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Abstract 

This work develops the semiclassical theory of electrical 

conduction due to electrons in localized states, and compares the 

resultant formulae with a variety of experimental data. 

We begin by using the equivalent electrical network, derived 

from the phenomenological rate equations, to deduce the dc conductivity 

of a number of model systems. Percolation arguments are used to 

derive both the exponent and the prefactor when the dc conductivity 

is written in the form a = a exp [-s J. o p 

In particular, we derive formulae for the cases when the 

energies of the electron states are distributed over a very narrow 

range, a very wide range and an intermediate range. In the first 

two cases the formulae are in excellent agreement with computer 

generated data obtained by numerical solutions of Kirchhoff's 

equations for the equivalent network. 

Experimental data obtained from studies of a number of systems 

are analysed, namely, impurity conduction in crystalline germanium 

and amorphous silicon, the conductivity of evaporated films of 

amorphous germanium and finally the conductivity due to electrons 

in an inversion layer formed in a metal-oxide-silicon-field-effect­

transistor. In all cases very good agreement is found between 

experiment and theory. 

Formulae are also derived for the ac conductivity. Comparison 

of these formulae with computer data again shows good agreement 

between theory and experiment. We show how detailed considerations 

indicate that the ac data obtained from evaporated films of amorphous 

germanium cannot be due to hopping at the Fermi level, as is normally 

assumed. 

In conclusion, this work develops the simple hopping theory 

which adequately describes experimental data obtained from a variety 

of systems. Various problems are isolated; which relate to the 

model adopted rather than any approximation inherent in the deduction 

of the analytical formulae. 



1 / 

CHAPTER 1 - INTRODUCTION 

The theoretical and experimental understanding of electron transport 

in systems consisting of a regular array ,of atoms has, for many years, 

received much attention in solid state physics. For such systems the 

electron states are extended throughout the array and the concept of a 

k-space is both fundamental and well defined. Electron transport 

processes, such as band conduction in crystals, can then be described 

in terms of transitions in k-space. In contrast an electron which is 

localized in real space, carries no current ~ the expectatio~ value 

of the electron velocity is zero. Transport processes involving 

localized states are therefore determined by transitions of electrons 

from full states to neighbouring empty states. Since this basic 

process changes the position of the electron in real space, it is called 

a "hop", and localized state transport is therefore referred to as 

"hopping" transport. In this work we investigate one particular 

transport coefficient, the electrical conductivity o. 

The hopping mechanism was first proposed by Conwell (1956) 

and Mott (1956) to explain the dc electrical conductivity of compensated 

crystalline semiconductors cooled to liquid helium temperatures so as 

to suppress band conduction. For the next decade, the dc behaviour 

in this regime was the subject of extensive experimental investigations 

(Fritzsche and Lark-Horowitz 1954; Keyes and Sladek 1956; Fritzsche 

1958, 1959, 1960; Fritzsche and Cuevas 1960; Atkins, Donovan and 
, 

Walmsey 1960; Miller and Abrahams 1960). At these temperatures the 

hopping conductivity obeys an activation law,and the conductivity may 

be written as ° = 0p exp(-E3/kBT), where E3 is the activation energy 

associated with the hopping processes. Experimental studies of the 

dc conductivity of n-type germanium at temperatures considerably below 

liquid helium, have been made recently by Allen and Adkins (1974). 
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The observed behaviour is different to that observed at liquid helium 

temperatures; the conductivity may be written as ° = 0p eXp~(To/T)~, 
where T is a characteristic temperature. o 

Interest in hopping conductivity waned in the decade 1960-1970 

but has increased greatly again in recent years due to an expansion 

of research into the physical properties of amorphous semiconductors 

and the behaviour of electrons in the inversion layer of meta1-oxide-

silicon-field-effect-transistor (MOSFET) devices; In both these cases, 

as we outline below, some of the electron states are localized. A 

hopping mechanism is therefore to be expected for transport processes 

involving these states. The observed experimental temperature 

dependence of the de hopping conductivity of amorphous semiconductors 

falls broadly into two categories: either exp[-~/kBTJ where ~ is an 

activation energy or exp [-(To/T)l] where To is a characteristic 

temperature. The'T! behaviour was first found by Clark (1967) in 

evaporated germanium films and has been confirmed experimentally by 

many authors (Walley and Jonscher 1968; Chopra and Bahl 1970; Hauser 

and Staudinger 1973; Arizumi, Yoshida, Baba, Shimakawa and Nitta 1974; 

Agarwal, Gutta and Narasimhan 1975; Gilbert and Adkins 1976). 

theoretical derivation of the-T! law is due to Mott (1969). 

The first 

Many 

authors have also derived the Ti law using a variety of approaches 

(Ambegaokar, Halperin and Langer 1971; Pollak 1972; Butcher 1976a, b). 

In contrast to the Ti behaviour found in evaporated films of amorphous 

germanium, Abkowitz, Le Comber and Spear (1976) find that amorphous 

germanium films produced by glow discharge exhibit a simple activated 

type temperature dependence. Activated behaviour is also found by 

many authors for chalcogenide glasses (Mott and Davis 1971; Nunoshita, 

Arai, Taneki and Hamakawa 1973). 

Recently Spear and co-workers have succeeded in doping amorphous 
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silicon with phosphorus (te Comber, Jones and Spear 1977). The 

resulting impurity states are localized and the observed conductivity 

due to these states has the same behaviour as impurity conduction in 

crystalline semiconductors. 

Under certain experimental conditions hopping conduction can 

be observed in inversion layers in MOSFET devices. We outline the 

reasons for the presence of localized states in these devices below. 

The first suggestion that the data may be interpreted on the basis 

of hopping conduction was made by Mott (1973), and Stern (1974). 

Experimental observations have been made by many authors (Pepper, 

Pollit, Adkins and Oakley 1974; Pepper, Pollit and Adkins 1974; Pepper 

1977; Harstein, Ning and Fowler 1976; Pollit 1977). Recently, hopping 

conduction due to impurity electrons has been reported in these devices 

(Harstein and Fowler 1975 a, b, 1976). An extensive review of transport 

processes in MOSFETS can be found in the paper by Mott, Pepper, Pollit, 

Wallis and Adkins (1975). 

We see that the systems of interest fall into three main categories: 

impurity conduction, conduction in amorphous semiconductors, and the 

conductivity due to. localized electrons in inversion layers. Ipe 

first of these systems, namely conducting electrons in localized impurity 

states,is the best understood (for an extensive review seeShklovskii 1973). 

Figure 1 shows just such a system. It is a schematic representation of 

an n-type semiconductor in which the doping levels are low enough for 

all the impurity states to be localized. At very low temperatures most 

of the electrons are frozen out of the conduction band and we assume 

all the acceptor levels are full. Since the material is n-type there 

are more donors than acceptors, which implies that some of the donor 

levels are empty and some are full. Transport may therefore proceed 

through the donor levels by the hopping process indicated in the Figure. 



--()- . 

--0-
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BAND 

FIGURE 1 Schematic diagram of impurity conduction in an n-type 

crystalline semiconductor. Occupied sites are 
'-.... , 

indicated by a dot. The arrow indicates a "hop". 
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l~~ilst the primary function of the acceptors is to ensure that some 

of the donor levels are empty, the fact that there are ionized donors 

and acceptors present distributed randomly throughout the crystal 

means that the donor levels are randomized due to the Coulomb field 

produced by these centres, as indicated in the diagram. The hops 

are therefore necessarily inelastic and must be phonon assisted. 

As we see later, the quantity ~/kBT, where ~ is some average energy 

separation of the states, is crucial in determining the temperature 

dependence of the dc conductivity. 

In analysing the conductivity data of amorphous semiconductors 

we are not in quite as good a position as in the impurity conduction 

case. While most authors would argue that at least some of the 

electron states in these disordered materials are localized, there 

has been no satisfactory description of these states in real materials. 

Anderson (1958), in a classic paper, shows how localized states arise 

as a direct consequence of the random nature of the system (in this 

case potential randomness). It is not at all clear, however, how to 

carry Anderson's arguments over to the amorphous semiconductor case. 

Many attempts have been made to solve Schrodinger's equations for a 

random array of scatterers directly on the computer (Thouless 1~77; 

Thouless and Licciardello 1977). The results of these works appear 

to show that the introduction of disorder localizes at least some of 

the electron states. In particular, the energy of the electron states 

is critical in determining whether a state. is localized or not. 

This idea was first mooted by Mott (1969) to explain data obtained 

from conductivity measurements in amorphous semiconductors. He 

postulated that, because of the randomness of these materials, electron 

states at the valence and conduction band extrema would be localized. 

Separating the localized and non-localized regimes is the 'mobility edge' 

positioned at an energy E and £ in the valence and conduction band 
v c 
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respectively. This idea is shown schematically in Figure 2. 

Electrons with energies lying between E and E are said to be in the v c 

'mobility gap'. Also situated within the mobility gap are electron 

states associated with defects such as impurities, as illustrated in 

Figure 2. With this type of structure, the position of the Fermi 

level together with the magnitude of the density of states at the 

Fermi level are crucial in determining the behaviour of transport 

properties. For example, if the Fermi level lies in the localized 

states in the conduction band tail, then at -high temperatures the 

dominant contribution to the conductivity may arise from activation 

to the mobility edge and then conduction in extended states. At lower 

temperatures hopping in the localized states may be the dominant 

process. Postulating a low density of states at the Fermi level 

also leads to an activated type conduction process (Mott and Davis 

1971). The problem of the position of the Fermi level and electron 

statistics is discussed by many authors (Street and Mott 1975; Yoffa 

and Adler 1977; Okamato and Hamakawa 1977). 

Finally, we come to the last of the systems of interest in the 

present work, namely the inversion layer. In Figure 3 we show a 

schematic representation of the energy level diagram of a p-type 

semiconductor when it is incorporated in the basic form for a MOSFET, 

namely a metal-die1ectric-semiconductor-capacitor structure. 

Application of a gate voltage to the metal changes the charge distri­

bution at the semiconductor surface. Bending the bands sufficiently 

induces a layer at the surface in which the majority carrier is the 

minority carrier in the bulk. This condition is referred to as 

inversion. Schrieffer (1957) pointed out that, if the field was 

sufficiently strong, then a one-dimensional surface potential well is 

formed with a dimension smaller than the electron wavelength. Under 

these conditions, the electron wavefunction goes to zero outside the 



MOBILITY 
GAP ------------•• 

FIGURE 2 Schematic diagram of the density of states in an 

amorphous semiconductor. EC and Ev refer to the 

mobility edges in the valence and conduction bands 

respectively. Localized states are shown shaded 
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FIGURE 4 Classical and quantum mechanical inversion layers, showing 

charge densities for a Si(lOO) surface with electron con­

centration equal to 1016m-2. T = ISO K. NA=l.S x 1022m-3• i = 0 

refers to the sub-band, the total charge distribution indicates 
the population of higher sub-bands. From Stern (1974) 
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potential well. In Figure 4 we show the results of a calculation by 

Stern (1972, 1974), who calculates the wavefunction by solving 

Schrodinger and Poisson equations in a self-consistent manner. We 

see, therefore, that the electron states are quantised in a direction 

perpendicular to the surfac~ Parallel to the surface the electrons 

behave normally. Such a situation is called a surface sub-band. 

This band behaves as a two-dimensional system. Thus any random 

fluctuations in the potential seen by the electron, arisin& for example, 

from defects in the Si02 layer will induce localization in a direction 

parallel to the interface. The conduction band in the inversion layer, 

therefore, will have localized tail states at its extremity as in 

the three-dimensional case. The addition of Na+ ions into the Si02 
+ leads to the formation of localized states associated with these Na 

ions (Fowler and Harstein 1977). These states, which are called 

impurity states, form a band below the localized tail states. We see, 

therefore, that the band structure for the inversion layer electrons 

is the two-dimensional analogue of Figure 2. In Figure 5, we show 

just such a band structure. As in the amorphous material, the dominant 

transport process depends on the position of the Fermi level. However, 

an important proper'ty of MOSFET devices is the ease with which :the 

Fermi level may be moved. By moving the Fermi level through the 

impurity band, localized states at the conduction band edge, mobility 

edge and into the extended states regime a variety of the transport mechanisms 

of a two-dimensional system may be investigated. In particular, we 

are interested in the two cases of the Fermi level lying in the 

tail states and in the band of impurity states. 

All the experimental systems outlined above give data which 

may be analysed using formulae developed in a variety of ways. 

Unfortunately, some of the system parameters, except for one or two 

isolated cases, are not known and detailed investigation of the derived 
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FIGURE 5 Schematic diagram showing the density of states in 

an inversion layer. Localized states are shown shaded. 
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formulae is difficult. With the advent of large storage computers, 

however, this problem may be overcome. As shown later, computer 

simulation of the hopping process is conceptually simple, albeit 

that large computers are necessary. We will therefore be interested 

in comparing our theoretical predictions with well defined computer 

generated data given by a variety of authors (Pike and.SeagerI974; 

Seager and Pike 1974; Mashke, Overhoff and Thomas 1974 ; Butcher, 

~~yden and McInnes 1977; Butcher and McInnes 1978; McInnes and 

Butcher 1978). 

Our primary interest here is with the dc conductivity of hopping 

systems. We shall, however, be interested-in some aspects of the ac 

conductivity due to localized states. The first experimental and 

theoretical work on ac hopping conductivity was carried out by 

Pollak and Geballe (1961) who investigated the conductivity of compen-

sated crystalline n-type silicon. Golin (1963) obtained similar 

results for p-type germanium. In both cases the observed frequency 

dependence of the ac conductivity s is w where s tV 0.8. This type 

of frequency dependence has also been seen in amorphous materials by 

a variety of authors (Gilbert and Adkins 1976; Chopra and Bahl 1970; 

Arizumi et al 1974; Hauser and Staudinger 1973; Agarwal et al 1975). 

The data are usually interpreted on the basis of the Austin-Mott 

formula (Austin and Mott 1969), which predicts an wO. 8 frequency 

dependence. Recently, there has been considerable discussion concern-

ing the different values for some system parameters deduced from the 

ac and dc data (Abkowitz, Le Comber and Spear 1976; Butcher and 

Hayden 1977). 

The plan of the thesis is as follows. In Chapter 2 we introduce 

the semiclassical formalism for the conductivity due to localized 

electrons, and derive a formal expression of the ac conductivity from 
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the rate equations. We show how this approach fails to account for 

the dc conductivity. Chapter 3 deals with the derivation of the dc , 
conductivity. In Chapter 4 the general expressions derived for the 

dc conductivity are applied to the simple case of non-degenerate hopping 

in narrow energy bands. The resulting formulae are then compared with 

computer generated and experimental data. In Chapter 5 we derive 

formulae applicable to degenerate hopping in very wide energy bands. 

The results are again compared with data obtained from computers and 

experiments. Chapter 6 deals with the analysis of inversion layer 

data obtained from the studies of impurity bands whose width lies 

between the limiting cases of very wide and very narrow bandwidths. 

We briefly review alternative dc formulae in Chapter 7. The ac 

conductivity is derived in Chapter 8 and the resultant formulae are 

compared with computational and experimental data. We also show in 

this chapter why the interpretation of the experimental ac data must 

be viewed with caution. Finally, Chapter 9 contains a general 

discussion of the work presented in the preceding chapters in the 

context of hopping conductivity in general. 

, , 
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CHAPTER 2 - SEMICLASSICAL FORMALISM 

§2.l Linearized Rate Equations 

Since the pioneering paper of Miller and Abrahams (1960) very 

nearly all the theory of hopping conductivity has been based on the -

phenomenological rate equations for ac and dc conductivity (Brenig 

et al.197l, Butcher 1972, 1973, 1974). A derivation of the rate 

equations from more fundamental principles has recently been published 

by Barker (1977). He shows that the rate equations are derivable 

from Kubo's formula (Kubo 1957) which is an exact expression for the 

ac and dc conductivities of any system. Other authors (Capek 1972, 

1973, 1975; Capek, Koc and Zamek 1975) disagree. This debate rests 

on sophisticated quantum transport arguments, a regime not covered in 

this work. We shall, however, show in later sections computational 

results which indicate that Barker's conclusion is correct, and that 

the rate equations accurately describe transport due to electrons in 

localized states. We will therefore introduce the rate equations in 

an intuitive manner, but with the understanding that they may be 

derived rigorously. We follow the formalism introduced by Butcher 

(1976a). Consider a finite array of Ns sites in a macroscopic ~olume 

n and suppose each site may be occupied by only one electron. We 

label the sites by an integer m and write f for the probability that m 

site m is occupied by an electron of either spin orientation. To 

determine f we use the rate equations m 

(2.1.1) 

where Rmn is the transition rate from an occupied site m to an empty 

site n. When the electrons are in thermal equilibrium at temperature 

T, the quantity f reduces to the Fermi-Dirac function m 
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(2.l.2) 

~l 
where Em is the energy of an electron on site m and S == (kBT) • 

In eqn. (2.1.2) ~* == ~ + kBTln2, where ~ is the chemical potential. 

The kBTln2 term arises from the spin degeneracy of the state 

(Blakemore 1967). This distinction between ~ and ~* will not be 

made explicit except in those cases when the kBTln2 term is ~mportant. 

In thermal equilibrium detailed balance ensures that each term in 

the right-hand side of eqn. (2.1.1) vanishes separately. It follows 

from eqn. (2.1.2) that the transition rates RO in thermal equilibrium mn 

satisfy the detailed balance relation 

exp[S(E - E )] m n (2.1.3) 

When a weak potential field is applied we write U for the potential 
m 

a~ site m and suppose that Rmn satisfies eqn. (2.1.3) with Em - En 

replaced by (€ + U ) - (E + U). Then, to first order in U and U m m n n m n 

we have 

R 

R
mn = [Ro IRo ][1 + 8(U - U )] mn nm m n nm 

(2.1.4) 

In the presence of. the applied potential f suffers a perturbation 
m 

101 
f. By substituting f = f + f in eqn. ~(2.1.l) and using eqn. (2.1.3), m m m m 

we find that fl is given to first order by the linearized rate equations 
m 

dfl 
[fIRe fIRe ] m I I [F U Re 

F U Re ] -= + S dt n nm m nm n n nm m m mn n n 
(2.1.5) 

where R
e 

== r IF mn mn m 
(2.1.6) 
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with r = fO(l - fO)Ro (2.1. 7) nul m n nul 

and F fO(l - fO) 
m m m 

= -kBTdfo/dE (2.1.8) m m 

The formal solution of eqns. (2.1.5) is facilitated by the introduction 

of matrix notation. We write fl and U for row matrices whose mth 

colunuls are fl and U respectively and define a diagonal squa~e matrix 
m m 

! whose (mm)th element is F. Finally, we define a relaxation matrix 
m 

~ whose ~)th element is given by 

(2.1.9) 

where 

(2.1.10) 

In eqns. (2.1.9) and (2.1.10) Re vanishes when m = nand 0 is 
ron mn 

the Kronecker-a-symbol. With this notation eqns. (2.1.5) become 

§2.2 Formal Expression For AC Conductivity 

In order to de~ive an expression for the ac conductivity at 

frequency 00, we suppose that U(~,t) is the potential due to a uniform 

electric field E applied in the x-direction and having a sinusoidal 

time factor exp[-ioot]. All the systems we consider are isotropic 

and the direction of the x-axis is arbitrary. Then U(~,t) = eEx exp[-ioot] 

and U = eE~ exp [ioot] where ~ is a row matrix whose mth column is 

Moreover !l(t) = !1(0) exp [ioo~ and eqn. (2.1.11) reduces to 

x • 
m 
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f 1 (O)(R - iw) = -BeE~FR (2.2.1) 

The formal solution of eqn. (2.2.1) is 

(2.2.2) 

where the matrix G is defined by 

(R - iw)G = 1 (2.2.3) 

The induced dipole moment in the x-direction is 

(2.2.4) 

where the tilde indicates the transpose of a matrix. The x-component 

of the current density is -iwPx(t) and the conductivity at frequency 

w is therefore 

(Jew) -= 
-iwP (t) x 

E exp [-iwtJ 

2 -1 = -iwe en ~FRG~ (2.2.5) 

It is constructive to put eqn. (2.2.5) in another form. By using 

the relations 

RG = 1 + iwG 

1 + iwG mn 
= -iw r G ~ mn n:tm 

F G = F G m mn n nm 

(2.2.6) 

(2.2.7) 

(2.2.8) 

we may eliminate the diagonal elements of G from eqn. (2.2.5) when 

we write out the matrix products in full. We then obtain 
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o(w) (2.2.9) 

The algebra is completed by symrnetrising the su~nd in eqn. (2.2.9) 

and using eqn. (2.2.8). Thus we obtain the final result 

o(w) (2.2.10) 

Eqn. (2.2.10) is the fundamental equation governing the frequency 

dependent conductivity. We shall use it in later chapters to calculate 

o(w) for a variety of systems. Our primary concern, however, is 

with the dc conductivity, and we therefore turn our attention to 

the behaviour of (2.2.10) in the limit w ~ O. 

§2.3 The DC Limit 

To investigate the behaviour of eqn. (2.2.10) in the limit w ~ 0, 

we need to discuss the frequency dependence of G • We may derive 
nul 

a Dyson expansion for G from eqn. (2.2.3) by splitting R into a 

diagonal part Rd and an off diagonal part _R1. On iterating we have 

(2.3.1) 

where 

(2.3.2) 

is diagonal. Furthermore we see from eqn. ~(2.1.9) that Rd = Re 
mn m 

and R1 = Re • Hence 
mn mn 

(2.3.3) 

where 

(2.3.4) 
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-1 
In the limit w ~ 0, GO ~ [Re ] and we see from eqn. (2.2.10) 

rnrn m 

therefore that o(w) ~ 0. Thus for any finite sized cluster 0(0) is 

zero. We see here a very basic problem in the ptudy of the dc con-

ductivity of hopping systems. To obtain a non-zero contribution to 

o(w) in the limit w ~ 0, one needs to consider an infinite sized 

system. The summation involved in (2.3.3) is then impossible to 

carry out for a random array of sites. Whilst the determination of 

G is, in principle, possible for a finite sized system the.resu1t 
nul 

yields a zero value for 0(0). In other words: this approach yields 

only the steady state polarization in the system under consideration. 

We therefore see that a determination of 0(0) relies on some 

suitable approximation to the summation for G in the case of an 
nul 

infinite sized system. One such approximation is that made by Scher 

and Lax (1973) who obtain a non-zero dc conductivity. Butcher (1974 ) 

has shown that their model is equivalent to supposing that after 

each hop, all sites except the one presently occupied are re-randomized. 

This method has limited applicability to real hopping systems because 

• difficult hops which are avoided in the fixed site case become 

significant when the sites are re-randomized. We conclude, therefore, 

that a more fruitful approach to the dc conductivity problem is that 

adopted by Miller and Abrahams (1960). They show that there exists 

an equivalent network problem and indicate the method of solution. 
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CHAPTER 3 - THE DC CONDUCTIVITY 

§3.l Equivalent Conductance Network 

We have seen in the preceding chapter that the dc conductivity 

cannot be calculated from the formal expression for the ac conductivity 

in the limit w + O. We may, however, reformulate the problem as an 

electrical network problem, as first shown by Miller and Abrahams 

(1960). We begin by considering eqn. (2.1.5). By redefining 

f = fO + SF ¢ we may determine ~ from the linearised rate equations 
m m m m m 

Mm 
F ---- = Lsr [(~ + U ) - (~ + U )] m dt mn n n m m 

(3.1.1) 
n 

Eqns. (2.1.5) and (3.1.1) differ only in notation. If we now 

-1 2 mUltiply by -e and write V = -(~ + U)e , C = e SF and m m m m m 

(3.1.2) 

eqn. (3.1.1) becomes 

C JL [V + e-lu ] = 
m dt m m L g (V - V ) mn n m (3.1.3) 

n 

Now let us consider an electrical network having nodes which coincide with 

the electron sites. Suppose that each node is connected to ground by 

-1 
a series combination of a voltage generator e U and a capacitance 

m 

C. Finally, suppose that a conductance g connects nodes m and n. m mn 

Writing V for the voltage at node m we find that Kirchhoff's equations 
m 

for the network are precisely (3.1.3). This equivalent network is 

shown in Figure 6. It is now a simple problem to determine al(w), 

the real part of the conductivity of the network. The Joule heat 

dissipated in a volume n is ~al(w)E2n and this must equal the sum of 

the powers!2 Iv - V 12 dissipated in the individual conductances 
'"1llI1. m n 

in n. Thus we obtain 



FIGURE 6 The equivalent network for five sites. Some of the 

conductances have been omitted for clarity. CI and VI 

refer to the capacitance and voltage generator associated 

with site I respectively. 
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(3.1.4) 

where V = V - V. In (3.1.4), the summation. is over all the mn m n 

sites in n and the factor! prevents double counting. Eqn. (3.1.4) 

is conceptually simpler than (2.2.10). The evaluation of Gl(w) 

only requires a knowledge of the voltage drop across each conductance -

a quantity which is easier to approximate than G • mn 

Equation (3.1.4) is the basis of our subsequent discussion. It 

is therefore of interest to derive it in a more formal way. Consider 

a box of length L and cross-sectional area A. We may define the 

current density across a plane at point x by summing the individual 

currents carried in each conductance g where x < x and x > x. 
mn m n 

Thus 

J(x) =! L ~ (V - V )S(x - x )S(x - x) A 1M m n m n (3.1.5) 
mn 

where S(y) is the unit step function. We may now obtain an average 

value for J(x) by integrating along the length of the box and 

dividing by L. Therefore 

<J(x» = 1. L 
A mn 

g (V - V ) 

J 
e(x - x )e(x - x)dx m n 

mn I!l n 

= ~ ~ g (V - V )(x - x ) 2n L mn m n n m 
mn 

Finally, since Gl(w) = <J>/E 

L 

. ~, 

G
1

(W) = __ 1 __ t g (V - V )(x - x ) 
2nE L ron m n n m 

mn 

(3.1.6) 

(3.1.7) 

Now consider eqn. (3.1.3). If we mUltiply each side by x and sum 
m 

over m we obtain, by symmetrising the right-hand side, 
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iw L C v x + C e-lU x = ~ L g (V - V )(x - x ) 
mmm m mm nm n m m n 

m mn 

. * Similarly by mUltiplying (3.1.3) by V we may write 
m 

iw L C V V* + e-lU C v* 
mmm mmm = ~ L g Iv - V 12 nm m n 

m mn 

(3.1.8) 

(3.1.9) 

According to eqn. (3.1.7) the real part of the left-hand side of 

eqn. (3.1.8) is Dl(W). Obviously, from eq~~ (3.1.8) therefore 

( ) = -iw \' C V x 
cr 1 W QE L m m m (3.1.10) 

m 

Similarly, using eqns. (3.1.4) and (3.1.9) 

(3.1.11) 

Since U = eEx eqns. (3.1.10) and (3.1.11) are identical and we see 
m m 

how the expression (3.1.4) for the real part of the conductivity is 

related to the rate equations. 

Eqn. (3.1.4) is· valid for all frequencies. The equivalent 

electrical network analogue of the hopping problem is not, however, 

the most fruitful approach to the study of ac conductivity. As 

we show in Chapter 8, eqn. (2.2.10) is a more convenient starting 

point in this case. In contrast, studies of the dc conductivity are 

almost entirely based on the network model. Since w - 0 we may 

eliminate the capacitances and voltage generators from the network 

to obtain the random resistance network model (RRNM). The voltage 

drop V is then real and we may write 
ron 

(] = (3.1.12) 
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where we have used the simpler notation 0 = 0 1(0). An analytical 

solution of the summation involved in eqn. (3.1.12) is obviously not 

possible for a realistic number of sites. We therefore approximate 

the summation in the manner described in" the next section. 

§3.2 Formal Expression of the DC Conductivity 

When n is sufficiently large 0 is independent of the particular 

configuration of the hopping system. The term "sufficiently large" 

means that the system is approaching the thermodynamics limit i.e. 

N ~ =, n ~ =, N /n = a constant. In this case we can confine our 
s s 

attention to the configuration average of eqn. (3.1.12). In the 

thermodynamic limit the configuration averaged conductivity <0> 

is equal to the actual conductivity of almost any realization of 

the system. Certain configurations (notably a" regular array of 

sites) can give infinite conductivities, but the measure of such 

systems goes to zero in the limit N ~ =, and so we need not concern 
s 

ourselves with these extraordinary contributions to <0>. To 

evaluate the average we suppose that the sites are independently and 

uniformly distributed over the volume n. We also suppose that E 
. ~ 

is independently distributed with a probability density p(e )n-l , 
m s 

where p(e) is the density of states and n is the site density. s 

Finally, we suppose that gmn depends only on the intersite separation 

r = r and the energies E and E. The c~nfiguration average of 
~ m n -

eqn. (3.1.12) then yields 

(3.2.1) 
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2 ' 2 where <VI2> is the average of Vl2 over all stochastic variables 

except e
l

, e2 and r. 

In all the hopping systems of interest the dependence of gl2 

on EI , E2 and r is dominated by exponential factors. It is therefore 

convenient to write 

. (3.2.2) 

where go is a constant and the entire functional dependence of.gl2 

is subsumed in the exponen"t s(E
I

,E
2
,r). As we show in Section 3.3, 

providing exp[-s] is rapidly varying in comparison with any other 

factors involved, the integrand in (3.2.1) has a sharp peak at 

= s • 
p 

The suggestion that the integrand is sharply 

peaked was originally made by Ambegaokar, Halperin and Langer (1971). 

They were the first authors to use the concept of "percolation" 

in the study of dc hopping conductivity. In Section 3.3, we will 

show why the RRNM shows perco1ative behaviour and how s is determined 
p 

by a classical percolation criterion. The quantity s is called the 
p 

"critical percolation exponent" and is defined as the least valtle of s 
o 

for which the conductances with s(E1 ,E2,r) < So form a connected 

infinite cluster. With this idea in mind we may find a simple 

.. 2 .. 
approxlmatlon to <V12> • we are concerned 

with a low conductance having a finite probability of belonging to 

an infinite cluster of conductances with the same or larger values. 

2 ' It follows that <V12> is dominated by the boundary condition that a 

uniform macroscopic electric field with magnitude E be present in the 

system. 2.. 2 2 
When r is very large <VI2 > = E r /3. On the other hand when 

s < s we are concerned with a high conductance having zero probability 
p 

of belonging to an infinite cluster of conductances with the same or 

larger magnitudes. The conductance must therefore belong to an 
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isolated cluster of high conductances and the current through it 

is determined by what is fed into the cluster from outside. We write 

12 for the mean square current flowing through g12. Then 

2" 2 2 2 <v12 > = r /g12. We use this form for all s < sp and choose r to . 

2 2 2 2 
be a function of El and E2 such that I /g12 = E r /3 on the critical 

percolation surface. Thus r2 = g2 exp(-2s )E2r2/3 where r is given o p p p 

by 

(3.2.3) 

When these approximations to <vi2>" are substituted into eqn. 

(3.2.1) we obtain the desired form for the dc hopping conductivity 

<cr> = cr exp[-s] 
p p 

(3.2.4) 

where the prefactor a is given by p 

r )del 'fp(ez)dez f z z -15-, 1 2'11' 
a = g - p(E r r e Pdr (3.2.5) p 031 a 

_OCI _00 _OCI 

wi th r = r for s > sand r = r for s < s • a pap p 

The fact that the conductivity may be written in the form ot 
eqn. (3.2.4) may be deduced from experimental data. The exponent 

s is the crucial term in determining the dependence of<a>on the 
p 

system parameters. As we shall see in late chapters, the effect 

of the prefactor, ap ' is qualitatively sma~l, but is obviously 

important in determining the absolute magnitude of the conductivity. 

Experimentally, however, the important quantity is the logarithmic 

conductivity. For this reason the prefactor· has ,not received as 

much attention in the literature as the exponent. Our derivation of 

a is necessarily crude, but two points are worth noting. Firstly, 
p 

our choice of <vi2>: while being somewhat arbitrary, only affects 
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the prefactor. Secondly, the three-dimensional integral involved 

in evaluating 0 must necessarily entail approximating the" integrand 
p 

if analytical results are desired. " 

We see from eqns. (3.2.4) and (3.2.5) that the evaluation of 

<0> relies on the determination of s - a crucial quantity in the 
p 

study of hopping conductivity. We have hinted that s is determined 
p 

by a percolation argument, and in the next section turn our attention 

to this assumption. 

§3.3 The Percolation Aspect of Hopping Conduction 

In this section we turn our attention to the calculation of 

s. Various approaches to the problem have been made (for a brief 
p 

review see Chapter 7). The most fruitful of these is the method 

originally introduced by Ambegaokar et al (1971), based on a 

percolation argument. The use of classical percolation theory in the 

semiclassical formalism of hopping conductivity is not an obvious 

one, and for this reason it will be discussed in some detail. 

We begin with a very brief review of classical percolationi 

and then show how considerations of the hopping problem give 

arguments formally equivalent to those of percolation. A full account 

of classical percolation theory is contained in a review by Shante 

and Kirkpatrick (197l). The purpose of percolation theory is to 

determine how a given set of sites, regularly or randomly positioned 

in ~ space, is interconnected. l~e suppose this set is infinite 

in one or more dimensions. To determine how these sites are connected 

we need the "bonding criterion" which specifies whether any two sites 

are connected (this criterion could involve more than two sites in 

general). The bonding criterion is a function of one or more "bonding 

parameters". Two sites belong to the same "cluster" if there is an 
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unbroken sequence of bonds from the first site to the second. For 

a given set of sites, percolation theory attempts to determine the 

distribution of cluster sizes as a function of the bonding criterion. 

In particular, as we see below, one would like to find the bonding 

criterion for which clusters of infinite size first form. It is 

convenient to divide the solution of the percolation problem into 

two main catagories (which are related), namely, site percolation 
, 

and bond percolation. In the site percolation problem all sites 

within same radius R of another site are bonded to this site. The 

percolation problem is to find the critical radius R at which an c 

infinite cluster of connected sites is formed. In the bond percolation 

problem a bond between any two sites is said to be present if the 

"bonding parameter" B is less than some value BO
• The percolation 

p p 
. 0 

problem is to find the critical value of the parameter B (defined 
p 

c as B ) .for which the connected sites just form an infinite cluster. 
p 

We will find that the problem of interest in the study' of hopping 

conduction is the bond percolation problem. We note in passing that 

the n-dimensional bond percolation problem may be viewed as a site 

percolation problem in an n + 1 dimensional space (Pike and Seager 

1974). In all cases the results of computer studies show that 

various system parameters depend primarily on the dimensionality of 

the system (Shante and Kirkpatrick 1971). One such parameter is the 

average number of bonds per site at the per~olation threshold, Np • 

With these ideas in oind, we turn our attention to the problem of 

calculating s. If we presuppose that the RRNM may be solved using 
p 

percolation techniques, we may identify the bonding parameter B with 
p 

the quantity s, and the quantity BC with s. It is then a trivial 
p p 

problem to calculate the average number of bonds (or conductances) per 
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site with s < s and equate this to N. Since N is known from p p p 

computer studies we will then obtain an equation for s • 
p 

We therefore 

need to show that the RRNM is formally equivalent to a percolation 

problem. To do this let us consider the integrand in eqn. (3.2.1). 

For small s we are concerned with high conductances which dissipate 

very little power. For s ~ 00 we are concerned with infinite conductances 

which again dissipate no power. The integrand therefore has at least 

one maximum at some value of s = s • c 
Two questions remain to be 

answered: firstly, is the integrand strongly peaked at s = s , and c 

secondly, how do we identify sc? Consider an arbitrary conductance, 

C, in the network (Figure 7). If C is very much larger than the 

surrounding conductances (Figure 7~ then the power dissipated is small 

and we may effectively put the conductance equal to infinity. On 

the other hand if C is very much smaller than the neighbouring con-

ductances, (Figure 7b), more power will be dissipated in the "by-pass" 

chains CB and we may put this conductance equal to zero. If we 

therefore consider the complete resistance network, we may remove 

conductances with s > S ,(where s is arbitrary) since these are o 0 

"by-passed" by high conductance chains. We can then lower the value 

of s until we cannot by-pass the lowest conductances in the network. 
o 

We call this value sp. Thus sp is the least value of So for which 

the conductances with s < So form a connected infinite cluster. We 

may therefore determine s from a percolation argument. Our 
p 

2 , 
approximation to the mean square voltage drop <VI2> , and the 

exponential nature of g12 mean that the integrand in (3.2.1) decays 

exponentially above and below s = s. \Je conclude, therefore, that 
p 

the assumptiornmade about the integrand in eqn. (3.2.1), namely 

that g12<vi2>"is peaked at s = sp' and that sp may be determined 

from a percolation argument, are valid. 



c 

(a) 

(b) 

c 

FIGURE 7 Limiting conductances in the equivalent conductance 

network. In (a) the conductance C is very large and 

is a "short circuit". In (b) the conductance C is 

very small and can be bypassed by chains of conductances 

CB• 
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We may readily obtain an approximate formula for s. As 
p 

discussed above, and in more detail in Shante and Kirkpatrick 1971, 

the average number N of bonds per site at the.perco1ation threshold 
p 

is determined primarily by the dimensionality of the percolation 

problem. Pike and Seager (1974) have determined N by collapsing 
p 

randomly located spheres. They find that N = 4.5, 2.7 and 2.1 in 
p 

2, 3 and 4 spatial dimensions respectively. Kurkijarvl (1974) finds 

N = 2.8 in 3 dimensions from a study of random conductance networks. p 

The dimensionality of the percolation problem is defined by the 

number of independent random variables required to characterise a 

site. When all sites have the same energy, the correct value of N 
p 

to use is that corresponding to the number of spatial dimensions. 

The introduction of site energies increases the dimensionality of 

the percolation problem - we may treat the energy as a fourth 

dimension. The energy independent case is a site percolation problem 

in 2 or 3 dimensions. Pike and Seager show how the introduction of 

an energy into the exponent can be viewed as giving rise to a 2 or 

3 dimensional bond percolation or a 3 or 4 dimensional site percolation 

system (corresponding to 2 or 3 spatial dimensions respectively). A 

full discussion concerning the appropriate values for N may be 
p 

found in Chapter 9. 

It is now a simple matter to find an expression for the average 

number of conductances with s < s per site at the percolation threshold. 
p 

The average number of conductances per unit volume with s < s is B 
P 

where 

s < S 
P 

(3.3.1) 

in which the factor of 2 prevents double counting. The range of 

integration is over all values of E1, E2 and r such that s < sp' 
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Similarly the average number of sites per unit volume which have a 

non-zero probability of belonging to the infinite cluster is 

S (3.3.2) 

s < S 
P 

The integration in eqn. (3.3.2) runs over the values of £1 for 

< s can be satisfied for some 
p 

choice of £2 and r. Sites with energies outside this range cannot 

possibly belong to the cluster and may be said to be automatically 

isolated. Since each conductance is connected to two sites the 

desired equation for s is 
p 

, '2B 
- = N 
S P 

(3.3.3) 

Eqns. (3.3.1), (3.3.2) and (3.3.3) are the final expressions used to 

evaluate s • 
p 

§3.4 The High Frequency and the High Density Limit 

Before moving on to evaluate 0(0) for a variety of models, we 

wish to discuss two limits where exact results are easily obtained, 

namely, the high frequency and the high density limits. We see from 

o -1 eqn. (2.3.4) that when w +~, G + - (iw) • Using this result and 
rom 

eqns. (2.3.3) and (2.2.10) we may readily deduce 

(3.4.l) 

where 0l{~) is the real part of the conductivity in the limit 

We note that eqn. (3.4.1) may be derived from (3.l.4) ,since in the 

limit w +~ , v + -Ex • 
m m Brenig et a1 (1971) show that 0l{w) is a 

~onotonic increasing function of w. Hence 0l{~) ~ OleO). In 

highly random systems 01{~) » 0 1(0) (Butcher and Morys 1973; 

Mott and Davis 1971; Butcher 1976). The equality 01{~) = 01(0) 
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can only be valid in special circumstances because it implies 

that 0l(W) is independent of w. Now consider a random system, and 

allow the spatial density of sites.to approach infinity. In this 

high density or continuum limit, V = -E(x - x ) for all w so 
IIUl m n 

that 0l(w) = 01(~). Hence Of 0) = 0
1 
(~) in a high density system. 

Substituting V = ex into (3.2.1) gives m m 

We see that this result can be obtained from eqns. (3.2.4) and (3.2.5) 

by putting s = o. p 
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CHAPTER 4 - NON-DEGENERATE HOPPING· IN VERY NARROl-l ENERGY BANDS 

§4.1 Analytical ·Formu1ae 

In this chapter we evaluate the expressions for s and a for 
p p 

a particularly simple model in which all the energies of the localised 

states are very nearly the same. The theoretical predictions are 

compared with experimental and computational data. 

To proceed we need an expression for the thermal equilibrium 

o hopping rate R12 • A discussion of the transition rates. which are 

fundamental to the study of hopping conductivity. may be found in 

Appendix 3. We find when e: 2 > e: l 

(4.1.1) 

where 

p(r) = 2ar - vlnar (4.1.2) 

R is a hop rate characteristic of the system under consideration. 
o 

The exponential term involving the site separation r, arises from 

the overlap of the localized states, where the decay constant is a. 

The parameter v arises from consideration of the overlap integral 

(Miller and Abrahams 1960). When the conduction band has n 

ellipsoidal valleys with ellipticity parameter n = (m1/mt ) -1, 

they find that v = 2 when n = 0 and v = 3/2 when n »1. Finally, 

the energy dependent contribution arises from the Bose-Einstein 

distribution of phonons involved in the inelastic transition. 

When eqn. (4.1.1) 1S substituted into (3.1.2) we find that g12 

takes the form (3.2.2) with 

(4.1.3) 
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and 

(4.1.4) 

where 

(4.1.5) 

in which the energies are measured from the chemical potential plus 

We now suppose that the density of states is a sharply peaked 

function with a width much less than kBT. In this case the hops 

are nearly elastic and q(E 1,E2) in eqn. (4.1.5) may be treated as a 

constant. To be specific we suppose that the Fermi level lies well 

away from the energy band. Then exp[-q(El,E2~= 2 exp[-B€3] where 

E3 is the conventional notation for the activation energy from the 

chemical potential to the energy band and the factor of 2 arises 

from the spin degeneracy term, kBTln2. Since q(E
l

,E
2

) is not a 

stochastic variable in the model under discussion it is convenient 

to absorb it in the characteristic conductance g. We therefore 
o 

replace g by 
o 

(4.1.6) 

We may then replace q(E 1 ,E 2) by 0 in eqn. (4.1.5) and s then reduces 

simply to per). 

To calculate sp we replace P(E) by nso(E - E
B

) in (3.3.1) and 

(3.3.2h where ns is the site density and EB is the energy at the 

centre of the band. Then eqn. (3.3.1) gives 2B = n24n(r3 _ r~3) 
s p p 

where r and r~ are respectively the larger and smaller of the p p 

two roots of the equation 

s = per ) p p (4.1.7) 
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When v = 0 r~ = 0, and we may verify that for all values of v of p 

interest to us (v ~ 2) r~ remains negligible compared to r • 
p p 

Eqn. (3.3.l) for S gives S = n since no sites are automatically 
s 

isolated. Hence, using eqn. (3.3.3), 

4 'IT 3 
ns -3 r p 

= N 
p 

(4.1.8) 

To calculate 0p from eqn. (3.2.5) we replace go by ga' the 

densities of states by a-functions and s by per). To evaluate the 

remaining integral over r we suppose that n is small. Then s s p 

and r are large and the dominant contribution to the integral comes 
p 

from the neighbourhood of r. We therefore approximate r2r2 by 
p a 

r 4 and per) by per } + p~(r }(r - r ) and extend the lower limit of p p p p 

integration to _me We then obtain the low density approximation 

o = g 43'IT r4/p~(r } (4.1.9) 
pap p 

where p~(r } = 2a - v/r ::: 2a at low densities. We see from (4.1.2) p p. 
v 

and (4.1.7) that exp[-s J = (ar) exp[-2ar J. The slowly-varying p p p 

quantity (ar }v is best taken out of the exponential and absorbed 
p 

in the conductivity prefactor. Then the final low-density formulae 

for <0> obtained from (3.2.4), (4.1.8) and (4.l.9) is 

3N2 
n v-2 <0> = ~8 (g a) (ar ) exp[ -2ar ] 'IT a p p (4.1.10) 

where 

r = (3N /4nn }1/3 
p p s (4.1.11) 

In applying eqn. (4.1.10) to the interpretation of experimental 

data it is convenient to write 

o = <0> 
V (4.1.l2) 
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Since ga contains the activation factor exp[-SE3J, we see that a 

-1/3 plot of log 0v against ans should be a straight line. 

§4.2 Comparison with Computer Data 

The formulae developed in the previous section are applicable 

to the analysis of activated hopping, observed in a variety of low 

density systems. Before we analyse experimental data, however, we 

wish to investigate the validity of the approximations used to 

evaluate the expressions for <0>. A number of authors have evaluated 

eqn. (3.1.4) using a computer (Seager and Pike 1974; Butcher, Hayden 

and McInnes 1977; Butcher and McInnes 1978). The general method is 

to distribute a number of sites randomly in a two- or three-dimensional 

space. The resulting conductances in the RRNM can be calculated 

using eqn. (3.2.2). The quantity g is an arbitrary scaling factor o 

in the system. The voltages V are then minimized, subject to the 
ron 

boundary condition that a voltage is applied across the system. The 

conductivity is then evaluated using eqn. (3.1.4). We refer to 

conductivities determined in this way as 'computer generated data~ 

We begin by comparing with the three-dimensional data of Seager 

and Pike (1974). The straight line in Figure 8 shows log °3/2 calculated 

from eqn. (4.1.12) with N = 2.7 for the parameter values v = 3/2t 
p 

ga = .14Sn-l and a-I = 1.Snm. The dots are derived from Figure 4 of 

Seager and Pike. They were calculated by numerical solution of Kirchhoff's 

equations for a random conductance network having the above parameter 

values. It should be noted in this connection that in eqn. (1) of 

Seager and Pike (1974): G = 0.14S(ar)3/2n-l (private communication). 
o 

The agreement between our simple analytical formula and the computed 

points is remarkably good. It should be emphasised that no parameters 
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have been adjusted. Further tests of the theory using computational 

data have recently been undertaken (Butcher, Hayden and McInnes 1977; 

Butcher and McInnes 1978). This work investig~tes the accuracy of 

the analytical formula in 2-and 3-dimensions and for high, intermediate 

and low site densities. In all cases the model is simplified by 

v dropping the (ar) factor from the conductances. The conductivity 

is given by eqns. (3.2.4) and (3.2.5) where s = 2ar and p p 

(4.2.1) 

The evaluation of the integral involved in the prefactor is elementary 

but tedious and we find that (Butcher and McInnes 1978) 

t
3N -j 2 

C1 = (g a) ~ ----E- H 
P a 6 4nR3 

p 

(4.2.2) 

where R = ar and 
p p 

H = 3 + 6R + 7R2 + 2R3 + 4R4 - R2 exp[-2R ] p p p p p p (4.2.3) 

For low densities (n + 0) H + 4R4 whil; for high densities (n +~) s p s 

H + 3 and exp[-2R ] = 1. The points in Figure 9 show conductivities 
p 

calculated by numerical solution of Kirchhoff's equations (Butcher and 

McInnes 1978). The full curve is calculated from eqns. (4.2.1) and 

(4.2.2) with Np = 2.7. The upper and lower dashed curves show the 

high and low density approximations respectively. The full curve is 

in excellent agreement with the calculated points over the full range 

of an -1/3 considered~ This is sufficient to cover the region eXhibiting s 
-1/3 high density behaviour (an < 1.5), low density behaviour s 

-1/3 
(ans > 3.5) and the transition region between these two regimes. 

The lowest four computed points appear to be falling off rather less 

steeply than the analytical curve which suggests that N should be 
p 
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reduced by about 10%. A full discussion of the appropriate values 

of N is to be found in Chapter 9 and will not be discussed in detail 
p 

here. 

Computational studies have also been made for a two-dimensional 

system. The anruytical formula for this model is obtained from (3.2.4) 

and (3.2.5) by setting peE) = O(E - EB)n
S

' s = 2ar and replacing 2nr2/3 

by nr/2. Without any further approximations we find that 

-s n 2 
o = e p - g n 

2 0 s 

o 
J
~ -12ar-s I 
rr e p dr 

a 
(4.2.4) 

The integral in eqn. (4.2.4) is elementary. Moreover, s is determined 
p 

by the two-dimensional analogue of eqn. (4.1.8) for this model, namely: 

2 sp = 2ar and n nr = N. The classical percolation calculations of 
p s P p 

Pike and Seager (1974) give Np = 4.49. Thus we obtain the full curve 

in Figure 10 which is in excellent agreement with the computed points 

for all values of an -! investigated. The upper dashed curve in Figure s 

lOis the high density approximation <0> = 3ng n2/16a4 obtained by 
o s 

setting s = 0 in (4.2.4). We see that it is valid for an -! < 1. 
p s 

The lower dashed curve in Figure lOis the low density approximation 

2 3 
<0> = ng n (r /2a) exp[-2ar ] 

o s p p 
(4.2.5) 

2 3 
obtained from eqn. (4.2.4) by putting rr = r and extending the lower 

a p 

limit of integration to -~. We see that it is a very good approximation 

for an ~l > 2.5. The agreement with the computed points may be improved s 

still further by decreasing N slightly. A least squares fit to the 
p 

lowest five points gives Np = 4.30 ± .07. 

We see from a comparison with computer data that the approximate 

theory given in Section (4.1) is surprisingly accurate. We therefore 
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feel justified in applying the formulae developed above to cases where 

our knowledge of the system and the system parameters is not so well 

advanced. This we do in the next section. 

§4.3 Comparison of the Analytical Formulae with Data for Three­

Dimensional Systems 

In this section we wish to use the formulae developed in 

2.1. to analyse experimental data. In particular, the formulae should 

be applicable to the case of impurity conduction in crystalline semi-

conductors. As outlined in the introduction, at sufficiently low 

temperatures, the predominant transport process in this system is 

hopping conduction due to the localised impurity states. If we 

assume that the bandwidth of the impurity band is much less than kBT, 

then the formulae developed in this chapter may be used to analyse 

the data. 

The characteristic hop rate Ro has been calculated by Miller and 

Abrahams (1960) for impurity conduction in crystalline semiconductors. 

They find that for a semiconductor whose conduction band has n minima 

(4.3.1) 

where El , Po' Vs are the deformation potential, density and velocity 

of sound respectively. 

The continuous straight line in Figure II shows 10g03/2 calculated 

from eqn. (4.1.12) with Np = 2.7 and parameter values appropriate to 

n-type germanium. Thus we take v = 3/2, a-I = 7nmand calculate 

ga exp[S€3] = 2go from (4.3.1) and (4.1.3) with El = 11.4 eV, 



o 

-1 

-2 

bM-N 

Ol 
o -3 

.-J 

-4 

-5 

" \ 
" " \ , 

\ 

" \ 
0, 

" \ , 
\ , , 

I\) , 
\ 

\ 
'0 

\ 
\ , 

\ 

" 0-, 
\ , 

-6~--~----~--~~--~----L---~----~ 

FIGURE 

6 7 8 9 10 11 12 13 

1 
o:n~ 

5 

. -1/3 
11 Plot of log 03/2 aga~nst ans where 03/2 

-1 -1 
with <0> in n m • Dots: data for n-type germanium from 

Fritzsche (1958). Full line: calculated from (4.1.12) 

with N = 2.7 and parameter values appropriate to n-type p 

germanium. 



34 

Vs = 4.92 x 103ms-l, Po = 5.5 x 103kgm-3 £ = 15.8, n = 18.8 and 

n = 4 (Miller and Abrahams 1960). The dots in Figure II are calculated 

from (4.1.12) using the experimental da~a on ns' <0> and £3 reported 

by Fritzsche (1958) for antimony doped germanium at 2.5 K. The 

compensation ratio for all samples is less than 0.06. By confining 

our attention to samples with donor concentrations less than 

8.5 x 102lm-3 we may expect the observed conductivity to be dominated 

by a non-degenerate distribution of holes hopping in a narrow band 

of completely localized states (Shklovskii 1973). The dashed line 

through the experimental points is within about an order of magnitude 

of the continuous theoretical line, but has a considerably steeper 

slope. This discrepancy is hard to understand because the magnitude 

of the theoretical slope 

adjustable parameters. 

is 0.868 (3N /4~)l/3 which contains no 
p 

In Figure 12 we make a similar comparison of the theoretical 

predictions with experimental data for gallium doped germanium at 

1.25 K reported by Fritzsche and Cuevas (1960). Since there are no 

p~b1ished theoretical expressions for the thermal equilibrium hopping 

rate between acceptors we use (4.1.1), (4.1.2) and (4.3.1) with 

n = 1 and v = 2. The continuous straight line in Figure 12 shows 

log 02 calculated from eqn. (4.1.12) with N - 2.7, a- l 
= 8.7 nm 

(Kohn 1957) and El = 3.1 eVe The value assumed for E1 is 2/3 of 

that given by Reggiani (1976) because Reggiani and co-workers 

use a deformation potential 3/2 larger than Miller and Abrahams 

(Costato et a1 1974). The dashed straight line through the experi-

mental points has a slope close to the theoretical value and an 

intercept which is only an order of magnitude below that predicted. 

The agreement is surprisingly good. Our treatment of the hopping 

rate in p-type material has been superficial and we have not adjusted 

any parameters. The acceptor density in the experimental samples is 
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small enough to ensure complete localization. However, the compensation 

ratio means that our assumption that the impurity bandwidth is negligible 

is a poor one. 

Finally in this section we discuss some more recent experimental 

data. Le Comber, Jones and Spear (1977) have recently succeeded in 

doping amorphous silicon with phosphorus. In Figure13.we show the 

experimentally determined values of hopping conductivity as functions 

of doping concentration. In this system we do not know a, the decay 

constant of the localized wave function, or go' the characteristic 

conductance in the equivalent random resistance model. We therefore 

proceed by fitting a straight line to the experimental points, and 

deduce a and g .from the slope and intercept respectively. The full o 

line in Figure l3is such a fit. From it we deduce a-I = 1.7 nm. 

This value for a is a reasonable one, but there have been no theoretical 

or experimental values quoted for amorphous silicon. However, for 

h ' II' 'I' -1 the case of phosp orus 1n crysta 1ne S1 1con, a = 2.1 nm. The 

value of go obtained is 0.7 mS, but again there are no published 

theoretical or experimental values for amorphous silicon. We may, 

however, make an order of magnitude estimate as follows: we use the 

parameter values appropriate to crystalline silicon to determine Ro 

using eqn. (4.3.1), and hence go from (4.1.3). It does not seem 

appropriate to carryover concepts such as number of band minima and 

ellipticity to the amorphous case. We therefore assume the conduction 

band has one spherically symmetric conduction band and use parameter 

-1 4 -3 values El = 6 eV, a = 2.1 nm, € = 11.7, Po = 2.3 x 10 kgm 

3 -1 
v = 9 x 10 ms ,n = 1, v = 2. With these values we obtain g = 1.3 mS, s 0 

which is very close to the values of 0.7 mS deduced from the data. 
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§4.4 Discussion 

In this chapter we have developed the gen~ral formulae given in 

Chapter 3 for the simple case where the resistances in the RRNM depend 

only on the site separation. The resulting formulae are then parti­

cularly simple. Our results are compared with alternative formulae 

in Chapter 7. Detailed comparison with computer generated data in Section 

4.2 shows that the methods of approximation involved in the derivation 

of the analytical formulae are valid. The model of non-degenerate 

hopping in a narrow energy band is a very crude one for the interpretation 

of activated hopping data obtained from the study of impurity conduction 

in crystalline and amorphous semiconductors. Nevertheless, the agree­

ment between the analytical formulae and the experimental data in the 

case of crystalline germanium is reasonably good. One might hope to 

remove the discrepancies by closer attention to the detailed assumptions 

made in the calculations concerning the statistics, transition rates, 

densities of states and parameter values. The application of the 

formulae to the analysis of impurity conduction in amorphous silicon 

yields values of a and go which are close to the crystalline values. 
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CHAPTER 5 - DEGENERATE HOPPING IN VERY WIDE ENERGY BANDS 

§5.1 Formulae for Hopping in Wide Bands 

In the previous chapter we developed approximate analytical formulae for 

the dc hopping conductivity of systems in which the energies of the localized 

electrons are distributed over a very small range. In this case the 

integrals are easy to evaluate. We now wish to turn our attention to 

the more interesting case of degenerate hopping in a wide band of localized 

states. The integrals are then more complicated but an approximate 

analytical evaluation of them is still possible. We shall be interested 

in both two- and three-dimensional systems. The derivation of the 

relevant formula in this chapter is for three-dimensions unless other-

wise indicated. 

The behaviour of <0> depends on the form of the density of states. 

To be definite and to keep the analysis as simple as possible, we suppose 

that peE) has a constant value PF• Then peel) and p(E
2

) may be taken 

outside the integrals involved in eqns. (3.2.5), (3.3.1), (3.3.2). 

The evaluation of 2B in eqn. (3.3.1) is facilitated by introducing 

q = q(€l'€2) as a new variable of integration. Let us write A(q) for 

the area of the (€1'€2)-plane for which q(€l'€2) < q. We see from 

eqn. (4.1.5) that q(E l ,E 2) has a minimum value of ln4 which henceforth 

we denote by q. Thus A(q) = 0 for q < q. Moreover we see from m m 

(4.1.4) that s < s implies that r" < r < r where r and r" are p p p p p 

respectively the larger and smaller roots of the equation 

per) + q = s i.e. m p 

p(r") + q = per ) + q = s 
p m p m p (5.1.1) 

It follows that eqn. (3.3.1) may be written in the form 
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(5.1.2) 

I 

In the second line we have integrated by parts and used (4.1.2). 

We may use the same approach to simplify eqn. (3.2.5) for a • 
p 

For low temperatures and densities the dominant contribution to the 

integral comes from the neighbourhood of the critical percolation surface 

s = s. We may, therefore, appproximate ra by r throughout the integrand. 
p 

~ben q = q(€1'€2) is introduced as a new variable of integration, we 

note that the area of the (€1'€2)-p1ane between the contours q(x,y) = q 

and q(x,y) = q + dq is A~(q)dq. Hence 

exp[- Is - q - per) IJdq 
p 

(5.1.3) 

Now, the exponential in eqn. (5.1.3) reaches its maximum value of unity 

when q = s - p(r). Moreover, we see from eqn. (5.1.1), that 
p 

s - p(r) > q provided that r' < r < r. We ignore contributions to p m p p 

the integral from values of r outside this range and approximate the 

contribution from values of r in this range by putting q.= sp - per) 

in A'(q) and extending the lower limit of the q-integration to -~. 

Thus we obtain 

(5.1.4) 

To complete the evaluation of the integrals (5.1.2) and (5.1.4) 

we must approximate A(q). A preliminary study of the integrals shows 
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that we are primarily concerned with large values of q at low densities 

and low temperatures. For this case we find, by considering eqn. 

(4.1.5), that a crude approximation to the cont.our q(E l ,E 2) = q is pro­

vided by the polygon of straight lines drawn in Figure 14. We have 

given the coordinates of three points in the diagram. The remaining 

points follow from the obvious symmetry of the polygon. The dashed 

polygon in Figure 14 shows the cruder approximation to t"he contour which. 

is obtained when q(El,E Z) is replaced by ~~IEll + IEzl + IE1 - Ezl] as 

is frequently done to simplify the integrals arising in hopping conductivity 

problems (Ambegaokar et al 1971, Butcher and Morys 1973, Butcher 1976 a, b). 

Neglecting contributions from the small shaded triangles we have 

(5.1.5) 

where the term involving 3q2 is the contribution from within the 

dashed polygon. 

When eqn. (5.1.5) is substituted into (5.1.2) and (5.1.4) we find 

that the integrals are, with one exception, elementary. An adequate 

approximation to this exception is easily obtained. The final expressions 

are unwieldy and have been relegated to Appendix 1. The terms involving 

r' are always negligible in the cases we consider. Consequently, the p 

integrals in (5.1.2) and (5.1.4) may be written in the forms 

(kBT)2a-3J (R) and (kBT)2a-5K(R ) respectively, where R = ar and 
p p p P 

J(R ) and K(R ) have the non-dimensional forms given in Appendix 1. 
p P 

It is also convenient to write 

(5.1. 6) 

the significance of which is discussed below. Then eqns. (5.1.2) and 

(5.1. 4) become 
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g aK(R ) 
o P 

(5.1.7) 

(5.1.8) 

The calculations are completed by considering the integral S' 

in (3.3.2) Using (4.1.4) we see that s < sp implies that q(E l ,E2) < sp - Pm 

where p = vln(2a/v) is the minimum value of per) derived from eqn. (4.1.2). 
m 

Inspection of the polygon of full lines in Figure 14 shows that we must 

therefore keep IEll < kBTlsp - Pm - In(sp - Pm)' to avoid automatic 

isolation of site number 1. Hence (3.3.2) reduces to 

S' = 2p k T[s - p - In(s - p )] 
F B P m P m 

and eqn. (3.3.3) for s becomes 
p 

J(Rp) 
= --------~~~------s - p - In(s - Pm) 

P m P 

where we have used (5.1.7). We may also express s in terms of 
p 

(5.1.9) 

(5.1.10) 

R - Clr in (5.1.10)., \ve use (4.1.2) and (5.1.1) to obtain the equation 
p p 

s 
p 

= 2R 
P 

We have now assembled all the equations required for the 

(5.1.11) 

calculation of <0>. The direct route to the calculation would be to 

fix R ,solve (5.1.10) and (5.1.11) for sand R and evaluate 0 po p p p 

from (5.1.8). Fortunately this complicated procedure may be avoided by 

using a different route. We fix R , calculate s from (5.1.11), R p p po 

from (5.1.10) and then evaluate 0 using (5.1.8).' There are no equations 
p 

to be solved, only explicit expressions to be evaluated. The end 

result is the same: <0> as a function of Rpo' 
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The physical significance of R is easily found. We see from po 

(5.1.11) that R is the maximum possible hopping range on the 
p 

... -1 critical percolation surface 1n un1ts of a • .Rpo is the same 

quantity for the simpler case when v = a and q(£1'£2) = is[/£l/ 

To verify this we note that p = q = a and m m 

s = 2R from equation (5.1.11). Moreover the logarithmic term is 
p p 

missing from (5.1.5) and inspection of the equations in Appendix 1 

shows J(R ) reduces to 6R5/5. Hence eqn. (5.1.10) yields R = R • 
P P P po 

The equations describing a two-dimensional system are readily found. 

We find that 4nr3/3 is replaced by nr2 in (5.1.2) and 4nr4/3 is 

replaced by nr3 in (5.1.4). Moreover, the integrals involved in these 

2 -2 2 -4 equations may be written in the forms (kBT) a J(Rp) and (kBT) a K(Rp) , 

respectively where J(Rp) and K(Rp) have the non-dimensional forms 

given in Appendix 1. In the case when v = a and 

the critical percolation surface reduces to 

(5.1.12) 

Consequently, in eqns. (5.1.7) and (5.1.8) the factors ION /3R4 
p po 

and 25N
2

(g a)/3nR
8 

are replaced by 2N /R3 and 4N2g /nR6 respectively. p 0 po p po p 0 po 

Eqns. (5.1.9) and (5.1.11) are unaltered and the factor of 3/5 in 

eqn. (5.1.10) is replaced by unity. 

§5.2 Comparison with Computer Data 

To assess the validity of the approximate formulae derived in 

Section 5.1 we compare the values of <0> which they yield with 

values obtained by direct numerical solution of Kirchhoff's equations 

for a random resistance network. Two such numerical studies have 
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been performed: Seager and Pike (1974) and McInnes (Butcher, Hayden 

and McInnes 1977; Butcher and McInnes 1978; McInnes and Butcher 1978). 

We begin by considering the data of Seager and Pike (1974), who have 

made such calculations for models of the" type described here in both 

and three dimensions with v = 3/2, a-I = 1.5 nm and g = 581 mS. 
o two 

In Figure15 we compare their computed points for a two-dimensional system 

18 -2 -1 with PF = 10 m eV with the curve for the same system calculated 

from the analytical formulae with N = 2.7. The conductivity values p 

published by Seager and Pike (1974) have been scaled up by a factor 

of '5 x 10-5 , 1d 1 d' S' (S d P'k y to y~e resu ts measure ~n ~emens eager an ~ e, 

private communication). The agreement is excellent over most of the 

temperature range. The falling away of the computed points at the 

high temperature end is due to the finite bandwidth assumed by Seager 

and Pike. The departures of the computed points from the analytical 

line at the low temperature end may reflect inaccuracies in the 

iterative technique used to solve Kirchhoff's equations which converges 

more slowly at low temperatures (McInnes, private communication). 

To investigate these discrepancies McInnes and Butcher (1978) 

have repeated the calculation using many more sites. In Figure 16 

we show the result of their calculations together with the theoretical 

prediction made using the analytical formulae with a-I = 5 nm, 

18 -2 -1 
PF=lO m eV in a bandwidth W =,10 meV symmetrically distributed 

about the Fermi level, and N = 2.7. The full line is the curve 
p 

calculated from the analytical formulae. The points are those found 

computationally by McInnes and Butcher (1978). We see that at low 

temperatures the theoretical and computational points are in excellent 

agreement. At the high temperature end the effect of the finite 

bandwidth is clearly visible. For very high temperatures our formulae 

fail since the reduced bandwidth W/kBT ~ 0 in the computational work. 

In the infinite temperature limit, we therefore go over to the case 
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discussed in the previous chapter, namely hopping in a very narrow 

band. The theoretical prediction for the value of the conductivity 

obtained using these system parameters in the l~mit T ~ = is marked 

on the graph by a square. We see that the computer points tend very 

nearly to this point. We conclude therefore that the approximate 

formulae developed in the previous section accurately model the 

behaviour of <0> in the two-dimensional case. 

In Figure 17we compare the computed points calculated by Seager 

and Pike (1974) for three-dimensional systems with P
F 

= 10
27

, 1026 

and 1025m-3eV-1 with the curves for the same system calculated from 

the analytical formulae with Np = 2.1. 

27 -3 -1 PF = 10 m eV and excellent for PF -

The agreement is fair for 

26 -3 -1 10 m eV but the computed 

25 -3 -1 points for PF = 10 m eV are about an order of magnitude above 

the analytical curve. This behaviour is surprising since the analysis 

in Section 5.1 is adapted to the low density case and the agreement 

with the computed points would be expected to improve as PF decreases. 

To investigate whether this discrepancy is due to premature termination 

of the iterative solution of Kirchhoff's equations (McInnes, private 

communication), McInnes and Butcher (1978) have repeated the low density 

calculations using the same system parameters as Seager and Pike. The 

results are shown in Figure 1~ The dots are the computational values 

found by McInnes and Butcher (1978), while the full line is the curve 

calculated from the analytical formulae. We see that throughout the 

temperature range the agreement is very good. For very high temperatures 

the computer points again tend to the narrow band limit indicated on 

the ordinate by a square. 

§5.3 Universal Curves and Comparison with Experimental Data for 

Three-Dimensional Systems 

The degree of agreement between the analytical formulae developed 
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FIGURE 17 DC conductivity for a three-dimensional system for the 

. -3 -1 values of PF shown lon m eV • Points: from Figure 6 

of Seager and Pike (1974). Continuous lines: calculated 

from the analytical formulae for the same parameter values 

wi th l{p = 2.1. 
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FIGURE 18 The dc conductivity of a three-dimensional system with 

10
25 -3 V-1 Pr= me. Dots: values found computationally 

by McInnes and Butcher. Full lines: curve calculated 

from the analytical formulae with Np = 2.1. 
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in this chapter and the computer data as shown in Section 5.2, 

enables one to analyse experimental data with some confidence. 

Before we turn our attention to this data, how~ver, it is useful to 

discuss some general properties of the formulae developed above. 

For values of R in the experimentally accessable range (5to 30), 
p 

several of the terms contributing to J(R ) and K(R ) are of the same 
p p 

order of magnitude and no satisfactory approximation scbeme suggests 

itself. Fortunately, when all the terms are retained, the relation-

ship between Rand R calculated from eqns. (5.1.10) and (5.1.11) p po 

has a very simple form. The result for v = 2 is shown in Figure19. 

For R in the range 10 to 30 we have R = (0.98R - 1.16) po p po 

to a good approximation. The constant term in this relation is 

particularly significant for the absolute magnitude of <a> because, 

as is seen from eqn. (5.1.11) it appears doubled in the exponent s • 
p 

For R < 10, R rises above the values predicted by this simple po p 

linear relationship, but the analytical formulae are also becoming 

inaccurate. The relationship between Rand R for v = 3/2 and p po 

o in three dimensions and for v = 0, 3/2 and 2 in two dimensions is 

qualitatively the same. We show the corresponding values for M 

and C in Table 1, where M and C are defined by R = MR + C. In 
p po 

Figure 20, log <a/ac> is plotted against R for v = 3/2 (full po 

curve labelled w = 0) and v = 2 (dashed curve labelled w = 0) where 

ac = 5N
2

g a/6~ is a convenient unit of conductivity. The curves p 0 

are very nearly linear i.e. log <0> is approximately linear in 

-1 as we would (Arnbegaokar et al 1971). T expect The dotted curve 

labelled w = 0 shows log <a/a > for v = 2 plotted against R instead 
c p 

of Rpo' It serves to indicate the error involved in ignoring the 

differences between Rand R which is about an order of magnitude. p po 

The dash-dot curve labelled w = w in Figure 20 shows log «a(w»/a ) 
c 
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FIGURE 19 Plot of R against R for a three-dimensional model with 
p po 

v = 3/2. 



DIMENSIONS \I M C 

2 .98 -1.16 

3D 3/2 .98 -1.19 

0 .99 - .96 

2 .98 -1.28 

2D 3/2 .98 -1.26 

0 .99 -1.05 

TABLE 1 Parameters in the approximate linear relationship 

R = MR + C. 
P po 
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system where cr = 5N
2
g a/6n, with N = 2.1. Full line: cpo p 

v = 3/2. Dashed line: v = 2. Dotted line: plot of log 

«cr>/cr) against R for v - 3/2. Dash-dot curve: plot of 
C p 

log «crl(=»/crc) against Rpo for v = 2. The short 

straight lines show a fit of Allen and Adkins (1972) data 

to the theoretical v = 3/2 line. The symbols on the v = 2 

theoretical line indicate the limit of the amorphous 

germanium data listed in Table 2. 
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for v = 2 as a function of R where 01(00) is the limiting value of po 

the real part of the ac conductivity when W~OO. We point out in Section 3.4 

that 01 (co) may be calculated from eqns •. (3.2.4). and (3.2.5) by setting 

s equal to the minimum value of s. The resulting integral is evaluated 
p 

in Appendix 1. We find that 

(5.3.1) 

The numerical coefficent of R-8 in (5.3.1) is 185 for v = 2 (the po 

case plotted) and 105 for v = 3/2. We see that the <a 1 (co» curve touches 

the dashed dc curve for v = 2 at R "" 4. po This simple observation 

serves to enhance our confidence in the dc curves for values of R po 

greater than 4 or 5. As discussed in Chapter 3, <a> becomes identical 

to <al(co» in a high density (low R ) system. Thus a complete plot po 

of log «o>/a ) for v = 2 valid for all R , would start on the dashed c po 

w = 0 curve for large values of R and go smoothly over to the dash-dot po 

w = co curve for R < 4. po 

The results presented in Figures 17 and 18 show that the analytic 

formula for <a> provides a good approximation to the dc conductivity 

of a three-dimensional system in the T-! regime. It remains to test 

the model (and the rate equation formalism) against experimental data. 

Allen and Adkins (1972) have measured the dc conductivity of heavily doped 

n-type germanium crystals at temperatures low enough for T- I behaviour 

to be observed. If we ignore any effects due to the heavy doping, 

then all the parameters of the system', with the exception of PF, may 

be identified with the well-known values for n-type germanium. 

We may also use the expression for the characteristic frequency R , 
o 

calculated by Miller and Abrahams (1960) which is given by eqn. (4.3.1). 

Since R is proportional to T, the characteristic conductance g = e2SR 
o 0 0 
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is independent of T. 

discussing Ti data. 

We therefore use g rather than R when 
o 0 

Using the parameter values given in Chapter 4, 

it is found that v = 3/2, a-I = 7 nm and g = 1.3 mS. The two o . 

straightline segments in Figure 20 show the data of Allen and Adkins 

(1972) for samples A2 (higher conductivity plot) and A3 (lower 

conductivity 

N = 2.1 and 
p 

plot), plotted using these 

26 -3 -1 
PF = 2.9 x 10 m eV and 

parameter values with 

25 -3 ~l . 5.3 x 10 m eV respect1vely. 

These values of PF were chosen so that the slopes of the experimental 

data lines are the same as the v = 3/2 theoretical line. The absolute 

locations of the experimental data lines of Figure 20 are then completely 

determined. We see that they lie about a factor of 4 on either side 

of the theoretical curve. In making this comparison between theory 

and experiment we have adjusted only one parameter: PF• The 

numerical comparison becomes easier to make if we adjust both PF and 

g so as to put both the experimental data lines precisely on the 
o 

theoretical line. The values required to give this fit are shown in 

Table 2. The values of PF differ little from those quoted above and 

the go values are about a factor of four above and below the predicted 

value of 1.3 mS. 

We see that the experimental data for samples A2 and A3 lies 

at the extreme end of the region of R for which Tl behaviour is po 

expected. For lower values of R we would be concerned with a high po 

density system for which <0> is given more appropriately by eqn. (5.3.1). 

Allen and Adkins (1972) give data for another sample (AI) with a 

higher conductivity which apparently exhibited Ti behaviour. It is not 

surprising that we were unable to achieve any satisfactory agreement 

between the data for this sample and the extrapolated low density 

theoretical curve for any value of PF when go ~ 1.3 mS. Adjustment 

of PF to match the slope of the experimental data line and the low 

density theoretical curve places the experimental data line about 2 



Source Sample identification 
(mS) 

8 . 8 x 10
23 

82 Agarwal , Gutta and TA = 3500 C 
Narasimhan (1975) (lowest conductivity) 

1. 7 x 10
24 

89 Chopra and Bah1 (1 970) Fig . 9 

2.3 x 10
24 

0.53 Arizumi, Yosh ida , Baba Fi g . 1 annealed 
Shimakawa and Nitta 
(1974) 

2.6 x 1023 54 Hauser and Staudinger Ge NO .7 annealed 
(1 973) 

1.5 x 10
24 

190 Gilbert and Adkins (1976) Fig . 4 

5.4 x 10
25 

5 . 4 Allen and Adkins (1972) A3 

3 . 1 x 1026 0 . 3 Allen and Adkins (1972) A2 

TABLE 2 Value s of P
F 

and go derived from three-dimensional experiment a l 

data . The first four cases are f or evaporated films of 

amorphous germanium with v = 2 . The l ast two cases are for 

. . , h 3 n-type crystall~ne german~um w~t v = 2' 

< 
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orders of magnitude below the theory line. Allen and Adkins fit their 

data for all samples using a similar exponent to that used here and 

-1 
making a variety of assumptions about the prefa~tor, a and the 

dielectric constant. Their best estimates of PF for samples A2 and 

A3 are quite close to those in Table 2, but were obtained on the 

assumption that the dielectric constant is considerably enhanced over 

the·value for pure germanium. 

Extensive experimental studies of evaporated films of amorphous 

germanium show that the dc conductivity has a Ti behaviour. This is 

usually interpreted as due to hopping between localized states induced 

by the randomness of the material. There is, however, very little 

understanding of the nature of these localized states. If we assume 

that they are hydrogen-like we.may analyse the data on the basis of 

the model under discussion here, but our knowledge of the system 

parameters is necessarily uncertain. It is usually assumed that 

v = 0 in theoretical studies (Ambegaokar et al 1971; Butcher and 

Morys 1973; Butcher 1976 a, b). However, a factor of r2 is to be 

expected from the overlap integrals involved in the transition rates, 

and so we assume that v = 2. In crystalline germanium we used v = 3/2. 

This departure from the basic v = 2 behaviour is due to the large 

ellipticity of the energy surfaces in the conduction band valleys. 

Because of the uncertainty surrounding the structure of amorphous 

germanium, this refinement seems inappropriate. For a-I we take the 

value determined recently by Gilbert and Adkins (1976) from studies of 

hopping in both thick and thin films. The theory then contains two 

unknown parameters; PF and go. These may be adjusted so as to put 

any collection of Ti data points on the v = 2 (dashed) curve in Figure 20 

and we have done that for a variety of cases. The range of the data 

is indicated by marks on the curve and the values of P
F 

and go used 

are given in Table 2. 
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The values of PF are determined by the slope of a plot of log ° 
against T-!. They differ from those of the original authors because 

of our use of 
-1 

a = 1.4 nm, N - 2.1 and v = 2. 
p The values of go 

are more interesting. With the exception of one very low value 

deduced from the data of Arizumi et al (1974), the g values are 
o 

of the order of 75 mS. No theoretical estimate of g is available o 

for amorphous germanium, but we may obtain an order of magnitude 

estimate as follows. We suppose that all the material parameters 

governing the characteristic hop rate R are the same as the crystalline o 

, 'f -1 h' h ' . d h 1 1 4 case w1th the except10n 0 a w 1C 1S ass1gne t e va ue • nm 

as for amorphous germanium. Furthermore, we suppose that the conduction 

band in the amorphous case consists of one spherically symmetric 

valley. Then eqns. (4.1.3) and (4.3.1) with v = 2 and n = 1 give 

go = 150 mS which is the order of that observed. 

§5.4 Universal Curves and Comparison with Experimental Data for Two­

Dimensional Systems 

We may readily use the formulae developed in Section 5.1 to 

describe degenerate hopping in two-dimensional systems for which the 

appropriate value of N is 2.7. The relationship between Rand R 
p p po 

remains linear with the parameters given in Table 1. In Figure 21 

we show the two-dimensional universal curve (cf. the three-dimensional 

ca~e). Log«o>/o ) is plotted against R for v = 3/2 (full curve 
c po 

labelled w = 0) and v = 2 (dashed curve labelled w = 0). For the two­

dimensional case ° = 3N2
g /5n and R is given by (5.1.12). These dc cpo po 

curves are again nearly linear, implying that log <0> is approximately 

1 · . T-1/3 ld • h .. lnear ln as one wou expect ln t e two-d1mens1onal case. 

The dash-dot curve labelled w = m in Figure 21 shows log «Ol(m»/oc) 

for v = 2 as a function of R where <Ol(m» is again the limiting value 
po 
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Plot of log «0>/0 ) against R for a two-dimensional c po 

system where 0 = 3N2g /Sn with N = 2.7. Full line: v = 3/2. 
cpo P 

Dashed line: v = 2. 

for v = 2. 

Dash-dot curve: plot of log «0(=»/0 ) c 



49 

of the real part of the conductivity when w ~ =. In the two-dimensional 

case we find that 

The numerical coefficient of 

(5.4.1) 

R-6 in (5.4.1) is 41 for v = 2 (the po 

case plotted) and 25 for v = 3/2. As we show in Section 3.4, 

<0> = <0 (=» 
1 

in a high density system. We see from Figure 21 that 

the transition between the low and high density regimes occurs when 

R 'U 4 in two dimensions as well as in three dimensions. 
po 

We are now in a position to analyse two-dimensional data. Until 

recently the only experimental two-dimensional studies involved thin 

film conduction in amorphous materials (see for example Hauser and 

Staudinger 1973). However, recent studies of inversion layers in meta1-

oxide-silicon field effect transistors (MOSFETS) have shown two-

dimensional hopping conduction (Pepper, Po1lit and Adkins 1974; Pepper, 

PoUit, Adkins and Oakley 1974). Experimentallyat very low temperatures 

h d " h'b' T- l / 3 b h' h'l h' h t e con uct1V1ty ex 1 1ts e aV10ur w 1 e at 19 er temperatures 

there is a transition to activated T-1 behaviour. We interpret this 

as follows. If the Fermi level is at a position such as A (see Figure 5) 

in the conduction bandtail below the mobility edge, then for low tempera-

tures, typical states an energy kBT from the Fermi level lie well 

within the localized state region. At higher temperatures, activation 

to the mobility edge and then transport due to extended states becomes 

preferential. These are the two regions observed experimentally. The 

analytical formulae developed in this chapter can therefore be used to 

analyse the low temperature T- l / 3 data obtained experimentally. 

In applying our analytical formulae to analyse this two-dimensional data 
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we are in much the same position as with the three-dimensional data 

for amorphous germanium in Section 5.3: most of the physical parameters 

of the system are unknown. Moreoever, no detailed calculation of the 

two-dimensional hopping rates has been performed. We therefore again 

use the Miller and Abrmams type rate and put v = 2. For the two cases 

considered here, PF has been measured experimentally (Pepper, private 

communication, Pollit 1976a, b) and so the unknown parameters reduce 

to a and g which we adjust so that the data lies on the v = 2 line 
o 

in Figure 21. 

Conductivity data for an n-channel device were taken from Pollit 

(1976a). They correspond to a gate voltage of 0.8 V for which Pollit 

finds PF = 0.6 x 1018m-2eV-l (see also Pollit 1976b). The data fits 

the dashed theoretical curve between R = 6 and 9 when a-I - 7.0 nrn 
po 

and g = 3.0 mS. Conductivity data for a p-channel device were o 

taken from the lowest curve given in Figure 20 of Mott et al (1975), 

for which PF = 1.8 x 1018m-2eV-1 (Pepper, private communication). The 

data fits the dashed theoretical curve between R = 4 and 9 when 
po 

-1 - -3 1 
a =' 5.5 nrn and g = 3.6 x 10 rnS. Our estimates of a- are about a o 

factor of two larger than those deduced by. the original authors because 

we use a different expression for the exponent; sp' in <a>. e, There have 

been no theoretical calculations of hopping rates in inversion layers 

from which we can determine a theoretical value for g'. We note. 
o 

however, that in Section 4.3 we calculated a value of 1.3 mS for 

three-dimensional hopping in crystalline silicon. The value of g o 

deduced here from the n-channel data is not very different from this 

while the value deduced from the p-channel data is three orders of magnitude 

smaller. 

§5.5 Discussion 

In this chapter we have developed formulae which are applicable 

to situations where the bandwidth of localized states is much wider 
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than the characteristic energy in the percolation path spkBT. The 

agreement with computer data is remarkably good. It should be emphasized 

that no parameters have been adjusted in comparing the analytical results 

for <a> with computer results. A general discussion of the comparison 

with computer data, both for the wide band and narrow band cases, can 

be found in Chapter 9. 

The dash-dot curves labelled w '" ClO in Figures 20 and 21 show the 

behaviour of <al(ClO» for degenerate systems with v - 2 in three and 

two dimensions respectively. These curves also provide good approximations 

to <a> for R < 4. For R > 4 the difference between these curves po po 

and the dashed curves labelled w = 0 gives the total increment of the 

ac conductivity between w - 0 and w = ClO predicted by the rate equation 

formalism. The predicted increment is many orders of magnitude when 

R is large, but falls below 21 orders when R < 10. Further po po 

experimental studies of the ac conductivity of degenerate systems in 

this regime (e.g. heavily doped n-ty~crystalline germanium) would 
" 

therefore be of considerable value. 

The model we have assumed is well adapted to n-type crystalline 

germanium. This is confirmed by the good quantitative agreement 

between the theory and the experimental data of Allen and Adkins 

(1972) shown in Figure 20 and Table 2. The model is less well adapted 

to all the other systems for which we have compared the theory with 

experimental data. Our knowledge of the parameter values in these 

cases is insufficient to allow rigorous quantitative tests which might 

suggest modifications of the model. Agreement between theory and 

experiment can always be obtained by adjusting the parameters in the 

model instead of changing the model itself. 
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CHAPTER 6 - HOPPING IN ENERGY BANDS OF INTER}ffiDIATE WIDTH 

§6.1 General Formulae 

Chapters 4 and 5 have dealt with the dc conductivity of systems 

where the localized state energies are distributed over an extremely 

narrow and a very large bandwidth respectively. In this chapter we 

develop formulae applicable to the intermediate case of a finite 

bandwidth. In particular, we shall be interested in two-dimensional 

systems for which analytical results may be found, since we wish to 

compare the formulae with experimental data obtained from MOSFET devices. 

To obtain relatively. simple analytical formulae we adopt a model 

in which p(E) is a constant PF over a bandwidth W. Moreover we use 

the Miller and Abrahams type rates given in (4.1.1), and simplify s 

by putting v = O. Finally, we approximate q by the more usual 

expression (Butcher 1976 a, bj Arobegaokar et al 1971) to obtain 

(6.1.1) 

in which the energies are measured relative to the Fermi level plus 

kBT1n2. Strictly speaking, we should retain this spin degeneracy term. 

However, because of the number of previous simplifying approximations 

and for simplicity, we shall ignore it. We see from eqns. (5.1.2) 

and (5.1.4) that the evaluation of s and a only requires a 
p p 

knowledge of A(q). For the case under discussion here the form of 

A(q) is somewhat more complicated than that used in Chapter 5 since 

the bandwidth restriction alters the form of A(q) depending on the 

relative sizes of q, (and hence sp) and W", where W" = W/2kBT. Moreover, 

A(q) also depends on the position of the band of localized states relative 

to the Fermi level. We therefore relegate the actual calculation of 2B, 

S and a to Appendix 2. Furthermore, we shall only discuss in detail p 



53 

the case in which the Fermi level lies in the centre of the band. 

The more general case of an off-centre Fermi level is dealt with 

in Appendix 2. The motivation for discussing the first case in 

detail is the existence of experimental data in which the Fermi level 

is in the centre of the band. 

Three regimes are identifiable depending on the relative values 

of sp and W"'. When 0 < s < W"', s reduces to 
p p 

(6.1.2) 

The significance of the superscript on N is discussed below. This p 

is the usual exponent associated with degenerate hopping in two 

dimensions (see eqn. (5.1.6» and reflects the fact that the bandwidth 

is effectively infinite. Eqn. (6.1.2) is valid up to a temperature 

T'" such that sp = W"'. In two dimensions we find 

(6.1.3) 

Above this temperature eqn. (6.1.2) is no longer valid. We find 

instead polynomial equations for s when s > W"'. Before solving these p p 

equations, however, a value must be given to the percolation parameter 

N. We know from Chapter 4 that for very narrow bands (i.e. T + ~) N 
P P 

is given by the two-dimensional value N(2) = 4.5. In the case of 
p 

very wide bands (i.e. T + 0), Np takes the effective three-dimensional 

value N(3) = 2.7 as discussed in Chapter 5. There is no theoretical 
p 

or computational work concerning the appropriate value of Np as a 

function of the temperature and the bandwidth of the localised states. 

various authors (Pike and Seager 1974; Pollak 1972; Shante 1978) have 

argued that N is temperature independent. Their arguments, however, 
p 

are based on the assumption that the effective dimensionality of the 
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system does not alter over the temperature range under consideration. 

In our case, we change from wide band hopping to narrow band hopping 

as the temperature increases and so one may expect N to vary with 
p 

temperature. This point is discussed in more detail in Chapter 9. We 

therefore adopt the following ansatz for the temperature dependence of 

N. Below T' we put N = N(3). For T > T' we write N 
p P P P 

- N(3) + ~N (T - T')/T, 
P P 

where T' is given by eqn. (6.1.3) and ~Np - N(2) - N(3) • The values 
p p 

of s computed using this ansatz are shown in Figure 22. 
p 

The 

quantity s is a convenient normalizing factor and is the s 
p~ p 

value obtained from eqns. (A2.l.4) and (A2.l.5) as T ~~, i.e. in 

the limit sp » W'. Thus 

s 
p~ 

(6.1.4) 

where n = p W is the spatial density of states. We note that this 
s F 

is the expression derived in Chapter 4 for a two-dimensional narrow 

band system. Curve A is a plot of sp/sp~ against a normalized reciprocal 

temperature X (lower axis). Curve B is a plot of s Is against Xl/3 
p p~ 

(upper axis). We find from curve A that, for s Is s 1.~ s is well p pm p 

approximated by the equation 

(6.1.5) 

Since a = a exp (-s ) we may identify the quantity W/3 as the activation p p 

energy for the hopping process. At lower temperatures s Is > 1.7 P pm 

and the temperature dependence of s is slower than T-1• This 
p 

transition occurs at the position marked by the horizontal dotted line. 

Replotting s Is against Xl/3 (curve B) shows that s is now proportional p pm p 

The dot shows the temperature T'. We note that in the linear 
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r~gime of curve B, s is given by eqn. (6.1.2). From Figure 22, one 
p 

may readily deduce the transition temperature a, at which variable 

range hopping goes over to activated hopping. The transition is 

abrupt and occurs at a temperature 

w e =~--2kBs 
P"" 

(6.1.6) 

To achieve precision in the analysis of experimental data, this estimate 

of e must be modified by considering the effect of the prefactor, as is 

done below. However, one may readily verify that a ~ 3T~ i.e. the 

transition to activated behaviour does not occur when sp = W. This 

behaviour has been predicted on dimensional grounds by Pollak (1972). 

It serves to illustrate the point that the important energies in the 

percolation chain are .somewhat less than spkBT, a point discussed more 

fully in Chapter 9. 

When s > 2W~, the polynomial equation for s is a quadratic and 
p p 

hence an analytical formula is easily obtained: 

(6.1.7) 

Eqn. (6.1.7) implies that E = 5\~/12 (c.f. computer solution where 

E = W/3. There is, however, a correction factor due to the temperature 

dependence of N in eqn. (6.1.7). We put the quantity in the square 
p 

bracket equal to unity, since the second term is necessarily less 

than 5/576 when s > 2W: Recognising that N = N(2) - ~N T~/T, where 
p p p P 

T~ is given by eqn. (6.1.3), we may expand N ! to first order in 
p 

. 1· -1 b . terms ~nvo v1ng T • We then 0 ta1n 

W 
k T + S 

B P"" 
(6.1.8) 

The number in brackets is equal to .37 and we again regain an activation 

energy in the order of W/3. 
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Finally we discuss the effect of the conductivity prefactor 

on the calculated value of the transition temperature e and the 

activation energy E. As shown in detail in App~ndix 2, the 

behaviour of the pre factor again depends on the relative values of 

sand W: The result of the calculation is shown in Figure 23 where 
p 

we plot log (a/a~) against T- l Here a~ is the infinite temperature 

conductivity a = (TIg n2s 3 /16a4)exp(-s ) derived in Chapter 4, for 
00 0 s p~ p~ 

very narrow bands. The two curves correspond to different site densities 

ns. The bandwidth W, and the decay constant a were kept constant at 

.0045 eV and 3.1 nm respectively in the calculation. We see that the 

relationship between the activation energy E and the bandwidth W, 

measured from the straight line section of the plot, is given by 

€ = .38W (6.1.9) 

which is only a little different from the result derived above from a 

consideration of s alone. The dots mark the transition temperatures 
p 

e for each curve. In Figure 24 we show howe varies with s and the 
p~ 

bandwidth, W, of localized states. For larger values of s the poo 

determination of e becomes difficult because the transition is very slow, 

and so these values must be treated with caution. 

Finally, we discuss the effect of the prefactor on the conductivity 

-1/3 
in the low temperature T r~gime. In Figure 25 we show a typical 

plot of log (a/a ) against s for a particular choice of system 
~ po 

parameters (W = 4.5 meV, PF = 1.73 x 10l8m-2eV-l, a = 3.1 nrn). The 

dot signifies the temperature e, whilst the square signifies T~. We 

see that for temperatures lower than a, log a is proportional to T- l / 3• 

The effect of the prefactor, is to reduce T Slightly. This reduction 
o 

is independent of the system parameters. 

is given by s~ = .97 s i.e. po po' 

In fact, in this region s 
p 
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(6.1.10) 

. 1/3 
The effect of the prefactor on the slope.of the T plot as shown 

in eqn. (6.1.10) is similar to that predicted in Chapter 5, and 

illustrated in Table 1. ~e are now in a position to analyse 

experimental data using the formulae developed above. 

§6.2 Comparison with Experiment 

Until recently experimental investigations of inversion layers 

(Pepper, Pollit and Adkins 1974; Pollit 1976; Mott et al 1975) concerned 

the localized states at the band extrema. The temperature dependence 

of log <0> shows T-1/3 behaviour at sufficently low temperatures with 

-1 
a transition to a T law at higher temperatures. In this case, the 

activated behaviour is due to carrier activation at the Fermi level 

to the extended states at the mobility edge. Recently, however, data 

obtained from the study of impurity bands in inversion layers in silicon 

has been shown to exhibit three modes of conduction: activation to 

the mobility edge, 'nearest neighbour hopping' and 'variable range 

hopping' (Fowler and Harstein 1977). The last two terms were originally 

introduced by Mott to describe the narrow band and wide band regimes 

respectively. They are useful terms when describing hopping in a finite 

bandwidth of.energies. For high temperatures (i.e. the narrow band 

case) preferential hops are to the nearest neighbour in real space. 

At lower temperatures more favoured hops are to sites close together 

in en~rgy, and these are, generally speaking, not nearest neighbours. 

This regime may be referred to as variable range hopping • 

. The formulae developed in the previous sections adequately describe 

the transition between narrow band hopping and wide band hopping and 

may therefore be applied to the data of Fowler and Harstein (1977). 
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Firstly, let us consider the activated region (figures 4 and 6 of 

Fowler and Harstein). We see from eqns. (6.1.5) and (6.1.4) that a 

graph of log (0) against n-! shoul~ yield a straight line from which 
s " 

a value of a, the decay constant, may be inferred. Figure 9 of 

Fowler and Harstein is such a plot. However, their expression for s poo 

differs from ours. -1 They deduce a = 1.3 nm, whereas, using eqn. (6.1.4) 

-1 we deduce a = 3.1 nm, which is considerably larger. The justification 

for using (6.1.4) is the agreement obtained with computer studies 

presented in Chapter 4. The values for the bandwidth W, obtained 

from eqn. (6.l.9),are approximately three times those of Fowler and 

Harstein who assume W ~ E. Consequently, their figure 8 is still 

valid if the ordinate is multiplied by (.38)-1. Finally, the spatial 

density n can be inferred experimentally using substrate bias (Fowler 
s 

and Harstein 1977; Harstein and Fowler 1975). Thus all the system 

parameters may be deduced from the activated conductivity data. 

With these ideas in mind we turn our attention to figure 4 of 

Fowler and Harstein, wher"e the conductivity of a sample with 

15 -2 . n = 5.3 x 10 m ~s reported. By altering the substrate bias, the 
s 

activation energy associated with nearest neighbour hopping may be varied 

since the substrate bias affects the bandwidth of localized states. 

The activation energy may be measured from the straight line section 

-1 of the T plot and a value for W, the bandwidth of localized states, 

deduced using eqn. (6.1.9). The only remaining parameter, g , may be 
o 

inferred from the infinite temperature intercept using the expression 

for the infinite temperature conductivity 0 = 
00 

(g nn2s 3 /16a4)exp(-s ). 
o s p poo 

In Figure 26 we show a plot of log (0) against T- l • The dots are the 

experimental points obtained by Fowler and Harstein. The full lines 

are obtained from the theory using the system parameters deduced in 

the manner outlined above. The activation energies El and E3 are 

concerned with activation to the mobility edge, and nearest neighbours 
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hopping respectively. The bandwidths deduced from the straight line 

section (E3), and using eqn. ~ .1.9) are 8.7 meV, 11.8 meV and 17.1 meV 

for substrate bias of OV, -3V and -15V respec~ive1y. We see that for 

substrate bias of OV and -3V the behaviour of the conductivity is 

well fitted by the theory. However, for a substrate bias of magnitude 

-1/3 lSV the theory predicts a T temperature dependence (due to the 

large bandwidth) whereas the observed temperature dependence appears 

to be closer to T- l • This point is discussed below. 

§6.3 Discussion 

The main objective of the work described in this chapter has 

been to develop formulae which describe hopping conductivity in a 

two-dimensional band of states whose width is in the order of spkBT 

(the characteristic energy in the equivalent random resistance network). 

Impurity bands in inversion layers provide an easily controlled system 

against which to test the theoretical predictions. We see from Figure 27 

that the theory predicts the behaviour of the conductivity quite 

accurately for low values of substrate bias (0 and -3 volts). For 

these two values the theoretical conductivities in the lowest temperature 

region appear to be slightly smaller than those observed experimentally. 

It is convenient to write the exponential 

this region in the form exp[-(To/T)l/~. 
imply that our theoretical values for T o 

part of the conductivity in 

This discrepancy would then 

4 4 (2.S x 10 K and 2.0 x 10 K) 

are slightly larger than the experimental values. Data on the conductivity 

of a single sample over a large temperature range would be helpful in 

comparing theoretical and experimental values of T. The predicted 
o 

transition temperatures of 7.5 K and 10 K for the two highest conductivity 

samples are in excellent agreement with those observed experimentally. 

For a substrate bias of -lSV the agreement is not good. The 

bandwidth deduced from the straight line section of the T-I plot is 
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-1/3 so large that the theory leads us to expect T variable range 

hopping over the whole of the low temperature regime. This lack of 

agreement may be due to a variety of factors. "For large bandwidths 

our assumption of a rectangular band of states is not a good one. 

The quantitative changes that occur if a more realistic density of 

states profile is adopted may be calculated numerically. Furthermore, 

the effect of large substrate bias is to force the electrons closer 

+ 
to the Na ions. One might then expect neighbouring states to have 

correlated energies and the theory developed here must be modified 

to take this into account. 

The values of g , deduced from the infinite temperature intercept, o 

are 20 mS for the lowest two values of substrate bias and 6.7 mS for 

. 15 VB· h . 2Q a substrate b1as of - • y uS1ng t e express10n g = e ~R we 
o 0 

may readily obtain a value for the characteristic hopping rate R • 
o 

Over the temperature range of interest, R ~ 1013 Hz, which is in the o 

order of that expected. 

by using eqn. (4.3.1). 

Si, namely E = 11.7, El 

A theoretical estimate of g is possible 
o 

Using parameter values appropriate to n-type 

= 6 eV, n = 6, Po = 2.33 gm -3 cm , 
V = 9.0 103 -1 v = 3/2, = 3.8, obtain g c 0.6 mS when x ms , n we s 0 
-1 0 

This value is over an order below the experimental figure. a = 31 A. 

A calculation of the transition rates between impurity states in 

inversion layers with due regard to the nature of the wavefunctions, 

dielectric effects of the Si02 layer, surface effects etc. would be 

very valuable in this context. 
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CHAPTER 7 - REVIEW OF ALTERNATIVE FORMULAE 

§7.1 Introduction 

In this section we review briefly alternative formulae for the dc 

conductivity derived in a variety of ways. Funda~entally, we may 

identify three main types of theory: single hop theories, those 

based on percolation arguments and those derived numerically. Single 

hop theories rely on the derivation of some particular average quantity 

related to a single hop. They are in principle open to the same 

criticism, namely, that the derivation of the dc conductivity relies 

on solving the problem of a random walk on a random lattice, and it is 

a feature of this type of problem that the solution cannot be expressed 

in terms of any quantity related to a single hop (Butcher 1976a, b). 

Formulae developed using percolation theory appear to have a more 

secure basis, but the uncertainty involved in determining the numerical 

coefficient involved in s , and the entire functional dependence of 
p 

the prefactoy seems fundamental to any discussion of these theories. 

Finally, the numerical work has a variety of uses: the determination 

of parameters such as N , the derivation of functional dependencies such p 

as the temperature dependence of the prefactor and investigations of 

the validity of analytical formulae. Sections 7.2 and 7.3 deal with 

alternative formulae for the exponant and prefactor respectively. 

§7.2 Alternative Theories for the Exponent 

Perhaps one of the best known examples of formulae which depend 

on the single hop approach is that due to Mott (1969), in which he 

originally predicted the T! law found in many materials. Mott uses 

the exponent s = 2ar + B~, where ~ = IEm - Enl. This exponent is 

minimized subject to the constraint 4~r3pF~/3 = 1. The minimum value 
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of s is 

(7.2.1) 

We may readily find s , in the manner shown in previous chapters, p 

when s = 2ar + 136. In this case sp = [12Npa
3 

hrPFkBT]I which reduces 

to sm if we put Np = 128/27 (c.f. the value 2.1 which we use). The 

reasons for choosing this value for Np have been outlined by Butcher (1976a). 

It arises because Mott's derivation of the exponant s is an approximate 
m 

method of completing the integrals involved in the calculation of s • 
p 

The work of Scher and Lax (1973) may also be classified under the 

heading of single hop theories. Their analysis is quite general and 

the resultant formulae describe the frequency dependent conductivity 

as well as the de case. Their model consists of a regular array of 

sites in which the probability of a hop between any two sites at 

time t after entering the first site, is specified by a waiting time 

distribution. The calculation is involved but a few points can be 

made. Butcher (1974) has shown that the same results can be obtained 

by considering a random array of sites and performing an approximate 

summation of the Dyson expansion for G involved in eqn. (2.3.3), 
ron 

involving only the self-avoiding walks. Moreover, the approximate 

treatment provides the exact solution of a different problem. It 

yields the exact value of cr(w) for a system such that the electron 

performs a random walk in which each site, other than the one currently 

occupied, is re-randomized immediately after every hop. The effect 

of this re-randomization is obviously large in certain situations, in 

particular, the dc limit. In the fixed site model, difficult hops can 

be avoided by considering other paths in the system (an argument which 

is the basis of the percolation solutions discussed in this work). In 

the Scher and Lax model, however, the particle has to make a difficult 

jump sooner or later, and the contribution of these types of transition 
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to o(w) is significant. They therefore predict a value for 0(0) 

which is different from that given in previous chapters. These 

criticisms are similar to those raised by most .authors about the 

work of Miller and Abrahams (1960), who calculate the resistance 

of the RRNM using non-percolative arguments (Shk1ovskii 1973). Indeed, 

there is a close similarity between the site density dependence of 

the exponent in the narrow band model predicted by both Scher and Lax, 

and Miller and Abrahams. 

The fact that the dc conductivity may be written as 

o = 0 exp[-s] is deducible from experimental data. There have been 
o p 

many theoretical derivations of s which rely on percolation theory 
p 

(Ambegaokar et al 1971, Pollak 1972, Shklovskii 1973, Shante 1978). 

All the methods of approach are very similar to that outlined in 

previous chapters, with the exception of Pollak (1972) who uses a 

different averaging procedure to determine the number of bonds with 

s < s at each site. 
p 

If we define the quantity 

N (e: ,s ) = m p J 
s<s 

p 

p (e: ) de: n n 

then we may rewrite eqns. (3.3.1) and (3.3.2) as 

and 

2B = J pee: )N(e: ,s )de: J 4nr
2
dr m m p m 

S = N(e: ,s ) m p 

In contrast Pollak writes 

2BP = J pee: )de: J pee: )N(e: ,s )de: J 4nr
2
dr m m n m p n 

(7.2.2) 

(7.2.3) 

(7.2.4) 

(7.2.5) 
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(7.2.6) 

This more complicated weighting factor does not alter s qualitatively. . p 

Indeed, the change in the numerical coefficients involved is quite 

small and can be removed by altering the parameter N slightly. We 
p 

conclude that all the percolation approaches give the same functional 

dependence for s , the only differences arising from numerical 
p 

factors. 

§7.3 Alternative Theories for the Pre factor 

The fact that the prefactor has only a quantitative effect on 

the conductivity has meant that it has received considerably less 

attention than the exponent s. Furthermore, the testing of 
p 

theoretical predictions against experimental data is difficult for 

two reasons. First1y,the dependence of the prefactor on system 

parameters such as the temperature is not strong compared with the 

exponent. Secondly, the prefactor contains scaling factors such 

as g which rely on a precise knowledge of the electron-phonon o 

interaction. Of course, for comparison with comput~data this 

scaling is irrelevant, but for the application of theoretical 

formulae to experimental data such as that obtained from amorphous 

germanium, the degree of uncertainty is large. 

We begin by considering the narrow band model outlined in 

Chapter 4. We see from eqn. (4.1.10) that, for v = 0, we predict 

2 -2 
0p = (3N /8n)g a(ar) ,where rp is given by eqn. (4.1.11). Kirkijarvi pop 

(1974), using information gained from computer studies of percolation 

. . ( )-1.6 ± .25 H db' in f1n1te clusters, deduces ° a ar • e oes not 0 ta1n 
p . p 

any estimate of the constant of proportionality. The value 1.6 is 

quite close to our value. Another pre factor has recently been predicted 
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by Ska1 and Shk10vskii (1975) using a numerical approach based on the 

theory of chain lengths in the infinite cluster involved in percolation. 

They obtain, for the case when v ="2, 

_ 8 (47r~O(ga)(ar)0 (7.3.1) 
(J --- 0 P p 9 3N 

where r is given by (4.1.11). The value of 0 lies between 0 and 0.4. 
p 

The case 0 = 0 gives a prefactor which is independent of r , as is the 
p 

case with our formula when v = 2 (eqn. (4.1.10». In this case the 

ratio of our prefactor to that of Skal and Shklovskii is .98, a 

difference which is undetectable in practice. Recently Kahlert and 

"Landwehr (1976) have analysed data obtained from studies of impurity 

conduction in GaAs using Skal and Shk10vskii's formulae. For' this 

material v = 2, and so for the reasons outlined above we would also 

obtain the very good agreement between theory and experiment reported 

by these authors. 

There have been a number of prefactor formulae predicted for the 

case of degenerate hopping in wide bands. Rather than discuss each case 

individually, we have tabulated the results in Table 3. Here, we 

give the complete expression for the conductivity, together with 

the basic theoretical approach. Generally speaking, the prefactors 

differ in their dependence on R ,and on a trivial numerical factor. po 

For convenience, we reproduce our expression derived in Chapter 6 

for the case when s = 2ar + ~ [I Ell + I E21 + lEI - E2 ~. The close 

agreement we obtain with computer data, illustrated in Figures 15 - 18, 

suggests that our formulae accurately describe degenerate hopping. 

Furthermore, Allen and Adkins (1972) were unable to fit their data with 

any of the expressions reproduced here, without assuming large changes 

in the dielectric constant. 



PREFACTOR EXPONENT SOURCE BASIS 

2 
40 Npgoa 

s This work Percolation 31T 2 po s po 

3 1 2 .9 Mott 1969 Single Hop 81T g as s 
~ 0 po po 

P 

31T
2 (~J! (40N )! 

g a 
0 .9 Mott 1972 Single Hop - s 

4 9 P s po po 

2 i 
32rr ( rr ) .8 Pollak 1972 Percolation 78 (goa) 40N spo s 

P 
po 

3 .35 Kirkpatrick 1973 Percolation 36rr (.022)(g a) s s 
0 po po 

TABLE 3 Alternative theory for degenerate hopping in very wide 

bands. Here s = 2R where R is given by (5.1.6). 
po po po 
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CHAPTER 8 - AC CONDUCTIVITY 

§8.1 The Pair Approximation 

In this chapter we derive approximate formulae for ac 

conductivity due to localized electrons. As we see from eqns. (2.2.10) 

and (2.3.3), for any non-zero frequency, <a(w» may be expanded 

in powers of n , the site density. 
s 

For low densities (n. + 0) the s 

dominant term is proportional to 2 n. It is easy to calculate and is s 

known as the pair approximation. 

The pair approximation is obtained by selecting the contributions 

to the Dyson expansion (2.3.3) with n ~ m, in which all the inter-

mediate sites are either n or m. Thus 

(8.1.1) 

where q = 
mn 

GO Re GO Re • 
nn nm mm mn To order n2 in the final result we may s 

identify Re 
m 

and Re with Re 
n mn and Re respectively in evaluating (8.1.1) nm 

with the aid of (2.3.4). Thus we obtain 

= w(l - iWT ) 
mn 

where the relaxation time T is given by mn 

-1 
T mn 

(8.1.2) 

(8.1.3) 

This expression may also be derived by inverting the 2 x 2 matrix 

which results from ignoring all the other sites except nand m. 

(Pollak and Geba11e 1961). 

Substituting G
P 

into eqn. (2.2.10), we obtain the formal 
mn 
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system averaged result 

<o(W» 2 
(x - x) > . n m (8.1.4) 

For the purposes of this work we are only interested in the real part 
p 

of the ac conductivity <ol(w». Therefore, 

p 
<ol(w» (x - x )2 > 

m n (8.1.5) 

where we have used eqn. (2.1.6). If we now suppose that the energies 

"e 1 and~ are distributed with a probability distribution p(E1)/n
s 

and p(E2)/ns respectively, and the sites are randomly distributed 

• 
over a volume Q, we may write eqn. (8.1.5) in the form 

We note that eqn. (8.1.6) is easily derived from consideration 

of the equivalent network described in Section 3.1. If we put all 

the conductances except g12 equal to zero, then we may readily find 

the square voltage drop across Vl2 for the isolated RC circuit. In 

2 2 2 2 Noting 2 fact I vl21 = (WT 12) / (1 + W T 12) • that g12 = e ar
12

, we 

see that eqn. (3.2.1) becomes identical to (8.1.6) • 2 2 -1 The factor WT (1 + W T ) 

peaked on the "critical ac surface" WT - 1. With this idea in mind 

we may find a simple approximation to <ol(w». Consideration of the 

integrands involved in (8.1.6) and (3.2.1) shows that the quantity 
2 

g12<V12> has two peaks - one on the critical percolation surface 

and one on the critical ac surface. We therefore suppose that the 

total conductivity at frequency W is given by the sum of the 

contributions from each peak calculated separately or 

o(W) 
p 

= 0(0) + 0l(w) (8.1.7) 

if 
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§8.2 Comparison with Computer Data 

We are now in a position to compare the simple formulae developed 

in the previous section with computer generated data. The only ac 

computational work is that carried out recently by McInnes (Butcher, 

Hayden, McInnes, Clark 1978). He solves Kirchhoff's equations for 

the equivalent network given in Section 3.1 and shown in Figure 6 

The model adopted is a three-dimensional energy independent case 

outlined in Chapter 4, with v = 3/2. The dc contribution to <a
1

(w» 

is then given by (4.1.10). The pair approximation contribution is 

then particularly simple: 

() 21Te2 2 IWL r WL 12 
<a l W > • -3- ens 12 12 1 r 4dr 

+ 2 2 
W L12 

(8.2.1) 

The evaluation of the final integral in (8.2.1) is best performed 

numerically. 

The comparison with the computer data is shown in Figure 27 

The dots are the computational points. The full line is <a
1

(w» 

calculated using eqns. (8.1.7), (4.1.10) and (8.2.1). The dotted 

lines are the ac and dc asymptotes. We see that the simple formulae 

are in good agreement with the computer points for all frequencies. 

The total span in conductivity is three orders, as one would expect 

for a value of an-l / 3 = 9 from inspection of Figure 9. It would be s 

helpful to have computational data for a lower density system, where 

the span in conductivity is greater, but unfortunately the convergence 

in the iterative procedure used to solve Kirchhoff's equations becomes 

too slow. 

§8.3 Conductivity of Degenerate Systems 

The comparison with computer data presented in the previous 
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section shows that our approximations to cr(w) are valid for the 

simple case where all the energies of the sites are identical. We 

now wish to calculate the ac conductivity of a more realistic system, 

namely that of a degenerate system of localized electrons whose 

energies are distributed over a vary large bandwidth. The model 

we shall adopt is that outlined in Chapter 5. Since we shall be 

interested in analysing amorphous germanium data we put v = 2. To 

evaluate the pair contribution to <ol(w» we approximate the factor 
2 2 -1 

wT(l + W T) in (8.1.6) by (TI/4a)o(r - r ) where r is the solution of the 
. W W 

equation WT
12 

= 1 for r. Using eqns. (2.1.6) and (8.1.3) we may 

-therefore write (8.1.6) as 

(8.3.1) 

where Rw = arw and F(E l ,E 2) = ~~1 + F;~ = .25 [COSh2 13;1 + cosh2 13;~ • 

In (8.3.1) R! is slowly varying in comparison with F(E:
l

,E 2). We can 

therefore set £:1 = E2 = 0 in Rw and take it outside the integral. 

Thus we obtain the Austin-Mott formula for the present model: 

where we have put pee) equal to a constant value P
F 

and 

I = ~2B(kBT)~-1 J dEl J OC2F(E l ,E2) = 3.66 

(8.3.2) 

(8.3.3) 

o 
In eqn. (8.3.2) Rw denotes the value of Rw when El = £:2 - O. It is 

obtained from the equation WT = 1, namely 

o exp (-2R ) 
w 

It is convenient to write (8.3.2) in terms of the quantity 

(8.3.4) 

Rpo = ~Npa3/2'PFkB~I, whose significance is outlined in Chapter 

5. Then 
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<ai(w» 
= ~ I (RoJ l..'!....] 1 

(8.3.5) a 2 w 2R R8 c 0 

po 

We see that <aP
l (w»/a2 has the same R depende~ce as <a(~»/a = 10~26!/3.27R8 

po c P( 

Consequently plots of log(aPl(w»/a ) against RO for fixed w have the 
c p 

same shape for all w. In Figure 28 we show plots of log(ai(w»/a
c

) against 

R The dashed curve is the a(~) plot. The dotted lines are aP1(w) po 

for the RO values indicated. The corresponding values 'of w/2R can be w 0 

calculated from (8.3.4). The full line is the w = 0 line, derived in 

Chapter 5 (see Figure 20). We see that the ac and dc curves intersect 

o o. . 1 It R at values of R such that R 1S very approx1mate y equa 0 • w w po Thus, 

'for fixed R ,as w increases from zero, the conductivity remains at 
po 

the dc value until a frequency w such that R ~ RO
• For frequencies 

c po w 

in excess of w2 ' we move vertically in Figure 28, up to the w = ~ 

curve. For low densities the conductivity spans many orders (11 orders 

for R = 25). For R = 4 the w = 0 and w = IX> curves touch. Thus po po 
for systems where R < 4 the conductivity is given by a(~) for all po 
w. This is the high density case discussed in Chapter 5. 

§8.4 Comparison with Experimental Data 

Our primary concern is with the conductivity of evaporated 

amorphous Germanium films which has been investigated by several 

authors (Gilbert and Adkins 1974; Chopra and Bahl 1970; Arizumi et al 

1974; Hauser and Staudinger 197~ and Agarwal et al 1975). These 

authors investigate both the temperature dependence of dc conductivity 

and the frequency dependence of the ac conductivity. The symbols in 

Figure 28 indicate the extent of the dc data (for the symbol 

identification see Table 2 and Figure 20") • From the values of g 
0 

given in Table 2 we may deduce corresponding values for R using 
0 

expression 
2 

With one exception (Arizumi et al 1974) the go = e SR • 
0 

. the values of R are in the order of 1016 Hz at 100 K. 
o For a typical 
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FIGURE 28 Plots of log «ol(w»/o ) against R , where 
c po 

2 ° = 5N g a/6n, N = 2.1 and v = 2. Full line: W = o. cpo p 

Dashed line: w =~. Dotted lines: intermediate values of 

w parameterised by the R values indicated. The symbols 
w 

on the full line indicate the extent of the dc experimental 

data for amorphous germanium, listed in Table 2. 
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frequency ;~ = 10
4 

Hz we find from eqn. (8.3.3) that, for this value 

of R , R ~ 17. Hence we see from.Figure 29 that most of the samples o w 

would be expected to show dc behaviour at 104 Hz. 

The curve in Figure 29, shows 10g(w /2R ) as a function of R • c 0 po 

Data lying in the regime to the left of this line should be expected 

to show dc behaviour, whilst that region to the right describes the 

ac region. The vertical lines show the frequency range spanned by the 

ac data at the values of R appropriate to the different samples po 

indicated in the legend. We see that the ac data of Chopra and Bah1, 

Arizumi et a1 and Agarwal et a1 lie in the regime for which dc behaviour 

is expected. The data of Hauser and Staudinger might be expected to 

show the transition from dc to ac behaviour. It appears to do so, 

but the ac conductivity is two orders of magnitude larger than one 

would expect for the values of P
F 

derived from the dc data. Finally, 

the data of Gilbert and Adkins should show Austin-Mott behaviour. 

The observed values of 0l(w) are indeed only about a factor of four 

larger than the predicted values. However the frequency and temperature 

dependence of the ac data are not consistant with the Austin-Mott 

formula (Gilbert and Adkins 1976). 

§8.5 Discussion 

The pair approximation, developed in this chapter, gives a simple 

form for the ac conductivity. It is, though, a low density theory. 

Whilst this has been recognized by many authors, no quantitative 

assessment of the regimes in which the Austin-Mott formula is valid 

has previously been made. This work is particularly useful in 

discussing recent arguments concerning the discrepancy between the 

density of states derived from the ac Austin-Mott formula and those 
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derived from the dc data. Abkowitz et a1 (1976) argue that the 

densities of states derived from the ac data are correct, whilst those 

deduced from the dc data are not. Their conc1up ions are based on an 

analysis without the benefit of the dc formula presented here. If 

we now consider the parameter values which they deduce from the ac 

data, namely, values of PF 10 to 100 times larger than those found from 

dc data and a value of Ro = 1013 Hz,we find that the ac' lines are put 

deeper into the dc region of Figure 29 because of the reduction of R po 

This inconsistency leads to one of two conclusions: either the pair 

approximation or the approximations necessarily made in deriving the 

'formulae are in error, or the ac conductivity is due to some 

mechanism other than hopping near the Fermi level. The computer 

studies discussed in Section 8.3 show that the pair approximation gives 

accurate values for the ac conductivity. Although this comparison 

is made only for the energy independent case, our approximate 

treatment of the integral involved in (8.1.7) cannot be far removed 

from the correct answer. We have shown that for the densities involved 

in the experimental samples, given in Chapter 4, dc behaviour is 

expected for all frequencies over which the data applies. We conclude 

that the observed ac conductivity is due to some mechanism other than 

hopping near the Fermi level. 
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CHAPTER 9 - DISCUSSION 

§9.l Introduction 

The purpose of this chapter is to discuss in some detail points 

raised both by this work and that of other authors in the study of 

conductivity of localized electrons. We begin by considering the 

basic formalism and then go on to discuss the percolation aspect of 

hopping conductivity. The comparison of the theoretical prediction 

with computational and experimental data is then investigated. Sections 

9.6 and 9.7 deal with the transition rates and the ac conductivity 

respectively. Finally, in Sections 9.8 and 9.9 we discuss future 

work and state our conclusions concerning the work presented in the 

thesis as a whole. 

§9.2 Basic Formalisms 

As mentioned in Chapter 2, we introduce the rate equations in an 

intuitive manner. Recently, various authors, notably Capek (Capek 1972, 

1973 and 1975; Capek, Koc and Zamek 1973) have challenged the validity 

of the rate equations. Our formulae for crl(oo), given in Section 3.4 

are identical to the formulae for crl(O) developed by Capek using a 

Green function formalism. Barker (1976) has shown that the above 

authors obtain this result because they neglect an infinite series 

of terms in the perturbation expansions. In Barker's treatment 

these terms are retained, the rate equation formalism is regained 

and crl(O) ~ crl(oo). Computer studies, presented in Chapters 4 and 5, 

show that our,approximate formulae give good agreement with values of 

the conductivity deduced directly from the rate equations. Furthermore, 

our agreement with experimental data shows that the formulae accurately 

describe the hopping conduction process. We conclude from these 

observations that the rate equations provide a good description of the 

hopping process. 
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Our solution of the rate equations by the formal matrix approach 

is probably the most succinct for ac conductivity calculations. Its 

failure in the dc case is unfortunate. As we p·oint out, it predicts 

a zero conductivity for any finite sized system. We have, in fact, 

solved the long time behaviour of the hopping system, but our choice 

of boundary conditions means we only predict the steady state 

polarization of the medium. By extending the system to infinite size, 

the boundary conditions become immaterial and a dc solution can be 

found. Unfortunately, this solution relies on a bridging theory 

since evaluating the infinite summations involved in Gmn becomes 

impossible. 

§9.3 The Equivalent Network and Percolation 

The equivalent network approach to the solution of the rate 

equations has a venerable history. This approach was originally 

introduced by Miller and Abrahams (1960). The transition from a 

microscopic to a macroscopic point of view is a useful one in that 

it allows one to view each conductance as being embedded in an assembly 

of surrounding conductances. One is, therefore, led. to concentrate 

on the properties of the system as a whole. This leads quite 

naturally to a percolation argument, in contrast to single hop 

theories which are concerned with individual transitions. As outlined 

in Chapter 3, consideration of the power dissipated in each 

conductance leads to a percolation solution of the integral (3.2.1). 

It should be emphasised that in the actual hopping system, the 

electrons are ~ percolating, we merely use percolation theory to 

solve the equivalent conductance problem. 

Fundamental to percolation theory are dimensional invariants 

such as N. Strictly speaking, although the primary dependence of N 
p P 
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is on the dimensionality of the percolation system, there issome 

residual dependence on the shape of the constant s surfaces in the 

percolation space. If we consider the r~percoiation system where 

s = 2ar, constant s surfaces are circles or spheres in two or three 

dimensions respectively. The values of N deduced by various authors 
p 

(Seager and Pike 1974; Kirkijarvi 1974) using expanding circles or 

spheres are, therefore, the best ones to use in these hopping systems. 

If we now consider the more complicated energy dependent case, where 

s = 2ar + ~[I€ll + 1€21 + leI - e21], the constant s surfaces are 

cylinders with cones at each end which we shall refer to as "bobs" 

(Seager and Pike 1974). One should therefore expand the bobs in 

the percolation space and determine a critical value such that 

infinite chains can be found. 

Replacing the bobs by spheres or hyperspheres provides an 

approximate method of evaluating N. However, it conceals a very 
p 

important concept. Consider a two-dimensional energy dependent 

system. The percolation space is defined by the vectors x., y. 
~ ~ 

and E. of the site i. Now consider Figure 31, where we have drawn 
~ 

just the (ei,xi)-plane of the percolation space and for clarity 

have omitted any site for which y. is non-zero. The equal s figures 
~ 

are drawn for the case of spheres (a) and the more accurate case (b) 

where s is given by s = 2ar + ![IE.I + IE.I + Ie. - e. ~. In the 
2 ~ J 1 J~ 

first case the volume enclosed by the constant s surface is the same 

for all e .• In the second case the volume goes to zero at Be. = s • 
---- ~ ~ 0 

In fact, the volume enclosed by the shell about i is given by 

Vi = Vo~ - 3x + x~ where Vo is a constant and x = E/sokBT. Sites 

with large energies, therefore, are unlikely to be in the percolation 
. 

chain. This is exactly the behaviour found experimentally (see Chapter 6). 

One still obtains wide-band results even when Sp~T lies well outside 

the energy band. 



(0) x 

( b) 

FIGURE 30 Schematic diagram of the constant s surfaces in the 

percolation space. Figure 30(a) shows the case when 

the constant s surfac~are approximated by spheres or 

circles and 30(b) shows the more accurate case when the 

constant s surfaces are "bobs" • 
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This point was first raised by Pollak (1972) on dimensional 

grounds. It is worth emphasising, however, that the above argument 

relates to the percolation system, not to the "real hopping system. 

In the actual hopping system large energy sites have less weight for 

the following reason. Consider an electron at site i, with other 

sites distributed around it. Many of the surrounding sites lie at 

approximately the same distance from site i. The electron will, 

therefore, be able to select a site whose energy minimizes s. Sites 

j with large energies do not count significantly since one has 

every chance of finding another site, whose distance from i· is 

approximately the same as site j but whose energy is such that 

the electron will preferentially hop to this site rather than site j. 

The effect of a bandwidth restriction is to limit the energy 

dimension in the percolation sp~ce. As pointed out above this 

~~kes little difference until spkBT is very much larger than the 

bandwidth. It would be very useful to test the ansatz regarding the 

temperature dependence of N (see Chapter 6) computationally. One 
p 

may be able to do this by expanding the bobs as outlined above, but 

truncating any part which lies outside the permitted energy range. 

By applying the normal criterion for the determination of the percolation 

threshold, the dependence of N on the bandwidth and temperature 
p 

could then be deduced. 

§9.4 Comparison with Computer Data 

The comparison of our analytical formulae with computer 

generated data shows that the approximate derivation of the 

formula from the rate equations is valid. The main criticism of 

this computer data is that the model system size is far from being 

infinite. The largest number of sites which can be handled is about 

2000. For a three-dimensional system this necessarily means about 
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30% of the sites are on the surface and are therefore "anomalous". 

Attempts to remove surface effects by periodic .repetition and other 

techniques do not alter the observed conductivity significantly. 

Indeed, increasing the number of sites from 200 to 2000also has 

little effect on the conductivity of the system. We conclude that the 

number of surface sites is not significant and that systems with in 

excess of 1000 sites adequately model an infinite array of ' sites. 

This lack of dependence on the number of surface sites may be 

readily understood in a semi-quantitative way. Consider an array 

of sites such that approximately 30% lies on the surface. This necessarily 

means we have "omitted" about 15% of the conductances which should 

connect this cluster to the infinite system. Furthermore, only about 

10% of all the conductances in the network are of order go exp[-sp] 

and hence contributed significantly to <0> (Shklovskii 1973; Pollak 1972). 

The effect of the surface sites is to remove abo~t l!% of the con-

ductances which contributed to <0>. This effect is of the same order 

as that observed by increasing the number of sites from 200 to 2000. 

§9.5 Interpretation of Experimental Data 

In applying our formulae to the interpretation of experimental 

data a number of problems arise. The case of impurity conduction in 

crystalline semiconductors is the easiest to discuss. The Miller and 

Abrahams (MA) rates which we use were specifically calculated for this 

case. More recent calculations concerning multi-phonon effects, notably 

by Emin (1974). have shown that in this system the MA rates are valid. 

All the variable parameters. v. PF, a, and go are well defined. The 

good agreement obtained with the data of Allen and Adkins is therefore 

to be expected. 

Our analysis of impurity conduction in amorphous silicon does not 

have such a firm basis. As in all the interpretations of amorphous data, 



78 

we put v = 2 since this value arises naturally from consideration 

of the integral involved in calculating the overlap of the localized 

wave functions. Deviations from this value arise from the ellipticity 

of the constant k surfaces in the conduction band minima (Miller and 

Abrahams 1960). These concepts are ill-defined in the amorphous 

case and so we keep v equal to two. 

The system about which we know least is amorphous germanium. In 

that case a number of model approximations are necessary in the 

derivation of the basic formulae. We assume that the transition 

·rate can be written in the MA form given in eqn. (4.1.1). The quantity 

Ro is a variable parameter since we have no detailed knowledge of the 

electron-phonon interaction in these materials. We also assume that a 

is a constant independent of the energy of the state. Many authors 

have argued that this is not possible since a = 0 at the mobility edge 

i.e. at an energy Em (Abraham and Edwards 1972; Pollit 1976). These 

authors assume a is proportional to (E - E )n, where n S 1. The m 

effect of allowing an energy dependence for a could be calculated 

using the basic equations outlined in this work. For low temperatures, 

the effect should be small since the quantity (E - E ) will not vary m 

significantly over the energy range of interest. Also, the power law 

dependence is much slower than the dominant exponential character of 

the important quantities arising in the integrands, which may. justify 

our approximating a by a constant. 

§9.6 The Transition Rates 

Our approximate formula for the transition rates is open to 

severe criticism in amorphous semiconductors. Emin (1974) has calculated 

the rates for a more general case. He argues that multi-phonon contributions 

are significant for the temperatures at which the experiments on amorphous 
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materials are conducted (70 K to 300 K). It is, however, difficult 

to see how the Ti law may be derived if the rates differ significantly 

from the MA form. It is not possible to obtain. simple analytical 

formulae for the Emin type rates. However, Emin has shown the 

temperature dependence of the rates, computed numerically (Emin 1974). 

He argues that the Ti law may follow directly from the fact that, 

under certain conditions, the logarithms of the rates themselves are 
! 

proportional to T4. This argument makes no appeal to the percolation 

aspect of hopping. If Emin's rates are correct, then the observed 

behaviour is due to a combination of the intrinsic temperature dependence 

'of the rates and the effects discussed here. 

The interpretation of some of the quantities arising in the MA 

rates needs revising in the case of disordered semiconductors. The 

energy difference ~ = IE. - E.I which arises in these rates is usually 
1 J 

interpreted as the energy associated with a single phonon, which gives 

rise to the transition. In our analysis the largest energy which 

enters into the calculation is spkBT although, as we point out above, 

the important energies are about spkBT/S. For liquid helium temperatures 

(i.e. impurity conduction in crystalline semiconductor~ this energy is 

less than the maximum phonon energy tw • There is, therefore, no max 

effect when one introduces a realistic cut-off in the value of~. In 

the case of amorphous semiconductors, however, the value of spkBT/5 

is much greater than ~w • We, therefore, have to discuss the effect max 

of introducing a maximum value for ~ into the calculations. The effect 

is similar to that due to the bandwidth restriction described in 

Chapter 6. However, in this case, the permitted energy area in the 

(E l ,E2)-plane has diagonal form running from lower left to upper right 

of this plane. The intercepts on the El = 0 line are E2 = ± W, where 

W = ~wmax. Thus A(q), for q > W, becomes the area of a rectangle lying 
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at 450 to the El = 0 axis with isosceles triangles at each end. 

Preliminary investigations show th~t adopting this form for A(q) 
1 . 

leads to deviations from the T4 law for parameter values appropriate 

to amorphous semiconductors. Our derivation of the basic formulae 

describing degenerate hopping in these systems must, therefore, rely 

on some other interpretation of the energy difference~. Whilst 

firm conclusions must await a detailed analytical calculation of 

the transition rates, we may tentatively suggest that for amorphous 

semiconductors, ~should be associated with an energy difference 

arising from multiphonon contributions rather than single phonon 

processes. 

Finally, we wish to discuss the parameter R. We see from eqns. o 

(4.1.3) and (4.3.1) that for n-type crystalline germanium g is independent o 

of T, whilst Ro is proportional to T. We have assumed that this is so 

for all the systems we have investigated. Most authors quote the 

characteristic hopping frequency R instead of g. In fact R = 5.4 x 1011 T H 
000 

when g = 1 mS. It follows from Table 2 that R ~ 1011 Hz for n-type 
o 0 

crystalline germanium. For the n-channel and p-channel devices, the 

inversion layer experiments show R ~ 1012 Hz and 109 Hz respectively o 

for tail state hopping. For impurity conduction in the n-channel 

device R ~ 1013 Hz. Finally, the values for R obtained from Table 2 
o 0 

15 16 for amorphous germanium imply that Ro ~ 10 ~ 10 Hz for T ~ 100 K. 

This last value may seem high because it is often assumed that R is o 

in the order of a typical phonon frequency vph (see, for example, Mott 

and Davis 1971). 

generally valid. 

There seems little reason to suppose that this is 

The assumption that Ro ~ v arises from the ph 

observation that Ro is of the order of the maximum possible hopping 

rate permitted in the theory which cannot be greater than vph • However, 

the hops which are significant in determining <cr> are those between 
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sites having energy values and intersite separations in the immediate 

neighbourhood of the critical percolation surface and these proceed 

at a rate many orders of magnitude below R. Thus while the model o 

formally allows hop rates of the order i015 
Hz in amorphous germanium, 

they do not affect the calculated values of the conductivity. 

We see that to obtain rates in the order of R , the sites i and j 
o 

must have €i ~ €j and very small intersite separation r
12

• This 

second criterion totally invalidates the MA calculation, which assumes 

large site separations. Furthermore the MA rates rely on the energy 

difference arising primarily through the random potential fluctuation. 

For small r, this will not be the case because the resonance energy 

becomes large. In Appendix 3 we calculate the transition rates for 

all values of the parameter ~/W. The results, shown in Figure 32, 

indicate that all transitions occur at rates many orders below R • 
--- 0 

Thus the value of the parameter R = 1015 which arises as a consequence 
o 

of our model in amorphous germanium does not signify the maximum 

hopping rate possible in such a system. 

§9.7 The AC Conductivity 

The pair approximation given in Chapter 8 is fundamental to 

the study of <ol(w». It is exact for w ~ m and for n ~ O. 
s It has 

long been recognized in the literature that the pair approximation 

is a low density formula, but there has been no attempt to quantify 

what is meant by "low density". We see that only sites a distance R 
w 

apart contribute to <ol(w». The pair approximation is only valid 

ifR -1/3 When R approaches the average intersite separation < an w s • w 
(i.e. as w ~ 0), contributions from clusters of three and four sites 

and so on, become important. However, the transition to dc behaviour 

is rather rapid since R is also in the order·of the average intersite p 
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separation. We would, therefore, expect the transition from a 

regime where the pair approximation is valid, to one where the dc 

formulae are applicable to be rapid. It is for this reason we feel 

secure in writing 0 = 01(0) + Oi(w). We wish to emphasise the point 

made in Chapter 8 concerning the inconsistency between the ac and dc 

data obtained from studies in amorphous germanium. The observed ac 

behaviour occurs at a frequency such that R >R , which is somewhat w p 

unphysical. We would expect the dc-ac transition at a much higher 

frequency. 

The general shape of the o(w) versus w curve, shown in Figure 27, 

has two "shoulders" at frequencies w1 and w2 where WI < w2• We would 

expect the first shoulder to occur at a frequency WI such that R % R 
P w 

i.e. WI ~ Ro exp[-RpJ. The second shoulder should occur at w2 % Ro ' 

The frequency w
1 

is higher than that observed experimentally, whilst no 

studies have shown saturation. As pointed out in Chapter 8, reducing 

Ro does not remove the inconsistency, since using the values of PF 

deduced from the ac data, also reduces R • 
P 

We are therefore led to the following conclusions. Firstly, a 

more detailed treatment of ac conductivity is needed. Secondly, the 

observed ac conductivity in amorphous germanium, described in Chapter 

8, cannot be interpreted on the basis of the Austin-Mott formula. 

The experimental densities are such that we predict dc behaviour in a 

regime ~here ac behaviour is observed. This observed conductivity 

must therefore be attributed to some process other than the simple 

Fermi level hopping described by the Austin-Mott formula. 

§9.8 Future Work 

There are a number of outstanding problems basic to transport 

processes in systems of localised states. The development necessary 

in order to acquire a deep understanding of the physical pro'cesses 
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involved is daunting. Here, we shall merely list some areas of 

interest. 

An understanding of the role of the structure of materials 

on the electron statistics is fundamental (for example, in studies of 

the Hubbard energy and double occupancy). The electron statistics 

in turn have a great effect on transport properties such as the electrical 

conductivity. It would therefore be of great interest to perform a 

more general analysis concerning different site location and energy 

statistics. 

The introduction of more realistic density of states profiles 

should also receive attention. This is particularly true in the case 

of inversion layer studies, where the variable Fermi level is a 

powerful tool. Combined with a realistic density of states calculation, 

it should enable one to study the relevant strengths of the different 

transport processes, such as hopping and activation to the mobility 

edge, which occur in these devices. 

Fundamental to the study of hopping conduction are the transition 

rates. For the case of impurity conduction in n-type crystalline 

semiconductors the rates of Miller and Abrahams (1960) are applicable. 

In all other cases studied in this work, the rates are introduced in a 

somewhat ad hoc manner. A study of the transition rates in disordered 

materials, inversion layers and p-type semiconductors would be 

invaluable in this context. Presumably such a calculation would 

remove such worrying features as the large energy differences and 

Ro values obtained from the studies of amorphous germanium reported here. 

As emphasised earlier, the ac conductivity should be reviewed in an 

attempt to remove the inconsistencies which arise in the study of the 

ac and dc data obtained from a variety of materials. 
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Transport coefficients other than the conductivity should 

receive attention. Notable amongst these are the Hall constant and 

the thermopower, both of which are very poorly understood. 

§9.9 Conclusion 

We conclude that this work develops the simple hopping theory, 

which adequately describes experimental data obtained from a variety 

of systems, notably impurity conduction in crystalline and amorphous 

semiconductors, hopping conductivity in inversion layers, and the basic 

conduction process in amorphous semiconductors. Various problems 

have been isolated, which relate to the model adopted rather than 

any approximations inherent in the deduction of the analytical 

formulae. It is hoped that future work will lead to considerations 

of other transport coefficients and more physically meaningful models. 
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APPENDIX 1 EVALUATION OF THE INTEGRALS INVOLVED IN 2B, 0 AND 
P 

<a1(~» FOR HOPPING IN.VERY WIDE BANDS 

Al.l Evaluation of the Integral Involved in 2B 

We see from (5.1.5) that 

Hence the integral involved in (5.1.2) is (kBT)2a -3J (R
p

) with 

R 

(A1.1.l) 

J(R) = J PR2(2R - v)(4 + 6q + 41nq)dR (Al.1.2) 
p 0 

where q = s - 2R + vlnR and we have put r~ = O. We may therefore write 
p p 

where the terms on the right are the contributions from 4, 6q and 

41nq in (A1.1.2) respectively. The evaluation of Jl(Rp) is trivial: 

J 1 (Rp) = 2R~Gp - }>] (Al.l. 4) 

The evaluation of J 2 (Rp) is less trivial but is nevertheless elementary. 

When (5.1.11) is used to eliminate s we find that 
p 

3b1 2 7 v v J J (R ) = 6R - R +!R (q -~) + -(- - q ) 2 p p 5 ppm 12 33m (A1.1.S) 

The integral J 3 (Rp) cannot be evaluated by elementary methods. We 

therefore approximate q by a - fR with a and f chosen to match the 

magnitude and slope of q at R = R. Hence f = 2 - vIR and a = q + fR ppm p 

where we have used (5.1.11). With this approximation, J
3

(Rp) may be 

evaluated by elementary (but tedious) methods. We find that 

3 q. (AI. 1. 6) 

+ (7) ln ~ 
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For a two-dimensional system the corresponding integral is 

given by (Al.l.2) with 

J l (Rp) = ~ R2(R 3 - -v) 3 p p 4 

J 2 (Rp) 2R2 [R2 + R (2q - ;\1) 3 
- 2qm~ = + 4\1(v p ppm 

J
3

(Rp) 3 8 1 2[ J = R -(lnq - -) - R 2vln~ p 3 m 3 p 

+ [R~ + R 2a + 
p f 2 (7) \n (:)J [v - j~J 

Al.2 Evaluation of the Integral Involved in a p 

(A1.1. 7) 

(A1.1. 8) 

(A1.l. 9) 

With the aid of eqn. (Al.l.l) we 

2 -5 

see that the integral involved 

in (5.1.4) is (kBT) a K(R
p

) where 

R 

f 
p 4 

K(Rp) =0 R (4 + 6q + 4lq)dR 

(Al.2.1) 

where the successive terms in the second line are the contributions 

from 4, 6q and 4lnq in the first line. Proceeding as in Al.l 

we find that 

Kl(Rp) = ~ R! (Al. 2.2) 

2 5 1 
K2(Rp) = 5 Rp Rp + 3(~ - SV) (AI.2.3) 

K3 (Rp) = ~[R5lnq _ {.!. R5 + .!. R4 .! + .!. R3 (.!) 2 
5 p m 5 p 4 p f 3 p f 

(AI. 2.4) 

For a two-dimensional system the corresponding integral is given 

by (Al.2.l) with 
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Kl(Rp) = R; 

K2 (Rp ) = ; R;[Rp + ~(~ - DJ 
= R; [lnqm - !] 

_ ~.rl R3 lR2 ~ + R [a)2 
fD P + ~ 2 f 2 f 

AI.3 Evaluation of <a1(~» 

(Al.2.5) 

(Al.2.6) 

(Al.2.7) 

To calculate <a1(~» we set sp equal to the minimum value of s 

·in (3.2.5). Then the modulus sign may be removed from Is-spl and 

r = r throughout the range of integration. We assume that the . a 

density of states has a constant value PF and make the changes of 

integration variables: R = ar, x = SEI/2 and y = SE2/2. Hence, 

using (3.2.4), (4.1.2), (4.1.4) and (4.1.5) we obtain 

(A3.l.1) 

where 

(A3.l. 2) 

and 

I = _....,.-;(:..;..x ...... -yL..:);...;;d7x;.;;;.dy'--.--;-r_~ 
J""J"" 2 cosh x cosh y sinh(x-y) (A3.l. 3) 

-oo-co 

The integral II is just r(5+v)/25+v (Dwight 1969). To evaluate 

12 we make the further change of variable ~ = (x+y) and n = x-yo 

Then we have 

I = ! J""dY sin~ n Joo cosh 
d~ 

2 ~ + cosh n 
00 "" 

= ! Joodn n 4n (A3.l. 4) 
sinh n 

. sinh n 
00 

2 
= 2lT /3. 
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In the second line we have evaluated the elementary integral over 

~ and in the last line we use the value of the remaining integral 

quoted by Dwight (1969). 

When these results are substituted into (A3.l.l) we obtain, 

with the aid of eqn. (5.1.6), the result (5.3.1) for a three-dimensional 

system quoted in the text. The evaluation of <ol(~» for a two­

dimensional system proceeds in an almost identical way and yields 

eqn. (5.4.1). 
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APPENDIX 2 EVALUATION OF s AND cr FOR HOPPING IN BANDS OF FINITE WIDTH 
P P 

Ai.l Fermi level lying at the centre of the band 

In this section we evaluate the expressions (3.3.2), (5.1.2) and (5.1.4) 

for S, 2B and cr for the intermediate bandwidth case discussed in 
p 

Chapter 6. We suppose a rectangular band of states whose width 

is W. The effect of the bandwidth restriction is to introduce a 

permissible energy square in the (€1'€2)-plane as shown in Figure 32 

The shaded area is A(q) where q = s - 2R with R = are A#(q) depends 
p 

on the relative sizes of q and W#= W/2kBT. From the diagram we 

. deduce that 

A#(q) 2 o < q < W# = (kBT) 6q 

A#(q) = (k T)2(4W# - 2q) W# < q < 2W# (A2.1.l) B 

A#(q) = 0 2W# < q 

Since q varies from 0 to qmax = s we may write, using eqns. ~.1.2) 
p 

and (A2.1.l) 

2B = 

where 

a 

2R)2R
2

dR + IdR
2

(4W 

c 

a = l(s - W)e(s - W) 
p p 

b = s /2 p 

c = l(sp - 2W)e(sp - 2W#) 

d = l(sp - W)e(sp - W#) 

- 2s + 4R)dR 
P 

with e(x) denoting the unit step function. Hence: 

(A2.1.2) 

(A2.1. 3) 
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FIGURE 31 Schematic dia~ram of the q~ 1,E
2

) = q contours for the case 

of a finite bandwidLh. Figure (a): Fermi level lying at 

the centre of the band. (b): Fermi level in the band but 

off-centre. (c): Fermi level outside the band. In each ase 

A(q) is shown shaded and the dots indicate the permitted 

energy square in the (E 1 - E2)-plane. 
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x (3s 4) s W'" 
p P 1T (PFkBT) 2 

2B (_s4 + 8s3W'" - 8s W ... 3 + 4W ... 4) W" < s < 2W (A2.1. 4) = 
24C1.

2 x 
P P P P 

x (24s2W .. 2 - 40s W .. 3 + 20W .. 4) 2W < s 
P P P 

The quantity S is easily evaluated to give 

(A2.1.5) 

Combining equations (A2.l.4) and (A2.l.5) using (3.3.3) we obtain 

polynomial equations for sp' the solutions of which are discussed in 

Chapter 6. 

The evaluation of the pre factor proceeds in a similar way. 

Using 

2 

1 
(3s5) s 

p P go 1T (p FkB T) 5 los4w" - 20s2w .. 3 + 20s w .. 6 
- 6W S) W" C1 = 

l60Cl. 4 (-s + < s p p p p p P 

(40s3
W

2 100s2w .. 3 
+ 100s W .. 4 - 38W" S) 2W'" < 

P P P 

W" 

< 2W'" 

s 
p 

(A2 .1.6) 

We note that the expression for C1 reduces to those given in Chapter 4 
p 

and Chapter 5 in the limits of very narrow bands (s »W"') and very 
p 

wide bands (sp < W"'). 

A2.2 Evaluation of sp and ap when the Fermi level does not lie in 

the centre of the band 

We may readily extend the arguments presented above to the case 

when the Fermi level does not lie in the centre of the band of 

localized states. Once we have deduced A(q) for the different cases, 

the integrals are trivial but tedious. We suppose that the bandwidth 

is Wand that the Fermi level is displaced by an energye: from the 



95 

centre of the band. It is convenient to distinquish two regimes: 

the Fermi level lying in the band (~ - E > 0) and the Fermi level 

lying outside the band (¥ - E < 0). 

1. Fermi level outside the band 

The effect of moving the Fermi level below the centre of the 

band is to offset the permissible energy square in the (E 1,E2)-plane 

towards the upper right quadrant (see Figure 31). If e: > W/2 then 

the square lies entirely in this quadrant. In this case 

A"'(q) = 0 q < e:'" - W'" 

A"'(q) e:'" - W'" < q < E'" + W'" (A2.2.l) 

A~(q) = 0 E~ + W~ < q 

where W'" = W/2k
B

T and E'" = E/kBT. We see from eqn. (A2.2.l) that 

the lower limits on the integrals involving A"'(q) depend on whether 

), 

1 
I 
I 

, I 
I 

'"... _ W ... ]). i I s < e:'" + W' (lower limit = 0) or s > E' + W'" (lower limit = l[s - ~ p p p 

When spkBT lies within the band, we obtain 

s 
p 

(A2.2.2) 

We may interpret the two terms in this equation as follows. The 

second term arises because of carrier activation from the Fermi 

level to the edge of the band of localized states. The first term 

describ~s the resulting hopping conductivity that takes place and, 

since s kBT lies within the band, s has a T- l / 3 dependence. We note 
p p 

that T is 50% larger than when the Fermi level lies at the centre o 

of the band. Above a temperature e"', s becomes greater than e:'" + lr 
p 

and eqn. (A2.2.i) is no longer valid. We may readily deduce that 

(A2.2.3) 
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For temperatures greater than e', s is given by a quadratic equation, 
p 

which is easily solved to give 

(A2.2.4) 

The term in the square bracket is very nearly unity and so we may 

write 
E (1) 

sp = sp.., + TT 
B 

(A2.2.5) 

where E(l) = £ + W/6 (we have ignored the small correction due to 

the temperature dependence of N). We see, therefore, that the 
p 

d " 'II b . d 'h t" E (1) con uctlVlty Wl e actlvate ,Wlt an ac lvatlon energy • 

2. Fermi level within the band 

If the Fermi level lies within, but below the centre of, the 

band then the permissible energy square is displaced towards the upper 

right hand quadrant but is not contained wholly within it. In this 

case 

A'(q) 

A'(q) 

A'(q) 

2 = (kBT) 6q 

= (kBT)2[2q + 2(W' - £')] 

= (k T)2(4W' - 2Q) 
B 

A"(q) = 0 

o < 

W' - £" 

W' 

q < W' - £' 

< q < W" + £" 

< q < 2W" (A2.2.5) 

2W" < q 

Because of the many regimes that exist, we have tabulated the results 

in Tables 4 and 5 where for completeness we have also given the cases 

when £ > W/2. 

-1/3 
a T law. 

We see that for sufficiently low temperatures we have 

For T > e(4) we have an activated behaviour and the 

activation energy depends on Wand £. At intermediate temperatures 

(regions II and III) the temperature dependence of sp is more involved, 

but the temperature range covered by these regions is small compared 

with that covered by I and IV. 



TABLE 4 Table indicating the dependence of the critical percolation 

exponent s and the prefactor a on the system parameters. 
p p 

Section A deals with the case of the Fermi level lying outside 

the band. Section B deals with the case when the Fermi level 

lies inside the band, at an energy € below the centre. For 

each case the solution/equation for s and a are given under 
p p 

the temperature regime for which they are valid. Here 

a; = goTI(PFkBT)2l60a4, K a W~ - £~, and J = W~ + €~, with 

W~ = W/2kBT and €~ = €/kBT. 



A: FERMI LEVEL OUTSIDE THE BAND 

o < T < e (1) 

s = f24.
2N

pl! + 

p ~PFkB~ 
(J = (J'(s + K)5 

p P P 

EO) 
s =--+s 

p kBT poo 

(J = r(S + K)5 - 5(s + K)(s - J)4 + 4(s - J)5l 
p L p p p p J 

B: FERMI LEVEL INSIDE THE BAND 

o < T < e(2) 

s _ r16.~J! 
p ~PFkB~ 

(J = (J'3s 5 
p p p 

e(2) < T < e(3) 

~16a2N~ ~ 4 3 ~ k ¥ = 6s - 4(s - K) (s + K) /(8 + K) 
TIP F B P P P P 

(J , = (J' r3s 5 - (3K - 2s ) (S - K) 41 
P PL P P P J 

e (3) < T < e (4) 

- 8(s + K)(s - J)3 
P P 

(J = (J' r3s 5 -
P . PL P 

(3K - 2s )(s - K)4 - (3J + 28 )(S - J)41 
P P P P J 

e(4) < T 

E (2) 
s =--+s 

p kBT poo 

(J P = (J; [3S~ '- (3K - 2sp ) (Sp - K) - (3J + 2sp )(sp - J) 
4 

- (sp - J - K) 5J . 

TABLE 4 



9 (1) 
W np 

[3 r 24a2N:k; 

9 (2) [(W - 2;>3WPFf 
128 a NpkB 

9 (3) NOTE A 

9 (4) NOTE A 

E(l) e: + W/6 

E (2) 
[8 - 3(1 - ~:)J 

12 W 

I 

TABLE 5 Table giving the expressions for the temperatures 9(i) and 

. E(i). f h energles In terms 0 t e system parameters. 

Note A 

The temperatures 9(3) and 9(4) are determined numerically 

by solving the polynomial equations for s , and then determining 
p 

at what temperatures sp = WI + €. (a(3», and sp = 2WI • (a(4», 

respectively, in a self-consistent manner. 
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APPENDIX 3 THE TRANSITION RATES 

A fundamental quantity in the study of hopping conduction is 

the equilibrium transition rate R12 between sites 1 and 2. In 

particular, we wish to discuss the single phonon rates, originally 

calculated by Miller and Abrahams (1960). Their general method 

of calculation is as follows. They have a variational calculation 

of the pair wavefunction and then calculate transition rates using 

the deformation potential interaction between two pair states of 

different energies. These rates are then averaged over all 

directions. The resultant form for R12 is given by eqns. (4.1.1) 

and (4.3.1). 

Miller and Abrahams make a number of modei assumptions and 

approximations. Perhaps the most important from the point of view 

of this work is the low density approximation. By low density 

Miller and Abrahams mean that the resonance energy W, arising 

through the overlap of the component states, is much less than ~, 

the energy difference arising from the random potential field 

associated with neighbouring donors and acceptors. For small site 

separations or slowly varying potentials, the approximation W <~ ~ 

is not valid. It is of interest to calculate the transition rates 

for all values of W/~. 

The following analysis follows that of Miller and Abrahams very 

closely. We generalise the arguments, however, by keeping the exact 

wavefunctions which result from the variational calculation of the 

pair states. We suppose that a sufficient basis for the one electron 

pair wavefunction ~ is a linear combination of the hydrogen-like wave­

functions $ of each isolated state. A straightforward but tedious 

variational calculation then gives 
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D+1jJ. + 1jJ. 
'1'. = 1. J 

1. (T+) I (A3.I) 

D-1jJ. + 1jJ. 
'1'. = 1. J 

J (T-)! (A3.2) 

where 

D± = (D/2W)(I ± F) (A3.3) 

(A3.4) 

(A3.5) 

Here ~ is the energy difference due to the local environmental 

potential, and is given by ~ = ~. - ~. = <1jJ. IVI1jJ.> -<1jJ.lvl1jJ.>. W 
1. J 1. 1. J J 

is the resonance energy between the two sites and S = <1jJ.I1jJ.>. 
1. J 

We now wish to calculate the matrix elements 

<H> = <'¥.IElnl'¥.> 
J 1. 

(A3.6) 

where EI is the deformation potential and n is the dilation which 

we may write in terms of the annihilation and creation operators 

+ 
for phonons of wavelength q, bq and bq,as 

n = i (zp h vs) I I q! G q e iq.!. - b + e -i~. ~ 
o q q_ 

For phonon 

The term in the square bracket may be written as 

[ ] I ( + - iq.R) =----.- DD +e--
(T+T-)i . 

(A3.7) 

(A3.8) 

(A3.9) 

where we have dropped a small term involving an overlap integral 

between the two sites and assumed q »a. Here R is the intersite 

separation. The total transition rate is then 
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(A3.l0) 

Thus 

(AJ.H) 

where we have dropped an oscillatory contribution to the integral. 
, 2 

The variation calculation gives the energy difference €. - E. = ~F(l - S ). 

We may therefore write (A3.ll) as 

[ 
~F ] 3 

1 - S2 + -2T T 

J 1. ' 

(A3.l2) 

where q = Is is instructive to put (A3.l2) in terms 

of the quantities W, S, ~, using (A3.3), (A3.4) and (A3.5). Thus, 

with x = 8~F/(l - S2) 

R .. = 
1.J 

where R is given by (4.3.1). Here F(ar) is defined by writing 
o 

(A3.13) 

2 -1 W = (e o/6u€€0) F(ar) = WoF(ar). To regain MA rates we put S = 0 

and assume ~ »W. Eqn. (A3.l3) then reduces to the MA rates given 

byeqns. (4.1.1) and'(4.3.1). However, both Sand W have primarily 

the same r-dependence, so strictly speaking the MA rates are only 

valid if W »~» W which is true for large separations. 
o 

In Figure 32 we show plots of 10g(R .. /R ) against or,for various 
1.J'. 0 

values of the parameter ~/W. We see that for all values of or o 

and~W the hopping rates R .. are many orders less than R. For the 
a 1.J 0 

site separations which are important in determining the conductivity, 

however, the MA rates are valid. In this region the parameter R is 
0-

a sensible characteristic frequency. The purpose of this section 

has been to illustrate the derivation of the MA rates and to point out 

rates in the order of Ro cannot occur in a realistic hopping system. 
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FIGURE 32 Plot of log(RI2/Ro) against the site separation. The numbers 

on each curve give the relevent value for Wo/~. The remaining 

parameter values were chosen to be a-I = 1.4 nm, T = 200 K. 
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