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 

Abstract—This letter introduces Free-Space Optical (FSO) 

Communication links in vehicular applications using potential 

guiding structures around a vehicle. An optical wireless 

communication system simulation is described which delivers 

received power, bandwidth, root mean square delay spread 

channel impulse response for purely diffuse and diffuse-specular 

materials with omnidirectional and directed transmitters. In the 

former case, a bandwidth of 225 MHz with a power deviation of 

25% results at the exit. For the latter, a 75GHz bandwidth is 

available at best but with a power deviation of over 99% making 

receiver positioning critical. The impulse response is calculated 

using a Modified Monte Carlo algorithm taking into account up 

to 15 reflections. The effect of the pipe bend angle on the path 

loss is also presented and the simulation is supported with 

experimental work.   

 
Index Terms— Channel modelling, impulse response, 

multipath, optical wireless, intra-vehicle network. 

 

I. INTRODUCTION 

PTICAL wireless communication (OWC) has become 

established using both infrared and visible light [1-7], 

and the utilization of OWC in confined vehicular 

environments was proposed by Green et al. [8]. Both the doors 

and the vehicle frame form potential waveguiding structures 

that are free of sun and ambient light. Concentrating on the 

vehicle frame as a transmission medium, a waveguide in a 

vehicle can be defined by a sequence of pipes with different 

shapes; straight, bent, T- shaped with rectangular and circular 

cross sections. The rest of the paper is organized as follows: 

section 2 describes the environment studied and the channel 

mathematical model. Section 3 presents the simulation results 

with discussion. Section 4 shows the measurement results and 

concluding remarks are in section 5.  

II. SYSTEM MODEL 

The environment comprises as a straight rectangular cross-

section pipe followed by a bend. The boundaries of the 

environment (reflective surfaces) are four walls while there 

are no reflectors in the planes representing the pipe entrance 

and exit. The optical source is an LED which is modelled by a 

position vector PS, a unit-length orientation vector 𝑶̂S, a 
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power Pt, and a radiation intensity pattern E(ϕ,θ), here taken to 

follow Lambert’s cosine law [1]: 

E(θ) = ((𝑛 + 1) 2𝜋⁄ ) Pt cosn(θ)      for θ ϵ [−
π

2
,

π

2
] (1) 

where θ  is the angle between the generated ray and the source 

normal 𝑶̂S, n is the mode number of the radiation lobe 

(Lambertian,, 𝑛 = 1 or directional, 𝑛 > 1). The receiver 

(photodiode and receiving optics) is defined by position vector 

𝐏R, unit-length orientation vector 𝐎̂R, area AR, and field of 

view FOV. The scalar angle FOV is defined for an angle of 

incidence ψ (with respect to the detector normal 𝐎̂R) by: 

𝑃𝑅 =  {
1

𝑑2  𝐸(𝜃). AR cos(ψ)      for  ψ ≤ FOV 

0                                      for  ψ ≤ FOV
 (2) 

where d is the distance between the source and the receiver. 

Reflectors are points within the environment receiving light 

and either absorbing or reflecting it. When a ray hits the 

surface, the intersection point is converted to an emitter and 

generates a new ray with a distribution probability equal to the 

reflection pattern of the surface. Surfaces which are purely 

diffusive follow the Lambert model [9]. 

R(θ0) =  ρ P𝑖  
1

π
cos (θ0)  (3) 

where ρ is the surface reflection coefficient, P𝑖 is the incident 

optical power and θ0 is the observation angle. Specular-

diffusive material obeys the Phong model [7]: 

R(θi, θ0) = ρ P𝑖  
1

π
 {rd cos(θ0) + (1 − rd)cos𝑚(θ0 − θi)}  (4) 

where rd ∈ [0,1] is the percentage of incident signal that is 

reflected diffusely, m represents the directivity of the specular 

component and θi is the angle of incidence. 

A. Channel Impulse Response 

When there is a free unobstructed (Line of Sight or LOS) 

path between transmitter and receiver (which are a distance d 

apart), the signal will reach the receiver at approximately the 

same time [1]. The impulse response is: 

h(0)(t; S; R) ≈  
n+1

2π
 cosn(θ) cos(ψ) AR d2⁄  V(ψ). δ(t − d c⁄ ) (5) 

The function 𝑉(ψ) is the visibility function which indicates 

the existence of an LOS path.  

To find the impulse response resulting from multiple 

reflections, a Modified Monte Carlo ray tracing algorithm is 

applied [10]. This generates random rays from the emitter that 

follow the transmitter radiation pattern and then undergo 

several reflections after every one of which, the ray 

contributes to the total impulse response. The algorithm keeps 
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tracing the ray until it leaves the pipe (either from the entrance 

or from exit) or it undergoes a defined number of reflections.  

When a ray impinges on a surface, the impact point is 

calculated and the LOS path between the intersection point 

and the receiver is studied; if it exists, the contribution to 

impulse response is calculated depending on the surface 

material: 

h(0)(t; Ref; Rec) ≈  𝐸(𝜃). cos(ψ) AR d′2⁄  V(ψ)δ(t − d′ c⁄ ) (6) 

where 𝐸(𝜃) is the surface radiation pattern and d’ is the 

distance between the reflector and the receiver.  A new ray 

will be generated using the Lambert model. The reflected ray 

power is calculated by multiplying the input power by ρ. 

III. SIMULATION RESULTS AND DISCUSSION 

The study concerns rectangular cross section pipes, with a 

range of bend angles from straight to completely right angled 

as illustrated in Fig.1. We have simulated the impulse 

responses of 14 pipe configurations divided into two cases 

given in Table1 by tracking 10
6
 rays from a 1 W source with a 

resolution of 2 ps and at bending angles () of 0˚,10˚,25˚, 40˚, 

55˚, 70˚ and 90˚. For both pipe cases, 𝑶̂S = [0,0,1], 𝐎̂R =
[− sin 𝜃 , 0, cos 𝜃]  and 𝐏R consists of 25 uniformly distributed 

receivers over the pipe exit surface. In Case A the material is 

assumed purely diffusive (𝑛 = 1) whilst in Aluminum pipes 

form Case B with reflectance characteristics obtained from 

[11] and a directional source (𝑛 = 505). 

 
Fig 1 System configurations 

Existing indoor OWC modeling studies have employed up to 

five reflections [6], since these contain most of the power and 

their computation is burdensome. However, the number of 

significant received reflections varies greatly dependent on, 

inter alia, materials and environment dimensions. 

 
TABLE I 

SYSTEM CONFIGURATIONS AND PARAMETERS 

Parameter Case A Case B 

Pipe dimensions (cm) 10 x10 x 110 4 x 4 x 50 

𝜌 0.60 0.88 

𝑟d 1.0 0.3 

𝑚 0 250 

𝐏R (cm) [5,5,0] [2,2,0] 

𝐴R (mm
2
) 1 7 

FOV 70 60 

 

 

As shown in Fig.2 (a), LOS channels are very unlikely in 

Case A except when the pipe is straight. Therefore, 10 

reflections have been taken into account (15 for the right-

angled pipe). The simulation of the 175 channels shows that 

for the channels where LOS exists, the first three reflections 

constitute more than 95% of the total received power on an 

average, while for non-LOS channels they contribute between 

50% and 80% of the final value. 

Fig.2 (b) represents the number of order of reflection 

contribution to the total received power in mixed (specular-

diffusive) material. Here, a LOS path exists in the straight and 

the 10˚ bent pipes and reflections only occur as the bend angle 

increases until a right angle is approached, the effect of 

reflections diminishes since rays are reflected back to the 

transmitter due to the material characteristics meaning that 

receiver senses only the light coming from the first reflection. 

 

 
Fig. 2 Cumulative reflection contributions (a) Case A; (b) Case B 

Fig. 3 illustrates the channel impulse response at two 

different locations in the right-angle pipe exit (corner and the 

center) for Cases A and B. For the former, there is significant 

pulse at whereas for the latter, the pulse is just delayed. 

 
Fig. 3 Impulse response at the exit of the right angle bend pipe: Case A (a) 
corner (b) center; Case B (c) corner (d) center 

Fig.4 (a-c) show the power distribution through the right 

angle bend pipe for Case A. Before the bend, the maximum 

Straight 
60˚ bend 90˚ bend 30˚ bend 
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power is in the center, while directly after the bend it shifts 

towards the inner part of the pipe. This distribution is 

maintained after the bend with a drop in the value of the 

received power since the LOS component has been lost. At the 

pipe exit, the total received power varies between 

approximately 6 nW and 8 nW, a deviation of 25% from the 

peak. Similarly in Case B, shown in Fig. 5 (a-c),, the 

maximum power is in the center before the bend and it moves 

to the center line after the bend. Gradually the maximum 

power shifts towards the inner part of the pipe near the corner 

exit while the opposite corner receives negligible power. The 

deviation from the peak power of 1.8 μW is some 99.8%. 

 
Fig. 4 Power distribution in right angle bend pipe, Case A: (a) before bend; (b) 

after bend; (c) at pipe exit; (d) bandwidth distribution at pipe exit; (e) 𝑫𝐫𝐦𝐬 at 

pipe exit 

The 3dB channel bandwidth is obtained by taking Fourier 

transform of the channel impulse response, then finding the 

frequency where the magnitude decreases by 3dB. Fig. 4(e) 

shows the bandwidth distribution over the pipe exit surface for 

Case A where it can be seen that the bandwidth is almost 

constant over the exit plane with a value equal to 225 MHz. 

This increases to at least 75 GHz for Case B in Fig 5 (d). In 

both cases, the position of maximum bandwidth is influenced 

by the time of travel to various positions across the exit.  

The relatively small dimensions of the pipe make achieving 

high channel bandwidth straightforward, which means that 

this medium can transfer multimedia signals to the other end. 

Root mean square delay spread (𝐷rms) is a useful parameter 

to study Inter Symbol Interference (ISI) caused by multipath 

distortion and is shown in Fig. 4(f) and Fig. 5 (f) across the 

pipe exit for Case A and Case B respectively, where: 

𝐷rms =  [
∫(𝑡 − 𝜇)2ℎ2(𝑡)𝑑𝑡

∫ ℎ2(𝑡)𝑑𝑡
]

1 2⁄

                (8) 

 
Fig. 5 Power distribution in right angle bend pipe, Case B: (a) before bend; (b) 

after bend; (c) at pipe exit; (d) bandwidth distribution at pipe exit; (e) 𝐷rms at 

pipe exit 

where the mean delay spread 𝜇 is given by: 

𝜇 = ∫ 𝑡 ℎ2(𝑡)𝑑𝑡 ∫ ℎ2(𝑡)𝑑𝑡⁄                       (9)  
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The limitation is the power, which drops substantially after the 

bend but it is possible to increase the source power without 

eye and skin safety concerns in the closed pipe environment. 

In Case A, for each bending angle the mean received power 

through the plane is calculated and used to find the path loss. 

While due to high power deviation in Case B, the maximum 

received power through the plane is used to represent the path 

loss. Fig.6 shows the path loss for different bending angles. In 

Case B, bending 40
o
 can result in better performance in terms 

of path loss because part of the light may reach the exit in 

contrast to a slightly or sharply bent pipe. 

 
Fig. 6 Path loss vs bend degree 

IV. MEASUREMENT RESULTS 

Experimental support for the study was provided by power 

measurements of the transmission of light from a VLSY5860 

IrLED (radiant intensity of 11.8 mW cm
-2

) through a straight 

Aluminum rectangular guide (Case B) to a resistor-amplifier 

receiver with an SFH205F photodiode. 

 

 
Fig. 7 Measured relative receiver response 

 

Fig. 7 illustrates the normalized relative response of the 

experimental system in free space and after 0.5m and 1m 

within the pipe. A pre-emphasis response peak near to 2 MHz 

may be seen resulting from bandwidth enhancement circuitry. 

The -3dB bandwidth is almost unchanged by the pipe with 

minor amplitude differences as a result of signal reflections 

within it. Fig. 8 compares the simulated and measured system 

path losses up to 1m with good agreement obtained.   

 
Fig. 8 Path loss and optical received power vs transmitter-receiver distance 

V. CONCLUSIONS 

We have employed ray tracing techniques to simulate the 

transmission of optical wireless signals through a new 

environment that can be implemented in vehicles. This initial 

study has focused on power distribution, bandwidth 

distribution and path loss in bent rectangular cross section 

pipes, and has also delivered channel impulse response and 

Drms for purely diffuse and diffuse-specular materials with 

omnidirectional and directed transmitters. It is shown that the 

pipes are very plausible candidates to convey signals with 

appreciable bandwidth (225 MHz for diffuse material and 75 

GHz for diffuse-specular material). The power deviation 

across the exit is relatively modest (23%) for purely diffusive 

material with a Lambertian source but very larger (99.8%) for 

diffuse-specular material with a directed source, making 

receiver positioning is critical. The simulations utilize 15 

reflections and initial experimental results concur with them. 
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