however, we often seek to estimate Eπ [h] in cases where we

cannot sample directly from π, such as our distribution of interest π̂(ρ). In such cases

there are various possible approaches. For example Importance Sampling methods

draw samples from a distribution ν which is not too far from π and then correct for

the difference between ν and π. The approach we will use for our applied problem

is to draw approximate samples from π using Markov chain Monte Carlo (MCMC)

algorithms, which are powerful and general tools to draw approximate samples form

an arbitrary distribution π. The main idea is to use the states visited by an ergodic

Markov chain which admits π as a stationary distribution as approximate samples

from π.

Theoretical background

In this section we present very briefly the main theoretical results underlying the

MCMC methodology. This will be useful in the rest of the chapter. For simplicity

we suppose that the state space of π is a finite set Ω. This assumption includes

the case of our distribution of interest π̂(ρ) and simplifies the discussion from the

technical point of view, without affecting the aim of this chapter. For a discussion

of theoretical results for MCMC algorithms in general state spaces see, for example,

Roberts & Rosenthal (2004).
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The two main results underlying the MCMC methodology are the so-called

Convergence Theorem and Ergodic Theorem for Markov chains (Theorems 1 and 2

respectively). To state such theorems we need some definitions. Let P = {P (x, ·)}x∈Ω

be a Markov transition kernel on Ω and (Xt)t≥1 be the corresponding discrete time

Markov chain. A Markov transition kernel P defined on Ω is

• irreducible if for any x and y in Ω there exist a t ≥ 1 such that P t(x, y) > 0;

• aperiodic if for any x in Ω the greatest common divisor of the set {t ≥ 1 :

P t(x, x) > 0} equals 1;

• π-stationary if it holds
∑

y∈Ω π(y)P (y, x) = π(x) for any x in Ω.

Finally we define the total variation distance between two probability measures µ

and ν on Ω as

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)| . (5.2)

Theorem 1. (Convergence Theorem) Let P be an irreducible, aperiodic and π-

stationary Markov transition kernel on Ω. Then there exist C > 0 and α ∈ (0, 1)

such that

max
x∈Ω
‖P t(x, ·)− π(·)‖TV ≤ Cαt .

Proof. See Theorem 4.9 of Levin et al. (2009).

Motivated by the Convergence Theorem, a naive MCMC algorithm simulates

N independent copies of (Xt)t≥1 starting from some state x and collects the states

of the N chains at some large time T . Such states are i.i.d. samples from P T (x, ·)
and can be used to estimate EPT (x,·)[h] for any function h : Ω→ R as in (5.1). The

Convergence Theorem guarantees that P T (x, ·) converges to π in total variation

norm and therefore EPT (x,·)[h] → Eπ[h] for T → ∞. Note that the starting state x

could be replaced with any starting distribution on Ω. However, this algorithm is

not efficient because it uses only the last state of the Markov chains that have been

simulated. The Ergodic Theorem allows one to overcome this problem.

Theorem 2. (Ergodic Theorem) Let (Xt)t≥1 be an irreducible and π-stationary

Markov chain on Ω (with arbitrary starting distribution). Then for any function

h : Ω→ R it holds

ĥT =

∑T
t=1 h(Xt)

T

a.s.−→ Eπ[h] . (5.3)

Proof. See Theorem 4.16 of Levin et al. (2009).
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Equation (5.3) suggests a straightforward way to estimate Eπ[h], which is

to simulate an irreducible and π-stationary Markov chain (Xt)t≥1 and then use∑T
t=1 h(Xt)
T to approximate Eπ[h]. This is indeed the general scheme underlying most

MCMC algorithms.

5.1.1 The Metropolis-Hastings algorithm

In order to use the MCMC methodology, one needs to be able to simulate a π-

stationary Markov chain (and then check that it is irreducible). The Metropolis-

Hastings (MH) algorithm provides a way to turn a generic Markov transition kernel

Q into a π-stationary kernel P . More precisely the MH algorithm produces a π-

reversible kernel P , which means a kernel P such that

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ Ω , (5.4)

which implies that P is π-stationary. The kernel P is obtained fromQ by introducing

the following accept/reject step. Given the current state x, the MH algorithm

samples a proposed state y according to Q(x, ·) and then accepts it with probability

a(x, y) = 1∧ π(y)Q(y,x)
π(x)Q(x,y) and rejects it otherwise (meaning that the chain stays at x).

The resulting π-reversible transition kernel is

P (x, y) =

{
Q(x, y)a(x, y) if y 6= x,

1−
∑

z 6=xQ(x, z)a(x, z) if y = x .

The acceptance function a(x, y)

We now provide more details on the choice of the acceptance function a(x, y) =

1 ∧ π(y)Q(y,x)
π(x)Q(x,y) . This will be useful for the rest of the chapter. The acceptance

function a(x, y) needs to be chosen in such a way that P is π-reversible. This means

π(x)Q(x, y)a(x, y) = π(y)Q(y, x)a(y, x) for any x and y in Ω or, equivalently,

a(x, y) = a(y, x) t(x, y) ∀x, y : Q(x, y) > 0 , (5.5)

where t(x, y) denotes the ratio π(y)Q(y,x)
π(x)Q(x,y) .

Since a(x, y) and a(y, x) are probabilities they must be no greater than 1. It

follows that a(x, y) ≤ 1 and a(y, x) = a(x,y)
t(x,y) ≤ 1 (which implies a(x, y) ≤ t(x, y))

and thus

a(x, y) ≤ 1 ∧ t(x, y) ∀x, y : Q(x, y) > 0 , (5.6)

where s∧ t denotes min{s, t}. Any choice of {a(x, y)}x,y∈Ω satisfying (5.5) and (5.6)
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would lead to a valid algorithm generating a π-reversible kernel P . Nevertheless

it is desirable for a(x, y) to be as big as possible, because rejecting moves reduces

the efficiency of the algorithm (see Section 5.1.3). Therefore the optimal choice of

a(x, y) is the Metropolis-Hastings acceptance function

aMH(x, y) = 1 ∧ t(x, y) = 1 ∧ π(y)Q(y, x)

π(x)Q(x, y)
, (5.7)

which satisfies (5.5) and achieves the upper bound in (5.6). Sometimes also the

Barker acceptance function is used, which is defined as

aB(x, y) =
t(x, y)

1 + t(x, y)
=

π(y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)
. (5.8)

Remark 11. Note that aMH(x, y) = gMH(t(x, y)) and aB(x, y) = gB(t(x, y)) with

gMH(t) = 1 ∧ t and gB(t) = t
1+t . More generally any acceptance function of the

form a(x, y) = g(t(x, y)) is a valid acceptance function if and only if g : R+ → R+

satisfies g(t) ≤ 1 and

g(t) = t g (1/t) t > 0 .

5.1.2 Measuring the efficiency of MCMC algorithms

MCMC algorithms produce samples X1, X2, . . . that are neither independent nor

identically distributed. This can reduce the efficiency of the algorithm by slowing

down the convergence of the estimator ĥT to Eπ[h] given by (5.3). In particular the

performances of MH algorithms depend crucially on the proposal distribution Q. In

this section we review some measures of efficiency for MCMC algorithms in order

to provide guidelines to choose a good proposal Q. Such results will be helpful in

the rest of the chapter.

Asymptotic variance

The notion of asymptotic variance describes how the correlation among MCMC

samples affects the variance of the estimator ĥT . Given a π-stationary transition

kernel P and a function h : Ω→ R, the asymptotic variance varπ(h, P ) is defined as

varπ(h, P ) = lim
T→∞

T var
(
ĥT

)
= lim

T→∞
T−1 var

(
T∑
t=1

h(Xt)

)
, (5.9)
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where X1, X2, . . . is a Markov chain in stationarity (i.e. with X1 ∼ π) evolving

according to P . The smaller varπ(h, P ) is, the more efficient the corresponding

MCMC algorithm is in estimating Eπ[h]. The asymptotic variance varπ(h, P ) can

also be expressed as

varπ(h, P ) = varπ(h)

(
1 + 2

∞∑
i=2

corr(h(X1), h(Xi))

)
, (5.10)

where varπ(h) = var(h(X1)) = Eπ[(h−Eπ[h])2] and corr(h(X1), h(Xi)) denotes the

correlation between h(X1) and h(Xi). See for example Kypraios (2007, Sec.1.10) for

calculations leading to (5.10). Motivated by (5.10) the Integrated Autocorrelation

Time (IAT) is defined as

IATπ(h, P ) = 1 + 2

∞∑
i=2

corr(h(X1), h(Xi)) . (5.11)

The value of IATπ(h, P ) represents how many MCMC samples are equivalent to one

i.i.d. sample in terms of estimating Eπ[h]. For example if ĥT was produced with

i.i.d. samples then var
(
ĥT
)

= varπ(h)/T and therefore varπ(h, P ) = varπ(h) and

IATπ(h, P ) = 1. Sometimes it can be useful the define the Effective Sample Size of

an MCMC estimator ĥT , denoted by ESSπ(h, P ), as T divided by IATπ(h, P ). In

this way, for large T , it holds the intuitive equation

var
(
ĥT
)
≈ varπ(h)

ESSπ(h, P )
.

These three measures of efficiency (varπ(h, P ), IATπ(h, P ) and ESSπ(h, P )) are

closely related and all focused on the MCMC autocorrelation. Summarizing, the

smaller varπ(h, P ) and IATπ(h, P ) are (or equivalently the bigger ESSπ(h, P ) is)

the more efficient the Markov chain P is in estimating Eπ[h].

Speed of convergence to stationarity

In practice, however, the starting distribution of an MCMC algorithm is not π itself

but some other distribution, often a fixed state x in Ω. Therefore one should choose

a kernel P such that P T (x, ·) converges as quickly as possible to π in order to reduce

the bias introduced by the starting state x and thus speed-up the convergence of

ĥT to Eπ[h] given by (5.3). The Convergence Theorem (see Theorem 1) states that

d(t) = maxx∈Ω ‖P t(x, ·)−π(·)‖TV satisfies d(t) ≤ Cαt for some C > 0 and α ∈ (0, 1).

Indeed the rate at which d(t) goes to 0 is controlled by the second largest eigenvalue
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of P in absolute value, say λ∗, meaning that

lim
t→∞

d(t)1/t = λ∗

(see Levin et al. , 2009, Thm.12.6). Therefore we would like λ∗ to be small or,

equivalently, the absolute spectral gap of P

AbsGap(P ) = 1− λ∗

to be large. However, rather than AbsGap(P ), one often uses the spectral gap

Gap(P ) = 1− λ2 ,

where λ2 is the second largest eigenvalue of P , without taking the absolute value.

Since MCMC samples are typically positively correlated the two notions are usually

equivalent in practice. In particular if one considers the lazy version of P , obtained

by moving according to P with probability a half and staying at the current location

otherwise, then all the eigenvalues of P are positive and thus AbsGap(P ) = Gap(P ).

While the (absolute) spectral gap of P controls only the rate α in the expres-

sion d(t) ≤ Cαt, the constant C could still be arbitrarily large. A more stringent

notion of convergence is given by the notion of mixing time, which is defined as

tmix(ε) = inf {t ≥ 1 : d(t) ≤ ε} , ε ∈ (0, 1) . (5.12)

In summary, in order for a Markov chain to converge quickly to stationarity, it

should have a large (absolute) spectral gap and a small mixing time.

Remark 12. Although asymptotic variance and speed of convergence lead to dif-

ferent theoretical notions of efficiency for MCMC algorithms, the two are closely

connected (see Mira (2001) for a detailed discussion) and in practice it is often the

case that by improving the one also the other improves and vice versa.

5.1.3 Peskun ordering

Peskun (1973) introduced the following partial ordering among Markov kernels that

controls both the asymptotic variance and the spectral gap.

Theorem 3. Let P1 and P2 be two π-reversible Markov transition kernels on a finite
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space Ω such that P1(x, y) ≥ P2(x, y) for any x 6= y. Then it holds

(a) varπ(h, P1) ≤ varπ(h, P2) ∀h : Ω→ R ,

(b) Gap(P1) ≥ Gap(P2) .

Proof. Part (a): Peskun (1973, Thm.2.1.1) and Tierney (1998, Thm.4). (b) follows

from the variational characterization of Gap (Levin et al. , 2009, Lemma 13.12).

Theorem 3 implies that if P1(x, y) ≥ P2(x, y) for any x 6= y, then P1 leads

to a more efficient MCMC algorithm than P2. We extend such an ordering to cases

involving a constant in the inequality P1(x, y) ≥ P2(x, y), as we will need such an

extension in Section 5.4.

Theorem 4. Let P1 and P2 be two π-reversible and irreducible Markov transition

kernels on a finite space Ω and c > 0 such that P1(x, y) ≥ c P2(x, y) for any x 6= y.

Then it holds

(a) varπ(h, P1) ≤ varπ(h, P2)

c
+

1− c
c

varπ(h) ∀h : Ω→ R ,

(b) Gap(P1) ≥ c ·Gap(P2) .

To prove part (a) of Theorem 4 we need the following Lemma.

Lemma 1. Let P be a π-reversible and irreducible Markov transition kernels on Ω,

with |Ω| = n. Let P̃1 = c P1 + (1 − c)In, where In is the n × n identity matrix and

c ∈ (0, 1]. Then it holds

varπ(h, P̃ ) =
varπ(h, P )

c
+

1− c
c

varπ(h) ∀h : Ω→ R .

Proof of Lemma 1. Suppose Eπ[h] = 0 (otherwise consider h−Eπ[h]). Let {(λi, fi)}ni=1

and {(λ̃i, f̃i)}ni=1 be the eigenvalues and eigenfunctions of P and P̃ respectively.

Then it holds λ1 = λ̃1 = 1, f1 = f̃1 = (1, . . . , 1)T and −1 ≤ λi, λ̃i < 1 for i ≥ 2

(Levin et al. , 2009, Lemmas 12.1,12.2). The asymptotic variances can be written

as

varπ(h, P ) =

n∑
i=2

1 + λi
1− λi

Eπ[h fi]
2 and varπ(h, P̃ ) =

n∑
i=2

1 + λ̃i

1− λ̃i
Eπ[h f̃i]

2 . (5.13)

See for example the proofs of Mira (2001, Theorem 1) and Levin et al. , 2009,

Lemmas 12.20 for (5.13). From the definition of P̃ it follows that f̃i = fi and

λ̃i = c λi + (1 − c). Rearranging the latter equality we obtain 1+λ̃i
1−λ̃i

= 1
c

1+λi
1−λi + 1−c

c
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for i ≥ 2. Thus

varπ(h, P̃ ) =

n∑
i=2

1 + λ̃i

1− λ̃i
Eπ[h fi]

2 =
1

c

n∑
i=2

1 + λi
1− λi

Eπ[h fi]
2 +

1− c
c

n∑
i=2

Eπ[h fi]
2 .

(5.14)

Since {fi}ni=1 form an orthonormal basis of L2(RΩ, π) and Eπ[h f1] = Eπ[h] = 0,

then
∑n

i=2 Eπ[h fi]
2 = Eπ[h2] = varπ(h). Therefore (5.14) becomes varπ(h, P̃1) =

1
c · varπ(h, P1) + 1−c

c varπ(h) .

Proof of Theorem 4. Part (b) follows for example from Levin et al. (2009, Lemma

13.22). Part (a), case c > 1: define P̃1 = 1
cP1 + (1 − 1

c )In. From Lemma 1 it

follows varπ(h, P̃1) = c · varπ(h, P1) + (c− 1) varπ(h) or, equivalently, varπ(h, P1) =
1
cvarπ(h, P̃1) + 1−c

c varπ(h). Since P̃1(x, y) ≥ P2(x, y) for x 6= y, by Theorem 3 it

holds varπ(h, P̃1) ≤ varπ(h, P2). Therefore

varπ(h, P1) =
varπ(h, P̃1)

c
+

1− c
c

varπ(h) ≤ varπ(h, P2)

c
+

1− c
c

varπ(h) ,

as desired. Part (a), case c ≤ 1: define P̃2 = c P2+(1−c)In. From Lemma 1 it follows

varπ(h, P̃2) = 1
cvarπ(h, P2) + 1−c

c varπ(h) . The latter equality and varπ(h, P1) ≤
varπ(h, P̃2), which follows from P1(x, y) ≥ P̃2(x, y) for x 6= y and Theorem 3, provide

us with part (a).

Remark 13. Note that the constant c introduced in the Peskun ordering translates

directly in the spectral gap comparison: Gap(P1) ≥ c ·Gap(P2), Thm.4 part (b).

On the other hand there is an additional term, 1−c
c varπ(h), appearing in the

asymptotic variance comparison (Thm.4, part (a)). If c > 1 then 1−c
c varπ(h) ≤ 0

and thus varπ(h, P2) ≤ varπ(h,P2)
c . If c < 1 then varπ(h, P2) ≤ varπ(h,P2)

c (1 +
1−c

ESSπ(h,P )
). Note that typically (1 + 1−c

ESSπ(h,P )
) ≈ 1 because ESSπ(h, P ) is much

larger than 1 in practical applications. Although the additional term 1−c
c varπ(h)

cannot be dropped, the leading term is usually varπ(h,P2)
c .

5.2 Building informed proposal distributions

When designing a MH proposal distribution it would be desirable to propose global

moves (i.e. Q(x, y) > 0 for any (x, y) ∈ Ω × Ω), ideally sampling from the target

π itself, Q(x, y) = π(y). However, most of the times this is not computationally

feasible and the typical choice is to implement a MH algorithm performing local

moves. In most discrete frameworks, for example, the MH chain is only allowed to

jump to states belonging to some neighborhood of the current state, meaning that
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Q(x, y) > 0 for y ∈ N(x) and Q(x, y) = 0 for y /∈ N(x) with N(x) small compared

to Ω. In such a framework the proposed state is often chosen uniformly at random

from the neighbors

Q(x, y) = QU (x, y) =

{
1

|N(x)| if y ∈ N(x),

0 if y /∈ N(x) .
(5.15)

See for example Jerrum & Sinclair (1996) or the MC3 algorithm of Madigan et al.

(1995).

The uniform proposal in (5.15) is an uninformed proposal, meaning that

no information from π is incorporated in the proposal. This is a practical choice

because often it is easy to sample from QU . On the other hand, it is reasonable

to expect that an informed proposal Q that incorporates local information from π

would improve the mixing of the resulting Markov chain compared to the “blind”

proposal QU .

Informed proposals in continuous spaces

In continuous frameworks, such as Ω = Rn and π(dx) = f(x)dx, various in-

formed MH schemes have been designed to improve upon the uninformed pro-

posal y ∼ N(x, σ2In) . For example the Metropolis Adjusted Langevin Algorithm

(MALA) uses the gradient of log f to move towards high probability regions by

proposing a state according to y ∼ N(x + σ2

2 ∇(log f)(x), σ2In). Such an algo-

rithm is derived by discretizing the π-reversible Langevin diffusion Xt satisfying

dXt = σ2

2 ∇(log f)(x)dt+ σdBt. MALA typically has better mixing properties com-

pared to the Markov chain obtained from the random walk proposal y ∼ N(x, σ2In)

(see e.g. Roberts & Rosenthal, 1998), although MALA can sometimes lead to un-

stable behaviors.

Note that, in order to design an informed proposal, one should think carefully

about how to appropriately incorporate the information in Q. For example, for the

MALA proposal it is not enough to move towards high probability regions (by

following the gradient of the target) but it is crucial that, given a normal proposal

with variance σ2, the mean is shifted by exactly σ2

2 ∇(log f)(x). The intuitive reason

is that, because this is the discretization of a π-reversible diffusion, the MALA

proposal is “almost” π-reversible even before applying the MH correction and thus

fewer moves are rejected and longer moves are allowed. Sections 5.3 and 5.4 are

related to such remarks.

Various other informed proposal schemes for continuous frameworks have
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been proposed in the literature (e.g. Neal (2011), Girolami & Calderhead (2011),

Welling & Teh (2011), Durmus et al. (2015)) resulting in a substantial improvement

of MCMC performances in practical applications, though few or no analogs can be

found in discrete frameworks.

Towards informed proposals in discrete spaces

Informed proposal schemes for continuous frameworks (e.g. MALA) are typically

derived as discretization of continuous time diffusion processes, and are based on

derivatives and Gaussian distributions. Therefore it is not clear how to extend

such methods to frameworks where Ω is a discrete space. In this chapter we aim

at providing some theoretically justified indications on how to incorporate local

information about π in MH proposal distributions in discrete frameworks. To do so

we will make assumptions on the target measures which, although being theoretically

restrictive, are satisfied in most applied scenarios (see Section 5.4).

As mentioned before, we consider MH chains that are only allowed to perform

local moves: Q(x, y) > 0 for y ∈ N(x) and Q(x, y) = 0 for y /∈ N(x) with |N(x)| �
|Ω|. Think, for example, of adding or removing one variable (or a few variables) in a

variable selection context, or moving an edge (or a few edges) in a graphical model

context. We assume that the neighboring structure {N(x)}x∈Ω is fixed and we try

to optimize over Q. Usually the specific problem under consideration suggests a

natural neighboring structure and often, given the current state x, the probability

π(y)
(
or the ratio π(y)

π(x)

)
can be efficiently evaluated for y ∈ N(x). The question

we consider here is how to incorporate the knowledge about {π(y)}y∈N(x) in the

proposal Q(x, ·). Somewhat surprisingly, proposing from the target itself restricted

to N(x), i.e. Q(x, y) ∝ π(y)1N(x)(y), is not the optimal choice (even if one could

sample from it) and indeed not even close to the optimal one. Instead, our results

suggest that informed proposals should resemble a transformation of the target

measure, obtained through a balancing function g. The choice of g is not unique

and we characterize the family of optimal choices (in terms of Peskun ordering)

which we call balanced proposals.

These results may indicate on how to use local information about the target

distribution to design more efficient MH proposal distributions. This work may

also be a first step towards the extension of methods for continuous frameworks

to discrete frameworks: in Section 5.6 we give some suggestions on how the two

approaches may be related.
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Organization of the rest of the Chapter

In Section 5.3 we introduce the idea of balanced proposals, motivating it with some

heuristic calculations and demonstrating it on the two-color version of our model. In

Section 5.4 we define the class of target measures and of proposals that we are going

to consider and we prove that, in the asymptotic regime, balanced proposals are

maximal elements in terms of Peskun ordering. Then we discuss the close connec-

tion between balancing functions and acceptance probability functions. In Section

5.5 we consider the natural consequent question: is there a best choice among var-

ious balanced proposals? We answer this question in a specific case (namely the

hypercube with product-like measure) where we derive the explicit expression of the

balanced proposal leading to the smallest mixing time. In Section 5.6 we explore

the connection between balanced proposals and continuous space MCMC schemes

using local informations (e.g. MALA) and discuss possible future works.

Remark 14. To our knowledge the notion of balanced proposals is new to the litera-

ture. Note that there are many results on mixing times of Markov chains in discrete

spaces (Levin et al. , 2009). While such literature usually considers uniform target

distributions and focuses on proving explicit mixing times results, we are focusing

on the choice of proposal given a non-uniform π.

The problem we consider is also different from the optimal scaling problem

for MH algorithms (Roberts et al. , 1997), which deals with optimizing the scale of

the proposal distribution (e.g. by tuning the variance). In fact we are fixing the scale

of the proposal (by fixing {N(x)}x∈Ω) and then optimizing over the choice of Q.

5.3 Heuristic calculations and illustrative example

We illustrate, through some heuristic calculations, the intuition as to why setting

Q proportional to π is not appropriate when performing local moves and why it is

necessary to introduce a balancing function g.

The difference between global and local moves

When performing global moves (i.e. N(x) = Ω for any x) the “ideal” proposal would

be Q(x, y) = π(y). The Metropolis-Hastings ratio would then be equal to one

a(x, y) = 1 ∧ π(y)Q(y, x)

π(x)Q(x, y)
= 1 ∧ π(y)π(x)

π(x)π(y)
= 1,

and the MCMC algorithm would reduce to i.i.d. Monte Carlo sampling.
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Consider now the local move case where N(x) is small compared to Ω. For

simplicity suppose Ω = R with π(dx) = f(x)dx, Q(x, dy) = q(x, y)dy and N(x) =

BR(x) = {y ∈ R : |x − y| < R} for some small R > 0. Moreover suppose for

illustrative purposes that log f is linear in a region around the current state x,

meaning that

f(y) = d ec y y ∈ (x− 2R, x+ 2R) ,

for some c, d > 0. Motivated by the global case we could propose according to the

target distribution restricted to N(x),

q(x, y) = f(y)
1N(x)(y)∫
N(x) f(z)dz

=
f(y)

f(x)

1N(x)(y)∫
N(x)

f(z)
f(x)dz

=
f(y)

f(x)

1N(x)(y)

ZR
, (5.16)

where ZR =
∫ R
−R e

c zdz is a constant non depending on x. Similarly for q(y, x). The

Metropolis-Hastings ratio for y ∈ N(x) would be

a(x, y) = 1 ∧ f(y)q(y, x)

f(x)q(x, y)
= 1 ∧

f(y)f(x)
f(y)

1
ZR

f(x) f(y)
f(x)

1
ZR

= 1 ∧ f(x)

f(y)
6= 1. (5.17)

We modify the proposal (5.16) according to a balancing function g : R+ → R+ as

follows

qg(x, y) = g

(
f(y)

f(x)

)
1N(x)(y)∫

N(x) g
(
f(z)
f(x)

)
dz

= g

(
f(y)

f(x)

)
1N(x)(y)

Z
(g)
R

, (5.18)

where Z
(g)
R =

∫ R
−R g (ec z) dz is a constant non depending on x. Then the Metropolis-

Hastings ratio for y ∈ N(x) becomes

ag(x, y) = 1 ∧ f(y)qg(y, x)

f(x)qg(x, y)
= 1 ∧

f(y)g
(
f(x)
f(y)

)
1

Z
(g)
R

f(x)g
(
f(y)
f(x)

)
1

Z
(g)
R

= 1 ∧
f(y)
f(x)g

(
f(x)
f(y)

)
g
(
f(y)
f(x)

) . (5.19)

If g satisfies

g(t) = t g(1/t), t > 0 , (5.20)

then the MH ratio in (5.19) satisfies

ag(x, y) = 1 . (5.21)

Equation (5.21) means that Q is already π-reversible, π(x)q(x, y) = π(y)q(y, x),
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before applying the MH correction. This would allow for more moves to be accepted

and longer moves to be performed. Note that ag(x, y) equals 1 because we assumed

log f to be linear in a neighborhood of x. If this was not the case, then ag(x, y)

would not be equal to 1. Nevertheless, if log f is smooth enough then it can be

approximated with its first order Taylor expansion in a neighborhood of x and

ag(x, y) would be still close to 1. ThereforeQ would be “approximately” π-reversible,

in the same way as a MALA proposal, being the discretization of a π-reversible

diffusion, is approximately π-reversible (Section 5.2).

We will refer to functions g satisfying (5.20) as balancing functions. These

illustrative calculations provide some intuition motivating the use of balancing func-

tion g. In Section 5.4, in order to obtain rigorous results, we will consider the asymp-

totic regime and introduce some smoothness assumptions on the target measure.

5.3.1 Example: sampling perfect matchings from bipartite graphs

Before proving theoretical results, we demonstrate the improvements given by bal-

ancing functions in sampling from the distribution π̂(ρ) considered in Chapter 4.

For simplicity we consider the two-color version of π̂(ρ). This is equivalent to sam-

pling matchings from a weighted bipartite graph (see Section 4.1.1). For simplicity,

and motivated by Section 4.2.3, we restrict our attention to perfect matchings.

More formally, let G = (V,E) be a weighted bipartite graph (Section 4.1.1)

with n red vertices, n blue vertices and strictly positive weights. We denote the

edge connecting the i-th red vertex and the j-th blue vertex by (i, j) and its weight

by wij . The state space Ω is the space of perfect matchings contained in G. There

is an natural bijection between such Ω and the space of permutations of n elements

Sn: a permutation ρ ∈ Sn represents the perfect matching with edges {(i, ρ(i))}ni=1.

The target measure under consideration is

π(ρ) =

∏n
i=1wiρ(i)

Z
ρ ∈ Sn ,

where Z is the normalizing constant
∑

ρ∈Sn
∏n
i=1wiρ(i). We drop the hat over π̂(ρ)

and use simply π(ρ) to be consistent with the notation of this chapter.

We want to construct a Metropolis-Hastings algorithm targeting π(ρ). As

is common, we consider local moves that pick two indices and switch them. The

induced neighboring structure is given by

N(ρ) =
{
ρ′ ∈ Sn : ρ′ = ρ ◦ (i, j) for some i, j ∈ {1, . . . , n} with i 6= j

}
, (5.22)
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where ρ′ = ρ ◦ (i, j) is defined by ρ′(i) = ρ(j), ρ′(j) = ρ(i) and ρ′(l) = ρ(l) for l

different from i and j. Note that, if ρ′ ∈ N(ρ), the ratio π(ρ′)
π(ρ) is easy to evaluate

because π(ρ◦(i,j))
π(ρ) =

wiρ(j)wjρ(i)
wiρ(i)wjρ(j)

.

We compare three proposal distributions, which we denote by QU , QT and

QB. All such proposals use the same neighboring structure {N(ρ)}ρ∈Sn , defined in

(5.22), and can be written as Qg(ρ, ρ
′) ∝ g

(
π(ρ′)
π(ρ)

)
1N(ρ)(ρ

′) for some g : R+ → R+.

The proposal QU is an uninformed, uniform proposal

QU (ρ, ρ′) =

{
1

n(n−1) if ρ′ = ρ ◦ (i, j) ,

0 otherwise ,
(5.23)

and corresponds to Qg with g(t) ≡ 1. The second proposal, QT , is an informed

proposal but the information about {π(ρ′)}ρ′∈N(ρ) is used in a naive way, meaning

that the proposal coincides with the target itself restricted to the neighborhood

QT (ρ, ρ′) ∝ π(ρ′)1N(ρ)(ρ
′) ∝

{ wiρ(j)wjρ(i)
wiρ(i)wjρ(j)

if ρ′ = ρ ◦ (i, j) ,

0 if ρ′ /∈ N(ρ) ,
(5.24)

and corresponds to Qg with g(t) ≡ t. Finally we consider an informed proposal

where the information is incorporated using a balancing function, namely g(t) =
√
t

QB(ρ, ρ′) ∝
√
π(ρ′)1N(ρ)(ρ

′) ∝


√

wiρ(j)wjρ(i)
wiρ(i)wjρ(j)

if ρ′ = ρ ◦ (i, j),

0 if ρ′ /∈ N(ρ) .
(5.25)

Figure 5.1: Average acceptance rates of the MH algorithm with proposals QU , QT

and QB for different values of n and σ.
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In order to compare these proposals we consider the following set up. The

weights {wij}ni,j=1 are i.i.d. with log(wij) ∼ N(0, σ2). We consider different values

of n and σ to vary the dimension of the sample space and the smoothness of the

target distribution, respectively. In fact when σ equals 0 the target measure π

is uniform and as σ increases π becomes more rough. Figure 5.1 shows the MH

average acceptance rate for different values of σ and n. Such a figure suggests that

in the asymptotic regime (i.e. for n → ∞) the MH average acceptance rate for

QB converges to 1, while those of QU and QT converge to a value depending on σ

that goes to 0 as σ increases. Figure 5.2 shows some traceplots and convergence

Figure 5.2: (a)-(c) Traceplots of a summary statistic defined as S(ρ) =
∑n

i=1 iρ(i).

(d) Distance from the target measure defined as D(T ) =
∑n

i,j=1(p̂
(T )
ij − pij)2, where

pij is the probability of {(i, j) ∈ ρ} under π(ρ) (estimated with a long MCMC run

independently from the rest) and p̂
(T )
ij =

∑T
t=1 1((i, j) ∈ ρt)/T , with (ρt)

T
t=1 being

the samples from the MCMC algorithm under consideration.

diagnostics. Figure 5.2 suggests that QB is mixing faster than QU and QT . Moreover

Figure 5.2(d) indicates that the difference between the two proposals increases as σ

increases. Interestingly, QB seems to be robust to an increase in roughness of the

target (i.e. σ increasing), see again Figure 5.2(d).
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5.4 Peskun Ordering result

As before, we consider proposal distributions which can be written as

Qg(x, y) =
1

Zg(x)

{
g
(
π(y)
π(x)

)
if y ∈ N(x),

0 otherwise,
(5.26)

for some g : R+ → R+, where Zg(x) =
∑

z∈N(x) g
(
π(z)
π(x)

)
is a normalizing constant.

Section 5.3 suggests that the optimal choice of g should belong to the following class.

Definition 1 (Balanced proposals). A function g : R+ → R+ satisfying

g(t) = t g(1/t) t > 0 , (5.27)

is called a balancing function and the corresponding Qg is called a balanced pro-

posal.

We now show that, under some regularity assumptions on π, balanced pro-

posals are the asymptotically maximal elements, in terms of Peskun ordering, among

the proposal of type (5.26). First we define

cg = sup
x∈Ω, y∈N(x)

Zg(y)

Zg(x)
≥ 1 . (5.28)

The constant cg satisfies cg ≥ 1 and represents the roughness of π. In particular

cg is related to how non-linear log π is with respect to the neighboring structure

{N(x)}x∈Ω. For example, if Ω equals Zn or Rn, then
Zg(x)
Zg(y) would be equal to 1 in

regions where log π is linear, see e.g. (5.16), and thus cg would be 1. The relevance

of cg for our framework comes from the following theorem.

Theorem 5. Let g : R+ → R+. Define g̃(t) = min{g(t), t g(1/t)} and let Pg and

Pg̃ be the Metropolis-Hastings transition kernels obtained from the proposals Qg and

Qg̃ respectively (see (5.26) for definition). Then, given c = cgcg̃, it holds

(a) Pg̃(x, y) ≥ Pg(x, y)

c
∀x, y ∈ Ω , (5.29)

(b) varπ(h, Pg̃) ≤ c varπ(h, Pg) + (c− 1) varπ(h) ∀h : Ω→ R ,

(c) Gap(Pg̃) ≥
Gap(Pg)

c
.

Proof. If y /∈ N(x) then (5.29) holds trivially. Suppose y ∈ N(x) and denote for
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brevity t = π(y)
π(x) . Then

Pg(x, y) =
g(t)

Zg(x)
min

{
1 , t

g(1/t)

Zg(y)

Zg(x)

g(t)

}
= min

{
g(t)

Zg(x)
,
tg(1/t)

Zg(y)

}
≤

cg
min{g(t), t g(1/t)}

Zg(x)
= cg

g̃(t)

Zg(x)
≤ cg

g̃(t)

Zg̃(x)
, (5.30)

where we used Zg(x) ≥ Zg̃(x), which comes from g(t) ≥ g̃(t). We also have

Pg̃(x, y) =
g̃(t)

Zg̃(x)
min

{
1 , t

g̃(1/t)

Zg̃(y)

Zg̃(x)

g̃(t)

}
= min

{
g̃(t)

Zg̃(x)
,
tg̃(1/t)

Zg̃(y)

}
≥

min {g̃(t), tg̃(1/t)}
cg̃ Zg̃(x)

=
g̃(t)

cg̃ Zg̃(x)
. (5.31)

Part (a) follows from (5.30) and (5.31), while (b) and (c) follow from (a) and The-

orem 4.

The function g̃(t) = min{g(t), t g(1/t)} satisfies g̃(t) = t g̃(1/t) by definition.

Therefore Theorem 5 implies that for any g : R+ → R+ there is a corresponding

balancing function g̃ which leads to a more efficient MH algorithm modulo cgcg̃. This

result is relevant only if cgcg̃ is not too large. We now show that for our distribution

of interest, π(ρ) of Section 5.3.1, it holds that cg → 1 as |Ω| → ∞.

Theorem 6. Let {wij}∞i,j=1 be positive weights with infi,j∈Nwij > 0 and supi,j∈Nwij <

∞. Let π(n)(ρ) ∝
∏n
i=1wiρ(i) for ρ ∈ Ω(n) = Sn and let the neighboring structure

{N(ρ)}ρ∈Ω(n) be as in (5.22). For any g : R+ → R+ with g and 1/g locally bounded,

c
(n)
g given by (5.28) satisfies

c(n)
g → 1 as n→∞ .

Proof. Fix ρ ∈ Sn and ρ′ = ρ ◦ (i0, j0) for some i0, j0 ∈ {1, . . . , n}, with i0 < j0.

Denoting g
(
π(n)(ρ◦(i,j))
π(n)(ρ)

)
= g

(
wiρ(j)wjρ(i)
wiρ(i)wjρ(j)

)
by gρij it holds

Z(n)
g (ρ) =

n∑
i,j=1, i<j

gρij =

n∑
i,j=1, i<j

{i,j}∩{i0,j0}=∅

gρij +

n∑
i,j=1, i<j

{i,j}∩{i0,j0}6=∅

gρij .

Given I =

[
infi,j w

2
ij

supi,j w
2
ij
,

supi,j w
2
ij

infi,j w2
ij

]
, g = inft∈I g(t) and g = supt∈I g(t) it holds g ≤ gρij ≤

g. Note that g > 0 and g < ∞ because g and 1/g are locally bounded and I is
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compact. Therefore

n∑
i,j=1, i<j

{i,j}∩{i0,j0}=∅

gρij ≥
n∑

i,j=1, i<j
{i,j}∩{i0,j0}=∅

g =

(
n(n− 1)

2
− (2n− 3)

)
g = O(n2)

and
n∑

i,j=1, i<j
{i,j}∩{i0,j0}6=∅

gρij ≤
n∑

i,j=1, i<j
{i,j}∩{i0,j0}6=∅

g = (2n− 3)g = O(n) .

If follows that

lim
n→∞

Z
(n)
g (ρ′)

Z
(n)
g (ρ)

= lim
n→∞

∑
{i,j}∩{i0,j0}=∅ g

ρ
ij∑

{i,j}∩{i0,j0}=∅ g
ρ′

ij

= lim
n→∞

∑
{i,j}∩{i0,j0}=∅ g

ρ
ij∑

{i,j}∩{i0,j0}=∅ g
ρ
ij

= 1 ,

where gρij = gρ
′

ij for {i, j}∩{i0, j0} = ∅ because ρ′(i) = ρ(i) for i ∈ {1, . . . , n}\{i0, j0}.

Theorem 6 implies that for the model we are considering balanced proposals

(Definition 1) are asymptotically more efficient than non-balanced proposals. More-

over we conjecture that such a property (cg → 1 as |Ω| → ∞) is not specific to the

model we are considering but rather it is a smoothness condition that holds for most

distributions encountered in practical MCMC application.

Note that both the uniform proposal QU (x, y) ∝ 1N(x)(y) of (5.23) and the

“naive” informed proposal QT (x, y) ∝ π(y)1N(x)(y) of (5.24) can be expressed as Qg

of (5.26) for g(t) = 1 and g(t) = t respectively. Thus Theorems 5 and 6 imply that

such proposals are asymptotically Peskun dominated by Qg̃ for g̃(t) = min{1, t}.

5.4.1 Connection between balancing functions and acceptance prob-

ability functions.

Balancing functions (BFs) are closely connected to acceptance probability functions

(APFs), which are the functions leading to valid MCMC algorithms when used in

the accept/reject mechanism (Section 5.1.1). In fact a function a(x, y) = g(t(x, y)),

with t(x, y) = π(y)Q(x,y)
π(x)Q(x,y) , is a valid APF if and only if g(t) = tg(1/t) and g(t) ≤ 1

(see Remark 11). Therefore APFs and BFs need to satisfy the same equation:

g(t) = tg(1/t). It is somehow intuitive that accept/reject functions inducing detailed

balance (i.e. APFs) are related to functions that generate proposals in approximate

detailed balance (i.e. BFs).

At the same time APFs and BFs are different in at least two aspects. First,
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BFs do not need to be bounded by 1 and thus the class of APFs is smaller than the

class of BFs. The latter includes elements such as g(t) =
√
t or g(t) = max{1, t}.

Moreover, the optimality in the two classes appears to behave differently. It is well

known that, in the context of APF, the Metropolis-Hastings function gMH(t) =

min{1, t} is the optimal function in terms of Peskun ordering (Tierney, 1998). In-

stead, when used as a BF to produce a proposal Qg, no choice of g seems to Peskun-

dominate the others. In other words, given two BFs g1 and g2 (e.g. g1(t) = min{1, t}
and g2(t) =

√
t), neither Pg1 nor Pg2 will (asymptotically) Peskun-dominate the

other in general.

In Section 5.5 we show that, at least in one specific case, the choice of g that

minimizes the mixing time is the Barker function, gB(t) = t
1+t . We should also note

that, among the class of BFs, g(t) =
√
t is a special choice, for example because of

its linearity in the log scale and because of its connection to informed proposals in

continuous frameworks (see Section 5.6).

5.5 The hypercube case

In Section 5.4 we showed that balanced proposals are the most efficient among the

class of proposals Qg of (5.26). In this section we consider the following natural

question: is there an optimal balanced proposal? If yes, which one is it?

We answer this question in the specific framework of independent compo-

nents. For simplicity, in this section we consider the case of binary random variables,

although we conjecture that this argument could be extended to more general cases

(e.g. variables taking values in {1, . . . , k} rather than {0, 1}). We show that in this

specific case the Barker balancing function gB(t) = t
1+t leads to the smallest mix-

ing time. Nevertheless we note that, in practical implementations, all the balanced

proposals we tested performed similarly.

The optimal proposal for independent binary variables

For any positive integer n we define Ω(n) = {0, 1}n. Given x1:n = (x1, . . . , xn) in

Ω(n) let

π(n)(x1:n) =

n∏
i=1

p1−xi
i (1− pi)xi .
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For simplicity, we assume that infi∈N pi > 0 and supi∈N pi < 1. The neighborhood

of x1:n is defined as

N
(
x1:n

)
=
{

y1:n = (y1, . . . , yn) :

n∑
i=1

|xi − yi| = 1
}
.

Given such a neighboring structure it can be shown that, for any g : R+ → R+ with

g and 1/g locally bounded, c
(n)
g → 1 as n→∞ (see (5.28) for definition of c

(n)
g and

Theorem 6 for a similar result and proof). In this section we assume that g and 1/g

are locally bounded. Any proposal Qg defined in (5.26) can be written as

Q(n)(x1:n,y1:n) ∝


ai if y1:n = x1:n + e

(i)
1:n ,

bi if y1:n = x1:n − e
(i)
1:n ,

0 if y1:n /∈ N
(
x1:n

)
,

(5.32)

where ai and bi are positive real numbers bounded away from 0 and infinity and

e
(i)
1:n is a vector having the i-th coordinate equal to 1 and the others equal to 0,

meaning that e
(i)
1:n = (e

(i)
1 , . . . , e

(i)
n ) with e

(i)
j being 1 if i equals j and 0 otherwise.

Although not strictly necessary, we assume that if pi = pj then also ai = aj and

bi = bj , so that the proposals in (5.32) can be expressed as Qg in (5.26) for some g.

We want to study the behavior of MCMC algorithms induced by the proposals in

(5.32) as n increases, to obtain some indication on what is the optimal proposal in

this framework. We reparametrize these distributions as

Q(n)(x1:n,y1:n) =
1

Z(n)(x1:n)


vi ci (1− pi) if y1:n = x1:n + e

(i)
1:n ,

vi (1− ci) pi if y1:n = x1:n − e
(i)
1:n ,

0 if y1:n /∈ N
(
x1:n

)
,

(5.33)

where ci ∈ (0, 1), vi > 0 with supi∈N vi <∞ and infi∈N vi > 0, and

Z(n)(x1:n) =

n∑
i=1

vi
(
ci(1− pi)(1− xi) + (1− ci)pixi

)
is the normalizing constant of Q(x1:n, ·). Note that, for X1:n ∼ π(n), it holds

var

[
Z(n)(X1:n)

n

]
<

supi∈N v
2
i

n
→ 0 , (5.34)
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and

E

[
Z(n)(X1:n)

n

]
→ Z̄ = Z̄(v) = lim

n→∞

∑n
i=1 vi pi(1− pi)

n
, (5.35)

where v denotes the sequence (v1, v2, . . . ) and we assumed that limn→∞
∑n
i=1 vi pi(1−pi)

n

exists and has a finite non-zero value. It follows that

Z(n)(X1:n)

n

a.s.−→ Z̄ for X1:n ∼ π(n) and n→∞ .

Let X(n)(t) be the Metropolis-Hastings Markov chain on Ω(n) with target

measure π(n) and proposal Q(n) in (5.33). For any real time t and positive integer

k ≤ n, we define

S
(n)
1:k (t) =

(
X

(n)
1 (bntc), . . . , X(n)

k (bntc)
)
,

with bntc being the largest integer smaller than nt. Note that S
(n)
1:k = (S

(n)
1:k (t))t≥0 is

a continuous-time (non-Markov) stochastic process on {0, 1}k describing the first k

components of (X(n)(t))t≥0.

Theorem 7. Let X(n)(0) ∼ π(n) for every n. For any positive integer k, it holds

S
(n)
1:k

n→∞
=⇒ S1:k,

where ⇒ denotes weak convergence and S1:k is a continuous-time Markov chain on

{0, 1}k with jumping rates given by

A (x1:k,y1:k) =


ei(v, ci) · (1− pi) if y1:k = x1:k + e

(i)
1:k ,

ei(v, ci) · pi if y1:k = x1:k − e
(i)
1:k ,

0 if y1:k /∈ N
(
x1:k

)
and y1:k 6= x1:k ,

(5.36)

where

ei(v, ci) =
1

Z̄(v)
vi ((1− ci) ∧ ci) . (5.37)

Proof. Let k be fixed and let A(n) be the k× k matrix describing the jumping rates

of S
(n)
1:k . For any i ≤ k it holds the following. If xi = 0

A(n)(x1:k,x1:k + e
(i)
1:k) =

n Q(n)(x1:n,x1:n + e
(i)
1:n)

(
1 ∧ π

(n)(x1:n + e
(i)
1:n)Q(n)(x1:n + e

(i)
1:n,x1:n)

π(n)(x1:n)Q(n)(x1:n,x1:n + e
(i)
1:n)

)
=

vi(1− pi)
Z(n)(x1:n)

n

(
ci ∧

(
(1− ci)

Z(n)(x1:n)

Z(n)(x1:n + e
(i)
1:n)

))
,

70



and, similarly, if xi = 1

A(n)(x1:k,x1:k − e
(i)
1:k) =

vipi
Z(n)(x1:n)

n

(
(1− ci) ∧

(
ci

Z(n)(x1:n)

Z(n)(x1:n − e
(i)
1:n)

))
.

On the other hand, for any x1:k and y1:k in {0, 1}k such that y1:k 6= x1:k and

y1:k /∈ N
(
x1:k

)
, it holds A(n)(x1:k,y1:k) = 0. Note that S

(n)
1:k is not a Markov process

because the jumping rates A(n)(x1:k,x1:k + e
(i)
1:k) and A(n)(x1:k,x1:k − e

(i)
1:k) depend

also on the last (n−k) components (xk+1, . . . , xn). We define the following sequence

of sets:

Rn =
{

(xk+1, . . . , xn) ∈ {0, 1}n−k :∣∣∣∣∣Z(n)(x1:n)

n
− E

[
Z(n)(X1:n)

n

]∣∣∣∣∣ ≤ 1

n1/4
∀ (x1, . . . , xk) ∈ Ω(k)

}
. (5.38)

Given αn = 1
n1/4 +

∣∣∣E [Z(n)(X1:n)
n

]
− Z̄

∣∣∣, it holds

sup
x1:n∈Ω(k)×Rn

∣∣∣∣∣Z(n)(x1:n)

n
− Z̄

∣∣∣∣∣ ≤ αn → 0 , (5.39)

where the inequality follows by (5.38) and the convergence follows from (5.35).

Moreover, from (5.34) and (5.38) it follows that limn→∞ π
(n)(Ω(k) × Rn) = 1. For

any i ≤ k and x1:n in Ω(k) ×Rn with xi = 0 it holds

|A(n)(x1:k,x1:k + e
(i)
1:k)−A(x1:k,x1:k + e

(i)
1:k)| =

vi(1− pi)

∣∣∣∣∣ 1
Z(n)(x1:n)

n

(
ci ∧

(
(1− ci)

Z(n)(x1:n)

Z(n)(x1:n + e
(i)
1:n)

))
− ci ∧ (1− ci)

Z̄

∣∣∣∣∣ ≤
vi

(
1

Z(n)(x1:n)
n

∣∣∣∣∣
(
ci ∧

(
(1− ci)

Z(n)(x1:n)

Z(n)(x1:n + e
(i)
1:n)

))
− (ci ∧ (1− ci))

∣∣∣∣∣+∣∣∣∣∣(ci ∧ (1− ci))
Z(n)(x1:n)

n

− (ci ∧ (1− ci))
Z̄

∣∣∣∣∣
)
≤

vi

(
1

Z̄ − αn

∣∣∣∣ 2αn
Z̄ − αn

∣∣∣∣+

∣∣∣∣ αn
Z̄ (Z̄ − αn|)

∣∣∣∣) n→∞−→ 0 ,

where we used (5.39) and the fact that pi, (1− pi), ci and (1− ci) belong to (0, 1).
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The case xi = 1 is analogous. It follows that

sup
x1:n∈Ω(k)×Rn

|A(n)(x1:k,y1:k)−A(x1:k,y1:k)|
n→∞−→ 0 .

From the latter convergence and limn→∞ π
(n)(Ω(k)×Rn) = 1 it follows, using Ethier

& Kurtz (1986, Chapter 4, Corollary 8.7), that S
(n)
1:k

n→∞
=⇒ S1:k .

Theorem 7 tells us that, in the limiting process S1:k, each bit is flipping

independently of the others, with flipping rate of the i-th bit being proportional to

ei(v, ci). Note that Theorem 7 considers the stationarity regime: X(n)(0) ∼ π(n) for

every n.

From (5.37) we see that, in the limiting process, the parameter ci influences

only the behaviour of the i-th component. It follows that, for any i, the asymp-

totically optimal choice of ci can be derived by maximizing the limiting speed of

the i-th component, ei(v, ci), which is done by setting ci = 1
2 . On the other hand,

from (5.37) we can see that each vi is proportional to the rate at which the i-th

component is flipping in the limiting process S1:k, but at the same time affects the

other components through the normalizing constant Z̄(v). Intuitively, the parame-

ter vi represents how much effort we put into updating the i-th component, where

increasing vi reduces the effort put into updating other components.

Remark 15. Choosing ci = 1
2 for each i corresponds to choosing a balanced proposal

(see Definition 1). The optimality of ci = 1
2 reflects the fact that a balanced proposal

(i.e. ci = 1
2) produces better mixing than a non-balanced one (i.e. ci 6= 1

2), as

suggested by Theorem 5. On the other hand it is not so obvious how to optimally

choose (v1, v2, . . . ). This reflects the fact that it is not straightforward to compare

balanced proposals among themselves.

In order to discriminate among various choices of (v1, v2, ...) we choose the

one that minimizes the mixing time of {S1:k}∞k=1 for k going to infinity. Although this

is not the only possible criterion to use, it is a reasonable and natural one. Barrera

et al. (2006, Prop. 7) and Bon & Păltănea (2001, Cor. 4.3) give us an expression

for the mixing time of {S1:k}∞k=1. Such results tell us that, in the case of a sequence

of independent binary Markov processes like {S1:k}∞k=1, the asymptotic mixing time

depends on the flipping rates of the worst components (provided they are a non-

negligible quantity), and in particular in our case the mixing time is minimized by

maximizing the quantity Z̄(v)−1 lim infi→∞ vi (see (5.35) for the definition of Z̄(v)

and Barrera et al. (2006) and Bon & Păltănea (2001) for the precise assumptions on

the flipping rates). It can be seen that the latter quantity is maximized by choosing
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vi to be constant over i, meaning vi = v̄ for any i ∈ N for some v̄ > 0. The value of v̄

is irrelevant because we defined the proposal Q(n) up to proportionality. Therefore

we can simply set vi = 1 for any i ∈ N. Thus the proposal that minimizes the

asymptotic mixing time of {S1:k}∞k=1 is

Q(n)(x1:n,y1:n) ∝


(1− pi) if y1:n = x1:n + e

(i)
1:n ,

pi if y1:n = x1:n − e
(i)
1:n ,

0 if y1:n /∈ N
(
x1:n

)
.

(5.40)

Note that this proposal corresponds to the balanced proposal with balancing func-

tion gB(t) = t
1+t

Q(n)(x1:n,y1:n) ∝

{
π(n)(y1:n)

π(n)(x1:n)+π(n)(y1:n)
if y1:n ∈ N(x1:n) ,

0 otherwise .
(5.41)

Remark 16. In this section we have proceeded in two steps. First we proved the

convergence of the finite dimensional projections S
(n)
1:k to S1:k for fixed k and n going

to infinity (Theorem 7). Secondly we studied the mixing time of S1:k for k going to

infinity. However, it would be more elegant and neat to prove directly the convergence

of S
(n)
1:n to an infinite dimensional stochastic process S, thus avoid the additional

intermediate step of finite dimensional projections and the consequent double limiting

operation (first n → ∞, then k → ∞). The need to work with finite dimensional

projections arises from the probabilistic technique used to prove Theorem 7, which

is the typical technique used to prove MCMC scaling results (e.g. Roberts et al. ,

1997 and Roberts, 1998). To overcome such shortcomings, we have been working

on a novel approach to prove scaling results, based on Dirichlet Forms and Mosco

convergence (Mosco, 1994), that naturally allows to work on infinite dimensional

spaces, leading to more general and robust MCMC scaling results. We are currently

writing up the results in Zanella et al. (2015).

5.6 Possible extensions and future works

The results of this chapter (e.g. Theorem 5) provide valuable theoretical guidance to

help design efficient proposals to sample from the distribution π̂(ρ) of Chapter 4. We

will use such theoretical guidelines in particular in Section 6.1. Nonetheless there

are various open research questions related to the notion of balanced proposals. In

this section we list some of those. Chapter 8 will also provide more details.

73



Connections to MALA and other continuous-state algorithms

It is natural to wonder if and how the results of Section 5.4 relate to continuous state

frameworks. In this section we present possible approaches to extend the framework

of balanced proposals to continuous frameworks. Interestingly, we observe that, for

example, the MALA algorithm (see Section 5.2) can be interpreted as an example

of a balanced proposal for a certain choice of g.

At the current stage, for simplicity and concreteness, we restrict to the case

of state space Ω = Rn, target measure π(dx) = f(x)dx and proposal distribution

Q(x, dy) = q(x, y)dy.

Informed proposal distributions considered

In a directly analogous way to the discrete case (5.26) we could suppose that, given

a current state x ∈ Ω, the set of allowed moves is defined by a neighborhood of x

in Rn that we denote by N(x) ⊆ Rn. A simple example is N(x) = Bx(R) = {y ∈
Rn : |x − y| < R}. Following the framework we used for discrete spaces, it would

be natural to consider proposals depending only on the probability of the proposed

state. This would lead us to suppose that there exists a function g : R+ → R+ such

that

q(x, y) = qg(x, y) ∝

{
g
(
f(y)
f(x)

)
if y ∈ N(x),

0 otherwise.
(5.42)

Nevertheless, when Ω = Rn, it is not natural to consider proposal distribu-

tions based on a neighboring structure as in (5.42). It is more common to consider

local moves based on some smoothing function as follows. Suppose that for any x we

have a function hx : Rn → R+ going to 0 for |x| going to infinity and then consider

q(x, y) ∝ g
(
f(y)
f(x)

)
hx(y). For simplicity here we limit ourselves to the Gaussian case

hx(y) = exp(− |y−x|
2

2σ2 ) with σ > 0. Therefore we could consider proposals of the

following form:

q(x, y) ∝ g
(
f(y)

f(x)

)
· exp

(
−|y − x|

2

2σ2

)
. (5.43)

In general we have no guarantee that (5.43) defines a proper density function, but

we ignore integrability issues for the moment.

Derivative-based proposal distributions

Neither (5.42) nor (5.43) are feasible choices in practice. In fact, most of the time,

sampling from (5.42) or (5.43) is as difficult as sampling from the target itself.

In practice, one can approximate the log density with its Taylor expansion about
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x. The first order proposal distribution with balancing function g and Gaussian

smoothing would then be

q(x, y) ∝ g

(
exp (log f(x) +∇(log f)(x) · (y − x))

f(x)

)
· exp

(
−|y − x|

2

2σ2

)
∝

g (exp (∇(log f)(x) · (y − x))) · exp

(
−|y − x|

2

2σ2

)
. (5.44)

Similarly the k-th order proposal distribution with balancing function g and Gaus-

sian smoothing would be

q(x, y) ∝ g

exp
(∑

|α|≤kD
α(log f)(x)(y − x)α

)
f(x)

 · exp

(
−|y − x|

2

2σ2

)
, (5.45)

where α = (α1, . . . , αn) is a multi-index, Dα = ∂|α|

∂x
α1
1 ···∂x

αn
n

and xα = xα1
1 · · ·xαnn .

Note that, when one considers higher order derivatives, some care should be taken

to ensure q(x, y) is integrable.

If one chooses the balancing function g(t) =
√
t, then the resulting first order

balanced proposal, see (5.44), has proposal density

q(x, y) ∝ exp

(
∇(log f)(x) · (y − x)/2− |y − x|

2

2σ2

)
, (5.46)

which is exactly the MALA proposal (see Section 5.2) where different values of σ

corresponds to different values of the step size.

This simple connection with continuous state proposals suggests various re-

search directions. Section 8.3 describes some of these.

Practical implementations

Theorems 5 and 6 guarantee that, for large |Ω|, an informed proposal will produce

a MCMC algorithm that mixes faster than the one obtained from the uninformed,

uniform proposal. Nevertheless, in order to use balanced proposals one has to eval-

uate the target measure on the neighbors of the current state,
{
π(y)
π(x)

}
y∈N(x)

, before

proposing a new state. Clearly, this is an additional computational burden (similar

to the need to evaluate the first derivative of the target log-density for the MALA

algorithm). Whether the improvement in mixing is worth this additional burden

probably varies from case to case.

Note that once an informed proposal producing good mixing has been iden-
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tified, then one can build an approximation to it which is easy to sample from. This

is what we do in Section 6.1.2. In general, it would be interesting to study perfor-

mances of balanced proposals on common discrete models arising, for example, from

Model Selection problems or Bayesian Non-Parametric models and to devise cheap

approximate versions in such contexts (similarly to what is done in Section 6.1.2).

In Section 8.3 we discuss this point further.
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Chapter 6

MCMC algorithm for matching

spaces

In Chapter 5 we described MCMC methods and we discussed how to design informed

proposals in discrete spaces, providing some theoretical results. In this chapter we

describe the actual MCMC algorithm we implemented to sample from the posterior

distribution of the Bayesian Random Partition Model of Chapter 2 and we discuss

various related issues (convergence diagnostic, tempering and parallel computation).

The distribution of interest is π(ρ, σ,p(c), λ|x) given in (3.14)-(3.17). In order

to obtain approximate samples from this distribution we use the following Metro-

polis-within-Gibbs algorithm:

1. Initialize (ρ, σ,p(c), λ) with some (ρ0, σ0,p
(c)
0 , λ0) ∈MGx ×R+ × [0, 1]k ×R+,

2. For t running from 1 to (Tburn + Tsample) do the following operations

(a) Sample p
(c)
t ∼ π(p(c)|ρt−1, σt−1, λt−1,x),

(b) Sample λt ∼ π(p(c)|ρt−1, σt−1,p
(c)
t ,x),

(c) Sample σt ∼ P
π(σ|ρt−1,λt,p

(c)
t ,x)

(σt−1, ·), where P
π(σ|ρt−1,λt,p

(c)
t ,x)

is an er-

godic, π(σ|ρt−1, λt,p
(c)
t ,x)-stationary Markov transition kernel,

(d) Sample ρt ∼ P
π(ρ|σt,λt,p(c)

t ,x)
(ρt−1, ·), where P

π(ρ|σt,λt,p(c)
t ,x)

is an ergodic,

π(ρ|σt, λt,p(c)
t ,x)-stationary Markov transition kernel,

3. Collect the samples {(ρt, σt,p(c)
t , λt)}

Tsample
t=Tburn+1 as approximate samples from

the joint distribution π(ρ, σ,p(c), λ|x).

Note that direct sampling from π(p(c)|ρ, σ, λ,x) and π(λ|ρ, σ,p(c),x) is straight-

forward. Moreover, given (ρ,p(c), λ,x), few Markov chain steps (for example using
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basic MH algorithms) are sufficient for the distribution of σ to be close to its station-

ary distribution π(σ|ρ,p(c), λ,x). Therefore Steps 2(a) − 2(c) of the algorithm are

easy to implement. In contrast sampling from π(ρ|x, σ,p(c), λ), which for simplicity

we denote by π̂(ρ), is challenging (see Chapter 4). Therefore we need to be careful

in designing an appropriate Metropolis-Hastings (MH) algorithm targeting π̂(ρ) in

Step 2(d) of the Metropolis-within-Gibbs algorithm. In this chapter we consider

ways of improving the efficiency and assessing the convergence of MH algorithms in

this framework.

Section 6.1 focuses on the 2-color version of π̂(ρ), while Section 6.2 deals

with the k-colors case for general k (i.e. k ≥ 3). We commence by considering the

two-color case because there is more known theory than in the general case and

because the combinatorial structure of the sample space is simpler (and thus can

help to provide intuition). Secondly, since the two-color version of the algorithm will

constitute the building block of the general version, it should be designed carefully

(see Section 6.2). Finally, an algorithm to sample from the two-color version of the

posterior could allow one to study pairwise interaction between placenames, and

thus could also be relevant for other applications (see e.g. Dellaert et al. , 2003).

6.1 The two-color case

We view ρ as a matching in a bipartite graph with n1 red points and n2 blue points

(see Section 4.1.1). We denote the edge connecting the i-th red point and the j-th

blue point by the ordered couple (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}.
The proposal Q2D(ρold, ρnew) for ρ is defined in two steps. First we select

an edge (i, j) according to some probability distribution qρold(i, j) on {1, . . . , n1} ×
{1, . . . , n2}. Then, having defined i′ as the index such that (i′, j) ∈ ρold, if such an

i′ exists, and similarly j′ as the index such that (i, j′) ∈ ρold, if such a j′ exists, we

propose a new state ρnew = ρold ◦ (i, j) defined as

ρold + (i, j), if neither i′ nor j′ exists, (Addition)

ρold − (i, j), if (i, j) ∈ ρold, (Deletion)

ρold − (i, j′) + (i, j), if j′ exists and i′ does not exist, (Switch)

ρold − (i′, j) + (i, j), if i′ exists and j′ does not exist, (Switch)

ρold − (i′, j)− (i, j′)

+ (i, j) + (i′, j′), if i′ and j′ exist and (i, j) /∈ ρold, (Double-Switch)

(6.1)

where ρ − (i, j) and ρ + (i, j) denote the matchings obtained from ρ by respec-
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tively removing or adding the edge (i, j). Display (6.1) defines the set of allowed

moves starting from ρold and it induces a neighboring structure on the space of

matchings as follows: ρnew is a neighbor of ρold if ρnew = ρold ◦ (i, j) for some

(i, j). Figure 6.1provides an example. Note that different values of (i, j) can lead

Figure 6.1: Example of allowed moves induced by (6.1). In this case n1 = 3 and
n2 = 2, where n1 and n2 are the number of red and blue points respectively. Note
that the index i in ρnew = ρold ◦ (i, j) refers to a red point, while the index j refers
to a blue point.

to the same proposed matching (this is not a problem in the Metropolis-Hastings

framework as long as the balancing takes it into account). Moreover note that all

the proposed moves are reversible, meaning that, given the current state ρ, for any

(i, j) ∈ {1, . . . , n1} × {1, . . . , n2} there exist (s, t) ∈ {1, . . . , n1} × {1, . . . , n2} such

that ρ = (ρ ◦ (i, j)) ◦ (s, t). Jerrum & Sinclair (1996) and Oh et al. (2009) consider

similar but slightly smaller sets of allowed moves, given by: (1) addition and deletion

moves and (2) addition, deletion and switch moves. It is plausible that increasing

the set of allowed moves improves the mixing of the MH Markov chain.

6.1.1 Different proposals

Display (6.1) does not uniquely identify the proposal Q2D(ρold, ρnew) because we

still need to choose qρold(·, ·). Different choices of qρold(·, ·) will affect the mixing

properties of the MH algorithm. Note that we are in the scenario considered in
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Section 5.2, where we need to design a MH proposal distribution given a fixed set

of allowed moves for a discrete (actually finite) state space. Previous works (e.g.

Jerrum & Sinclair (1996) and Oh et al. , 2009) chose qρold(i, j) to be a uniform

measure over the edges (i, j) ∈ E. A naive implementation of such choice leads to

poor mixing because most proposed matchings ρnew are improbable and therefore

are typically rejected (in our experiments usually less than 1% of the proposed

moves were accepted). Some authors overcome this problem using a truncation

approximation of the posterior: they force edge weights below a certain threshold δ

to be zero, and then choose

qρold(i, j) ∝ 1{wij>δ} , (P1)

where wij is the weight of the edge (i, j) defined in (4.5) and 1 denotes the indicator

function. See for example the measurement validation step in Oh et al. (2009).

In the following we use the results of Chapter 5 to propose a choice of qρold
that achieves a better mixing than (P1) and does so without requiring to target an

approximation of the posterior.

Firstly note that, since π̂(ρ) factorizes in terms of edge weights, it is straight-

forward to evaluate π̂ up to a multiplicative constant on the set of neighbors of ρold

defined in (6.1), for example, for the addition move, π̂(ρold◦(i,j))
π̂(ρold) = wij . Thus, one

may be tempted to propose proportionally to π̂ restricted on the set of allowed

moves as follows

qρold(i, j) ∝ π̂(ρnew) where ρnew = ρold ◦ (i, j) . (P2)

Such a choice, however, does not take into account the fact that the normalizing

constants of qρold(·, ·) and qρnew(·, ·) differ for ρold 6= ρnew (Section 5.3). As a con-

sequence, for example, detailed balance conditions, Q2D(ρold,ρnew)
Q2D(ρnew,ρold)

= π̂(ρnew)
π̂(ρold) , are not

satisfied, not even approximately (see Chapter 5 for more details). A better choice

for qρold(·, ·) is given by a balanced proposal (see Definition 1 in Section 5.4) such as

qρold(i, j) ∝
π̂ (ρnew)

π̂ (ρold) + π̂ (ρnew)
, where ρnew = ρold ◦ (i, j) . (P3)

Our experiments show that the latter choice leads to a significant improvement

in the mixing of the MH Markov chain compared to (P1) and (P2) (see Section

6.1.3). The main reason is that the MH algorithm induced by such proposal has a

very high acceptance rate (usually above 99%) without changing the set of allowed

moves. These empirical evidences are in accordance with the theoretical results of
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Chapter 5.

There is a trade-off between the complexity of the proposal and the mixing

obtained: a complex proposal increases the cost of each step, while a poor proposal

increases the number of MCMC steps needed. We seek a compromise with good

mixing properties, like (P3), while still requiring little computation at each MCMC

step, like (P1). In Section 6.1.2 we derive the following proposal distribution to try

to obtain such a goal:

qρold(i, j) ∝

{
q(add)(i, j) if(i, j) /∈ ρold,

q(rem)(i, j) if(i, j) ∈ ρold.
(P4)

Here, q(rem)(i, j) = w
−1/2
ij and

q(add)(i, j) =
√
wij

1−
∑
j′ 6=j

wij′ −
√
wij′

1 +
∑

s 6=iwsj′ +
∑

l wil


1−

∑
i′ 6=i

wi′j −
√
wi′j

1 +
∑

s 6=j wi′s +
∑

l wlj

 .

Note that q(rem)(i, j) and q(add)(i, j) do not depend on ρ and can be precomputed

at the beginning of the MCMC run. See Section 6.1.3 for discussion of performance.

6.1.2 Derivation of (P4)

Note that in order to evaluate π̂(ρ◦(i,j))
π̂(ρ) , and thus qρ(i, j) defined in (P2) and (P3),

it is not enough to know whether (i, j) ∈ ρ or (i, j) /∈ ρ. For example, if ρ ◦ (i, j)

is a switch move then π̂(ρ◦(i,j))
π̂(ρ) equals

wij
wi′j

or
wij
wij′

and so one needs to know about

i′ or j′ respectively, where i′ or j′ are defined in (6.1). This increases the amount

of computation needed at each MH step when using (P3) because order n values of
π̂(ρ◦(i,j))
π̂(ρ) need to be updated at each step.

We want to define a modification of qρ(i, j), say q̃ρ(i, j), that depends on ρ

only through whether (i, j) ∈ ρ or (i, j) /∈ ρ, meaning that it can be written in the

following form

q̃ρ(i, j) ∝

{
q(add)(i, j) if(i, j) /∈ ρ

q(rem)(i, j) if(i, j) ∈ ρ
(6.2)

for some q(add)(i, j) and q(rem)(i, j). This way, one can evaluate q(add)(i, j) and

q(rem)(i, j) for each edge (i, j) before running the MH algorithm and then, at each

MH step, one would only need to update the value of q̃ρ(i, j) for the links that have
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been added or removed (at most 4) by switching from q(add)(i, j) to q(rem)(i, j) or

the other way around. At the same time we want q̃ρ(i, j) to be similar to qρ(i, j)

in order to inherit some of its desirable properties in terms of acceptance rates and

mixing. In order to do so we do not start from qρ(i, j) as defined in (P3) but instead

from qρ(i, j) ∝
√

π̂(ρ◦(i,j))
π̂(ρ) . This choice is still a balanced proposal (see Chapter 5)

and has similar mixing properties to (P3) (for example it satisfies detailed balance

conditions in the asymptotic regime), while it allows some simplifications in the

calculations below that would be less easy with (P3).

Given qρ(i, j) ∝
√

π̂(ρ◦(i,j))
π̂(ρ) and (6.2) a natural choice for q(add) and q(rem) is

E
[√

π̂(ρ◦(i,j))
π̂(ρ)

∣∣∣(i, j) /∈ ρ] and E
[√

π̂(ρ◦(i,j))
π̂(ρ)

∣∣∣(i, j) ∈ ρ] respectively, where the expec-

tations are taken over ρ ∼ π̂. If (i, j) ∈ ρ then π̂(ρ◦(i,j))
π̂(ρ) equals 1

wij
regardless of ρ

and therefore we have

q(rem)(i, j) = E

[√
π̂(ρ ◦ (i, j))

π̂(ρ)

∣∣∣(i, j) ∈ ρ] = w
−1/2
ij . (6.3)

Note that if (i, j) ∈ ρ then wij > 0 almost surely and so q(rem)(i, j) is well-defined.

On the other hand if (i, j) /∈ ρ then
√

π̂(ρ◦(i,j))
π̂(ρ) can have different values

depending on ρ and we cannot compute E
[√

π̂(ρ◦(i,j))
π̂(ρ)

∣∣∣(i, j) /∈ ρ] in closed form.

Thus approximations are needed. First we fix (i, j) ∈ {1, . . . , n1} × {1, . . . , n2} and

we define the following probabilities:

p
(r)
i = Pr

(
(i, j′) /∈ ρ ∀j′ = 1, . . . , n2

∣∣∣(i, j) /∈ ρ) ,

p
(r)
j = Pr

(
(i′, j) /∈ ρ ∀i′ = 1, . . . , n1

∣∣∣(i, j) /∈ ρ) ,

pi′j′ = Pr
(

(i′, j′) ∈ ρ
∣∣∣(i, j) /∈ ρ) .

Then we use the following approximation:

E

[√
π̂(ρ ◦ (i, j))

π̂(ρ)

∣∣∣(i, j) /∈ ρ] ≈ p
(r)
i p

(b)
j

√
wij +

p
(b)
j

∑
j′ 6=j

√
wij
wij′

pij′ + p
(r)
i

∑
i′ 6=i

√
wij
wi′j

pi′j +
∑
i′ 6=i

∑
j′ 6=j

√
wijwi′j′

wi′jwij′
pij′pi′j . (6.4)

Equation (6.4) is an approximation because it factorizes probabilities of non-independent

events, like (i, j′) ∈ ρ and (i′, j) ∈ ρ.

Then we introduce a further approximation by dropping the terms wi′j′ on
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the right-hand side of (6.4), which becomes

√
wij

p(r)
i +

∑
j′ 6=j

pij′√
wij′

 p(b)
j +

∑
i′ 6=i

pi′j√
wi′j

 =

√
wij

1−
∑
j′ 6=j

pij′ +
∑
j′ 6=j

pij′√
wij′

 1−
∑
i′ 6=i

pi′j +
∑
i′ 6=i

pi′j√
wi′j

 =

√
wij

1−
∑
j′ 6=j

pij′

(√
wij′ − 1
√
wij′

) 1−
∑
i′ 6=i

pi′j

(√
wi′j − 1
√
wi′j

) . (6.5)

Finally by approximating pij′ with the quantity
wij′

1+
∑
s6=i wsj′+

∑
l wil

and similarly pi′j

with
wi′j

1+
∑
s 6=j wi′s+

∑
l wlj

we obtain

q(add)(i, j) =
√
wij

1−
∑
j′ 6=j

wij′ −
√
wij′

1 +
∑

s 6=iwsj′ +
∑

l wil


1−

∑
i′ 6=i

wi′j −
√
wi′j

1 +
∑

s 6=j wi′s +
∑

l wlj

 ,

which is the expression used in (P4).

6.1.3 Convergence Diagnostics

We used various convergence diagnostic techniques in order to assess the reliability

of our algorithm, to indicate the number of iterations needed, and to compare the

efficiency of the four proposals (P1)-(P4) of Section 6.1.1. We demonstrate these

techniques on the posterior π(ρ|σ,p(c), λ,x) with k = 2, σ = 0.3, p
(c)
1 = p

(c)
2 = 0.5,

λ = 50 and the center intensity g(·) being the uniform measure over W = [0, 10]×
[0, 10]. Here x is a synthetic sample of 44 red and 47 blue points generated according

to the model just defined, see Figure 6.3 (a). We set the threshold δ of (P1) to

0.001. The R code used to produce the results presented in this Section is available

at https://sites.google.com/site/gzanellawebpage/compclust_supp_f.zip.

We first performed some qualitative output analysis by looking at summary

plots of the MCMC samples of the partition, as the one in Figure 6.3(a). Such plots

can be helpful to spot when mixing has not yet occurred (see Section 6.1.4).

Secondly we considered different real valued summary statistics of the chain

state (typically the number of different edges from some fixed reference matching).
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Figure 6.2: Traceplots of the number of differences from a reference matching.

We plotted time series (see Figure 6.2) and empirical distributions of such real val-

ued functions for different runs of the MCMC starting from different configurations.

We estimated the autocorrelation functions (Figure 6.3(b)), the Integrated Autocor-

relation Time (IAT) and the Effective Sample Size (ESS) of such real-valued time

series using the R package coda (see Plummer et al. , 2005) in order to compare

different versions of the algorithm (see Table 6.1). See Section 5.1.2 for definitions

of IAT and ESS.

Thirdly we used some standard convergence diagnostic techniques (see Brooks

& Roberts (1998) and Cowles & Carlin (1996) for an overview of the techniques

available). In particular we used the multivariate version of Gelman and Rubin’s

diagnostic (see Gelman & Rubin (1992) and Brooks & Gelman, 1998). Figure 6.3(d)

shows the results obtained by using a 10-dimensional summary statistic of ρ. Note

that in this context univariate summary statistics are not sufficiently informative

and therefore misleading results can be obtained if these are used as the sole basis

for convergence diagnostics.

Finally we compared two independent runs of the algorithm (with differ-

ent starting states) by looking at estimates of the association probabilities pij =

Pr
(
(i, j) ∈ ρ

)
with ρ ∼ π̂. We consider the measure of proximity

D = sup
(i,j)∈E

|p̂(1)
ij − p̂

(2)
ij | , (6.6)

where p̂
(1)
ij and p̂

(2)
ij denote the proportion of time that (i, j) was present in the two

MCMC runs. As starting states we considered the empty matching (each point is a

cluster by itself), the posterior mode (obtained with the Hungarian algorithm) and

matchings obtained as the output of the MCMC itself. Since equation (6.6) considers
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Figure 6.3: The results of the diagnostic performed with four convergence diagnostic
techniques described in Section 6.1.3.

each link individually, we expect the resulting convergence diagnostic indicator D to

be more severe than the ones obtained from one or few summary statistics. Results

are shown in Figure 6.3(d).

None of the convergence diagnostics presented indicate convergence issues

except in the complete matching case (when the parameter p
(c)
1 is equal or very

close to 0), which is considered in the next section.

All convergence diagnostic techniques agree in indicating that proposal (P3)

gives the best mixing; however in terms of real computation time the most efficient

proposal is (P4). Note that such performances depend on the measure being targeted

and, when running time is considered, on the computer implementation of such
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mean Estimated ESS for 104 steps [sec] steps [sec]
acc.rate IAT steps [for 1 sec] to D < .05 to GR < .005

P1 17% 206 262 [270] 1.4e05 [7.3] 7.6e04 [13.5]

P2 41% 108 544 [40] 7.1e04 [84.6] 6.2e04 [97]

P3 97% 40 1358 [99] 2.0e04 [32.7] 2.4e04 [27.3]

P4 68% 55 1038 [747] 3.4e04 [2.2] 1.6e04 [4.8]

Table 6.1: Performances of the four proposals of Section 6.1.1 tested on the config-
uration in Figure 6.3(a) and averaged over 5 independent runs for each proposal.
GR denotes the multivariate Gelman and Rubin statistic (potential scale reduction
factor). See Section 6.1.3 for more details. The running time indicated in brackets
is evaluated using R software on a desktop computer with Intel i7-2600 processor,
3.40GHz CPU and 16GB of RAM.

proposals. For the case considered in this section, proposal (P4) gives a 3-4 times

speed-up over the commonly used choice (P1). Depending on the configuration such

speed-up may vary. According to our experiments, for “flatter” distributions (e.g.

increasing σ to 1 and p
(c)
1 to 0.9, while keeping the other parameters unchanged)

the speed-up almost disappears, while for “rougher” distributions (e.g. decreasing

both σ and p
(c)
1 to 0.1, while keeping the other parameters unchanged) the speed-up

increases and (P4) can be to 10 times faster than (P1). Moreover note that (P1)

introduces an approximation in π̂(ρ) by using the truncation procedure, while (P4)

does not.

6.1.4 Multimodality and Simulated Tempering

In the complete matching case the posterior distribution of ρ presents a strongly

multimodal behavior. Cycle-like configurations like the one in Figure 6.4(a) are

local maxima for π̂(ρ). In fact in order to reach a higher probability configuration

(i.e. shorter links) from such a “cycle” configuration, with the set of allowed moves

defined by (6.1), the chain needs to pass through lower probability configurations

(i.e. longer links). If we consider extreme cycle-like configurations such as the one in

Figure 6.4(b), then the MCMC run will typically to get stuck in such local maxima.

In order to overcome this potential multimodality problem we implemented a sim-

ulated tempered version of our MCMC algorithm. The basic version of simulated

tempering methods consist of running an MCMC in an extended space containing

additional “tempered” copies of the target measure, which work as “bridges” be-

tween local modes. See for example Geyer & Thompson (1995) or Marinari & Parisi

(1992) for more details.

This technique manages to overcome local maxima for the complete match-
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Figure 6.4: Configurations corresponding to local maxima of π̂(ρ) for (a) a synthetic
sample and (b) an artificially designed configuration.

ing case even when extreme cycle-like configurations are present as in Figure 6.4(b).

Nevertheless our specific application do not present a complete matching case and

therefore we have a milder multimodality and the MCMC algorithm exhibits suffi-

cient mixing without the use of simulated tempering. In this case the “noise” (i.e.

unlinked points) present in the data has a smoothing effect on the posterior dis-

tribution, thus helping the algorithm to traverse the space. Therefore Simulated

Tempering is not used for the real data analysis, as convergence diagnostic tools do

not show suspicious behavior.

We note that Dellaert et al. (2003) deal with multimodality in a similar

sample space (made of perfect matchings in a bipartite graph) arising from the

Structure from Motion Problem. In order to allow the MH algorithm to overcome

local maxima like the one in Figure 6.4(b) they allow the MH proposal to include

“long” moves which they call “chain flipping”.

6.1.5 Scaling the proposal and parallel computation

When using the MH algorithm on continuous sample spaces one can usually tune the

variance of the proposal distribution to improve the efficiency of the algorithm (see

for example Roberts et al. , 1997). Given the very high acceptance rate obtained

by proposing according to (P3) it is natural to consider the possibility of scaling

such a proposal in order to obtain longer-scale moves. The scaling problem for MH

algorithms in discrete contexts has been considered, for example, in Roberts (1998).

In that case the sample space under consideration was {0, 1}N , the vertices of the

N -dimensional hypercube, and the scaling parameter, say l, was a positive integer

representing the number of randomly-chosen bits to be flipped at any given proposal.

Unfortunately, because of the nature of our sample space, it is not so straight-

forward to scale the proposal distribution Q2D(ρold, ρnew). One possibility is to scale

by choosing l edges, {(ih, jh)}lh=1, and performing l moves defined in (6.1), proposing
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ρnew = ρold◦(i1, j1)◦· · ·◦(il, jl). However the l moves corresponding to {(ih, jh)}lh=1

cannot be performed independently: consider, for example, the case where i1 equals

i2. Therefore we would then have to perform l moves sequentially, at a computa-

tional cost being roughly l times the one of a single move. Scaling the proposal in

such a way does not seem to be effective.

Instead, if the l moves could be performed independently, it would be possible

to implement a multiple proposal scheme using parallel computation, thus leading

to a significant computational gain. This can be obtained by considering an approx-

imation of our model, where points at a distance greater than or equal to some rmax

have probability 0 of being in the same cluster. The latter procedure is equivalent

to the truncation procedure mentioned in Section 6.1.1 and can be viewed as coming

from the use of truncated Gaussian distributions to model point distributions within

clusters, see (3.1). Using this truncated model and dividing the observed region into

a grid, we defined a multiple proposal scheme where the l moves are proposed and

accepted/rejected simultaneously and independently. Therefore, at each MH step,

such l moves can be performed in an embarrassingly parallel fashion, meaning that

they can be performed without the need for any communication between them. In

Section 6.1.6 we give more details on the implementation and we show that in prac-

tice the mixing of the resulting MH algorithm improves by a factor roughly equal to

l itself (note that the maximum value of l is bounded above, in a way that depends

on rmax and the size of the observation region W ). A parallel-computing implemen-

tation of this algorithm would offer significant speed-ups (we anticipate speed-ups

by a factor of around 8 for our dataset, see Section 6.1.6). Such speed-ups would

increase with the size of the dataset and window, making this proposal scheme es-

pecially relevant for applications to very large datasets. In Section 6.1.6 this scheme

is presented and tested for fixed σ. In case σ is varying, one can either require an

upper bound on σ, or generate different square grids for different values of σ.

6.1.6 Multiple proposal scheme implementation

In this section we describe in more detail the multiple proposal scheme described in

Section 6.1.5. First we define the square grid and the transition kernel we use, then

we show that the corresponding Markov chain is targeting the correct measure and

finally we test the performances on synthetic samples.
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Defining the square grid

Suppose that we observe a bivariate point pattern x in a square window W = [0, a]×
[0, a], with a > 0 (otherwise consider a square containing the observed window).

In the spirit of Besag’s coding method (Besag, 1974), we first divide the window

according to a grid of squares of side of length (at least) 2rmax like in Figure 6.5

(left). Then, we divide the squares into 4 groups, in order to have no adjacent

(nor corner adjacent) squares in the same group. Say for simplicity that we have l

squares for each group from 1 to 4. We denote the squares as
{
Sgs
}g=1,2,3,4

s=1,...,l
, where

the superscript denotes the group and the subscript the square in the group (see

Figure 6.5, left).

Defining the transition step

Each step of the multiple proposal scheme works as follows:

1. Choose an index g uniformly at random from {1, 2, 3, 4};

2. For s running from 1 to l:

(a) Define Rgs as the set of all the red points inside Sgs ;

(b) Define Bg
s as the set of blue points inside

Sgs ⊕ rmax = {x ∈W : |x− y| ≤ rmax for some y ∈ Sgs},

that are not linked to any red point in a square different from Sgs (see

the right-hand side of Figure 6.5);

(c) Choose a red-blue couple (i, j) uniformly at random from Rgs ×Bg
s ;

(d) Propose to move to ρnew = ρold ◦ (i, j) and accept the move with proba-

bility 1 ∧ π̂(ρnew)
π̂(ρold) .

Note that, since we are using truncation, only points closer than rmax can

be linked.

For simplicity, in step 2(c) we considered (i, j) to be chosen uniformly at

random from Rgs ×Bg
s . The extension to a general proposal qρold(i, j) like in Section

6.1.1 is straightforward: one simply needs to take into account for the proposal in

the MH acceptance probability in step 2(d).

Note that, since the target measure π̂ factorizes, see equation (3.14), the l

different MH steps in step 2 of such multiple proposal scheme can be implemented in

an embarrassingly parallel fashion, meaning that they can be performed without the
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Figure 6.5: Left: the observed window W divided into squares. Right: in this case
R1

1 = {1, 3, 4, 5, 7, 9, 17} and B1
1 = {3, 4, 6, 7, 8, 9, 10, 11, 13, 16, 18, 19, 21, 24}.

need of any communication between them. In fact it is easy to see that such l moves

involve separate subgraphs of the original bipartite graph and, since π̂ factorizes,

the l acceptance-rejection steps are independent.

Showing the correctness of the induced MCMC

Before testing such scheme on a synthetic sample we need to show that the induced

Markov chain is ergodic with stationary distribution π̂. This is not obvious and

indeed a careful choice of the sets Rgs and Bg
s , like the one in step 2(a)-(b), is

necessary for all the moves to be reversible and for the proposal distribution to be

symmetric. Note that the definitions of Rgs and Bg
s allow for links across squares to

be modified.

Lemma 2. The Markov Chain induced by the multiple proposal scheme is an ergodic

Markov chain with stationary distribution π̂.

Proof. The transition kernel P induced by the multiple proposal scheme can be

seen as a mixture of 4 cycles of l transition kernels: P = 1
4

(
P 1

1 · · ·P 1
l + P 2

1 · · ·P 2
l +

P 3
1 · · ·P 3

l +P 4
1 · · ·P 4

l

)
, where P gs is the MH transition kernel with proposal Qgs given

by steps 2(a) − (d) for fixed s ∈ {1, . . . , l} and g ∈ {1, 2, 3, 4}. If each P gs satisfies

detailed balance conditions with respect to π̂, then it follows that P satisfies them

too. We need to show that, for any s and g, Qgs(ρold, ρnew) = Qgs(ρnew, ρold) for any

couple of matchings (ρold, ρnew), from which it follows that 1∧ π̂(ρnew)
π̂(ρold) is the correct

MH acceptance probability.

The probability of choosing a certain couple (i, j) ∈ Rgs × Bg
s in step 2(c)

is 1
|Rgs ||Bgs |

. Note that the set Rgs does not depend on ρold. On the other hand
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the set Bg
s does depend on ρold, but it does not change for ρnew = ρold ◦ (i, j) with

(i, j) ∈ Rgs×Bg
s . Therefore, when the current matching becomes ρnew the probability

of choosing (i, j) remains 1
|Rgs ||Bgs |

with the same Rgs and Bg
s .

Let ρnew = ρold ◦ (i, j), with (i, j) ∈ Rgs ×Bg
s (otherwise Qgs(ρold, ρnew) is clearly 0).

Let us first consider the case where ρold ◦ (i, j) is an addition or deletion move, see

equation (6.1). In this case the only way to propose moving from ρold to ρnew (and

back from ρnew to ρold) with Qgs is by choosing the red-blue couple (i, j) in step

2(c). Therefore Qgs(ρold, ρnew) = Qgs(ρnew, ρold) = 1
|Rgs ||Bgs |

. If ρold ◦ (i, j) is a switch

move then the only way to propose to move from ρold to ρnew is by choosing the

red-blue couple (i, j), while the only way to propose to move back from ρnew to ρold

is by choosing either the couple (i′, j) or the couple (i, j′), depending on whether

ρold ◦ (i, j) equals ρold− (i′, j) + (i, j) or ρold− (i, j′) + (i, j), respectively. In the first

case (i′, j) ∈ ρold and j ∈ Bg
s and thus, by definition of Bg

s we have i ∈ Rgs . In the

second case, since (i, j′) ∈ ρold, the j′-th blue point has a distance smaller than rmax

from Sgs . Therefore, since (i, j′) ∈ ρold, we have j′ ∈ Bg
s . Therefore, since (i′, j) ∈

Rgs ×Bg
s , or (i, j′) ∈ Rgs ×Bg

s respectively, Qgs(ρold, ρnew) = Qgs(ρnew, ρold) = 1
|Rgs ||Bgs |

.

Finally, if ρold ◦ (i, j) is a double-switch move then there are respectively two ways

to propose to move from ρold to ρnew (choosing (i, j) and (i′, j′) in step 2(c)) and

two ways to propose to move back from ρnew to ρold (choosing (i, j′) and (i′, j)).

Similarly to the switch move one can show that i′ ∈ Rgs and j′ ∈ Bg
s . Therefore

Qgs(ρold, ρnew) = Qgs(ρnew, ρold) = 2
|Rgs ||Bgs |

.

The desired ergodicity follows from the fact that P is an aperiodic and irre-

ducible Markov transition kernel on a finite state space, satisfying detailed balance

conditions with respect to π̂ (see Theorem 2 of Chapter 5).

Demonstration of performance on a synthetic sample

We test the multiple proposal scheme on the posterior π(ρ|σ,p(c), λ,x) given by the

Random Partition Model with k = 2, σ = 0.3, p
(c)
1 = p

(c)
2 = 0.5, λ = 400 and the

center intensity g(·) being uniform over a window W = [0, 20] × [0, 20]. Here, x is

a synthetic sample generated according to the model we just specified. The sample

x is made of 310 red and 316 blue points (see Figure 6.6). We consider three cases,

l = 1, 4, 9, in order to show that the mixing of the MH Markov chain improves

roughly at rate equal to l. We use the convergence diagnostic techniques presented

in Section 6.1.3. The results are shown in Figure 6.6 and Table 6.2.
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Figure 6.6: Comparison of the multiple proposal scheme for l = 1, 4, 9 using the
convergence diagnostic techniques of Section 6.1.3.

An approximate prediction of the speed-up for the real data

Given the historical context (groups of settlements interacting from the administra-

tive and political point of view), two settlements in the same administrative cluster

should be close enough to allow inhabitants to walk between them, spend time con-

ducting business, and then return in a single day (for example, 3 hours outbound

and 3 hours inbound). In fact, the historians involved in the project consider it to

be implausible for two settlements in the same cluster to be separated by a distance

greater than 15 km. When analyzing the settlements dataset, a reasonable choice of
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Estimated ESS for steps to reach steps to reach
IAT 104 steps D < .1 reach GR < .01

l = 1 2030 32 4.9e05 4.3e05

l = 4 428 161 1.7e05 1.2e05

l = 9 193 262 7e04 1e05

Table 6.2: Performance of the multiple proposal scheme for l = 1, 4, 9 on the con-
figuration in Figure 6.6(a) averaged over 5 independent runs for each value of l.
GR denotes the multivariate Gelman and Rubin statistic (potential scale reduction
factor).

rmax could be 20 km (increasing on the upper bound given by the historians in order

to have additional confidence of not imposing conditions that are too restrictive).

The area over which we observe settlements is roughly 53 000 km. Therefore

if we were to divide that area in squares of side 2rmax = 40 km we would obtain ap-

proximately 53 000
402

≈ 33 different squares. Therefore, we would have approximately

8 squares for each group, i.e. l = 8. Hence, given the results above, it is reasonable

to expect a parallel implementation of such a scheme to yield approximately an

8-fold speed-up of the MH Markov Chain.

6.2 The k-color case

We now define an MCMC algorithm that targets π̂(ρ) in the general case, k ≥ 3.

This case is harder than the two-dimensional one because it involves clusters with

different dimensions and not just pairwise interaction.

Description of proposed Gibbs projection MCMC algorithm

We define the transition kernel P of our MCMC algorithm as a mixture of
(

k
bk/2c

)
MH transition kernels, each corresponding to a group A of bk/2c colors:

P (ρold, ρnew) =

(
k

bk/2c

)−1 ∑
A⊂{1,...,k}, |A|=bk/2c

P (A)(ρold, ρnew) . (6.7)

Here, bk/2c denotes the integer part of k/2, and
(

k
bk/2c

)
denotes the binomial coef-

ficient. The kernel P (·, ·) of (6.7) selects a set of colors A, “projects” the k-color

configuration to a 2-color configuration where the new two colors correspond to A

and Ac = {1, . . . , k}\A, and then acts on the two-color configuration. More pre-

cisely, the action of P (A) is the following (see Figure 6.7):
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1. Reduce the k-color configuration (x, ρold) to a two-color configuration (x2D, ρ2D
old)

by replacing the points having colors in A and Ac respectively with their clus-

ter centroids. Denote by di the number of points merged together into the i-th

point x2D
i .

2. Obtain ρ2D
new from (x2D, ρ2D

old) with one or more MH moves using the proposal

Q2D of Section 6.1 with the target measure being the two-dimensional version

of π̂, π̂2D (modified to take account of the multiplicity of the points di, see

Section 6.2.1).

3. Obtain the k-color configuration (x, ρnew) from (x2D, ρ2D
new) by the inverse

operation of Step 1 (note that here one needs to know what A is).

Figure 6.7: The action of a transition kernel P (A) for a given A.

We denote the two-color configuration and the corresponding partition con-

structed according to Step 1 of PA by

x2D =
(
(x2D

1 ,m2D
1 , d1), ..., (x2D

n2D ,m
2D
n2D , dn2D)

)
and ρ2D =

(
C2D

1 , ..., C2D
N(ρ2D)

)
respectively. The measure π̂2D targeted in Step 2 is defined as

π̂2D(ρ2D) = π2D(ρ2D | x2D, σ, λ,p(c)) ∝

N(ρ2D)∏
j=1

g
(
xC2D

j

)
λ p

(c)

s2Dj

cs2Dj
exp

−πδ2
C2D
j

2σ2

 ∏
i,l∈C2D

j , i 6=l

1(m2D
i 6= m2D

l )

 , (6.8)
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where the modified multiplicities, barycenters and intra-cluster square distances are

defined as s2D
j =

∑
i∈C2D

j
di, xC2D

j
=

∑
i∈C2D

j
dix

2D
i∑

i∈C2D
j

di
and δ2

C2D
j

=
∑

i∈C2D
j
di(x

2D
i −

xC2D
j

)2, respectively. In order for this algorithm to be correct, π̂2D must be propor-

tional to π̂ on the collection of possible moves of P (A), so that P (A) satisfy detailed

balance conditions with respect to π̂. This follows from basic properties of the

Gaussian density function and is proven in Section 6.2.1. Therefore no additional

accept/reject mechanism is needed at Step 3 of PA.

Remark 17. The distribution π̂2D(ρ2D) given in (6.8) can be expressed as a proba-

bility distribution on the space of matchings contained in a weighted bipartite graph

where the probability of each matching ρ2D is proportional to its total weight. Namely,

π̂2D(ρ2D) ∝
∏

(i,j)∈ρ2D w
2D
ij for some suitably defined weights w2D

ij given by (6.8) and

depending only on x2D. Therefore, π̂2D(ρ2D) is of the same form as the two-color

version of π̂(ρ) (see e.g. Section 4.1.1). This is a useful property of the projection

scheme (see Section 6.2.2).

Note that, when k is even, P (A) is the same transition kernel as P (Ac). This

is not an issue and it is indeed equivalent to never using P (Ac) and using P (A) twice

as often.

6.2.1 Correctness of the k-dimensional algorithm

We need to prove that π̂2D is proportional to π̂ on the collection of possible moves

of P (A). First we need the following Lemma.

Lemma 3. For any x1, ..., xs, z ∈ Rn, let x = s−1
∑s

i=1 xi. It holds that

s∑
i=1

(
xi − z

)2
=

s∑
i=1

(
xi − x

)2
+ s(x− z)2.

Proof. Given x1, . . . , xs, z and x as above it holds

s∑
i=1

(xi − z)2 =
s∑
i=1

(xi − x+ x− z)2 =

=

s∑
i=1

(
(xi − x)2 + (x− z)2 + (xi − x)(x− z)

)
=

=
s∑
i=1

(xi − x)2 + s(x− z)2 + 2(x− z)
s∑
i=1

(xi − x) =
s∑
i=1

(xi − x)2 + s(x− z)2.
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Let Cj be a cluster of (x, ρ) and C2D
j be the corresponding cluster in the

projected two-color configuration (x2D, ρ2D). We define CAj = {i ∈ Cj : mi ∈ A},

sAj = #{i ∈ Cj : mi ∈ A} and xCAj
=

∑
i∈CA

j
xi

sAj
. Furthermore, CA

c

j , sA
c

j and xCAcj
are defined analogously for Ac. Then, it follows from Lemma 3 that

δ2
Cj =

∑
i∈Cj

(xi − xCj )2 =
∑
i∈CAj

(xi − xCj )2 +
∑
i∈CAcj

(xi − xCj )2 =

∑
i∈CAj

(
xi − xCAj

)2
+ sAj

(
xCAj
− xCj

)2
+

+
∑
i∈CAcj

(
xi − xCAcj

)2
+ sA

c

j

(
xCAcj

− xCj
)2

=

∑
i∈CAj

(
xi − xCAj

)2
+
∑
i∈CAcj

(
xi − xCAcj

)2
+ δ2

C2D
j
. (6.9)

From (6.8), (6.9) and equation (3.14) it follows that

π̂(ρ) = π̂2D(ρ2D) · exp


N(ρ)∑
j=1

∑
i∈CAj

(
xi − xCAj

)2
+
∑
i∈CAcj

(
xi − xCAcj

)2


 .

(6.10)

The second factor on the right-hand side of (6.10) is constant with respect to the

action of P (A). It follows that ˆπ2D is proportional to π̂ on the set of allowed moves

of P (A), as desired.

6.2.2 Discussion of the projection scheme

By merging colors together, the projection scheme of Section 6.2 allows proposals

that move several points at the same time from one cluster to another. Therefore,

the induced set of allowed moves is broader than, for example, that of a scheme that

moves one point at a time. Oh et al. (2009) consider, for example, “birth” moves

proposing to create a cluster from three or more single points in one step. Such

moves are likely to be useful to speed up mixing in applications where clusters with

many points appear.

One advantage of the mixture proposal in (6.7) is that, after projecting, the

posterior π̂2D(ρ2D) ∝
∏

(i,j)∈ρ2D w
2D
ij involves only pairwise interaction among the

points x2D (see Remark 17). This allows us to re-use the two-color algorithm of

Section 6.1 and in particular the approximation given in (P4). Therefore, given
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(x2D, ρ2D
old), it is possible to perform informed MH moves in the two-color matching

space in a computationally efficient way (see Table 6.1 for the performance with two

colors).

It would be desirable to design informed proposals like (P3) or (P4) directly

in the k-color space, without the need of projecting on two-color subspaces. However

it would not be easy to do so in a computationally efficient way. In fact, given the

high-dimensionality of the space of matchings contained in a complete k-partite

hypergraph, the set of neighboring states ρnew of the current state ρold would be

extremely large. Therefore, it would be very expensive to use a scheme like (P3)

in this context. Moreover, since π̂(ρ) involves interactions between three or more

points, it would not be easy to design an approximation similar to (P4) that could

be evaluated efficiently.

Note that the mixture proposal in (6.7) first chooses a lower-dimensional

subspace uniformly at random and then performs informed proposals in this space.

Therefore, this scheme is a compromise between a “fully uninformed” proposal

(which would choose some neighbour of ρold uniformly at random and thus mix

poorly), and a “fully informed” proposal (which would be computationally expen-

sive if it were to make informed proposals in the k-color space).

Since the k-color sample space is more complicated than the two-color one,

additional care and longer MCMC runs are needed. We implemented convergence

diagnostic techniques similar to those in Section 6.1.3. As might be expected, the

number of MCMC steps needed to reach stationarity and to obtain mixing is much

higher than in the two-color case (see the end of Chapter 7, for example). Neverthe-

less, our experiments suggest that, as in the two-color case, the MCMC manages to

mix properly unless we are in a case close to complete matching (see Section 6.1.4).

In Section 8.3 we briefly mention some possible future research directions concerning

upper bounds on the number of projections needed for this MCMC scheme to reach

stationarity.
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Chapter 7

Analysis of the Anglo-Saxon

settlements dataset

In this chapter we present the main results obtained by analyzing the Anglo-Saxon

settlements dataset with the Bayesian Random Partition Model (RPM) described

in Chapter 3. The computations have been performed using the MCMC algorithm

described in Chapter 6. The analysis supports the historians’ hypothesis that settle-

ments are clustered according to complementary functional placenames, and allows

for statistical inference on the ranges of relevant parameters, thus providing addi-

tional insight into the historical phenomenon.

7.1 Main results of the analysis

The no-clustering null hypothesis corresponds to p
(c)
1 = 1 in the RPM of Chapter 3 .

As shown in Figure 7.1(a), such a hypothesis clearly lies outside the region where the

posterior distribution is concentrated. As a sanity check we also fitted our model to

synthetic samples generated according to the no-clustering null hypothesis of Section

2.3.2 (both with and without inhibition among points of the same type). As one

would expect, in this case p
(c)
1 = 1 is typically included in the posterior support (see

Figure 7.1(a) for an example).

Figure 7.2(a) shows the estimated posterior distribution of σ for the reduced

dataset, which is clearly peaked around 4 - 5 km. The 95% Highest Posterior Density

interval is (3.3, 5.9) km and the posterior mean is 4.6 km. Therefore, according to the

fit given by our model, the clustering behavior consists of clusters with settlements

separated by an average distance of 5 km. It is encouraging to note that, although

no strong prior information on σ has been exploited, this value is in accordance
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Figure 7.1: (a) Estimated posterior distribution of p
(c)
1 (see Chapter 3) for the

reduced and full dataset (13 and 20 placenames respectively). The hypothesis of no

clustering (p
(c)
1 = 1) lies outside the support of the posterior for the real dataset.

(b) Measure of association between placenames (see end of Chapter 7).

with the range of plausible values suggested by historians and coherent with the

historical interpretation (see Section 3.4).
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Figure 7.2: (a) π(σ|x) for the reduced dataset. (b) π(σ|x) considering only a high-
density region (see Chapter 8).

Figure 7.3(a) shows a box plot representation of the posterior distribution of

(Y1, . . . , Yk), where Yl is the number of settlements in clusters of size l (i.e. clusters

with l settlements). Note that, on average, more than half of the settlements are

not clustered (i.e belong to clusters of size 1). Moreover most of the clustered

settlements belong to clusters of size 2. Historians were expecting to see more

clusters involving three or four settlements than what was reported by our model.

This could be due to a lack of flexibility of our model. In particular, inspection

shows that model-fitting, and the requirement to fit clusters in the low-density region
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Figure 7.3: (a) Posterior distribution of Y = (Y1, . . . , Yk) for the reduced dataset.
(b) Same as (a) but considering only the settlements in a high density region (see
Section 7.1).

(which mostly contain couples with a high posterior probability), pushes clusters in

the high-density region to be couples too. In fact when the high-density region is

analyzed separately (approximately 600 settlements) more triples appear and the

posterior of σ includes also slightly larger values, see Figures 7.2(b) and 7.3(b). This

suggests that there might be a heterogeneity in the clustering behaviour between

high and low-density regions which is not captured in the model applied to the whole

region. This indicates a possible direction for future work (see Chapter 8).

Figure 7.4 shows a graphical representation of the posterior distribution of

the partition ρ for the reduced dataset. This representation is of considerable use

since it provides a visual representation of how the model is fitting the data and

enables comparison with contextual information.

We performed sensitivity analysis on the values of the hyperparameters of σ,

λ and p(c) (see Chapter 3 for details on tested values) and the posterior distribution

did not seem to be particularly sensitive to their specification. In Section 7.2 we

compare the results obtained with this model with that of the alternative model for

the prior distribution of the partition ρ of Section 3.7.1. Such comparison provides

further sensitivity analysis to the specification of the prior for ρ.

Figure 7.1(b) graphically depicts a measure of association between place-

names. Given two placenames, say a and b, the measure is defined as

Pr[A|B]

Pr[A]
=

Pr[A ∩B]

Pr[A] · Pr[B]
=

Pr[B|A]

Pr[B]
, (7.1)

where A and B are the events of observing placename a and b respectively in a
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cluster chosen uniformly at random from the clusters of ρ ∼ π(ρ|x). In Figure
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7.1(b) we plot MCMC estimates of the values of the measure in equation (7.1) for

the placenames in the reduced dataset. Such values are plotted in relative terms

with respect to that of the following null hypothesis regime: first choose a cluster

from ρ as before; then, denoting the number of settlements in the cluster by s,

we sample s placenames independently of each other with placename probabilities

proportional to their cardinality in the dataset, conditioning on having pairwise dif-

ferent placenames. The expected values of interest under the null distribution have

been estimated using standard Monte Carlo methods. High values in Figure 7.1(b)

suggest positive interaction between placenames, while low values suggest negative

interaction. Most of the positive associations suggested by Figure 7.1(b), such as

Knighton-Burton, Weston-Aston or Eaton-Drayton, are coherent with the current

historians hypotheses. Since such hypotheses have been developed independently of

this analysis, the correspondence between the two is an encouraging sign that the

association indicated by our analysis is historically meaningful.

We note that, for a fixed ρ, the measure in (7.1) reduces to the coefficient of

association used by ecologists to measure association between species (Dice, 1945).

Many different measures of association have been proposed in the ecological liter-

ature (see e.g. Janson & Vegelius, 1981) We chose (7.1) because it is symmetric,

clearly interpretable and our experiments suggest that (7.1) is not much influenced

by the cardinality of placenames a or b, unlike most measures proposed in Janson

& Vegelius (1981).

In order to obtain the results presented in this section, the MCMC algo-

rithm of Section 6.2 was run for 106 steps, where at each step 200 moves of the

two-color configuration (x2D, ρ2D) were proposed. We assessed convergence using

the diagnostic methods described in Section 6.1.3 (e.g. the value of D in (6.6)

was approximately 0.02). It took approximately 40 hours to obtain these runs

using a basic R implementation (available at https://sites.google.com/site/

gzanellawebpage/compclust_supp_f.zip) on a desktop computer with Intel i7-

2600 processor, 3.40GHz CPU and 16GB of RAM was approximately 40 hours.

7.2 Additional results and sensitivity analysis

In Section 3.7 we defined two model variants. The first one employs a different model

for the prior distribution of the partition ρ, namely π(ρ), based on the Dirichlet-

Multinomial distribution rather than the Poisson one. This model can be considered

as some form or sensitivity analysis with respect to the choice of π(ρ). The second

model extension relaxes the assumption that the point marks are sampled uniformly.
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In this section we present the results obtained when analyzing the Anglo-Saxon

settlements dataset under the model variants just described. In both cases the

results obtained are concordant with the ones obtained with the previous model

(Section 7.1). This increases the reliability of the results obtained in Section 7.1.

Note that both these model variations incur an additional computational

cost, which is one of the reasons we preferred the Poisson model of Chapter 3.

Comparing the Poisson and the Dirichlet-Multinomial models

We used the MCMC algorithm described in Chapter 6 to target the posterior dis-

tribution arising from the Multinomial-Dirichlet model (Section 3.7.1) when applied

to the Anglo-Saxon settlements dataset. Figure 7.5 compares some results obtained

with the Dirichlet-Multinomial model to the ones obtained with the Poisson model

(Section 3.5.1), displayed in Section 7.1. The posterior distributions obtained with

the two models are very similar.
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Figure 7.5: Comparison of the Dirichlet-Multinomial model (see Section 3.7.1) and
the Poisson one (see Section 3.5.1) on the reduced dataset in the high-density region.
(a) Posterior distribution of σ and (b) posterior distribution of Y = (Y1, . . . , Yk) (see
Section 3.7.1 for a definition of Y).

Comparing the uniform and non-uniform marks assumptions

In Section 3.7.2 we defined a model where the marks are sampled according to a

non-uniform probability vector p(m) = (p
(m)
1 , . . . , p

(m)
k ). Since p(m) is unknown, the

standard Bayesian approach would be to define a prior distribution on p(m) and to

consider the joint posterior distribution of p(m) and the other unknown quantities

(namely σ, p(c) and ρ). In order to explore such a posterior distribution, one should

add a Metropolis-Hastings step updating p(m) to the MCMC algorithm of Chapter
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6. This step would require the evaluation of the normalizing constants Z1(p(m))

up to Zk(p
(m)) defined in (3.27) for the proposed value of p(m). Note that the

evaluation of Zs(p
(m)) is costly because its definition involves a summation over all

the elements of Ms (see (3.23) for its definition). By expressing Zs(p
(m)) as the

permanent of an appropriate k × k matrix, we could use Ryser’s algorithm (Ryser,

1963), whose complexity is of order O(2kk). This allows us to evaluate Z1(p(m)) up

to Zk(p
(m)) but the cost is too high to perform such evaluation at each MCMC step

(the step updating p(m) would dominate the others in terms of computational cost,

making the algorithm too expensive).

In order to circumvent this problem we replace p(m) with a plug-in estimator,

in an empirical Bayes fashion, requiring the evaluation of Z1(p(m)) up to Zk(p
(m))

only once. However, in such a setup the posterior distribution will not account

for the uncertainty over p(m). Nevertheless this will allow us to understand what

the impact of using a non-uniform p(m) is over the estimates of the quantities of

interest (e.g. σ and p(c)) in a computationally feasible way. A natural estimator

for the probability of the i-th mark, p
(m)
i , is the number of points with this mark

divided by the total number of points, ni(x)
n(x) . Although such an estimator is biased

for our model (because of the complementarity requirement), it serves the aim of

this section.

We performed posterior inference setting p
(m)
i = ni(x)

n(x) for i from 1 to k and

replacing the likelihood (3.2) with the non-uniform version in (3.28). The results are
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Figure 7.6: Comparison of the posterior distributions of (a) p
(c)
1 and (b) σ, obtained

with and without the assumption of the marks being sampled uniformly (see Section
3.7.2 for details).
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in accordance with each other, although there are some differences (see Figure 7.6).

In particular the results obtained with the uniform marks assumptions are more

conservative, meaning that they produce less clustering. In the main data analysis

part (Section 7.1) we used the uniform marks assumption for simplicity and because

it produces more conservative results.

We tested the sensitivity of the results to the choice of the plug-in estimator

p
(m)
i = ni(x)

n(x) . In particular we sampled perturbed values (ñ1, . . . , ñk) according

to a multinomial distribution Mult(n(x),p(m)), with p
(m)
i = ni(x)

n(x) , and used the

perturbed values p̃
(m)
i = ñi

n(x) as plug-in estimator. The results with and without

the perturbation were extremely similar.

7.3 Summary of results of the analysis

The analysis of the Anglo-Saxon settlements dataset using the Random Partition

Model (RPM) of Chapter 3 supports the complementary clustering hypothesis of

Prof. Blair (see Chapter 2 for some more historical details and Figure7.2(a) for the

posterior distribution of p
(c)
1 ). This is in accordance with the K-function preliminary

analysis of Chapter 2 (see Figure 2.6).

In addition, the RPM analysis provides valuable additional information at a

detailed level. For example, it suggests that settlements in the same cluster have an

average distance of 5 km (Figure 7.2a) and that most clusters have 2 or 3 settlements

(Figure 7.3). It also provides information regarding the level of interaction among

placenames (Figure 7.2a). Such information is important for historians to validate or

discredit current hypotheses on the roles and interaction of placenames. Graphical

representations of the posterior distribution of the partition ρ, such as Figure 7.4,

allow for a visual appreciation of the clustering behavior and for comparison of the

results of the analysis with contextual historical information.

Finally Section 7.2 suggests that the results are not too sensitive to changes

in modeling assumptions such as relaxing the uniformity of marks assumption. Al-

though modifying such assumptions can have an effect on the resulting posterior

distribution, the main features remain unchanged (Figure 7.6). In general we pre-

ferred choices leading to more conservative results.

The results in this chapter have been presented to Prof. Blair and collabora-

tors and have been appreciated for their capacity to give information at a global as

well as at a detailed level. For example the interaction plot of Figure 7.2(a) has been

valuable both for the new information it provides and because, being in accordance

with independent historical information, it increased the historians’ confidence in
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the results of the statistical analysis.

Prof. Blair and collaborators are currently working on the historical inter-

pretation of the results and the comparison with current historical knowledge.
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Chapter 8

Discussion and future works

8.1 Summary

We have considered a question posed by Prof. John Blair regarding complementary

clustering of Anglo-Saxon settlements (Chapter 2). We designed a Random Parti-

tion Model (RPM) that is able to capture the clustering behaviour expected by the

historians involved in the project. With no strong prior information, the model pro-

duces estimates that are meaningful in the historical context. See, for example, the

posterior distribution of σ and the association between placenames in Figure 7.1(b).

We also defined a flexible prior distribution for cluster partitions that is designed

for a “small clusters” framework (where each cluster has at most k points with k

small). In doing so we developed an RPM to perform complementary clustering

which is applicable more generally to contexts where one needs to find aggregations

of elements of different types. For example Professor Susan Holmes from Stanford

University suggests that, in biological contexts, species living in the same geograph-

ical area assemble by dissimilarity as they fill different ecological niches, resulting

in clusters of complementary species.

We carefully analyzed the computational aspects of this problem. After

considering related problems in the complexity theory literature (Chapter 4) we

employed Markov chain Monte Carlo (MCMC) methods. We studied the problem

of designing informed Metropolis-Hastings (MH) proposal distributions in discrete

sample space contexts (Chapter 5). We proposed a choice of MH proposal distri-

butions that, compared to the usual choices found in the literature, achieves a sig-

nificantly better mixing by approximating detailed balance conditions (see Section

6.1.1). We developed a multiple proposal scheme to allow for parallel computation

that could be relevant for applications to bigger datasets (see Section 6.1.5). Re-
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garding convergence diagnostics we noted that, when monitoring the convergence of

the MCMC in the partition space, univariate summary statistics did not appear to

be sufficiently informative. Diagnostics based on multivariate summary statistics or

on the matrix of the estimated association probabilities seemed to give more robust

results (see Section 6.1.3).

8.2 Modeling aspects

Although the proposed model manages to capture the pattern we were looking for

and to provide additional information about it, there is much room for improvement.

Here we mention some possible directions for future work.

The RPM model of Chapter 3 could be extended in order to capture the

heterogeneity in the clustering behaviour between high and low-density regions (see

Section 7.1). One could try to do this by allowing the parameters p(c) and σ to

vary over different regions, perhaps as a function of the points density, while taking

care not to over-parametrize the model (the amount of data is limited). An alterna-

tive approach would be to modify the metric we use to evaluate distances between

settlements. For example one could use a non-Euclidean distances, perhaps based

on the inverse square root of the settlement density, in order to allow for larger

clusters (meaning with points further apart) in less dense regions. One could also

try to model the dispersion of settlements in the same cluster with a non-Gaussian

distribution having heavier tails.

Another extension that could result in a better fit is to introduce spatial de-

pendence of placename probabilities. In fact in our model, both under the assump-

tion of uniform and non-uniform marks (see Remark 1 of Chapter 3 and Section

3.7.2), the probability of choosing a certain placename does not depend on the lo-

cation, while the data suggest that different placenames have different probabilities

of being chosen in different regions. As we pointed out in Section 3.7.2, some care

should be taken to allow for such spatial dependence without incurring in a consis-

tent increase of the computational burden required by the inference procedure (see

also Section 7.2).

The context suggests that we are observing a thinned version of the original

settlements distribution. Nevertheless it is not obvious how to incorporate missing

data in this model without making further assumptions that do not seem realistic

and are not supported by the historical informations available (e.g. that in each

cluster there is a settlement for each type).

An interesting direction for future work is to try to incorporate other sources
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of data in the model. For example topographical information seems to be related to

settlement clustering. In particular historians think that settlements named Burton

are related to good vantage points. It would be interesting to find an efficient way

to incorporate information obtained from viewshed analysis (now available in most

geographic information systems) in the model.

In this work we assumed strict complementarity between placenames in the

same cluster, meaning that no two settlements in the same cluster can have the same

placename. Although this assumption is well motivated by the historical context

(see Sections 2.1 and 3.1), it would be interesting to explore the sensitivity of the

results to such a requirement. For example, this could be done by allowing for up

to two settlements with the same placename per cluster, or alternatively one could

design a more elaborate generative model where the placenames within the same

cluster are more likely to be distinct among themselves, but are not strictly mutually

exclusive.

Another direction that could be explored is to use a soft clustering approach,

allowing settlements to belong to different clusters according to various membership

levels. It would be interesting to explore the impact of using such an approach to

the computational complexity of the problem (Chapter 4). However, we are not

aware of strong historical evidences to support such a modeling approach in this

context, and therefore we decided not to employ it in this work.

8.3 Computational aspects

A significant part of the thesis has been focused on computational aspects, in par-

ticular on studying MCMC algorithms on matching spaces (Chapter 6) and more

generally on discrete spaces (Chapter 5). We mention some possible directions for

future work.

Balanced proposals in continuous frameworks

As we showed in Section 5.6, the framework of Chapter 5 (and thus the idea of

balanced proposals) can be extended to continuous frameworks. For example, if

Ω = Rn and π(dx) = f(x)dx, one can consider a proposal Q(x, dy) = q(x, y)dy with

probability density function given by

q(x, y) ∝ g

(
f(y)

f(x)

)
· exp

(
−|y − x|

2

2σ2

)
, (8.1)
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where g is a balancing function satisfying g(t) = t g(1/t). Note that the Gaussian

kernel exp
(
− |y−x|

2

2σ2

)
could be replaced, for example, with other symmetric functions

of |y − x| decaying at infinity (see Section 5.6 for more details).

It would be interesting to extend the ordering results in Theorem 5 to con-

tinuous state spaces and proposals such as in (8.1), using the extension of Peskun

ordering for general state spaces (Tierney, 1998). Moreover, in order to make a

result like Theorem 5 relevant, one should also extend Theorem 6 to continuous

frameworks, paying attention to necessary smoothness assumptions on the density

f .

Generalized Langevin MCMC

In Section 5.6 we showed that the Metropolis-Adjusted Langevin Algorithm (MALA)

can be seen as a special case of the balanced proposal in (8.1), where the balancing

function chosen is g(t) =
√
t and the target is replaced with a first order Taylor

expansion as follows:

q(x, y) ∝
√

exp (∇(log f)(x) · (y − x)) exp

(
−|y − x|

2

2σ2

)
. (8.2)

Such an observation suggests various ways of extending MALA, which could have

both theoretical and practical relevance.

For example by varying the balancing and the smoothing function in (8.2),

currently g(t) =
√
t and Gaussian smoothing respectively, one would obtain a whole

family of proposal distributions using first derivative information in a theoretically

justified way, like MALA. This flexibility could allow to overcome some shortcom-

ings of MALA, like explosive and unstable behavior for light tails, while retaining its

desirable mixing properties. More precisely, we conjecture that appropriate choices

of balancing and smoothing functions in (8.2) lead to Markov chains that are geo-

metrically ergodic even for targets with light tails (when MALA is not, see Roberts

& Tweedie, 1996) and still scale as O(d1/3) as the number of dimensions d goes to

infinity, like MALA (see Roberts & Rosenthal, 1998).

Moreover (8.1) suggests a way to incorporate information from second and

higher derivatives in the proposal distribution. Many questions arise: do the re-

sulting schemes improve over MALA? Are they related to the previously proposed

schemes incorporating second and third derivative, such as MMALA of Girolami &

Calderhead (2011) and fMALA of Durmus et al. (2015)?
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Gradient-free informed proposals

The balanced proposal framework provides a simple and principled way of incor-

porating local information about the target in the proposal distribution. We could

exploit such a framework to design gradient-free informed proposals (both in con-

tinuous and discrete settings). In fact derivatives can be expensive to evaluate and

may not be the most informative tools to produce local approximations of the target.

For example, a promising approach would be to use full conditional distributions

to produce local approximations of the target measure. Full conditional distribu-

tions contain more information than the simple gradient and can be easy to sample

from. Incorporating such information in a proposal which moves all coordinates

at once (unlike Gibbs sampling) would result in a “parallel local Gibbs sampling”

that could be potentially very efficient and scale well to high-dimensional distribu-

tions. Such a scheme would have interesting connections to pseudo-likelihood (or

composite-likelihood) methods for the way the posterior is approximated.

Informed proposals for Bayesian variable selection

As mentioned in Section 5.6, it would be interesting to design efficient informed pro-

posals for commonly used discrete models based on the balanced proposal framework

of Chapter 5. In particular, in order to achieve full benefits, one should think at

efficient ways of using balanced proposals to propose longer moves. In fact, the very

high acceptance rate of balanced proposals in Section 6.1 suggest that there is much

space to increase the length of the proposed steps and that this could result in a

significant improvement in performance.

In doing so, one interesting framework to consider is variable selection (and

more generally model selection). Variable selection is a central problem in applied

statistics. In this context, the Bayesian approach is particularly attractive, as it

allows a principled and robust way to account for model uncertainty and average

over it. However, in order to perform inference with this approach one needs to

integrate (or sample) over a space made of a continuous part (parameter space) and

a discrete part (model space). When the number of variables is large, sampling

from the model space is notoriously challenging. Various MCMC schemes have

been proposed to accomplish such a task. In particular adaptive MCMC schemes

(such as the Individual Adaptation Algorithm of Griffin et al. , 2014) have been

proposed to incorporate information about the target distribution and have been

applied successfully to problems with tens of thousands of variables. However those

schemes, mostly motivated by heuristic arguments, still need to be better understood
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and therefore improved. A combination of the theoretical results of Chapter 5 (which

indicates how to incorporate information in the proposals) with the adaptive MCMC

methodology (which allows to collect information from the target efficiently) could

provide significant improvements to tackle the computational challenges posed by

variable selection and model averaging scenarios.

Trigonometry of Gibbs sampling and the Projection Scheme

The projection scheme of Section 6.2 is related to Gibbs sampling schemes (more

precisely to Metropolis-within-Gibbs schemes). It is known that the convergence of

a two-stage Gibbs sampler (i.e. a Gibbs sampler on state spaces with two variables)

can be characterized in terms of angles between the two functional subspaces, one

for each variable (Amit, 1991). In some cases such results can be extended to

Metropolis-within-Gibbs algorithms. When k = 3 the projection scheme targeting

π̂(ρ) can be described as a two-stage Gibbs sampler (actually a two-stage Metropolis-

within-Gibbs). It would be interesting to explore the geometric ideas of Amit (1991)

to see if these can provide upper bounds on the number of projections needed by

the projection scheme of Section 6.2 to reach stationarity when k = 3.
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