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LOWER BOUNDS ON BLOWING-UP SOLUTIONS OF THE
THREE-DIMENSIONAL NAVIER–STOKES EQUATIONS

IN Ḣ3/2, Ḣ5/2, AND Ḃ
5/2
2,1

∗

DAVID S. MCCORMICK† , ERIC J. OLSON‡ , JAMES C. ROBINSON§ , JOSE L. RODRIGO† ,

ALEJANDRO VIDAL-LÓPEZ¶, AND YI ZHOU‖

Abstract. If u is a smooth solution of the Navier–Stokes equations on R3 with first blowup

time T , we prove lower bounds for u in the Sobolev spaces Ḣ3/2, Ḣ5/2, and the Besov space Ḃ
5/2
2,1 ,

with optimal rates of blowup: we prove the strong lower bounds ‖u(t)‖Ḣ3/2 ≥ c(T − t)−1/2 and

‖u(t)‖
Ḃ

5/2
2,1

≥ c(T − t)−1; in Ḣ5/2 we obtain lim supt→T− (T − t)‖u(t)‖Ḣ5/2 ≥ c, a weaker result.

The proofs involve new inequalities for the nonlinear term in Sobolev and Besov spaces, both of
which are obtained using a dyadic decomposition of u.

Key words. Navier–Stokes equations, blowup, commutator estimates
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1. Introduction. The aim of this paper is to prove lower bounds on smooth
solutions of the three-dimensional Navier–Stokes equations,

(1.1) ∂tu−∆u+ (u · ∇)u+∇p = 0, ∇ · u = 0,

posed on the entire space R3, under the assumption that there is a finite “first blowup
time” T . Results of this type date back to Leray (1934), who showed that there exists
an absolute constant c1 such that

‖u(t)‖H1 ≥ c1√
T − t

.

In fact this result is a consequence of upper bounds on the local existence time for
solutions with initial data in Ḣ1, a pattern of argument repeated for subsequent lower
bounds in other spaces. Leray also stated (without proof) the lower bound

‖u(t)‖Lp ≥
c

(T − t)(p−3)/2p
,
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2120 MCCORMICK ET AL.

a proof of which can be found in Giga (1986) and Robinson and Sadowski (2014).
Lower bounds in Lp spaces are also discussed in some detail by Lorenz and Zingano
(2015).

More recently there have been a number of papers that treat the problem of
blowup in Sobolev spaces Ḣs for s > 1/2. Benameur (2010) (with a similar periodic
analysis in 2013) showed that for s > 5/2

‖u(t)‖Ḣs ≥ cs‖u(T − t)‖(3−2s)/3L2 (T − t)−s/3,

which was improved by Robinson, Sadowski, and Silva (2012) to

(1.2) ‖u(t)‖Ḣs ≥

{
c(T − t)−(2s−1)/4, s ∈ (1/2, 5/2), s 6= 3/2,

c‖u0‖(5−2s)/5L2 (T − t)−2s/5, s > 5/2.

Solutions of (1.1) have the following important scaling property: if u(x, t) is
a solution with initial data u1(x), then λu(λx, λ2t) is a solution with initial data
uλ(x) := λu1(λx). We say that a space X scales with exponent α if ‖uλ‖X = λα‖u1‖X
(the space Ḣs scales with exponent s − 1

2 ) and two spaces “have the same scaling”
if they scale with the same exponent. Using these scaling considerations Robinson,
Sadowski, and Silva (2012) argue that one would expect the bound

‖u(t)‖Ḣs ≥ c(T − t)
−(2s−1)/4

for all s > 1/2; we refer to this here as the “optimal rate.”
We note that in the bounds in (1.2) the cases s = 3/2 and s = 5/2 are excluded

and that the bounds for s > 5/2 are not at the optimal rate. Although Benameur
(2010) and Robinson, Sadowski, and Silva (2012) both obtained the lower bound

‖û(t)‖L1 ≥ c(T − t)−1/2,

i.e., a bound with the optimal rate in a space with the same scaling as Ḣ3/2, no lower
bound with the correct rate in any space scaling like Ḣ5/2 has previously been shown.

Recently, Cortissoz, Montero, and Pinilla (2014) proved lower bounds in Ḣ3/2

and Ḣ5/2 at the optimal rates but with logarithmic corrections,

‖u(t)‖Ḣ3/2 ≥
c√

(T − t)| log(T − t)|
, ‖u(t)‖Ḣ5/2 ≥

c

(T − t)| log(T − t)|
,

where in both cases c depends on ‖u0‖L2 .
In this paper we fill some of these gaps. We will show that if u is a smooth

solution with maximal existence time T , then

(1.3) ‖u(t)‖Ḣ3/2 ≥
c

(T − t)1/2
,

which we refer to as a “strong blowup estimate,” and

lim sup
t↑T∗

(T − t)‖u(t)‖Ḣ5/2 ≥ c,

which we refer to as a “weak blowup estimate.” We also prove a strong blowup

estimate in the Besov space Ḃ
5/2
2,1 , which has the same scaling as Ḣ5/2,

‖u(t)‖
Ḃ

5/2
2,1
≥ c

T − t
.
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LOWER BOUNDS ON SOLUTIONS OF THE 3D NSE 2121

These bounds follow from two inequalities for the nonlinear term B(u, u) :=
(u · ∇)u. Both are proved using a dyadic decomposition of u. The first is the Sobolev
space inequality

|(ΛsB(u, u),Λsu)| ≤ c‖u‖Ḣs‖u‖Ḣs+1‖u‖Ḣ3/2 , s ≥ 1,

valid whenever the right-hand side is finite (in fact we prove a more general commutator-
type estimate in Proposition 5.1). The second is the Besov bound

|(4̇kB(u, u), 4̇ku)| ≤ cdk2−5k/2‖u‖2
Ḃ

5/2
2,1

‖4̇ku‖L2 ,

where c does not depend on k and
∑
k dk = 1. We present the proofs of these

inequalities in sections 5 and 6, with the resulting blowup estimates given first in
sections 3 and 4.

Within the 10 days prior to the submission of this paper to arXiv, two other
papers were submitted providing proofs of the lower bound in (1.3) for Ḣ3/2—one
by Cheskidov and Zaya (using an alternative dyadic argument) and one by Montero
(using a very neat interpolation argument).

2. Preliminaries. In this section we prove a simple ODE lemma that provides
lower bounds on solutions that blow up, and we recall the dyadic decomposition that
we will use to prove our Sobolev and Besov space inequalities.

2.1. Lower bounds and differential inequalities. Lower bounds on solutions
that blow up at some time T > 0 can be derived from differential inequalities for the
norms of the solution (i.e., from upper bounds on the local existence time). The
following simple ODE lemma makes this precise.

Lemma 2.1. If Ẋ ≤ cX1+γ and X(t)→∞ as t→ T , then

(2.1) X(t) ≥
(

1

γc(T − t)

)1/γ

.

Proof. Write the differential inequality as

dX

X1+γ
≤ cdt

and integrate from t to s to yield

1

X(t)γ
− 1

X(s)γ
≤ γc(s− t).

Letting s→ T yields (2.1).

2.2. Homogeneous Sobolev spaces. We denote by Ḣs(Rn) the space{
u : û ∈ L1

loc(Rn) :

∫
Rn
|ξ|2s|û(ξ)|2 dξ <∞

}
,

where

(2.2) F [u](ξ) = û(ξ) =

∫
Rn

e−2πix·ξu(x) dx

is the Fourier transform of u. We denote by Λs the operator with Fourier multiplier
|ξ|s; then the norm in Ḣs is given by

‖u‖Ḣs = ‖Λsu‖L2 = ‖|ξ|sû(ξ)‖L2 =

∫
Rn
|ξ|2s|û(ξ)|2 dkξ.
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2122 MCCORMICK ET AL.

2.3. Homogeneous Besov spaces. Here we recall some of the standard theory
of homogeneous Besov spaces which we will use throughout the paper; we refer the
reader to Bahouri, Chemin, and Danchin (2011) for proofs and many more details
that we must omit.

For the purposes of this section, given a function φ and j ∈ Z we denote by φj
the dilation

φj(ξ) = φ(2−jξ).

Let C be the annulus {ξ ∈ Rn : 3/4 ≤ |ξ| ≤ 8/3}. There exist radial functions
χ ∈ C∞c (B(0, 4/3)) and ϕ ∈ C∞c (C) both taking values in [0, 1] such that

∀ξ ∈ Rn, χ(ξ) +
∑
j≥0

ϕj(ξ) = 1,(2.3a)

∀ξ ∈ Rn \ {0},
∑
j∈Z

ϕj(ξ) = 1,(2.3b)

if |j − j′| ≥ 2, then suppϕj ∩ suppϕj′ = ∅,(2.3c)

if j ≥ 1, then suppχ ∩ suppϕj = ∅.(2.3d)

We let h = F−1ϕ and h̃ = F−1χ, where F−1 is the inverse of the Fourier transform
operator defined in (2.2).

Given a measurable function σ defined on Rn with at most polynomial growth
at infinity, we define the Fourier multiplier operator Mσ by Mσu := F−1(σû). For
j ∈ Z, the homogeneous dyadic blocks 4̇j and the homogeneous cut-off operator Ṡj
are defined by setting

4̇ju = Mϕju = 2jn
∫
Rn
h(2jy)u(x− y) dy and

Ṡju = Mχju = 2jn
∫
Rn
h̃(2jy)u(x− y) dy.

Formally, we can write the following Littlewood–Paley decomposition:

Id =
∑
j∈Z
4̇j .

We denote by S ′h(Rn) the space of tempered distributions such that

lim
λ→∞

‖Mθ(λ · )u‖L∞ = 0 for any θ ∈ C∞c (Rn).

Then the homogeneous decomposition makes sense in S ′h(Rn): whenever u ∈ S ′h(Rn),

u = limj→∞ Ṡju in S ′h(Rn). Moreover, using the homogeneous decomposition, it is
straightforward to show that

Ṡju =
∑

j′≤j−1

4̇j′u.

Given a real number s and two numbers p, r ∈ [1,∞], the homogeneous Besov
space Ḃsp,r(Rn) consists of those distributions u in S ′h(Rn) such that

‖u‖Ḃsp,r :=

(∑
j∈Z

2rjs‖4̇ju‖rLp
)1/r

<∞
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if r <∞ and
‖u‖Ḃsp,∞ := sup

j∈Z
2js‖4̇ju‖Lp <∞

if r = ∞. For each of these spaces all choices of the function ϕ used to define the
blocks 4̇j lead to equivalent norms and hence to the same space.

Note that if u ∈ S ′h(Rn) belongs to Ḃsp,r(Rn), then there exists a nonnegative
sequence (dj)j∈Z such that

(2.4) ‖4̇ju‖Lp ≤ dj2−js‖u‖Ḃsp,r ∀ j ∈ Z, where ‖(dj)‖`r = 1.

3. Blowup estimates in Ḣ3/2 (strong) and Ḣ5/2 (weak). The proofs of the
blowup results follows easily from upper bounds on the nonlinear term. We postpone
a detailed presentation of the estimates and proofs of these bounds until section 5.
In this section we assume those estimates and present a straightforward proof of the
strong blowup estimate in Ḣ3/2 and, with an additional contradiction argument, of
the weak blowup estimate in Ḣ5/2.

Theorem 3.1. Suppose that u is a classical solution of the Navier–Stokes equa-
tions with maximal existence time T . Then

(3.1) ‖u(T − t)‖2
Ḣ3/2 ≥ c−23/2t

−1.

Proof. We take the inner product of the equation with u in Ḣ3/2, i.e., we apply
Λ3/2 and take the inner product with Λ3/2u,

1

2

d

dt
‖u‖2

Ḣ3/2 + ‖u‖2
Ḣ5/2 = (Λ3/2B(u, u),Λ3/2u)

≤ c3/2‖u‖2Ḣ3/2‖u‖Ḣ5/2 ,

using the inequality

|(Λs[(u · ∇)u],Λsu)| ≤ c‖u‖Ḣs‖u‖Ḣs+1‖u‖Ḣ3/2 , s ≥ 1,

from (5.5) with s = 3/2, which is proved in section 5. We use Young’s inequality on
the right-hand side to obtain

d

dt
‖u‖2

Ḣ3/2 + ‖u‖2
Ḣ5/2 ≤ c23/2‖u‖

4
Ḣ3/2 .

Dropping the second term on the left-hand side, the required lower bound follows
immediately from Lemma 2.1.

We now use a contradiction argument to obtain a weak lower bound in Ḣ5/2 at
the correct rate.

Theorem 3.2. Suppose that u is a classical solution of the Navier–Stokes equa-
tions with maximal existence time T . Then

(3.2) lim sup
t↑T

(T − t)‖u(t)‖Ḣ5/2 ≥ c.

Proof. We proceed by contradiction and suppose that for τ ≤ t ≤ T ,

(3.3) ‖u(t)‖Ḣ5/2 ≤ ε(T − t)−1,
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2124 MCCORMICK ET AL.

where ε is chosen so that 2c3/2ε < 1. Then on this interval

1

2

d

dt
‖u‖2

Ḣ3/2 ≤ c3/2‖u‖2Ḣ3/2‖u‖Ḣ5/2 − ‖u‖2Ḣ5/2 .

Since ax− x2 is increasing in x while x ≤ a/2, using our assumption (3.3) along with
the result (3.1) from Theorem 3.1, we obtain

‖u(t)‖Ḣ5/2 ≤
ε

T − t
≤

1
2c
−1
3/2

T − t
≤ 1

2

[
c3/2‖u(t)‖2

Ḣ3/2

]
.

It follows that
d

dt
‖u‖2

Ḣ3/2 ≤ 2c3/2‖u‖2Ḣ3/2

ε

T − t
− 2ε2

(T − t)2
.

Using the integrating factor (T − t)2c3/2ε (note that the exponent is < 1) this becomes

d

dt

(
‖u‖2

Ḣ3/2(T − t)2c3/2ε
)
≤ −ε2(T − t)−(2−2c3/2ε).

Now drop the right-hand side and integrate from τ to t to conclude that

‖u(t)‖2
Ḣ3/2 ≤ ‖u(τ)‖2

Ḣ3/2(T − τ)2c3/2ε(T − t)−2c3/2ε

= Cτ (T − t)−2c3/2ε,

which contradicts (3.1) provided that 2c3/2ε < 1, which we assumed above. It follows
that there exist tk → T such that

‖u(tk)‖Ḣ5/2 ≥ (4c3/2)−1t−1k

and (3.2) follows.

Note that this bound does not use directly any differential inequality governing
the evolution of ‖u‖Ḣ5/2 .

4. Strong blowup estimate in Ḃ
5/2
2,1 . Although we have been unable to prove

a strong lower bound in Ḣ5/2 at the correct rate (i.e., ‖u(t)‖Ḣ5/2 ≥ c/(T − t)) we can

obtain such a bound in the Besov space Ḃ
5/2
2,1 , which has the same scaling (exponent

2). Again the proof relies on estimates of the nonlinear term, which we delay until
section 6.

Theorem 4.1. Suppose that u is a classical solution of the Navier–Stokes equa-
tions with maximal existence time T . Then

(4.1) ‖u(t)‖
Ḃ

5/2
2,1
≥ c

T − t
.

Proof. We consider the equation for 4̇ku, which can be rewritten (by adding and
subtracting the term involving the summation in i) as

∂

∂t
4̇ku−∆4̇ku+

[
4̇k((u · ∇)u)−

∑
i

Ṡk−1ui∂i4̇ku

]
+
∑
i

Ṡk−1ui∂i4̇ku

+∇4̇kp = 0,
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since 4̇k and ∆ commute. Taking the inner product in L2 with 4̇ku yields

1

2

d

dt
‖4̇ku‖2L2 + ‖∇4̇ku‖2L2 ≤

∥∥∥∥∥4̇k((u · ∇)u)−
∑
i

Ṡk−1ui∂i4̇ku

∥∥∥∥∥
L2

‖4̇ku‖L2 .

We drop the second term on the left-hand side and divide by ‖4̇ku‖L2 to yield

d

dt
‖4̇ku‖L2 ≤

∥∥∥∥∥4̇k((u · ∇)u)−
∑
i

Ṡk−1ui∂i4̇ku

∥∥∥∥∥
L2

≤ cdk(t)2−5k/2‖u‖2
Ḃ

5/2
2,1

,

using Proposition 6.6, and where
∑
dk(t) = 1 for each t.

We now multiply by 25k/2 and sum to obtain

d

dt
‖u‖

Ḃ
5/2
2,1
≤ c‖u‖2

Ḃ
5/2
2,1

,

from which (4.1) follows at once via Lemma 2.1.

5. Bounds for the nonlinear term in Sobolev spaces. In this section we
will prove the bound on the nonlinear term that we used in the proof of Theorem 3.1,
namely

|(Λ3/2B(u, u),Λ3/2u)| ≤ c3/2‖u‖2Ḣ3/2‖u‖Ḣ5/2 .

In fact we prove a somewhat more general result in Corollary 5.4, which in turn
is a consequence of the following commutator estimate (cf. Kato and Ponce (1988),
Fefferman et al. (2014)).

Proposition 5.1. Take s ≥ 1 and s1, s2 > 0 such that

(5.1) 1 ≤ s1 < n
2 + 1 and s1 + s2 = s+ n

2 + 1.

Then there exists a constant c such that for all u, v ∈ Ḣs1(Rn) ∩ Ḣs2(Rn),

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖L2 ≤ c(‖u‖Ḣs1‖v‖Ḣs2 + ‖u‖Ḣs2 ‖v‖Ḣs1 ).

To prove Proposition 5.1 we need two simple lemmas. A proof of the first can be
found in Fefferman et al. (2014); the second is an immediate consequence of Bernstein’s
inequality (see McCormick, Robinson, and Rodrigo (2013), for example).

Lemma 5.2. If s ≥ 1 and |b| < |a|/2, then

||a|s − |a− b|s| ≤ c|a− b|s−1|b|,

where c = s3s−1.

Lemma 5.3. There exists a constant c such that for any k ∈ Z and any p, q with
1 ≤ p ≤ q ≤ ∞, if 4̇ku ∈ Lp(Rn), then 4̇ku ∈ Lq(Rn) and

‖4̇ku‖Lq ≤ c2kn(1/p−1/q)‖4̇ku‖Lp .

We can now give the proof of Proposition 5.1.
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Proof of Proposition 5.1. Write u =
∑
i∈Z 4̇iu and v =

∑
j∈Z 4̇jv; then

f = Λs[(u · ∇)v]− (u · ∇)(Λsv)

=
∑
j∈Z

{
Λs

[(∑
i∈Z
4̇iu

)
∇4̇jv

]
−

(∑
i∈Z
4̇iu

)
∇Λs4̇jv

}

=
∑
j∈Z

{
Λs

[(
j−10∑
i=−∞

4̇iu

)
∇4̇jv

]
−

(
j−10∑
i=−∞

4̇iu

)
∇Λs4̇jv

}

+
∑
j∈Z

Λs

 j+9∑
i=j−9

4̇iu

∇4̇jv
−

 j+9∑
i=j−9

4̇iu

∇Λs4̇jv


+
∑
i∈Z

Λs

4̇iu
 i−10∑
j=−∞

∇4̇jv

− 4̇iu
 i−10∑
j=−∞

∇Λs4̇jv


=:
∑
j∈Z

f1,j +
∑
j∈Z

f2,j +
∑
i∈Z

f3,i.

Taking the Fourier transform of f1,j , we have

f̂1,j(ξ) =

∫
Rn

(|ξ|s − |η|s)
j−10∑
i=−∞

̂̇4iu(ξ − η) iη
̂̇4jv(η) dη.

Since i ≤ j − 10, |ξ − η| < |η|/2, so by Lemma 5.2 we have

|f̂1,j(ξ)| ≤
∫
Rn
|ξ − η|

∣∣∣∣∣
j−10∑
i=−∞

̂̇4iu(ξ − η)

∣∣∣∣∣ |η|s
∣∣∣∣ ̂̇4jv(η)

∣∣∣∣ dη.

Let q1, q2 satisfy 1
q1

+ 1
q2

= 1
2 and 2 < q1 <

n
s1−1 , and let p1, p2 satisfy 1

pi
= 1

qi
+ 1

2 .

Noting that 1 + 1
2 = 1

p1
+ 1

p2
, by Young’s inequality for convolutions we have

‖f̂1,j‖L2 ≤

∥∥∥∥∥|ζ|
∣∣∣∣∣
j−10∑
i=−∞

̂̇4iu(ζ)

∣∣∣∣∣
∥∥∥∥∥
Lp1

∥∥∥∥|η|s ∣∣∣∣ ̂̇4jv(η)

∣∣∣∣∥∥∥∥
Lp2

.

As 1− s1 + n/q1 > 0, by Hölder’s inequality we have∥∥∥∥∥|ζ|
∣∣∣∣∣
j−10∑
i=−∞

̂̇4iu(ζ)

∣∣∣∣∣
∥∥∥∥∥
Lp1

≤
∥∥|ζ|1−s11{|ζ|≤2j−10}

∥∥
Lq1

∥∥∥∥∥|ζ|s1
∣∣∣∣∣
j−10∑
i=−∞

̂̇4iu(ζ)

∣∣∣∣∣
∥∥∥∥∥
L2

≤ c2j(1−s1+n/q1) ‖u‖Ḣs1 .

For the other term, by Hölder’s inequality,∥∥∥∥|η|s ̂̇4jv(η)

∥∥∥∥
Lp2

≤
∥∥|η|s1{2j−1≤|ζ|≤2j+1}

∥∥
Lq2

∥∥∥∥ ̂̇4jv(η)

∥∥∥∥
L2

≤ c2j(s+n/q2)
∥∥∥4̇jv∥∥∥

L2
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hence

‖f1,j‖L2 ≤ c ‖u‖Ḣs1 2j(s−s1+n/q1+n/q2+1)
∥∥∥4̇jv∥∥∥

L2

≤ c ‖u‖Ḣs1 2js2
∥∥∥4̇jv∥∥∥

L2

and thus

(5.2)
∑
j∈Z
‖f1,j‖2L2 ≤ c ‖u‖2Ḣs1 ‖v‖

2
Ḣs2 .

For the second term, since
(∑j+9

i=j−9 4̇iu
)
∇4̇jv is localized in Fourier space in

an annulus centered at radius 2j , we obtain

‖f2,j‖L2 ≤

∥∥∥∥∥∥Λs

 j+9∑
i=j−9

4̇iu

∇4̇jv
∥∥∥∥∥∥

L2

+

∥∥∥∥∥∥
 j+9∑
i=j−9

4̇iu

∇Λs4̇jv

∥∥∥∥∥∥
L2

≤ c2js
j+9∑
i=j−9

‖4̇iu‖L4‖∇4̇jv‖L4 +

j+9∑
i=j−9

‖4̇iu‖L4‖∇Λs4̇jv‖L4

≤ c2j(s+n/4)‖∇4̇jv‖L2

j+9∑
i=j−9

2in/4‖4̇iu‖L2

≤ c2j(s+n/2−s1)‖∇4̇jv‖L2

j+9∑
i=j−9

2j(s1−n/4)2in/4‖4̇iu‖L2

using Bernstein’s inequality (Lemma 5.3). Since |i− j| ≤ 9, 2j(s1−n/4) ≤ c2i(s1−n/4),
so

‖f2,j‖L2 ≤ c2j(s2−1)‖∇4̇jv‖L2

j+9∑
i=j−9

2is1‖4̇iu‖L2 ,

and thus

(5.3)
∑
j∈Z
‖f2,j‖2L2 ≤ c ‖u‖2Ḣs1 ‖v‖

2
Ḣs2 .

For the third term, we use the Sobolev embedding

‖∇u‖Lp ≤ c‖u‖Ḣs1

provided p = 2n
n−2s1+2 . Using Hölder’s inequality, we obtain

‖f3,i‖L2 ≤

∥∥∥∥∥∥Λs

4̇iu
 i−10∑
j=−∞

∇4̇jv

∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥4̇iu
 i−10∑
j=−∞

∇Λs4̇jv

∥∥∥∥∥∥
L2

≤ 2is‖4̇iu‖Ln/(s1−1)

∥∥∥∥∥∥
i−10∑
j=−∞

∇4̇jv

∥∥∥∥∥∥
L2n/(n−2s1+2)

+ ‖4̇iu‖Ln/(s1−1)

∥∥∥∥∥∥
i−10∑
j=−∞

∇Λs4̇jv

∥∥∥∥∥∥
L2n/(n−2s1+2)
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≤ c2i(s+n/2+1−s1)‖4̇iu‖L2‖v‖Ḣs1
≤ c2is2‖4̇iu‖L2‖v‖Ḣs1

using Bernstein’s inequality (Lemma 5.3) and the fact that 2js ≤ 2is. Hence

(5.4)
∑
i∈Z
‖f3,i‖2L2 ≤ c ‖u‖2Ḣs2 ‖v‖

2
Ḣs1 .

Combining (5.2), (5.3), and (5.4) yields the desired result.

In particular, taking s = s1 = n/2 and s2 = n/2 + 1 in Proposition 5.1 yields

‖Λn/2[(u · ∇)v]− (u · ∇)(Λn/2v)‖L2

≤ c(‖∇u‖Ḣn/2‖v‖Ḣn/2 + ‖u‖Ḣn/2‖∇v‖Ḣn/2).

The counterexample in the appendix to Fefferman et al. (2014) shows that one cannot
remove the second term on the right-hand side, at least in the case n = 2.

We will use this estimate in the form of the following corollary, which provides a
partial generalisation of Lemma 1.1 from Chemin (1992).

Corollary 5.4. Take s ≥ 1 and s1, s2 > 0 such that

1 ≤ s1 < n
2 + 1 and s1 + s2 = s+ n

2 + 1.

Then there exists a constant c such that for all u, v ∈ Ḣs1(Rn)∩Ḣs2(Rn) with ∇·u = 0,

|(Λs[(u · ∇)v],Λsv)| ≤ c(‖u‖Ḣs1‖v‖Ḣs2 + ‖u‖Ḣs2 ‖v‖Ḣs1 )‖v‖Ḣs .

Proof. Observe that since

((u · ∇)Λsv,Λsv) = 0

it follows that

(Λs[(u · ∇)v],Λsv) = (Λs[(u · ∇)v]− (u · ∇)Λsv,Λsv)

and the inequality is an immediate consequence of Proposition 5.1.

Note that in particular for any s ≥ 1, if ∇ · u = 0, then

(5.5) |(Λs[(u · ∇)u],Λsu)| ≤ c‖u‖Ḣs‖u‖Ḣs+1‖u‖Ḣn/2

whenever the right-hand side is finite.

6. Bounds for the nonlinear term in Besov spaces. Much like the Sobolev
embeddings, Besov spaces enjoy certain embeddings with the correct exponents. We
quote the two embeddings we will use most frequently.

Proposition 6.1 (Proposition 2.20 in Bahouri, Chemin, and Danchin (2011)).
Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. For any real number s, we have the
continuous embedding

Ḃsp1,r1(Rn) ↪→ Ḃs−n(1/p1−1/p2)p2,r2 (Rn).

Proposition 6.2 (Proposition 2.39 in Bahouri, Chemin, and Danchin (2011)).
For 1 ≤ p ≤ q ≤ ∞, we have the continuous embedding

Ḃ
n/p−n/q
p,1 (Rn) ↪→ Lq(Rn).
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6.1. Homogeneous paradifferential calculus. Let u and v be tempered dis-
tributions in S ′h(Rn). We have

u =
∑
j′∈Z
4̇j′u and v =

∑
j∈Z
4̇jv,

so, at least formally,

uv =
∑
j,j′∈Z

4̇j′u4̇jv.

One of the key techniques of paradifferential calculus is to break the above sum into
three parts, as follows: define

Ṫuv :=
∑
j∈Z

Ṡj−1u4̇jv

and

Ṙ(u, v) :=
∑
|k−j|≤1

4̇ku4̇jv.

At least formally, the following Bony decomposition holds true:

uv = Ṫuv + Ṫvu+ Ṙ(u, v).

We now state two standard estimates on Ṫ and Ṙ that we will use in proving our a
priori estimates.

Lemma 6.3 (Theorem 2.47 from Bahouri, Chemin, and Danchin (2011)). There
exists a constant C such that for any real number s and any p, r ∈ [1,∞] we have, for
any u ∈ L∞ and v ∈ Ḃsp,r,

‖Ṫuv‖Ḃsp,r ≤ C
1+|s|‖u‖L∞‖v‖Ḃsp,r .

Lemma 6.4 (Theorem 2.52 from Bahouri, Chemin, and Danchin (2011)). Let
s1, s2 ∈ R such that s1 + s2 > 0. There exists a constant C = C(s1, s2) such that for
any p1, p2, r1, r2 ∈ [1,∞], u ∈ Ḃs1p1,r1 , and v ∈ Ḃs2p2,r2 ,

‖Ṙ(u, v)‖
Ḃ
s1+s2
p,r

≤ C‖u‖Ḃs1p1,r1 ‖v‖Ḃs2p2,r2

provided that
1

p
:=

1

p1
+

1

p2
≤ 1 and

1

r
:=

1

r1
+

1

r2
≤ 1.

We also require the following result, a particular case of Lemma 2.100 from Ba-
houri, Chemin, and Danchin (2011).

Lemma 6.5. Let −1− n/2 < σ < 1 + n/2 and 1 ≤ r ≤ ∞. Let v be a divergence-
free vector field on Rn, and set Qj := [(v · ∇), 4̇j ]f . There exists a constant C =
C(σ, n) such that ∥∥∥(2jσ‖Qj‖L2

)
j

∥∥∥
`r
≤ C‖∇v‖

Ḃ
n/2
2,∞∩L∞

‖f‖Ḃσ2,r .
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6.2. Main estimate in Besov spaces. We are now ready for the main estimate
in Besov spaces.

Proposition 6.6. There exists a constant c > 0 such that if u ∈ Ḃn/2+1
2,1 , then

(6.1)

∥∥∥∥∥4̇k((u · ∇)u)−
∑
i

Ṡk−1ui∂i4̇ku

∥∥∥∥∥
L2

≤ c dk2−k(n/2+1)‖u‖2
Ḃ
n/2+1
2,1

with
∑
k dk = 1.

Throughout the proof we use . to denote that the inequality holds up to a
multiplicative constant, which may vary from line to line.

Proof. Notice that the lth coordinate of (u ·∇)u is given by
∑
i ui∂iul, and so we

have
(u · ∇u)l =

∑
i

Ṫui∂iul +
∑
i

Ṫ∂iului +
∑
i

Ṙ(ui, ∂iul).

Recall that by definition

Ṫui∂iul =
∑
j

Ṡj−1ui4̇j∂iul,

and so we can rewrite 4̇kṪu∇ul as follows:∑
i

4̇kṪui∂iul =
∑
i

Ṡk−1ui∂i4̇kul(6.2a)

+
∑
i

∑
j

(Ṡj−1ui − Ṡk−1ui)∂i4̇k4̇jul(6.2b)

+
∑
i

∑
j

[4̇k, Ṡj−1ui∂i]4̇jul.(6.2c)

Rearranging this we obtain the following expression for the lth component of the term
we want to estimate:(

4̇k((u · ∇)u)−
∑
i

Ṡk−1ui∂i4̇ku
)
l

=
∑
i

∑
j

(Ṡj−1ui − Ṡk−1ui)∂i4̇k4̇jul(6.3a)

+
∑
i

∑
j

[4̇k, Ṡj−1ui∂i]4̇jul(6.3b)

+
∑
i

4̇kṪ∂iului(6.3c)

+
∑
i

4̇kṘ(ui, ∂iul).(6.3d)

We will show that L2 norm of each of the four terms in the right-hand side
is controlled by a constant multiple of dk2−k(n/2+1)‖u‖2

Ḃ
n/2+1
2,1

, hence obtaining the

result.
For (6.3a), ignoring the summation in i for now we have∑
j

(Ṡj−1ui − Ṡk−1ui)∂i4̇k4̇jul = 4̇k−1ui4̇k4̇k+1∂iul − 4̇k−2ui4̇k4̇k−1∂iul,
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and so (now summing in i as well)

‖expression (6.3a)‖L2 . 2k‖4̇k−1u‖L∞‖4̇kul‖L2

+ 2k‖4̇k−2u‖L∞‖4̇kul‖L2

. ‖4̇kul‖L2‖u‖
Ḃ
n/2+1
2,1

. dk2−k(n/2+1)‖u‖
Ḃ
n/2+1
2,1

‖ul‖Ḃn/2+1
2,1

since
2k‖4̇ku‖L∞ ≤ ‖u‖Ḃ1

∞,∞
. ‖u‖

Ḃ
n/2+1
2,1

.

Above we have used the definition of Ḃ1
∞,∞ and the embedding

(6.4) Ḃ
n/2+1
2,1 (Rn) ↪→ Ḃ1

∞,∞(Rn).

from Proposition 6.1, and also (2.4), to find

‖4̇ku‖L2 . dk2−k(n/2+1)‖u‖
Ḃ
n/2+1
2,1

.

To treat (6.3b), define Qk =
∑
j [4̇k, Ṡj−1ui∂i]4̇jul and apply Lemma 6.5 to give∥∥∥2k(n/2+1)‖Qk‖L2

∥∥∥
`1

. ‖∇u‖
Ḃ
n/2
2,∞∩L∞

‖u‖
Ḃ
n/2+1
2,1

. ‖u‖2
Ḃ
n/2+1
2,1

,

since Ḃ
n/2
2,1 embeds continuously into L∞ and Ḃ

n/2
2,∞ (see Propositions 6.1 and 6.2). It

follows that
‖Qk‖L2 . dk2−k(n/2+1)‖u‖2

Ḃ
n/2+1
2,1

.

To estimate (6.3c) we use Lemma 6.3 and the embeddings from Proposition 6.2;
we have

‖Ṫ∂iului‖Ḃn/2+1
2,1

. ‖∇ul‖L∞‖ui‖Ḃn/2+1
2,1

. ‖u‖2
Ḃ
n/2+1
2,1

.

Using (2.4) we find

‖4̇kṪ∂iului‖2L ≤ dk2−k(n/2+1)‖u‖2
Ḃ
n/2+1
2,1

.

Finally we consider (6.3d); using Lemma 6.4 with p = 2, (p1, p2) = (∞, 2), r = 1,
(r1, r2) = (∞, 1), (s1, s2) = (1, n/2), we obtain

‖Ṙ(ui, ∂iul)‖Ḃn/2+1
2,1

. ‖ui‖Ḃ1
∞,∞
‖∇ul‖Ḃn/22,1

. ‖u‖2
Ḃ
n/2+1
2,1

,

using the embedding (6.4) once more. Again, by (2.4) we find

‖4̇kṘ(ui, ∂iul)‖L2 . dk2−k(n/2+1)‖u‖2
Ḃ
n/2+1
2,1

.

Combining these estimates yields (6.1).
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7. Conclusion. Lower bounds in Ḣ3/2 are now available from a number of
sources. It remains an interesting open question whether it is possible to obtain
a strong lower bound in Ḣ5/2, and any type of lower bound at the optimal rate in
Ḣs with s > 5/2. If not, it would be worthwhile to develop an understanding of the
qualitative change of the initial value problem for u0 ∈ Ḣs from s < 5/2 to s > 5/2.
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