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Abstract

This work develops the semiclassical theory of electrical
conduction due to electrons in localized states, and compares the

resultant formulae with a variety of experimental data.

We begin by using the equivalent electrical network, derived
from the phenomenological rate equations, to deduce the dc conductivity
of a number of model systems, Percolation arguments are used to
derive both the exponent and the prefactor when the dc'conductivity

is written in the form o = o, exp [-sp].

In particular, we derive formulae for the cases when the
energies of the electron states are distributed over a very narrow
range, a very wide range and an intermediate range. In the first
two cases the formulae are in excellent agreement with computer
generated data obtained by numerical solutions of Kirchhoff's

equations for the equivalent network.

Experimental data obtained from studies of a number of systems
are analysed, namely, impurity conduction in crystalliné germanium
and amorphous silicon, the conductivity of evaporated films of
amorphous germanium and finally the conductivity due to electrons
in an inversion layer formed in a metal-oxide-silicon-field-effect-—
transistor. In all cases very good agreement is found between

experiment and theory.

Formulae are also derived for the ac conductivity. Comparison
of these formulae with computer data again shows good agreement
between theory and experiment. We show how detailed considerations
indicate that the ac data obtained from evaporated films of amorphous
germanium cannot be due to hopping at the Fermi level, as is normally

assumed.

In conclusion, this work develops the simple hopping theory
which adequately describes experimental data obtained from a variety
of systems. Various problems are isolated; which relate to the
model adopted rather than any approximation inherent in the deduction

of the analytical formulae.



CHAPTER 1 - INTRODUCTION

The theoretical and experimentgl understanding of electron transport
in systems consisting of a regular array of atoms has, for many years,
received much attention in solid state physics. For such systems the
electron states are extended throughout the array and the concept of'a
k-space is both fundamental and well defined. Electron transport
processes, such as band conduction in crystals, can then be described
in terms of transitions in k-space. In contrast an electron which is
localized in real space, carries no current = the expectatioﬁ value
of the electron velocity is zero. Transport processes involving
localized states are therefore determined by transitions of electrons
from full states to neighbouring empty states. Since this basic
process changes the position of the electron in real space, it is called
a "hop", and localized state transport is therefore referred to as
"hopping" transport. In this work we investigate one particular

transport coefficient, the electrical conductivity o.

The hopping mechanism was first proposed by Conwell (1956)
and Mott (1956) to explain the dc electrical conductivity of compensated
crystalline semiconductors cooled to liquid helium temperatures so as
to suppress band conduction. For the next decade, the dc behavfour
in this regime was the subject of extensive experimental investigations
(Fritzsche and Lark-Horowitz 1954; Keyes and Sladek 1956; Fritzsche
1958, 1959, 1960; Fritzsche and Cuevas 1960; Atkins, Donovan and
Walmsey 1960; Miller and Abrahams 1960). At these temperatures the
hopping conductivity obeys an activation law,and the conductivity may
be written as 0 = op exp(—e3/kBT), where €y is the activation energy
associated with the hopping processes. Experimental studies of the
dc éonductiQity of n-type germanium at temperatures considerably below

liquid helium, have been made recently by Allen and Adkins (1974).



The observed behaviour is different to that observed at liquid helium
temperatures; the conductivity may be written as o = Up exp[}(To/T)*l,

where To is a characteristic temperature.

Interest in hopping conductivity waned in the decade 1966-1970
but has increased greatly again in recent years due to an expansioﬁ“
of research into the physical properties of amorphous qemiconductors
and the behaviour of electrons in the inversioﬁ layer of metai—oxide-
silicon~-field-effect-transistor (MOSFET) devices. In both these cases,
as we outline below, some of the electron séates are localizéd. A
hopping mechanism is therefore to be expected for transport processes
involving these states, The observed experimental temperature
dependence of the dc hopping conductivity of amorphous semiconductors
falls broadly into two categories: either eXP[TE/kB%] where € is an
activation energy or exp [}(TO/T){] where T is a characteristic
temperature. The‘Ti behaviour was first foundnBy Clark (1967) in
evaporated germanium films and has been confirmed experimentally by
many authors (Waliey and Jonscher 1968; Chopra and Bahl 1970; Hauser
and Staudinger 1973; Arizumi, Yoshida, Baba, Shimakawa and Nitta 1974;
Agarwal, Gutta and Narasimhan 1975; Gilbert and Adkins 1976), The first
theoretical derivation of the'Ti law is due to Mott (1969). Many

:

authors have also derived the T® law using a variety of approaches

(Ambegaokar, Halperin and Langer 1971; Pollak 1972; Butcher 1976a, b).
d

In contrast to the T' behaviour found in evaporated films of amorphous
germanium, Abkowitz, Le Comber and Spear (1976) find that amorphous
germanium films produced by glow discharge exhibit a simple activated
type temperature dependence. Activated behaviour is also found by

many authors for chalcogenide glasses (Mott and Davis 1971; Nunoshita,

Arai, Taneki and Hamakawa 1973).

Recently Spear and co-workers have succeeded in doping amorphous



silicon with phosphorus (Le Comber, Jones and Spear 1977). The
resulting impurity states are localized and the observed conductivity
due to these states has the same behaviour as impurity conduction in

crystalline semiconductors.

Under certain experimental conditions hopping conduction can
be observed in inversion layers in MOSFET devices. We outline the
reasons for the presence of localized states in these devices below.
The first suggestion that the data may be interpfeted on thé.basis
of hopping conduction was made by Mott (1973), and Stérn (1974).
Experimental observations have been made by many authors (Pepper,
Pollit, Adkins and Oakley 1974; Pepper, Pollit and Adkins 1974; Pepper
1977; Harstein, Ning and Fowler 1976; Pollit 1977). Recently, hopping
conduction due to impurity electrons has been reportedlin these devices
(Harstein and Fowler 1975a, b, 1976). An ex;gnsive review of transport
processés in MOSFETS can be found in the paper by Mott, Pepper, Pollit,

Wallis and Adkins (1975).

We see that the systems of interest fall into three main categories:
impurity conduction, conduction in amorphous semiconductors, and the
conductivity due to localized electrons in inversion layers. The
first of thesesystems, namely conducting electrons in localized impurity
states,is the best understood (for an extensive review see Stklovskii 1973).
Figure 1 shows just such a system. It is a schematic representation of
an n-type semiconductor in which the dopigg levels are low enough for
all the impurity states to be localized. At very low temperatures most
of the electrons are frozen out of the conduction band and we assume
all the.acceptor levels are full. Since the material is n-type there
are more donors than acceptors, which implies that some of the donor
levels are empty and some are full. Transport may therefore‘proce;d

through the donor levels by the hopping process indicated in the Figure.
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Whilst the primary function of the acceptors is to ensure that some
of the donor levels are empty, the fact that there are ionized donors
and acceptors present distributed randomly thréughout the crystal -
means that the donor levels are randomized due to the Coulomb‘field
produced by these centres, as indicated in the diagram. The hops
are therefore necessarily inelastic and must be phonon‘assisted.
As we see later, the quantity A/kBT, where A is some average énergy
separation of the states, is crucial in determining the temperature
dependence of the dc conductivity. |

In analysing the conductivity data of amorphous semiconductors
we are not in quite as good a position as in the impurity conduction
case, While most authors would argue that at least some of the
electron states in these disordered materials are localized, there
has been no satisfactory description of these states in real materials.
Anderson (1958), in a classic paper, shows ho&>loca1ized states arise
as a direct consequence of the random nature of the system (in this
case potential randomness). It is not at all clear, however, how to
cérry Anderson's arguments over to the amorphous semiconductor case.
Many attempts have been made to solve Schrodinger's equations for a
random array of scatterers directly on the computer (Thouless 1977;
Thouless and Licciardello 1977). The results of these works appear
to show that the introduction of disorder localizes at least some of
the electron states. In particular, the energy of the electron states
is critical in determining whether a state. is localized or not.
This idea was first mooted by Mott (1969) to explain data obtained
from conductivity measurements in amorphous semiconductors. He
postulated that, because of the randomness of these materials, electron
states at the valence and conduction band extrema would be localized.
Separating the localized and non-localized regimes is the 'mobility edge'

positioned at an energy €, and €. in the valence and conduction band



respectively. This idea is shown schematically in Figure 2.

Electrons with energies lying between €y and e, are said to be in the
'mobility gap'. Also situated within the mobility gap are.electron
states associated with defects such as impurities, as illustrated in
Figure 2, With this type of structure, the position of the Fermi
level together with the magnitude of the density of states at the
Fermi level are crucial in determining the behaviour of transport
properties. For example, if the Fermi level lies in the localized
states in the conduction band tail, thgn at ‘high temperatures the
dominant contribution to the conductivity may arise from activation

to the mobility edge and then conduction in extended states, At lower
temperatures hopping in the localized states may be the dominant
process. Postulating a low density of states at the Fermi level

also leads to an activated type conduction process (Mott and Davis
1971). The problem of the position of the Fermi level and electron
statistics is discussed by many authors (Street and Mott 1975; Yoifa

and Adler 1977; Okamato and Hamakawa 1977).

Finally, we come to the last of the systems of interest in the
present work, namely the inversion layer. In Figure 3 we show a
schematic representation of the energy level diagram of a p-typé
semiconductor when it is incorporated in the basic form for a MOSFET,
namely a metal-dielectric-semiconductor-capacitor structure.
Application of a gate voltage to the metal changes the charge distri-
bution at the semiconductor surface. Bending the bands sufficiently
induces a layer at the surface in which the majority carrier is the
minority carrier in the bulk., This condition is referred to as
inversion. Schrieffer (1957) pointed out tﬁat, if the field was
sufficiently strong, then a one-dimensional surface potential well is
formed with a dimension smaller than the electron wavelength. Under

these conditions, the electron wavefunction goes to zero outside the
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FIGURE 4 Classical and quantum mechanical inversion layers, showing

charge densities for a Si(100) surface with electron con-

centration équal to 101m72, T = 150 k. NA=1.5 x 1022m-3. i=0
refers to the sub-band, the total charge distribution iﬁdicates

the population of higher sub-bands., From Stern (1974)



potential well. In Figure 4 we show the results of a calculation by
Stern (1972, 1974), who calculates the wavefunction by solving
Schrodinger and Poisson equations in a self-consistent manner.‘ We

see, therefore, that the electron states are quantised in a directiop
perpendicular to the surface., Parallel to the surface the electrons P
behave normally. Such a situation is called a surface sub-band.

This band behaves as a two-dimensional system. Thus aﬁy random
fluctuations in the potential seen by the electrén, arising, for example,
from defects in the SiO2 layer will induce iocalization in a direction
parallel to the interface. The conduction band in the inversion layer,
therefore, will have localized tail states at its extremity as in

the three-dimensional case. The addition of Na' ions into the SiO2
leads to the formation of localized states associated ﬁith these Na©
ions (Fowler and Harstein 1977 ), These states, which are called
impurity states, form a band below the localizéd tail states. We see,
therefore, that the band structure for the inversion layer electrons

is the two-dimensional analogue of Figure 2, In Figure 5, we show
just such a band structure. As in the amorphous material, the dominant
transport process depends on the position of the Fermi level. However,
an important property of MOSFET devices is the ease with which ‘the
Fermi level may be moved. By moving the Fermi level through the
impurity band, localized states at the conduction band edge, mobility
edge and into the extended states regime a variety of the transport mechanisms
of a two-dimensional system may be investigated., In particular, we
are interested in the two cases of the Fermi level lying in the

tail states and in the band of impurity states.

All the experimental systems outlined above give data which
may be analysed using formulae developed in a variety of wayé.
Unfortunately, some of the system parameters, except for one or two

isolated cases, are not known and detailed investigation of the derived
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FIGURE 5 Schematiec diagram showing the density of states in
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formulae is difficult. With the advent of large storage computers,
however, this problem may be overcome. As shown later, coﬁputer
simulétion of the hopping process is conteptuaily simple, albeit
that large computers are necessary, We will therefore be interested
in comparing our theoretical predictions with well defined computer
generated data given by a variety of authors (Pike and.Seager 1974;
Seager and Pike 1974; Mashke, Overhoff and Thomas 1974 ; Butcher,
Héyden and McInnes 1977; Butcher and McInnes 1978; McInnes and

Bukcher 1978).

Our primary interest here is with the dc conductivity of hopping
systems. We shall, however, be interested in some aspects of the ac
conductivity due to localized states. The first experi%ental and
theoretical work on ac hopping conductivity was carried out by
Pollak énd Geballe (1961) who investigated thé‘éonductivity of compen-
sated crystalline n-type silicon. Golin (1963) obtained similar
results for p-type germanium. In both cases the observed frequency
dependence of the ac conductivity is w® where s ~ 0.8. This type
of frequency dependence has also been seen in amorphous materials.by
a variety of authors (Gilbert and Adkins 1976; Chopra and Bahl 1970;
Arizumi et al 1974; Hauser and Staudinger 1973; Agarwal et al 1975).
The data are usually interpreted on the basis of the Austin-Mott
formula (Austin and Mott 1969), which predicts an w0'8 frequency
dependence, Recently, there has been considerable discussion concern-
ing the different values for some system parameters deduced from the
ac and dec data (Abkowitz, Le Comber and Spear 1976; Butcher and

Hayden 1977).

The plan of the thesis is as follows. In Chapter 2 we introduce
the semiclassical formalism for the conductivity due to localized ,

electrons, and derive a formal expression of the ac conductivity from



the rate equations. We show how this approach fails to account for
the dc conductivity. Chapter 3 deals with the derivation of the dc‘
conductivity. In Chapter 4 the geﬂeral expressions derived fpr the

dc conductivity are applied to the simple case of non-degenerate hopping
in narrow energy bands. The resulting formulae are then compared with
computer generated and experimental data. In Chapter 5 we de;ive
formulae applicable to degenerate hoppiﬁg in very wide energy bands.
The results are again compared with data obtainea from computers and
experiments. Chapter 6 deals with the analysis of inversion layer
data obtained from the studies of impurity.bands whose width lies
between the limiting cases of very wide and very narrow bandwidths.

We briefly review alternative dc formulae in Chapter 7. The ac
conductivity is derived in Chapter 8 and the resultant’formulae are
compared with computational and experimental data. We also show in
this chépter why the interpretation of the experimental ac data must
be viewed with caution. Finally, Chapter 9 contains a genefal
discussion of the work presented in the preceding chapters in the

context of hopping conductivity in general.
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CHAPTER 2 -~ SEMICLASSICAL FORMALISM

§2.1 Linearized Rate Equations

Since the pioneering paper of Miller and Abrahams (1960) very
nearly all the theory of hopping conductivity has been based on the -
phenomenological rate equations for ac and dc conductivity (Brenig
et al 1971, Butcher 1972, 1973, 1974). A derivation of the rate
equations from more fundamental principles has recently been published
by Barker (1977). He shows that the rate equations are derivable
from Kubo's formula (Kubo 1957) which.is an exact expression for the
ac and dc conductivities of any sysfem. Other authors (Capek 1972,
1973, 1975; Capek, Koc and Zamek 1975) disagree. This debate rests
on sophisticated quantum transport arguments, a regime not covered in_
this work. We-shall, however, show in later sections computational
results which indicate that Barker's conclusion is correct, and that
the rate equations accurately describe transport due to electrons in
localized states., We will therefore introduce the rate equations in
aﬁ intuitive manner, but with the understanding that they may be
derived rigorously. We follow the formalism introduced by Butcher
(1976a). Consider a finite array of NS sites in a macroscopic Yolume
Q and suppose each site may be occupied by only one electron. We
label the sites by an integer m and write fm for the probability that
site m is occupied by an electron of either spin orientation. To
determine fm we use the rate quations

df
m
- = 121 [fn(l - fm)an - fm(l - fn)Ran (2.1.1)

where Rmn is the transition rate from an occupied site m to an empty
site n. When the electrons are in thermal equilibrium at temperature

T, the quantity fm reduces to the Fermi-Dirac function
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£2 = (explB(e, - tH1 + 17 . @

where € is the energy of an electron on site m and B = (kBT);l.

In eqn. (2.1.2) c* =7 + kBT1n2, where ¢ is the chemical potentiali
The kBTan term arises from the spin degeneracy of the state
(Blakemore 1967). This distinction between Z and C* will not be

made explicit except in those cases when the kBTinZ term is important.
In thermal equilibrium detailed balance ens;res that each term in

the right-hand side of eqn. (2.1.1) vanishes separately. It follows
from eqn. (2.1.2) that the transition rates R;n in thermal equilibrium

satisfy the detailed balance relation

(o]

R

E

— = exp[B(em - en)J (2.1.3)

nm

=

When a weak potential field is applied we write Um for the botential
at site m and suppose that R o satisfies eqn. (2.1.3) with €n €
replaced by (em + Um) - (en + Un). Then, to first order in U and v
we have
R o ,.,0
7 = R /R IIL + g(U_ - U] (2.1.4)
nm
In the presence of the applied potential fm suffers a perturbation
1 . . 1 ‘ .
fm' By substituting fm = f: + fm in eqn. (2.1.1) and using eqn. (2.1.3),

. 1. . . . . .
we find that fm is given to first order by the linearized rate equations

df; 1e le e e
I E L Rm ™ fRmd * 8 E F U Rm ~ FmUmRmn] (2.1.5)

hefe R® =
W n I‘mn/Fm (2.1.6)
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(o}

. _ ¢© _ O
with T = fm(l fn)Rmn (2.1.7)
and F = £f°(1 - £9)

m m m
= kBTdfm/dEm (2.1.8)

The formal solution of eqns. (2.1.5) is facilitated by the introduction
of matrix notation; We write f} and U for row matrices whose mth
colums are‘fi and Um respectively and define a diagonal squafe matrix
F whose (mm) th element is Fm' Finally, we define a relaxation matrix

R whose fm)th element is given by

R = R 6 - R g (2.109)
where

e _ e "
R = E R (2.1.10)

In eqns. (2.1.9) and (2.1.10) R vanishes when m = n and §__ is
mn mn

the Kronecker-8-symbol. With this notation eqns, (2.1.5) become

df1

= 1
e -_f_ R - BI_J_FR (2.1.11)

§2.2 Formal Expression For AC Conductivity

In order to derive an expression for the ac conductivity at
frequency w, we suppose that U(r,t) is the potential due to a uniform
electric field E applied in the x~direction and having a sinusoidal
time factor expl[-iwt]. All the systems we consider are isotropic
and the direction of the x-axis is arbitrary; Then U(r,t) = eEx exp[-iwt]
and U = eEx exp [iwt] where x is a row matrix whose mth column is X .

Moreover f}(t) = f}(O) exp [iwt] and eq. (2.1.11) reduces to




12
£10) (R - iw) = -BeExFR (2.2.1)

The formal solution of eqn. (2.2.1) is

£1(0y = -BeExFRG (2.2.2)
where the matrix G is defined by

The induced dipole moment in the x-direction is

where the tilde indicates the transpose of a matrix. The X-component
of the current density is -iwP_(t) and the conductivity at frequency

w 1is therefore

—lme(t)
E exp [~iwt]

o(w) =

= —iwezeg-lszqg (2.2,5)

It is constructive to put eqn. (2.2.5) in another form. By usiﬂg

the relations

RG = 1 + iwG (2.2.6)

1+ iwG_ = -iw ) C.. (2.2.7)
n- m

Fmen = FnGnm ‘ (2.2.8)

we may eliminate the diagonal elements of G from eqn. (2.2.5) when

we write out the matrix products in full. We then obtain
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2 -1
BQ ULFme"m"‘n - %) (2.2.9)

o(w) = wze

The algebra is completed by symmetrising the summand in eqn. (2.2.9)

and using eqn. (2.2.8). Thus we obtain the final result

2 2

-1
30 g;Fmgmn(xm xn) (2.2.10)

o(w) = -iwze

Eqn. (2.2.10) is the fundamental equation governing the frequency
dependent conductivity. We shall use it in later chapters to calculate
o(w) for a variety of systems., Our primary‘concern, however, is

with the dc conductivity, and we therefore turn our attention to

the behaviour of (2.2.10) in the limit w - O,

§2.3 The DC Limit

To investigate the behaviour of eqn. (2.2.10) in the limit w -+ O,
we need to discuss the frequency dependence of Gmn' We may derive
a byson expansion for G from eqn. (2.2.3) by splitting R into a

diagonal part Rd and an off diagonal part -Rl. On iterating we have

¢ = ¢® + c°ric® + c°rlc®rYcC ... (2.3.1)
where
® = &Y - it (2.3.2)
is diagonal. Furthermore we see from eqn. (2.1.9) that Rin = R;
and R1 = Re . Hence
mn mn
o o e e .0 e' o
= +
G =6 6 +G [R +] RoCopRon *+* 360, (2.3.3)
where
o 1

G = [R; - iw]” (2.3.4)
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-1
In the limit w -+ O,‘G;m > [R;] and we see from eqn. (2.2.10)

therefore that o(w) + O, Thus for any finite sized cluster o(0) is
zero, We see here a very basic problem in the study of the dc con-
ductivity of hopping systems. To obtain'a non-zero contribution to
o(w) in the limit w - O, one needs to consider an infinite sized
system, The summation involved in (2.3.3) is then impossible to
carry out for a random array of sites. Whilst the determination of
C is, in principle, possible for a finite'sized system thelresult
yields a zero value for 0(0). In other words: this approach yields

only the steady state polarization in the system under consideration.

We therefore see that a determination of ¢(0) relies on some
suitable approximation to the summation for Gmn in the case of an
infinite sized system. One such approximation is that made by Scher
and Lax (1973) who obtain a non-zero dc conduétivity. Butcher (1974 )
has shown that their model is equivalent to supposing that after
each hop, all sites except the one presently occupied are re-randomized.
This method has limited applicability to real hopping systems because
difficult hops which are avoided in the fixed site case become
significant when the sites are re-randomized. We conclude, therefore,
that a more fruitful approach to the dc conductivity problem is that
adopted by Miller and Abrahams (1960). They show that there exists

an equivalent network problem and indicate the method of solution.
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CHAPTER 3 - THE DC CONDUCTIVITY

§3.1 Equivalent Conductance Network

We have seen in the preceding chapt;r that the dec conéuctivity

" cannot be calculated from the formal expression for the ac conduétivity
in the limit w - 0. We may, however, reformulate the problem as an
electrical network problem, as first shown by Miller and Abfahams
(1960). We begin by considering eqn. (2.1.5). By redefining

£ =£° + gF 4 we may determine ¢ -from the linearised rate equations
m m m'm m

dé
m
F o = Esrmcwn + Un) - (¢m + um)] (3.1.1)

Eqns. (2.1.5) and (3.1.1) differ only in notation. If we now

. . -1 2
multiply by —e and write V_ (¢m + Um)e . C, = e BF and

2
8m = © Brmn : (3.1.2)
eqn. (3.1.1) becomes
c < (v + ety l1=Yg (V. =-V) (3.1.3)
m dt m m nmnn m ol

Now let us consider an electrical network having nodes which éoincide with
the electron sites. Suppose that each node is connected to ground by

a series combination of a voltage generator e-lum and a capacitance

Cm' Finally, suppose that a conductance gmn‘connects nodes m and n,
Writing v for the voltage at node m we’Eind that Kirchhoff's equations
for the network are precisely (3.1.3). This equivalent network is

shown in Figure 6, It is now a simple problem to determine ol(w),

the real part of the conductivity of the network. The Joule heat
dissipated in a volume Q is iol(w)EZQ and this must equal the sum of

the powers igmHIVﬁ - Vn|2 dissipated in the individual conductances

in Q. Thus we obtain



FIGURE 6 The equivalent network for five sites. Some of the
conductances have been omitted for clarity. C1 and V1
refer to the capacitance and voltage generator associated

with site 1 respectively.
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-2.~1 2
o (W) = E7°0 manmnlvmnl (3.1.4)

where V. =V -V, In (3.1.4), the summation is over all the
mn m n :
sites in 2 and the factor } prevents double counting. Eqn. (3.1.4) .
is conceptually simpler than (2.2,10). The evaluation of ol(w)
only requires a knowledge of the voltage drop across each conductance =

a quantity which is easier to approximate than G *

Equation (3.1.4) is the basis of our subsequent discussion. It
is therefore of interest to derive it in a more formal way. Consider
a box of length L and cross-sectional area A, We may define the
current density across a plane at point x by summing the individual
currents carried in each conductance 8m where X < x and x, > X
Thus

mzngmn(Vm - Vn)e(x - xm)e(xn - x) (3.1.5)

b R

J(x) =

where 6(y) is the unit step function. We may now obtain an average
value for J(x) by integrating along the length of the box and

dividing by L. Therefore

8(x - xm)e(xn - x)dx

mn

<J(x)> = % ) g (V. = V) =
mn
- -21—9 Ie (V- V)(x -x) (3.1.6)

Finally, since ol(w) = <J>/E

_ 1 '
0 () = mugn (Vo = V)G = x) (3.1.7)

Now consider eqn., (3.1.,3). If we multiply each side by X and sum

over m we obtain, by symmetrising the right-hand side,
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. -1 = - -
iw E C VX, ¥ Cpe U x = iuélgmn(Vn Vm)(xm xn) | (3.1.8)

Similarly by multiplying (3.1.3) by.V; we may write

iw ] CvvE et 12 (3.1.9)

*
vcv =i ) gmnlvm -V
m m

n
According to eqn. (3.1.7) the real part of the left-hand side of

eqn. (3.1.8) is cl(w). Obviously, from eqn. (3.1.8) therefore
() ==J cvVx (3.1.10)
m

Similarly, using eqns. (3.1.4) and (3.1.9) -

iw -1 %
ol(w) =—=7J]e UCV

(3.1.11)
QEZ o mmm

Since Um = eExm eqns. (3.1.10) and (3.1.11) are identical and we see
how the expression (3.1.4) for the real part of the conductivity is

related to the rate equations.

Eqn. (3.1.4) is valid for all frequencies. The equivalent °
electrical network analogue of the hopping problem is not, however,
the most fruitful approach to the study of ac conductivity. As
we show 1in Chapter 8, eqn. (2.2.10) is a more convenient starting
point in this case., In contrast, studies of the dc conductivity are
almost entirely based on the network model, Since w = 0 we may
eliminate the capacitances and voltage generators from the network
to obtain the random resistance network model (RRNM). The voltage
drop an is then real and we may write

o= 4E207L ¥ g v (3.1.12)

m mn
mn
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where we have used the simpler notation o = 01(0). An analytical
solution of the summation involved in eqn. (3.1.12) is obviously not
possible for a realistic number of sites. We therefore approximate

the summation in the manner described in the next section.

§3.2 Formal Expression of the DC Conductivity

When © is sufficiently 1arge»o is independent of the particular
configuration of the hopping system. The term "sufficiently large"
means that the system is approaching the thermodynamics limit i.e,
NS > o, > oo NS/Q = a constant. In this case we can confine our
attention to the configuration average of eqn. (3.1.12). 1In the
therﬁodynamic limit the configuration averaged conductivity <o>
is equal to the actual conductivity of almost any realization of
the system. Certain configurations (notably a regular array of
sites) can give infinite conductivities, but the measure of such
systems goes to zero in the limit Ns + =, and so we need not concern
ourselves with these extraordinary contributions to <o>, To
evaluate the average we suppose that the sites are independently and
uniformly distributed over the volume £. We also suppose that €
is independently distributed with a probability density p(em)ngl,
where p(e) is the density of states and n_ is the site density.
Finally, we suppose that Bon depends only on the intersite separation
r=r and the energies €n and €, The cgnfiguration average of

eqn, (3.1.12) then yields

p(e,)de p(e,)de g2
1 1 2 2 ) <V2 >4wr dr

n 812120
S

<g> = iE—zsz-l (nsn)2
s

ao=2 2 -2 ‘
= 2nE p(el)de1 p(ez)de2 g12<V12> rodr (3.2.1)
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P

where <V§2> is the average of sz over all stochastic variables

except €, €, and r,

In all the hopping systems of interest the dependence of.glz
on €, €, and r is dominated by exponential factors. It is therefore

convenient to write

g7 = &, exp[-s(el,ez,r)] ' -(3.2,2)
where g, is a constant and the entire functional dependence of_g12

is subsumed in the exponent s(sl,ez,r). As we show in Section 3.3,
providing exp[-s] is rapidly varying in comparison with any other
factors involved, the integrand in (3.2.1) has a sharp peak at
s(el,ez,r) = sp. The sugéestion that the integrand is sharply

peaked was originally made by Ambegaokar, Halp;rin and Langer (1971).
They were the first authors to use the concept of "percolation"

in the study of dc hopping conductivity. In Section 3.3, we will

show why the RRNM shows percolative behaviour and how sp is determined
by a classical percolation criterion. The quantity sp is called the
"eritical percolation exponent" and is defined as the least valye of s,
for which the conductances with s(el,ez,r) < so form a connected
infinite cluster. With this idea in mind we may find a simple
approximation to <Vi2>‘.

with a low conductance having a finite probability of belonging to

When s(el,ez,r) > sp we are concerned

an infinite cluster of conductances with the same or larger values,

It follows that <V§2>‘is dominated by the boundary condition that a

uniform macroscopic electric field with magnitude E be present in the

system. When r is very large <V§2

s < sp we are concerned with a high conductance having zero probability

> = E2r2/3. On the other hand when

of belonging to an infinite cluster of conductances with the same or

larger magnitudes, The conductance must therefore belong to an
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isolated cluster of high conductances and the current through it
is determined by what is fed into the cluster from outside. We write
12 for the mean square current flowing through 819 Then

<V2 S Iz/giz. We use this form for all s < Sp and choose I2 to °

2

be a function of e, and €, such that Iz/gi2 =E r2/3 on the critical

1
. 2 2 2:2 . .
percolation surface, Thus 1 = g, exp(-ZSp)E rp/3 where rp is given
by

s(sl,ez,rp) =s, . (3.2.3)

When these approximations to <V2 are substituted into eqn,

12
(3.2.1) we obtain the desired form for the dc hopping conductivity

<g> = Op exp["sp] . (30204)

where the prefactor Up is given by

00 ~ pCO @

- 22 ‘IS‘SPI
o =8, F r>(t~:1)dt~:1 p(ez)dez rr e dr (3.2.5)

.00 -0 -0

with r = r for s>s andr =r for s <s_ .
a P a P P

The fact that the conductivity may be written in the form of
eqn. (3.2.4) may be deduced from experimental data. The exponent
sp is the crucial term in determining the dependence of <o>on the
system parameters. As we shall see in late chapters, the effect
of the prefactor, 09 is qualitatively small, but is obviously
important in determining the absolute magnitude of the conductivity.
Experimentally, however, the important quantity is the logarithmic
conductivity. For this reason the prefactor has not received as
much attention in the literature as the exponent. Our derivation of
op is necessarily crude, but two points are worth noting. Fifstly,

our choice of <V§2>: while being somewhat arbitrary, only affects
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the prefactor. Secondly, the three-dimensional integral involved

in evaluating cp must necessarily entail approximating the integrand

if analytical results are desired, -

We see from eqns., (3.2.4) and (3.2.5) that the evaluation of
<g> relies on the determination of sp - a crucial quantity in the
study of hopping conductivity. We have hintedvthat 55 is determined
by a percolation argument, and in the next section turn our attention

to this assumption.

§3.3 The Percolation Aspect of Hopping Conduction

In this section we turn our attention to the calculation of
S . Varipus approaches to the problem have been made (for a brief
review see Chapter 7). The most fruitful of these is the method
originally introduced by Ambegaokar et al (1971), based on a
percolation argument. The use of classical percolation theory in the
semiclassical formalism of hopping conductivity is not an obvious

one, and for this reason it will be discussed in some detail.

We begin with a very brief review of classical percolationy
and then show how considerations of the hopping problem give
arguments formally equivalent to those of percolation. A full account
of classical percolation theory is contained in a review by Shante
and Kirkpatrick (1971). The purpose of percolation theory is to
determine how a given set of sites, regularly or randomly positioned
in some space, is interconnected. We suppose this set is infinite
in one or more dimensions. To determine how these sites are connected
we need the "bonding criterion" which specifies whether any two sites
are connected (this criterion could involve more than two sites in
general), The bonding criterion is a function of one or more "bonding

parameters', Two sites belong to the same "cluster" if there is an
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unbroken sequence of bonds from the first site to the second. For
a given set of sites, percolation theory attempts to determine the
distribution of cluster sizes as a function of the bonding criterion.
In particular, as we see below, one would like to find the bonding |
criterion for which clusters of infinite size first form. It is
convenient to divide the solution of the percoiation problem into
two main catagories (which are related), namely, site éercolation
and bond percolation. In the site percolation problem all sites
within same radius R of another site are bonded to this site. The
percolation problem is to find the critical radius Rc at which an
infinite cluster of connected sites is formed. In the bond percolation
problem a bond between any two sites is said to be present if the
"bonding parameter" Bp is less than some value B;. The percolation
problem is to find the critical value of the pérameter B: (defined
as B;).for which the connected sites just form an infinite cluster.
We will find that the problem of interest in the study of hopping
conduction is the bond percolation problem. We note in passing that
the n-dimensional bond percolation problem may be viewed as a site
percolation problem in an n + 1 dimensional space (Pike and Seager
1974). 1In all cases the results of computer studies show that
various system parameters depend primarily on the dimensionality of
the system (Shante and Kirkpatrick 1971). One such parameter is the
average number of bonds per site at the percolation threshold, Np.
With these ideas in mind, we turn our attention to the problem of
calculating sp. If we presuppose that the RRNM may be solved using
percolation techniques, we may identify the bonding parameter Bp with
the quantity s, and the quantity B; with 85 It is then a trivial

problemto calculate the average number of bonds (or conductances) per
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site with s < sp and equate this to Np. Since Np is known f?om

computer studies we will then obtain aﬁ equation for sp. We therefore
need to show that the RRNM is forméily equivalent to a percolation
problem. To do this let us consider the integrand in eqn. (3.2.1).

For small s we are concerned with high conductances which dissipate

very little power. TFor s -+ = we are concerned with infinite conductances
which again dissipate no power. The integrand therefore has at least
one maximum at some value of s = 5.+ Two questions remain to be
answered: firstly, is the integrand strongly peaked at s = S.» and
secondly, how do we identify sc? Consider an arbitrary conductance,

C, in the network (Figure 7). If C is very much larger than the
surrounding conductances (Figure 78 then the power dissipated is small
and we may effectively put the conductance equal to infinity. On
the other hand if C is very much smaller than the neighbouring con-
ductances, (Figure 7B, more power will be dissipated in the "by-pass”
chains CB and we may put this conductance equal to zero. If we
therefore consider the complete resistance network, we may remove
conductances with s > so.(where s, is arbitrary) since these are
"by-passed" by high conductance chains. We can then lower the value
of CR until wé cannot by-pass the lowest conductances in the network,
We call this value sp. Thus sp is the least value of s, for which
the conductances with s < S, form a connected infinite cluster, We
may therefore determine sp from a percolation argument. Our

approximation to the mean square voltage drop <V2 ', and the

12’
exponential nature of 8o Mean that the integrand in (3.2.1) decays
exponentially above and below s = sp. We conclude, therefore, that
the assumptionsmade about the integrand in eqn. (3.2.1), namely

2 .. .
that g12<V12> is peaked at.s = sp, and that sp may be determined

from a percolation argument, are valid.



(a)

(b)

FIGURE 7 Limiting conductances in the equivalent conductance
network, In (a) the conductance C is very large and
is a "short circuit". In (b) the conductance C is

very small and can be bypassed by chains of conductances

CBQ
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We may readily obtain an approximate formula for sp. As
discussed above, and in more detail in Shante and Kirkpatrick 1971,
the average number Np of bonds per site at the percolation threshold
is determined primarily by the dimensionélity of the percolation
problem. Pike and Seager (1974) have determined NP by collapsing
randomly located spheres. They find that Np = 4,5, 2,7 and 2.1 in
2, 3 and 4 spatial dimensions respectively. Kurkijarvi (1974) finds
Np = 2.8 in 3 dimensions from a study of random conductance networks.
The dimensionality of the percolation problem is defined by the
number of independent random variables required to characterise a
site. When all sites have the same energy, the correct value of N
to use is that corresponding to the number of spatial dimensions.

The introduction of site energies increases the dimensionality of

the percolation problem - we may treat the energy as a fourth
dimension. The energy independent case is a site percolation problem
in 2 or 3 dimensions. Pike and Seager show how the introduction of

an energy into the expénent can be viewed as giving rise to a 2 or

3 dimensional bond percolation or a 3 or 4 dimensional site percolation
system (corresponding to 2 or 3 spatial dimensions respectively). A
full discussion concerning the appropriate values for Np may be

found in Chapter 9.

It is now a simple matter to find an expression for the average
number of conductances with s < s per site at the percolation threshold.
p
The average number of conductances per unit volume with s < sp is B

where

' 2
2B = p(el)de1 p(ez)ds2 4nrdr (3.3.1)

s <s
P

in which the factor of 2 prevents double counting. The range of

integration is over all values of ¢

1 € and r such that s < sp.
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Similarly the average number of sites per unit volume which have a

non-zero probability of belonging to the infinite cluster is

s = | p(e))de, ' (3.3.2)

s <58

The integration in eqn. (3.3.2) runs over the values qf €, for
which the inequality s(sl,ez,r) < sp can be satisfied for some
choice of €9 and r. Sites with energies outside this range cannot
possibly belong to the cluster and may be said to be automatically

isolated. Since each conductance is connected to two sites the

desired equation for sp is

9B _
_s__..Np (303.3)

Eqns. (3.3.1), (3.3.2) and (3.3.3) are the final expressions used to

evaluate sp.

§3.4 The High Frequency and the High Density Limit

Before moving on to evaluate 0(0) for a variety of models, we
wish to discuss two limits where exact results are easily obtained,
namely, the high frequency and the high density limits. We see from

o

eqn. (2.3.4) that when w + =, Gmm > - (iw)-l. Using this result and

eqns. (2.3.3) and (2.2.10) we may readily deduce

o,(=) = je’sa™ PRESCIEE L (3.4.1)

where 01(”) is the real part of the conductivity in the limit y » .
We note that eqn. (3.4.1) may be derived from (3.1.4) since in the
limit w + o v, -Exm. Brenig et al (1971) show that ol(m) is a
monotonic increasing function of w. Hence cl(m) > cl(O). In
highly random systems cl(w) >> ol(o) (Butcher and Morys 1973;

Mott and Davis 1971; Butcher 1976). The equality ol(w) = 01(0)
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can only be valid in special circumstances because it implies
that cl(w) is independent of w. Now consider a random system, and
allow the spatial density of sites.to approach infinity. In this
high density or continuum limit, V. = -E(x_ - x_) for all w so
mn m n
that ol(w) = ol(w). Hence ofo) = ol(w) in a high density system,

Substituting v, = ex into (3.2.1) gives

<01(w)> = 27 J;(el)del J p(ez)ds2 J glz(xm - xn)zrzdr (3.4.2)

We see that this result can be obtained from eqns. (3.2.4) and (3.2.5)

by putting sp = 0.
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CHAPTER 4 ~ NON-DEGENERATE HOPPING IN VERY NARROW ENERGY BANDS

§4,1 Analytical Formulae

In this chapter we evaluate the expressions for sp and op for
a particularly simple model in which all the energies of the localised
states are very nearly the same. The theoretical predictions are

compared with experimental and computational data.

To proceed we need an expression for the thermal equilibrium

. o
hopping rate R12'

fundamental to the study of hopping conductivity, may be found in

A discussion of the transition rates, which are

Appendix 3. We find when € > el

B(e, = €,)
o 2 1 (4.1.1)
R12 = Ro exP[-p(r):]exp[B(e2 - el)]g; 1

where

p(r) = Zor - vlnar (4.1.2)

R, is a hop rate characteristic of the system under consideration.
The exponential term involving the site separation r, arises from
the overlap of the localized states, where the decay constant is a.
The parameter v arises from consideration of the overlap integral
(Miller and Abrahams 1960). When the conduction band has n
ellipsoidal valleys with ellipticity parameter n = (mllmt) -1,

they find that v = 2 when n = 0 and v = 3/2 when n >> 1, Finally,
the energy dependent contribution arises from the Bose-Einstein

distribution of phonons involved in the inelastic transition.

When eqn. (4.1.1) is substituted into (3.1.2) we find that 819

takes the form (3.2.2) with

g, = eZBRo (4.1.3)
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and
s(ey58,,1) = p(r) + q(eys€,) (4.1.4)
where

q(sl,ez) = Inl4 cosh 5861 cosh 4Be, sinh iB(el - €2)]

2

- ln[&B(el - ez)] (4.1.5)

in which the energies are measured from the chemical potential plus

kBTan.

We now suppose that the density of states is a sharply peaked
function with a width much less than kBT. In this case the hops
are nearly elastic and q(sl,ez) in eqn. (4.1.5) may be treated as a
constant. To be specific we suppose that the Fermi level lies well
away from the energy band., Then exp[-q(€1,€2I1= 2 exp[-Be3] where
83 is the conventional notation for the activation eﬁergy from the
chemical potential to the energy band and the factor of 2 arises
from the spin degeneracy term, kBTan. Since q(el,ez) is not a
stochastic variable in the model under discussion it is convenient
to ébsorb it in the characteristic conductance g, - We therefore
replace 8o by

g, = g02 exp[-B€3] (4.1.6)

We may then replace q(el,ez) by 0 in eqn. (4.1.5) and s then reduces

simply to p(r).

To calculate s, we replace p(e) by nsﬁ(s - eB) in (3.3.1) and
is the energy at the

centre of the band. Then eqn. (3.3.1) gives 2B = n§4n(r3 - r;3)

(3.3.2), where n is the site density and €g
where rP and r; are respectively the larger and smaller of the

two roots of the equation

sp = p(rp) (4.1.7)
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When v = 0 r; = 0, and we may verify that for all values of v of
interest to us (v s 2) r; remains negligible compared to T
Eqn. (3.3.1) for S gives S = n_ since no sites are automatically

isolated. Hence, using eqn. (3.3.3),

n 7;-r3 = N (4.1.8)

To calculate op from eqn. (3.2.5) we replace g, by g s the
densities of states by 6=functions and s by p(r). To evaluate the
remaining integral over r we sﬁppose that n, is small. Then sp
and rp are large and the dominant contribution to the integral comes
from the neighbourhood of rp. We therefore approximate rzri by
rg and p(r) by p(rp) + p'(rp)(r - rp) and extend the lower limit of

integration to -», We then obtain the low density approximation

¢ =g AT
pga3

4, .

T r 4.1,
p/p ( p) (4.1.9)
where p‘(rp) = 20 - v/rp 2 2q at low densities. We see from (4.1.2)
and (4.1.7) that exp[-sp] = (arp)v exp[—Zarp]. The slowly=varying
quantity (arp)v is best taken out of the exponential and absorbed

in the conductivity prefactor. Then the final low-density formulae

for <o> obtained from (3.2.4), (4.1.8) and (4.1.9) is

3N

-2
<g> = ?;F (gaa)(arp)v exp[-Zarp] (4.1.10)
where

1/3

T = (3Np/4nns) (4.1.11)

In applying eqn., (4.1.10) to the interpretation of experimental

data it is convenient to write

-1/3, 2
o, = <o> exp[Be3](ans ) (4.1.12)
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Since g, contains the activation factor exp[-8€3], we see that a

plot of log 9, against an;1/3 should be a straight line.

§4.2 Comparison with Computer Data

The formulae developed in the previous section are applicable
to the analysis of activated hopping, observed in a variety of low
density systems. Before we analyse experimental data, however, we
wish to investigate the validity of the approximations used to
evaluate the expressions for <0>, A number of authors have evaluated
eqn. (3.1.4) using a computer (Seager and Pike 1974; Butcher, Hayden
and McInnes 1977; Butcher and McInnes 1978). The general method is
to distribute a number of sites randomly in a two- or three-dimensional
space. The resulting conductances in the RRNM can be calculated
using eqn. (3.2.2). The quantity g is an arbitrary scaling factor
in the system. The voltages an are then minimized, subject to the
boundary condition that a voltage is applied across the system. The
conductivity is then evaluated using eqn. (3.1.4). We refer to

conductivities determined in this way as 'tomputer generated datd'

We begin by comparing with the three-dimensional data of Seager

and Pike (1974). The straight line in Figure 8 shows log o calculated

3/2
from eqn. (4.1.12) with Np = 2.7 for the parameter values v = 3/2,

g, = .1459—1 and a-l = 1.5nm. The dots are derived from Figure 4 of
Seager and Pike. They were calculated by numerical solution of Kirchhoff's
equations for a random conductance network having the above parameter
values. It should be noted in this connection that in eqn. (1) of

Seager and Pike (1974): Go = 0.145(on:')3/2$2_1 (private communication).

The agreement between our simple analytical formula and the computed

points is remarkably good. It should be emphasised that no parameters
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FIGURE 8 Plot of log 93/2 against an_

1/3, where Oy/p = <o>exp(8:—:3)(ans)i

with' <o> in Q-lm_l. Dots: derived from Figure 4 of
Seager and Pike (1974). Straight line:tcalculated from
(4.1.12) with Np =27, v = 3/2, a-l = 1.5 nm and

g, = 0.145 9-1.
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have been adjusted. Further tests of the theory using computational
data have recently been undertaken (Butcher, Hayden and McInnes 1977;
Butcher and McInnes 1978). This work investigates the accuracy of

the analytical formula in 2-and 3-dimensions and for high, intermediate
and low site densities. In all cases the model is simplified by
dropping the (ar)v factor from the conductances. The conductivity

is given by eqns. (3.2.4) and (3.2.5) where sp = Zarp and

, =P

P 4 n

3y 1173
(4.2.1)

The evaluation of the integral involved in the prefactor is elementary

but tedious and we find that (Butcher and McInnes 1978)

. [ 72

¢ =(ga) = |—2|H (4.2.2)

P a 6 41TR3

P

where R = ar_ and
P p
2 3 4 2
=34+ 6R + 7R + 2R™ + 4R - R - .2,

H=3+6 > > > ) > expl 2Rp] (4.2.3)

For low densities (ns +0) H~+ ARg whilé\for high densities (ns + )

H -+ 3 and exp[-ZRp]= 1. The points in Figure 9 show conductivities
calculated by numerical solution of Kirchhoff's equations (Butcher and
McInnes 1978). The full curve is calculated from eqns. (4.2.1) and
(4.2.2) with Np = 2.7. The upper and lower dashed curves show the
high and low density approximations respectively, The full curve is
in excellent agreement with the calculated points over the full range

-1/3 considered. This is sufficient to cover the region exhibiting

-1/3

of an
s

high density behaviour (omS
-1/3

< 1.5), low density behaviour
(ozns > 3.5) and the transition region between these two régimes,
The lowest four computed points appear to be falling off rather less

steeply than the analytical curve which suggests that Np should be
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FIGURE 9 Plot of log (<c>/goa) against an; 3 for a three-
dimensional system with v = O. Dots: computed from
Kirchhoff's equations. Full curve: calculated from
(4.2.1) énd (4.2.2) with Np = 2.7. Upper dashed curve:
high density approximation. Lower dashed curve: low

density approximation. From Butcher and McInnes 1978,
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reduced by about 107. A full discussion of the appropriate values
of Np is to be found in Chapter 9 and will not be discussed in detail

here,

Computational studies have also been made for a two-dimensional
system., The andytical formula for this model is obtained from (3.2.4)
and (3.2.5) by setting p(e) = 6(c - EB)ns, s = 2or and replacing 2nr2/3
by 7r/2. Without any further approximations we find that

o -|20xr-s_]|
g=e P 7 Boh rr_e Plar (4.2.4)

The integral in eqn. (4.2.4) is elementary. Moreover, 55 is determined
by the two-dimensional analogue of eqn. (4.1.8) for this model, namely:
s_ = 20LrP and nsﬂrs = Np‘ The classical percolation calculations of
Pike and Seager (1974) give Np = 4,49, Thus we obtain the full curve
in Figure 10 which is in excellent agreement with the computed points
for all values of oms-i investigated. The upper dashed curve in Figure
10is the high density approximation <o> = 31rgon§/16a4 obtained by

setting s, = 0 in (4.2.4). We see that it is valid for ans_i <1,

The lower dashed curve in Figure 10 is the low density approximation
<o> = mg n>(r3/20) expl-2ar_] (4.2.5)
o s p p * .

obtained from eqn. (4.2.4) by putting rri = rs and extending the lower
limit of integration to -», We see that it is a very good approximation
for ansf£ > 2,5. The agreement with the computed points may be improved
still further by decreasing Np slightly. A least squares fit to the

lowest five points gives Np = 4,30 + ,07.

We see from a comparison with computer data that the approximate

theory given in Section (4.1) is surprisingly accurate. We therefore



FIGURE 10 Plot of log (<c>/go) against angi for a two-dimensional
system with v = 0. Dots: computed from Kirchhoff's
‘equations. Full line: calculated from (4.2.4). Upper
dashed line: high density approximation. Lower dashed

line: low density approximation.
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feel justified in applying the formulae developed above to cases where
our knowledge of the system and the system parameters is not so well

advanced. This we do in the next section.

§4.3 Comparison of the Analytical Formulae with Data fér Three~-

Dimensional Systems

In this section we wish to use the formulae developed in

2.1. to analyse experimental data. In particular, the formulae should

be applicable to the case of impurity conduction in crystalline semi-
conductors. As outlined in the introduction, at sufficiently low
temperatures, the predominant transport process in this system is
hopping conduction due to the localised impurity states, If we

assume that the bandwidth of the impurity band is much less than k.T
B*?

then the formulae developed in this chapter may be used to analyse

the data,

The characteristic hop rate Ro has been calculated by Miller and
Abrahams (1960) for impurity conduction in crystalline semiconductors
They find that for a semiconductor whose conduction band has n minima

2 _ 2
ElkBT e2a 1| xfY

= — 4. .
o “90V254 6mee | n fn (4.3.1)

R

where Els Pys Vv, are the deformation potential, density and velocity
of sound respectively.

The continuous straight line in Figure 1l shows 10gq3/2 calculated
from eqn. (4.1.12) with Np = 2.7 and parameter values appropriate to
n-type germanium. Thus we take v = 3/2, a-l = 7nm and calculate

g, explBe,] = 2g  from (4.3.1) and (4.1.,3) with E, = 11.4 ev,
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FIGURE 11 Plot of log o against an-1/3 where o = <g>exp(Be )(an-1/3)!
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with <o> in Q-lm-l. Dots: data for n-type germanium from
Fritzsche (1958). Full line: calculated from (4.1.12)
with Np = 2.7 and parameter values appropriate to n-type

germanium,
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v_ = 4.92 x 10°ms T, b, = 5.5 x 10°kgn >, € = 15.8, n = 18.8 and

n = 4 (Miller and Abrahams 1960). The dots in Figure 1l are calculated
from (4,1.12) using the experimentél daga on n;, <o> and €q reported
by Fritzsche (1958) for antimony doped germanium at 2.5 K. The
compensation ratio for all samples is less than 0.06. By confining
our attention to samples with donor concentrations less than

8.5 x 1021111_3 we may expect the observed conductivity to be dominated
by a non-degenerate distribution of holes hopping in a narrow band

of completely localized states (Shklovskii 1973), The dashed line
through the experimental points is within about an order of magnitude
of the continuous theoretical line, but has a considerably steeper
slope., This discrepancy is hard to understand because the magnitude

)1/3

of the theoretical slope is 0,868 (3Np/4a which contains no

adjustable parameters.

In Figure 12 we make a similar comparison of the theoretical
predictions with experimental data for gallium doped germanium at
1.25 K reported by Fritzsche and Cuevas (1960). Since there are no
published theoretical expressions for the thermal equilibrium hopping
rate between acceptors we use (4,1.1), (4.1.2) and (4.3.1) with
n=1and v =2, The continuous straight line in Figure 12 shows
log o, calculated from eqn, (4.1.12) with N = 2,7, a-l = 8,7 nm

(Kohn 1957) and E, = 3.1 eV, The value assumed for E, is 2/3 of

1 1
that given by Reggiani (1976) because Reggiani and co-workers
use a deformation potential 3/2 larger than Miller and Abrahams
(Costato et al 1974). The dashed straight line through the experi-
mental points has a slope close to the theoretical value and an
intercept which is only an order of magnitude below that predicted.
The agreement is surprisingly good. Our treatment of the hopping

rate in p-type material has been superficial and we have not adjusted

any parameters. The acceptor density in the experimental samples is
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FIGURE 12 Plot of log 9y against an; where 02 = <c>exp(883)

with <o> = Q-lm— . Dots: data for p-type germanium
taken from Fritzsche and Cuevas (1960). Full line:

calculated from (4,1.12) and Np = 2.7 and parameter

values appropriate to p-type germanium,
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small enough to ensure complete localization. However, the compensation
ratio means that our assumption that the impurity bandwidth is negligible

is a poor one.

Finally in this section we discuss some more recent experimental
data., Le Comber, Jones and Spear (1977) have recently succeeded in
doping amorphous silicon with phosphorus. In Figurel3we show the
experimentally determined values of hopping conductivity as functions
of doping concentration. In this system we do not know a, the decay
constant of the localized wave function, or By the characteristic
conductance in the equivalent random resistance model. We therefore
proceed by fitting a straight line to the experimental points, and
deduce a and go,from the slope and intercept respectively. The full
line in Figure 13is such a fit. From it we deduce a-l = 1.7 nm.

This value for a is a reasonable one, but there have been no theoretical
or experimental values quoted for amorphous silicon. However, for

the case of phosphorus in crystalline silicon, a-l = 2.1 nm. The
value of g obtained is 0.7 mS, but again there are no published
theoretical or experimental values for amorphous silicon. We may,
however, make an order of magnitude estimate as follows: we use the
parémeter values appropriate to crystalline silicon to determine R°
using eqn. (4.3.1), and hence g from (4.1.3). It does not seem
appropriate to carry over concepts such as number of band minima and
ellipticity to the amorphous case. We therefore assume the conduction
band has one spherically symmetric conduction band and use parameter

values E. = 6 eV, a-l =2,1om, ¢ = 11.7, P = 2.3 x 104kgm73,

1
-1 ) .
v, = 9 x 10° ms ,n=1, v =2, With these values we obtain g, = 1.3 mS,

which is very close to the values of 0.7 mS deduced from the data,
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FIGURE 13 Plot of log <o> against n; with o in Q_lm-I,

The dots are experimental values found by Le Comber,
Jones and Spear (1977) for phosphorus doped amorphous
silicon. The full line is a best straight line fit

to these points.
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§4.4 Discussion

In this chapter we have developed the general formulae given in
Chapter 3 for the simple case where the resistances in the RRNM depend
only on the site separation. The resuiting formulae are then parti-
cularly simple. Our results are compared with alternative formulae
in Chapter 7. Detailed comparison with computer generated data in Section
4,2 shows that the methods of approximation involved in the derivation
of the analytical formulae are valid. The model of non-degenerate
hopping in a narrow energy band is a very crude one for the interpretation
of activated hopping data obtained from the study of impurity conduction
in crystalline and amorphous semiconductors. Nevertheless, the agree-
ment between the analytical formulae and the experimental data in the
case of crystalline germanium is reasonably good; One might hope to
remove the discrepancies by closer attention to thevdetailed assumptions
made in the calculations concerning the statistics, transition rates,
densities of states and parameter values. The application of the
formulae to the analysis of impurity conduction in amorphous silicon

yields values of o and g which are close to the crystalline values.
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CHAPTER 5 - DEGENERATE HOPPING IN VERY WIDE ENERGY BANDS

§5.1 Formulae for Hopping in Wide Bands

In the previous chapter we developeﬁ approximate analytical formulae for
the dc hopping conductivity of systems in which the energies of the localized
electrons are distributed over a very small range. In this case the
integrals are easy to evaluate. We now wish to turn our attention to
the more interesting case of degenerate hopping in a wide band of localized
states. The integrals are then more complicated but an approximate
analytical evaluation of them is still possible. We shall be interested
in both two- and three-dimensional systems. The derivation of the

relevant formula in this chapter is for three-dimensions unless other-

wise indicated.

The behaviour of <o> depends on the form of the density of states.
To be definite and to keep the analysis as simple as possible, we suppose
that p(e) has a constant value Ppe Then D(el) and p(sz) may be taken
outside the integrals involved in eqns. (3.2.5), (3.3.1), (3.3.2).
The evaluation of 2B in eqn. (3.3.1) is facilitated by introducing
q = q(el,ez) as a new variable of integration. Let us write A(q) for
the area of the (el,ez)-plane for which q(el,ez) < q. We see from
eqn. (4.1.5) that q(sl,ez) has a minimum value of 1ln4 which henceforth
we denote by Ay Thus A(q) = 0 for q < Qe Moreover we see from
(4.1.4) that s < sp implies that r; <rc< rp where rp and r; are
respectively the larger and smaller roots of the equation

p(r) + q, = s, i.e.

p(rs) + q = p(rp) + q = sp (5.1.1)

It follows that eqn. (3.3.1) may be written in the form
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r
p
2 2 -
2B = 4mo_ | ¥ A[sP - p(r)ldr
r; r
P ) '1
- _431 }% IBA,[SP - p(r)](Za - VY )dr (5-102)
rl
P

H
In the second line we have integrated by parts and used (4.1.2),

We may use the same approach to simplify eqn. (3.2.5) for op.
For low temperatures and densities the dominant contribution to the
integral comes from the neighbourhood of the critical percolation surface
§ = sp. We may, therefbre, appproximate r, by r throughout the integrand;
When q = q(el,ez) is introduced as a new variable of integration, we
note that the area of the (51,52)—p1ane between the contours q(x,y) = q

and q(x,y) = q + dq is A“(q)dq. Hence

2 2 4 »
cp =8, 3 Pp | ¥ dr | A“(q) expl~- |sp -q - p(r)|]dq (5.1.3)

Uy

Now, the exponential in eqn. (5.1.3) reaches its maximum value of unity
when q = sp - p(r). Moreover, we see from eqn. (5.1.1), that
s_ = p(r) > a, provided that r; <rc«< rp. We ignore contributions to

P
the integral from values of r outside this range and approximate the
contribution from values of r in this range by putting q = sp - p(r)

in A”°(q) and extending the lower limit of the q-integration to =,

Thus we obtain

r
P
_ dr 2 4 . -
op =g, 3 fp|T A [sp p(r)ldr (5.1.4)
r‘

To complete the evaluation of the integrals (5.1.2) and (5.1,4)

we must approximate A(q). A preliminary study of the integrals shows
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that we are primarily concerned with large values of q at low densities

and low temperatures, For this case we find, by considering eqn.

(4.1.5), that a crude approximation to the contour q(sl,ez) = q is pro-
vided by the polygon of straight lines drawn in Figure 14, We have

given the coordinates of three points in the diagram. The remaining
-points follow from the obvious symmetry of the polygon. The dashed

polygon in Figure 14 shows the cruder approximation to the contour which

is obtained when q(el,ez) is replaced by %EIEII + |52[ + lel - ezl] as

is frequently done to simplify the integrals arising in hopping conductivity
problems (Ambegaokar et al 1971, Butcher and Morys 1973, Butcher 1976 a, b).

Neglecting contributions from the small shaded triangles we have
2.2
A(q) = (k;T)"[3q" + 4qlnql] (5.1.5)

. . 2, . . cors
where the term involving 3q 1s the contribution from within the

dashed polygon.

When eqn. (5.1.5) is substituted into (5.1.2) and (5.1.4) we find
that the integrals are, with one exception, elementary. An adequate
approximation to this exception is easily obtained. The final expressions
are unwieldy and have been relegated to Appendix 1. The terms involving
r; are always negligible in the cases we consider. Consequently, the
integrals in (5.1.2) and (5.1.4) may be written in the forms
(kBT)za_SJ(Rp) and (kBT)Za-SK(RP) respectively, where Rp =z urp and
J(Rp) and K(Rp) have the non-dimensional forms given in Appendix 1.

It is also convenient to write

i
5N az
Rpo = arpo = 2onkBT (5.1.6)

the significance of which is discussed below. Then eqns. (5.1.2) and

(5.1.4) become



(0,q+tnq)

FIGURE 14 Schematic diagram of the contours q(sl,sz) = q. The
polygon of full lines is the approximation used in the
present analysis. Polygon of dashed lines is the
approximation used in previous analyses. The shaded

triangles are omitted in calculating A(q).
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10N
2B = —2 (ppkpT)J(R ) (5.1.7)

3R p
po

and 2

25N )

o = —2L g oK(R_)

P 3 R8 o P
pPo

(5.1.8)

The calculations are completed by considering the integral S~
in (3.3;2) Using (4.1.4) we see that s < sp implies that q(el,ez) < sp - Py
where P, = vin(2a/v) is the minimum value of p(r) derived from eqn. (4.1.2).
Inspection of the polygon of full lines in Figure 14 shows that we must

therefore keep Iell < kBT|sp “ P, " ln(sp - pm)l to avoid automatic

isolation of site number 1. Hence (3.3.2) reduces to
S§° = ZkaBT[sp P, " ln(sp - pm)] (5.1.9)
and eqn. (3.3.3) for sp becomes

3 IR)
5 "po Sy = Py~ ln(sP - pﬁy

(5.1.10)

where we have used (5.1.7). We may also express sp in terms of

Rp = arp in (5.1.10).. We use (4.1.2) and (5.1.1) to obtain the equation

= 2R - vlnR + .
5y o nR* qy (5.1.11)

We have now assembled all the equations required for the
calculation of <o>, The direct route to the calculation would be to
fix Rpo’ solve (5.1.10) and (5.1,11) for sp and Rp and evaluate op
from (5.1.8). Fortunately this complicated procedure may be avoided by
usipg a different route. We fix Rp, calculate 55 from (5.1.11), Rpo
from (5.1.10) and then evaluate op using (5.1.8).' There are no equations
to be solved, only explicit expressions to be evaluated. The end

result is the same: <0> as a function of R o*
P
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The physical significance of Rpo is easily found. We see from
eqn. (5.1.11) that Rp is the maximum possible hopping range on the
critical percolation surface in units of a-l. 'Rpo is the same
quantity for the simpler case when v = O'and q(el,ez) = {B[Isll
+ Iezl + lel - ezl]. T? verify this we note that Pp =9, = 0 and
s = 2R_ from equation (5.1.11). Moreover the logarithmic term is
missing from (5.1.5) and inspection of the equations in Appendix 1

shows J(Rp) reduces to 6R§/5. Hence eqn. (5.1.10) yields Rp = Rpo'

The equations describing a two-dimensional system are readily found.
We find that 4nr3/3 is replaced by wrz in (5.1.2) and 4nr4/3 is
replaced by nr3 in (5.1.4). Moreover, the integrals involved in these
equations may be written in the forms (kBT)Za-ZJ(Rp) and (kBT)za-4K(Rp),
respectively where J(Rp) and K(Rp) have the non-dimensional forms
given in Appendix 1. In the case when v = 0 and
q(el,ez) = I8 Iell + |22| + |sl - ezl » the maximum hopping range on
the critical percolation surface reduces to

1/3
2N az

= D __
Ro = 75T (5.1.12)
FB
Consequently, in eqns. (5.1.7) and (5.1.8) the factors 10Np/3R.::o
2 8 3 2 6 .
and 25Np(gooc)/31rR.po are replaced by ZNp/Rpo and 4Npgo/ano respectively.
Eqns. (5.1.9) and (5.1.11) are unaltered and the factor of 3/5 in

eqn. (5.1.10) is replaced by unity.

§5.2 Comparison with Computer Data

To assess the validity of the approximate formulae derived in
Section 5.1 we compare the values of <o> which they yield with
values obtained by direct numerical solution of Kirchhoff's equations

for a random resistance network. Two such numerical studies have
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been performed: Seager and Pike (1974) and McInnes (Butcher, Hayden
and McInnes 1977; Butcher and McInnes 1978; McInnes and Butcher 1978).
We begin by considering the data of Seager and Pike (1974), who have
made such calculations for models of the type described here in both
two and three dimensions with v = 3/2, a_l = 1.5 nm and g, = 581 mS.
In Figurel5 we compare their computed points for a two-dimensional system
with Py = 1018m'2ev'1 with the curve for the same system calculated
from the analytical formulae with Np = 2.7. The conductivity values
published by Seager and Pike (1974) have been scaled up by a factor

of V5 x 10-5 to yield results measured in Siemens (Seager and Pike,
private communication). The agreement is excellent over most of the
temperature range. The falling away of the computed points at the
high temperature end is due to the finite bandwidth assumed by Seager
and Pike. The departures of the coﬁputed points from the analytical
line at the low temperature end may reflect inaccuracies in the

iterative technique used to solve Kirchhoff's equations which converges

more slowly at low temperatures (McInnes, private communication).

To investigate these discrepancies McInnes and Butcher (1978)
have repeated the calculation using many more sites. In Figure 16
we show the resultlof their calculations together with the theoretical
prediction made using the analytical formulae with a-l = 5 nm,
pF=1018m'-2eV-1 in a bandwidth W = 10 meV symmetrically distributed
about the Fermi level, and Np = 2.7. The full line is the curve
calculated from the analytical formulae. The points are those found
computationally by McInnes and Butcher (1978). We see that at low
temperatures the theoretical and computational points are in excellent
agreement, At the high temperature end the effect of the finite
bandwidth is clearly visible. For very high temperatures our formulae

fail since the reduced bandwidth W/kBT + 0 in the computational work,

In the infinite temperature limit, we therefore go over to the case
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points found computationally by McInnes and Butcher (1978).

The full line is the curve calculated from the analytical
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discussed in the previous chapter, namely hopping in a very narrow
band. The theoretical prediction for the value of the conductivity
obtained using these system parameters in the limit T + « is marked
on the graph by é square. We see that tﬁe computer points tend very
nearly to this point. We conclude therefore that the approximate
formulae developed in the previous section accurately model the

behaviour of <o> in the two-dimensional case.

In Figure 17 we compare the computed points calculated by Seager

and Pike (1974) for three-dimensional systems with Py = 1027, 1026

25 -3 -1

and 10“°m “eV =~ with the curves for the same system calculated from

the analytical formulae with Np = 2,1. The agreement is fair for

= 1027m.-3eV_1 and excellent for Pp = 1026m-3eV-1 but the computed

°F

points for PE = 1025m-'3eV-1 are about an order of magnitude above

the analytical curve. This behaviour is surprising since the analysis
in Section 5.1 is adapted to the low density case and the agreement

with the computed points would be expected to improve as Pr decreases.
To investigate whether this discrepancy is due to premature termination
of the iterative solution of Kirchhoff's equations (McInnes, private
communication), McInnes and Butcher (1978) have repeated the low density
calculations using the same system parameters as Seager and Pike. The
results are shown in Figure 18, The dots are the computational values
found by McInnes and Butcher (1978), while the full line is the curve
calculated from the analytical formulae. We see that throughout the
temperature range the agreement isvvery good. For very high temperatures

the computer points again tend to the narrow band limit indicated on

the ordinate by a square.

§5.3 Universal Curves and Comparison with Experimental Data for

Three-Dimensional Systems

The degree of agreement between the analytical formulae developed
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in this chapter and the computer data as shown in Section 5.2,
enables one to analyse experimental data with some confidence.
Beforg we turn our attention to this data, however, it is useful to
discuss some general properties of the férmulae developed above.

For values of Rp in the experimentally accessable range (5 to 30),
several of the terms contributing to J(Rp) and K(Rp) are of the same
order of magnitude and no satisfactory approximation scheme suggests
itself. Fortunately, when all the terms are retained, the relation-~
ship betwéen Rp and Rpo calculated from eqns. (5.1.10) and (5.1.11)

has a very simple form. The result for v = 2 is shown in Figure19.

For Rpo in the range 10 to 30 we have Rp = (O.98Rpo - 1.16)
to a good approximation.h The constant term in this relation is
particularly significant for the absolute magnitude of <o> because,
as is seen from eqn. (5.1.11) it appears doubled in the exporent sp.
For R < 10, Rp rises above the values predicted by this simple
linear relationship, but the analytical formulae are also becoming
inaccurate. The relationship between Rp and Rpo for v = 3/2 and
O in three dimensions and for v = 0, 3/2 and 2 in two dimensions is
qualitatively the same. We show the corresponding values for M
and C in Table 1, where M and C are defined by Rp = MRPo +C, In
Figure 20, log <c/cc> is plotted against Rpo for v = 3/2 (full
curve labelled w = 0) and v = 2 (dashed curve labelled w = 0) where
0c = SNigoa/6n is a convenient unit of conductivity. The curves
are very nearly linear i,e. log <g> is approximately linear in
T-i as we would expect (Ambegaokar et al 1971), The dotted curve
labelled w = 0 shows log <o/oc> for v = 2 plotted against RP instead
of Rpo’
differences between Rp and R.po which is about an order of magnitude.

It serves to indicate the error involved in ignoring the

The dash-dot curve labelled w = « in Figure 20 shows log (<0(w)>/cc)



FIGURE 19 Plot of Rp against Rpo for a three-dimensional model with

v = 3/2,



DIMENSIONS A M c
2 .98 -1.16
3D 3/2 .98 -1.19
0] .99 - .96
2 .98 -1.28
2D 3/2 .98 -1.26
0] .99 -1.05

TABLE 1 Parameters in the approximate linear relationship

R = m + C.
p po
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FIGURE 20 Plot of log(<c>/co) against Rpo for a three-dimensional
system where o. = SNigoa/6n, with Np = 2,1, Full line:
v = 3/2. Dashed line: v = 2, Dotted line: plot of log
(<°>/°¢) against Rp for v = 3/2, Dash-dot curve: plot of
log (<ol(w)>/oc) against Rpo for v = 2, The short
straight lines show a fit of Allen and Adkins (1972) data
to the theoretical v = 3/2 line. The symbols on the v = 2
theoretical line indicate the limit of the amorphous

germanium data listed in Table 2.
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for v = 2 as a function of Rpo where ol(w) is the limiting value of

the real part of the ac conductivity when w-+«, We point out in Section 3,4
that cl(m) may be calculated from eqns. (3.2.4) and (3.2.5) by setting

s_ equal to the minimum value of s. The resulting integral is evaluated

in Appendix 1. We find that

013> 1on? 1(5 4 v) g8

9. 3 25+v po

(5.3.1)

The numerical coefficent of R;§ in (5.3.1) is 185 for v = 2 (the

case plotted) and 105 for v = 3/2, We see that the <01(m)> curve touches
the dashed dc¢ curve for v = 2 at Rpo'm 4, This simple observation

serves to enhance our confidence in the dc curves for values of Rpo
greater than 4 or 5. As discussed in Chapter 3, <o> becomes identical

to <01(w)> in a high density (low Rpo) system. Thus a complete plot

of log (<c>/cc) for v = 2 valid for all Rpo’ would start on the dashed

w = 0 curve for large values of Rpo and go smoothly over to the dash-dot

w = curve for R < 4,
po

The results presented in Figures 17 and 18 show that the analytic
formula for <o> provides a good approximation to the dc conductivity

}

of a three-dimensional system in the T regime. It remains to test
the model (and the rate equation formalism) against experimental data.
Allen and Adkins (1972) have measured the dc conductivity of heavily doped

;

n-type germanium crystals at temperatures low enough for T * behaviour
to be observed. If we ignore any effects due to the heavy doping,
then all the parameters of the system} with the exception of Pps may
be identified with the well-known values for n-type germanium.

We may also use the expression for the characteristic frequency Ro,

calculated by Miller and Abrahams (1960) which is given by eqn. (4.3.1).

. . . . s 2
Since Ro is proportional to T, the characteristic conductance g, = e BRO
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is independent of T. We therefore use g, rather than R when

!

discussing T' data. Using the parameter values given in Chapter 4,

it is found that v = 3/2, ot = 7 nm and g = 1,3 mS. The two
straightline segments in Figure 20 show the data of Allen and Adkins
(1972) for samples A2 (higher conductivity plot) and A3 (lower
conductivity plot), plotted using these parameter values with

Np = 2.1 and Pp = 2.9 x 1026m_3ev—1 and 5.3 x 1025m_3eV’-1 respectively.
These values of pp were chosen so that the slopes of the experimental
data lines are the same as the v = 3/2 theoretical line. The absolute
locations of the experimental data lines of Figure Xiare then completely
determined. We see that they lie about a factor of 4 on either side
of the theoretical curve, In making this comparison between theory

and experiment we have adjusted only one parameter: The

OF-
numerical comparison becomes easier to make if we adjust both Pp and
g, SO as to put both the experimental data lines precisely on the

theoretical line. The values required to give this fit are shown in
Table 2. The values of Py differ little from those quoted above and

the g values are about a factor of four above and below the predicted

value of 1.3 mS.

We see that the experimental data for samples A2 and A3 lies

}

at the extreme end of the region of Rpo for which T® behaviour is
expected. For lower values of Rpo we would be concerned with a high
density system for which <o> is given more appropriately by eqn. (5.3.1).
Allen and Adkins (1972) give data for another sample (Al) with a

| ‘

higher conductivity which apparently exhibited T* behaviour. It is not
surprising that we were unable to achieve any satisfactory agreement
between the data for this sample and the extrapolated low density
theoretical curve for any value of Py when g, ™ 1.3 mS. Adjustment

of pF to match the slope of the experimental data line and the low

density theoretical curve places the experimental data line about 2



data.
amorphous germanium with v = 2,

n-type crystalline germanium with v =

pF 8o
3 Source Sample identification
(m =~ eV ") (mS)
23 _ o)
8.8 x 10 82 Agarwal, Gutta and TA = 350°C A
Narasimhan (1975) (lowest conductivity)
1.7 x ].O24 89 Chopra and Bahl (1970) Fig. 9 b
2.3 x 1024 0.53 Arizumi, Yoshida, Baba Fig. 1 annealed .<:
Shimakawa and Nitta
(1974)
2.6 x 1023 54 Hauser and Staudinger Ge NO.7 annealed |
(1973)
24 . x .
1.5 x 10 190 Gilbert and Adkins (1976) Fig. 4 ©
5.4 x 102> 5.4  Allen and Adkins (1972) A3
3.1 % 1026 0.3 Allen and Adkins (1972) A2
TABLE 2 Values of p_ and &6 derived from three-dimensional experimental

The first four cases are for evaporated films of

The last two cases are for

3

7"
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orders of magnitude below the theory line. Allen and Adkins fit their
data for all samples using a similar exponent to that used here and
making a variety of assumptions about the prefactor, a_l and the
dielectric constant. Their best estimates of Py for samples A2 and

A3 are quite close to those in Table 2, but were obtained on the
assumption that the dielectric constant is considerably enhanced over

the value for pure germanium,

Extensive experimental studies of evaporated films of amorphous

i

germanium show that the dc conductivity has a T behaviour. This is
usually interﬁreted as due to hopping between localized states induced
by the randomness of the material., There is, however, very little
understanding of the nature of these localized states. If we assume
that they are hydrogen-like we may analyse the data on the basis of
the model under discussion here, but our knowledge of the system
parameters is necessarily uncertain, It is usually assumed that

v = 0 in theoretical studies (Ambegaokar et al 1971; Butcher and

Morys 1973; Butcher 1976 a, b). However, a factor of r2 is to be
expected from the overlap integrals involved in the transition rates,
and so we assume that v = 2, In crystalline germanium we used v = 3/2.
This departure from the basic v = 2 behaviour is due to the large
ellipticity of the energy surfaces in the conduction band valleys.
Because of the uncertainty surrounding the structure of amorphous
germanium, this refinement seems inappropriate. For a_l we take the
value determined recently by Gilbert and Adkins (1976) from studies of
hopping in both thick and thin films. The theory then contains two
unknown parameters; Py and g, These may be adjusted so as to put

any collection of Ti data points on the v = 2 (dashed) curve in Figure 20
and we have done that for a variety of cases. The range of the data

is indicated by marks on the curve and the values of °F and g, used

are given in Table 2.
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The values of pF
against T—%. They differ from those of the original authors because

of our use of a-l = 1.4 nm, Np = 2,1 and v = 2, The values of g,

are determined by the slope cf a plot of log o

are more interesting. With the exception of one very low value

deduced from the data of Arizumi et al (1974), the g, values are

of the order of 75 mS. No theoretical estimate of 8o is available

for amorphous germanium, but we may obtain an order of ﬁagnitude
estimate as follows. We suppose that all the material parameters
governing the characteristic hop rate Ro are the same as the crystalline
case with the exception of a_l which is assigned the value 1.4 nm

as for amorphous germanium, Furthermore, we suppose that the conduction
band in the amorphous case consists of one spherically symmetric

valley. Then eqns. (4.1.3) and (4.3.1) with v = 2 and n = 1 give

g = 150 mS which is the order of that observed.

[s)

§5.4 Universal Curves and Comparison with Experimental Data for Two-

Dimensional Systems

We may readily use the formulae developed in Section 5.1 to
describe degenerate hopping in two-dimensional systems for which the
appropriate value of Np is 2.7. The relationship between Rp and Rpo
remains linear with the parameters given in Table 1. In Figure 21
we show the two-dimensional universal curve (cf. the three~dimensional
case). Log(<o>/oc) is plotted against R.po for v = 3/2 (full curve
labelled w = 0) and v = 2 (dashed curve labelled w = 0). For the two-
dimensional case g, = 3N§go/5n and Réo is given by (5.1.12). These dc
curves are again nearly linear, implying that log <o> is approximately

-1/3

linear in T as one would expect in the two-dimensional case.

~ The dash-dot curve labelled w = » in Figure 21 shows log (<01(m)>/oc)

for v = 2 as a function of Rpo where <o,(®)> is again the limiting value
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FIGURE 21 Plot of log (<c>/oc) against Rpo for a two-dimensional
system whefe g, = 3N§go/5n with Np = 2,7, Full line: v = 3/2,
Dashed line: v = 2. Dash-dot curve: plot of log (<o(m)>/dc)

for v = 2,
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of the real part of the conductivity when w * ©. In the two-dimensional

case we find that

01> 20n% 14+ v) -6

4+
_ Oc 9 2 v po

(5.4.1)

The numerical coéfficient of R;g in (5.4.1) is 41 for v = 2 (the
case plotted) and 25 for v = 3/2. As we show in Section 3.4,

<g> = <ol(m)> in a high density system. We see from Figure2l that
the transition between the low and high density regimes occurs when

Rpo n 4 in two dimensions as well as in three dimensions.

We are now in a position to analyse two-dimensional data, Until
recently the only experimental two-dimensional studies involved thin
film conduction in amorphous materials (see for example Hauser and
Staudinger 1973). However, recent studies of inversion layers in metal-
oxide-silicon field effect transistors (MOSFETS) have shown two-
dimensional hopping conduction (Pepper, Pollit and Adkins 1974; Pepper,
Pollit, Adkins and Oakley 1974), Experimentallyat very low temperatures

1/3

the conductivity exhibits T behaviour while at higher temperatures
there is a transition to activated Tn1 behaviour. We interpret this

as follows, If the Fermi level is at a position such as A (see Figure 5)
in the conduction bandtail below the mobility edge, then for low tempera-
tures, typical states an energy kBT from the Fermi level lie well

within the localized state region. At higher temperatures, activation

to the mobility edge and then transport due to extended states becomes
preferential. These are the two regions observed experimentally. The
analytical formulae developed in this chapter can therefore be used to

-1/3

analyse the low temperature T data obtained experimentally,

In applying our analytical formulae to analyse this two-dimensional data
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we are in much the same position as with the three-dimensional data
for amorphous germanium in Section 5.3: most of the physical parameters
of the system are unknown. Moreoever, no detailed calculation of the
two-dimensional hopping rates has been performed. We therefore again
use the Miller and Abrdchams type rate and put v = 2, For the two cases
considered here, Pp has been measured experimentally (Pepper, private
communication, Pollit 1976a, b) and so the unknown parameters reduce

to o and g, which we adjust so that the data lies on the v = 2 line

in Figure 21.

Conductivity data for an n-channel device were taken from Pollit
(1976a). They correspond to a gate voltage of 0,8 V for which Pollit
finds Pp = 0.6 x 1018m_2eV-1 (see also Pollit 1976b). The data fits
the dashed theoretical curve between Rpo = 6 and 9 when a_l = 7.0 nm
and g, = 3.0 mS. Conductivity data for a p-channel device were
taken from the lowest curve given in Figure 20 of Mott et al (1975),
for which Pp = 1.8 x 1018m-2ev—1 (Pepper, private communication). The
aata fits the dashed theoretical curve between Rpo = 4 and 9 when
a_1='5.5 nm and g, = 3.6'x 10_3 mS., Our estimates of a_l are about a
factor of two larger than those deduced by .the original authors because.
we use a different expression for the exponent; sp, in <o>,, There have
been no theoretical calculations of hopping rates in inversion layers
from which we can determine a theoretical value for g,+ We note,
however, that in Section 4.3 we calculéted a value of 1.3 mS for
three-dimensional hopping in crystalline silicon. The value of g,

deduced here from the n-channel data is not very different from this

while the value deduced from the p-channel data is three orders of magnitude
smaller,

§5.5 Discussion

In this chapter we have developed formulae which are applicable

to situations where the bandwidth of localized states is much wider
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than the characteristic energy in the percolation path spkBT. The
agreement with computer data is remarkably good. It should be emphasized
that no parameters have been adjuséed in comparing the analytical results
for <o> with computer results. A general discussion of the comparison
with computer data, both for the wide band and narrow band cases, can

be found in Chapter 9.

The dash-dot curves labelled w = = in Figures 20 and 21 show the
behaviour of <01(w)> for degenerate systems with v = 2 in three and
two dimensions respectively. These curves also provide good approximations
to <o> for Rpo < 4, TFor R 0> 4 the difference between these curves
and the dashed curves labelled w =0 gives the total increment of the
ac conductivity between w = O and w = = predicted by the rate equation
formalism. The predicted increment is many orders of magnitude when
Rpo is large, but falls below 2} orders when Rpo < 10, Further
experimental studies of the ac conductivity of degenerate systems in
this regime (e.g. he%yily doped n-type crystalline germanium) would

therefore be of considerable value.

The model we have assumed is well adapted to n-type crystalline
germanium. This is confirmed by the good quantitative agreement
between the theory and the experimental data of Allen and Adkins
(1972) shown in Figure 20 and Table 2. The model is less well adapted
to all the other systems for which we have compared the theory with
experimental data. Our knowledge of the parameter values in these
cases is insufficient to allow rigorous quantitative tests which might
suggest modifications of the model. Agreement between theory and
experiment can always be obtained by adjusting the parameters in the

model instead of changing the model itself.,
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CHAPTER 6 - HOPPING IN ENERGY BANDS OF INTERMEDIATE WIDTH

§6.1 General Formulae

Chapters 4 and 5 have dealt with the dc c;nductivity of systems
where the localized state energies are distributed over an extremely
narrow and a very large bandwidth respectively. 1In this chapter we
develop formulae applicable to the intermediate case of a finite
bandwidth. In particular, we shall be interested in two-dimensional
systems for which analytical results may be found, since we wish to

compare the formulae with experimental data obtained from MOSFET devices.

To obtain relatively simple analytical formulae we adopt a model
in which p(e) is a constant pp Over a bandwidth W. Moreover we use
the Miller and Abrahams type rates given in (4.1.1), and simplify s
by putting v = 0. Finally, we approximate q by the more usual

expression (Butcher 1976 a, b; Ambegaokar et al 1971) to obtain

B
s(eq,€,,T) = 20r + 3 [|el| + eyl + Iel - 52|] (6.1.1)

in which the energies are measured relative to the Fermi level plus
kBT1n2. Strictly speaking, we should retain this spin degeneracy term,
However, because of the number of previous simplifying approximations
and for simplicity, we shall ignore it. We see from eqns. (5.1.2)

and (5.1.4) that the evaluation of sp and cp only requires a

knowledge of A(q). For the caseunder discussion here the form of

A(q) is somewhat more complicated than that used in Chapter 5 since

the bandwidth restriction alters the form of A(q) depending on the
relative sizes of q (and hence sp) and W*, where W* = W/2kBT. Moreover,
A(q) also depends on the position of the band of localized states relative
to'the Fermi level. We therefore relegate the actual calculation of 2B,

S and op to Appendix 2, Furthermore, we shall only discuss in detail
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the case in which the Fermi level lies in the centre of the band.

The more general case of an off-centre Fermi level is dealt with

in Appendix 2. The motivation for discussing the first case in
detail is the existence of experimental data in which the Fermi level

is in the centre of the band.

Three régimes are identifiable depending on the relative values

of sp and W°. When O < sp < W, sp reduces to

s = (16N;3)02/ﬂkaBT)l/3

P

(6.1.2)

The significance of the superscript on Np is discussed below. This
is the usual exponent associated with degenerate hopping in two
dimensions (see eqn. (5.1.6)) and reflects the fact that the bandwidth

is effectively infinite. Eqn. (6.1.2) is valid up to a temperature

T” such that Sp = W°, In two dimensions we find
4
'onW3
T° = | v 55 (6.1.3)
1288 3022
P B

Above this temperature eqn. (6.1.2) is no longer valid. We find
instead polynomial equations for sp when sp > W°, Before solving these
equations, however, a value must be given to the percolation parameter
NP. We know from Chapter 4 that for very narrow bands (i.e. T + =) Np
is given by the two-dimensional value N;Z) = 4.5, In the case of
very wide bands (i.e. T =+ 0), NP takes the effective three~dimensional

;3) = 2.7 as discussed in Chapter 5. There is no theoretical

value N
or computational work concerning the appropriate value of Np as a

function of the temperature and the bandwidth of the localised states.
Various authors (Pike and Seager 1974; Pollak 1972; Shante 1978) have

argued that_Np is temperature independent. Their arguments, however,

are based on the assumption that the effective dimensionality of the
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system does not alter over the temperature range under considerationm.
In our case, we change from wide band hopping to narrow band hopping
as the temperature increases and 36 one.may expect Np to vary with
temperature. This point is discussed in more detail in Chapter 9. We

therefore adopt the following ansatz for the temperature dependence of

N . Below T” we put N_ = N(B). For T > T” we write N_ = N(3)
% P P % P

- (@ 3
P p

of s computed using this ansatz are shown in Figure 22, The

+ ANL(T - T)/T,

where T” is given by eqn. (6.1.3) and AN, . The values

quantity spco is a convenient normalizing factor and is the sp

value obtained from eqns. (A2.1.4) and (A2,1.5) as T + =, i,e, in

the 1limit sp >> W’. Thus

4
4 {2042
s = |_P (6.1.4)

L m™m
P s

where n, = W is the spatial density of states. We note that this

°F
is the expression derived in Chapter 4 for a two-dimensional narrow

band system. Curve A is a plot of sp/spo° against a normalized reciprocal
temperature X (lower axis). Curve B is a plot of sp/sp°° against X1/3

(upper axis). We find from curve A that, for sp/sp°° s 1.7, sp is well

approximated by the equation

+ s (6.1.5)

Since o = o, exXp (—sp) we may identify the quantity W/3 as the activation

energy for the hopping process. At lower temperatures sp/sp°° > 1,7

and the temperature dependence of sp is slower than T_l. This

transition occurs at the position marked by the horizontal dotted line.

1/3

Replotting sp/sp°° against X (curve B) shows that 5 is now proportional

-1/3 .
to T / . The dot shows the temperature T®. We note that in the linear
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régime of curve B, sp is given by eqn. (6.1.2). From Figure 22, one
may readily deduce the transition temperature 6, at which variable
range hopping goes over to activated hopping. The transition is

abrupt and occurs at a temperature

- W
p = EEEE—_ (6.1.6)
Pm

To achieve precision in the analysis of experimental data, this estimate
of 6 must be modified by considering the effect of the prefactor, as is
done below. However, one may readily verify that € ~ 3T° i.e. the
transition to activated behaviour does not occur when sp = W . This
behaviour has been predicted on dimensional grounds by Pollak (1972).
It serves to illustrate the point that the important energies in the
percolation chain are somewhat less than spkBT, a point discussed more

fully in Chapter 9.

When sp > 2W”*, the polynomial equation for sp is a quadratic and

hence an analytical formula is easily obtained:

14 4
o 4oy 5W2mn
+ P 1 - 5

= (6.1.7)
P 12kBT L

: 576§2(kBT)2Np
Eqn. (6.1.7) implies that € = 5W/12 (c.f. computer solution where

€ = W/3. There is, however, a correction factor due to the temperature
dependence of Np in eqn. (6.1.7). We put the quantity in the square
bracket equal to unity, since the second term is necessarily less

than 5/576 when 55 > 2W. Recognising that Np = N;Z) - ANPT;/T, where

}

T” is given by eqn. (6.1.3), we may expand Np to first order in

terms involving T-l. We then obtain

AN
g = |1 P L

> = - e (N;Z)N;3))i kBT + sp°° (6.1.8)

The number in brackets is equal to .37 and we again regain an activation

energy in the order of W/3.
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Finally we discuss the effect of the conductivity prefactor
on the calculated value of the transition temperature 6 and the
activation energy €. As shown in detail in Appendix 2, the
behaviour of the prefactor again depends'on the relative values of
sp and W 7 The result of the calculation is shown in Figure 23 where
we plot log (o/o ) against T_l. Here 0_ is the infinite temperature
conductivity o_ = (ngonzs;w/16ah)exp(-spw) derived in Chapter 4, for
very narrow bands. The two curves correspond to different site densities
n_. The bandwidth W, and the decay constant o were kept constant at
.0045 eV and 3.1 nm respectively in the calculation. We see that the
relationship between the activation energy € and the bandwidth W,

measured from the straight line section of the plot, is given by

e = .38W (6.1.9)

which is only a little different from the result derived above from a
consideration of sp alone. The dots mark the transition temperatures

8 for each curve. In Figure 24 we show how 6 varies with 8 oo and the
bandwidth, W, of localized states, For larger values of sp°° the
determination of & becomes difficult because the transition is very slow,

and so these values must be treated with caution.

Finally, we discuss the effect of the prefactor on the conductivity
in the low temperature T_l/3 régime. In Figure 25 we show a typical
plot of log (c/0 ) against spo for a particular choice of system

18 -2 -1

parameters (W = 4,5 meV, Pp = 1.73 x 10" m “eV » & = 3.1 nm), The

dot signifies the temperature 6, whilst the square signifies T, We
see that for temperatures lower than 8, log ¢ is proportional to T-1/3.
The effect of the prefactor, is to reduce T, slightly. This reduction

is independent of the system parameters. In fact, in this region sp

is given by spo = ,97 spo, i.e.



log(ovag)

-15 F

FIGURE 23 Plot of log (0/0_ ) against a normalized inverse temperature
_ 23 4 _ e i
where o (gonnsspm/16a Yexp ( spw). The dots indicate
the transition temperature 6 for two different values of the

site density indicated by the & e values.
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FIGURE 25 Typical plot of log (o/o_) against spo = (16Np

The square indicates the temperature Tl, and the dot shows

the transition temperature 6. The parameter values are

W= 4.5 meV, Py =1,73 x 1018 m_2 eV_1 and a—l = 3.1 nm.
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1/3
14,8028 )
s, = -——P—-TrkaBT (6.1.10)

The effect of the prefactor on the slope.of the'TI/3 plot as shown

in eqn. (6.1.10) is similar to that predicted in Chapter 5, and
illustrated in Table 1. We are now in a position to analyse

experimental data using the formulae developed above.

§6.2 Comparison with Experiment

Until recently experimental investigations of inversion layers
(Pepper, Pollit and Adkins 1974; Pollit 1976; Mott et al 1975) concerned
the localized states at the band extrema. The temperature dependence

1/3

of log <o> shows T behaviour at sufficently low temperatures with

a transition to a T-1 law at higher temperatures. In this case, the
activated behaviour is due to carrier activation at the Fermi level

to the extended states at the mobility edge. Recently, however, data
obtained from the study of impurity bands in inversion layers in silicon
has been showﬂ to exhibit three modes of conduction: activation to

the mobility edge, 'nearest neighbour hopping' and 'variable range
hopping' (Fowler and Harstein 1977). The last two terms were originally
introduced by Mott to describe the narrow band and wide band régimes
respectively. They are useful terms when describing hopping in a finite
bandwidth of energies. For high temperatures (i.e. the narrow band
case) preferential hops are to the nearest neighbour in real space.

At lower temperatures more favoured hops are to sites close together

in energy, and these are, generally speaking, not nearest neighbours.

This régime may be referred to as variable range hopping.

~ The formulae developed in the previous sections adequately describe
the transition between narrow band hopping and wide band hopping and

may therefore be applied to the data of Fowler and Harstein (1977).
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Firstly, let us consider the activated region (figures 4 and 6 of
Fowler and Harstein). We see from eqns. (6.1.5) and (6.1.4) that a
graph of log (o) against ngi shoulé yiel@ a straight line from which
a value of o, the decay constant, may be inferred. Figure 9 of

Fowler and Harstein is such a plot. However, their expression for spco

1. 1.3 nm, whereas, using eqn. (6.1.4)

differs from ours. They deduce o
we deduce a-l = 3,1 nm, which is considerably larger. The justification
for using (6.1.4) is the agreement obtained with computer studies
presented in Chapter 4. The values for the bandwidth W, obtained

from eqn. (6.1.9), are approximately three times those of Fowler and
'Harstein who assume W ~ €. Consequently, their figure 8 is still

valid if the ordinate is multiplied by (.38)-1. Finally, the spatial
density n  can be inferred experimentally using substrate bias (Fowler

and Harstein 1977; Harstein and Fowler 1975). Thus all the system

parameters may be deduced from the activated conductivity data.

With these ideas in mind we turn our attention to figure 4 of
Fowler and Harstein, where the conductivity of a sample with
n, = 5.3 x 1015m'2 is reported. By altering the substrate bias, the
activation energy associated with nearest neighbour hopping may be varied
since the substrate bias affects the bandwidth of 1oca1ized.states.
The activation energy may be measured from the straight line section
of the T“1 plot and a value for W, the bandwidth of localized states,
deduced using eqn. (6.1.9). The only remaining parameter, 8,s WAy be
inferred from the infinite temperature intercept using the expression
for the infinite temperature conductivity o, = (gonnzss /16a4)exp(-spm).
In Figure 26 we show a plot of log (o) against T_l. The dots are the
experimental points obtained by Fowler and Harstein. The full lines
are obtained from the theory using the system parameters deduced in

the manner outlined above. The activation energies E1 and E3 are

concerned with activation to the mobility edge, and nearest neighbours
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FIGURE 26 Plot of log (o) against T_l. The dots are the experimental
points obtained byiFowler and Harstein (1977). The full
lines are the theoretical curves obtained using the para-

meter values given in the text. Vs is the substrate bias.
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hopping respectively. The bandwidths deduced from the straight line
section (E3), and using eqn. (6 .1.9) are 8.7 meV, 11.8 meV and 17.1 meV
for substrate bias of OV, -3V and -15V respectively. We see that for
substrate bias of OV and -3V the behaviour of the conductivity is

well fitted by the theory. However, for a substrate bias of magnitude
15V the theory predicts a T“I/3 temperature dependence (due to the

large bandwidth) whereas the observed temperature depeﬂdence appears

to be closer to T—l. This point is discussed below.

§6.3 Discussion

The main objective of the work described in this chapter has
been to develop formulae which describe hopping conductivity in a
two-dimensional band of states whose width is in the order of spkBT
(the characteristic energy in the equivalent random resistance network).
Impurity bands in inversion layers provide an easily controlled system
against which to test the theoretical predictions. We see from Figure 27
that the theory predicts the behaviour of the conductivity quite
accurately for low values of substrate bias (0 and -3 volts). For
these two values the theoretical conductivities in the lowest temperature
region appear to be slightly smaller than those observed experimentally.
It is convenient to write the exponential part of the conductivity in
this region in the form exp[}(To/T)I/%]. This discrepancy would then
imply that our theoretical values for T, (2.5 x 104 K and 2.0 x 104 K)
are slightly larger than the experimental values. Data on the conductivity
of a single sample over a large temperature range would be helpful in
comparing theoretical and experimental values of To' The predicted
transition temperatures of 7.5 K and 10 K for the two highest conductivity

samples are in excellent agreement with those observed experimentally.

‘For a substrate bias of -15V the agreement is not good. The

bandwidth deduced from the straight line section of the T~! plot is
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1/3

so large that the theory leads us to expect T variable range
hopping over the whole of the low temperature régime., This lack of
agreement may be due to a variety of factors. For large bandwidths
our assumption of a rectangular band of states is not a good one.

The quantitative changes that occur if a more realistic density of
states profile is adopted may be calculated numerically. Furthermore,
the effect of large substrate bias is to force the electrons closer
to the Na+ ions. One might then expect neighbouring states to have

correlated energies and the theory developed here must be modified

to take this into account.

The values of g, deduced from the infinite temperature intercept,
are 20 mS for the lowest two values of substrate bias and 6.7 mS for
a substrate bias of -15 V. By using the expression g, = eZBRO we
may readily obtain a value for the characteristic hopping rate R,.

13 Hz, which is in the

Over the temperature range of interest, Ro ~v 10
order of that expected. A theoretical estimate of g, is possible

by using eqn. (4.3.1). Using parameter values appropriate to n-type
Si, namely ¢ = 11.7, E1 =6eV,n =06, Po = 2.33 gnm cm-3,

vV, =9.0x 103 ms—l, v = 3/2, n = 3.8, we obtain go = 0.6 mS when

a-l = 31 X. This value is over an order below the experimental figure.
A calculation of the transition rates between impurity states in
inversion layers with due regard to the nature of the wavefunctions,

dielectric effects of the SiO2 layer, surface effects etc. would be

very valuable in this context.
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CHAPTER 7 - REVIEW OF ALTERNATIVE FORMULAE

§7.1 Introduction

In this section we review briefly alternative formulae for the dc
conductivity derived in a variety of ways. Fundamentally, we may
identify three main types of theory: single hop theories, those
based on percolation arguments and those deri;ed numerically. Single
hop theories rely on the derivation of some particular average quantity
related to a single hop. They are in principle open to the same
criticism, namely, that the derivation of the dc conductivity relies
‘on solving the problem of a random walk on a random lattice, and it is
a feature of this type of problem that the solution cannot be expressed
in terms of any quantity related to a single hop (Butcher 1976a, b).
Formulae developed using percolation theory appear to have a more
secure basis, but the uncertainty involved in determining the numerical
coefficient involved in S5 and the entire functional dependence of
the prefactor, seems fundamental to any discussion of these theories.
Finally, the numerical work has a variety of uses: the determination
of parameters such as Np, the derivation of functional dependencies such
as the temperature dependence of the prefactor and investigations of
the validity of analytical formulae. Sections 7.2 and 7.3 deal with

alternative formulae for the exponant and prefactor respectively.

§7.2 Alternative Theories for the Exponent

Perhaps one of the best known examples of formulae which depend
on the single hop approach is that due to Mott (1969), in which he
originally predicted the T* law found in many materials. Mott uses

the exponent s = 2ar + A, where A = |E_ - En|. This exponent is

m

minimized subject to the constraint 4nr3pFA/3 = 1. The minimum value
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of s is
s = [(8x)3/9mp k. T1! (7.2.1)
m F'B R

We may readily find sp, in the manner shown in previous chapters,
. ' 3 .
when s = 2ar + BA, 1In this casesp = [12Npa /ﬂkaBTJ{ which reduces

to if we put Np = 128/27 (c.f. the value 2.1 which we use). The

*m
reasons for choosing this value for Np have been outlined by Butcher (1976a).
It arises because Mott's derivation of the exponant 5o is an approximate

method of completing the integrals involved in the calculation of 8y

The work of Scher and Lax (1973) may also be classified under the
heading of single hop theories. Their analysis is quite general and
the resultant formulae describe the frequency dependent conductivity
as well as the dc case. Their model consists of a regular array of
sites in which the probability of a hop between any two sites at
time t after entering the first site, is specified by a waiting time
distribution. The calculation is involved but a few points can be
made. Butcher (1974) has shown that the same results can be obtained
by considering a random array of sites and performing an approximate
summation of the Dyson expansion for G involved in eqn. (2.3.3),
involving only the self-avoiding walks., Moreover, the approximate
treatment provides the exact solution of a different problem, It
yields the exact value of g(w) for a system sugh that the electron
performs a random walk in which each site, other than the one currently
occupied, is re~randomized immediately after every hop. The effect
of this re-randomization is obviously large in certain situations, in
particular, the dc limit. 1In the fixed site model, difficult hops can
be avoided by considering other paths in the system (an argument which
is the basis of the percolation solutions discussed in this work). 1In
| the Scher and Lax model, however, the particle has to make a difficult

jump sooner or later, and the contribution of these types of transition
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to 0(w) is significant. They therefore predict a value for 0(0)

which is different from that given in previous chapters. These
criticisms are similar to those raised by most authors about the

work of Miller and Abrahams (1960), who calculate the resistance

of the RRNM using non-percolative arguments (Shklovskii 1973). " Indeed,
there is a close similarity between the site density dependence of

the exponent in the narrow band model predicted by both Scher and Lax,

and Miller and Abrahams,

The fact that the dc conductivity may be written as
¢ =0, exp[-sp] is deducible from experimental data, There have been
many theoretical derivations of & which rely on percolation theory
(Ambegaokar et al 1971, Pollak 1972, Shklovskii 1973, Shante 1978),
All the methods of approach are very similar to that outlined in
previous chapters, with the exception of Pollak (1972) who uses a

different averaging procedure to determine the number of bonds with

s < sp at each site.

If we define the quantity

N(em,sp) = J p(en)den (7.2.2)
§<s
then we may rewrite eqns. (3.3.1) and (3.3.2) as
2
2B = J p(engN(em,sp)dam J 4rr-dr (7.2.3)
and
S = N(em,sp) (7.204)

In contrast Pollak writes

2BP = J p(em)dam I p(en)N(em,sp)dan I 4wr2dr (7.2.5)
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sP = I b(em)N(em,sp)dem f 4nr2dr (7.2.6)

This more complicated weighting factor does not alter S5 qualitatively,
Indeed, the change in the numerical coefficients involved is quite
small and can be femoved by altering the parameter Np slightly., We
conclude that all the percolation approaches give the same functional
dependence for sp, the only differences arising from numerical

factors,

§7.3 Alternative Theories for the Prefactor

The fact that the prefactor has only a quantitative effect on
the conductivity has meant that it has received considerably less
attention than the exponent sp. Furthermore, the testing of
theoretical predictions against experimental data is difficult for
two reasons, Firstly, the dependence of the prefactor on system
parameters such as the temperature is not strong compared with the
exponent, Secondly, the prefactor contains scaling factors such
as g which rely on a precise knowledge of the electron-phonon
interaction. Of course, for comparison with computer data this
scaling is irrelevant, but for the application of theoretical
formulae to experimental data such as that obtained from amorphous

germanium, the degree of uncertainty is large.

We begin by considering the narrow band model outlined in
Chapter 4, We see from eqn. (4.1.10) that, for v = 0, we predict
oy = (3N§/8n)goa(arp)-2, where r, is given by eqn. (4.1.11)., Kirkijarvi
(1974), using information gained from computer studies of percolation
in finite clusters, deduces opa(qrp)_1°6 * +25 He does not obtain

any estimate of the constant of proportionality. The value 1.6 is

quite close to our value., Another prefactor has recently been predicted



65

by Skal and Shklovskii (1975) using a numerical approach based on the
theory of chain lengths in the infinite cluster involved in percolation.

They obtain, for the case when v =2,

8 6
_8 14m} (ga)(@r)) (7.3.1)
Cp = -§- [W;] (o) P

where rP is given by (4.1.11). The value of § lies between O and 0.4.
The case 8 = O gives a prefactor which is independent of rp, as is the
case with our formula when v = 2 (eqn. (4.1.10)). 1In this case the
ratio of our prefactor to that of Skal and Shklovskii is .98, a
difference which is undetectable in practice. Recently Kahlert and
.Landwehr (1976) have analysed data obtained from studies of impurity
conduction in GaAs using Skal and Shklovskii's formulae. For this
material v = 2, and so for the reasons outlined above we would also
obtain the very good agreement between theory and experiment reported

by these authors.

There have been a number of prefactor formulae predicted for the
case of degenerate hopping in wide bands. Rather than discuss each case
individually, we have tabulated the results in Table 3., Here, we
give the complete expression for the conductivity, together with
the basic theoretical approach, Generally speaking, the prefactors
differ in their dependence on Rpo’ and on a trivial numerical factor.
For convenience, we reproduce our expression derived in Chapter 6
for the case when s = 2o0r +-% [Iell + Iszl + |el_- ez[]. The close
agreement we obtain with computer data, illustrated in Figures 15 - 18,
suggests that our formulae accurately describe degenerate hopping.
Furthermore, Allen and Adkins (1972) were unable to fit their data with
any of the expressions reproduced here, without assuming large changes

in the dielectric constant,



PREFACTOR EXPONENT SOURCE BASIS
2
N'ga
40 'p>o s This work Percolation
3 2 po
$po
-g:—r- 1 g asz .9 5 o Mott 1969 Single Hop
vZoN_ © P° P
p
2 i g o
EL [ﬁJ Gon )t 22 | L9 s Mott 1972 Single Hop
4 9 P s po
po
2 i
321 (e ) | 8 s Pollak 1972 Percolati
78 ‘8o*/ |ZoN Spo ' "po ton
3 350 . . ' .
36m7(.022)(g @) s s Kirkpatrick 1973 | Percolation
o po po

TABLE 3 Alternative theory for degenerate hopping in very wide

bands. Here s_ = 2R _ where R is given by (5.1.6).
po po po
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CHAPTER 8 - AC CONDUCTIVITY

§8.1 The Pair Approximation

In this chapter we derive approximate form;lae for ac
conductivity due to localized electrons. As we see from eqns. (2.2.10)
and (2.3.3), for any non-zero frequency, <o(w)> may be expanded
in powers of n_, the site density. For low densities (n.s + 0) the
dominant term is proportional to nz. It is easy to calculate and is

known as the pair approximation,

The pair approximation is obtained by selecting the contributions
"to the Dyson expansion (2.3.3) with n # m, in which all the inter-

mediate sites are either n or m, Thus

2 o

oo-)Gnn

o e
Cm = ot (L * I * 4
(8.1.1)

o _e 0O -1
- GrmannGnn(1 qmn)

where ¢ = G° R® @2 RS . To order n2 in the final result we may
mn nn nm mm m s

. . e e . e e . . .
identify Rm and R with R and R o respectively in evaluating (8.1.1)
with the aid of (2.3.4). Thus we obtain

ir® T

P _ mn mn
Sm = G - Twt_) (8.1.2)
m

where the relaxation time Tn is given by
Lo g® 48 (8.1.3)

This expression may also be derived by inverting the 2 x 2 matrix
which results from ignoring all the other sites except n and m.

(Pollak and Geballe 1961).

Substituting Gzn into eqn. (2.2.10), we obtain the formal
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system averaged result

e

_ F
<o@> = fe’Ba (i) § K EI  -x %> (3.1.4)
m . mn

For the purposes of this work we are only interested in the real part

of the ac conductivity <c§(w)>. Therefore,

2

T =
P 2. =12 2
<o ()> = fe”BR W y <-ﬂ-§“—‘2— (x - x)"> (8.1.5)
m 1 +w-T

where we have used eqn. (2.1.6). If we now suppose that the energies
€y andsé are distributed with a probability distribution p(el)/ns
and p(ez)/ns respectively, and the sites are randomly distributed

over a volume R, we may write eqn. (8.1.5) in the form

wT
P _2r 2 —12 4
<0 (w)> = 5 e“Bu | p(e))de; | ple,)de, J T12T12 oz T
12 (8.1.6)

We note that eqn. (8.1.6) is easily derived from consideration
of the equivalent network described in Section 3,1. If we put all
the conductances except g1s equal to zero, then we may readily find
the square voltage drop across Vis for the isolated RC circuit, 1In

2

2 2 2 . 2
fact |V12[ = (wrlz) /(1 + w't,,)°. Noting that 81y = €7BT ., we

12 1
see that eqn. (3.2.1) becomes identical to (8.1.6). The factor wr(1-+w212)-1 is
peaked on the "critical ac surface" wt = 1. With this idea in mind
we may find a simple approximation to <ol(w)>. Consideration of the

integrands involved in (8.1.6) and (3.2.1) shows that the quantity

g12<Vi2> has two peaks - one on the critical percolation surface

and one on the critical ac surface. We therefore suppose that the

total conductivity at frequency w is given by the sum of the

contributions from each peak calculated separately or

o(w) = a(0) + oll’m) (8.1.7)
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§8.2 Comparison with Computer Data

We are now in a position to compare the simple formulae developed
in the previous section with computer generated.data. The only ac
computational work is that carried out recently by McInnes (Butcher,
Hayden, McInnes, Clark 1978). He solves Kirchhoff's equations for
the equivalent network given in Section 3.1 and shown in Figure 6
The model adopted is a three-dimensional energy independent case
outlined in Chapter 4, with v = 3/2. The dc contribution to <cl(w)>

is then given by (4.1.10). The pair approximation contribution is

then particularly simple:

2
- 2me 2 |lwt T Wt
<01(w)> 3 an 12 12 ___l.g_.z_ r4dr (8.2.1)
1l +y T19

The evaluation of the final integral in (8.2.1) is best performed

numerically.

The comparison with the computer data is shown in Figure 27
The dots are the computational points, The full line is <ol(m)>
calculated using eqns. (8.1.7), (4.1.10) and (8.2.1). The dotted
lines are the ac and dc asymptotes, We see that the simple formulae
are in good agreement with the computer points for all frequencies.
The total span in conductivity is three orders, as one would expect

1/3

for a value of an; = 9 from inspection of Figure 9. It would be
helpful to have computational data for a lower density system, where
the span in conductivity is greater, but unfortunately the convergence

in the iterative procedure used to solve Kirchhoff's equations becomes

too slow.

§8.3 Conductivity of Degenerate Systems

The comparison with computer data presented in the previous



log(w/R.)

FIGURE 27 Plot of log (d(w)/goa) against log (w/Ro). The dots are
the computational points obtained by the solution of
Kirchhoff's equations. The full line is the analytical
curve obtained from (8.1.7), (4.1.10) and (8.2.1). The
higher and lower dotted lines are the o(») and o(0)

asymptotes respectively.
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section shows that our approximationsto O(w) are valid for the

simple case where all the energies of the sites are identical. We

now wish to calculate the ac conductivity of a more realistic system,

namely that of a degenerate system of localized electrons whose

energies are distributed over a vary large bandwidth. The model

we shall adopt is that outlined in Chapter 5. Since we shall be

interested in analysing amorphous germanium data we put v = 2, To

evaluate the pair contribution to <01(w)> we approximate the factor

wt(l + wztz)-l in (8.1.6) by (m/4a)8(r - rw) where r is the solution of the
equation wt,, = 1 for r. Using eqns. (2.1.6) and (8.1.3) we may

12

-therefore write (8.1.6) as

2
2 4
<o€(m)> = étg-e Bw p(el)de1 p(ez)dezF(el,ez)Rm (8.3.1)

Be Be
h - I S | 2 *%1 2 2%2]
where Rm ar, and F(el,ez) [%1 + Fz:] .25[}05h 7 * cosh 3
In (8.3.1) R is slowly varying in comparison with F(El,ez)- We can
therefore set €] 5 €, =0 in R and take it outside the integral.

Thus we obtain the Austin-Mott formula for the present model:
<«oPw)> = (rlk.T 2/6a5)Iw(R°)4 8.3.2)
1 B PF w (8.3.
where we have put p(e) equal to a constant value pF and
1= eZB(k:r)z o de. | de.F(e .s)=366 (8.3.3)
B 1 2 1’72 * * *e

In eqn. (8.3.2) RZ denotes the value of R, when €, =€, =0. It is

obtained from the equation wt = 1, namely
W 0.2 o
®_ = (R) exp (-2R)) (8.3.4)

It is convenient to write (8.3.2) in terms of the quantity

" 1 :
de = [%Npa3/2prkB%] » whose significance is outlined in Chapter

5. Then
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P

<01(w)> _ 5 (R°)4 o 1

< "2 TR x| 5 (8.3.5)
c o] R

po
We see that <01{(w)>/o2 has the same Rpo dependence as <o(°°)>/0c = 10n26!/3.27RS(
Consequently plots of log(oi(w)>/cc) against R: for fixed w have the
same shape for all w., In Figure 28 we show plots of 10g(o§(w)>/oc) against
Rpo' The dashed curve is the o(«) plot. The dotted lines are og(w)
for the RZ values indicated. The corresponding values of w/2Ro can be
calculated from (8.3.4). The full line is the w = 0 line, derived in
Chapter 5 (see Figure 20). We see that the ac and dc curves intersect
at values of Rg such that RZ is very approximately equal to Rpo' Thus,
-for fixed Rpo’ as w increases from zero, the conductivity remains at
the dc value until a frequency W, such that Rpo v R:. For frequencies
in excess of w,, We move vertically in Figure 28, up to thew= =
curve., For low densities the conductivity spans many orders (1l orders
for de = 25), 'For Rpo = 4 the w = 0 and w = = curves touch. Thus

for systems where Rpo < 4 the conductivity is given by o(») for all

w. This is the high density case discussed in Chapter 5.

§8.4 Comparison with Experimental Data

Our primary concern is with the conductivity of evaporated
amorphous Germanium films which has been investigated by several
authors (Gilbert and Adkins 1974; Chopra and Bahl 1970; Arizumi et al
1974; Hauser and Staudinger 1973, and Agarwal et al 1975). These
authors investigate both the temperature dependence of dc conductivity
and the frequency dependence of the ac conductivity. The symbols in
Figure 28 indicate the extent of the de data (for the symbol
identification see Table 2 and Figure 20). From the values of g,
given in Table 2 we may deduce corresponding values for R using
ﬁhe expression g, = ezBRo. With one exception @Arizumi et al 1974)

- the values of Ro are in the order of 1016 Hz at 100 K. For a typical



FIGURE 28 Plots of log (<cl(w)>/oc) against Rpo’ where

2
g, = SNPgOa/6ﬂ, Np = 2.1 and v = 2, Full line: w = 0.
Dashed line: w = =, Dotted lines: intermediate values of
w parameterised by the Rm values indicated. The symbols
on the full line indicate the extent of the dc¢ experimental

data for amorphous germanium, listed in Table 2.
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4 .
frequency %%-= 10" Hz we find from eqn. (8.3.3) that, for this value

of Ro» RV 17. Hence we see from Figure 29 that most of the samples

would be expected to show dc behaviour at 104 Hz.

The curve in Figure 29, shows log(wc/ZRo) as a function of Rpo'
Data lying in the regime to the left of this line should be expected
to show dc behaviour, whilst that region to the right describes the
ac region. The vertical lines show the frequency range spanned by the
ac data at the values of Rpo appropriate to the different samples
indicated in the legend. We see that the ac data of Chopra and Bahl,
‘Arizumi et al and Agarwal et al lie in the regime for which dc behaviour
is expected. The data of Hauser and Staudinger might be expected to
show the transition from dc to ac behaviour. It appears to do so,
but the ac conductivity is two orders of magnitude larger than one
would expect for the values of pF derived from the dc data. Finally,
the data of Gilbert and Adkins should show Austin-Mott behaviour.
The observed values of ol(w) are indeed only about a factor of four
larger than the predicted values. However the frequency and temperature
dependence of the ac data are not consistant with the Austin-Mott

formula (Gilbert and Adkins 1976).

§8.5 Discussion

The pair approximation, developed in this chapter, gives a simple
form for the ac conductivity. It is, though, a low density theory.
Whilst this has been recognized by many authors, no quantitative
assessment of the regimes in which the Austin-Mott formula is valid
has previously been made. This work is particularly useful in
discussing recent arguments concerning the discrepancy between the

density of states derived from the ac Austin-Mott formula and those



FIGURE 29

loglw./2R,)

dc.

Plot of log (wc/ZRo) against Rpo (full line). The
vertical lines show the span of the frequency dependent

conductivity data for amorphous germanium listed in Table

2.
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derived from the dc data. Abkowitz et al (1976) argue that the
densities of states derived from the ac data are corréct, whilst those
deduced from the dc data are not. Their conclusions are based on an
analysis without the benefit of the dc férmula presented here, If

we now consider the parameter values which they deduce from the ac
data, namely, values of Pg 10 to 100 times larger than those found from
dc data and a value of R, = 1013 Hz,we find that the ac lines are put
deeper into the dc region of Figure 29 because of the reduction of R o
This inconsistency leads to one of two conclusions: either the pair
approximation or the approximations necessarily made in deriving the
"formulae are in error, or the ac conductivity is due to some

mechanism other than hopping near the Fermi level. The computer
studies discussed in Section 8.3 show that the pair approximation gives
accurate values for the ac conductivity. Although this comparison

is made only for the energy‘independent case, our approximate

treatment of the integral involved in (8.1.7) cannot be far removed
from the correct amswer. We have shown that for the densities involved
in the experimental samples, given in Chapter 4, dc behaviour is
expected for all frequencies over which the data applies. We conclude
that the observed ac conductivity is due to some mechanism other than

hopping near the Fermi level.
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CHAPTER 9 - DISCUSSION

§9.1 Introduction

The purpose of this chapter is to discuss in some detail points
raised both by this work and that of other authors in the study of
conductivity of localized electrons. We begin by considering the
basic formalism and then go on to discuss the percolation aspect of
hopping conductivity. The comparison of the theoretical prediction
with computational and experimental data is then investigated. Sections
9.6 and 9.7 deal with the transition rates and the ac conductivity
‘respectively. Finally, in Sections 9.8 and 9.9 we discuss future
work and state our conclusions concerning the work presented in the

thesis as a whole.

§9.2 Basic Formalisms

As mentioned in Chapter 2, we introduce the rate equations in an
intuitive manner. Recently, various authors, notably Capek (Capek 1972,
1973 and 1975; Capek, Koc and Zamek 1973) have challenged the validity
of the ratg equations, Our formulae for ol(w), given in Section 3.4
are identical to the formulae for 01(0) developed by Capek using a
Creen function formalism. Barker (1976) has shown that the above
authors obtain this result because they neglect an infinite series
of terms in the perturbation expansions. In Barker's treatment
these terms are retained, the rate equation formalism is regained
and 01(0) # cl(w). Cbmputer studies, presented in Chapters 4 and 5,
show that our approximate formulae give good agreement with values of
the conductivify deduced directly from the rate equations. Furthermore,
our agreement with experimental data shows that the formulae accurately
deséribe the hopping conduction process. We conclude from these

observations that the rate equations provide a good description of the

hopping process.
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Our solution of the rate equations by the formal matrix approach
is probably the most succinct for ac conductivity calculations. Its
failure in the dc case is unfortunate. As we point out, it predicts
a zero conductivity for any finite sized system. We have, in fact,
solved the long time behaviour of the hopping system, but our choice
of boundary conditions means we only predict the steady state
polarization of the medium. By extending the system ta infinite size,
the boundary conditions become immaterial and a dc solution can be
found. Unfortunately, this solution relies on a bridging theory
since evaluating the infinite summations involved in G n becomes

-impossible.

§9.3 The Equivalent Network and Percolation

The equivalent network approach to the solution of the rate
equations has a venerable history. This approach was originally
introduced by Miller and Abrahams (1960). The transition from a
microscopic to a macroscopic point of view is a useful one in that
it allows one to view each conductance as being embedded in an assembly
of surrounding conductances., One is, therefore, led . to concentrate
on the properties of the system as a whole. This leads quite
naturally to a percolation argument, in coﬁtrast to single hop
theories which are concerned with individual transitions. As outlined
in Chapter 3, consideration of the power dissipated in each
conductance leads to a percolation solution of the integral (3.2.1).
It should be emphasised that in the actual hopping system, the
electrons are not percolating, we merely use percolation theory to

solve the equivalent conductance problem.

Fundamental to percolation theory are dimensional invariants

such as Np. Strictly speaking, although the primary dependence of N
p
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is on the dimensionality of the percolation system, there issome
residual dependence on the shape of the constant s surfaces in the
percolation space. If we consider the rrpercofation system where

s = 2or, constant s surfaces are circles or spheres in two or three
dimensions respectively. The values of Np deduced by various authors
(Seager and Pike 1974; Kirkijarvi 1974) using expanding circles or
spheres are, therefore, the best ones to use in these hopping systems.
If we now consider the more complicated energy dependent case, where
s = 2or +.§[[el| + |52| + Iel - ezl], the constant s surfaces are
cylinders with cones at each end which we shall refer to as "bobs"
(Seager and Pike 1974). One should therefore expand the bobs in

the percolation space and determine a critical value such that

infinite chains can be found.

Replacing the bobs by spheres or hyperspheres provides an
approximate method of evaluating Np. However, it conceals a very
important concept. Consider a two-dimensional energy dependent
system. The percolation space is defined by the vectors Xi9 Yy
and e; of the site i. Now consider Figure 31, where we have drawn
just the (ei,xi)—plane of the percolation space and for clarity
have omitted any site for which v is nonj;ero. The equal s figures
are drawn for the case of spheres (a) and the more accurate case (b)
where s is given by s = 2ar +-§-[|si| + ]ej| + 'ei - gjl:l. In the
first case the volume enclosed by the constant s surface is the same
fQE.Ell.ei' In the second case the volume goes to zero at Bei =s,.
In fact, the volume enclosed by the shell about i is given by
vi = Vo[% - 3x + X%J where Vo is a constant and x = ei/sokBT. Sites
with large energies, therefore, are unlikely to be in the percolation
'chéin. This is exahtly the behaviour found experimentally (see Chapter 6).

One still obtains wide-band results even when spkBT lies well outside

the energy band.



(a)

(b)

FIGURE 30 Schematic diagram of the constant s surfaces in the
percolation space. Figure 30(a) shows the case when
the constant s surfaces are approximated by spheres or
circles and 30(.b) shows the more accurate case when the

constant s surfaces are "bobs'".
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This point was first raised by Pollak (1972) on dimensional
grounds. It is worth emphasising, however, that the above argument
relates to the percolation system, not to the real hopping system.
In the actual hopping system large energy sites have less weight for
the following reason. Consider an electron at site i, with other
sites distributed around it. Many of the surrounding sites lie at
approximately the same distance from site i. The elecgron will,
therefore, be able to select a site whose energy minimizes s. Sites
j with large energies do not count significantly since one has
every chance of finding another site, whose distance from i- is
‘approximately the same as site j but whose energy is such that

the electron will preferentially hop to this site rather than site j.

The effect of a bandwidth restriction is to limit the energy
dimension in the percolation space. As pointed out above this
makes little difference until SpkBT is very much larger than the
bandwidth. It would be very useful to test the ansatz regarding the
temperature dependence of Np (see Chapter 6) computationally. One
may be able to do this by expanding thebobs as outlined above, but
truncating any part which lies outside the permitted energy range.
By applying the normal criterion for the determination of the percolation
threshold, the dependence of Np on the bandwidth and temperature

could then be deduced.

§9.4 Comparison with Computer Data

The comparison of our analytical formulae with computer
generated data. shows that the approximate derivation of the
formula from the rate equations is valid. The main criticism of
this computer data is that the model system size is far from being
infinite. The largest number of sites which can be handled is about

2000, For a three-dimensional system this necessarily means about
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307 of the sites are on the surface and are therefore "anomalous'.
Attempts to remove surface effects by periodic repetition and other
techniques do not alter the observed conﬁuctivity significantly,
Indeed, increasing the number of sites from 200 to 2000also has

little effect on the conductivity of the system. We conclude that the
number of surface sites is not significant and that systems with in

excess of 1000 sites adequately model an infinite array of sites.

This lack of dependence on the number of surface sites may be
readily understood in a semi~quantitative way. Consider an array
.of sites such that approximately 307 lies on the surface. This necessarily
means we have "omitted" about 157 of the conductances which should
connect this cluster to the infinite system. Furthermore, only about
10% of all the conductances in the network are of order g, eXP[-Sp]
and hence contributed significantly to <o> (Shklovskii 1973; Pollak 1972).
The effect of the surface sites is to remove about 14% of the con-
ductances which contributed to <o>, This effect is of the same order

as that observed by increasing the number of sites from 200 to 2000.

§9.5 Interpretation of Experimental Data

In applying our formulae to the interpretation of experimental
data a number of problems arise. The case of impurity conduction in
crystalline semiconductors is the easiest to discuss. The Miller and
Abrahams (MA’ rates which we use were specifically calculated for this
case, More recent calculationsconcerning multi-phonon effects, notably
by Emin (1974), have shown that in this system the MA rates are valid,
All the variable parameters, v, pf, a, and g, are well defined, The
good agreement obtained with the data of Allen and Adkins is therefore

to be expected,

Our analysis of impurity conduction in amorphous silicon does not

have such a firm basis, As in all the interpretations of amorphous data,
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we put v = 2 since this value arises naturally from consideration

of the integral involved in calculating the overlap of the localized
wave functions. Deviations from this value arise from the ellipticity
of the constant k surfaces in the conduction band minima (Miller and
Abrahams 1960). These concepts are ill-defined in the amorphous

case and so we keep Vv equal to two,

The system about which we know least is amorphous germanium. In
that case é number of model approximations are necessary in the
derivation of the basic formulae, We assume that the transition
‘rate can be written in the MA form given in eqn. (4.1.1). The quantity
R, is a variable parameter since we have no detailed knowledge of the
electron-phonon interaction in these materials. We also assume that a
is a constant independent of the energy of the state. Many authors
have argued that this is not possible since a = 0 at the mobility edge
i.e. at an energy E (Abraham and Edwards 1972; Pollit 1976). These
authors assume o is proportional to (E - Em)n, where nbs 1. The
effect of allowing an energy dependence for o could be calculated
using the basic equations outlined in this work. For low temperatures,
the effect should be small since the quantity (E - Em) will not vary
significantly over the energy range of interest. Also, the power law
dependence is much slower than the dominant exponential character of

the important quantities arising in the integrands, which may. justify

our approximating o by a constant.

§9.6 The Transition Rates

Our approximate formula for the transition rates is open to
severe criticism in amorphous semiconductors. Emin (1974) has calculated
the rates for a more general case. He argues that multi-phonon contributions

are significant for the temperatures at which the experiments on amorphous
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materials are conducted (70 K to 300 K). It is, however, difficult

:

to see how the T' law may be derived if the rates differ significantly
from the MA form. It is not possible to obtain simple analytical
formulae for the Emin type rates. Howevér, Emin has shown the
temperature dependence of the rates, computed numerically (Emin 1974).
He argues that the Ti law may follow directly from the fact that,
under certain conditions, the logarithms of the rates themselves are
proportional to T%. This argument makes no appeal to the percolation
aspect of hopping. If Emin's rates are correct, then the observed

behaviour is due to a combination of the intrinsic temperature dependence

‘of the rates and the effects discussed here.

The interpretation of some of the quantities arising in the MA
rates needs revising in the case of disordered semiconductors. The
energy difference A = Iei - ej| which arises in these rates is usually
interpreted as the energy associated with a single phonon, which gives
rise to the tramsition. In our analysis the largest energy which
enters into the calculation is spkBT although, as we point out above,
the important energies are about spkBT/S. For liquid helium temperatures
(i.e. impurity conduction in crystalline semiconductors) this energy is
léss than the maximum phonon energy'hwmax. There is, therefore, no
effect when one introduces a realistic cut-off in the value of A, 1In
the case of amorphous semiconductors, however, the value of spkBT/S
is much greater than‘hwmax. We, therefore, have to discuss the effect
of introducing a maximum value for A into the calculations. The effect
is similar to that due to the bandwidth restriction described in
Chapter 6, However, in this case, the permitted energy area in the
(el,ez)-plane has diagonal form running from lower left to upper right

of this plane. The intercepts on the €y = O line are €y = +W, where

W E‘twmax‘ Thus A(q), for q > W, becomes the area of a rectangle lying
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at 45° to the € = O axis with isosceles triangles at each end.
Preliminary investigations show that adopting this form for A(q)
leads to deviations from the Ti law for parametér values appropriate
to amorphous semiconductors. Our derivation of the basic formulae
describing degenerate hopping in these systems must, therefore, rely
on some other interpretation of the energy difference A. Whilst
firm conclusions must await a detailed analytical calculation of

the transition rafes, we may tentatively suggest that for amorphous
semiconductors, A should be associated with an energy difference
arising from multiphonon contributions rather than single phonon

processes.

Finally, we wish to discuss the parameter Ro. We see from eqns.
(4.1.3) and (4.3.1) that for n-type crystalline germanium g is independent
of T, whilst R, is proportional to T. We have assumed that this is so
for all the éystems we have investigated. Most authors quote the
characteristic hopping frequency R, instead of g,e In fact R = 5.4 x 1011 TH
when gy = 1 mS. It follows from Table 2 that Ro n 1011 Hz for n-type
crystalline germanium. For the n-channel and p-channel devices, the
inversion layer experiments show R° n 1012 Hz and 109 Hz respectively
for tail state hopping. For impurity conduction in the n-channel
device R, n 1013 Hz. Finally, the values for R, obtained from Table 2
for amorphous germanium imply that Ry~ 1015 > 1016 Hz for T ~ 100 K.

This last value may seem high because it is often assumed that R, is
in the order of a typical phonon frequency Vph (see, for example, Mott
and Davis 1971). There seems little reason to suppose that this is
generally valid. The assumption that Ro m.vph arises from the
observation that R, is of the order of the maximum possible hopping

rate permitted in the theory which cannot be greater than vph' However,

the hops which are significant in determining <¢> are those between
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sites having energy values and intersite separations in the immediate
neighbourhood of the critical percolation surface and these proceed

at a rate many orders of magnitude below R . Thus while the model
formally allows hop rates of the order 1015 Hz in amorphous germanium,

they do not affect the calculated values of the conductivity,

We see that to obtain rates in the order of R, the sites i and j
must have €, N € and very small intersite separation ry,+ This
second criterion totally invalidates the MA calculation, which assumes
large site separations. Furthermore the MA rates rely on the energy
difference arising primarily through the random potential fluctuation.
For small r, this will not be the case because the resonance energy
becomes large. In Appendix 3 we calculate the transition rates for
all values of the parameter A/W. The results, shown in Figure 32,

~

indicate that all transitions occur at rates many orders below R,
15 . .
Thus the value of the parameter R0 = 10" which arises as a consequence

of our model in amorphous germanium does not signify the maximum

hopping rate possible in such a system.

§9.7 The AC Conductivity

The pair approximation given in Chapter 8 is fundamental to

the study of <01(w)>. It is exact for w + « and for n_ > 0. It has
long been recognized in the literature that the pair approximation

is a low density formula, but there has been no attempt to quantify
what is meant by "low density'. We see that only sites a distance R
apart contribute to <01(w)>. The pair approximation is only valid

if Rm'< an;1/3. When Rw approaches the average intersite separation
(i.e. as w + 0), contributions from clusters of three and four sites
and so on, become important. However, the transition to dc behaviour

is rather rapid since Rp is also in the order of the average intersite
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separation. We would, therefore, expect the transition from a
regime where the pair approximation is valid, to one where the dc
formulae are applicable to be rapid. It is for this reason weffeel
secure in writing ¢ = 01(0) + Og(w). We wish to emphasise the point
made in Chapter 8 concerning the inconsistency between the ac and dc
data obtained from studies in amorphous germanium. The observed ac
behaviour occurs at a frequency such that Rm>Rp’ which is somewhat

unphysical. We would expect the dc-ac transition at a much higher

frequency.

The general shape of the o(w) versus w éurve, shown in Figure 27,
has two "shoulders" at frequencies Wy and w, where Wy < Wy We would
expect the first shoulder to occur at a frequency wy such that Rp N R
i.e. wy Ay R, exp[-Rp]. The second shoulder should occur at w, & R .
The frequency 0y is higher than that observed experimentally, whilst no
studies have shown saturation. As pointed out in Chapter 8, reducing
R, does not remove the inconsistency, since using the values of Py

deduced from the ac data, also reduces Rp.

We are therefore led to the following conclusions. Firstly, a
more detailed treatment of ac conductivity is needed. Secondly, the
observed ac conductivity in amorphous germanium, described in Chapter
8, cannot be interpreted on the basis of the Austin-Mott formula.

The experimental densities are such that we predict dec behaviour in a
regime where ac behaviour is observed. This observed conductivity
must therefore be attributed to some process other than the simple

Fermi level hopping described by the Austin-Mott formula.
§9.8 Future Work
———y

There are a number of outstanding problems basic to transport
processes in systems of localised states. The development necessary

in order to acquire a deep understanding of the physical processes
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involved is daunting. Here, we shall merely list some areas of

interest.

An understanding of the role of the.structure of materials
on the electron statistics is fundamental (for example, in studies of
the Hubbard energy and double occupancy). The electron statistics
in turn have a great effect on transport properties suéh as the electrical
conductivity. It would therefore be of great interest to perform a

more general analysis concerning different site location and energy

statistics.,

The introduction of more realistic density of states profiles
should also receive attention. This is particularly true in the case
of inversion layer studies, where the variable Fermi level is a
powerful tool. Combined with a realistic density of states calculation,
it should enable one to study the relevant strengths of the different
transport processes, such as hopping and activation to the mobility

edge, which occur in these devices.

Fundamental to the study of hopping conduction are the transition
rates. For the case of impurity conduction in n-type crystalline
semiconductors the rates of Miller and Abrahams (1960) are applicable.
In all other cases studied in this work, the rates are introduced in a
somewhat ad hoc manner. A study of the transition rates in disordered
materials, inversion layers and p-type semiconductors would be
invaluable in this context. Presumably such a calculation would
remove such worrying features as the large energy differences and
R, values obtained from the studies of amorphous germanium reported here.
As emphasised earlier, the ac conductivity should be reviewed in an
attempt to remove the inconsistencies which arise in the study of the

ac and dc data obtained from a variety of materials.,
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Transport coefficients other than the conductivity should
receive attention. Notable amongst these are the Hall constant and

the thermopower, both of which are very poorly understood.

§9,9 Conclusion

We conclude that this work develops the simple hopping theory,
which adequately describes experimental data obtained from a variety
of systems, notably impurity conduction in crystalline and amorphous
semiconductors, hopping conductivity in inversion layers, and the basic
conduction process in amorphous semiconductors., Various problems
have been isolated, which relate to the model adopted rather than
any approximations inherent in the deduction of the analytical
formulae, It is hoped that future work will lead to considerations

of other transport coefficients and more physically meaningful models.
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APPENDIX 1 EVALUATION OF THE INTEGRALS INVOLVED IN 2B, op AND

<0;(«)> FOR HOPPING IN VERY WIDE BANDS

Al.1 Evaluation of the Integral Involved in 2B

We see from (5.1.5) that
A°(9) = (D[4 + 6q + 41nq) (Al.1.1)
. . . . 2 —3 .
Hence the integral involved in (5.1.2) is (kBT) a J(Rp) with
P2
J(RP) = I R°(2R - v) (4 + 6q + 41nq)dR (Al.1.2)
0]
where q = sP - 2R + VInR and we have put r; = 0. We may therefore write
= J. (R + J, (R +
J(Rp) 1( p) 2( p) J3(Rp)

where the terms on the right are the contributions from 4, 6q and

41nq in (Al.1.2) respectively. The evaluation of Jl(Rp) is trivial:
3 2
J.(R) = 2R [# - J Al.1l.4
1 ¢ p) 2B 73 ( )

The evaluation of Jz(Rp) is less trivial but is nevertheless elementary.

When (5.1.11) is used to eliminate sp we find that

_ o312 _ 7 vy ]
JZ(RP) = 6Rp[5 Rp + st(qm ﬁv) + 3(3 qm)_l , (Al.1,5)

The integral J3(Rp) cannot be evaluated by e;ementary methods. We
therefore approximate q by a = fR with a and f chosen to match the
magnitude and slope of q at R = Rp. Hence £ = 2 - v/Rp and a = q, * pr
where we have used (5.1.11). With this approximation, J3(Rp) may be

evaluated by elementary (but tedious) methods. We find that
4 314v
J = - - —
3 (Rp) 2Rp l:lnqm }:l Rp [3 lnan

2 _ (Al.1.6)
- ola _ 2v}|1 .3 2 a a
Z[f ’3')[3 R T Rp[fJ
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For a two-dimensional system the corresponding integral is

given by (Al.1l.2) with

=82 -3 '

Jl(Rp) =3 Rp(Rp ) (Al.1.7)
= op2{p2 5 3 . |

J2(Rp) = 2Rp Rp + R _(2q §-v) + 4v(v qu)J (Al1.1.8)
-3 8 I Y )

J3(Rp) = Rp 3(lnqm 3) Rp[%vlnan

2
oSl w

.Al.2 Evaluation of the Integral Involved in op

With the aid of eqn. (Al.1l.1) we see that the integral involved

in (5.1.4) is (kBT)za_sK(Rp) where

P
K(Rp) = J R4(4 + 6q + 41q)dR

0
= Kl(Rp) + KZ(RP) + K3(Rp) (Al.2.1)

where the successive terms in the second line are the contributions
from 4, 6q and 4lnq in the first line. Proceeding as in Al.1l

we find that

_ 4
Kl(Rp) =z R.p (Al.2.2)
K (R) =2 R R+ 3(q - =) (A1.2,3)
2 7p 5pP W3 T
K(R)=£R51nq -{—1-R5+1'-R4-a—+—1-R3§2
3% 5'p 5p 4 pf 3 plf

3 4 5
2la a a I
+ iRp {?] + Rp [—f—) + [f] In [—;—) }] (Al .2, 4)
For a two-dimensional system the corresponding integral is given

by (Al,2.1) with
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4

Kl(Rp) - R , (A1.2.5)
2 4 5
Ry(R) =5 RP[RP + 50 - {)] | (Al.2.6)
K,(R) = RA[;nq - ]
3%p pl_m ¢ ) 2 3
- %B R; + IR, % + RZ[—?—] + [-;-] 1n[?]] (A1.2.7)

Al.3 Evaluation of <01(w)>

To calculate <01(w)> we set sp equal to the minimum value of s
‘in (3.2.5). Then the modulus sign may be removed from Is-spl and
r,=r throughout the range of integration. We assume that the
density of states has a constant value Pp and make the changes of

integration variables: R = ar, x = 861/2 and y = 852/2. Hence,

using (3.2.4), (4.1.2), (4.1.4) and (4.1.5) we obtain

2
(p k,T)
- 2r F B
<o, (== g, 3 %55 LI, (A3.1.1)
where
I = J R* Ve ar (A3.1.2)
0
and
= [ (x~-y)dxdy
I j I cosh x cosh y sinh(x-y) (A3.1.3)

The integral I, is just I‘(5+v)/25+v (Dwight 1969). To evaluate

1

I, we make the further change of variable { = (x+y) and n = x-y.

Then we have

>
- n dg .
2 ! J dy sinh nJ. cosh & + cosh n

8

= ” n 4n
% I dn sinh n * sinh n (A3.1.4)

n
N
=5

N
~
w
.
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In the second line we have evaluated the elementary integral over
€ and in the last line we use the value of the remaining integral

quoted by Dwight (1969).

When these results are substituted into (A3.1.1) we obtain,
with the aid of eqn. (5.1.6), the result (5.3.1) for a three-dimensional
system quoted in the text. The evaluation of <ol(w)> for a two-

dimensional system proceeds in an almost identical way and yields

eqn. (5.4.1).
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APPENDIX 2 [EVALUATION OF sP AND cP FOR HOPPING IN BANDS OF FINITE WIDTH

A2.1 Fermi level lying at the centre of the band

In this section we evaluate the expressions (3.3.2), (5.1.2) and (5.1.4)

for S, 2B and op for the intermediate bandwidth case discussed in
Chapter 6. We suppose a rectangular band of states whose width

is W. The effect of the bandwidth restriction is to introduce a
permissible energy square in the (el,ez)-plane as shown in Figure 32
The shaded area is A(q) where q = sP - 2R with R = ar. A“(q) depends
on the relative sizes of q and W’= W/2kBT. From the diagram we

“deduce that

(@) = (kgD 6q 0<q<w ’
a°(q) = kD" - 290 W < q < 2w’ L (A2.1.1)
A*(q) =0 2U° < gq J
Since q varies from O to Qpax = sp we may write, using eqns., (5.1.2)
and (A2.1.1)
2 b d
2n(chBT) 2 2
2B = — 6(sP - 2R)2R"dR + | R7(4W - ZSP + 4R)dR (A2.1.2)
o
|2 ¢ i
where
= 3(s_ - Wo -W
a = i( > ) (sP )
b=s_/2
P (A2.1.3)
= -2 - 2w
c = (s, Yo (s, )
d =

i(sp - W)e(sP - W)

with 6(x) denoting the unit step function. Hence:
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FIGURE 31 Schematic diagram of the q@:l,ez) = q contours for the case

of a finite bandwidth. Figure (a): Fermi level lying at
the centre of the band. (b): Fermi level in the band but
off-centre, (c): Fermi level outside the band. In each ase
A(q) is shown shaded and the dots indicate the permitted

energy square in the (e; - €,)-plane.
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f

s | % (334) ' ) W
P P
™ (p gkgT) 4 3 3 4
2B = ——— { x (—sp + 85 W - 8spW’ + LWy W< 5, < 2W° (A2.1.4)
240, .
X (2432W’2 - 40s W‘3 + ZOW’A) 2W° < s
\ P P P

The quantity S is easily evaluated to give

ZPFkBTs s < W
S = P P (A2.1.5)
-, - <
ZQFkBTW W sp

Combining equations (A2.1.4) and (A2.1.5) using (3.3.3) we obtain

. polynomial equations for s_, the solutions of which are discussed in

Chapter 6.

The evaluation of the prefactor proceeds in a similar way.

Using
) (3s2) s, W
g m(p_k.T)
o =0 FB | (&4 10s%w - 2023 + 208wl - 6wy wo<s < 2w
P 16Oa4 p3 ) P 5 3p z s p
(408™W*" = 100s"W"™ + 100s W* - 38W’"7) 2W° < s
P P P P
(A2.1.6)

We note that the expression for cp reduces to those given in Chapter 4
and Chapter 5 in the limits of very narrow bands (sp >> W) and very

wide bands (sp < W).

A2.2 Evaluation of sp and cp when the Fermi level does not lie in

thé centre of the band

t

We may readily extend the arguments‘presented above to the case
when the Fermi level does not lie in the centre of the band of
localized states. Once we have deduced A(q) for the different cases,
the integrals are trivial but tedious. We suppose that the bandwidth

is W and that the Fermi level is displaced by an energy ¢ from the
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_centre of the band. It is convenient to distinquish two regimes:
the Fermi level lying in the band (; = € > 0) and the Fermi level

lying outside the band (; - e <0).

1. Fermi level outside the band

The effect of moving the Fermi level below the centre of the
band is to offset the permissible energy square in the (El,sz)-plane
towards the upper right quadrant (see Figure 31). If € > W/2 then

the square lies entirely in this quadrant. In this case

A’(q) =0 q<e’ -W
A’(q) = (kBT)ZZEq - (e - W)l € =W <q<e” + W} (A2.2.1)
A“(q) =0 E-+ W <gq

where W* = w/ZkBT and €° = s/kBT. We see from eqn. (A2.2.1) that
the lower limits on the integrals involving A“(q) depend on whether
sp < e” + W (lower limit = 0) or 5, > e’ + W (lower limit = i[sp - e’ - WD, |

i

When spkBT lies within the band, we obtain

2 1/3
240°N e - W/2
sp = ;B;E;%- + —-i;FT- (A2.2.2)

We may interpret the two terms in this equation as follows. The
second term arises because of carrier activation from the Fermi
level to the edge of the band of localized states. The first term

describes the resulting hopping conductivity that takes place and,

1/3

since spkBT lies within the band, sp has a T dependence. We note

that To is 507 larger than when the Fermi level lies at the centre
of the band. Above a temperature 6°, sp becomes greater than ¢” + W°

and eqn. (A2.2.2) is no longer valid. We may readily deduce that
W3on d
8° = —5 (A2.2.3)
240°N k
pB
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For temperatures greater than 67, sp is given by a quadratic equation,

which is easily solved to give

3 4
W+ 6e 4a2N ﬂnsw2
Sy~ TBk.T * ™ £ 1= 2 2,2 (A2.2.4)
P B s 720 N kT

The term in the square bracket is very nearly unity and so we may

write
(1)

s =g + —
P p° kT

(A2.2|5)
where E(l) = ¢ + W/6 (we have ignored the small correction due to
the temperature dependence of NP). We see, therefore, that the

(1)

conductivity will be activated, with an activation energy E .

2. Fermi level within the band

If the Fermi level lies within, but below the centre of, the
band then the permissible energy square is displaced towards the upper

right hand quadrant but is not contained wholly within it. 1In this

case

A’(q) = (kBT)26q 0<q<W -¢* )

A’(q) = (kBT)Z[Zq +2(W - ¢7)] W -e” <q<W +¢” .

A’(q) = (kBT)Z(AW‘ - 2Q) W< q < 2w r (A2.2.5)
A’(q) =0 2W” < q J

Because of the many regimes that exist, we have tabulated the results
in Tables 4 and 5 where for completeness we have also given the cases
when € > W/2. We see that for sufficiently low temperatures we have

~1/3 law., TFor T > 9(4) we have an activated behaviour and the

aT
activation energy depends on W and €. At intermediate temperatures
(regions II and III) the temperature dependence of S5 is more involved,

but the temperature range covered by these regions is small compared

with that covered by I and IV,



TABLE 4 Table indicating the dependence of the critical percolation
exponent sp and the prefactor cp on the system parameters.
Section A deals with the case of the Fermi level lying outside
the band. Section B deals with the case when the Fermi level
lies inside the band, at an energy € below the centre. For
each case the solution/equation for sp and op are given under

the temperature regime for which they are valid. Here
4

o’ gon(kaBT)216Oa s K==W =€, and J = W + ¢, with

P
w'

i

W/ZkBT and €* = e/kBT.



: FERMI LEVEL OUTSIDE THE BAND

"0 < T« 6(1)

. 24a2Np (e - w2
P prkBT kBT
cp = o};(sp + K)5

o) o

s = E(l) + s

Q
[}

[ksp + K)5 - 5(sp + K)(sp - J)4 + 4(5p - J)%]

FERMI LEVEL INSIDE THE BAND
(2)

0<T<8

4
1602

kT
P "DF B

(7]
]

g = o‘3s5
p PP

Ne) (3

< T < 8

16a2N

mp k. T

B - [osh - 4, - 0%, + 016, 4 0

I 5 4|
C o= - - K~ 2 -
cp op 3sp (3 sp)(sp K)

5 (3) )

<T<®©

16a2N

onkBT

[ 3 _ 3
= [ésp 4(sP K) (sp + K) 8(sp + K)(sp J)

- 4, - J)f]/(J + K)

Y PO _ Coenh oo
o, = op[}sp (3K 2sp)(sp K) (37 + 2sp)(sp J) J

9(4) < T

s = E(Z) + s

P kBT p®

o = 0,[}55 ; (3K =-2s)(s -K) - (3T + 25 )(s ~- J)4 - (s -J- K)5
P pL P PP PP P '

TABLE 4



TABLE 5

4
3
6 (1) WL
7. .2
24a°N k
p B
3 3
e(z) (W - 2) ﬂpF]
3
128aNpkB J
o (3 NOTE A
6 (4) NOTE A
E(l) € + W/6
2
8 - 3(1 - -‘-‘fz—)
(2) W
E — W

Table giving the expressions for the temperatures 9(1) and

. i) .
energies E( ) in terms of the system parameters.

Note A

(3) (4)

The temperatures 9 and © are determined numerically
by solving the polynomial equations for S5 and then determining
at what temperatures s, = W+ e, (9(3)), and 8, = w-, (6(4)),

respectively, in a self-consistent manner.
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APPENDIX 3 THE TRANSITION RATES

A fundamental quantity in the study of hopping conduction is
the equilibrium transition rate Ry between sites 1 and 2. In
particular, we wish to discuss the single phonon rates, origin;lly
calculated by Miller and Abrahams (1960). Their general method
of calculation is as follows. They have a v?riational calculation
of the pair wavefunction and then calculate transition rates using
the deformation potential interaction between two pair states of
different energies. These rates are then averaged over all

directions. The resultant form for R12 is given by eqns. (4.1.1)

and (4.3.1).

Miller and Abrahams make a number of model assumptions and
approximations. Perhaps the most important from the point of view
of this work is the low density approximation. By low density
Miller and Abrahams mean that the resonance energy W, arising
through the overlap of the component states, is much less than A,
the energy difference arising from the random potential field
associated with neighbouring donors and acceptors. For small site
separations or slowly varying potentials, the approximation W << A
is not valid. It is of interest to calculate the transition rates

for all values of W/A.

The following analysis follows that of Miller and Abrahams very
closely. We generalise the arguments, however, by keeping the exacf
wavefunctions which result from the variational calculation of the
pair states. We suppose that a sufficient basis for the one electron
pair wavefunction Y is a linear combination of the hydrogen-like wave-
functions

of each isolated state. A straightforward but tedious

variational calculation then gives



+

v - Dy, + ¥ |
1 (") - (A3.1)
D7y, + b, o
¥ = sy (A3.2)

where
p* = (D/2w) (1 ¢ F) (A3.3)
+ + +2 .

T =1+2D8+D . © (A3.4)
F= (1 + 4WS/A + 4w2/A2)i ' (A3,5)

Here A is the energy difference due to the local environmental

potential, and is given by A = Ai - Aj

is the resonance energy between the two sites and § = <wi|wj>.

= < [vlv> -<ulvive. W

We now wish to calculate the matrix elements
<H> = <
H wlelnlwi> (A3.6)

where E1 is the deformation potential and n is the dilation which

we may write in terms of the annihilation and creation operators

for phonons of wavelgngth q, bq and b;,as

4 . .
_ .l h 4 iq.r + —iq.r
n-= 1[29 VS] z q bqe - bqe _'-:| (A3o7)
o q - .
For phonon absorption, hqn )
- iE, |[—3 ig.x
<H> = iE, 7o Vs [fwj|e lwi%] (A3.8)

=

The term in the square bracket may be written as

1 + - iq.R
(1= —1 (DD + e ='=) (A3.9)
(1)} '

where we have dropped a small term involving an overlap integral

between the two sites and assumed q >> a. Here R is the intersite

separation. The total transition rate is then
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21 v 2 3 ’ :
R.., = 2= _ H|“S -€, +€,)d A3.10
57 2y | lulechen - ) v e’y (43.10)
Thus
Ei 3ty 411 |
Rig = 2p 8T J 17 T S(hsq - & 7 €5)dq (43.11)

where we have dropped an oscillatory contribution to the integral.
The variation calculation gives the energy difference ej - ei:= AF(1 - Sz).

We may therefore write (A3.11) as

2 .
E 3 + - 2
A A -
Ri' = ; A F 5 (a4 i _+ 1] nq (A3.12)
J pos 7h 1 ~-S 2T T

where q = AF/(1 - Szfﬁs. Is is instructive to put (A3.12) in terms
of the quantities W, S, A, using (A3.3), (A3.4) and (A3.5). Thus,
with x = BAF/(1 - Sz)

5242

R.. =R xx Fz(ar) 1 7.3
1] 0 * - (1 - s

- + = +1 (A3.13)
2W

where R is given by (4.3.1). Here F(or) is defined by writing

W= (eza/sneso)-l F(ar) = WOF(ar). To regain MA rates we put S = 0
and assume A >> W. Eqn. (A3.13) then reduces to the MA rates given
by eqns. (4.1.1) and (4.3.1). However, both S and W have primarily
the same r-dependence, so strictly speaking the MA rates are only

valid if Wo>>A>W which is true for large separationms.

In Figure 32 we show plots of 1og(Rij[§o) against ar.for various
values of the parameter A/Wo. We see that for all values of ar
andNW° the hopping rates Rij are many orders less than Ro' For the
site separations which are important in determining the conductivity,
however, the MA rates are valid. In this region the paramefer Ro is
a sensible characteristic frequency. The purpose of this section
has been to illustrate the derivation of the MA rates and to point out

rates in the order of Ro cannot occur in a realistic hopping system.



log(R,,/R,)

FIGURE 32 Plot of 1°g(R12/Ro) against the site separation. The numbers

on each curve give the relevent value for WO/A. The remaining

1

parameter values were chosen to be o - = 1.4 nm, T = 200 K.
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