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Quantum Monte Carlo calculations of the surface energy of an electron gas
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We present quantum Monte Carlo calculations of the surface energy of the electron gas (jellium). Our results
agree with the best estimates obtained by other methods, thus appearing to resolve the controversy which
currently exists and paving the way for future simulations of real surface systems.

DOI: 10.1103/PhysRevB.76.035403

I. INTRODUCTION

Surfaces mediate all our interactions with the world and
play a vital role in many significant technological and natural
processes. Understanding the physics of surfaces is therefore
of great importance. The simplest surface, that of the model
electron gas (“jellium”), provides one of the canonical prob-
lems in computational electronic structure: from density-
functional theory! (DFT) and the Fermi hypernetted-chain
method?? to the GW approximation* and quantum Monte
Carlo simulations,>° the jellium surface has been a standard
proving ground.

Since the first quantum Monte Carlo (QMC) simulations
were performed nearly 15 years ago, it has also been a
source of controversy, highlighted recently in several
papers.”"'2 Many different authors have calculated the sur-
face energy of jellium using methods based on DFT or the
random-phase approximation (RPA) or a combination of the
two;113-16 their results show broad agreement with each
other while disagreeing with the QMC results.>® Most sur-
face energy calculations are based on simulations of slabs,
but other methods exist; QMC simulations of finite jellium
spheres!” have been combined with a liquid-drop model'® to
calculate the surface energy. These results are also consistent
with those from DFT- and RPA-based methods but not with
the conventional supercell QMC calculations. The difference
is typically of the order of 150 erg cm™2, comparable with
the magnitude of the surface energy itself. A previous paper®
aimed to resolve the controversy, pointing out an error in one
set of the QMC calculations; we will show that there are
other more important reasons for the discrepancy. This is
very significant because QMC, and, in particular, diffusion
Monte Carlo (DMC), is often considered to be the most ac-
curate method available and is used as a benchmark. If QMC
calculations were shown to be wrong for this model system,
serious doubt would be cast on this status. On the other hand,
if the QMC results were proven correct, there would be even
more serious consequences: a good deal of surface-science
theory would have to be reexamined.

In this paper, we examine the challenges involved in cal-
culating surface energies and show how to meet them. We
explain why we believe that the previous QMC simulations
did not attain the unusually high precision required for these
calculations (energy differences accurate to within 0.03 mHa
per electron) and present results which appear to resolve the
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longstanding controversy. This allows us to have confidence
in the results of future simulations of surfaces.'”

II. BACKGROUND

Jellium consists of electrons moving over a fixed back-
ground of uniform positive charge, so that on average the
system is neutral. A surface is formed by abruptly terminat-
ing the background charge; electrons then spill out slightly,
with the electron density decreasing smoothly to zero. The
surface energy is the energy per unit area required to create a
surface at zero temperature. Surface energy calculations are
usually based on simulations of a slab (with two surfaces),
where the background charge density has the form of a top
hat. In a slab, we can write the energy per electron as

4r
8s1ab=8bu1k+2< S)U, (1)
3s

where o is the surface energy and e, is the energy per
electron in the bulk system. The term in brackets is the in-
plane area per electron: s is the slab width, while r; is the
conventional density parameter. (In the bulk system, each
electron occupies an average volume 47'rr§/ 3; r, will always
be quoted in a.u.) With this definition, the surface energy is
an oscillatory function of the slab width® because of the com-
munication between the two surfaces of the slab; the oscilla-
tions decay as the slab gets wider, and the true surface energy
is lim,_,., o(s). Figure 1 shows the form of o(s) for two
densities, calculated using DFT with the local density ap-
proximation (LDA). The period of the oscillations in o is
half the Fermi wavelength (and therefore proportional to ;).

Correctly extrapolating to the infinite-s limit is one of the
major difficulties facing any method based on a slab calcu-
lation. Another is the extraordinary level of accuracy re-
quired; the surface energy of jellium becomes negative at
high densities,! while at intermediate densities, the kinetic,
electrostatic, and exchange-correlation components of the
surface energy are all individually large but almost cancel
out. For reasonable slab widths at these densities, an error of
0.5 mHa in &, can lead to an error of 150 erg cm™2 in the
calculated surface energy. If we make s larger, the situation
gets worse; if we make it smaller, the oscillations in o be-
come more of a problem. The extreme sensitivity to errors
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FIG. 1. (Color online) The components of the jellium surface
energy for (a) r,=2.07 and (b) r,=3.94, calculated from Eq. (1)
using the LDA. The total surface energy is o, which is the sum of
kinetic (o), electrostatic (o), and exchange-correlation (oxc)
terms. Note the cancellation between different components of the
total energy, especially for r,=2.07.

means that comparing the results of simulations of two en-
tirely different systems—bulk and slab—is dangerous.??!
This applies equally to DFT and QMC calculations; we be-
lieve that it is more severe in the case of QMC and that this
caused the previous QMC calculations to be inaccurate. For
high accuracy, cancellation of errors is vital, and below we
will describe a method which does not rely on bulk calcula-
tions at all.

In DFT, we can exploit the in-plane symmetry of the slab
system to make the calculation effectively one dimensional.
This is not possible in QMC, where every real electron is
represented in the simulation; QMC simulations must there-
fore use a finite simulation cell. We choose the in-plane pro-
file of the cell to be a square of side L. The consequent
in-plane finite-size errors are significant and decay slowly
with L; this is illustrated in Fig. 2, where we again plot the
results of LDA calculations. Unless explicitly stated other-
wise, we work in a.u. throughout. This time, we choose not
to perform the analytical in-plane integration and instead use
a finite cell, as in QMC. In QMC, there are additional
errors,?> comparable in size, possibly due to “squashing” of
the exchange-correlation hole into the finite simulation cell.
The nature of these in-plane finite-size errors was not under-
stood when the previous QMC simulations were performed.
It is not sufficient to work with only a single value of L.

To explain why the comparison of slab and bulk systems
generates more serious errors in QMC than in DFT, we must
look in more detail at the key approximations in the two
methods. At the heart of DFT is the exchange-correlation
energy functional, which is unknown and must be approxi-
mated. The simplest approach is to use the LDA, which one
would naively expect to be adequate for slowly varying elec-
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FIG. 2. (Color online) The total energy per electron &g, calcu-
lated for a finite cell using the LDA with (a) r=2.07 and (b) r
=3.94. N is the number of electrons. For a given density, the ab-
scissa is inversely proportional to the in-plane area of the cell be-
cause s/N =477r3/ 3L2. The horizontal lines are the infinite-L limits.
The slab widths are chosen so that the infinite-cell surface energy
(as calculated in the LDA) matches the infinite-cell, infinite-s limit.
The finite-cell errors are more severe when r,=2.07, which means
that we are forced to use larger cells at this density.

tron densities and inadequate otherwise; however, in many
situations of the latter type, including the jellium surface,
there is a demonstrable cancellation of errors and it continues
to work remarkably well.!”

DMC is a statistical method for projecting out the ground-
state component of a many-particle trial wave function.??
When applied to many-electron systems, the well-known fer-
mion sign problem motivates the use of the fixed-node ap-
proximation. Instead of the true ground state, the method
then projects out the lowest-energy state with the same nodal
surface as the trial wave function. (The nodal surface is the
set of points where the wave function is zero.) The fixed-
node approximation introduces a small error in the total en-
ergy, which we believe is different for bulk and slab simula-
tions; the nodal surface of the trial wave function is closer to
that of the true ground state in the bulk system than it is in
the slab. Although the difference in errors is very small, the
sensitive nature of the problem means that it (along with the
very slow convergence in L) is the major source of inaccu-
racy in previous QMC calculations. We will return to this
point later and justify this assessment with reference to our
results.

The release-node algorithm?* and the use of backflow
correlations?2% can overcome the fixed-node limitation but
at a high computational cost. In order to deal with the slowly
decaying in-plane finite-size errors, we are forced to use very
large simulation cells containing hundreds and sometimes
thousands of electrons; this makes using the release-node
algorithm or backflow correlations impractical.

III. METHOD

Having outlined the many problems associated with cal-
culating the jellium surface energy, in particular, in QMC, we
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now describe our methods for overcoming them. We can
avoid the comparison between slab and bulk systems by cal-
culating &g, for several different slab widths?%?! and fitting
the results to the formula (1). We mitigate the effect of the
oscillations in o by choosing slab widths for which the LDA
surface energy matches the infinite-s limit.

For each density, our method for obtaining the surface
energy is therefore the following:

(1) We perform infinite-cell DFT calculations, using the
LDA and the Perdew-Burke-Ernzerhof generalized gradient
approximation (GGA),?’ for a range of slab widths, as shown
in Fig. 1.

(2) We then choose three special slab widths: consecutive
values of s for which (within the infinite-cell LDA) o(s)
=limys_,., o(s’).

(3) For each slab width, we carry out DFT, QMC, and
RPA simulations over a range of in-plane cell sizes (values of
L) to obtain values of gg,;,. We choose our values of L so that
the energy per electron for the finite cell, as calculated in the
LDA, closely matches the infinite-cell value; this reduces the
in-plane finite-size errors. We could use arbitrary values of L

and apply a standard correction of the form glr(c)

—si,‘lgﬁ(L); using special values gives marginally better con-
vergence.

(4) We plot &, against s/N (which is inversely propor-
tional to the in-plane cell area) for the three slab widths. We
should obtain three straight lines; we can then extrapolate
our results to the infinite-L limit.

(5) We plot the extrapolated values of &g, against 1/s;
according to Eq. (1), this should generate a straight line from
whose gradient we can calculate the surface energy.

We perform variational Monte Carlo (VMC) as well as
DMC simulations; these are less computationally expensive
but less accurate because VMC is not a projector method. We
generate the trial wave functions for the QMC calculations
by combining a Slater determinant of LDA or GGA single-
particle wave functions with a short-ranged Jastrow factor of

0.02 0.04 0.06

s/N

the form described in Ref. 28. The Jastrow factor is sepa-
rately optimized for each system size.

We have calculated the jellium surface energy for a range
of densities from r;=2.07 to r;=3.94. The QMC simulations
were carried out using the CASINO program.?® Coulomb in-
teractions were incorporated by using the quasi-two-
dimensional version of the model periodic Coulomb
interaction,?>3 which is faster than the corresponding Ewald
sum and equally accurate.?

In the previous QMC calculations, the full three-
dimensional Ewald sum was used, so that the system was
effectively not an isolated slab but one slab in an infinitely
repeated periodic array; however, we do not believe that this
had a significant effect on the final results.

IV. RESULTS

Figure 3 shows the raw QMC data. In QMC, convergence
with respect to the in-plane cell size is slow; the DMC results
show the expected negative finite-size error,?? although the
error is positive for VMC. This is because the Jastrow factor
(which plays a significant role in determining electron-
electron correlations in VMC) is better for larger systems.
However, despite the slow convergence of the energy per
electron in both VMC and DMC, we can see that each set of
data lies on a straight line; the intersection of these lines with
the vertical axis gives us the extrapolated value of gg,,. The
largest systems we studied had N~ 1000 (in DMC) and N
~2600 (in VMC).

We use the extrapolated values of g, to generate Fig. 4.
The gradient of this new line is proportional to the surface
energy. RPA and RPA+ results are also shown. RPA+ com-
bines the RPA with a correction to the short-range electron-
electron correlation;'* the correction we use is derived from
the LDA.

Table I, illustrated in Fig. 5, is the central result of this
work. It shows the jellium surface energy, comparing DFT,
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FIG. 4. (Color online) The difference Aggy,, in the energy per
electron in slabs of different widths, for (a) r;=2.07 and (b) r,
=3.94. The QMC results (extrapolated to the infinite-L limit) are
compared with those from the RPA and RPA+.

QMC, and RPA calculations. QMC is based on pseudoran-
dom sampling and therefore generates results which are in-
herently subject to statistical uncertainty. Fortunately, the
size of the statistical error is easy to estimate;?! the error bars
shown in Fig. 3 are derived in this way. By fitting g, to a
linear function of s/N and then fitting the extrapolated (to
infinite cell size or s/N—0) values of &g, to a linear func-
tion of s, we also introduce systematic errors—because these
functions are not truly linear. In Figs. 4 and 5 and in Table I,
the errors shown include both statistical and systematic com-
ponents obtained from a standard regression analysis. The
final errors in the surface energy are dominated by the sys-
tematic contributions.

The DMC results are consistent with those obtained with
the LDA and RPA+. They are not consistent with our GGA,
RPA, or VMC values. Several comparisons of the jellium
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FIG. 5. (Color online) The surface energy of jellium as a func-
tion of density. The points correspond approximately to the electron
densities of a range of metals: r;=2.07 (Al), 2.30 (Zn), 2.66 (Mg),
3.25 (Li), and 3.94 (Na).

surface energy obtained by different methods exist in the
literature;'%!232 the general trend is that

0GGA < OLpA < OmGGa < ORrPA+ < ORPA> (2)

where mGGA stands for meta-GGA. Our DMC results are
broadly consistent with the LDA, mGGA, and RPA +, values
lying closer to RPA+ for high densities and to LDA for low
densities.

Reassuringly, the choice of density functional used to gen-
erate the trial wave functions (LDA or GGA) does not appear
to affect the DMC surface energy. To test the effectiveness of
our method of selecting three slab widths for each density,
we compare the RPA results obtained this way with the cor-
responding “converged” RPA values (including simulations
of wider slabs, which are impractical in QMC), denoted
RPAc. The differences are small; this gives us confidence in
our method.

As an additional test, we perform our own DMC simula-
tions of bulk jellium and calculate the surface energy in the
traditional way—by direct comparison of bulk and slab re-
sults. We use values for the energy per electron which are
converged with respect to L (for the slabs) and to the system
size (for the bulk systems). The results are shown in Table IT;
the surface energy values we obtain for different slab widths
do not agree with each other. The extent to which they dis-

TABLE 1. The jellium surface energy (in erg cm™2). The labels in brackets indicate the approximation
scheme used to generate the orbitals for the QMC trial wave function.

.
(boh) LDA  GGA  VMC (LDA) DMC (LDA) DMC (GGA) RPA+ RPA RPAc
2.07 -608.2 —690.6  —637+50 —563+45 564 =517 -506
2.30 -104.0 -164.1  —131+40 -82+27 -71 =34 -25
2.66 170.6  133.0 20011 179+13 158+26 191 216 225
3.25 221.0 2012 252+ 14 2168 233 248 253
3.94 1684  158.1 188+3 175+8 169+9 173 182 187
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TABLE II. The jellium surface energy (in erg cm™2), comparing direct calculations with our extrapolation
method. The slab widths sy, s,, and sy are density dependent; for each density, they are approximately
uniformly spaced. The spacing is proportional to ry; the ordering is s;<<s, <<s3.

T e
(bohr) (mI—bIa) o(sy) o(sy) o(s3) Extrapolated o
2.07 -6.48+0.14 -536+42 -516+46 -524+56 —-563+45
2.30 -31.39+0.15 -52+31 -50+39 -33+49 —-82+27
2.66 -54.63+0.13 224+15 243+21 25626 179+13
3.25 -71.34+0.07 254+6 267+8 284+11 216+8
3.94 =76.75+0.06 194+5 200+4 208+9 175+8

agree allows us to estimate the difference in size of the fixed-
node error in the energy per electron between bulk and slab
systems; this is of the order of 1 mHa per electron and does
not decrease as s increases (as one would expect for a “sur-
face” effect) but remains approximately constant for the slab
widths studied here. Consequently, the best direct estimates
of the surface energy are obtained from simulations of thin
slabs. For comparison, Fig. 3 shows that the in-plane finite-
size error is typically around 0.3 mHa per electron.

We note that the QMC simulations of jellium spheres car-
ried out by Sottile and Ballone!” did not suffer from large
fixed-node errors; the authors were able to check that the
nodal surface was optimized by using a wave function made
up of a linear combination of Slater determinants.

V. CONCLUSION

We have investigated the problem of calculating surface
energies in QMC. We have shown that great care must be
taken to control the finite-size errors associated with both the

width of the slab and the in-plane size of the cell. Comparing
bulk and slab calculations is to be avoided: the cancellation
of errors that works so well in DFT is less reliable in QMC.
We believe that our method—performing simulations at
three specially selected slab widths and then extrapolating—
gives more reliable results. Our results reconcile the previous
differences between QMC and DFT calculations of the jel-
lium surface energy and provide a template for future work
on real surfaces.
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