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Linear-Saling Density-Funtional Simulations of Charged Point Defets in Al2O3using Hierarhial Sparse Matrix AlgebraN. D. M. Hine,1,2 P. D. Haynes,1 A. A. Mosto�1 and M. C. Payne2
1Department of Physis and Department of Materials,Imperial College London, Exhibition Road, London SW7 2AZ, UK. and

2Theory of Condensed Matter group, Cavendish Laboratory,J. J. Thomson Avenue, Cambridge CB3 0HE, UK.(Dated: July 20, 2010)We present alulations of formation energies of defets in an ioni solid (Al2O3) extrapolatedto the dilute limit, orresponding to a simulation ell of in�nite size. The large-sale alulationsrequired for this extrapolation are enabled by developments in the approah to parallel sparse matrixalgebra operations, whih are entral to linear-saling density-funtional theory alulations. Theomputational ost of manipulating sparse matries, whose sizes are determined by the large numberof basis funtions present, is greatly improved with this new approah. We present details of thesparse algebra sheme implemented in the ONETEP ode using hierarhial sparsity patterns, anddemonstrate its use in alulations on a wide range of systems, involving thousands of atoms onhundreds to thousands of parallel proesses.I. INTRODUCTIONIt is well established that aurate alulations of the properties of point defets in rystalline materials requirethe use of very large simulation ells, ontaining large numbers of atoms [1℄. In partiular, the formation energies ofharged point defets are strongly a�eted by �nite-size errors up to very large systems, due to the very slow deayof the elasti and eletrostati �elds resulting from the loalised perturbation. Crystalline alumina (Al2O3) is anexample of a system where the high ioni harges (formally Al3+ and O2−) mean that the predominant defets areharged (V 2+
O and V 3−

Al ) and thus hallenging to simulate aurately [2℄.For these types of alulation, density-funtional theory (DFT) [3℄ is well established as a mainstay of omputationalmethods. However, traditional approahes to DFT enounter a ubi saling `wall' with inreasing system size, sinethe total omputational e�ort of a alulation involving N atoms inreases as O(N3). Furthermore, this e�ort is non-trivial to parallelize to large numbers of ores, rendering alulations of muh beyond 1000 atoms rather impratial.Alternative approahes, known as linear-saling DFT (LS-DFT) [4, 5℄, reformulate traditional DFT to avoid theomputation of orthonormal eigenstates of the Hamiltonian, sine manipulation of these is inherently ubi-salingwith system size.LS-DFT has been the fous of onsiderable development e�ort, with several mature odes now available [6�12℄.Rather than working with extended eigenstates, linear-saling approahes work in a basis of loalized funtions, whihare in general nonorthogonal. Eah of these funtions has signi�ant overlap only with a small number of otherfuntions on nearby atoms, and this number remains onstant with inreasing system size N in the limit of large N .This means that a matrix representing a loal operator expressed in this loalized basis ontains a total number ofnonzero elements whih sales only as O(N), rather than O(N2). The whole matrix an then be alulated in O(N)



2omputational e�ort if eah individual element an be alulated with e�ort independent of system size. Furthermore,in an insulator, the single-eletron density matrix is itself exponentially loalized: expressed in a separable form interms of this loalized basis, the density matrix an be trunated to O(N) nonzero elements. Finally, multipliationof sparse matries whose olumns eah ontain only O(1) elements is possible in O(N) e�ort. It is these three ruialpoints whih enable an overall linear-saling approah to total energy alulations within DFT in insulating systems.The e�ieny and feasibility of linear-saling methods depends ruially on the methods used for manipulation ofsparse matries. Performane depends not only on the prefator relating total omputational time to system size,but also on the degree of parallelizability of the method. The omputing power available in a single parallel proess(one ore of one proessor in a parallel omputer) has not inreased signi�antly in reent years, so if feasible systemsizes are to inrease, the saling of algorithms with number of parallel proesses P is just as important as saling with
N . Put another way, as N grows, algorithms for linear-saling DFT must remain able to perform simulations withinfeasible wall-lok time by allowing P to inrease. To ensure this, if N and P are inreased proportionally, total timemust remain roughly onstant. This not simply a omputer siene issue, but requires parallel algorithms designedaround the physis of the problem and the systems being studied.In this paper, we desribe and apply a novel approah to matrix algebra, optimised for linear-saling eletronistruture alulations. In this `hybrid' sheme, designed for speed and parallel e�ieny, we mix elements of bothsparse and dense matrix algebra. We divide up matries aording to the parallel proess on whih the data assoiatedwith a given atom is loated, then de�ne segments of the matrix to be stored (and ommuniated) in sparse indexedor dense format aording to the density of nonzero elements. It beomes possible to determine for a given operationa �xed subset of parallel proesses with whih eah proess will require ommuniation, and how best to transmit theommuniated data, on the basis of the physial distribution of the atoms within the simulation ell. At a onstantratio of atoms per ore N/P , the number of other ores with whih ommuniation is required is shown to remainonstant. Therefore, for larger and larger equivalent alulations on more and more parallel ores, total time doesnot signi�antly inrease, resulting in a onstant `time-to-siene' for any system size, given adequate omputationalhardware.This paper disusses the appliation of these tehniques within the ONETEP approah [12℄. This approah desribedis ideally suited to appliation to LS-DFT aross a wide range of systems, and indeed linear-saling eletroni struturegenerally. Its implementation in ONETEP (Setion II) has led to signi�ant performane improvements whih wedesribe in Setion III. In Setion IV we present an appliation of the improved methods to the alulation of theformation energies of harged defets in α-Al2O3 (orundum). Extrapolating to the limit of in�nite dilution theformation energies of the defets, whih vary with the size of the simulation ell due to �nite size e�ets, we are ableto systematially identify and eliminate the �nite size errors present and analyze their e�ets.II. SPARSE MATRIX ALGEBRA FOR ELECTRONIC STRUCTUREA. Sparse Matries in Eletroni StrutureONETEP is a linear-saling DFT ode for total energy and fore alulations on systems of hundreds to hundredsof thousands of atoms [13℄. It uses a set of optimizable loalized funtions, referred to as Nonorthogonal Generalized



3Wannier Funtions (NGWFs) [14, 15℄, expressed in terms of periodi sin funtions (psins), to represent the densitymatrix. The basis of psin funtions has very similar favorable properties to the plane wave basis frequently usedin traditional DFT. ONETEP therefore ombines the bene�ts of linear-saling with system size with the variationalbounds and systemati onvergene with respet to basis size provided by a plane-wave basis. Reent developmentwork [13℄ on the ONETEP ode resulted in onsiderable speedup to the performane of LS-DFT simulations. However,it was also demonstrated that sparse algebra operations remained the limiting fator on parallel e�ieny when salingto large numbers of proesses, and that saling of the alulation wall-lok time as O(N/P ) was not obtained beyondaround P ∼ 100.The matrix algebra required for eletroni struture alulations using nonorthogonal loalized orbitals mostlyinvolves ombinations of three basi matries: the overlap matrix Sαβ = 〈φα|φβ〉 between pairs of orbitals φα(r) and
φβ(r), the Kohn-Sham Hamiltonian Hαβ = 〈φα|Ĥ|φβ〉 in the basis of these funtions, and the density kernel Kαβ ,whih expresses the single-partile density matrix:

ρ(r, r′) = φα(r)Kαβ φβ(r′) . (1)We are using the onvention of summation over repeated Greek indies, and using subsripts to denote ovariantindies and supersripts to denote ontravariant ones. The generalization of these and all the following expressions tospin dependent forms is straightforward, so spin-labels will be omitted.The NGWFs {φα(r)} are stritly loalized with a uto� radius Rφ (typially around 3�4 Å) so Sαβ is only nonzeroif φα and φβ overlap. Hαβ is nonzero either if φα and φβ overlap diretly or if they both overlap a ommon nonloalprojetor. Kαβ , meanwhile, is de�ned to be nonzero only for elements α, β on atoms at Rα, Rβ for whih |Rα−Rβ | <

RK , where the kernel uto� RK is typially hosen to be of order 10�25 Åin an insulator. All quantities are thereforeexpressed in terms of matries ontaining only O(N) nonzero elements in the limit of large N , and for whih thematrix struture is known a priori. Note that this is in ontrast to linear-saling methods whih apply a thresholdingapproah to sparsity patterns by disarding matrix elements whose magnitude is below some threshold, in whih asethe matrix struture may hange dynamially as the alulation progresses.Minimisation of the total energy in the above formalism orresponds to minimising
E[{Kαβ}, {φα}] = KαβHβα + EDC[n] , (2)with respet to the kernel Kαβ and the set of funtions {φα} simultaneously. EDC[n] is a double-ounting termwritten in terms of the eletron density n(r) = ρ(r, r), whih subtrats o� density-density interations aounted fortwie in the Tr[KH] term. The total energy E is variational with respet to eah of the plane-wave uto� Ecut of thegrid on whih φα(r) is evaluated, the NGWF radii {Rφ} and the kernel uto� RK . Details of the methods used tooptimise the kernel [16℄ and the NGWFs [17℄ an be found elsewhere. The important point is that all aspets of theminimisation proess require extensive use of sparse matrix algebra � in partiular evaluation of the produt of pairsof sparse matries.For the optimisation of the density matrix, manipulation of matries of onsiderably lower sparsity than the densitykernel itself is required, so as not to disard ontributions to the kernel gradient during onjugate gradients optimiza-tion. There is therefore a need for a sparse algebra system apable of high performane and exellent saling aross arange spanning from highly sparse matries (suh as 0.01% nonzero elements) to fully dense matries (100% nonzero



4elements), within the same framework. The usual approah to sparse matrix algebra problems is to store only thenonzero elements of the matrix: either determined by the geometry of the problem, or indexed element by element,in an index stored separately from the data itself. However, in large systems there are very large numbers of nonzeroelements, and the omputational overhead of indexing them an be enormous.For this reason, it is aepted that for a given matrix algebra operation there will exist a threshold of element densityabove whih dense matrix algebra is more e�ient than sparse algebra. This is often around 10% or less for a matrixprodut, though preise details depend on the spei� software and hardware implementation. Previous versions ofONETEP (and to our knowledge, most other linear-saling eletroni struture odes) have supported only either allsparse-indexed matries or all dense matries within one alulation. However, neither of these extremes is able toobtain good performane and saling for typial realisti systems. We thus desribe a `hybrid' hierarhial systemable to handle the ases of both highly sparse and fully dense matries e�iently within the same framework, buildingdistribution of the matrix over the proesses of a parallel omputer into the framework in a natural way. Hierarhialapproahes to sparse matrix algebra, suh as ombining atom bloks into larger groups, have been desribed previously[18�21℄. However, this has generally been applied to eletroni struture methods applying thresholding to determinesparsity patterns. Here we will disuss the spei�s of appliation to the ase of �xed matrix sparsity, in partiularthe extra bene�ts that an be obtained in terms of reduing the volume of parallel ommuniation between proesses.B. Parallel Distribution of Sparse Matrix AlgebraThe �rst step is to distribute the atoms over the parallel proesses in suh a way that eah proess only has atomswhose funtions overlap those of as small as possible a number of other proesses. This is ahieved by ordering theatoms aording to a spae-�lling urve (SFC) [21℄. Atoms are assigned a Gray ode formed by interleaving the binarydigits of their position expressed in terms of a oarsened grid along eah of the three axes. Use of a separate grid foreah axis ensures that in simulation ells with high aspet ratio, the absolute distanes along the three axes are givenequal weight. The atoms are then sorted aording to their Gray ode and distributed to proesses in suh a wayas to balane the number of NGWFs per atom evenly. This ensures eah proess holds a spatially-loalized group ofatoms, with adjoining spatially-loalized groups on `nearby' proesses numerially.The distribution of matrix data over proesses then follows the distribution of atoms: olumns orresponding tofuntions on a given atom are held by the proess to whih that atom belongs. For reasons of e�ient parallelization,these proess-olumns are further divided into `segments', orresponding to row-funtions assoiated with a givenproess. The result is a grid of P × P segments eah of size Mj × Ni where Ni is the number of olumn elements onproess i and Mj is the number of row elements on proess j.For a set of atom-entered funtions, suh as NGWFs or nonloal pseudopotential projetors, if any funtion on agiven atom I overlaps a funtion on a di�erent atom J , then all the funtions on both atoms overlap, giving rise toa blok of mJ × nI matrix elements whih are all nonzero, where nI is the number of (olumn-) funtions on atom Iand mJ is the number of (row-) funtions on atom J . Therefore, rather than indexing individual nonzero elements, alarge saving in both memory and CPU time is obtained by indexing nonzero atom-bloks. This form of sparse blokedmatrix is ommon to many linear-saling eletroni struture implementations [21�23℄. Note that the number of rowelements may di�er from the number of olumn elements for a given atom, to allow treatment of non-square matries
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Figure 1: Parallel distribution of a sparse matrix, �rst into olumn-segments (distributed over proesses) then into row-segmentswithin eah olumn, aording to the same pattern. Eah segment is either blank, sparse-indexed by atom-bloks, or fully dense.In the example shown, a matrix with 20 atoms is divided olumn-wise over four proesses, with four row-segments per proesseah ontaining 5 × 5 atom bloks, eah of whih may or may not be present in the sparse index. One individual segment jon proess i of size Mj × Ni is highlighted, as is one blok of size mJ × nI within this segment, assoiated with the overlap ofatoms I and J .suh as the overlap matrix between NGWFs and projetors.The typial uto�s required, espeially when dealing with the density kernel in systems with a small energy gap,are quite large on the sale of typial interatomi distanes. Therefore, eah atom may be assoiated with nonzeroelements in bloks assoiated with a large number of other atoms. As seen in Figure 2, the SFC ordering ensuresthat the majority of these nonzero elements will belong to either the same proess or one of a small number of nearbyproesses. Therefore, a typial matrix will ontain a broad band of nonzero elements entered around the diagonalbut extending some way o� it. Figure 2 shows examples of the segment �lling frations for the produt (KS)α
β ofthe density kernel and the overlap matrix for various typial systems. Beause of this banding of nonzero elementsnear the diagonal, it is often the ase that for a given segment near the diagonal, most or in many ases all of theelements in suh a segment are nonzero, espeially in the matries representing produts suh as KS, KSK and

KSKS. Similarly, many of the segments far from the diagonal will ontain few nonzero elements or none at all.We therefore add a seond level of indexing of the sparsity pattern, orresponding to the aforementioned segments ofthe matrix. A ount is made of the number of nonzero elements within eah segment. This is then used to determinewhether eah segment either a) ontains a fration of nonzero elements greater than or equal to some threshold η,where 0 ≤ η ≤ 1, and is thus delared `dense' and stored in full (inluding zero elements); b) ontains a frationof nonzero elements less than η and is thus `sparse', and the blok-indexing is retained; or ) ontains no nonzeroelements and is thus `blank'. This segmentation has numerous advantages in terms of reduing both the omputationand ommuniations requirements of matrix algebra, partiularly matrix multipliation.Consider the matrix produt operation Cα
β = AαγBγβ . Eah segment an be thought of as a sub-matrix (in generalthese are not square). Denoting by Xki the row-segment k of the matrix X in olumn-segment i (thus, stored onproess i), we an write the segments of the produt matrix as

Cki =
∑

j

Akj · Bji .The individual ontributions j to Cki an be evaluated in several di�erent ways aording to the density η in the
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Figure 2: Segment-by-segment �lling fators of sparse matries in typial large systems divided over P=64 proesses. Matriesof the sparsity pattern (KS)α
β (the produt of the density kernel and overlap matries) are shown for: (a) a (10,0) zigzagnanotube (4000 atoms), (b) a 64-base pair sequene of B-DNA (4182 atoms), () an H-terminated wurtzite-struture GaAsnanorod (4296 atoms) (d) 8 × 8 × 8 superell of 8-atom ubi unit ells of rystalline Si (4096 atoms). Eah pixel representsa segment, whose olor shows the fration of matrix elements in that segment whih are nonzero: blak segments ontain nononzero elements, through red then yellow to white segments ontaining all nonzero elements. The nonzero elements are seento be lustered near the diagonal of the matrix (though less so with inreasing periodiity and omplexity of the struture).The spae-�lling urve ensures that in a given olumn there are nonzero overlaps only with rows of atoms on `nearby' proesses,so the nonzero elements form a broad band entered on the diagonal. This is learest for the simple struture of the nanotube,but even for the rystalline solid there are large numbers of segments in whih there are no nonzero elements.



7various segments involved. Note that if either of Akj or Bji is blank then no alulation is required for that indexvalue j, while if Cki is blank, no alulation is required at all.At the other extreme, if Akj , Bji and Cki are all `dense' segments, then the multipliation operation an beperformed very e�iently by through a dense linear algebra library all, without referene to the indexing. If Akj and
Bji are dense, but due to trunation Cki is not, then the small number of nonzero elements of Cki an be alulatedindividually by multiplying the relevant row of Akj by the olumn of Bji and summing the result.These simpli�ations greatly redue the indexing overhead, as they bypass the need for indexing entirely withinthe most time onsuming part of the operation. This alone results in very onsiderable speedup when the nonzeroelements are well-loalized near the matrix diagonal. The total e�ort of this approah does not sale up with P : thereare O(P 3) pairs of segments to onsider in general (loops over j and k on eah proess i), but the size of eah segmentsales down as 1/P , so the total omputational e�ort is onstant with P .Furthermore, if one imagines a given system and then inreases it in size, by saling N and P up together, thetotal number of suh pairs of segments where both are within some range of the diagonal, and thus dense, will onlysale as O(N). This is simply a disretization of the idea that allows sparse algebra to be O(N) in the �rst plae.Therefore the overall omputational required for the matrix produt remains O(N) even though a large part of it isbeing performed using dense matrix algebra on fairly large matries.C. Communiations PatternsThere are also signi�ant advantages to be gained from division into segments in terms of reduing ommuniationsload. Reall that eah proess holds a fration approximately equal to 1/P of the olumns of the matrix. Taking thesimplest approah, the whole index and all the nonzero elements of A loal to proess j would be sent to proess i, inorder that proess i ould alulate all terms ontributing to the loal data of C. In that ase, a total volume of data
O(N/P ) is sent by proess i to P di�erent proesses. The total ommuniations load per proess would thereforegrow as O(N), but would not sale down at all with inreasing P . Asymptotially, wall-lok time ould not behaveas O(1/P ) with inreasing P : a limit would inevitably be reahed where ommuniation of the matrix data to allother proesses would beome the limiting fator on performane.This undesirable situation an be avoided though the use of shared information about the segments stored on otherproess. Alongside the reation of the index for a matrix A, proess j sends the number of nonzero elements in thesegment numbered i stored on proess j to proess i for future use. When performing a matrix produt, proess ithen only needs to reeive the index and data of A from proesses j for whih the segment Bji on proess i is notblank. If many o�-diagonal segments of B are blank, this results in a huge saving in the amount of data sent.With this approah, if P is inreased at �xed N , the total ommuniations load remains onstant. In fat, as Pand N inrease proportionally, the ommuniations load per proess does not have to grow, as there remains onlya small, onstant number of other proesses with whih any ommuniation is required. Note that this is, in e�et,the same priniple whih allows for O(N) saling of the total omputational e�ort in the sparse produt operation,applied now to the total ommuniations volume of saling the alulation up to P proesses.The segment-based approah mandates a further improvement in the parallel ommuniations algorithm in orderto work e�etively. Referene [13℄ desribed a ommuniations pattern whereby `bloking' operations, in whih all



8proesses reeived all data from a given proess simultaneously, were replaed by a `round-robin' system in whiheah reeived data �rst from its adjaent neighbour, then its next-nearest neighbour, and so on in synhrony. Thisrepresented an exellent improvement in e�ieny over the previous system. However, for this algorithm to saleup perfetly to large P requires an idealized distribution of nonzero elements in the matries involved: the numberof overlaps, and thus the amount of omputation involved in alulating the ontribution to the matrix produt onproess i of the segments of proess j, needs to remain roughly onstant for proesses of a given numerial separation
|i−j|. In that ase, the algorithm ould remain near-ideal even in the presene of division of the matrix into segmentsand avoidane of ommuniations for non-ontributing segments.However, an ideal distribution of elements is rarely enountered in pratie, as illustrated by the non-uniformbanding of Fig. 2. The simple algorithm just desribed thus begins to sale poorly with P at around P = 200and very little further inrease in speed is obtained beyond about P = 500 [13℄. Note that this was nevertheless asigni�ant improvement over the e�etive P ∼ 64 limit of the `bloking' ommuniations approah. Given this unevendistribution, it beomes neessary, for large numbers of proesses P , to implement an `on-demand' ommuniationssystem, whereby in order to reeive the index and data of matrix A, proess i must �rst send a request message toproess j, and proess j then replies by sending the required index and data. Despite the fat that this method inursa lateny penalty twie, this algorithm is almost invariably faster than foring all proesses to work in synhrony, asin the round-robin ommuniations system. In partiular, with simultaneously inreasing N and P , this approahallows the ommuniations load to sale as O(N/P ) as long as eah proess only requires ommuniations with asmall fration of the other proesses.A further large redution in the amount of data that must be sent from proess j to proess i an be ahieved evenfor ases where there are nonzero elements in segment Bji. For eah segment k, only those nonzero bloks of Akjwhih atually ontribute to Cki on i need to be sent from proess j to proess i. For this to be the ase, there mustbe nonzero bloks in Bji whih will multiply nonzero bloks in Akj suh that they ontribute to nonzero bloks of
Cki. A list of suh ontributing bloks an be formed by having by proess i request and reeive �rst the indies ofeah the segments Akj on j. Looping over the nonzero bloks in the indies of Bji and Cki on proess i, a list anbe made of those nonzero bloks in Akj whih ontribute to the result. From this, a `ropped' version of the index of
Akj is onstruted whih ontains only the nonzero bloks ontributing to the result. This list is sent bak from i to
j; upon reeiving it, proess j extrats the required bloks from the loal segments Akj and sends them to proess i.Using this `ropping' method, any given nonzero blok in the data of eah Akj is only sent to those proesses whihneed it, whih may be very muh less than the total number of proesses with whih there are any overlaps at all.This results in a very onsiderable redution in total ommuniations volume. Figure 3(a) shows the total amount ofdata sent per proess while performing a typial matrix multipliation (K · S → KS), with and without `ropping'the data of A, for a system omprising 100 unit ells of a (10,0) zigzag arbon nanotube (4000 atom). Figure 3(b)shows the wall time for this produt operations with and without the ropping.III. PERFORMANCEThe hierarhial sparsity sheme desribe here obtains signi�ant performane bene�ts over previous methods inreal simulations. To demonstrate this, we ompare the wall lok time for systems representing �ve ommon uses of
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Figure 3: (a) Total data sent per proess and (b) Total time per operation, for a matrix produt operation K · S → KSperformed for a 4000-atom arbon nanotube, on 32 and 64 proesses. This system has four NGWFs per atom, hene K, Sand KS are all 16000×16000 matries, with roughly 2%, 7% and 10% nonzero elements respetively. Results are shown withand without `ropping' of the data of K before it is sent, showing the derease in ommuniations volume, and the resultingimprovement in both overall time and saling. See Fig. 2(a) for a representation of the sparsity pattern of the matrix KS.Abbreviation System Ecut /eV RK/a0 Rφ/a0 Nat Nφ NprojC4000 NT (10,0) arbon nanotube 400 20 6.7 4000 16000 36000DNA 64bp 64 base pairs of DNA (Na+-neutralized) 700 30 7.0 4182 9776 25266x6x3 Al2O3 α−alumina 6 × 6 × 3×hexagonal ell 1200 24 8.0 3240 12960 18792GaAs NR H-terminated wurtzite GaAs nanorod 400 40 10.0 4296 14376 13440Si4096 Si rystal, 8 × 8 × 8×ubi ell 600 24 6.7 4096 16384 32768Table I: Key to the abbreviations used for the �ve di�erent test systems, hosen to represent a ross-setion of ommon usesof LS-DFT (arbon nanostrutures, organi moleules, erami oxides, semiondutor nanostrutures and rystals). Choiesalso represent di�erent extremes of uto� energy Ecutand kernel and NGWF uto�s RK and Rφ. The number of atoms Nat,number of NGWFs Nφ and number of nonloal pseudopotential projetors Nprojare also shown.linear-saling DFT. These are: (i) a setion of a (10,0) zigzag nanotube, (ii) a 64-base pair strand of a moleule ofDNA with a random sequene of base-pairs (iii) a large orthorhombi superell of α-alumina (6 × 6 × 3 opies of the30-atom hexagonal ell), (iv) a gallium arsenide nanorod, and (v) a large superell (8 × 8 × 8 opies of the 8-atomubi ell) of rystalline silion (a small-gap semiondutor). These systems are all of omparable size in terms ofnumbers of atoms (around 4000), but display a wide range of levels of matrix sparsity, plane wave uto�s, NGWFand kernel uto�s and numbers of nonloal projetors. Table I summarises the details of these test systems. Note inpartiular the large number of nonloal projetors in some of these systems. Appendix A desribes the appliation ofthese sparse algebra tehniques to the nonloal ontribution to the Hamiltonian, and the speed up thus obtained inthe routines treating nonloal pseudopotentials.In all these tests, we have used 16�64 quad-ore Intel Core i7 proessors with 12GB of memory per proessor,i.e. 64�256 individual ores. These proessors are linked by a dual-in�niband network with very low lateny.
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Figure 4: Timings for the sparse algebra operations of a typial set of runs as a funtion of η. A minimum is observed in mostases for around η = 0.3− 0.4. The dotted line shows the time taken to run with the same parallel ommuniations algorithm,but without the division into segments, so desribing the whole matrix in sparse blok-indexed form. In all ases, notablespeedup an be obtained � with best performane for the more linear systems (nanotube, DNA and nanorod).As explained in Se. II, segments of eah matrix struture are determined to be either `blank', `sparse' or `dense'depending on the fration of nonzero elements they ontain. The dividing line between `sparse' and `dense' storage anduse is determined by a parameter η, the frational �lling above whih a given segment is stored as a full matrix ratherthan indexed. For serial matrix algebra, (where the whole matrix is e�etively one `segment') the optimal value forthis is often quoted as of order 0.1, but in the ase of parallel matrix algebra, where there is a large ontribution to thetotal time from ommuniations overhead, it may di�er signi�antly from this value. To �nd a suitable default hoie,we ompare in Fig. 4 the total time spent on sparse matrix produt operations during a single NGWF optimisationiteration with ONETEP for these typial systems. As η is varied from η = 0, at whih point all segments are storedin dense format, to η > 1, at whih point all segments are stored in sparse format, the sparse algebra beomes at�rst more then subsequently less e�ient, and a minimum is observed for most systems at around η = 0.3− 0.4. Theexeptions are the solid systems, where due to the 3D periodiity, there is a less uniform distribution of overlaps (seeFig. 2(d)), so less bene�t is obtained through matrix sparsity. Nevertheless, η = 0.4 appears to represent a goodompromise whih works well for almost all systems.To show the e�et of the new approah to sparse matrix algebra on total exeution times, Fig. 5(a) shows the totaltime for one NGWF optimisation iteration on 64 parallel ores, with and without the appliation of the aforementionedalgorithm to sparse algebra. Typially 10�25 iterations are required for full energy minimisation, independent of systemsize, so overall this represents approximately 7�10% of the time for a full alulation (given the setup and initialisationtime). Exeution times are somewhat redued at �xed P = 64 with the new system, in partiular the fration devotedto sparse algebra tasks.More signi�ant, though, is the improved saling to larger numbers of proessors, as shown in Fig. 5(b), whihshows the speedup over 64 ores ahievable on 128, 192 and 256 ores, for both approahes. The saling is seen to besigni�antly improved with the urrent approah, inreasing the sale of alulations that an feasibly be performed.Note that the speedup is normalised to the time on 64 proessors for that approah (old or new), so any improvement
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1/L, based on the �rst three points of ∆Ef (L). Full geometry relaxation is performed for eah defet, starting from
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N vM (eV) Eperf (eV) Edef(V

2+
O ) (eV) Edef(V

3−
Al ) (eV) ∆Ef(V

2+
O ) (eV) ∆Ef(V

3−
Al ) (eV)120 3.80 -34356.18 -33937.82 -34259.99 4.39 1.35960 1.90 -274861.26 -274442.68 -274763.72 4.60 2.703240 1.27 -927660.84 -927243.13 -927563.83 4.65 3.08Table II: Superell size, Madelung energy vM , total energies of perfet and defet superells and defet formation energies (ineV) for V 2+

O and V 3−
Al alulated with the ONETEP approah.
N vM (eV) Eperf (eV) Edef(V

2+
O ) (eV) Edef(V

3−
Al ) (eV) ∆Ef(V

2+
O ) (eV) ∆Ef(V

3−
Al ) (eV)120 3.80 -34357.04 -33938.69 -34260.82 4.38 1.38960 1.90 -274857.27 -274438.71 -274759.79 4.58 2.64Table III: Superell size, Madelung energy vM , total energies of perfet and defet superells and defet formation energies (ineV) for V 2+

O and V 3−
Al alulated using the CASTEP plane-wave DFT pakage.perfet ell positions with an atom removed near the enter of the ell.Defet formation energies are alulated using the approah referred to as the Zhang-Northrup formalism [27℄,following Ref. [2℄. We take representative values (spei� to the hoie of pseudopotential and funtional) of hemialpotentials for oxygen atoms and aluminium atoms from Ref. [2℄. These areµO = 433.13 eV, µAl = −66.11 eV. Thespei� hoies of these hemial potentials do not a�et the onvergene of the formation energy with system size,sine they are simply bulk properties depending on the material and hosen formation onditions, namely the partialpressure pO2

and temperature T of the oxygen atmosphere with whih the material is ontat during annealing. Thesehoies represent T = 1750 K and pO2
= 0.2 atm. The eletron hemial is determined by the requirement of overallharge neutrality: for the sake of displaying representative values during the extrapolation to in�nite size we shallsimply arbitraily set µe at 1.5 eV above the valene band edge at EVBM = −7.84 eV.Table II shows the total energies of the bulk superell at di�erent ell sizes, the total energies of equivalent superellsontaining V 2+

O defets V 3−
Al defets, and the defet formation energies of eah. The formation energy of the V 2+

Odefet is
Ef (V 2+

O , L) = Edef(L) − Eperf(L) + µO + 2µe , (3)while that of the aluminium vaany is
Ef (V 3−

Al , L) = Edef(L) − Eperf(L) + µAl − 3µe . (4)For omparison, Table III shows the same alulations repeated using the CASTEP ode [28℄, for the smaller twoells: the largest ell is unfeasibly demanding with the CASTEP approah. CASTEP is a traditional ubi-salingplane-wave pseudopotential DFT ode. Within CASTEP, it is possible to hoose exatly the same pseudopotential,exhange-orrelation funtional and grid spaings so as to as near as possible math the ONETEP result. However, asdisussed previously [29℄, the fat that in plane-wave odes suh as CASTEP, orbitals are expanded in a plane-wavebasis ut o� on a sphere in reiproal spae, whereas ONETEP is e�etively using a full retangular grid, means thatthe ONETEP results are e�etively obtained at a higher uto�, and hene return a slightly lower total energy. Despitethis, the formation energies � whih are energy di�erenes � agree remarkably well between the two approahes:agreement to within 0.1 eV is seen.



16

0.0 1.0 2.0 3.0 4.0
Madelung Energy (eV)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
D

ef
ec

t F
or

m
at

io
n 

E
ne

rg
y 

(e
V

) ONETEP
CASTEP

V
Al

3-
(a)

0.0 1.0 2.0 3.0 4.0
Madelung Energy (eV)

3.5

4.0

4.5

5.0

5.5

D
ef

ec
t F

or
m

at
io

n 
E

ne
rg

y 
(e

V
) ONETEP

CASTEP

V
O

2+
(b)

Figure 9: Saling of defet formation energy against Madelung energy for (a) Aluminium vaany V 3−
Al and (b) Oxygen vaany

V 2+
O . The Madelung energy sales as 1/L, so the extrapolation to vM → 0 represents extrapolation to the in�nite dilutionlimit.The sheer sale of eah superell total energy (nearing 106 eV in the largest ases) emphasises the level of aurayrequired to obtain the defet formation energies aurately at large system sizes. The systemati behaviour of thedefet formation energy with system size L demonstrates that the energies are su�iently well-onverged to be usedreliably in an energy di�erene suh as Eqs. 3 and 4, and that anellation of error between large similar systems isoperating bene�ially.Figure 9(a) shows ∆Ef(V

2+
O ) as a funtion of vM ∝ 1/L, while Figure 9(b) shows the formation energy Ef (V 3−

Al )of the V 3−
Al defet. Also shown is a linear �t to vM , under the assumption that the dominant term in the �nite-sizeerror is a monopole-monopole term. Suh an assumption an be shown to give [30, 31℄

∆EFS =
q2vM

2ǫfit
, (5)where ǫfit is a �tting parameter dependent on the defet. This �tting parameter is loosely related to the stati dieletrionstant of the material, but varies signi�antly between di�erent defets even in the same material, motivating theneed for a �t and extrapolation, rather than a single-shot orretion of a result for a small superell.While there is not enough data to perform statistial analysis, the ombination of a lose agreement between thelinear �t with the data, plus the good agreement between the ONETEP results and the available CASTEP resultssuggests both that the model is aurate and that the ONETEP results are su�iently well-onverged to give aurateresults in these very large systems. The resulting extrapolated defet formation energies, at these hosen values ofhemial potential, give ∆Ef(V

2+
O ) =4.78 eV and Ef (V 3−

Al ) =3.97 eV.Notably, if the unorreted value from the N = 120 superell had been been used, the resulting �nite size erroron the formation energies would have been 0.4 eV and 2.6 eV respetively. Similarly, as shown in Table IV, whilethe bond lengths in the region immediately around the defet site (the �rst nearest-neighbour (1NN) shell) are loseto onvergene at N = 120, those far away are barely di�erent from their bulk values, sine the arti�ial symmetry



17System r1NN(a0) r2NN(a0) r3NN(a0)Perfet rystal 3.5582 5.0666 6.3415
V 2+

O in 120-atom ell 4.0030 4.9653 6.3444
V 2+

O in 960-atom ell 4.0006 4.9572 6.3483
V 2+

O in 3240-atom ell 4.0116 4.9773 6.3652Table IV: Mean distanes from the vaany site to the shells of nearest neighbours of V 2+
O as system size inreases. Nearestneighbours (1NN) are four Al ions, 2NN are twelve O ions, 3NN are six Al ions. In the smallest ell, the 3NN ions areonstrained by the arti�ial periodiity to hardly move from their bulk positions. Inreasing the ell size allows them to relax,but the relaxations are slow to onverge to their in�nite ell-size limit.imposed by the periodi boundary onditions prevents the relaxation the defet would normally indue. It an beseen that only by going to the largest system size do the 3NN distanes begin to hange signi�antly from their bulkvalues.By assuming the simplest form of disorder involving these two defet speies, namely Shottky equilibrium, we anmake a very rough estimate of the dependene of defet onentrations on the simulation ell size, through the �nitesize errors on the formation energy. We make the rude approximation of replaing the temperature-dependent freeenergy with the 0 K DFT total energy. We then relate the vaany onentrations per formula unit of Al2O3 attemperature T to the formation energies, through

[V 2+
O ] = 3e−∆Ef (V 2+

O
)/(kT ) ,

[V 3−
Al ] = 2e−∆Ef (V 3−

Al
)/(kT ) .Assuming perfet Shottky equilibrium and overall harge-neutrality we then have

3[V 2+
O ] = 2[V 3−

Al ] ,and hene we an estimate the position of the eletron hemial potential whih gives harge neutrality as:
µe =

1

5

(

Edef(V
3−
Al ) − Edef(V

2+
O ) + µAl − µO + kT ln

4

9

)

.Finally, therefore, we an estimate the e�et of the �nite size errors on the onentrations one would alulate usingthe unorreted results, as a funtion of ell size. This is shown in Table V for a typial annealing temperature(T = 1750 K). An error of four orders of magnitude is seen to result from the �nite size e�et at the smallest ellsize ompared to its in�nite-size extrapolation. Note that these onentrations likely represent quite a signi�antunderestimate of the real onentrations under similar onditions due to the neglet of the vibrational ontributionto the free energy.The slow onvergene of all these properties, and the very large �nite size errors on small superells, more thanjustify the need for the ombination of large superells and extrapolation to the in�nite limit. Furthermore, moreomplex defets suh as lusters of intrinsi defets and substitutional dopants do not behave as point harges, andmust be treated in even larger simulation ells to aurately remove the e�et of �nite size errors. The need for alinear-saling formalism in the study of defets in suh materials is therefore lear.



18System µe (eV) [V 2+
O ] per f.u. [V 3−

Al ] per f.u.120-atom ell 8.99 1.56×10−9 2.34×10−9960-atom ell 9.23 2.03×10−11 3.05×10−113240-atom ell 9.29 5.61×10−12 8.41×10−12In�nte-size extrapolation 9.44 3.12×10−13 4.68×10−13Table V: Dependene of the estimated onentrations of oxygen and aluminium vaanies per formula unit on system size,through �nite size errors on formation energies. V. CONCLUSIONWe have desribed a number of advanes to the methodology underlying linear-saling density funtional theory,implemented here in the ONETEP ode. We have presented a uni�ed approah to sparse algebra suited to alulationof the sparse matrix produt operations typially enountered in linear-saling eletroni struture theory, suitableaross a very wide range of system sizes and types, and whih sales well over a wide range of numbers of parallelproesses. The `segments' desribed, whih are the segments of the rows assoiated with a given parallel proessbelonging to the olumns of a seond given proess, form a natural seond level of hierarhy over and above theatom-bloks that emerge naturally from a basis onsisting of atom-entered loalized funtions. These segments allowuse of optimally-sized dense algebra to inrease performane, whih along with a framework for signi�ant redutionin the ommuniation demands of sparse matrix algebra.We have then applied this new sheme to a hallenging alulation of the size-onvergene of the formation energyof harged point defets in alumina (α-Al2O3). Alumina is a hallenging material for �rst-priniples simulation,sine its ombination of a low-symmetry struture with high ioni harges means that large simulation ells must beused when alulating properties of systems with loalized harge, suh as point defets. The ombination providedby the ONETEP formalism, of high auray, equivalent to that of the plane-wave approah, with linear-salingomputational e�ort, allowing aess to system sizes in the thousands of atoms, has been shown to be su�ient toprovide onverged results for the formation energies of intrinsi vaanies in this material.AknowledgmentsThe authors aknowledge the support of the Engineering and Physial Sienes Researh Counil (EPSRC GrantNo. EP/G055882/1) for funding through the HPC Software Development program. P.D.H. aknowledges the supportof a University Researh Fellowship from the Royal Soiety. A.A.M. aknowledges the support of the RCUK fellowshipprogram.The authors are grateful for the omputing resoures provided by Imperial College's High Performane Computingservie (CX2), whih has enabled all the simulations presented here.



19Appendix A: NONLOCAL PSEUDOPOTENTIAL MATRICESThe sparse algebra algorithms presented in this work have been designed to treat matries with di�erent blokingshemes (in terms of numbers of elements per blok) for rows and olumns on equal footing, and even mix the two.This enables additional parts of the alulation to be treated with distributed sparse matrix algorithms.In standard LDA or GGA DFT alulations, the Hamiltonian is omposed of the ontributions Ĥ = T̂ + V̂Hlxc + V̂nl,where T̂ is kineti energy, V̂Hlxc is the total loal potential (Hartree, exhange-orrelation and loal ioni pseudopo-tential ontributions), and V̂nl is the non-loal ioni pseudopotential expressed in standard Kleinman-Bylander form[32℄ as a sum over nonloal projetors. These three operators orrespond to sparse matries Tαβ , V Hlxc
αβ and V nl

αβ inthe NGWF basis, given by
Tαβ = 〈φα| −

1

2
∇2|φβ〉 ,

V Hlxc
αβ = 〈φα|V̂Hlxc|φβ〉 ,

V nl
αβ =

Nproj
∑

i=1

〈φα|χi〉〈χi|φβ〉

Di
,where |χi〉 are the nonloal pseudopotential projetors, Di are the Kleinman-Bylander denominators, and Nproj is thetotal number of projetors in the system.Calulation of the overlaps 〈φα|χi〉 between NGWFs and projetors is performed in ONETEP using the FFT-boxapproah [33℄. The FFT-box is a loalized box surrounding the atom on whih NGWF φα is loated, of size typiallyof side length 6Rφ, where Rφ is the largest NGWF radius required in the system. For stritly loalized funtionssuh as NGWFs and nonloal pseudopotential projetors, the FFT-box allows the advantages of the use of Fouriertransforms in plane-wave DFT to be arried over to the linear-saling formalism.To alulate 〈φα|χi〉 one evaluates the projetor in reiproal spae, by interpolating χi(q) on to the grid points

GFFT of the reiproal-spae FFT-box; then one performs the Fourier transform on the FFT-box to obtain χi(r);�nally, the ppds of χi(r) whih overlap ppds of φα(r) are extrated from the FFT-box and used to �nd the overlap
〈φα|χi〉.Given that the relevant NGWF data for φα will generally not reside on the same proess as the projetor data,there are two possible approahes to the ommuniations required for this algorithm to work in parallel: either oneould rereate eah projetor on every parallel proess holding an NGWF overlapping that projetor, or one ouldgenerate eah projetor one (on the proess whih holds its atom), and then ommuniate eah NGWF overlappingthat projetor from the proesses whih hold them. In pratie, the latter allows a large saving in omputational e�ortas long as the ommuniations overhead of NGWF ommuniation is less than the omputational time of generatingthe projetors many times over on di�erent proesses.We therefore use the latter approah to generate the blok-indexed sparse matrix Pαi = 〈φα|χi〉, whose olumns iorrespond to projetor kets |χi〉 and whose rows α orrespond to NGWF bras 〈φα|. From this matrix, it is trivialto also form Riβ = 〈χi|φβ〉, the transpose of Pαi. Then, using the aforementioned sparse produt algorithm, one analulate the nonloal matrix as

V nl
αβ =

∑

i

PαiD
−1
i Riβ .



20A similar representation an be used to generate the nonloal pseudopotential ontribution to the NGWF gradiente�iently. The nonloal pseudopotential ontribution to the bandstruture energy Enl an be written in terms of thenonloal matrix as a trae of its produt with the density kernel, as Enl = V nl
βαKαβ . To optimise the NGWFs, werequire the gradient of this quantity with respet to hanges in the value of the NGWF φα at position r, so we have

δEnl

δφα(r)
= 2

Nproj
∑

i=1

χi(r)
∑

β

〈χi|φβ〉K
βα

Di

= 2

Nproj
∑

i=1

χi(r)Q α
i . (A1)Again, Q α

i = D−1
i RiβKβα an be onstruted e�iently through use of the above sparse produt algorithm.Furthermore, sine all the projetors χi whih ontribute to the gradient for a given φα need to be onstruted inthe same FFT-box entered on the atom of φα, another improvement is possible. Note that in any system, there aregenerally only a small number of di�erent types of projetor, Nsp, sine for eah atom type, there is a set of nonloalhannels with angular momentum values l = 0, . . . , lmax and for eah hannel, azimuthal angular momentum values

m = −l, ..., l.For eah projetor speies s, we denote by χs(G) the projetor evaluated in reiproal spae for a projetor at theorigin in real spae. To translate it to its orret position within the FFT-box of φα, a phase shift of eiG·(Ri−Rα) isapplied in reiproal spae, where Ri is the position of the atom of projetor i and Rα is the position of the atom of
φα.We an write Eq. A1 in terms of a sum over speies and over projetors of that speies, making the Fourier transformrequired to onstrut χi(r) expliit:

∂Enl

∂φα(r)
= 2F





Nsp
∑

s=1





Nproj(s)
∑

i=1

Q α
i eiG·tiα



 χs(G)



 . (A2)The term inside the innermost brakets is in e�et a reiproal-spae struture fator for eah projetor speies,evaluated on the reiproal spae grid the FFT box. Construting this struture fator and then multiplying it bythe projetor in reiproal spae allows one to avoid the work of repeated evaluation of repeatedly multiply-adds ofthe whole projetor.Figure 10 shows the omputational time required for evaluation of 〈φα|χi〉, V nl
αβ and ∂Enl/∂φα(r) in the test systems.Figure 10(a) shows the timings with the previous unparallelized approah, while Fig. 10(b) shows timings with thesystem just desribed. The omputational e�ort saved is dramati, partiularly in large solid systems with largenumbers of densely-overlapping NGWFs and projetors. The approah is also very muh more parallelizable. Figure10() shows the total time for evaluation of eah of the above quantities for the 960-atom alumina system on 32, 64,128 and 256 ores, demonstrating near-ideal saling with 1/P .
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