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Abstract
Vast records of our everyday interests and concerns are being generated by our frequent

interactions with the Internet. Here, we investigate how the searches ofGoogle users vary
across U.S. states with different birth rates and infant mortality rates. We find that users in

states with higher birth rates search for more information about pregnancy, while those in

states with lower birth rates search for more information about cats. Similarly, we find that

users in states with higher infant mortality rates search for more information about credit,

loans and diseases. Our results provide evidence that Internet search data could offer new

insight into the concerns of different demographics.

Introduction
Our everyday interactions with large technological systems are generating records of human
behaviour on a colossal scale [1–9]. Data drawn from mobile phone calls [10], public transport
smart cards [11], financial markets [12–17], usage of Internet services [18–29], and even
immense digitised collections of books [30–33] are being exploited to gather new insights into
human health [34–36], mobility [10, 37], economic decision making [23, 38, 39] and more.

Here, we focus on search queries submitted to the Internet search engine Google. Google
makes aggregated data on what people search for online available via its service Google Trends,
offering unprecedented insight into people’s interests and concerns [4]. A number of studies
have provided evidence that changes in the frequency with which Google users search for given
terms across time not only correlate with changes in certain real world variables, such as unem-
ployment rates, but may offer measurements of this behaviour before official data are released
[40–45]. Further investigations have suggested that data on online information gathering may
even anticipate future values of certain economic and behavioural indicators, such as box office
movie revenue and financial market movements [38, 39, 46].

In this paper, we investigate whether or not we can identify a difference in online searches
between people in different demographics. Instead of using data drawn from Google Trends, we
use a service called Google Correlate [47, 48]. This service allows a user to input either a time
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series or data relating to U.S. states, and returns the search terms for which the number of
searches is most strongly correlated across time or across states.

However, the correlation coefficients which are returned by Google Correlate need to be
treated with care. Firstly, the system reports only the highest correlations out of potentially
hundreds of millions which greatly increases the chances of finding spurious correlations. Sec-
ondly, the search data retrieved from neighbouring states may not be independent and the dis-
tribution of search volume may not be Gaussian, such that the data break the assumption of
traditional correlation coefficient tests [49]. Thirdly, Google Correlate uses a hashing algorithm
to improve the speed of searching millions of time series [48]. However, this applies to time
series analysis only. Furthermore, Google restricts access to their full dataset hindering develop-
ment of specialised statistical tests.

As a case study, we use Google Correlate to investigate how the searches of Google users vary
across U.S. states with different birth rates and infant mortality rates. We seek to determine
which correlations are significant among potentially hundreds of millions of correlations when
the data do not follow traditional assumptions. To investigate the results from the case study,
we develop a bootstrap statistical test.

Many different demographic variables are measured across US states. Further studies could
use the approach we present to extend this investigation to other demographic variables.

Case study
We retrieve the number of births per 1,000 people in each U.S. state in 2012 from the Centers for
Disease Control and Prevention on 27 May 2014 (http://wonder.cdc.gov/natality.html) (Fig 1A).

We retrieved the list of search terms for which search volume was most strongly positively cor-
related with birth rate by state by submitting the birth rate data toGoogle Correlate (http://www.
google.com/trends/correlate) on 27May 2014. On the left hand side of Fig 1B, we list the 31
terms for which search volume exhibits the strongest positive correlation with birth rate for a
state. We retrieve the list of negatively correlated terms by multiplying the birth rate for each state
by −1, before submission toGoogle Correlate. We list the 31 terms for which search volume exhib-
its the strongest negative correlation with birth rate for a state on the right hand side of Fig 1B.

We observe that particular topics emerge within the lists of terms that Google Correlate
returns. For example, search terms for which searches are higher in states with higher birth
rates include “pregnancy workout”, “baby constipation” and “baby announcement”. Search
terms for which searches are higher in states with lower birth rates include “dry cat food”,
“older cats” and “cat not eating”.

To allow us to generalise beyond single keywords and interpret these datasets in an objec-
tive fashion, we conduct an online survey using Amazon Mechanical Turk. Amazon Mechani-
cal Turk is a service which allows users to post tasks that they wish other users to complete,
in exchange for a small fee. For each list of 31 terms, we ask participants, “What is the most
prominent topic in these phrases?” Responses are limited to one word, and each participant
is only allowed to respond once to each question. In total, we analyse 40 responses received
from Amazon Mechanical Turk users, with 23 responses for the positively correlated terms,
and 17 responses for the negatively correlated terms. Details of the survey can be found in the
Supporting Information.

In Fig 1C, we depict all survey responses which account for more than 5% of submitted
responses, along with the percentage and number of respondents who gave each response. We
find that 74% of respondents judge that the search terms for which the number of searches is
higher in states with higher birth rates relate to “pregnancy”. Conversely, we find that 88% of
respondents judge that the search terms for which the number of searches is higher in states
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Fig 1. How doGoogle queries vary with birth rate? (A) The number of births for 1,000 people in each US state. Birth rate is defined as the number of births
for 1,000 people. (B) We useGoogle Correlate to find terms for which the number of searches is higher in U.S. states with higher birth rates. Similarly, we
identify terms for which the number of searches is higher in states with lower birth rates. Here, we list the 31 terms which showed the strongest positive
correlation (left) and negative correlation (right) with state wide birth rate. To determine the significance of these correlations, we generate 1,000 random
samples from a multivariate Gaussian distribution where states which are closer together tend to have a similar value. We submit these samples toGoogle
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with lower birth rates relate to “cats”. We investigate the statistical significance of these correla-
tions in the following section.

We repeat this process using data on the number of infant deaths per 1,000 births for each
state in 2010 downloaded from the Centers for Disease Control and Prevention on 27 May 2014
(http://wonder.cdc.gov/lbd.html) (Fig 2A). An infant is defined as any person one year old or
younger. In Fig 2B, we list the 31 terms for which search volume exhibits the strongest positive
correlation with infant mortality rate for a state (left), and the strongest negative correlation
with infant mortality rate for a state (right).

Again, we note that certain topics are apparent within these lists. For example, search terms
for which searches are higher in states with higher infant mortality rates include “loan for bad
credit” and “people with bad credit”, as well as “abnormal pap smear” and “transmitted dis-
eases”. Search terms for which searches are higher in states with lower birth rates include “red
cabbage salad”, “simple frosting” and “carob chips”.

Once more, we ask Amazon Mechanical Turk users to identify the most prominent topic in
each of these lists of terms. In total, we analyse 46 responses received from Amazon Mechanical
Turk users, with 15 responses for the positively correlated terms, and 31 responses for the nega-
tively correlated terms.

In Fig 2C, we depict all survey responses which account for more than 5% of submitted
responses, along with the percentage and number of respondents who gave each response. We
find that 80% of respondents judge that the search terms for which the number of searches is
higher in states with higher infant mortality rates relate to “credit” or “loans”, and 20% of
respondents judge that these terms relate to “s.t.d” or “diseases”. Conversely, we find that 48%
of respondents judge that the search terms for which the number of searches is higher in states
with lower infant mortality rates relate to “food”, with 10% of users suggesting “frosting”, and
6% suggesting “gluten”.

Methods
We construct a method to test whether the strength of the correlations for the most correlated
search terms for birth rates and infant mortality rates is statistically significant. We note that in
Fig 1A the birth rates are not independently distributed. Visual inspection indicates that states
which are closer together tend to have similar birth rates. The traditional statistical test for
Pearson’s correlation coefficient explicitly requires the observations to be independent [49]. To
overcome this problem, we perform a bootstrapped statistical test of the correlation between
the birth rates and search data. We assume that the birth rates and infant mortality rates are
drawn from a multivariate Gaussian distribution. We generate random samples from this dis-
tribution and submit each one to Google Correlate and build a distribution of the highest corre-
lation coefficients returned by this system.

We set the multivariate Gaussian distribution with a mean of zero and a covariance matrix
K which accounts for potential covariance between US states. Denoting the geographic data as
a vector y, we write our model as:

y � N ð0;KÞ ð1Þ

Correlate and build a distribution of correlation coefficients for each of the 31 top most search terms. We depict the strength of correlation required for the
correlation to be significant at the p < 0.05 and p < 0.01 level, given this null hypothesis distribution. (C) To allow us to generalise beyond individual search
terms, we conduct an online survey asking participants to identify the main topic in each list of 31 terms. Here, we depict all survey responses which account
for more than 5% of submitted responses. Our results suggest that users in states with higher birth rates search for more information about pregnancy, while
those in states with lower birth rates search for more information about cats (“baby car seat”, p = 0.051, all remaining ps <0.05).

doi:10.1371/journal.pone.0149025.g001
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Fig 2. How doGoogle queries vary with infant mortality rate? (A) Infant mortality rates for each state in the US. An infant is defined as any person one
year old or younger. Infant mortality rate is defined as the number of infant deaths per 1,000 births. (B) In a similar fashion to our investigation of birth rates
(Fig 1), we useGoogle Correlate to find terms for which the number of searches is higher in U.S. states with higher infant mortality rates, and with lower infant
mortality rates. We list the 31 terms for which differences in search volume across U.S. states shows the strongest positive correlation (left) and negative
correlation (right) with state wide infant mortality rate. Again, we generate 1,000 random samples from a multivariate Gaussian distribution where states
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In our model, two states are more dependent on each other if they are physically closer
together. We imagine that the states are like vertices in a graph and the edges represent shared
borders. The distance between any two states is the length of the shortest path between them.
For example, California and Nevada have a distance of 1 because they share a border, that is,
they are connected on the network. California and Utah have a distance of 2 because the short-
est path between them is two edges long. Each state’s distance from itself is zero. The distance
between all US states and Alaska and Hawaii is set to1.

We specify a distance matrix, D, where each cell is the squared distance between two states.
We then write the covariance matrix as a Gaussian function ofD:

K ¼ b � e�aD þ cI ð2Þ

We select the parameters a, b and c by maximising the likelihood function of both the birth
rates and infant mortality rates. The log likelihood function of the parameters given Eq (1) is:

log pðyja; b; cÞ ¼ � 1

2
yTK�1y� 1

2
log jKj � n

2
log 2p ð3Þ

and the log likelihood of the parameters given both the birth rates and infant mortality rates is:

log pðybja; b; cÞ þ log pðymja; b; cÞ ð4Þ

where yb represents the birth rates and ym represents the infant mortality rates. We use the
downhill simplex algorithm [50] to maximise Eq (4). We run the algorithm 10 times with the
starting values for a, b, and c drawn from a standard Gaussian distribution and select the result
which maximises the log likelihood. The values we find are a = 0.0816628, b = 0.75687803,
c = 0.44543885.

Previous studies have used other methods of quantifying the relationship between geo-
graphic regions. For example, the spread of epidemics can be modelled with the air traffic con-
necting global regions [51, 52]. Future analysis could investigate whether a different metric of
distance between states would improved the fit of the multivariate Gaussian to the demo-
graphic data.

We generate 1,000 random samples from this multivariate Gaussian distribution and sub-
mit each one to Google Correlate. For each sample, Google Correlate returns a maximum of 100
terms for which search volume is most correlated with the sample and where the Pearson’s cor-
relation coefficient is equal to or above 0.6. The left panel of Figure C in S1 Text depicts the dis-
tribution of Pearson’s correlations for the random samples. We compile the cumulative
distribution function (CDF) of the correlation coefficient for each kth most correlated search
term. These distributions represent the distribution of the correlation coefficient we would
expect under the null hypothesis that the submitted dataset is drawn from a multivariate
Gaussian distribution with mean 0 and covariance K, with no relationship to the kth search
term. The right panel of Figure C in S1 Text shows the CDF of the first (k = 1) search term. We
use these distributions to statistically test the correlation coefficient of the search volume of
each search term with both the birth rate and infant mortality rate data.

which are closer together tend to have a similar value. We submit these samples toGoogle Correlate and build a distribution of correlation coefficients for
each of the 31 top most search terms. We depict the strength of correlation required for the correlation to be significant at the p < 0.05 and p < 0.01 level,
given this null hypothesis distribution. (C) Again, we ask AmazonMechanical Turk users to identify the most prominent topic in each of these lists of terms.
We depict all survey responses which account for more than 5% of submitted responses, along with the percentage and number of respondents who gave
each response. Our results suggest that users in states with higher infant mortality rates search for more information about credit and loans, as well as
sexually transmitted diseases (all search terms p < 0.05).

doi:10.1371/journal.pone.0149025.g002
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Results
We find that all search terms that Google Correlate lists as both positively and negatively corre-
lated with birth rates are statistically significant at the p< 0.05 level. Only the least most posi-
tively correlated term, “baby car seat”, is not significant at the p< 0.05 level. All terms that are
most positively correlated with infant death rates are all significant at the p< 0.05 level. The
most negatively correlated terms with infant death rates are not significantly correlated.

Discussion
In this study, we investigate how searches of Google users vary across U.S. states with different
birth rates, by using the service Google Correlate. We find that as the number of babies born
per 1,000 inhabitants increases, the number of searches for information about pregnancy also
increases, as one might expect. However, as birth rate decreases, our analysis reveals increases
in the number of searches about cats.

In a second analysis, we consider differences in search activity in states with different infant
mortality rates. We find that as the proportion of babies who do not live until the age of one
increases, the number of searches for information about credit, loans and sexually transmitted
diseases also increases.

Previous studies have demonstrated how data on Google usage retrieved from the Google
Trends interface can reveal interesting relationships between online behaviour and various
measures of behaviour in the real world, such as reports of infections of influenza like illnesses
[44, 53], fluctuations in stock markets [38, 39, 54, 55], measures of risk of investment [14, 56]
and unemployment claims [42].

However, search volume data can only be retrieved from Google Trends if the user specifies
the search terms of interest. Researchers interested in the link between Google usage and real
world behaviour may select a set of terms which they believe to be related to the behaviour of
interest, or generate lists of terms which cover a range of different topics [38]. It is not possible
to submit data relating to real world behaviour and automatically retrieve search terms where
search behaviour reflects the submitted real world data.

Comparison of search behaviour across geographic areas is also challenging when using the
Google Trends interface. When data is requested for a specific geographic area, Google Trends
scales the maximum value in the retrieved data to 100. For this reason, data retrieved for multi-
ple geographic areas cannot be directly compared, unless data for two keywords is retrieved
simultaneously and the ratio between these two keywords is calculated [29, 57].

The Google Correlate service offers a solution to both of these problems. Users are able to
input data which varies across time or across US states, and retrieve search terms for which the
frequency of searches is most correlated with the input data. The interface also returns the
strength of correlation for each of these search terms. However, no method has been proposed
to determine whether correlations of the observed strength might be expected simply as a result
of Google Correlate evaluating search volume data for an extremely large number of search
terms.

In this paper, we demonstrate how Google Correlate can be used to identify the search terms
for which search activity is most correlated with the real world data provided—for example,
per state birth rates or infant mortality rates. Crucially, we develop a statistical test to determine
how likely it would be to observe correlations of this strength under a null hypothesis of no
relationship between the search term and the real world data. According to this method, all but
one of the terms for which search volume is most positively and negatively correlated with
birth rates are significantly correlated at the p< 0.05 level. The terms for which search volume
is most positively correlated with infant mortality rates are significant at the 0.05% level.
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However, we find no evidence that the strength of the correlations for the terms most nega-
tively correlated with infant mortality rates is significant.

We highlight that the presence of relationships at the aggregate level does not imply the
presence of similar relationships at the individual level. For example, our finding that Internet
users in states with lower birth rates search for more information about cats does not allow us
to conclude that individuals with lower birth rates search for more information about cats. Fur-
thermore, while our statistical method allows us to demonstrate a significant correlation
between interest in certain search terms and demographics, our analysis does not imply causa-
tion. For example, poor education and low wages might be a factor that causes a decrease in
infant survival rates as well as interest in credit, loans and sexually transmitted diseases.

In this paper, we propose a method to statistically evaluate search behaviour data provided
by Google Correlate. The results of our two case studies suggest that appropriate analyses of
Internet search data could offer new insights into the concerns of different demographics.
Combined with data on real world economic and health variables, search engine data may
allow us to gain a better understanding of the different worlds experienced by different sectors
of society.

Supporting Information
S1 Text. Contains details on the Amazon Mechanical Turk survey and the bootstrapped sta-
tistical test. This document describes a survey conducted on the online Amazon Mechanical
Turk system. It includes the raw responses and the methods we used to clean the data. We also
include in this document figures of the distribution of Pearson’s correlation as returned by
Google Correlate.
(PDF)

S1 Data. The data. Contains all results from Google Correlate used in this study.
(TXT)
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