

warwick.ac.uk/lib-publications

Original citation:
Auli-Llinas, Francesc, Enfedaque, Pablo, Moure, Juan C. and Sanchez Silva, Victor. (2016)
Bitplane image coding with parallel coefficient processing. IEEE Transactions on Image
Processing, 25 (1). pp. 209-219.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78489

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/78489
mailto:wrap@warwick.ac.uk

1

Bitplane Image Coding with

Parallel Coefficient Processing
Francesc Aulı́-Llinàs, Senior Member, IEEE, Pablo Enfedaque,

Juan C. Moure, and Victor Sanchez, Member, IEEE

Abstract—Image coding systems have been traditionally tai-
lored for Multiple Instruction, Multiple Data (MIMD) computing.
In general, they partition the (transformed) image in codeblocks
that can be coded in the cores of MIMD-based processors. Each
core executes a sequential flow of instructions to process the
coefficients in the codeblock, independently and asynchronously
from the others cores. Bitplane coding is a common strategy
to code such data. Most of its mechanisms require sequential
processing of the coefficients. The last years have seen the up-
raising of processing accelerators with enhanced computational
performance and power efficiency whose architecture is mainly
based on the Single Instruction, Multiple Data (SIMD) principle.
SIMD computing refers to the execution of the same instruction
to multiple data in a lockstep synchronous way. Unfortunately,
current bitplane coding strategies can not fully profit from
such processors due to inherently sequential coding task. This
paper presents bitplane image coding with parallel coefficient
processing (BPC-PaCo), a coding method that can process many
coefficients within a codeblock in parallel and synchronously.
To this end, the scanning order, the context formation, the
probability model, and the arithmetic coder of the coding engine
have been re-formulated. Experimental results suggest that the
penalization in coding performance of BPC-PaCo with respect
to traditional strategies is almost negligible.

Index Terms—Bitplane image coding, Single Instruction Mul-
tiple Data (SIMD), JPEG2000.

I. INTRODUCTION

O
VER the past 20 years, the computational complexity

of image coding systems has been increased notably.

Codecs of the early nineties were based on computationally

simple techniques like the discrete cosine transform (DCT)

and Huffman coding [1]. Since then, techniques have been

sophisticated to provide higher compression efficiency and

enhanced features. Currently, image compression standards

such as JPEG2000 [2] or HEVC intra-coding [3] employ

complex algorithms that transform and scan the image multiple

times. This escalation in computational complexity continues

in each new generation of coding systems.

In general, modern coding schemes tackle the computational

complexity by means of fragmenting the image in sets of

Francesc Aulı́-Llinàs and Pablo Enfedaque are with the Department of
Information and Communications Engineering, Universitat Autònoma de
Barcelona, Spain (phone: +34 935811861; fax: +34 935813443; e-mail:
{fauli | pablo}@deic.uab.cat). Juan C. Moure is with the Department of
Computer Architecture and Operating Systems, Universitat Autònoma de
Barcelona, Spain (e-mail: juancarlos.moure@uab.cat). Victor Sanchez is with
the Department of Computer Science, The University of Warwick, United
Kingdom (e-mail: vsanchez@dcs.warwick.ac.uk). This work has been par-
tially supported by the Spanish Government (MINECO), by FEDER, and
by the Catalan Government, under Grants RYC-2010-05671, UAB-472-02-
2/2012, TIN2012-38102-C03-03, TIN2011-28689-C02-1, and 2014SGR-691.

(transformed) samples, called codeblocks, that do not hold (or

hold in a well-orderly way) dependencies among them. Each

codeblock [4], or group of codeblocks [5], can be coded inde-

pendently from the others employing the innermost algorithms

of the codec. These algorithms scan the samples repetitively,

producing symbols that are fed to an entropy coder. Key in

such a system is the context formation and the probability

model, which determine probability estimates employed by

the entropy coder. Commonly, the samples are visited in a

sequential order so that the probability model can adaptively

adjust the estimates as more data are coded. In many image

coding systems [6]–[10], these algorithms employ bitplane

coding strategies and context-adaptive arithmetic coders.

Modern Central Processing Units (CPUs) are mainly based

on the Multiple Instruction, Multiple Data (MIMD) principle.

They have multiple cores, each able to execute a flow of

instructions independently and asynchronously from the oth-

ers. CPUs handle well the computational complexity of image

coding systems. The tasks of the image codec are straight-

forwardly mapped to the CPU: each codeblock is assigned

to a core that runs a bitplane coding engine. This parallel

processing of codeblocks is called macroscopic parallelism [4].

Microscopic parallelism refers to parallel strategies of data

coding within a codeblock. There are few such strategies due

to the difficulty to unlock the data dependencies that arise

when the coefficients are processed in a sequential fashion.

Also, because most codecs are tailored for their execution in

CPUs, so parallelization in the bitplane coding stage is not

appealing. It has not been until recent years that microscopic

parallelism has become attractive due to the upraising of

accelerators, which are processors mainly based on the Single

Instruction, Multiple Data (SIMD) principle. The main idea

behind SIMD computing is to execute a flow of instructions to

multiple data in parallel and synchronously. This architectural

principle permits to increase the number of instructions simul-

taneously executed by an order of magnitude while lowering

the power consumption. Nowadays, the Graphics Processing

Units (GPUs) are the main representatives of such processors.

The fine level of parallelism required for SIMD computing

can only be achieved in image coding systems via microscopic

parallel strategies. Even so, the current trend is to implement

already developed coding schemes for their execution in

GPUs. Without aiming to be exhaustive, GPU implementa-

tions of JPEG2000 are found in [11]–[14] and there exist

commercial products like [15] as well. The JPEG XR standard

is implemented in [16], and video coding standards are studied

in [17], [18]. Other coding schemes such as EBCOT and

2

wavelet lower trees are also implemented in GPUs in [19]

and [20], respectively. Such implementations reduce the exe-

cution time of CPU-based implementations. Nonetheless, none

of them can fully exploit the resources of the GPU due to the

aforementioned sequential coefficient processing.

This paper introduces bitplane image coding with parallel

coefficient processing (BPC-PaCo), a wavelet-based coding

strategy tailored for SIMD computing. To this end, a new

scanning order, context formation, probability model, and

arithmetic coder are devised. All the proposed mechanisms

permit the processing of the samples in parallel or sequentially,

allowing efficient implementations for both SIMD and MIMD

computing. The coding performance achieved by the proposed

method is similar to that of JPEG2000. This paper describes

the employed techniques and assesses their performance from

an image coding perspective. Future work will describe its im-

plementation in a GPU appraising the computational through-

put. This paper extends our preliminary work [21] with a

sequential version of the algorithm, more experimental data,

and a revised and more descriptive text.

The remainder of the paper is structured as follows. Sec-

tion II provides preliminary concepts. Section III describes

the proposed bitplane coding strategy. Section IV assesses its

coding performance through experimental results carried out

for four different corpora of images. The last section concludes

with a brief summary.

II. PRELIMINARIES

The proposed bitplane coding strategy can be employed in

any wavelet-based compression scheme. We adopt the frame-

work of JPEG2000 due to its excellent coding performance

and advanced features. A conventional JPEG2000 implemen-

tation is structured in three main coding stages [4]: data

transformation, data coding, and codestream re-organization.

The first stage applies the wavelet transform and quantizes

wavelet coefficients. This represents approximately 15∼20%

of the overall coding task and does not pose a challenge

for its implementation in SIMD architectures [22]–[28]. After

data transformation, the image is partitioned in small sets of

wavelet coefficients, the so-called codeblocks. Data coding

is carried out in each codeblock independently. It represents

approximately 70∼75% of the coding task. The routines

employed in this stage are based on bitplane coding and

context-adaptive arithmetic coding. The last stage re-organizes

the final codestream in quality layers that include segments of

the bitstreams produced for each codeblock in the previous

stage. Commonly, the codestream re-organization is carried

out employing rate-distortion optimization techniques [29]–

[31], representing less than 10% of the coding task.

Bitplane coding strategies work as follows. Let

[bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1} be the binary

representation of an integer υ which represents the magnitude

of the index obtained by quantizing wavelet coefficient ω,

with M being a sufficient number of bits to represent all

coefficients. The collection of bits bj from all coefficients is

called a bitplane. Bits are coded from the most significant

bitplane M−1 to the least significant bitplane 0. The first non-

zero bit of the binary representation of υ is denoted by bs and

is referred to as the significant bit. The sign of the coefficient

is denoted by d ∈ {+,−} and is coded immediately after bs,

so that the decoder can begin approximating ω as soon as

possible. The bits br, r < s are referred to as refinement bits.

JPEG2000 codes each bitplane employing three coding

passes [4] called significance propagation pass (SPP), mag-

nitude refinement pass (MRP), and cleanup pass (CP). The

SPP and CP perform significance coding. They visit those

coefficients that did not become significant in previous bit-

planes, coding whether they become significant in the current

bitplane or not. The difference between them is that the SPP

visits coefficients that are more likely to become significant.

The MRP refines the magnitude of coefficients that became

significant in previous bitplanes. The order of the coding

passes in each bitplane is SPP, MRP, and CP except for the

most significant bitplane, in which only the CP is applied.

This three coding pass scheme is convenient for rate-distortion

optimization purposes [10].

With regard to SIMD architectures, it is worth knowing

that they execute vector instructions. The vector unit (i.e., the

hardware component that executes the vector instructions) is

composed of T replicated lanes, each producing a different

data output element. A vector instruction is processed by

simultaneously executing the same operation in all the lanes

of the unit. GPUs adopt a convenient programming model that

simplifies the details of SIMD computing. In GPUs, the lanes

of a vector unit are abstracted as individual threads that execute

a flow of instructions in a lockstep synchronous way. If the

execution flow diverges (due to conditionals), the divergent

paths are executed sequentially one after another. In general,

divergent paths are to be minimized.

III. PROPOSED BITPLANE CODING STRATEGY

A parallel bitplane coding strategy must be deterministic,

i.e., the parallel execution must unambiguously correspond to

an equivalent sequential execution. The codestream generated

or processed by both the parallel and sequential versions of the

algorithm must be the same. Three mechanisms of the bitplane

coder have been re-formulated keeping in mind this purpose:

the scanning order, the context formation and its probability

model, and the arithmetic coder.

A. Scanning order

Scanning orders visit coefficients employing a pre-defined

sequence. Typical sequences are row by row or column by

column [5], in zig zag [32], using stripes of 4 rows that

are scanned from left to right [2], or via quadtree strate-

gies [8]. Regardless of the scanning sequence, all methods

visit coefficients in a consecutive fashion, which prevents

parallelism while executing a coding pass. The only way to

achieve microscopic parallelism in current bitplane coding

engines is to execute coding passes in parallel. JPEG2000,

for instance, provides the RESET, RESTART, and CAUSAL

coding variations to achieve it. The main problem of coding

pass parallelism is that in order to code a coefficient in

the current pass, some information of its neighbors coded

in previous passes may be needed. This is addressed by

3

delaying the beginning of the execution of each coding pass

some coefficients with respect to its immediately previous

pass [4], [33]. Such an elaborate strategy is not suitable for

SIMD computing since each coding pass carries out different

operations, which generates divergence among threads.

The proposed method achieves microscopic parallelism by

means of coding T coefficients in parallel during the execution

of a coding pass. Sets of T threads perform the same operation

to different coefficients, so vector instructions can be naturally

mapped to process each codeblock. Fig. 1(a) depicts the

scanning order employed. The light- and dark-blue dots in

the figure represent the coefficients within a codeblock. The

coefficients are organized in vertical stripes that contain two

columns. Each stripe is processed by a thread. Coefficients are

scanned from the top to the bottom row, and from the left to

the right coefficient. All coefficients in the same position of

the stripes are processed at the same time.

The scanning order of Fig. 1(a) is highly efficient for context

formation purposes. Let us explain further. As seen in the

following section, the context of a coefficient is determined

via its eight adjacent neighbors. All information coded in

previous passes is available when forming the context since

such information has been already transmitted to the decoder.

Also, information coded in the current coding pass that be-

longs to those neighbors visited before the current coefficient

can also be employed. This information is valuable since it

helps to predict with higher precision the symbols coded.

The higher the Average number of already Visited Neighbors

in the current coding Pass (AVNP), the better the coding

performance. The AVNP is computed without considering

those coefficients in the border of the codeblock. Fig. 1(a)

depicts in gray the eight adjacent neighbors of two coefficients,

one in the left and the other in the right column of a stripe.

The coefficient for which the context is formed is depicted

with a red circle. The neighbors that were already visited in

the current coding pass are depicted with a white cross. The

coefficients in the left column (depicted in light blue) have

3 already visited neighbors, whereas the coefficients in the

right column have 5. So the AVNP achieved by the proposed

scanning order is 4. JPEG2000 and other coding systems

employing sequential scanning orders also achieve an AVNP

of 4.

The sequential version of the proposed scanning order is

depicted in Fig. 1(b). As seen in the figure, all light-blue

coefficients of a row are visited first from left to right, followed

by the dark-blue coefficients. The same routine is carried out

in each row, from the top to the bottom of the codeblock.

Since the parallel operation is synchronous and deterministic,

the context formation resulting from the parallel and sequential

version of this scanning order is identical. This scanning order

does not use fast-coding primitives such as the run mode of

JPEG2000 since they do not provide significant coding gains

when employed with the proposed probability model [10].

The scanning order of BPC-PaCo is employed with the

same coding passes as those defined in JPEG2000. Though

other schemes may be utilized, the three-coding pass strat-

egy of JPEG2000 is adopted herein due to its high coding

efficiency [10]. The number of significant bitplanes coded for

(a)

(b)

Fig. 1: Illustration of the proposed scanning order for (a)

parallel and (b) sequential processing.

each codeblock are signaled in the headers of the codestream.

B. Context formation and probability model

The contexts employed for significance coding use the

significance state of the eight adjacent neighbors of coefficient

ω. The neighbors of ω are denoted by ωk, with k ∈ {↑
,ր,→,ց, ↓,ւ,←,տ} referring to the neighbor in the top,

top-right, right,. . . position, respectively. The magnitude of the

quantization index of these neighbors is denoted by υk. The

4

significance state of υk in bitplane j is denoted by Φ(υk, j).
It is 1 when its significance bit (i.e., bs) has already been

coded. Clearly, this definition includes all neighbors that

became significant in bitplanes higher than the current, i.e.,

Φ(υk, j) = 1 if s > j. It also includes the neighbors that

become significant in the current bitplane –and that are already

visited in the current coding pass–, i.e., Φ(υk, j) = 1 if s =
j and υk is already visited. Otherwise, Φ(υk, j) = 0.

The contexts employed for significance coding are denoted

by φsig(·). They are computed as the sum of the significance

state of the eight adjacent neighbors of ω, more precisely, the

context of υ at bitplane j is computed as

φsig(υ, j) =
∑

k

Φ(υk, j) . (1)

Therefore, φsig(·) ∈ {0, ..., 8}. Although other works in the

literature [7], [9], [34] determine the context depending on

the position of the significance neighbors, the analysis in [35]

shows that simple context formation approaches like (1) also

achieve competitive coding performance. This approach is

employed herein due to its computational simplicity.

The contexts employed for sign coding are similar to

those of JPEG2000 since they obtain high efficiency. Sign

contexts employ the sign of the neighbors in the vertical and

horizontal positions. Let χ(ωk, j) represent the sign of ωk

when coding bitplane j. χ(ωk, j) is 0 if the coefficient is not

significant, otherwise is 1 and −1 for positive and negative

coefficients, respectively. Then, χV = χ(ω↑, j)+χ(ω↓, j) and

χH = χ(ω←, j)+χ(ω→, j). Context φsign(ω, j) is computed

according to

φsign(ω, j) =





0 if (χV > 0 and χH > 0) or

(χV < 0 and χH < 0)

1 if χV = 0 and χH 6= 0

2 if χV 6= 0 and χH = 0

3 otherwise

. (2)

Contexts for refinement coding should be based on com-

putationally intensive techniques such as the local average,

or otherwise use only one context for all refinement bits,

as suggested in [35]. Herein, the latter approach is used for

computational simplicity, so φref (υ, j) = 0.

The contexts are employed together with the probability

model to determine the probability estimate that is fed to the

arithmetic coder. Conventional probability models adaptively

adjust the probability estimates of the symbols as more data

are coded. Such models are convenient since they are com-

putationally simple, achieve high compression efficiency, and

avoid a pre-processing step to collect statistics of the data.

Compression standards such as JBIG [36], JPEG2000 [2],

and HEVC [3] employ them. Unfortunately, context-adaptive

models cannot be employed herein. To do so, the probability

adaptation should be carried out for all data of the codeblock,

which is not possible due to the parallel processing of coef-

ficients. Such models achieve poor performance when coding

short sequences [33], so to use them independently for each

stripe is not effective.

The proposed bitplane coder employs a stationary proba-

bility model that uses a fixed probability for each context

and bitplane. As shown in [33], this model is based on the

empirical evidence that the probabilities employed to code all

symbols with a context are mostly regular in the same bitplane.

The probability estimates are precomputed off-line and stored

in a lookup table (LUT) that is known by the encoder and the

decoder, so there is no need to transmit it. The LUT contains

one probability estimate per context and bitplane for each

wavelet subband. It is accessed as Pu[j][φ{sig|sign|ref}(·)],
providing the probability of the symbol coded. u denotes the

wavelet subband. Note that such a probability model does

not need the adaptive probability tables employed in context-

adaptive arithmetic coders such as the MQ.

The probability estimates needed to populate the LUTs

are determined as follows. Let Fu(v | φsig(υ, j)) denote the

probability mass function (pmf) of the quantization indices

at bitplane j given their significance context. This pmf is

computed for each wavelet subband using the data from all

images in a training set. Its support is [0, ..., 2j+1 − 1] since

it contains quantization indices that were not significant in

bitplanes greater than j. The probability estimates used to

populate the LUTs are generated by integrating the pmfs to

obtain the probabilities of emitting 0 or 1 in the corresponding

contexts. Let us denote the probability that bj is 0 during sig-

nificance coding by Psig(bj = 0 | φsig(υ, j)). This probability

is determined from the corresponding pmf according to

Psig(bj = 0 | φsig(υ, j)) =

2
j−1∑

υ=0

Fu(υ | φsig(υ, j))

2
j+1−1∑

υ=0

Fu(υ | φsig(υ, j))

=

2
j−1∑

υ=0

Fu(υ | φsig(υ, j))

1
=

2
j−1∑

υ=0

Fu(υ | φsig(υ, j)) .

(3)

The probability estimates for refinement and sign coding

are derived similarly. The LUT is different for each image

type since the probability model exploits the fact that the data

produced after transforming images of the same type (e.g.,

natural, medical, etc.) with the same wavelet filter-bank are

statistically similar [35], [37], [38]. A more in-depth study on

this stationary probability model can be found in [33].

C. Arithmetic coder

The symbol and its probability estimate are fed to an

arithmetic coder. Conventional arithmetic coding works as

follows. The coder begins by segmenting the interval of

real numbers [0, 1) into two subintervals. The size of the

subintervals is chosen according to the probability estimate

of the symbol. The first symbol is coded by selecting its

5

corresponding subinterval. Then, this procedure is repeated

within the selected subintervals for the following symbols.

The transmission of any number within the range of the

final subinterval guarantees that the reverse procedure decodes

the original message losslessly. The number transmitted is

generally referred to as codeword.

Most arithmetic coders employed for image compression

produce variable-to-variable length codes. This is, a variable

number of input symbols are coded with a codeword of a

priori unknown length. In JPEG2000, for instance, all data of

a codeblock is coded with a single –and commonly very long–

codeword. Practical realizations of arithmetic coders operate

with hardware registers of 16 or 32 bits, so the generation of

the codeword is carried out progressively. Roughly described,

this is done as follows. Let [L,R) denote the current interval of

the coder, with L and R being the fractional part of the left and

right boundaries of the interval stored in hardware registers.

Assume that the leftmost bits of the binary representations of

L and R are not equal in the current interval. When a new

symbol is coded, this interval is further reduced to [L′, R′).
If the leftmost bits of L′ and R′ are then equal, all following

segmentations of the interval will also start with those same

bit(s) since L ≤ L′ ≤ . . . ≤ R′ ≤ R. This permits to dispatch

the leftmost bits of L′ and R′ that are identical and to shift

the remaining bits of the registers to the left. This procedure

is called renormalization.

Two aspects of conventional arithmetic coding prevent its

use in the proposed bitplane coding strategy. The first is the

generation of a single codeword. The scanning order described

above utilizes T threads that code data in parallel. Forcing

them to produce a single codeword would require to code

their output in a sequential order, ruining the parallelism.

The second aspect is the computational complexity of cur-

rent arithmetic coders. Part of this complexity is due to the

renormalization procedure, which requires conditionals and

repositioning operations as explained before.

These aspects are addressed herein by means of a new

technique that employs multiple arithmetic coders that work in

parallel and generate fixed-length codewords that are optimally

positioned in the bitstream. As previously described, each

thread codes all data of a stripe. The coefficients coded by a

thread are visited in a sequential order, so an arithmetic coder

can be individually employed to code all symbols emitted

for a stripe. Instead of using conventional arithmetic coding,

we employ an arithmetic coder that generates codewords

of fixed length [39]–[43]. Variable-to-fixed length arithmetic

coding avoids renormalization, reducing the complexity of the

coder [43]. It uses an integer interval with a pre-defined range,

say [0, 2W − 1] with W being the length of the codeword (in

bits). The division of the interval is carried out in a similar

way as with conventional arithmetic coding until its size is less

than 2. Then, the number within the last interval is dispatched

to the bitstream and a new interval is set (see below).

The codewords produced in each stripe are sorted generating

a single quality-embedded bitstream for all stripes that can be

truncated at any point so that the quality of the recovered

image is maximized. Such a bitstream is similar to that

produced by conventional image codecs, so it can be employed

Fig. 2: Illustration of the sorting technique employed to situate

the codewords in the bitstream when encoding.

in the same framework of rate-distortion optimization defined

in JPEG2000 to construct layers of quality and/or different

progression orders [4], [30]. In the encoder, the bitstream is

constructed as follows. Each time that a thread initializes its

interval (because is the beginning of coding or because the

interval is exhausted and a new symbol needs to be coded),

W bits are reserved at the end of the bitstream. This space

is reserved –but it is not filled– at this instant because the

interval of the thread has just been initialized, so the codeword

is still not available. After coding some symbols (possibly

from different coding passes), the interval of this thread is

exhausted, so its codeword is put in the reserved space. Fig. 2

illustrates an example of this sorting technique. All stripes

in the figure have its own space in the bitstream, which was

reserved when needed. The coefficients depicted with a red

circle are those currently visited. When the thread processing

the fifth stripe emits its symbol, it exhausts its interval, so the

codeword is put in the space that was reserved for this thread.

Note that this thread does not reserve a new space at the end

of the bitstream at this instant but it will do it when coding a

new symbol. Evidently, if two or more threads need to reserve

space at the same instant, some priority must be employed. In

order to provide determinism, stripes on the left have higher

priority. When the coding of the codeblock data finishes, the

arithmetic coders put their codewords in the bitstream, without

needing a byte flush operation.

As previously stated, the order in which the codewords are

sorted minimizes the distortion at any truncation point. This

can be seen from the perspective of the decoder. All the threads

need a non-exhausted interval to decode the data of their

corresponding stripes. The first thread that –while decoding–

exhausts its interval stops the whole decoding procedure

for that codeblock since all threads are synchronized. The

codewords are sorted so that, at any instant of the decoding,

the thread that exhausts its interval and needs to decode a

new symbol can found its immediately next codeword at the

immediately next position of the bitstream. In other words, any

thread of the decoder only needs to read the next W bits of

the bitstream when its interval is exhausted and a new symbol

is to be decoded. This decodes the maximum amount of data

for any given segment of the bitstream, thus the distortion of

the reconstructed coefficients is minimized.

The proposed arithmetic coding technique slightly penalizes

6

the coding performance with respect to an implementation

that produces a single codeword. This is because either if the

bitstream is truncated for rate-distortion optimization purposes,

or if it is fully transmitted, the last codeword that is read for

each stripe may contain some bits that are not really needed

to decode the data of the corresponding coding pass. Since

the proposed strategy utilizes T stripes, these excess bits may

not be negligible. The penalization in coding performance

decreases as more data are coded in each stripe. We found that

the coding of two columns is a good tradeoff between coding

performance and parallelism. Evidently, the implementation

of the proposed method in hardware architectures such as

FPGAs requires an arithmetic coder per stripe. Replication

is a common strategy to obtain high performance codecs [44].

D. Algorithm

The encoding procedures of BPC-PaCo are embodied in

Algorithm 1. One procedure per coding pass is specified.

These procedures detail the operations carried out for a stripe.

The “ACencode” procedure describes the operations of the

arithmetic coder. The scanning order is specified in the first

two lines of the “SPP”, “MRP”, and “CP” procedures. The

(quantized) coefficient visited is denoted by (υy,x) ωy,x, with

y, x indicating its row and column within the codeblock,

respectively. The SPP and CP check whether the visited

coefficient is significant in previous bitplanes or not. If not,

they code bit bj of the quantized coefficient. The SPP only

visits coefficients that have at least one significant neighbor

(i.e., those that have φsig(υy,x, j) 6= 0), whereas the CP visits

all non-significant coefficients that were not coded by the SPP.

The MRP codes the bit bj of all coefficients that became

significant in previous bitplanes.

The “ACencode” procedure codes all symbols emitted. The

interval of stripe t is stored in registers L[t] and S[t], which

are the left boundary and the size minus one of the interval,

respectively. Since the length of the codewords is W , both L[t]
and S[t] are integers in the range [0, 2W − 1]. The codeword

is dispatched to the bitstream in lines 13-15 of this procedure

when the interval is exhausted. Note that when S[t] = 0, L[t]
represents the final number within the interval or, in other

words, the emitted codeword. If a new symbol is coded and

S[t] = 0, the procedure reserves W bits and sets L[t] ← 0
and S[t]← 2W − 1 (see lines 1-5).

The interval division is carried out in lines 6-12. When the

symbol is 0 or −, the lower subinterval is kept, so the interval

size is reduced to

S[t]← (S[t] · p)≫ P̂ , (4)

and L[t] is left unmodified. ≫ above denotes a bit shift to the

right. p is the probability of the symbol to be 0/+ expressed

in the range [0, 2P̂ − 1], determined according to

p = ⌊Psig(bj = 0 | φsig(υ, j)) · 2
P̂⌋ (5)

for significance coding, and equivalently for refinement and

sign coding. ⌊·⌋ denotes the floor operation. As seen in

Algorithm 1 BPC-PaCo encoding procedures

Initialization: S[t]← 0 ∀ 0 ≤ t < T

SPP (u subband, j bitplane, t stripe)

1: for y ∈ [0, numRows− 1] do
2: for x ∈ [t · 2, t · 2 + 1] do
3: if υy,x is not significant AND φsig(υy,x, j) 6= 0 then
4: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
5: if bj = 1 then
6: ACencode(d, Pu[j][φsign(ωy,x, j)], t)
7: end if
8: end if
9: end for

10: end for

MRP (u subband, j bitplane, t stripe)

1: for y ∈ [0, numRows− 1] do
2: for x ∈ [t · 2, t · 2 + 1] do
3: if υy,x is significant in j′ > j then
4: ACencode(bj , Pu[j][φref (υy,x, j)], t)
5: end if
6: end for
7: end for

CP (u subband, j bitplane, t stripe)

1: for y ∈ [0, numRows− 1] do
2: for x ∈ [t · 2, t · 2 + 1] do
3: if υy,x is not significant AND not coded in SPP then
4: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
5: if bj = 1 then
6: ACencode(d, Pu[j][φsign(ωy,x)], t)
7: end if
8: end if
9: end for

10: end for

ACencode (c symbol, p probability, t stripe)

1: if S[t] = 0 then
2: Reserve the next W bits of the bitstream
3: L[t]← 0
4: S[t]← 2W − 1
5: end if
6: if c = 0 OR c = − then
7: S[t]← (S[t] · p)≫ P̂
8: else
9: f ← ((S[t] · p)≫ P̂) + 1

10: L[t]← L[t] + f
11: S[t]← S[t]− f
12: end if
13: if S[t] = 0 then
14: Put L[t] in reserved space of the bitstream
15: end if

Algorithm 1, p is the value that is stored in the LUTs, so (5) is

computed off-line. P̂ is the number of bits employed to express

the symbol’s probability. The result of the multiplication in (4)

(i.e., (S[t] · p)) must not cause arithmetic overflow in the

hardware registers, so W + P̂ ≤ 64 in modern architectures.

Experimental evidence indicates that 16 ≤ W ≤ 32 and

P̂ ≥ 7 achieve competitive performance. In our implemen-

tation W = 16 and P̂ = 7.

The coding of 1/+ keeps the upper subinterval, so

L[t]← L[t] + ((S[t] · p)≫ P̂) + 1 , and

S[t]← S[t]− ((S[t] · p)≫ P̂)− 1 .
(6)

7

Algorithm 2 BPC-PaCo relevant decoding procedures

Initialization: S[t]← 0 ∀ 0 ≤ t < T

ACdecode (p probability, t stripe)

1: if S[t] = 0 then
2: I[t]← read the next W bits of the bitstream
3: S[t]← 2W − 1
4: L[t]← 0
5: end if
6: f ← ((S[t] · p)≫ P̂) + 1
7: g ← L[t] + f
8: if I[t] ≥ g then
9: c← 1 OR +

10: S[t]← S[t]− f
11: L[t]← g
12: else
13: c← 0 OR −
14: S[t]← f − 1
15: end if
16: return c

The interval division is carried out via integer multiplications

and bit shifts because these are the fastest operations in

hardware architectures. Also, because floating point arithmetic

should be avoided to prevent incompatibilities with different

architectures. An alternative to (4), (6) is the use of LUTs that

contain the result of these operations with relative precision,

similarly as how it is done in [1], [4], [45]–[48]. Our imple-

mentation employs the above operations since they are faster

than any other alternative tested.

The decoding procedures of the SPP, MRP, and CP are

similar to those of the encoder, so they are not detailed.

Algorithm 2describes the decoding procedure of the arithmetic

coder. In this procedure, I[t] is the codeword read from the

bitstream for stripe t. The procedure is similar to that of

the encoder. An extended description of the arithmetic coder

employed in Algorithms 1 and 2 can be found in [43].

The sequential version of BPC-PaCo carries out the same

instructions detailed above except that the two loops in lines

1 and 2 of the coding passes are replaced by loops that

implement the scanning order depicted in Fig. 1(b). The call

to “ACencode” or “ACdecode” replaces t by x/2, so that

each stripe employs a different interval. Also, sign coding

is computed slightly different. In the parallel version, it is

carried out just after emitting bit bj . In the sequential version,

the sign can not be emitted just after bj since that would

produce a different bitstream from that obtained by the parallel

algorithm. When the coefficients are coded sequentially, sign

coding for the odd (even) coefficients must be carried out

just before starting the significance coding of the even (odd)

coefficients of the same (next) row. This is necessary to ensure

that the codewords are sorted in the bitstream identically in

both versions of the algorithm.

The replacement of the original algorithms of JPEG2000 by

the proposed bitplane coding strategy does not sacrifice any

feature of the coding system. The formation of quality layers,

the use of different progression orders, the region of interest

coding, or the scalability of the system is unaffected by the

use of the proposed strategy.

IV. EXPERIMENTAL RESULTS

Four corpora of images are employed to assess the perfor-

mance of BPC-PaCo. The first consists of the eight natural

images of the ISO 12640-1 corpus (2048×2560, gray scale, 8

bits per sample (bps)). The second is composed of four aerial

images provided by the Cartographic Institute of Catalonia,

covering vegetation and urban areas (7200×5000, gray scale,

8 bps). The third corpus has three xRay angiography images

from the medical community (512×512 with 15 components,

12 bps). The last corpus contains three AVIRIS (Airbone

Visible/Infrared Imaging Spectrometer) hyperspectral images

provided by NASA (512×512 with 224 components, 16 bps).

BPC-PaCo is implemented in the framework of JPEG2000 by

replacing the bitplane coding engine and the arithmetic coder

of a conventional JPEG2000 codec. The resulting codestream

is not compliant with JPEG2000, though it does not undermine

any feature of the standard. Our implementation BOI [49]

is employed in these experiments. Except when indicated,

the coding parameters for all tests are: 5 levels of wavelet

transform, codeblocks of 64×64, single quality layer, and

no precincts. The 9/7 and the 5/3 wavelet transforms are

employed for lossy and lossless regimes, respectively. BPC-

PaCo employs the same rate-distortion optimization techniques

as those of JPEG2000, which select the coding passes of each

codeblock included in the final codestream.

The first test evaluates the coding performance achieved by

BPC-PaCo as compared to that of JPEG2000. Fig. 3 depicts

the results achieved for the four corpora. The results are

reported as the peak signal to noise ratio (PSNR) difference

achieved between BPC-PaCo and JPEG2000. The performance

of JPEG2000 is depicted as the horizontal straight line in

the figures. Results below this line indicate that BPC-PaCo

achieves lower PSNR than that of JPEG2000. To avoid clutter-

ing the figure, results for only four of the eight natural images

are reported in Fig. 3(a), though similar plots are achieved for

the remaining The results of Fig. 3 indicate that, for natural

images, the proposed method achieves PSNR values between

0.2 to 1 dB below those of JPEG2000. As it is explained

in the previous section and analyzed below, this penalization

is mainly due to the use of multiple arithmetic coders. The

results achieved by BPC-PaCo for aerial images are between

0.2 to 0.4 dB below those of JPEG2000 at low and medium

bitrates, and from 0 to 0.6 dB above those of JPEG2000 at

high bitrates. For the corpus of xRay and AVIRIS images, the

results are similar to those obtained for aerial images.

For comparison purposes, Fig. 3(a) and 3(b) also report the

results when the RESET, RESTART, and CAUSAL coding

variations of JPEG2000 are in use when coding the first image

of the natural and aerial corpus (i.e., “Portrait” and “forest1”).

The results are reported with the plot with dots. We recall that

these coding variations are employed to enable coding pass

parallelism in JPEG2000 (see Section III-A). When they are

in use, the coding performance difference between BPC-PaCo

and JPEG2000 is reduced between 0.2 to 0.5 dB.

Table I reports the results achieved when coding all images

in lossless mode. The third column of the table reports the

bitrate achieved by JPEG2000, in bps. The fourth column

8

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 1 2 3 4 5

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
Portrait

Cafeteria
Fruit

Musicians

(a)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
forest1
forest2
urban1
urban2

(b)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
A
B
C

(c)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
cuprite
jasper
lunarLake

(d)

Fig. 3: Evaluation of the lossy coding performance achieved by BPC-PaCo compared to that of JPEG2000. Each subfigure

reports the performance achieved for images from a specific corpus: (a) natural, (b) aerial, (c) xRay, and (d) AVIRIS.

reports the bitrate difference between the proposed method

and JPEG2000. Again, BPC-PaCo achieves slightly lower

and higher compression efficiency than that of JPEG2000 for

the corpus of natural images and for the remaining corpora,

respectively. On average, BPC-PaCo increases the length of

the codestream negligibly.

The aim of the next test is to appraise three key mechanisms

of the proposed bitplane coding strategy. To this end, three

modifications are carried out to BPC-PaCo. The first replaces

its arithmetic coder and utilizes the MQ coder of JPEG2000.

The MQ coder employs context-adaptive mechanisms and

produces a single codeword for all data coded in a code-

block. The second modification compels the arithmetic coder

of BPC-PaCo to employ a single codeword for all stripes.

Evidently, these two modifications prevent parallelism. Their

sole purpose is to appraise the coding efficiency of these

two mechanisms. The third modification removes the context

formation approach and employs one context for significance

coding, one for refinement coding, and one for sign coding.

Fig. 4 reports the results obtained for one image of each corpus

when these modifications are in use. For comparison purposes,

the figure also reports the performance achieved by the original

BPC-PaCo. When the MQ coder is employed, the coding

performance achieved by BPC-PaCo is almost the same as that

of JPEG2000 for all images. This indicates that the scanning

order and the context formation employed in BPC-PaCo do

not penalize coding performance significantly. Clearly, the use

of multiple arithmetic coders producing multiple codewords

is the technique mainly responsible for the penalization in

compression efficiency. This can also be seen in Fig. 4 via the

second modification of BPC-PaCo, which employs a single

codeword for all stripes. When this modification is in use, the

coding performance of BPC-PaCo is enhanced from 0.25 to

0.5 dB, achieving higher PSNR than that of JPEG2000 for all

corpora except the natural. The third modification shows that

the proposed context formation approach enhances the coding

performance of the proposed method significantly (more than

3 dB in some cases). The results of these modifications are

also reported in Table I for the lossless regime. Similar results

are achieved for both lossy and lossless regimes.

The last test evaluates an interesting feature of the proposed

method. Vector instructions are commonly composed of 32

9

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo
BPC-PaCo with MQ coder
BPC-PaCo with single codeword
BPC-PaCo with no contexts

(a)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo
BPC-PaCo with MQ coder
BPC-PaCo with single codeword
BPC-PaCo with no contexts

(b)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo
BPC-PaCo with MQ coder
BPC-PaCo with single codeword
BPC-PaCo with no contexts

(c)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo
BPC-PaCo with MQ coder
BPC-PaCo with single codeword
BPC-PaCo with no contexts

(d)

Fig. 4: Evaluation of the lossy coding performance achieved by BPC-PaCo when three modifications are employed. Each

subfigure reports the performance achieved for one image of a specific corpus: (a) natural image “Portrait”, (b) aerial image

“forest1”, (c) xRay image “A”, and (d) AVIRIS image “cuprite”.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
S

N
R

 d
if
fe

re
n
c
e
 (

in
 d

B
)

bit rate (in bps)

JPEG2000
64x16

64x32
64x64

64x128
64x256

Fig. 5: Evaluation of the lossy coding performance achieved

by BPC-PaCo and JPEG2000 when using different sizes of

codeblock. Results are reported for the “Portrait” image of

the ISO 12640-1 corpus.

lanes.1 Each thread codes a stripe containing two columns,

so the use of codeblocks with 64 columns is convenient. The

number of rows of the codeblock, on the other hand, strongly

influences the coding performance achieved. This is because

the more data coded in a stripe, the fewer the excess bits

stored in its codewords. This is illustrated in Fig. 5 for the

natural image “Portrait”. Results for codeblocks of 64 columns

and a variable number of rows are reported (both JPEG2000

and BPC-PaCo use the same variable codeblock size). The

results suggest that the more rows the codeblock has, the better

the coding performance. In general, codeblocks of 64×64

already achieve competitive performance while exposing a

large degree of parallelism. Results hold for the other images

of the corpus and the other corpora.

V. CONCLUSIONS

The computational complexity of modern image coding

systems can not be efficiently tackled with SIMD computing.

1All Nvidia GPUs, for instance, currently implement vector instructions of
32 lanes.

10

TABLE I: Evaluation of the lossless coding performance

achieved by BPC-PaCo and JPEG2000. Results are reported in

bps. The three rightmost columns report the results achieved

when variations in BPC-PaCo are employed.

BPC-PaCo with

BPC- single no

image JP2 PaCo MQ cwd. AC ctx.

IS
O

1
2
6
4
0
-1

“Portrait” 4.38 +0.09 +0.02 +0.06 +0.45

“Cafeteria” 5.28 +0.08 +0.04 +0.05 +0.49

“Fruit” 4.29 +0.17 +0.01 +0.14 +0.47

“Wine” 4.57 +0.16 +0.02 +0.13 +0.43

“Bicycle” 4.37 +0.20 +0.04 +0.16 +0.57

“Orchid” 3.58 +0.24 +0.01 +0.21 +0.59

“Musicians” 5.56 +0.11 +0.02 +0.07 +0.47

“Candle” 5.65 +0.08 +0.04 +0.04 +0.58

ae
ri

al

“forest1” 6.20 -0.04 +0.01 -0.08 +0.12

“forest2” 6.28 -0.05 +0.01 -0.09 +0.13

“urban1” 5.54 +0.01 +0.02 -0.03 +0.21

“urban2” 5.20 +0.03 +0.01 0.00 +0.29

x
R

ay

“A” 6.37 -0.07 0.00 -0.12 0.00

“B” 6.48 -0.03 0.00 -0.11 +0.02

“C” 6.35 -0.06 0.00 -0.11 +0.02

A
V

IR
IS “cuprite” 7.00 -0.03 +0.01 -0.07 +0.41

“jasper” 7.66 -0.04 +0.02 -0.08 +0.48

“lunarLake” 6.91 -0.02 +0.01 -0.05 +0.46

average 5.65 +0.05 +0.02 +0.01 +0.34

The main difficulty is that the innermost algorithms of current

coding systems process the samples in a sequential fashion.

This paper presents a bitplane coding strategy tailored to

the kind of parallelism required in SIMD computing. Its

main insight is to employ vector instructions that process

T coefficients of a codeblock in parallel and synchronously.

To achieve this coefficient-level parallelism, some aspects of

the bitplane coder are modified. First, the scanning order

is devised to allow parallel coefficient processing without

penalizing the formation of contexts. Second, the context

formation approach is implemented via low-complexity tech-

niques. Third, the probability estimates of the emitted symbols

employs a stationary probability model that does not need

adaptive mechanisms. And fourth, entropy coding is carried

out by means of multiple arithmetic coders generating fixed-

length codewords that are optimally sorted in the bitstream.

The proposed bitplane coding strategy with parallel coef-

ficient processing provides a very fine level of parallelism

that permits its efficient implementation for both SIMD and

MIMD computing. Experimental results indicate that the cod-

ing performance of the proposed method is highly competitive,

similar to that achieved by the JPEG2000 standard. Future

work implements the proposed method in a GPU. Results

of computational throughput are not included in this paper

because the proposed GPU implementation requires a detailed

description. Nonetheless, preliminary results indicate speedups

of 15 or more with respect to the best CPU and GPU

implementations of JPEG2000.

REFERENCES

[1] W. Pennebaker and J. Mitchell, JPEG still image data compression

standard. New York: Van Nostrand Reinhold, 1993.

[2] Information technology - JPEG 2000 image coding system - Part 1:

Core coding system, ISO/IEC Std. 15 444-1, Dec. 2000.

[3] High Efficiency Video Coding Standard, International Telecommunica-
tion Union Std. H.265, 2013.

[4] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

[5] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[6] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[7] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[8] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–
1235, Nov. 2004.

[9] N. Mehrseresht and D. Taubman, “A flexible structure for fully scalable
motion-compensated 3-D DWT with emphasis on the impact of spatial
scalability,” IEEE Trans. Image Process., vol. 15, no. 3, pp. 740–753,
Mar. 2006.

[10] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[11] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with
CUDA,” in Proc. IEEE International Conference on Computer and

Electrical Engineering, Dec. 2009, pp. 630–634.

[12] R. Le, I. R. Bahar, and J. L. Mundy, “A novel parallel tier-1 coder
for JPEG2000 using GPUs,” in Proc. IEEE Symposium on Application

Specific Processors, Jun. 2011, pp. 129–136.

[13] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit
implementation of JPEG2000 for hyperspectral image compression,”
SPIE Journal of Applied Remote Sensing, vol. 6, pp. 1–14, Jan. 2012.

[14] M. Ciznicki, M. Kierzynka, P. Kopta, K. Kurowski, and P. Gepnerb,
“Benchmarking JPEG 2000 implementations on modern CPU and GPU
architectures,” ELSEVIER Journal of Computational Science, vol. 5,
no. 2, pp. 90–98, Mar. 2014.

[15] Comprimato. (2014, Apr.) Comprimato JPEG2000@GPU. [Online].
Available: http://www.comprimato.com

[16] B. Pieters, J. D. Cock, C. Hollemeersch, J. Wielandt, P. Lambert, and
R. V. de Walle, “Ultra high definition video decoding with motion JPEG
XR using the GPU,” in Proc. IEEE International Conference on Image

Processing, Sep. 2011, pp. 377–380.

[17] N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. Wong, and C. H. Liu,
“Highly parallel rate-distortion optimized intra-mode decision on mul-
ticore graphics processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 11, pp. 1692–1703, Nov. 2009.

[18] N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung, “Video coding on
multicore graphics processors,” IEEE Signal Process. Mag., vol. 27,
no. 2, pp. 79–89, Mar. 2010.

[19] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT
context modeling for massively parallel architectures,” in Proc. IEEE

Data Compression Conference, Mar. 2011, pp. 423–432.

[20] V. Galiano, O. Lopez-Granado, M. Malumbres, L. A. Drummond,
and H. Migallon, “GPU-based 3D lower tree wavelet video encoder,”
EURASIP Journal on Advances in Signal Processing, vol. 1, pp. 1–13,
2013.

[21] F. Auli-Llinas, P. Enfedaque, J. C. Moure, I. Blanes, and V. Sanchez,
“Strategy of microscopic parallelism for bitplane image coding,” in Proc.

IEEE Data Compression Conference, Apr. 2015, pp. 163–172.

[22] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet
transform on consumer-level graphics hardware,” IEEE Trans. Multime-

dia, vol. 9, no. 3, pp. 668–673, Apr. 2007.

[23] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel
implementation of the 2D discrete wavelet transform on graphics pro-
cessing units: Filter bank versus lifting,” IEEE Trans. Parallel Distrib.

Syst., vol. 19, no. 3, pp. 299–310, Mar. 2008.

[24] J. Matela, “GPU-Based DWT acceleration for JPEG200,” in Annual

Doctoral Workshop on Mathematical and Engineering Methods in

Computer Science, Jan. 2009, pp. 136–143.

11

[25] J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, “A parallel
implementation of the 2D wavelet transform using CUDA,” in Proc.

IEEE International Conference on Parallel, Distributed and Network-

based Processing, Feb. 2009, pp. 111–118.
[26] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating

wavelet lifting on graphics hardware using CUDA,” IEEE Trans. Parallel

Distrib. Syst., vol. 22, no. 1, pp. 132–146, Jan. 2011.
[27] V. Galiano, O. Lopez, M. P. Malumbres, and H. Migallon, “Parallel

strategies for 2D discrete wavelet transform in shared memory systems
and GPUs,” SPRINGER The Journal of Supercomputing, vol. 64, no. 1,
pp. 4–16, Apr. 2013.

[28] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the
DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel

Distrib. Syst., 2015, in Press.
[29] F. Auli-Llinas and J. Serra-Sagrista, “Low complexity JPEG2000 rate

control through reverse subband scanning order and coding passes
concatenation,” IEEE Signal Process. Lett., vol. 14, no. 4, pp. 251–254,
Apr. 2007.

[30] ——, “JPEG2000 quality scalability without quality layers,” IEEE

Trans. Circuits Syst. Video Technol., vol. 18, no. 7, pp. 923–936, Jul.
2008.

[31] F. Auli-Llinas, J. Bartrina-Rapesta, and J. Serra-Sagrista, “Self-
conducted allocation strategy of quality layers for JPEG2000,” EURASIP

Journal on Advances in Signal Processing, vol. 2008, pp. 1–7, 2008,
article ID 728794.

[32] Digital compression and coding for continuous-tone still images,
ISO/IEC Std. 10 918-1, 1992.

[33] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for
microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960–970, Jun. 2014.

[34] A. J. R. Neves and A. J. Pinho, “Lossless compression of microarray
images using image-dependent finite-context models,” IEEE Trans. Med.

Imag., vol. 28, no. 2, pp. 194–201, Feb. 2009.
[35] F. Auli-Llinas, “Stationary probability model for bitplane image coding

through local average of wavelet coefficients,” IEEE Trans. Image

Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.
[36] Information technology - Lossy/lossless coding of bi-level images,

ISO/IEC Std. 14 492, 2001.

[37] R. W. Buccigrossi and E. P. Simoncelli, “Image compression via joint
statistical characterization in the wavelet domain,” IEEE Trans. Image

Process., vol. 8, no. 12, pp. 1688–1701, Dec. 1999.
[38] F. Auli-Llinas, M. W. Marcellin, J. Serra-Sagrista, and J. Bartrina-

Rapesta, “Lossy-to-lossless 3D image coding through prior coefficient
lookup tables,” ELSEVIER Information Sciences, vol. 239, no. 1, pp.
266–282, Aug. 2013.

[39] D.-Y. Chan, J.-F. Yang, and S.-Y. Chen, “Efficient connected-index
finite-length arithmetic codes,” IEEE Trans. Circuits Syst. Video Tech-

nol., vol. 11, no. 5, pp. 581–593, May 2001.
[40] M. D. Reavy and C. G. Boncelet, “An algorithm for compression of

bilevel images,” IEEE Trans. Image Process., vol. 10, no. 5, pp. 669–
676, May 2001.

[41] H. Chen, “Joint error detection and vf arithmetic coding,” in Proc. IEEE

International Conference on Communications, Jun. 2001, pp. 2763–
2767.

[42] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression using variable-
to-fixed coding based on arithmetic coding,” in Proc. IEEE Data

Compression Conference, Mar. 2003, pp. 382–391.
[43] F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-

length codewords,” IEEE Trans. Multimedia, 2015, in Press.
[44] K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture

for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 21, no. 6, pp. 825–836, Jun. 2011.
[45] P. Howard and J. S. Vitter, “Design and analysis of fast text compression

based on quasi-arithmetic coding,” in Proc. IEEE Data Compression

Conference, Mar. 1992, pp. 98–107.
[46] W. D. Wither, “The ELS-coder: a rapid entropy coder,” in Proc. IEEE

Data Compression Conference, Mar. 1997, pp. 475–475.
[47] L. Bottou, P. G. Howard, and Y. Bengio, “The Z-Coder adaptive binary

coder,” in Proc. IEEE Data Compression Conference, Mar. 1998, pp.
1–10.

[48] M. Slattery and J. Mitchell, “The Qx-coder,” IBM Journal of Research

and Development, vol. 42, no. 6, pp. 767–784, Nov. 1998.
[49] F. Auli-Llinas. (2014, Nov.) BOI codec. [Online]. Available: http:

//www.deic.uab.cat/∼francesc/software/boi

