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ABSTRACT

Aims. The K2 mission has recently begun to discover new and diverse planetary systems. In December 2014, Campaign 1 data from
the mission was released, providing high-precision photometry for ∼22 000 objects over an 80-day timespan. We searched these data
with the aim of detecting more important new objects.
Methods. Our search through two separate pipelines led to the independent discovery of K2-19b and c, a two-planet system of
Neptune-sized objects (4.2 and 7.2 R⊕), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each
show transits, sometimes simultaneously owing to their proximity to resonance and the alignment of conjunctions.
Results. We obtained further ground-based photometry of the larger planet with the NITES telescope, demonstrating the presence
of large transit timing variations (TTVs), and used the observed TTVs to place mass constraints on the transiting objects under
the hypothesis that the objects are near but not in resonance. We then statistically validated the planets through the PASTIS tool,
independently of the TTV analysis.

Key words. planets and satellites: individual: EPIC201505350c – planets and satellites: detection – planets and satellites: general –
planets and satellites: dynamical evolution and stability – planets and satellites: individual: EPIC201505350b

1. Introduction

With the steady release of data from the K2 satellite, several
projects have begun to search for previously undiscovered plan-
etary systems. A number of interesting systems have already
come to light (Crossfield et al. 2015; Vanderburg et al. 2014;
Foreman-Mackey et al. 2015). For these systems we now have
photometry that approaches the precision of the Kepler prime
mission, and crucially, of host stars much brighter than the

? Using observations made with SOPHIE on the 1.93-m telescope at
Observatoire de Haute-Provence (CNRS), France.
?? Appendix is available in electronic form at
http://www.aanda.org
??? A table of the data plotted in Fig. 1 is only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A33

typical Kepler case. This promises the use of radial velocity and
other techniques to add to our knowledge of these already in-
teresting objects. In this work we present a two-planet system
observed in K2 field 1. This system, K2-19 (EPIC201505350,
RA:11:39:50.476, Dec: +00:36:12.87, Kepmag 12.8), lies ex-
ceptionally close to the 3:2 mean motion resonance (MMR), so it
has the potential to show particularly large TTVs (a concept first
suggested by Agol et al. (2005), Holman (2005) for the general
case). In terms of period ratio, only one object is as yet known
to be closer to this resonance (and does not show TTVs, due to a
large libration period). K2-19 was originally presented as a can-
didate planetary system in Foreman-Mackey et al. (2015) and is
validated here using further observations.

The 3:2 MMR is especially significant in both solar sys-
tem and extrasolar planetary systems. For decades, Pluto and
Neptune were classified as the only solar system resonant planet
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pair, and their orbits evolve inside of a 3:2 MMR. The Grand
Tack model, a scenario proposed to explain the current ar-
chitecture of the inner solar system, asserts that Jupiter and
Saturn were once captured into a 3:2 MMR while embedded
in the nascent solar nebula (Walsh et al. 2011; Pierens et al.
2014). Furthermore, the first extrasolar planetary system ever
confirmed, around PSR 1257+12 (Wolszczan & Frail 1992;
Wolszczan 1994), includes two planets whose orbits are tightly
coupled and are very close to residing within the 3:2 MMR
(Malhotra et al. 1992; Goździewski et al. 2005; Callegari et al.
2006).

Transiting exoplanets orbiting main sequence stars represent
the majority of known planets, but usually lack the necessary
constraints to allow one to definitively assign membership to
an individual MMR1. A commonly-used definition of MMR be-
tween two planets is the resulting dynamical state when a partic-
ular linear combination of mean longitudes, longitudes of peri-
centre, and sometimes longitudes of ascending node librate (or
oscillate) about 0◦ or 180◦ over a given time interval (e.g. Murray
& Dermott 1999). For K2-19 and the 3:2 MMR, this linear com-
bination is represented by either the angle θ1 or θ2, where

θ1 = 3λc − 2λb −$b (1)
θ2 = 3λc − 2λb −$c, (2)

with λ the mean longitude and $ the longitude of pericentre.
Here, and throughout the paper, we label the inner planet as b
and the outer as c. This widely-adopted definition has several
shortcomings, which are outlined in Sect. 1 of Petrovich et al.
(2013). A definition which overcomes these shortcomings is: the
term resonant is a trajectory that evolves in the region of phase
space surrounded by the separatricies of a given integrable sys-
tem Hamiltonian (see, e.g. Morbidelli 2002).

Because time series of planetary mean longitudes and longi-
tudes of pericentre are typically not available in extrasolar sys-
tems, a common practice is to use orbital period ratios by them-
selves as a proxy for resonance. High frequencies of systems
with ratios of 1.5 and 2.0 (Lissauer et al. 2011) are suggestive
that the 3:2 and 2:1 commensurabilities represent a significant
tracer of formation, regardless of whether those planetary can-
didates are actually locked inside of a MMR. Recently, the fre-
quency of systems just outside of the 3:2 period commensura-
bility has exhibited a distinct asymmetry (e.g. Fabrycky et al.
2014), which has led to substantial theoretical scrutiny (Batygin
& Morbidelli 2013; Lee et al. 2013; Petrovich et al. 2013;
Chatterjee & Ford 2015; Delisle et al. 2014; Delisle & Laskar
2014). The period ratio of K2-19b and c as displayed in the
K2 data is 1.503514+0.000052

−0.000057, among the closest systems to a
3:2 commensurability so far detected.

We searched the Exoplanet Orbit Database (Han et al. 2014)
for other systems close to this commensurability. The only sys-
tem we could find with a closer normalised distance to resonance
(defined in Lithwick et al. 2012), 4, was the Kepler-372cd pair
(Rowe et al. 2014), where 4 is ∼0.0003, as compared to K2-19
with ∼0.0023. However, neither Kepler-372c nor d exhibit TTVs
during the Kepler observations due to a particularly long pre-
dicted TTV libration period, ∼70 years. Also worth noting is
the Kepler-342cd pair (Rowe et al. 2014), with a 4 of ∼0.0027,
which also does not show TTVs due to a longer libration period.

Interest in these special period ratios is motivated by both
the possibility of making deductions about a system’s for-
mation channel and its long-term future stability. Convergent

1 With limited constraints, one can more easily exclude systems from
existing within MMRs (Veras & Ford 2012).

migration in protoplanetary discs is an effective and popular
MMR formation mechanism (Snellgrove et al. 2001), and can
also achieve three-body resonances (Peale & Lee 2002; Libert
& Tsiganis 2011), although some MMRs are harder to lock into
than others (Rein et al. 2012; Tadeu dos Santos et al. 2015).
Forming the 3:2 MMR in particular through energy dissipation
has been widely investigated (Papaloizou & Szuszkiewicz 2005;
Hadjidemetriou & Voyatzis 2010; Emel’yanenko 2012; Ogihara
& Kobayashi 2013; Wang & Ji 2014; Zhang et al. 2014). Capture
into MMRs through gravitational scattering alone – after the
dissipation of the protoplanetary disc – occurs relatively rarely
(Raymond et al. 2008).

In this work we characterise this multi-planet system,
validate its planetary nature using observed TTVs and the
PASTIS tool, and discuss the implications these have for future
observations.

2. Observations

2.1. K2

Observations were made with the Kepler satellite as part of the
K2 mission between BJD 2456811.57 and 2456890.33, span-
ning ∼80 days. The K2 mission (Howell et al. 2014) is the
survey now being conducted with the repurposed Kepler space
telescope, and became fully operational in June 2014. It is sur-
veying a series of fields near the ecliptic, returning continuous
high-precision data over an 80 day period for each field. Despite
the reaction wheel losses that ended the Kepler prime mission,
K2 has been estimated to be capable of 80ppm precision for
V = 12 stars, close to the sensitivity of the primary mission.
All data will be public, although at the time of writing only
campaigns 0 and 1 have been released. Targets are provided
by the Ecliptic Plane Input Catalogue (EPIC) which is hosted
at the Mikulski Archive for Space Telescopes (MAST)2 along
with the available data products.

Targets in K2 often display significant pointing drift over the
K2 observations, typically on a timescale of 6 h on which the
spacecraft thrusters are fired. This leads to a major source of
systematic noise in the lightcurve (Vanderburg & Johnson 2014),
the removal of which is the key part of our detrending method.
The full method is explained in Armstrong et al. (2015), but
is summarised here for clarity. Initially a fixed aperture, of ra-
dius 4 pixels in this case and shape as described in Armstrong
et al. (2015), was centred on the brightest target pixel. A raw
light curve is extracted directly from this aperture, with back-
ground subtracted using the median out-of-aperture pixels. Row
and Column centroid variations are found for the time series. At
this point points associated with spacecraft thruster firings are
removed, and the remaining points decorrelated from the cen-
troid variations. We decorrelate from both row and column cen-
troids simultaneously, as they are not statistically independent.
This process can leave systematic or instrumental noise in place
(see Foreman-Mackey et al. 2015). In this case this noise seems
to be weak compared to the intrinsic stellar variability, which
occurs with a magnitude of ∼1%.

This stellar variability is removed, along with any longer pe-
riod systematics, through the application of an iteratively fitted
polynomial. A 3D polynomial is fit to successive 2 day wide
regions, with the fit repeated for 20 iterations clipping points
greater than 3σ from the best fit line at each iteration. This fit is
then used to detrend a 5 hour region at its centre, and the process

2 https://archive.stsci.edu/k2/
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repeated for each 5 hour region. As the principal components
of the instrumental noise show variations on order 10+ days in
campaign 1 (Foreman-Mackey et al. 2015) they should be re-
moved through this process, and crucially will not affect the
transits. We found that for this target the best results were ob-
tained by performing this polynomial flattening immediately af-
ter extracting the lightcurve, before decorrelating the flux from
the centroid motion. The resulting light curve is shown in Fig. 2.
Note that some transits of each planet occur simultaneously with
the other through the dataset. The final such simultaneous transit
is of increased duration, and its shape begins to show signs of
both planets individually.

2.2. NITES

Due to its proximity to MMR, K2-19 had the potential to show
significant TTVs (see Sect. 5). As such we scheduled it for
further ground based transit observations. The Near Infrared
Transiting ExoplanetS (NITES) Telescope is a semi-robotic
0.4-m ( f /10) Meade LX200GPS Schmidt-Cassegrain telescope
installed at the ORM, La Palma. The telescope is mounted with
a Finger Lakes Instrumentation Proline 4710 camera, containing
a 1024×1024 pixels deep-depleted CCD made by e2v. The tele-
scope has a FOV and pixel scale of 11 × 11 arcmin squared and
0.66′′ pixel−1, respectively and a peak QE > 90% at 800 nm.
For more details on the NITES telescope we refer the reader to
McCormac et al. (2014).

One transit of K2-19b was observed on 2015 Feb. 28. The
telescope was defocused slightly to 3.3′′ FWHM and 814 images
of 20 s exposure time were obtained with 5 s dead time between
each. Observations were obtained without a filter. The data were
bias subtracted and flat field corrected using PyRAF3 and the
standard routines in IRAF4, and aperture photometry was per-
formed using DAOPHOT (Stetson 1987). Ten nearby compari-
son stars were used and an aperture radius of 6.6′′ was chosen
as it returned the minimum root mean square (rms) scatter in the
out of transit data. Initial photometric error estimates were calcu-
lated using the electron noise from the target and the sky and the
read noise within the aperture. The data were normalised with a
first order polynomial fitted to the out of transit data. The result-
ing lightcurve is shown in Fig. 1.

2.3. SOPHIE

We observed the star K2-19 with the SOPHIE spectrograph
mounted on the 1.93 m telescope at the Haute-Provence
Observatory (France). We used the high-efficiency mode which
has a spectral resolution of about 39 000 at 550 nm. This mode
is preferred for the observations of relatively faint stars (e.g.
Santerne et al. 2014). For more information about the SOPHIE
spectrograph, we refer the interested readers to Perruchot et al.
(2008) and Bouchy et al. (2009). We secured five epochs be-
tween 2015-01-23 and 2015-02-02 as part of our on-going
TRANSIT consortium5. The exposure time ranges between
400 s and 2700 s, which lead to signal-to-noise ratio per pixel
in the continuum at 550 nm ranging between 13.5 and 22.1.

3 PyRAF is a product of the Space Telescope Science Institute, which
is operated by AURA for NASA.
4 IRAF is distributed by the National Optical Astronomy
Observatories, which are operated by the Association of Universities
for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
5 OHP program: 14B.PNP.HEBR.
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Fig. 1. Data taken from the NITES telescope. The best fit transit derived
from K2 observations is also plotted, along with the binned light curve,
and fits the shape seen with NITES well.

We cross correlated the spectra with a numerical mask cor-
responding of a G2 dwarf (Baranne et al. 1996; Pepe et al. 2002)
and find a unique line profile with a width compatible with the
rotational period found in K2 photometry (see next section). The
derived radial velocity has a median uncertainty of 16 m s−1, and
shows no significant variation.

2.4. AstraLux

In order to search for neighbouring stars which could be produc-
ing the transit signals, we obtain a high-spatial resolution im-
age of K2-19 by applying the lucky-imaging technique with the
AstraLux instrument installed at the 2.2 m telescope at the Calar
Alto Observatory (Almería, Spain). We obtained 65 000 frames
with an individual exposure time of 80 ms in the SDSSz band.
The images were reduced by using the observatory pipeline (see
Hormuth et al. 2008), which performs a basic reduction and se-
lects the 10% of frames showing the largest Strehl ratios (Strehl
1902). These frames are then aligned and stacked to produce the
final high-spatial resolution image. The sensitivity curve of this
image was obtained by adding artificial sources with different
magnitude contrasts at different angular separations and mea-
suring the recovery rate (see Lillo-Box et al. 2014, for further
details). We reach contrast magnitudes of ∆mz′ = 5.5 mag at 1′′
and ∆mz′ = 6.3 mag for angular separations larger than 1.5′′ at
the 5σ level. No sources were found closer than 6′′ within our
sensitivity limits. The analysis of the Kepler centroids also re-
vealed no significant shifts during transits above the Kepler pixel
size (∼4′′).

3. Stellar parameters

We obtained the parameters of the host star from the spectral
analysis of five co-added SOPHIE spectra. First, we subtracted
from the spectra pointing to the source (in fibre A), any sky con-
tamination using the spectra of fibre B, after correcting for the
relative efficiency of the two fibres. The final spectrum has a S/N
of the order of 25 around 6070 Å.

To derive the atmospheric parameters, namely the effective
temperature (Teff), surface gravity (log g), metallicity ([Fe/H]),
and microturbulence (vmic), we followed the methodology
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Table 1. Stellar parameters for K2-19.

Parameter Value Units
Teff 5230 ± 417 K
log g? 4.39 ± 0.79 dex
vmic 0.92 ± 0.5 km s−1

[Fe/H] 0.38 ± 0.23 dex
Prot 20.3+3.7

−2.3 days

Derived parameters:
R? (spectroscopic) 1.03 ± 0.2 R�
M? (spectroscopic) 0.92 ± 0.14 M�
log g? (transit) 4.52 ± 0.22 dex
R? (transit) 0.88 ± 0.06 R�
M? (transit) 0.89 ± 0.06 M�

described in Tsantaki et al. (2013). This method relies on
the measurement of the equivalent widths (EWs) of Fe  and
Fe  lines and by imposing excitation and ionisation equilibrium.
The analysis was performed in local thermodynamic equilibrium
(LTE) using a grid of (Kurucz 1993) model atmospheres and the
radiative transfer code MOOG (Sneden 1973). Due to the low
S/N of our spectrum, the EWs were derived manually using the
IRAF splot task.

From the above analysis, we conclude that the host star is a
slightly metal-rich K dwarf. The derived parameters are shown
in Table 1. The stellar radius and mass were derived from the cal-
ibration of Torres et al. (2010a), updated with the version from
Santos et al. (2013) and the atmospheric parameters described
above. We also included in Table 1 the determination of surface
gravity from the transit fit parameters (see Sect. 4) and the re-
spective results of stellar mass and radius. We proceed using the
transit derived parameters, as they are much more accurate.

We also study the stellar variability inherent in the lightcurve
of K2-19. This lightcurve may be contaminated by remnant in-
strumental noise, but we find that repeating patterns apparent
across the entirety of the K2 observations do not generally match
the principal noise components seen (see Foreman-Mackey et al.
2015, for these components). A weighted, floating mean Lomb-
Scargle (LS) periodogram (Lomb 1976; Scargle 1982), follow-
ing the method of Press & Rybicki (1989), gives a principal pe-
riod of 20.3 days (with an LS statistic of 323 000, significantly
above the background). Assuming this peak is due to stellar ro-
tation then we are able to derive Prot as shown in Table 1. Errors
on Prot are derived from the FWHM of the periodogram peak.

4. Light curve fitting

To obtain the transit shape and parameters we limit ourselves
to the K2 data, as it is of significantly higher precision and the
NITES data do not show the full transit. The data were detrended
as described in Sect. 2.1, then cut so that only data within a
7 transit width region centred on each transit were used. We
also removed all simultaneous transits, along with two specific
points in separate transits which showed clear evidence for be-
ing within a spot crossing (significant brightenings within tran-
sit relative to their local transit shape). These points are high-
lighted in Fig. 2. We note that there are other apparently bad
points which were not removed − the decision to remove a point
was based entirely on whether it was clearly anomalous within
its local transit, to avoid excessive bias, and so points which
only appear bad when shown phase folded and against the fit
will remain. The data were then fit using the JKTEBOP code

(e.g. Southworth 2013; Popper & Etzel 1981), with numerical
integration used to account for the long cadence of K2 observa-
tions (splitting each point into 60 integrated sub-points).

We initialised the fits with a linear limb darkening coefficient
of 0.56, suitable for a K dwarf, which was then allowed to vary.
We then tested for eccentricity, but found no constraint for either
object. As such for the remaining tests the eccentricity of both
planets was set to zero. To derive robust errors we used a Monte
Carlo process whereby Gaussian observational errors are added
to each data point and the fit repeated 1000 times, producing
a distribution of best fits. The medians and 68.27% confidence
limits are then taken to produce values and errors.

This process does not account for systematic errors in the
light curve, such as starspots or correlated instrumental noise.
These are of particular concern for K2-19; as has been noted
there is evidence within some transits for spot crossings. In the
past such crossings have proven useful in modelling starspots
(e.g. Barros et al. 2013; Beky et al. 2014) but here they form a
source of contamination to our fits. We test for the effect of these
spots by adopting a prayer bead style residual permutation test.
In this process, a best fit is acquired, and then the residuals of
the data to this fit are “rolled” through the dataset, and a further
best fit acquired each time. Due to the low cadence of K2 ob-
servations, there are not enough points near transit to get a dis-
tribution of parameter values through this method (270 and 183
tests respectively for planets b and c). However, the prayer-bead
generated distribution at least allows us to obtain an estimate of
the systematic effect on our transit parameters. In all cases these
systematic errors were comparable to or smaller than the Monte
Carlo generated errors. As such we present final values and er-
rors from the Monte Carlo tests. While we acknowledge that this
method of testing for systematic errors is merely an estimate (es-
pecially as the full effect of spots only appears in transit), we
note that as the errors generated by the prayer-bead process are
not significantly larger that those from the Monte Carlo tests, the
effect of systematics on the transit parameters is not particularly
strong.

The resulting best fits are shown for each planet in Fig. 2.
Note that the derived ephemeris are taken from only a small part
of the TTV phase curve and so will require correction; see Sect. 7
for detail. In particular, there are significantly larger errors on
the period when TTVs are taken into account − final values are
found in Sect. 7.2.

5. Transit timing variations

Given the periods found in Sect. 4, it is immediately appar-
ent that the two planets in the K2-19 system lie close to the
3:2 MMR. It is common for systems close to MMR to show par-
ticularly large TTVs (Lithwick et al. 2012; Xie 2014) and so we
searched the data in the hope of seeing variations. This search
was carried out using the transit shape defined by our best fit pa-
rameters. As before, simultaneous transits were ignored. Points
marked previously as being clear spot crossings were also ex-
cluded. We cut the data to a region within 2 full transit widths
of the approximate transit centres, then passed the model transit
over this region with a resolution of 0.00015 days. The mini-
mum χ2 of this test series was recorded, at which point each
datapoint was perturbed by a random Gaussian with standard
deviation equal to the point error. The fit was then repeated, and
this process undergone for 1000 iterations, to get a distribution
of transit times. The mean of the distribution is then taken as the
transit time. As when fitting the transit shape, this process does
not account for systematic errors. This is particularly concerning
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Fig. 2. Top: extracted light curve for K2-19, showing significant stellar variability. Middle: flattened and detrended lightcurve, showing transits of
the inner planet (b, red), outer planet (c, green) and simultaneous transits of both planets (magenta). Some outlier points are not shown for clarity.
Bottom left: the phase folded transits of planet b, excluding simultaneous transits and showing the best fit model. Some points (shown lighter than
the others) displayed clear evidence of spot crossings by the planet and were excluded from the fit. Bottom right: same for planet c. Note the
change in y-axis scale.

Table 2. System parameters.

Parameter Units b c
Model parameters:
P days 7.919454+0.000081

−0.000078 11.90701+0.00039
−0.00044

T0 BJDTDB − 2 456 000 813.38345+0.00036
−0.00039 817.2759 ± 0.0012

Rp/R? 0.0753+0.0028
−0.0015 0.0439+0.0011

−0.0012

(Rp + R?)/a 0.0572+0.0084
−0.0042 0.0414+0.0015

−0.0009

i deg 88.83+1.08
−0.89 89.91+0.05

−0.32

e 0 (adopted) 0 (adopted)

Limb-Darkening 0.552 ± 0.041 0.57+0.14
−0.13

Derived parameters:
Rp R⊕ 7.23+0.56

−0.51 4.21 ± 0.31

a AU 0.077+0.008
−0.013 0.1032+0.0074

−0.0080

S inc S ⊕ 87.7+9.3
−12.9 48.8+6.4

−6.2

Pc/Pb 1.503514+0.000052
−0.000057

4 0.00234 ± 0.00002

Notes. 4 is defined in Sect. 7, and represents the normalised distance to resonance. Note that Pb, Pc, and parameters derived from them are only
instantaneous measurements, and will change over the course of the TTV phase curve (see Sect. 7). Transit based stellar parameters are used for
derived quantities.

for measuring transit times, because due to the low cadence of
K2 observations only a few points are seen within each transit. If
one of these points is significantly perturbed by a spot crossing
(which occurs visibly for some transits) then the measured time
would be strongly affected. To estimate the effect of these sys-
tematics, we repeat the prayer-bead residual analysis of Sect. 4.
In this case though, as we are considering each transit indepen-
dently, there are even fewer data points near transit (typically

∼30). Also of concern is that the full effect of spots can gener-
ally only be seen when they are occulted in transit, where there
are even fewer points. As such we perform this analysis and es-
timate the systematic contribution to our error budget by taking
the maximum and minimum parameter values which arise from
the prayer bead test, over the ∼30 iterations. We adopt these most
pessimistic values as our 1σ errors, to ensure that we do not un-
derestimate the errors on our transit times. The adopted values
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Table 3. Detected transit times.

Planet Time (BJDTDB−2 456 000) Error Source
b 813.3841 0.0016 K2
b 821.3039 0.0107 K2
b 837.1382 0.0014 K2
b 845.06176 0.00098 K2
b 860.9000 0.0012 K2
b 868.8196 0.0016 K2
b 884.6597 0.0017 K2
b 1082.6895 0.0022 NITES
c 817.2741 0.0032 K2
c 841.0942 0.0068 K2
c 864.9105 0.0069 K2
c 888.7136 0.0038 K2

Notes. Simultaneous transits are not shown here.

(from the mean of the monte carlo distribution) and errors (from
the maximum and minimum of the prayer-bead residual test) are
given in Table 3.

We were fortunate enough to obtain an additional transit of
planet b with the NITES telescope (Sect. 2.2). The time of this
transit was obtained using the transit shape derived from the
K2 observations, meaning the only fit parameter was the time
of transit centre. The same Monte Carlo test was performed, but
now adopting the standard deviation of the resulting distribution
as the error. We did not repeat the prayer-bead analysis in this
case, as the transit did not show evidence for systematics.

The observed-calculated times found from our TTV analy-
sis are shown in Figs. 3 and 4, calculated as described in the
figure captions. Planet b, in particular the NITES observation,
show large TTVs of over an hour from the expected K2, lin-
ear ephemeris based, time (∼a quarter of the transit duration).
Within the K2 data alone we do not find the TTVs to be sig-
nificant, beyond the third non-simultaneous transit for planet b
which arrives earlier than would be expected. An initial analysis
of these TTVs is performed in Sect. 7.2. We note that this de-
tection of TTVs implies that the ephemeris in Table 2 are likely
not the “true” ephemeris, in the sense of the mean transit in-
terval over long timeframes. Readers should thus be careful in
predicting transit times. This is discussed further in Sect. 7.

6. PASTIS validation

6.1. Overview

Candidates from Kepler or K2 can be confirmed or validated in
a number of ways. These include radial velocity observations,
BLENDER and PASTIS analyses of the probability of false posi-
tive scenarios (Torres et al. 2010b; Díaz et al. 2014), high reso-
lution photometry to search for close companions (e.g. Everett
et al. 2015; Lillo-Box et al. 2012, 2014; Law et al. 2014) or TTVs
(e.g. Steffen et al. 2012; Nesvorný et al. 2014).

Astrophysical false-positive scenarios such as eclipsing
binaries might mimic the transit of a planet (Torres et al. 2005).
Before claiming the planetary nature of a small and periodic
signal, one should first rule out the possibility that this signal
has a non-planetary origin. When two or more sets of transits
are detected on the same target, their probability not to be
planets significantly decreases (Lissauer et al. 2012; Lissauer
et al. 2014). Rowe et al. (2014) used this planet-likelihood
“multiplicity boost” to validate a large sample of planets in
multiple systems. This validation was possible because of the
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Fig. 3. Observed−Calculated (O−C) transit times for planet b.
Calculated times are taken by setting the O−C values at the first and
last transits to zero because of the absence of well-determined period
information. We do not use the K2-derived ephemeris as these may mis-
represent the scale of the TTVs.
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Fig. 4. As Fig. 3 for planet c. In this case the calculated times are taken
from the ephemeris of Table 2.

large sample of systems considered: a significant fraction of
these systems are expected to be planets.

This argument cannot be used to validate a single multi-
planetary system. Even if the two sets of transit in the K2-19
system are close to MMR, they could orbit two different stars.
The period commensurability between the two could be the re-
sult of chance. For example, Lissauer et al. (2014) presented the
interesting case of Kepler-132, a binary system in which each
stellar member hosts a transiting planet at 6.2 and 6.4 days, re-
spectively. That these two planets are orbiting with almost the
same period is likely a coincidence. Therefore, the fact that the
target star K2-19 hosts two planet-like objects close to MMR
might also be a coincidence, so it is not evident that they are
planets and that they both transit the same star, even if this is
quite likely. In this section, we verify whether both transit sets
have a planetary origin and orbit the target star.
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6.2. Definition of the scenarios and general framework

We identified 11 scenarios that could explain the K2 light curve,
which we called S0 to S10:

– S0: the target star K2-19 is transited by two planets;
– S1: a planet is transiting the target star K2-19 every 8 days

and another planet is transiting a physical companion to the
target star every 12 days;

– S2: a planet is transiting the target star K2-19 every 12 days
and another planet is transiting a physical companion to the
target star every 8 days;

– S3: two planets are transiting a physical companion to the
target star;

– S4: a planet is transiting the target star K2-19 every 8 days
and an eclipsing binary with a period of 12 days is bound
with the target star;

– S5: a planet is transiting the target star K2-19 every 12 days
and an eclipsing binary with a period of 8 days is bound with
the target star;

– S6: a planet is transiting the target star K2-19 every 8 days
and an eclipsing binary with a period of 12 days is chance-
aligned with the target star (background / foreground);

– S7: a planet is transiting the target star K2-19 every 12 days
and an eclipsing binary with a period of 8 days is chance-
aligned with the target star (background / foreground);

– S8: a planet is transiting the target star K2-19 every 8 days
and another planet is transiting every 12 days a star chance-
aligned with the target star (background / foreground);

– S9: a planet is transiting the target star K2-19 every 12 days
and another planet is transiting every 8 days a star chance-
aligned with the target star (background / foreground);

– S10: two planets are transiting a star chance-aligned with the
target star (background/foreground).

To help the reader, a sketch of these scenarios is displayed in
Fig. A.1. The scenario S0 is the one we want to test. The scenar-
ios S1 to S5 invoke a stellar companion to the target star which
is orbited either by planets or by eclipsing binaries. The scenar-
ios S6 to S10 invoke a chance-aligned star transited by planets
or eclipsed by lower-mass stars. For stability reasons, we did not
consider here the case where two stars are eclipsing the same
star at 8 and 12 days.

The probability of a scenario Si is defined in the Bayesian
framework as P (Si | D,I), with P the probability, D the data,
and I the information. Using Bayes theorem, this probability
can be expressed as:

P (Si | D,I) =
P (Si | I) × P (D |Si,I)

P (D |I)
· (3)

P (Si | I) is the a priori probability of the scenario Si,
P (D |Si,I) is its marginalised posterior probability, and
P (D |I) is a normalisation factor. The latter one being difficult
to estimate, we instead computed the odds ratio Oi j between two
scenarios Si and S j, so that this normalisation factor is cancelled
out:

Oi j =
P (Si | D,I)

P
(
S j | D,I

) =
P (Si | I) × P (D |Si,I)

P
(
S j | I

)
× P

(
D |S j,I

) · (4)

Then, assuming that
∑10

i=0 P (Si | D,I) = 1, the probability of a
given scenario Si can be computed as:

P (Si | D,I) =

 10∑
j=0

O ji


−1

. (5)

Therefore, to estimate the probability of the scenario S0, we
need to compute the odds ratio between each pair of scenarios.
For that, it is necessary to evaluate the a priori probability of
each scenario (see Sect. 6.3) as well as their marginalised poste-
rior probability (see Sect. 6.4), which is defined as:

P (D |Si,I) =

∫
P (θ | Si,I) × P (D | θ,Si,I) dθ, (6)

with θ the parameter space needed to model the scenario Si.
Note that P (D | θ,Si,I) is also called the data likelihood which
we computed assuming the data points are independent and
normally distributed around their mean value {x1, ..., xn} with a
width of {σ1, ..., σn}, with n the number of data points:

P (D | θ,Si,I) =

n∏
k=1

1
√

2πσk
exp

−1
2

(
xk − mk (θ | Si)

σk

)2 , (7)

with mk (θ | Si), the value of the model describing the scenario
Si that corresponds to the data point xk.

6.3. A priori probabilities

To compute the probability of each scenario using the Eqs. (3)
to (7), we first need to determine their a priori probability. In
the literature, there is no estimation of what is the occurrence
rate of having, e.g. a two-planet system (like S0) or a planet
in a triple system (like S4 and S5). Thus, we can not rely on
robust statistical analysis of these scenarios to use as priors for
our validation. To estimate these probabilities, we assume that
each element of the systems has an independent probability to
occur, i.e. the probability of having a planet is independent from
that of having a stellar companion. This assumption is obviously
wrong since stellar multiplicity should affect the formation of
planets (e.g. Wang et al. 2014), unless the stars are far enough
from each other so that the impact is small. However, we assume
this discrepancy does not significantly change our results.

For the stellar multiplicity, we used the results from
Raghavan et al. (2010) who reported an occurrence of binary
star systems of 34% and an occurrence of triple systems of
9%. Then, we used the results from Mayor et al. (2011) who
reported an occurrence of planets at the level of 75% (for
any planets with periods up to 10 years). Assuming indepen-
dence between the occurrence rates, we estimated that the a pri-
ori probability to have, e.g. a target orbited by two planets is
P (S0 | I) = 0.75 × 0.75 = 0.5625, or the probability to have
two planets orbiting two different stars of a binary system is
P (S1 | I) = P (S2 | I) = 0.75 × 0.75 × 0.34 = 0.19125. We
listed the a priori probabilities in the Table 4.

To estimate the a priori probability to have a background
source of false positive (scenarios S6 to S10), we use the
AstraLux data (Sect. 2.4). This data confirmed that no nearby
star hosts one of the transiting objects. However, the data does
not completely rule out the possibility that a background or fore-
ground star, chance-aligned with the target, hosts one of the tran-
sits. To evaluate this probability, we used the Besançon galac-
tic model (Robin et al. 2003) and simulated a stellar catalog of
one square degree around the target star. We considered all types
of stars with an apparent magnitude between 10 and 20 in the
z′ band. We set the interstellar extinction to zero magnitude per
kpc in the simulation, which we corrected a posteriori using the
galactic extinction model of Amôres & Lépine (2005). We de-
rived the expected density of stars in the vicinity of K2-19 per
bin of magnitudes within different angular separations from the
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Table 4. A priori probability for the various scenarios given at the start
of Sect. 6.2.

Probability Equation Value
P (S0 | I) 0.75 × 0.75 0.5625
P (S1 | I) 0.75 × 0.34 × 0.75 0.19125
P (S2 | I) 0.75 × 0.34 × 0.75 0.19125
P (S3 | I) 0.34 × 0.75 × 0.75 0.19125
P (S4 | I) 0.75 × 0.09 0.0675
P (S5 | I) 0.75 × 0.09 0.0675
P (S6 | I) 0.75 × (4.6 × 10−5) × 0.34 1.17 × 10−5

P (S7 | I) 0.75 × (2.6 × 10−5) × 0.34 6.57 × 10−6

P (S8 | I) 0.75 × (4.6 × 10−5) × 0.75 2.58 × 10−5

P (S9 | I) 0.75 × (2.6 × 10−5) × 0.75 1.45 × 10−5

P (S10 | I) (2.6 × 10−5) × 0.75 × 0.75 1.45 × 10−5

target star. This density of stars is plotted in Fig. 5, together with
the 5σ detection limits from AstraLux lucky imaging.

A background source of false positives can only mimic the
transit depths of the planets if its magnitude is within a range ∆m
defined as (Morton & Johnson 2011):

∆m = 2.5 log10

(
δtr

δbg

)
, (8)

where δtr and δbg are the depths of the transit, as measured in the
light curve, and the depth on the background star, respectively.
Assuming a maximum eclipse depth of 50% for the background
star, we find that the maximum magnitude range is of 4.9 and 6.0
for the transit signal at 8 and 12 days (respectively). The target
star is of magnitude z′ = 12.6, hence false positives can probe
stars as faint as magnitude 17.4 and 18.6 (respectively) in the
same bandpass. These maximum magnitude limits are also rep-
resented in the Fig. 5. By integrating the expected number of
stars that are bright enough to mimic the transit depths if they
were eclipsing binaries within the detection limits of AstraLux,
we find 2.6 × 10−5 stars that might mimic the 8-d signal and
4.6×10−5 stars that might mimic the 12-d signal. To derive the a
priori probability of the scenarios S6 to S10, we therefore multi-
ply these values with the probability of being an eclipsing binary
or that of hosting a planet. These values are reported in Table 4.
Note that the a priori probability for scenarios S8 to S10, where
the chance-aligned star is transited by one or both planets is over-
estimated since no transiting planet has been found so far with a
transit depth as large as 50%.

6.4. The posterior distribution

To estimate the posterior probability that the K2-19 data are
produced by one of the aforementioned scenarios, we used the
PASTIS software (Díaz et al. 2014; Santerne et al. 2015) to
model the K2 photometric measurements6. The light curve was
modelled using the EBOP code (Nelson & Davis 1972; Etzel
1981; Popper & Etzel 1981) extracted from the JKTEBOP pack-
age (Southworth 2008). For the limb darkening coefficient, we
used the interpolated values from Claret & Bloemen (2011). To
model the stars (see Díaz et al. 2014, for a more detailed de-
scription on how we model the stars in PASTIS), we used the
Dartmouth stellar evolution tracks of Dotter et al. (2008) and
the BT-SETTL stellar atmosphere models of Allard et al. (2012)
which we integrated in the Kepler bandpass. We used the results

6 We used only the data collected in the vicinity of non-simultaneous
transits.

Fig. 5. Map of the density of background stars chance-aligned with K2-
19, integrated within an angular separation of up to 4′′, as a function of
its magnitude in the z′-band. The negative-slope hatched region displays
all the stars that would have been significantly detected in the AstraLux
lucky-imaging data with more than 5σ. The negative-slope and verti-
cal hatched regions display the stars that are too faint to reproduce the
observed transit depth of K2-19b and c, respectively.

from the spectroscopic analysis for the parameters of the target
star and the initial mass function from Kroupa (2001) for the
blended stars. The stars that are defined as gravitationally bound
are assumed to have the same metallicity and the same age. The
orbits are assumed to be circular. We assumed that the blended
stars are at least fainter by 1 mag in the V-band than the target
star, otherwise any such star would have been clearly identified
in the spectroscopic data. The K2 light curve was modelled al-
lowing the out-of-transit flux, contamination and an extra source
of white noise (jitter) to vary. We used an oversampling factor
of 10, to account for the finite integration time of the Kepler
long-cadence data (Kipping 2010). We also model the spectral
energy distribution of K2-19 composed by the magnitudes in the
Johnson B and V , Sloan g′ and i′, 2-MASS J, H, and Ks, and
WISE W1 to W3 bandpasses from the APASS database (Henden
et al. 2015) and the AllWISE catalog (Wright et al. 2010).

We analyse the aforementioned data using the MCMC pro-
cedure described in Díaz et al. (2014). For the orbital ephemeris,
we used Normal priors matching the ephemeris reported in
Table 2 with uncertainties boosted by 100, to avoid biasing the
results with too narrow priors. For the other parameters, we
choose uninformative priors. We limit the priors on the planet
radius to be less than 2.2 Rjup, which is the radius of the biggest
planet found to date: KOI-13 (Szabó et al. 2011). The exhaus-
tive list of parameters and their priors are reported in Table A.1.
For all scenarios, we ran a minimum of 10 chains of 1.106 itera-
tions, randomly started from the joint prior distribution. We then
selected the chains that converged toward the maximum like-
lihood, which we thinned, to derive the posterior distributions
for the 11 scenarios. If the posterior distributions had less than
1000 independent samples, we ran new chains until reaching this
threshold. For the scenarios S6 to S10, we needed to run up to
40 chains to reach the threshold. We report in Table A.2 the me-
dian and 68.3% confidence interval for the free parameters. All
the fitted parameters for the scenario S0 are compatible within
1σ with those derived in Sect. 4.

6.5. Scenario probability and planet validation

We marginalised the posterior distribution P (θ | Si,I) ×
P (D | θ,Si,I) over the parameter space using the method de-
scribed in Tuomi & Jones (2012). As discussed by the authors,
this method underestimates the Occam’s razor when computing
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the evidence. However, as already discussed in Díaz et al. (2014)
and Santerne et al. (2014), this limitation is expected to be rela-
tively weak here since most scenarios have the same number of
free parameters and most parameters share the same priors (e.g.
target parameters, orbital parameters). Therefore, we assumed
our results are not dependent on the method used to marginalise
the posterior distribution.

We then computed the probability of each scenario using
Eq. (5), which we multiplied by the a priori probabilities listed
in Table 4. These scenarios’ probabilities are reported in Table 5.
The scenario S0 (i.e. two planets transiting the target star) has a
probability of 99.2% while the other scenarios have a probabil-
ity below 1%. We can therefore conclude that (1) the two objects
producing the transits seen in the K2-19 light curves are planets;
(2) the two planets are transiting the same star; and (3) that star is
the target star K2-19. As such we are able to statistically validate
the two planets K2-19b and c.

7. TTV mass limits and stability

7.1. Transit timing variations − overview

We leave a detailed study of the TTVs to future analysis (Barros
et al., in prep.). It is however possible to place a number of
constraints on the system even with the limited coverage of the
TTV phase curve which we obtain here. For this initial analy-
sis, we use the analytical representation of the TTVs derived by
Lithwick et al. (2012), hereafter L12, which has been shown to
be valid for systems near MMR (Deck & Agol 2015), a condi-
tion strongly met in this case. We note that the L12 formulae are
only valid for objects not explicitly “in” resonance. Without fur-
ther constraints it is impossible to tell whether this condition is
met here. As such this analysis proceeds under the assumption
that the objects are not in resonance. The use of the L12 formu-
lae allows us to obtain a more intuitive description of the param-
eter space than is generally possible using N-body simulations.
Given the potential for spots or other systematic errors to affect
the K2 transit times, and the otherwise limited coverage of the
TTV phase curve, we defer such an analysis to future work.

The TTV phase curve described by L12 is a sinusoid with
two key parameters: (1) an amplitude |V | given as a function of
planetary mass, stellar mass, 4 (the normalised distance to res-
onance), and the free eccentricity Zfree (a complex number); and
(2) a period given by

Psuper =
Pouter

j|4|
, (9)

where

4 =
Pouter

Pinner

j − 1
j
− 1· (10)

For the 3:2 MMR j = 3. This leads to a phase curve of the form

TTV = |V | sin(
t − t0
Psuper

+ φ), (11)

where φ is the phase of the curve and changes over the secular
timescale (hence is constant for our purposes). In our case, we
can set t0 to be the time of first transit to acceptable accuracy,
due to the alignment of planetary conjunctions demonstrated by
the simultaneous transits observed. Both the amplitude and pe-
riod depend strongly on 4. The closer a system is to resonance,
the larger the amplitude becomes, but the longer the period. For

Table 5. Probability for the various scenarios.

Probability Value
P (S0 | D,I) 99.2+0.4

−0.8 %
log10 (P (S0 | D,I)) −0.0035+0.0017

−0.0035

log10 (P (S1 | D,I)) −2.17 ± 0.30
log10 (P (S2 | D,I)) −2.90 ± 0.32
log10 (P (S3 | D,I)) −3.71 ± 0.34
log10 (P (S4 | D,I)) −3.80 ± 0.31
log10 (P (S5 | D,I)) −4.42 ± 0.44
log10 (P (S6 | D,I)) −5.03 ± 0.54
log10 (P (S7 | D,I)) −5.17 ± 0.38
log10 (P (S8 | D,I)) −4.41 ± 0.41
log10 (P (S9 | D,I)) −3.87 ± 0.39
log10 (P (S10 | D,I)) −6.00 ± 0.32

Notes. The probabilities of the scenarios S1 to S10 are so low that we
provide instead their logarithmic values. The logarithmic value of sce-
nario S0 is provided for comparison.

a system as close to resonance as K2-19, the period is particu-
larly long, of the order several years. This means that within the
80 days of K2 observations, we would not expect to see large
variation. With the later NITES transit however, we are starting
to see the high amplitude TTV curve that these planets exhibit.

The period Psuper depends only on 4, and the period of the
outer body. The TTV amplitude however generally shows a de-
generacy between the free eccentricity Zfree and planetary mass
(L12). Hadden & Lithwick (2014) break this degeneracy statis-
tically, but for individual objects it can be difficult to circum-
vent (although so-called synodic chopping signals can help, see
Nesvorný & Vokrouhlický (2014)). Furthermore with our lim-
ited observations the current phase of the TTV curve φ is un-
clear. In the low free eccentricity case (|Zfree| � |4|), φ must be
zero (L12), however there is no guarantee that this is the case
here.

7.2. Transit timing variations − analysis

We here explore the parameter space allowed by this analyti-
cal representation, given the transit times we have observed. The
analysis is most strongly constrained by the NITES transit, as
this transit allows much more coverage of Psuper. The process is
complicated by a correction term which must be added to our
derived periods. As they are derived from a limited part of the
TTV phase curve, they do not represent the overall “true” period,
in the sense of the mean transit interval over long timescales.
This makes determination of Psuper non-trivial. Small corrections
to the periods can change 4 significantly, which has a strong ef-
fect on the TTV period and amplitude. We circumvent this prob-
lem by utilising the fact that our derived periods are in fact mea-
surements of the gradient of the TTV curve at the time of the
K2 observations. The sensitivity to 4 exhibited by the TTV pe-
riod and amplitude cancels out when calculating the gradient,
allowing the correction to the periods to be made using only the
initial periods. Using this, we can fit our transit times using the
following process:

1. Take values for the input parameters, Mb, Mc, Re(Zfree),
Im(Zfree), φ;

2. calculate the correction to make to the derived periods;
3. use the corrected periods to find the true 4 and Psuper;
4. use the input parameters and the newly corrected values to

calculate the TTV amplitude;
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Fig. 6. The χ2 surface given by the assumption that |Zfree| � |4|. A
good fit is obtained for limited combinations of the two masses. Contour
levels are shown at intervals of 0.5.

5. compare the now fully defined TTV curve to the
observations.

We begin with the case where |Zfree| � |4|, and the free ec-
centricity can be ignored. This reduces the input parameters to
solely the two planetary masses, as φ must also be zero in this
case (L12). We set t0 to be zero at the time of first transit − this is
accurate to within ∼20 days, and given the long Psuper of several
years, this does not need to be more accurate for this analysis.

The parameter space of the low eccentricity case is best
shown in Fig. 6, which shows the log χ2 surface seen. The key
points are a maximum mass for the outer planet c, of 350 M⊕,
found when the mass of the inner planet b goes to zero. The mass
of planet b is less constrained (to constrain it properly using this
analysis would require observations of planet c’s TTV curve),
but can only take high values in the event that planet c’s mass
drops much lower. Similarly Psuper, excepting very high masses
(over ∼600 M⊕) for planet b, is constrained to be greater than
∼480 days, and less than ∼3050 days. The accompanying sur-
face for the “true” 4 is shown in Fig. 7, and makes clear that all
zero eccentricity best fitting planetary mass combinations imply
a “true” 4 that is in fact slightly below the 3:2 resonance. As
such while we cannot confirm this is the case from these obser-
vations alone, it is possible that the apparent planetary periods
oscillate around the resonance over the course of the TTV curve.

Extending our analysis to the case where there is significant
free eccentricity, we can immediately constrain φ. Because the
NITES transit arrived late rather than early, φ must be in the
range 0 ≤ φ ≤ π. Within this range however a number of dif-
ferent effects can occur. We test these cases by repeating the
analysis with the real component of Zfree set to be 0.2, at various
values of φ. We hold the imaginary component at zero. Although
the imaginary component can affect the amplitude and phase of
the TTV curve, as we are trialling different values of φ it is prin-
cipally the amplitude of Zfree which is important. The results of
these tests can be summed up simply: while Mb remains poorly
constrained, Mc can only rise above its zero eccentricity value in
vary rare cases, and then not by much. The worst case we found
was for φ = π/4, where for Mb = 0 the maximum mass for Mc
was 386 M⊕. The particular χ2 square surface varies for different
input φ values. One example surface is shown in Fig. 8, which
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Fig. 7. As Fig. 6, but showing the normalised distance to resonance 4
over the same mass ranges. In this case it can be seen that 4 becomes
negative for all good fits, implying that the planets are in fact below
the 3:2 resonance if this assumption held. Contour levels are shown at
intervals of 0.004.

0 100 200 300 400 500 600
Mc  (M⊕)

0

100

200

300

400

500

600

M
b
 (

M
⊕
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Lo
g
 χ

 s
q
u
a
re

Fig. 8. As Fig. 6, but showing the χ square surface for Re(Zfree) = 0.2,
and φ = π/4 over the same mass range. A degeneracy can be seen
between positive 4 (top left) and negative 4 (down and towards the
right). Contour levels are shown at intervals of 0.5.

also demonstrates an interesting degeneracy that arises between
positive and negative 4 in that case.

Given the poorly mapped TTV curve, the sensitivity of our
analysis to small corrections to the planetary periods, and the
free eccentricity degeneracy it would be premature to make de-
terminations of the planetary masses at this point. We can how-
ever limit both them and the corrections to the periods which
would have to be made. As has been stated, Mc < 350 M⊕ in
the zero free eccentricity case. At this point (Mb = 0, Mc =
350 M⊕) we also obtain the maximum period correction to make
to planet b. This is +0.029 days to Pb in the zero free eccen-
tricity case. As planet b’s mass is less constrained placing a
limit on the period correction for planet c is harder, but limit-
ing Mb to 600 M⊕ gives a maximum amplitude for the period
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correction to Pc of −0.12 days. At the zero eccentricity case
(φ = 0) we are already at the steepest gradient found on the
TTV phase curve − as this sets the period correction, these am-
plitudes cannot go higher. They can however change sign (at
φ = π for example), and so we constrain |Correction(Pb)| <
0.029d and |Correction(Pc)| < 0.12 d immediately. The cor-
rection to Pb can be further limited by noting that not all of
the masses which provide a fit at φ = 0 do so at other val-
ues for φ. In particular, when π/2 < φ < π (the case for a
negative correction to Pb), the allowed range for Mc is much
smaller (Mc . 30 M⊕), which corresponds to a maximum neg-
ative correction of Correction(Pb) > −0.002. As such, the fi-
nal limits for Pb are −0.002 < Correction(Pb) < 0.029, where
Correction(P) is to be made to the periods found in Table 2. This
limits −0.011 < 4 < 0.013 in the extreme case, confirming that
the system remains very close to resonance.

At this stage it is worth stating the now better understood
periods of these two objects. Using the period implied by our
latest NITES transit measurement and the T0 from K2, we obtain
Pb = 7.921+0.028

−0.003 days, and Pc = 11.91 ± 0.12 days, where the
errors are ranges rather than 1σ errors, and account for TTV
related period corrections. When predicting transit times, these
periods and the T0 values of Table 2 should be used. Note that
there will also be possible TTVs of magnitude up to at least an
hour.

7.3. Hill stability

Stable main sequence evolution of a two-planet system may be
guaranteed by residing in a 3:2 MMR, although the Kirkwood
gaps demonstrate that this MMR can instead harbour unstable
orbits. Also, as-yet-undetected planets perturbing the 3:2 MMR
can cause complex dynamical structures (Fuse 2002) and po-
tentially instability. The potential protection afforded by the
3:2 MMR becomes more important when the two planets are
Hill unstable. Two planets are Hill stable if their orbits are guar-
anteed to never cross; hence Neptune and Pluto are Hill unstable,
but protected from each other by the 3:2 MMR. Hill stability is
a function of masses, semimajor axes, eccentricities and incli-
nations. Veras et al. (2013) outline an algorithm for computing
the Hill stability limit; no explicit formula exists for arbitrary
eccentricities and inclinations.

In order for K2-19b and c to be Hill unstable, their masses
and/or eccentricities must be sufficiently large. The mutual in-
clination between the planets of just about a degree negligi-
bly affects the Hill stability limit (Veras & Armitage 2004)7.
Constraining the eccentricities and masses based on orbital peri-
ods alone with Hill stability is a useful exercise but requires as-
sumptions. A commonly-made assumption for transiting planets
is that those planets are on circular orbits; the closer the planet
is to the star, the better that assumption, based on tidal circulari-
sation arguments. We need not make such assumptions here.

We can use the green curves in Fig. 1 of Veras & Ford (2012)
to roughly estimate Hill stability limits for K2-19. Broadly, the
plot shows that the system will be Hill stable if both (i) the sum
of the eccentricities of both bodies (measured in Jacobi coordi-
nates) does not exceed about 0.2; and (ii) that each planet is less
massive than Jupiter. These relations help motivate the setup for
Fig. 9. The figure plots the pairs of planet masses for different
eccentricities (measured in Jacobi coordinates) that would place

7 Just the existence of a nonzero mutual inclination between the plan-
ets indicates that the planets might instead reside in an inclination-based
6:4 MMR (see Eq. (1) of Milani et al. 1989).
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Fig. 9. Hill stability limits for the K2-19 system. We assume M? =
0.9 M�, the mutual inclination between the planets is 1 degree, and
ab/ac is within 0.1 per cent of (3/2)2/3 based on the planetary orbital pe-
riod ratios. Eccentricites are measured in Jacobi coordinates. If K2-19 is
Hill unstable, then the 3:2 MMR might act as a crucial protection mech-
anism to ensure the system’s long-term stability on the main sequence.

the system on the edge of Hill stability, assuming a mutual in-
clination of 1 degree and a semimajor axis ratio which is just
0.1 per cent within (3/2)2/3. We generated each set of coloured
points by sampling 600 different values of each of Mb and Mc
uniformly in log space between 10−6 M� and 10−2 M�, a range
which covers both Earth masses and Jupiter masses. The plot
axes span the entire range of masses that we sampled.

Even if K2-19 is Hill stable, then planet c might eventu-
ally escape the system or planet b might crash into the star
through Lagrange instability (Barnes & Greenberg 2006, 2007;
Raymond et al. 2009; Kopparapu & Barnes 2010; Deck et al.
2013; Veras & Mustill 2013). No analytical Lagrange unstable
boundary is known to exist. Regardless, the 3:2 MMR may then
provide a protection mechanism not only for Hill unstable sys-
tems, but also for Lagrange unstable systems. The upcoming
space mission PLATO (Rauer et al. 2014) will provide accurate
enough stellar age constraints to potentially detect a decreasing
trend in stable multi-planet systems with time due to Lagrange
instability (Veras et al. 2015).

8. Conclusion

We have presented and validated K2-19b and c, a system of two
Neptune sized planets orbiting close to the 3:2 MMR, via tran-
sit observations with K2 and the NITES telescope and analysis
using PASTIS. The inner, larger planet b shows high amplitude
TTVs, and will likely show larger amplitudes when further tran-
sits are observed. The outer, smaller planet c can be expected to
show even greater TTVs (scaled up by the mass ratio of the two
planets), although these have not yet been observed. The precise
ephemeris of these planets is still in doubt, see Sects. 4 and 7 for
the fit values and limits to the possible corrections to them in the
near but not in resonance case.

Future observations of K2-19 have the potential to lead to
interesting discoveries. The system is bright enough to observe
from the ground, leading to great potential for future work. The
observation of more transits of either planet will lead to fully
characterised TTV phase curves, as well as possibly being able
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to fully solve for the planetary masses via full dynamical anal-
ysis. Radial velocity observations have the potential to indepen-
dently characterise the planetary masses, providing a window on
the discrepancies that sometimes exist between radial velocity
and TTV derived masses. We expect that this system is one of
many more which will arise from the K2 mission.
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Appendix A: PASTIS supplements

Fig. A.1. Sketchs of the different scenarios considered for the PASTIS validation of the two planets in the K2-19 system. The sizes are not
proportional to their real values but note the relative size of the orbits between the 8-d and 12-d signals. Note also the orbit of the contaminant
system in scenarios S1 to S5, which marks the difference between these and the unbound scenarios S6 to S10.
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