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ABSTRACT

Aims. An analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised
environment with a magnetic field dip, accounting for the mirror current effect, is developed.
Methods. The model is based upon the interaction of line currents through the Lorentz force. Within this concept the prominence is
treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources.
Results. Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and
height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical
directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between
the photospheric sources.
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1. Introduction

Coronal mass ejections (CMEs) are known to be the most pow-
erful and geoeffective phenomena occurring in the solar atmo-
sphere. An important role in their initiation is assigned to the
evolution of prominences, cold and dense plasma filaments lev-
itating in the magnetised environment of the solar corona. An
important feature of prominences evolution is their oscillations.
Global, collective oscillations of prominences are seen to have
periods ranging from a few tens of minutes to several hours (e.g.
Mashnich & Bashkirtsev 1990; Bashkirtsev & Mashnich 1993;
Oliver & Ballester 2002; Arregui et al. 2012). Both vertically
(e.g. Bocchialini et al. 2011; Kim et al. 2014) and horizontally
polarised (e.g. Kleczek & Kuperus 1969; Molowny-Horas et al.
1997; Tripathi et al. 2009) motions of prominences have been
observed. In some cases the oscillations occur before promi-
nence eruptions (e.g. Isobe & Tripathi 2006), or are excited by
an EUV wave (e.g. Hershaw et al. 2011; Asai et al. 2012; Shen
et al. 2014a,b).

Vertical transverse oscillations of prominences have been
modelled based on natural MHD oscillations of the current–
carrying toroidal magnetic ropes (Cargill et al. 1994; Vršnak
2008). Theoretical aspects of non-radial motions of an erup-
tive filaments also modelled as a toroidal currents are discussed
by Filippov et al. (2001). In addition, comparison of the mod-
elling and observational results showed that the equilibrium state
is most likely supported by the potential magnetic field struc-
tures with a magnetic dip (see, e.g. Filippov 2016, for recent
results). This Kippenhahn–Schlüter type equilibrium of promi-
nences (Kippenhahn & Schlüter 1957) was used in theoretical
models treating the prominence as a plasma slab embedded in a
magnetic dip created by some sources at the surface of the Sun.
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In particular, MHD eigen modes of such a prominence structure,
i.e. the fast and slow magnetoacoustic and Alfvén modes, with
and without accounting for the gravity force, were investigated
in Oliver et al. (1993) and Joarder & Roberts (1993), respec-
tively. Global oscillations of prominences also modelled as a
plasma slab in a magnetic dip with straight magnetic field lines
anchored in vertical rigid boundaries (not connected to the solar
surface) are considered in Anzer (2009). Properties of MHD
oscillations as perturbations of a two-dimensional magne-
tostatic model of a prominence, taking into account the ef-
fects of gravity, were determined numerically in Terradas
et al. (2013). Large-amplitude longitudinal oscillations in
prominences were modelled in terms of a so-called pendu-
lum model by Luna & Karpen (2012); Luna et al. (2016).
That model has been successfully adapted for a dipped mag-
netic field line configuration, and treats the gravity projected
along the magnetic field lines as the restoring force.

Another essentially different approach describing quiescent
prominence oscillations, based on the interaction of line currents
through the electromagnetic Lorentz force, was suggested by
Kuperus & Raadu (1974, the KR model). In this mechanism
the prominence is modelled as a straight current-carrying wire
located at some height above the conductive photosphere. Inter-
action of the prominence current with the conductive surface is
described by the introduction of a virtual “mirror” current (the
“mirror” effect) located below the photosphere, strictly symmet-
ric with respect to the prominence. The KR model allows for the
vertical oscillations of the prominence, and does not describe
horizontally polarised oscillations. Indeed, even a small dis-
placement of the prominence current in the horizontal direction
automatically causes a corresponding identical displacement of
the mirror current, and thus the horizontal restoring force is al-
ways absent from that model. Moreover, the KR model neglects
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the interaction of the prominence with external sources of the
magnetic field. In particular, the prominence may be embedded
in a magnetic dip, e.g. a Kippenhahn–Schlüter type magnetic
configuration. In this case there could be restoring forces respon-
sible for horizontal oscillations. Effects of the delayed response
between the photosphere and the filament were investigated also
within the concept of line current models in van den Oord et al.
(1998). In particular, it was shown that the Kippenhahn–Schlüter
type equilibrium of a prominence can never be stable in the hor-
izontal and vertical directions simultaneously, i.e. the promi-
nence position is always unstable, if the effect of the mirror cur-
rent is neglected in the model.

In this letter we developed an analytical model for oscilla-
tory dynamics of a prominence in a magnetic environment ac-
counting for both the magnetic dip and mirror current effects.
The dip is provided by two photospheric current sources (Fig. 1).
We considered both vertically and horizontally polarised oscil-
lations of the prominence in such a magnetic topology, deriving
analytically equations of motion and determining the oscillation
periods. We also analysed stability of this configuration. In par-
ticular, we showed that in contrast to the results obtained in van
den Oord et al. (1998), the prominence can be stable in both hor-
izontal and vertical directions simultaneously if the effect of the
mirror force is accounted for in the model. Possible seismologi-
cal applications of the developed model are also discussed.

2. Model, forces and equilibrium

The magnetic field topology with a magnetic dip, shown in
Fig. 1, is configured by a two co-aligned spatially separated pho-
tospheric currents (with d being the half-distance between the
currents) of the same magnitude, I. The prominence itself is
modelled as a massive straight wire representing a magnetic rope
with a current i which is located at some height h above the pho-
tosphere. It in turn causes a so-called “mirror” current (see the
KR model) due to conductive properties of the photosphere. By
its definition, the mirror current is oppositely directed with re-
spect to the prominence current i, has the same magnitude, and
is located at the distance 2 h strictly below the prominence cur-
rent (see Fig. 1). In this model the prominence can interact with
the coronal surroundings through the corresponding mutual in-
teraction of the magnetic fields produced by the prominence i
and photospheric I currents.

The equilibrium of a prominence in such a magnetic envi-
ronment is provided by the Lorentz and gravity forces balance:

F1 + F2 + Fm + Fg = 0, (1)

where F1 = F2 = k1/(d2 + h2)1/2 are the Lorentz forces per
unit length acting between the photospheric currents I and the
prominence current i, with k1 = µ0Ii/2π; Fm = k2/2 h is the mir-
ror force between the prominence and the mirror current, with
k2 = µ0i2/2π; and Fg = ρg is the gravity force which is assumed
to be constant in the model, with ρ being a linear mass density
of the prominence (its volume mass density multiplied by the
cross-sectional area), measured in kg m−1. Note, that according
to the definition of the mirror current, the mirror force Fm acting
on the prominence is always directed upwards and strictly along
the vertical axis, and cannot contribute to horizontal dynamics
of the prominence.

In fact, the system is completely defined by the geometrical
parameters h and d, and magnetic constants k1 and k2 (written
in terms of I and i), while the appropriate mass density ρ of the
prominence necessary for its vertical equilibrium, is determined

Fig. 1. Sketch showing a massive prominence with a line current i
located at the height h above the photosphere, in the magnetic dip con-
figured by two photospheric currents I, with d being the half-distance
between the currents. The mirror current i generated due to conductive
properties of the photosphere is located strictly below the prominence.
The field lines of the total magnetic field produced by the photospheric,
mirror, and prominence sources are shown for h = 0.5 d and i = 0.5 I.

by the following condition (2). However, on seismological pur-
poses it is also useful to re-write this condition through the pa-
rameters h and ρ, assuming them to be available a priori from
observations:

FL ≡
2k1h

d2 + h2 +
k2

2h
= ρg, and d2 =

4k1h2

2ρgh − k2
− h2. (2)

The horizontal equilibrium of the prominence in turn is not af-
fected by the essentially vertical forces Fm and Fg, and is pro-
vided automatically by the balance between horizontal compo-
nents of F1 and F2 due to horizontal symmetry of the model.
Eqs. (2) put the first constrain on the parameters of the model.
Indeed, for a given distance d to have a real value in the equilib-
rium condition, the parameters need to be related as:

k2 < 2ρgh < 4k1 + k2. (3)

Inequality (3) describes a condition necessary for the equilib-
rium of the prominence to exist, between its gravitational energy
and the total magnetic energy (written in terms of k1 and k2),
generated by the prominence and photospheric currents, i and I,
respectively. Thus, when 2ρgh > 4k1 + k2, the magnetic back-
ground cannot sustain the prominence, and it falls to the surface.
In the other case, when 2ρgh < k2, the prominence’s magnetic
energy exceeds the gravitational energy, and the prominence lifts
off.

According to Eq. (2), the vertical component of the total
Lorentz force acting on an unperturbed prominence, FL grad-
ually decreases with height for all values of the photospheric
currents I being less or equal to the prominence current i, and
may have both negative and positive gradients for I > i. Con-
sequently, for I < i the system is able to have only a single
equilibrium determined by the FL = ρg balance, while for I > i
there are at most three possibilities to satisfy the force balance
condition, and hence, up to three equilibria of the system at dif-
ferent heights may exist. Corresponding examples are shown in
Fig. 2 for different values of the I/i ratio.

For the case when the prominence is obliquely perturbed by
a small displacement with corresponding x and z components,
the equation of motion of the prominence can be written in a
vector form as

ρ
[
ẍ ex + z̈ ez

]
= Fx ex + Fz ez, (4)
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Fig. 2. The magnetic force FL (2) acting upwards on the unperturbed
prominence for different values of the prominence i and photospheric I
currents. The horizontal dotted line shows an example of the constant
gravity force ρg needed to satisfy equilibrium condition (2). This ex-
ample shows that the system may have up to three different equilibria
(blue asterisks) depending upon values of the parameters of the model.

where ex and ez are unit vectors in the positive x- and z-
directions, and

Fx =
2k1x[(h + z)2 + x2 − d2]

(d2 − x2)2 + 2(d2 + x2)(h + z)2 + (h + z)4 ≈

≈
2k1(h2 − d2)
(d2 + h2)2 x, (5)

Fz =
2k1(h + z)[d2 + x2 + (h + z)2]

(d2 − x2)2 + 2(d2 + x2)(h + z)2 + (h + z)4 +
k2

2h + z
− ρg ≈

≈
2k1(d2 − h2)
(d2 + h2)2 z −

k2

4h2 z (6)

are the projections of the total force given in Eq. (1) on the x-
(horizontal) and z- (vertical) axes, expanded up to the first or-
der of the small perturbations, x and z. As in this study we re-
strict our attention to linear perturbations only, both forces
Fx (5) and Fz (6) lose their dependence on z and x, respec-
tively, and horizontally and vertically polarised oscillations
are independent of each other and hence can be considered
separately.

3. Vertically polarised oscillations

Consider the case when the initial displacement of the promi-
nence is directed strictly along the vertical z-axis, i.e. we assume
x = 0 and z , 0 in Eq. (4). In this case the vertical component
(6) of the total force acting on the prominence has the form

Fz =
2k1(h + z)

d2 + (h + z)2 +
k2

2h + z
− ρg, (7)

where the first term on the right-hand side corresponds to the
Lorentz force acting on the perturbed prominence from two pho-
tospheric currents, the second term is the corresponding mirror
force, and the last term is the constant gravity force.

Fig. 3. Left: Period Pz (9) of vertical oscillations of a prominence vs.
the currents ratio I/i for different values of the dimensionless parameter
a = 2ρgh/k2. Note, the case a = 1 corresponds to the KR limit (Kuperus
& Raadu 1974) when the effect of the photospheric currents is negligi-
bly small. Right: Period Px (13) of horizontal oscillations depending
upon the same parameters I/i and a as shown in the left panel. Dashed
lines in both panels show a threshold values of I/i where periods (9)
and (13) become imaginary, and corresponding instabilities develop.

With the use of the first order Taylor expansion of the
perturbed vertical force Fz written in (6), the equation of mo-
tion of the prominence along the vertical axis is

z̈ + (2π/Pz)2 z = 0. (8)

Eq. (8) is a harmonic oscillator equation and describes small-
amplitude vertically polarised oscillations of the prominence
with the period (expressed either in terms of h and d, or via ρ
and h):

Pz = PKR

[
1 + 8

k1

k2

h2(h2 − d2)
(d2 + h2)2

]−1/2

=

=
PKR

√
k1k2[

(2ρgh − k2)2 − 2k2(2ρgh − k2) + k1k2
]1/2 , (9)

where d2 in form (2) has been substituted, and PKR =

2π
√

4ρh2/k2 is the period of prominence oscillations in the ab-
sence of the photospheric currents effect (i.e. the limiting case
corresponding to the KR model). In fact, neither k1 nor k2 (i.e.
the currents I and i) can have zero values in our model. How-
ever, the period (9) can be reduced to the KR limit when the half-
distance d between the external currents tends to infinity. This
limiting case can be achieved when 2ρgh = k2 (see Eq. (2)). In
other cases, period (9) has a non-trivial dependence upon the cur-
rents I and i, height h, and mass density ρ. Its dependence upon
the currents ratio I/i (i.e. k1/k2) for different values of 2ρgh/k2
(also including the KR limit 2ρgh = k2) is shown in Fig. 3.

General dependence of the vertical dynamics of the promi-
nence described by Eq. (8) upon the parameters of the model,
can be also derived analytically. More specifically, when the
prominence current dominates in the system, i.e. 0 < k1/k2 < 1,
Eq. (8) shows always stable solutions for the vertical displace-
ment. The particular case when the prominence i and photo-
spheric I currents are of the same magnitude, i.e. k1 = k2 ≡ k,
also corresponds to the always stable state of the prominence
oscillating harmonically around the equilibrium position with a
period P = PKR|(d2 + h2)/(3h2 − d2)|. In both these cases, only
conditions (2) and (3) providing existence of an initial equilib-
rium of the system should be satisfied for h and d. In contrast,
for the photospheric currents domination (k1/k2 > 1) there is a
parametric region of a vertical instability (see Fig. 4) determined
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Fig. 4. Parametric regions of the prominence instability, determined
by equilibrium condition (3), (10) (vertical instability), (14) (horizon-
tal instability). Left and right panels show the corresponding regions
determined via ρ and h, and h and d, respectively.

by condition (3) and the following relations (written either in
terms of h and d or via ρ and h):

d
√

k2[
4k1 − k2 + 4

√
k2

1 − k1k2

]1/2 < h <
d
√

k2[
4k1 − k2 − 4

√
k2

1 − k1k2

]1/2 ,

or k1 + k2 −

√
k2

1 − k1k2 < 2ρgh < k1 + k2 +

√
k2

1 − k1k2. (10)

4. Horizontally polarised oscillations

We now consider the case when z = 0, i.e. the initial displace-
ment of the prominence is directed strictly along the horizontal
x-axis. In this case the force Fx (5) acting on the prominence
along the horizontal axis reduces to

Fx =
2k1x[h2 − d2 + x2]

(d2 − x2)2 + 2(d2 + x2)h2 + h4 . (11)

Thus, using the Taylor expansion of the force Fx up to the
first order of the small perturbations, x and z, given in (5),
the equation of motion describing small-amplitude dynamics of
the prominence along the horizontal axis is

ẍ + (2π/Px)2 x = 0. (12)

Similar to the vertically polarised oscillatory modes described in
the previous section, Eq. (12) shows harmonic oscillations of the
prominence around the equilibrium position (x = 0 and z = 0),
with the period Px,

Px = PKR

√
k2

8k1

(d2 + h2)2

h2(d2 − h2)
=

PKR
√

k1k2[
2k1(2ρgh − k2) − (2ρgh − k2)2]1/2 .

(13)

Note, that in the KR limit that can be achieved when 2ρgh = k2
(see Eq. (2)), the value of Px tends to infinity. Behaviour of the
period (13) for various other values of ratios 2ρgh/k2 and I/i is
shown in Fig. 3.

The regions on the parametric plane where the period Px has
imaginary values (i.e. the condition of the horizontal instability
of the prominence) with accounting for conditions (2) and (3),
are shown in Fig. 4, and are expressed as

h > d, or 2k1 + k2 < 2ρgh < 4k1 + k2. (14)

5. Discussion and conclusions

The developed model provides a simple, analytical treatment of
global transverse oscillations and mechanical stability of quies-
cent prominences. In this paper, the term “global” denotes
the collective nature of the considered oscillation, when the
prominence oscillates as a whole, in contrast to the oscil-
lations of individual threads. The term is connected with
the observational manifestation of the considered oscillation,
rather than a specific interpretation, e.g. a fundamental lon-
gitudinal harmonic of a kink or sausage oscillation. Proper-
ties of the oscillations are determined by the value of the elec-
tric current in the prominence, its density and height above the
photosphere, and the parameters of the magnetic dip caused by
external magnetic sources. As mentioned above, in the linear
regime considered in this study, the vertically and horizon-
tally polarised oscillations are essentially decoupled, and the
obliquely or elliptically polarised oscillations can be repre-
sented as a linear superposition of separate vertical and hor-
izontal modes. Furthermore, the stability conditions in both
z- and x-directions, given in Eqs. (10) and (14), do not in-
terfere with each other, and the oscillation periods given by
expressions (9) and (13) in both directions are independent.

For the prominence current domination in the considered
magnetic system (I/i < 1), the prominence displacements in
both vertical and horizontal directions are found to be stable (cf.
van den Oord et al. 1998) when the prominence’s height h above
the photosphere is less than the half-distance d between the pho-
tospheric current sources configuring the dip (see Fig. 4). In the
case when the external currents dominate (I/i > 1), the promi-
nence is stable only in the narrow regions of parameters, deter-
mined by conditions (10) and (14). These analytical findings
are in accord with numerous observational results describing the
prominence instability occurring when its height h reaches some
critical value (see, e.g. Vršnak 2008).

Exact analytical dependences of the periods of the promi-
nence oscillations upon the parameters of the system, derived in
Eqs. (9) and (13), allow for seismological diagnostics of the cur-
rent in the prominence. For example, taking a typical value of
PKR ≈ 20 min (Kuperus & Raadu 1974) and fixing h = 0.6 d,
for the observed periods of the vertical transverse oscillations,
Pz ≈ 80 min (Bocchialini et al. 2011), the prominence current i
with respect to the photospheric current I, according to Eq. (9),
can be estimated as I ≈ 0.94 i. With the use of the ratio I/i
and the geometrical parameters of the model, h and d, one
can estimate the coronal magnetic field at the prominence’s
equilibrium position, caused by the external photospheric
sources, I as B/B0 = (I/i) 2h/

√
d2 + h2, where B0 is the mag-

netic field caused by the interaction of the prominence cur-
rent i with the conductive photosphere, used in the KR model
in the absence of external magnetic sources. In addition, the
developed model can also be used for numerical modelling of
the excitation of prominence oscillations (e.g. Takahashi et al.
2015).

The proposed model developed within the line currents con-
cept, has also a number of shortcomings. In fact, we neglect
effects of the magnetic field curvature and the finite wave num-
ber of the perturbations in the direction along the current, that
are important for, e.g. kink oscillations of coronal loops and
prominence threads (e.g. Edwin & Roberts 1983; Joarder et al.
1997). They add the additional restoring force that may decrease
the oscillation period. We also do not consider thermodynamical
effects affecting the prominence development itself (e.g. Kuin &
Martens 1982). In addition, in our model the electric cur-
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rents are considered to be linear, i.e. a wire-like. However
there may be important effects connected with the spatial
distribution of the current in the plane of the oscillation. For
example, in a more general model, a prominence could pos-
sibly be considered as a vertical current sheet. In that case
parameters of the modes of oscillations may get some depen-
dence on height, which may be relevant to the interpretation
of the some observational finding (e.g., Hershaw et al. 2011).
However, a further discussion of this issue would be out of
scopes of this paper. Another important limitation of this study
is that we consider only small-amplitude oscillations and do not
account for the effects of large amplitudes that are observed (see,
e.g. Tripathi et al. 2009). Accounting for these effects will be the
aim of a further consideration.
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