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Abstract

Background: Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving
randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately
reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating
the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments
across multiple outcome measures while accounting for the correlation structure between outcomes.

Methods: The standard NMA model is extended to multiple outcome settings in two stages. In the first stage,
information is borrowed across outcomes as well across studies through modelling the within-study and between-study
correlation structure. In the second stage, we make use of the additional assumption that intervention effects are
exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on
outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included
in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of
nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe
storage of other household products, and possession of poison centre control telephone number) in households with
children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations.

Results: Univariate and the first stage multivariate models produced broadly similar point estimates of intervention
effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified
for the between-study covariance structure. The second stage multivariate analyses produced more precise effect
estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on
outcomes not directly considered by the studies included in the analysis.

Conclusions: Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve
the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

Keywords: Network meta-analysis, Mixed treatment comparisons, Multiple outcomes, Multivariate, WinBUGS
Background
Meta-analysis or the quantitative synthesis of evidence, usu-
ally from systematic reviews, has become a popular tool in
healthcare evaluations [1,2]. Largely driven by a desire for
more realistic synthesis of complex healthcare evidence, in-
creasingly sophisticated methodology has been developed.
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One area of meta-analysis that has seen significant meth-
odological development is the application of multivariate
statistical methods for the comparison of treatments on two
or more endpoints (usually known as multivariate meta-
analysis) [3-8]. These methods are appealing because many
studies and systematic reviews focus on broad health effects
and therefore typically report several outcome measures
[4,6,9]. In such instances, the multivariate approach offers
some advantages over separate univariate analyses including
the ability to account for the inter-relationship between
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outcomes and borrow strength across studies as well as
across outcomes [10] through modelling the correlation
structure [7,11]. This can potentially reduce outcome report-
ing bias [12] and the uncertainty with which intervention ef-
fects are estimated. Additionally, in a decision making
context where the synthesis is meant to inform a health eco-
nomic evaluation, accounting for the correlations between
effect estimates on different outcomes is important as the
dependence between outcomes may have implication for es-
timating quality of life or economic consequences associated
with treatment [13]. An example is the situation where a
particularly effective treatment for a disease condition is as-
sociated with a large side effect profile. Ignoring information
about the inter-relationships between beneficial and ‘side ef-
fect’ endpoints in such instances may have implications for
quantifying the benefits associated with treatment.
When summarising effectiveness evidence, correlations

between the effectiveness estimates typically arise at either
within-study and or between-study levels. At the within-
study level, correlations arise mainly due to differences in
patient-level characteristics. They are rarely reported in the
published literature and usually have to be estimated from
external sources such as individual patient level data if avail-
able or elicited from expert opinion [8,11,14,15]. At the
between-study level, correlations arise from i) differences in
the distribution of patient-level characteristics across studies,
in which case they will be related to the within-study corre-
lations and/or ii) differences in the distribution of other
study-level characteristics such as study design, population
and baseline disease severity [16]. The within-study correla-
tions thus give an indication of the association between mul-
tiple endpoints within a study while the between-study
correlations indicate how the underlying true study-specific
effects on different outcomes vary jointly across studies.
A second area of rapid methodological development is

network meta-analysis (NMA) [17], also known as mixed
treatment comparison meta-analysis [18-20] or multiple
treatment meta-analysis [21-23]. NMA methods extend
standard pairwise meta-analysis to enable simultaneous
comparison of multiple treatments while maintaining ran-
domisation of individual studies [18]. The method enables
‘direct’ evidence (i.e. evidence from studies directly com-
paring two interventions of interest) and ‘indirect’ evi-
dence (i.e. evidence from studies that do not compare the
two interventions directly) to be pooled under the as-
sumption of evidence consistency [24]. Estimates of inter-
vention effects can then be obtained, including effects
between treatments not directly compared within any one
individual study [19]. NMA methods thus provide a co-
herent framework for appraising all available evidence
relevant to a specific decision problem. The results from
such analyses are increasingly being used to inform eco-
nomic evaluations in healthcare decision making where
coherent decisions (about judicious use of scarce resource)
need to be made based on sound appraisal of all available
evidence.
Approaches to extend NMA methodology to multiple

outcome settings have been proposed in the literature
[13,25-27], initially focusing on mutually exclusive compet-
ing risk outcomes [13] or a single outcome measured at
multiple time points [26,28]. More recently, Efthimiou et al.
[14] proposed a method for modelling multiple correlated
outcomes in networks of evidence with binary outcome
measures. The proposed method accounts for both the
within-study and between-study correlation structure and
includes a strategy for eliciting expert opinion to inform the
within-study correlations. This paper contributes to the
growing literature on the simultaneous evaluation of corre-
lated outcomes. We do this in two stages. In the first stage
(labelled as model 2 in the remainder of the paper), informa-
tion is borrowed across studies as well as across outcomes
through modelling the correlations between effectiveness es-
timates on different outcomes. In the second stage (labelled
as model 3 in the remainder of the paper), additional infor-
mation is borrowed across outcomes based on ideas for
combining evidence across human and animal studies ori-
ginally proposed by DuMouchel and Harris [29] and also
revisited by Jones et al. [30]. The proposed second stage
analysis methods allows: i) disconnected treatments to be in-
corporated as nodes in a network of evidence and ii) predic-
tion of intervention effects for outcomes where evidence
from primary studies is either sparse or not directly available
from any one study included in the analysis. The motivating
application area is injury prevention in children where a
broad array of outcomes and intervention packages have
been evaluated with the aim of increasing safety practices
around the home (to ultimately reduce household injuries).
The remainder of this paper is structured as follows: the

example dataset is first described followed by a Methods
section describing the statistical models developed and
implementation of the models. These are followed by sec-
tions presenting the results of applying the methods to the
motivating dataset and a discussion.

Dataset
The example data comes from a recently updated
Cochrane systematic review of home safety education
and provision of safety equipment for injury prevention
in children [31]. The models developed in this paper are
applied to a subset of the review evidence relating to the
prevention of poisoning injuries. Table 1 presents the
data from 22 studies for the following outcomes:

a) Safe storage of medicines
b) Safe storage of other household products

(e.g. cleaning products) and
c) Possession of a poison control centre (PCC)

telephone number.



Table 1 Summary of the available evidence

Outcome information (no. of events/no. of households in control
versus (vs.) treatment arm)

Comparison First author
and year of
publication

IPD Safe storage
of medicines

Safe storage of other
household products

Possession of a PCC
number

Usual care (1) vs. Education (2) Gielen 2007 Yes 178/271 vs. 188/249Ɨ 44/62 vs. 57/73Ɨ

Nansel 2002 Yes 83/89 vs. 79/85 65/89 vs. 66/85 59/89 vs. 63/85

Nansel 2008 Yes 72/74 vs. 140/144† 59/73 vs. 117/144† 50/59 vs. 90/119†

Kelly B 1987 No 54/54 vs. 55/55 43/54 vs. 49/55

McDonald 2005 No 4/57 vs. 6/60 3/57 vs. 6/61

Kelly N 2003 No 45.56/136.68 vs.
112.95/137.63*

Usual care (1) vs. Education + free/low
cost safety equipment (3)

Clamp 1998 Yes 68/82 vs. 79/83 49/82 vs. 59/83

Woolf 1987 No 29/143 vs. 47/119

Woolf 1992 No 60/151 vs. 89/150 59/151 vs. 117/150

Usual care (1) vs. Education + equipment
(3) vs. Education + equipment + home
safety inspection (4)

Babul 2007 Yes 147/149 vs. 171/173
vs. 160/163

Usual care (1) vs. Education + equipment +
home safety inspection (4)

Hendrickson 2002 Yes 14/40 vs. 34/38 8/40 vs. 34/38

Swart 2008 No 70.26/79.58 vs. 74.07/80* 46.86/57.96 vs.
50.87/58.27*

Kendrick 1999 Yes 317/367 vs. 322/363

Usual care (1) vs. Education + equipment +
fitting (5)

Watson 2005 Yes 683/738 vs. 712/762 327/669 vs. 368/693

Usual care (1) vs. Education + home safety
inspection (6)

Petridou 1997 No 67.26/100.12 vs.
71.08/97.83*

Usual care (1) vs. Education + equipment +
home safety inspection + fitting (7)

Schwarz D 1993 No 88.42/248.37 vs.
128.16/248.37*

Phelan 2011 No 16/138 vs. 71/139

Usual care (1) vs. Home visit (8) Johnson 2006 No 82/91 vs. 222/232†

Education (2) vs. Education + equipment (3) Posner 2004 Yes 14/47 vs. 19/49 22/47 vs. 34/49 27/47 vs. 35/49

Education (2) vs. Education + equipment +
fitting (5)

Sznajder 2003 Yes 44/49 vs. 43/45 32/41 vs. 40/48

Education + equipment + home safety
inspection (4) vs. Education + equipment +
home safety inspection + fitting (7)

King J 2001 No 261/469 vs. 273/482

Education + equipment (3) vs.
Equipment (9)

Dershewitz 1979 No 22/101 vs. 20/104 1/101 vs. 0/104

Treatment abbreviation and codes:
Usual care = UC (1).
Education = E (2).
Education + free/low cost equipment = E + FE (3).
Education + equipment + home safety inspection = E + FE + HSI (4).
Education + equipment + fitting = E + FE + F (5).
Education + home safety inspection = E + HSI (6).
Education + equipment + home safety inspection + fitting = E + FE + HSI + F (7).
Education + home visit = E + HV (8).
Free/low cost equipment = FE (9).
*Effective sample size reported for cluster randomised studies after adjusting clustering, hence not whole numbers (details given in Kendrick et al. 2012 [31]).
ƗThe IPD for Gielen 2007 shows information on safe storage of medicines and safe storage of other household products was collected from different sets of
households in this study (i.e. all the households that provided information for storage of medicines had missing data for safe storage of other household
products and vice versa). Hence the Gielen 2007 IPD was not used to estimate the within-study correlations. †The intervention arms of Nansel 2008 and
Johnson 2006 [32] comprises two groups that received different versions of a home safety intervention. The two versions were considered to be similar,
hence combined into one intervention group for the analysis reported here.
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Thirteen of the 22 studies considered at least two of
the three outcomes. Of these, 8 considered storage of
medicines and storage of other household products, 2
considered storage of other household products and pos-
session of a PCC telephone number, and 3 considered all
three outcome measures. Individual patient data (IPD)
were available for 8 of the 13 studies, of which 7 were in a
format suitable for the analysis reported here as explained
by the footnotes in Table 1.
We classified the interventions trialled in the 22 stud-

ies into 9 relatively homogenous treatment packages:

1) Usual care (UC)
2) Education (E)
3) Education + provision of free/low cost equipment

(E + FE)
4) Education + provision of free/low cost equipment +

home safety inspection (E + FE + HSI)
5) Education + provision of free/low cost equipment +

fitting of equipment (E + FE + F)
6) Education + home safety inspection (E + HSI)
Safe storage of medicines

E+FE+ F (5)

UC (1)

E+FE+ 

HSI+F (7)

E+FE (3)

E+FE+ 

HSI (4)

E (2)

1
1

5

1

2

1 2

1

FE (9)

1

Possession of a PCC telepho

E+FE (3)

E+FE+

HSI (4

E (2) 

1 3

E+

2

Figure 1 Intervention networks for the poisoning prevention outcom
control centre telephone number.
7) Education + provision of free/low cost equipment +
home safety inspection + fitting of equipment
(E + FE + HSI + F)

8) Education + home visit (E + HV)
9) Provision of free/low cost equipment (FE).

Figure 1 shows the comparisons between the inter-
ventions that were made by individual studies and the
number of comparisons in each network. All studies
compared 2 intervention strategies, except Babul et al.
(2007) [33] which compared 3 strategies. Data on each
outcome was not available for all interventions; i.e. for
the storage of medicines and other household products
outcomes, interventions E + HSI and E + HV were not
investigated in any of the included studies, and for
possession of a PCC number interventions, E + FE + F
and FE were not available.

Methods
In this section, we first present the NMA statistical model
for one binary outcome measure and then extend it to
Safe storage of other household products 

E+FE+ F (5)

UC (1)

E+FE+ 

HSI+F (7)

E+FE (3)

E+E+ HSI 

(4)

E (2)

1
1

5

2

3

1

FE only 

(9)

1

1

ne number*

UC (1)

E+HV 

(8)

 

)

E+FE + 

HSI+F (7)

1

1
1

HSI 

1

es (thick red lines indicate multi-arm comparisons). *PCC= poison
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compare multiple interventions across multiple outcomes.
Throughout the paper, we refer to these single and multiple
outcome models as univariate and multivariate NMAs re-
spectively. Where studies report multiple outcomes, these
will not be independent as each household provides infor-
mation on the different outcome measures within interven-
tion arms. The multivariate model takes this correlation
structure into account by allowing the intervention effects
measured by one outcome to be correlated with the inter-
vention effects measured by other outcomes.

Model 1: Univariate NMA
Given arm-level binary data of the form presented in
Table 1, a random effects NMA may be specified using
the method of Lu and Ades [20]. It is assumed that the
occurrence of rik events out of a total of nik households in
the kth-arm (k = A,B,C,….,) of the ith-study follow a bino-
mial distribution with underlying event probability pik:

rik e Binomial pik ; nikð Þ; logit pikð Þ ¼ θik

θik ¼ μib
μib þ δi bkð Þ

if k ¼ b
if k > b

�
b ¼ A;B;C;

ð1Þ

δi bkð Þ eNormal d bkð Þ ¼ d Akð Þ−d Abð Þ ; σ2bkð Þ
� �

Note : dAA ¼ 0
ð2Þ

where μib is a study-specific baseline effect (i.e. the log-odds
for the control group in study i with baseline treatment
b), δi(bk) is a study-specific log-odds ratio, d(bk) is the pooled
effect of treatment k relative to treatment b (a quantity
usually of interest in a meta-analysis) and σ2bkð Þ is the
between-study variance or heterogeneity parameter. Ran-
dom effects NMA assumes that intervention effects are
exchangeable across the network regardless of whether or
not treatments b and k are included in study i [18]. This
assumption implies that the pooled effects d(bk), can be
expressed as functions of basic parameters with reference
to a common comparator or baseline treatment (i.e. d(bk) =
d(Ak) − d(Ab)) [24]. Throughout this paper, we take usual
care (UC) intervention to be the reference or ‘baseline’
treatment (i.e. UC is taken as treatment A of equation (2)
above). Multi-arm studies (i.e. studies with more than 2
treatment groups) present a special problem in network
meta-analysis because they produce evidence on multiple
treatment effects that are correlated through sharing a
common reference or ‘baseline’ treatment. Under a homo-
genous variance assumption ( σ2

bkð Þ ¼ σ2 ), the covariance
between any two effects that share a common reference
treatment is σ2

2 [20]. The homogeneous variance assump-
tion allows for the distribution of effects (in a study with
an arbitrary number of arms) to be expressed as a uni-
variate marginal distribution and a series of univariate
conditional distributions. Specifically, for the ith-study
with p + 1 arms and p treatment effect estimates
relative to the reference treatment, if

δi bk1ð Þ
δi bk2ð Þ

⋮
δi bkpð Þ

0BB@
1CCAeNormal

 
d bk1ð Þ
d bk2ð Þ
⋮

d bkpð Þ

0BB@
1CCA; 

σ2
σ2

2
⋮
σ2

2

σ2

2
σ2

⋮
σ2

2

⋯
⋯
⋱
⋯

σ2

2
σ2

2
⋮
σ2

!! ð3Þ

then the marginal and conditional univariate distribu-
tions for arm j, given the previous 1,⋯, (j − 1) arms are:

δi bk1ð ÞeNormal d bk1ð Þ ; σ2
� �

for j ¼ 1:

δi bkjð Þj
δi bk1ð Þ

⋮
δi bkj−1ð Þ

0@ 1AeNormal d bkjð Þþ
1
j

Xj−1
t¼1

δi bktð Þ−d bktð Þ
� �

;
jþ 1ð Þ
2j

σ2
 !

for j ¼ 2;…; p

ð4Þ

The analysis is conducted within a Bayesian framework
requiring prior distributions to be specified for all model
parameters. Accordingly, we specified minimally inform-
ative prior distributions corresponding to a Normal (0,103)
prior distribution for the pooled mean effects relative to
usual care, d(Ak) and the study-specific baseline effects, μib
and a Uniform (0,2) prior distribution for the between-
study standard deviation on the log odds ratio scale σ [34].

Model 2: Multivariate NMA
We extend the univariate NMA model defined above
to the multiple outcomes settings in order to account
for correlations between intervention effects on dif-
ferent outcomes. The method presented here follows
from Ades et al. (2010) NMA with competing risks
model [13] where only the within-study correlations
are taken into account. We extend their method to
account for the between-study correlation as well.
Note that in Ades et al. (2010), a multinomial likelihood

was appropriate as the three binary outcomes (relapse dur-
ing treatment for Schizophrenia, discontinuation because
of intolerable side effects, and discontinuation for other
reasons) are mutually exclusive and event probabilities sum
to 1 across outcomes. A multinomial likelihood will not be
appropriate for our example dataset because each house-
hold can have one, two or all three outcomes simultan-
eously so that the event probabilities do not sum to 1
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across outcomes. Instead, we use a Normal distribution on
the log-odds scale to take account of the within-study cor-
relations between outcomes. We assume that in each study

i and for each k-th arm, the estimates θ̂ ikm of the observed
log-odds of an event on the mth outcome (m = 1, 2,⋯,M)
jointly follow a multivariate normal distribution:

θ̂ ik1

⋮
θ̂ ikM

0@ 1Ae Normal
θik1
⋮

θikM

 !
;

 

Sik ¼
s2ik1 ⋯ r1Mik sik1sikM

⋱ ⋮
s2ikM

0@ 1A!

 
θik1
⋮

θikM

!
¼

(
μib1
⋮

μibM

 !

μib1 þ δi bkð Þ1
⋮

μibM þ δi bkð ÞM

0@ 1A
if k ¼ b
if k > b

for b ¼ A;B;C; …

ð5Þ

where (μib1, μib2,⋯, μibM) and (δi(bk)1, δi(bk)2,⋯, δi(bk)M)
represent vectors of ‘true’ baseline and study-specific
effects in study i with baseline treatment b respectively.
The quantities θ̂ ik1; θ̂ ik2;⋯; θikM

� �
and (θik1, θik2,⋯, θikM)

represent vectors of observed and ‘true’ log-odds of re-
sponse in arm k of study i and Sik is the associated
within-study covariance matrix usually assumed known
but estimated in practice from the data [35]. We calcu-
lated θ̂ ik1; θ̂ ik2 ;⋯; θ̂ ikM

� �
and the diagonal elements of Sik

using standard formulae for log-odds and variance of the
log-odds [2]. We applied a continuity correction by adding
0.5 to the numerators and 1 to the denominators of stud-
ies with 0% or 100% event rate in one of the treatment
arms [36,37]. The off-diagonals of Sik were calculated from
estimates of within-study correlations rmn

ik between out-
comes m and n (m ≠ n) in arm k of study i obtained from
studies with IPD (see Additional file 1: Table S1). The
method used to estimate the correlations from the IPD is
described in the implementation section below.
When summarising evidence across multiple end-

points, it is common to encounter instances where some
studies do not report information for all outcomes of
interest leading to incomplete vectors with missing
study-specific effects for the outcomes not reported
[5,10]. Such studies can be included in our model under
the assumption that the effects for outcomes not re-
ported are missing at random. When implemented using
the WinBUGS software, the missing study effects and
standard errors are coded as NA in the data, a strategy
previously outlined in Bujkiewicz et al. [10] and Dakin
et al. [28]. This enables WinBUGS to automatically
‘impute’ values for the missing information under miss-
ing at random assumption with predicted distributions.
We refer to equation (5) as the within-study model and

the model describing the distribution of the ‘true’ effects
across studies (presented below) as the between-study
model following standard terminology in multivariate meta-
analysis [5,6,10,11,38,39]. For the network of two-arm trials,
the between-study model for the ith study is thus given by:

δi bkð Þ1
⋮

δi bkð ÞM

0@ 1AeNormal
d bkð Þ1 ¼ d Akð Þ1−d Abð Þ1

⋮
d bkð ÞM ¼ d Akð ÞM−d Abð ÞM

0@ 1A; Σ bkð Þ

0@ 1A

Σ bkð Þ ¼
σ2bkð Þ1 ⋯ ρ1Mbk σ bkð Þ1σ bkð ÞM

⋱ ⋮
σ2bkð ÞM

0@ 1A
ð6Þ

where the ‘true’ effects δi(bk)m (m = 1, 2,⋯,M) jointly
follow a Normal distribution with mean effects d(bk)m.
The parameters in equation (6) have the same inter-
pretation as in equation (2) except that they are now
specific to each outcome. The covariance matrix Σ(bk)

contains terms for the between-study variances, σ2
bkð Þm

for each outcome m and the between-study correla-
tions ρmn

bk between effects measured by outcome m and
n (m ≠ n) specific to each k versus b comparison. Fit-
ting the full model would thus require a large number
of possibly multi-arm studies in order to make Σ(bk)

identifiable [5,13]. The number of parameters in Σ(bk),
can however be reduced if reasonable assumptions can
be made about the covariance structure. In particular,
most practical applications of NMA methods involve the
assumption of a common between-study variance across
treatment arms, often referred to as a homogenous vari-
ance assumption [18,40,41]. Therefore, to simplify Σ(bk)

we make the additional assumption in this context of a
common between-study correlation (ρmn

bk ¼ ρmn) lead-
ing to the following simplified between-study covari-
ance structure for two-arm studies:

δi bkð Þ1
⋮

δi bkð ÞM

0@ 1AeNormal
d bkð Þ1 ¼ d Akð Þ1−d Abð Þ1

⋮
d bkð ÞM ¼ d Akð ÞM−d Abð ÞM

0@ 1A;Σ M�Mð Þ

0@ 1A

Σ M�Mð Þ ¼
σ21 ⋯ ρ1M σ1σM

⋱ ⋮
σ2
M

0@ 1A
ð7Þ

where, as in the univariate case, σm represent the com-
mon between-study standard deviation or heterogeneity
parameter specific to outcome m.
To include multi-arm studies in our model, we extend

equations (3) and (4) to the multiple outcome setting.
We show in Appendix A, that under evidence consistency
and the homogenous between-study covariance structure
(σ2

bkð Þm ¼ σ2m and ρmn
bk ¼ ρmn), equation (3) can be extended
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to the multiple outcome settings by formulating the distribu-
tion of effects in a multi-arm study i with p + 1 arms report-
ing onm= 1, 2,⋯,M outcomes as follows:
δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1A
δi bk2ð Þ1

⋮
δi bk2ð ÞM

0@ 1A
⋮

δi bkpð Þ1
⋮

δi bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

d bk1ð Þ1
⋮

d bk1ð ÞM

0@ 1A
d bk2ð Þ1

⋮
d bk2ð ÞM

0@ 1A
⋮

d bkpð Þ1
⋮

d bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; Σ Mp�Mpð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
Σ Mp�Mpð Þ ¼

σ21 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2
M

0@ 1A 1
2

σ21 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2
M

0@ 1A ⋯
1
2

σ2
1 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2M

0@ 1A
σ21 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2M

0@ 1A ⋮
1
2

σ2
1 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2M

0@ 1A
⋱ ⋮

σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2

M

0@ 1A

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

ð8Þ
where p is the number of treatment effect estimates. The
corresponding marginal and conditional distributions for
arm j, given the previous 1,⋯, (j − 1) arms are:

δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1AeNormal
d bk1ð Þ1

⋮
d bk1ð ÞM

0@ 1A;

0@

Σ M�Mð Þ ¼
σ21 ⋯ ρ1M σ1σM

⋮ ⋱ ⋮
ρM1 σ1σM ⋯ σ2

M

0@ 1A!for j ¼ 1

δi bkjð Þ1
⋮

δi bkjð ÞM

0B@
1CA��

δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1A
δi bk2ð Þ1

⋮
δi bk2ð ÞM

0@ 1A
⋮

δi bkj−1ð Þ1
⋮

δi bkj−1ð ÞM

0B@
1CA

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

eNormal

d bkjð Þ1 þ
1
j

Xj−1
t¼1

δi bktð Þ1−d bktð Þ1
� �
⋮

d bkjð ÞM þ 1
j

Xj−1
t¼1

δi bktð ÞM−d bktð ÞM
� �

0BBBBB@

1CCCCCA;Σ
0 ¼ jþ 1ð Þ

2j
Σ M�Mð Þ

0BBBBB@

1CCCCCA
for j ¼ 2; …; p

ð9Þ
To complete model 2, μibm and d(1k)m are given min-
imally informative prior distributions:

μibm; d 1kð Þm e Normal 0; 103
� �

Prior distributions also need to be specified for Σ(M ×

M) which, in general, is non-trivial because of the posi-
tive definite constraint. Initially we specified an Inverse-
Wishart distribution [42]:

Σ M�Mð ÞeInverse −Wishart K;Mð Þ

where K is M ×M scale matrix and M is the total num-
ber of outcomes. Specifying minimally informative
Inverse-Wishart prior distribution is, however, problem-
atic, especially when the amount of data is small relative
to the dimensions of Σ(M ×M) as is the case for our
example data. Therefore, to allow for flexibility in for-
mulating a prior distribution for Σ(M ×M), we also
followed a strategy outlined by Lu and Ades (2009)
[43] and more recently by Wei and Higgins (2013)
[39] to express Σ(M ×M) in terms of a diagonal matrix of
standard deviations V1/2 and squared positive semi-definite
matrix of correlations R based on a separation strategy
(Barnard et al. [44]):

Σ M�Mð Þ ¼ V1=2 R V1=2
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where the off-diagonal elements of R contain correlation
terms and diagonal elements equal 1. Lu and Ades [43]
and also Wei and Higgins [39] showed that R can be
written as R = LTL using Cholesky decomposition where
L is an upper triangular matrix. The spherical para-
meterization technique [39,43] can be used to express R
in terms of sine and cosine functions of the elements in
L. Using this later technique, we specified Uniform (0,π)
prior distributions for the spherical coordinate φmn in
our model to ensure that elements of the correlation
matrix R lie in the interval (−1,1). Finally, the elements
of V1/2 correspond to the between-study standard de-
viation terms in Σ(M ×M) and are given independent
Uniform (0,2) prior distributions as in the univariate case
(model 1).

Model 3: Borrowing strength across interventions and
outcomes
From Table 1, it can be seen that none of the studies
had considered the interventions E + HSI and E + HV for
storage of medicines and storage of other household
products. Similarly, interventions E + FE + F and FE were
not trialled by any of the included studies on possession
of a PCC number. To estimate the full set of 24 basic
intervention effects relative to usual care from 9 inter-
ventions on 3 outcomes, we applied methods originally
proposed by DuMouchel and Harris [29] and revisited
by DuMouchel and Groer [45] and Jones et al. [30]. We
assume that the pooled effects of treatment k relative to
usual care intervention d(Ak)m, can be expressed as a
sum of treatment-specific effect αk and outcome-specific
effect γm. This assumption replaces the minimally inform-
ative prior distribution N(0, 103) specified for d(Ak)m in
model 2 with:

d Akð Þm e Normal αk þ γm; τ2
� �

k ¼ 2; 3; ⋯K ; m ¼ 1; 2; M

ð10Þ

where K is the total number of treatments being evalu-
ated across M outcomes, and for k = 1 (i.e. reference
treatment A), d(Ak)m equal to zero. Note that on the
logarithmic scale, this would imply that the ratio of any
intervention effects is constant across outcomes as the
γm cancel, i.e.

d bkð Þm ¼ d Akð Þm−d Abð Þm
� �eNormal αk−αb; 2τ2

� � ð11Þ

Equation (10) thus embodies an assumption of equal
or constant relative potency of treatments across out-
comes which imply exchangeability of the relative effects
between the non-reference/baseline treatments indicated
by equation (11). For our example dataset, this implies
that missing intervention effects for comparisons with
the usual care intervention can be predicted directly
from equation (10) as a linear combination of γm and αk
assuming that each treatment effect relative to usual
care is reported on at least one outcome. The missing
intervention effects between non- reference/baseline
treatments if required can similarly be predicted directly
from the model as linear combinations of the interven-
tion effects relative to usual care.
The parameter τ controls the accuracy of the constant

relative potency assumption. Values of τ close to zero would
thus indicate a high degree of confidence (and support from
the data) in the parallelism of effect profiles across outcomes
and the constant relative potency assumption. Conversely,
larger values of τ would indicate otherwise.
Multi-arm studies are included in model 3 based on

equations (8) and (9) in the same way as in model 2. To
complete model 3, the parameters αk, γm and τ are
given minimally informative prior distributions. For the
mean effects, this is a normal distribution with zero
mean and large variance:

αk ; γme Normal 0; 103
� �

We give τ a Uniform (0, 2) prior distribution, consid-
ered to be minimally informative on the log-odds ratio
scale. Sensitivity analyses were conducted to assess the
impact of specifying alternative prior distributions for τ
that are also considered minimally informative [46]:

i. Normal prior distribution centred on 0 with large
variance and constrained to be positive, τ ~N
(0, 102), τ ≥ 0

ii. Gamma prior distribution placed on the precision:
τ− 2 ~ Gamma(0.001, 0.001).

The results of the sensitivity analyses are presented in
Additional file 1: Figure S1.
There is a limitation to the number of data (i.e. inter-

vention effects relative to the usual care) on outcomes
allowed to be missing for the model hyper-parameters to
be identifiable. For K interventions andM outcomes, there
will be (K − 1) ×M equation (10) that are used to estimate
a total of (K − 1) +M hyper-parameters (i.e. (K − 1) of αk
and M of γm hyper-parameters). Therefore no more than
((K − 1) ×M) − ((K − 1) +M) missing values in total are
allowed. For example, for K = 3 treatments and M=2 out-
comes, data has to be available on both outcomes for both
treatment comparisons with the baseline when the prior dis-
tributions are non-informative. When large number of data
on outcomes is missing, placing informative prior distribu-
tions on the hyper-parameters can improve convergence.

Implementation of the models
We fitted a total of four models, models 1 and 3 as de-
scribed above and two versions of model 2. In model 2a,
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we specified an inverse-Wishart prior distribution for
the between-study covariance matrix Σ(M ×M) whilst in
model 2b, we specified a prior distribution for Σ(M ×M)

based on the separation strategy. All four models
allowed for multi-arm trials to be included in the ana-
lysis. To fit the multivariate NMA models, the quan-
tities θ̂ik1; θ̂ik2; θ̂ik3ð Þ and the diagonals of Sik were
estimated using standard 2×2–table formulae [2].
Next, we obtained estimates of the within-study corre-
lations from the IPD studies using the following three
methods: i) Pearson correlation coefficient between the
observed outcome events ii) Bootstrapping as described in
Daniel and Hughes (1998), and iii) Generalised Estimating
Equations (See details in Additional file 1). All three
methods produced identical estimates of the correlations
between pairs of outcome specific log-odds of event from
each IPD study (Additional file 1: Table S1). Therefore, we
formulated informative prior distributions for the correl-
ation terms in Sik of equation (5) using the estimates of
the correlations between the observed outcome events
(Pearson correlation) as follows:

rmn
ik e Uniform amn; bmnð Þ with

amn ¼ rmn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� var rmnð Þp

2

 !
and

bmn ¼ rmn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� var rmnð Þp

2

 !

where rmn
ik is the within-study correlation between the

outcomes m and n effects measured on the log-odds
scale in arm k of study i, and rmn and var (rmn)are the
mean and variance of the within-study correlation be-
tween outcomes m and n effects measured by IPD
respectively.
We also assessed consistency of the evidence within

each network using a method based on node splitting
[24]. We found no evidence of conflict between the dir-
ect and indirect sources (Additional file 1: Table S2) in
all three outcome networks.
We fitted all models described above in WinBUGS

[47] using Markov Chain Monte Carlo (MCMC) simula-
tions. The univariate models were fitted separately for
each outcome using WinBUGS code available from Dias
et al. [48]. The WinBUGS code for the multivariate
models is provided in the appendices 1 and 2 of the
Additional file 1. Convergence was assessed by examin-
ation of the trace and autocorrelation plots and the
Rubin-Gelman statistic after running 400 000 simula-
tions and discarding the first 200 000 samples as ‘burn
in samples’.
Results
Univariate and multivariate analyses
Parameters of interest were the posterior median esti-
mate (and 95% credible intervals) of the pooled inter-
vention effects relative to the usual care intervention
and the posterior median estimate (and 95% credible in-
tervals) of the between-study standard deviation and
correlation terms. Summary forest plots displaying ef-
fectiveness estimates relative to usual care on the odds
ratio (OR) scale are presented in Figure 2. It can be seen
that, all 4 models produced broadly similar estimates
when the treatment effect is not extreme compared to
the other effect estimates for the same outcome. Com-
pared to the univariate analysis, the multivariate models
produced noticeably less extreme estimates of interven-
tion effects. This can be seen in the effect of FE + HSI
(3) on possession of PCC number being shifted towards
the line of no effect from an OR of 39.35 (95% CrI 2.37
to 732.30) in model 1 to 23.55 (95% CrI 1.39, to 456.80)
in model 2a, 20.37 (95% CrI 0.72, to 706.00) in model 2b
and 4.20 (95% CrI 1.59 to 13.16) in model 3. Similarly,
the OR for FE (9) on safe storage of other household
products shifted from 0.37 (95% CrI 0.00 to 15.10) in
model 1 to 1.81 (95% CrI 0.63, to 5.37) in model 3.
Posterior median and 95% credible intervals of the

between-study standard deviations and correlations are
presented in Table 2. The posterior medians of the
between-study correlations from the multivariate models
were small and estimated with considerable uncertainty
(i.e. all had large variances). Estimates of the between-
study standard deviations were broadly similar for the
univariate NMA (model 1) and the multivariate NMA
using the separation strategy (model 2b), and relatively
high for multivariate NMA using the inverse-Wishart
prior distribution (model 2a).

Borrowing strength across outcomes
It can be seen from Figure 2 that the effect of E + HSI
and E + HV relative to usual care intervention on safe
storage of medicines and safe storage of other household
products, and E + FE + F and FE on possession of a
PCC telephone number were only estimated in model 3
as none of the studies had trialled these interventions on
the respective outcomes. In this model, estimates of rela-
tive effects between non- reference/baseline treatments
were assumed to be exchangeable across outcomes,
which enabled estimates to be obtained for all outcomes
by predicting effects where the interventions have not
been considered for the particular outcome of interest.
For the intervention/outcome pair where data from trials
were available, this extrapolation step had the additional
effect of producing more precise estimates of the treat-
ment effect in comparison to the models that do not as-
sume exchangeability effects across outcomes.



Figure 2 Summary forest plot of intervention effects relative to usual. Outcomes are safe storage of medicines, safe storage of other
household products and possession of a PCC telephone number. Model 1: Univariate NMA. Model 2a: Multivariate NMA (Wishart prior
distribution). Model 2b: Multivariate NMA (separation strategy). Model 3: Multivariate NMA allowing for the relative effects between non-usual care
interventions to be exchangeable across outcomes. Effect estimate for which direct study data was not available are indicated by xx on the forest
plot. Intervention components: E = Education, FE = low cost/free equipment, HSI = Home safety inspection, HV = Home visit and F= Fitting
of equipment.

Table 2 Posterior median and 95% credible intervals of the between-study standard deviation and correlation
parameters

Parameter Description/prior distribution Model 1:
univariate

Model 2a: Multivariate
using inverse-Wishart
prior distribution for
Σ(M ×M)

Model 2b: Multivariate
using a separation
strategy to specify
priors for elements
of Σ(M ×M)

Model 3: Multivariate
with extrapolation
of effects across
outcomes

σ1 Between-study standard deviation:
safe storage of medicines

0.26 (0.03, 1.02) 0.58 (0.33, 1.18) 0.27 (0.01, 1.08) 0.23 (0.01, 0.80)

σ2 Between-study standard deviation:
safe storage of other household
products

0.56 (0.13, 1.27) 0.62 (0.35, 1.15) 0.47 (0.04, 1.18) 0.31 (0.01, 0.81)

σ3 Between-study standard deviation:
PCC

1.16 (0.57, 1.93) 0.94 (0.53, 1.99) 1.18 (0.57, 1.93) 1.08 (0.58, 1.85)

τ Primary analysis: τ ~Uniform (0, 2) - - - 0.10 (0.01, 0.53)

τ Sensitivity analysis: τ ~ Normal (0, 102),
τ ≥ 0

- - - 0.11 (0.00, 0.56)

τ Sensitivity analysis: τ2 ~ Inverse −
Gamma (0.001, 0.001)

- - - 0.08 (0.02, 0.36)

ρ12 Between-study correlation [medicines,
other household products]

- 0.03 (−0.73, 0.76) 0.05 (−1.00, 1.00) 0.45 (−0.99, 1.00)

ρ13 Between-study correlation [medicines,
PCC]

- 0.06 (−0.80, 0.81) 0.20 (−1.00, 1.00) 0.50 (−0.98, 1.00)

ρ23 Between-study correlation [Other
household products, PCC]

- 0.08 (−0.81, 0.83) 0.13 (−0.97, 0.98) 0.60 (−0.87, 0.99)
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The posterior median and 95% credible intervals of
intervention effects relative to usual care were un-
affected by placing alternative minimally informative
prior distributions on τ (Additional file 1: Appendix 2).
The posterior median and credible intervals for τ
(Table 2) were similarly not sensitive to the choice of
prior distribution placed on τ in the primary and sensi-
tivity analyses. The posterior median estimates of τ were
all close to zero, which suggest that assumptions about
the parallelism of effect profiles across outcomes is sup-
ported by the data. The estimates of τ would thus sug-
gest with 95% probability, that based on the information
in our example dataset, the extrapolation model could
be accurate to within a factor of about e(2 × 0.10) = 1.24
(95% CrI 1.01 to 2.87).

Discussion
We have presented methods for simultaneous compari-
son of multiple treatments across multiple outcome
measures while preserving the internal randomisation of
individual studies. Our method may be viewed as an ex-
tension of Ades et al.’s (2010) NMA with competing
risks paper [13] wherein only the within-study correl-
ation is taken into account. We have extended their
method to account for the dependency between out-
come effects across studies as well as within-studies.
In this particular application of the multivariate ap-

proach, accounting for the correlation between out-
comes alone (models 2a and 2b) did not reduce the
uncertainty around estimates of intervention effects
compared to analysing each outcome separately (model 1).
Assuming that intervention effects are exchangeable
across outcome did however lead to a modest re-
duction in uncertainty around effectiveness estimates
(model 3).
The between-study correlations were estimated with

considerable uncertainty (Table 2) and appear to have
little impact on overall effect estimates. This may be
because the between-study correlation arises due to,
among other things, differences in study-level charac-
teristics that also give rise to between-study heterogen-
eity in a meta-analysis. Based on a criterion outlined in
Spiegelhalter et al. [49] the posterior median estimates
of the between-study standard deviations, σ1 and σ2 on
the log odds ratio scale (Table 2) could be interpreted
as indicating evidence of low to moderate heterogeneity
for storage of medicines and storage of other household
products outcomes. Only the estimates for possession
of poison control centre number exhibited a consider-
able degree of heterogeneity. Consequently, the posterior
medians of the between-study correlations were small.
There was therefore very little gain (in terms of increasing
the precision of estimates) from formulating the between-
study covariance structure described for the analysis
presented here. Accounting for the between-study correl-
ation is likely to be beneficial in situations where the
between-study variance (heterogeneity) is large relative to
within-study variances.
We opted to incorporate the within-study correlation

through the arm-specific effects (log-odds) rather than
the study-specific treatment difference (log-odds ratio)
as is often done in multivariate meta-analysis [3,4,15,38].
This approach greatly simplifies the likelihood for multi-
arm studies because treatment arms can be considered
independent as a consequence of randomisation. Hence,
there is no requirement to account for the additional
correlations between effect estimates which share a com-
mon comparator treatment in the model likelihood [50].
The arm-based approach is also likely to be useful when
(as is typical with many practical application of multi-
variate meta-analysis) the within-study correlations
are not available [10,12,15,51] and have to be obtained
from an external source such as expert opinion [14].
In such situations, formulating questions about corre-
lations between outcome-specific event probabilities
(which can be used directly in an arm-based approach)
is more likely to be intuitive and easily understood by
non-statistician healthcare experts than questions
about correlations between intervention effects. It is
acknowledged however, that the correlations between
the intervention effects if required can easily be ob-
tained from the correlations between the outcomes
[14,51].
At the between-study level, we assumed a common

correlation structure across treatments in addition to the
common variance assumption underlying most practical
application of NMA methods. The common correlation
assumption implies that if several separate multivariate
meta-analyses were conducted with the same outcomes,
each with a different set of k versus b comparison, the
assumption is that the between-study correlations would
be the same across the different sets of bk comparisons.
We suggested this structure to simplify the covariance
structure and reduce the number of parameters in the
model. Appropriateness of such modelling assumptions
would need to be considered carefully and assessed
when it is feasible to do so.
Initially we specified an inverse-Wishart distribution

for the between-study covariance matrix Σ(M ×M). How-
ever, we believe this prior distribution to be influential
due to the small number of studies in our example data-
set relative to the number of outcomes. Under these
conditions, the inverse-Wishart prior distribution pro-
duced upwardly-biased estimates of σ1 and σ2 and down-
ward bias in the estimate for σ3 when compared to the
corresponding estimates obtained from the univariate
model (Table 2). These findings are consistent with ob-
servations in the univariate case where the use of a
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Gamma prior distribution (which is the univariate analogue
of the Inverse-Wishart prior distribution) can lead to an
overestimation of the heterogeneity parameter when the
true value is close to 0 [46,52]. As an alternative to an
inverse-Wishart prior distribution therefore, we followed
the spherical decomposition technique suggested by
Lu and Ades [43]. This parameterization offered greater
flexibility in formulating independent prior distribu-
tions for the standard deviation and correlation terms
in Σ(M ×M).
An obvious limitation to implementation of the multi-

variate models presented in this paper is the limited
availability of data including i) the problem of missing
within-study correlations and ii) the requirement for a
relatively large number of studies to estimate all model
parameters. The problem of missing within-study corre-
lations has traditionally hampered the widespread appli-
cation of multivariate meta-analysis [7,10,15]. In our
example, IPD was available from a proportion of the in-
cluded studies and we have used correlations estimated
from the IPD to formulate informative prior distribu-
tions for the within-study model. Alternative approaches
to dealing with missing within-study correlations when
IPD is not available include: i) using the observed correl-
ation from the summary study-specific effects [12], ii)
eliciting information about the correlations from exter-
nal sources such as clinical experts [14] and iii) specify-
ing ‘vague’ prior distributions for analysis conducted
within a Bayesian framework [6].
The second data issue concerns the number of stud-

ies needed to estimate the full unstructured between-
study covariance matrix presented in equation (6). We
anticipate a large number of multi-arm studies report-
ing across the three outcomes will be needed to iden-
tify Σ(bk) and estimate all model parameters. This can
be problematic considering the fact that most applica-
tions of network meta-analysis typically include mostly
two-arm studies with very small numbers of multi-arm
studies. Even with the simplification of the between-
study covariance matrix given in equation (5), a rela-
tively large number of studies in comparison to the
total number of outcomes being considered may still
be needed. We are unable to answer the question of
how many studies should be considered large enough
for a NMA with multiple outcomes. As a guide, Wei
and Higgins [39] recently estimated 15, 27 and 42
studies as a minimum for multivariate pairwise meta-
analysis with two, three and four-outcomes respect-
ively. Hence, we believe an even larger number of
studies will be required for the NMA with multiple
outcomes.
Another limitation of the multivariate models presented

here is that they rely on the normal approximation to
binomial distribution to incorporate the within-study
correlations in the model. The normal approximation
frequently fails and may not provide adequate fit to the
data in the presence of studies with zero or a small
number of events, necessitating use of continuity cor-
rections. We were unable to use the exact binomial
distribution as our primary interest was to develop
models for summary binary data where outcomes are
not mutually exclusive, and where it is not reasonable
to assume that within-study correlations are zero so
that the likelihood factorises easily as in Arends et al.
[3]. Further methodological investigations into model-
ling multivariate summary data that is not normally
distributed will therefore be useful. An example is pro-
vided in Chu et al. [53] where parameterization of the
within-study model enabled the special case of diag-
nostic sensitivity and specificity to be jointly modelled
with disease prevalence using a trivariate binomial
likelihood. In the interim, an alternative formulation
which bypasses the need for approximating normal
distributions is to directly model the IPD where this
is available. This will require extending Saramago et al.’s
[54] NMA model with aggregate and individual partici-
pant level data from single outcome to multiple outcome
settings.
We assessed the consistency of each outcome network

separately using the method of node splitting [24]. We
found no evidence of conflict between the direct and in-
direct sources on pairwise contrasts that have both
sources of evidence in model 1. We did not assess the
consistency of the multivariate estimates partly because
we are unaware of current methods for carrying out this
type of assessment. We are investigating extensions of
the node-split method to multiple outcome networks
and investigate the effect of jointly synthesising evidence
across multiple endpoints on evidence consistency in a
simulation study.
Our initial motivation for a multiple outcome NMA

was to estimate intervention effects for all the outcomes,
including effects of interventions on outcomes not con-
sidered by any of the studies included in the analysis.
This requires the correlation structure between effects
on multiple outcomes to be appropriately modelled and
also ensuring the mechanism of “borrow strength”
across outcomes through the assumption of exchange-
ability of the random effect across outcomes. This im-
plies a priori assumption that outcomes are related but
different and that there is no way of knowing the order
of magnitude of effects on outcomes. If this assump-
tion does not hold, it may potentially lead to worse or
more biased effectiveness estimates. In our example,
the outcomes are similar and measured on the same
scale. It would be clearly inappropriate to assume that
intervention effects are exchangeable across outcomes
that are different in some important respects such as
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being measured on different scales (e.g. where one out-
come reports a weighted mean difference and another
outcome reports a log-odds ratio) as such estimates
will differ in terms of the precision with which they are
estimated.

Conclusion
Our aim in this paper was to present methods for simul-
taneous comparison of multiple treatments across
multiple outcome measures while preserving the in-
ternal randomisation of individual studies. Application
of the method to the poison prevention data yielded
similar point estimates of treatment effect to those
obtained from a univariate NMA but the uncertainty
around the multivariate estimates increased or de-
creased depending on the prior distribution specified
for the between-study covariance structure. The proposed
method followed the usual hierarchical approach to
multivariate meta-analysis where correlations between
outcomes are modelled at the within-study and or be-
tween-study levels.
Appendix A
Between-study covariance for multi-arm studies reporting
multiple outcomes
For a multi-arm study i with K treatments labelled A, B,
C, …, K reporting a total of M outcomes labelled 1, 2, …,
M. A random effects between-study model can be repre-
sented as:

δi ABð Þ1
⋮

δi ABð ÞM

0@ 1A
δi ACð Þ1

⋮
δi ACð ÞM

0@ 1A
⋮

δi AKð Þ1
⋮

δi AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

di ABð Þ1
⋮

di ABð ÞM

0@ 1A
di ACð Þ1

⋮
di ACð ÞM

0@ 1A
⋮

di AKð Þ1
⋮

di AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;ΣFULL

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ðA1Þ
ΣFULL ¼
σ2

ABð Þ1 ⋯ ρ1MAB;ABð Þσ ABð Þ1σ ABð ÞM
⋮ ⋱ ⋮

ρ1MAB;ABð Þσ ABð Þ1σ ABð ÞM ⋯ σ2
ABð ÞM

0@ 1A ρ11AB;ACð Þσ ABð Þ1σ ACð Þ1 ⋯
⋮ ⋱

ρ1MAB;ACð Þσ ABð Þ1σ ACð ÞM ⋯

0@
σ2

ACð Þ1 ⋯
⋮ ⋱

ρ1MAC;ACð Þσ ACð Þ1σ ACð ÞM ⋯

0@
Where δi(Ak)m and d(Ak)m are study-specific and mean ef-
fect of treatment k relative A (reference treatment) on
outcome m in study i respectively and ΣFULL is the full
(K-1) × (K-1) blocks of M ×M within-treatment between-
outcome covariance matrix. The parameters in ΣFULL

have the following interpretation:
(σ2

Akð Þm) indicate the variance of the effect of treatment k (k =
B,C,⋯,K) relative to A on outcome m across studies.
ρmn

Ak;Akð Þ indicate the correlation between δi(Ak)m and δi(Ak)n
(i.e. the correlation between the effect of treatment k relative
to A on outcome m and the effect of treatment k relative to
A on outcome n (m ≠ n)) specific to the Ak comparison.
ρmm

Ah;Akð Þ indicate the correlation between δi(Ah)m and δi

(Ak)m (i.e. the correlation between the effect of treatment
h relative to A on outcome m and the effect of treatment
k relative to A (h ≠ k) on outcome m because they share
a common comparator A).
The diagonal block matrices in ΣFULL thus carry terms

for the between-study variance (σ2Akð Þm) while the off-

diagonal blocks carry terms for the between-study co-
variance. We make two assumptions to simplify and re-
duce the number of parameters in ΣFULL. First, we
assume homogenous variances for intervention effects
within outcomes [20]. This implies σ2

Akð Þm ¼ σ2
m and

ρmm
Ah;Akð Þ ¼ 1

2 as in the single outcome network meta-

analysis case [20,34]. Second, we make the assumption
of homogenous between-study correlations for the
intervention effects from different outcomes. Under
this assumption we can express ρmn

Ah; Ahð Þ and ρmn
Ak; Akð Þ in

terms of a common correlation parameter ρmn by not-
ing that for any 3-treatment (A, h, k) configuration, the
covariance between outcome m and n effects across
studies can be expressed as a covariance between two
sums under evidence consistency:

δi hkð Þm; δi hkð Þn
	 
 ¼ COV δi Akð Þm−δi Ahð Þm

� �
; δi Akð Þn−δi Ahð Þn
� �	 


¼ COV δi Akð Þm; δi Akð Þn
	 


−COV δi Akð Þm; δi Ahð Þn
	 


−COV δi Ahð Þm; δi Akð Þn
	 
þ COV δi Ahð Þm; δi Ahð Þn

	 

¼ ρmn

Ak;Akð Þ þ ρmn
Ah;Ahð Þ−2ρ

mn
Ak;Ahð Þ

� �
σmσn

ðA2Þ
ρ1MAB;ACð Þσ ABð Þ1σ ACð ÞM
⋮

ρMM
AB;ACð Þσ ABð ÞMσ ACð ÞM

1A⋯
ρ11AB;AKð Þσ ABð Þ1σ AKð Þ1 ⋯ ρ1MAB;AKð Þσ ABð Þ1σ AKð ÞM

⋮ ⋱ ⋮
ρ1MAB;AKð Þσ ABð Þ1σ AK ;AKð ÞM ⋯ ρMM

AB;AKð Þσ ABð ÞMσ AKð ÞM

0@ 1A
ρ1MAC;ACð Þσ ACð Þ1σ ACð ÞM

⋮
σ2ACð ÞM

1A ⋮
ρ11AC;AKð Þσ ACð Þ1σ AKð Þ1 ⋯ ρ1MAC;AKð Þσ ACð Þ1σ AKð ÞM

⋮ ⋱ ⋮
ρ1MAC;AKð Þσ ACð Þ1σ ACð ÞM ⋯ ρMM

AC;AKð Þσ ACð ÞMσ AKð ÞM

0@ 1A
⋱ ⋮

σ2
AKð Þ1 ⋯ ρ1MAK ;AKð Þσ AKð Þ1σ AKð ÞM
⋮ ⋱ ⋮

ρ1MAK ;AKð Þσ AKð Þ1σ AKð ÞM ⋯ σ2
AKð ÞM

0@ 1A
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The homogenous between-study correlation assumption
implies ρmn

Ah;Ahð Þ ¼ ρmn
Ak;Akð Þ ¼ ρmn and ρmn

Ak;Ahð Þ ¼ 1
2 ρ

mn for

the inequality −1≤ ρmn
Ak;Akð Þ þ ρmn

Ah;Ahð Þ−2ρ
mn
Ak;Ahð Þ

� �
≤1 to hold.

Substituting these expressions into equation (A1), we
see that the between-study correlation terms equal
ρmn in the diagonal block of matrices and 1

2 ρ
mn in the

off-diagonal block of matrices of in ΣFULL leading to
the following simplificationfollowing simplification of
the between-study covariance matrix:
δi ABð Þ1
⋮

δi ABð ÞM

0@ 1A
δi ACð Þ1

⋮
δi ACð ÞM

0@ 1A
⋮

δi AKð Þ1
⋮

δi AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

d ABð Þ1
⋮

d ABð ÞM

0@ 1A
d ACð Þ1

⋮
d ACð ÞM

0@ 1A
⋮

d AKð Þ1
⋮

d AKð ÞM

0@ 1A
;Σ Mp�Mpð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA

with Σ Mp�Mpð Þ ¼

σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2
M

0@ 1A 1
2

σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2

M

0@ 1A ⋯
1
2

σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2

M

0@ 1A
σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2M

0@ 1A⋮
1
2

σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2M

0@ 1A
σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2M

0@ 1A

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
ðA3Þ
Finally by relabeling the reference treatment A as b,

(δi(AB)1, ⋯, δi(AK)m) as δi bk1ð Þ1; ⋯; δi bkjð ÞM
� �

and (d(AB)1, ⋯,

d(AK)M) as d bk1ð ÞM; ⋯; d bkjð ÞM
� �

, equation (A3) can be

rewritten as equation (A4).
δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1A
δi bk2ð Þ1

⋮
δi bk2ð ÞM

0@ 1A
⋮

δi bkpð Þ1
⋮

δi bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

d bk1ð Þ1
⋮

d bk1ð ÞM

0@ 1A
d bk2ð Þ1

⋮
d bk2ð ÞM

0@ 1A
⋮

d bkpð Þ1
⋮

d bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; Σ Mp�Mpð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ðA4Þ
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Additional file

Additional file 1: (WinBUGS Code for model 2): Network meta-analysis
of multiple outcome measures accounting for borrowing of information
across outcomes.
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