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Abstract 
 
Background  
Preterm labour and post-partum haemorrhage are leading causes of pregnancy 
morbidity and mortality. Previous work identified potassium channels expressed 
in myometrium and  hypothesized modulation of channels with greater 
expression in MSMC than VSMC will influence contractility and avoid 
cardiovascular effects. By combining calcium channel blockers with potassium 
channel openers an enhanced tocolytic effect is anticipated.  VU590 inhibits Kir 
7.1 and it was  hypothesised would elicit a contractile effect with therapeutic 
potential for post-partum haemorrhage. 
 
Aim 
To determine the effect of select potassium channel openers and a specific 
potassium channel blocker in myometrial contractility.  
 
Methods 
Human and murine myometrial strips were used in contractility organ bath 
experiments. Select combined doses were tested in myometrial small arteries 
using wire myography. Western blotting was carried out to determine the 
gestational and labour-state expression of potassium channels in human 
myometrium and myometrial small arteries. 
 
Results  
Pinacidil demonstrated a relaxatory effect on both myometrial and vascular 
smooth muscle. Riluzole reduced contractility alone and greater inhibition in 
combination with nifedipine than nifedipine alone. Riluzole appeared to have a 
mild effect on myometrial arteries.  
Kir 7.1 showed a trend of diminished expression by gestation and was down-
regulated in term and preterm labour states.  
VU590 elicited a significant increase contractility characterised by a prolonged 
contraction phase of up to 6.7±1.9 hrs (VU590 10 µM). A gestational-dependent 
effect was seen on murine myometrium. 
 
Conclusion 
The combination of nifedipine with potassium channel openers has a more 
potent effect on reducing contractility than either compound alone. Riluzole 
combined with nifedipine warrants further investigation for potential tocolytic 
therapy. 
VU590 augments spontaneous contractions profoundly in human myometrium 
in vitro and could have potential therapeutic benefits in the treatment of post-
partum haemorrhage.  
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in myometrial small arteries and myometrial tissue compared to the 

control protein β-actin. 
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3.3.5 Expression of SK3 (ratio SK3/β-actin) in myometrial small arteries  

and myometrial tissue. 
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3.3.6 The expression of TREK1 in myometrial tissue (ratio TREK1/β-actin) 

from 4 groups of samples: pre-term labour, pre-term non-labour, 

term labour, term non-labour quantified by western blot. 
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3.3.7 Image of exposed western blot film to show bands detected for 

TREK1 in myometrial small arteries and myometrial tissue compared 

to the control protein β-actin 
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3.3.8 Expression of TREK1 (ratio TREK1/β-actin) in myometrial small 

arteries and myometrial tissue. 
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3.4.1 Percent change in measured parameters from pre-dose 

contractions with dose spread of VU590 alone in D18 murine 

myometrium and 1 nM oxytocin, 10 μM VU590 with and without 

oxytocin in D15 and D18 murine myometrium 
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3.4.2 Gestation and dose dependent effect of VU590 on total activity 

integral as a % of pre-dose contractions 
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3.4.3 Gestation dependent effect of VU590 10µ M with and without 

oxytocin 1 nM on total activity integral as a % of pre-dose 

contractions 
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3.4.4 An example of a dose response to VU590 in spontaneously 

contracting human myometrium with illustration of divisions for 

analysis. 
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3.4.5 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of each of the first 5 contractions 

following dosing with either 1 μM , 3 μM, 10 μM, 30 μM, 100 μM 

VU590 or time matched control. 
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3.4.6 The average duration of the prolonged contraction phase in hours 

for each dose of VU590 
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3.4.7 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of the prolonged contraction 

phase following dosing with VU590 vs a time match control 
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3.4.8 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of average of remaining 

contractions at 1 μM, 3 μM, 10 μM, 30 μM, 100 μM. 
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3.4.9 Examples of pre-dose contraction shape and post-dose/recovery 

contraction shape that was observed in all experiments with VU590 

with oxytocin or without. 
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3.4.10 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of each of the first 5 contractions 

following dosing with 1 nM oxytocin alone or combined with either 

1 μM, 3 μM, 10 μM, 30 μM, 100 μM VU590. 
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3.4.11 The percentage of pre-dose contractions of activity integral of each 

of the first 5 contractions following dosing with 1 nM oxytocin, 1 μM 

VU590 and 1 μM VU590 combined with 1nM oxytocin. 
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3.4.12 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of the prolonged contraction 

phase following dosing with 1 nM oxytocin combined with VU590 1 

μM, 3 μM, 10 μM, 30 μM, and 100 μM. 
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3.4.13 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of the prolonged contraction 

phase following dosing with 1 nM oxytocin combined with VU590 or 

VU590 alone. 
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3.4.14 The average duration of the prolonged contraction phase in hours  
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for each dose of VU590 alone and when combined with 1 nM 

oxytocin   
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3.4.15 The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of remaining contractions with 1 

nM OT and combination with 1 μM, 3 μM, 10 μM, 30 μM, 100 μM 

VU590 
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3.4.16 A typical film of a western blot quantifying the expression of Kir 7.1 

against the expression of the control protein β actin for pre-term 

labouring, pre-term non-labouring, term labouring, and term non-

labouring samples of human myometrium. 
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3.4.17 Graph showing individual Kir 7.1/β-actin ratios for blots in each 

group of samples of human myometrium - pre-term labouring, pre-

term non-labouring, term labouring, term non-labouring. 
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3.4.18 Kir 7.1 expression plotted by gestational age at delivery with a lower 

expression and a downward trend towards term in labouring 

samples and with a higher expression and an upward trend towards 

term in the non-labouring group 
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3.4.19 A typical film of a western blot quantifying the expression of Kv2.1 

against the expression of the control protein β actin for pre-term 

labouring, pre-term non-labouring, term labouring, term non-

labouring samples of human myometrium. 
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3.4.20 Graph showing individual Kv 2.1/β-actin ratios for blots in each 

group of samples of human myometrium - pre-term labouring, pre-

term non-labouring, term labouring, and term non-labouring.  
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4.1 Reproduction of figure 2 from Duprat et al (2000) - Dual effect of 
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1. Introduction 

 

1.1  The problem of preterm labour 

Preterm birth continues to be a national and global problem (Figure 1.1). 

Complications of pre-term birth continue to be the largest direct cause of 

neonatal deaths and deaths of children under five,  globally (Blencowe et al 

2013). Recent data published by the World Health Organisation from 65 

countries shows that in all but three countries, the rates of preterm birth are 

increasing (Blencowe et al 2012). The global average preterm birth rate for 2010 

was 11.1% with a global increase of 14.7% from 1990 to 2010 (Blencowe et al 

2012). There continues to be a disparity in preterm birth rates from high-income 

(9% average) to low-income countries (12% average) (WHO 2015) (Figure 1.2) . 

This disparity continues when looking at the trends over the past 25 years. There 

was a 19.4% increase in preterm birth rates in Developing regions from 1990 to 

2010, an increase of 9.1% in Latin America, and an increase of 25.8% in the 

Caribbean for the same time period (Blencowe et al 2012). Although the increase 

in the Developed regions may seem disproportionately high, it is worth bearing 

in mind that in developed regions, deaths resulting from prematurity are 

reducing significantly (Blencowe et al 2012). Increased antenatal care and 

improved antenatal ultrasound surveillance leads to more iatrogenic preterm 

birth in high-income countries, largely to the benefit of both maternal and child 

health; supported by access to high quality and specialist neonatal care 

(Blencowe et al 2013). Aetiology of preterm birth differs from high income to 
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low-income countries, with assisted reproduction and higher multiple pregnancy 

rates contributing to the increase in preterm birth rates seen in high-income 

countries from 1990 to 2010 (Blencowe et al 2013). More than 90% preterm 

infants in low income countries die where as less than 10% die in high income 

settings (WHO 2015). In recognition of the significant medical, social, and 

economic impact that infant and pregnancy loss, or significant disability resulting 

from preterm birth has on worldwide communities; The United Nations focused 

on the reduction of childhood mortality as part of their Millennium Development 

Goal programme (UN 2015). From 1990 to 2015, Goal 4; to reduce child 

mortality recognised the significance of the number of worldwide neonatal 

deaths caused by preterm birth complications (35%) (UN 2015). This continues to 

be a priority in the new UN Sustainable Development Goals that are initiated in 

January 2016 with the aim of ending preventable deaths of newborns and 

children under 5 by 2030 (UN 2016). All countries are encouraged to aim to 

reduce neonatal mortality by < 12/1000 live births, and deaths of under fives to 

<25/1000 (UN 2016). Deaths by complications of immaturity represent 43% of all 

infant deaths in England and Wales (Figure 1.3). In both low-income and high-

income settings, there are simple cost-effective and high-impact interventions 

that could improve survival and reduce morbidity (UN 2015). These include 

increased access to antenatal health care, better social support for pregnant 

women, and simple treatments and technique that could support the preterm 

newborn such as kangaroo care and oxygen support (UN 2015). As 84% of 

preterm births in low-income countries are moderate to late preterm births, a 

significant number could potentially survive, or have lessened  disability with 
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minimal intervention and this remains a priority of intervention strategies 

(Blencowe et al 2012).  

Although this data is insightful, and encourages national and global 

improvements in care to prevent preterm birth; issues with data quality must be 

considered. Access to antenatal ultrasound for pregnancy dating differs from 

country to country, and this affects accuracy of gestation-at-delivery data. 

Reporting systems and accuracy of birth outcome data from hospitals and 

medical centres vary country to country with a lack of consistency in 

classification, live birth and stillbirth reporting and birth and death registration 

requirements (Lawn et al 2010). In recognition of this, recommendations to 

improve data quality includes; using more household and survey data on birth 

outcome, using standardised definitions and reporting tools; and having more 

standardised death registration and certification systems (Lawn et al 2010). This 

will assist in monitoring whether the desired reduction in neonatal and infant 

mortality as a result of the complications of prematurity are being achieved.  
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Figure 1.1  Key facts from World Health Organisation Factsheet on Preterm birth 

(2015) 

 

 

 

Figure 1.2: The 10 countries with the highest global preterm birth rates per 100 

live births (blue), against the rate for the USA and England and Wales. All data 

from WHO (2012) other than data for England and Wales from ONS (2014). 
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World Health Organisation November 2015 

Preterm Birth Factsheet No. 363 

Key facts: 

 15 million babies born preterm (before 37 completed weeks) 

 This number is rising 

 Preterm birth complications are a leading cause of death among 

children under 5 years old 

 Preterm birth is responsible for nearly 1 million deaths in 2013 

 3/4 of babies of babies lost could be saved with current cost-

effective interventions 

 Across 184 countries, preterm birth rates range from 5-18 % of 

babies 
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Figure 1.3: The percentage of total infant deaths, England and Wales (2012) by 

classification. (ONS 2014) 
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Numerous pre-pregnancy reproductive, medical, lifestyle and social factors have 

been associated with an increased risk of preterm birth (Table 1.1). In response 

to this a number of strategies have been implemented in order to reduce 

preterm birth rates. Improved access to healthcare, antenatal care, and lifestyle 

support for pregnant women may have an impact on reducing preterm birth 

rates both nationally and globally (WHO 2015). In addition to this, there are 

obstetric management strategies to reduce the likelihood of preterm birth in 

women who have been determined to be at risk (NICE 2015). As history of 
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preterm birth or mid-trimester loss is the biggest single indicator of risk of 

subsequent preterm birth, women reporting a history are offered screening in 

the antenatal period (Mercer et al 1996, Mazaki-Tovi et al 2007).  

Clinical trials of both prophylactic progesterone and of cervical cerclage have 

shown that administration to women at risk of preterm birth may reduce the risk 

of subsequent preterm birth although further trial data is awaited (Meis et al 

2003, Norman et al 2012, Deshpande et al 2013, Winer, 2015).  

Prophylactic progesterone and prophylactic cervical cerclage is offered to 

women with a history of spontaneous preterm birth or mid-trimester loss 

between 16 and 34 weeks of pregnancy and in those in whom a cervical length of 

less than 25 mm has been identified (NICE 2015). Prophylactic vaginal 

progesterone is offered to women with no history of spontaneous preterm birth 

but cervical length of less than 25 mm (NICE 2015); and prophylactic cervical 

cerclage for women in whom cervical length of less than 25 mm has been 

identified and who have had preterm pre-rupture labour of the membranes in a 

previous pregnancy, or a history of cervical length (NICE 2015). Intra-uterine 

infection must always be suspected where threatened preterm birth presents. 

Antibiotic use has previously been used in obstetric practice in an attempt to 

prevent preterm birth. Findings of the ORACLE II study found an increased 

cerebral palsy rates in babies born in the arm of the trial where antibiotics were 

administered when fetal membranes were intact (Kenyon et al 2008). This 

highlights the importance of due vigilance when introducing new treatment 

strategies, and of long-term follow-up in trial outcome design. The OPPTIMUM 

study for prophylactic vaginal progesterone to prevent preterm birth in those 
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with a history of preterm birth, is currently ongoing and has a 3 to 5 year follow-

up on infant development scores as part of the trial design (Norman et al 2012). 

This will inform practice as to whether prophylactic treatment such as this 

increases the primary outcome of birth at term, but will also inform any potential 

benefits or harms to ongoing child development. Previous trial findings in the 

success of cervical cerclage for prevention of subsequent preterm birth have 

varied in terms of timing, techniques used, and outcomes (Burghella 2011, Suhag 

2015). As such, although guidelines instruct on when not to offer 'rescue' cervical 

cerclage; whether to undertake 'rescue' cerclage if symptoms of threatened 

preterm birth present in the absence of infection bleeding or active contractions, 

is currently left to physician judgement (NICE 2015). When a woman presents in 

active suspected preterm labour, then fetal fibronectin testing can be a useful 

diagnostic test to determine the likelihood of birth within 48 hours (Deshpande 

et al 2013, Abbott 2015). This can assist the obstetrician considering access to 

the level of neonatal care that may be required and is locally available, and in 

considering administrating feto-protective agents (Table 1.2). The decision on 

when or whether to administer tocolysis may depend on presenting symptoms 

and the time needed to achieve care provision and treatments to improve 

neonatal outcome.  
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Category Risk Factor Source 

Reproductive/ Gynaecological 
history 

History of Pre-term 
Labour 

Mercer et al (1996), 
Mazaki-Tovi et al (2007) 

Multiple pregnancy Bloom et al (2001), ONS 
(2014) 

Assisted reproduction Dunietz et al (2015) 

Uterine abnormalities Woefler et al (2001) 

Short cervix Mercer et al (1996), Odibo 
et al (2003), Hughes et al 
(2015), Souka et al (2015) 

Short pregnancy interval Smith et al (2003) 

Placenta praevia Zlatnik et al (2007) 

Bacterial vaginosis Leitch et al (2003) 

Medical history Diabetes (Gestational 
and exisiting) 

Köck et al (2010) 

Social and demographics Ethnicity Lu and Halfon (2003) 

Age (younger or older) ONS (2014) 

Lifestyle Copper et al (1996) 

No antenatal care Hollowell et al (2009) 

Smoking Kyrklund-Blomberg and 
Cnattingius (1998) 

Alcohol use (4-7 or over 
7 drinks a week) 

Albersten et al (2004) 

Domestic violence Neggers et al (2004) 

Poor social support Hollowell et al (2009) 

Stress Cooper et al (1996) 

Long working hours van Melick et al (2014) 

Table 1.1: Reproductive, medical, lifestyle and social risk factors associated with 

spontaneous preterm birth. 

 

1.1.2 Definition 

Pre-term birth is defined as birth before 37 completed weeks of pregnancy with 

significantly higher morbidity and mortality in births occurring before 34 weeks.  

In the UK the age of viability was reduced from 28 completed weeks of gestation 

to 24 weeks in 1992 reflecting advances in neonatal support (Tucker & McGuire, 

2004).   
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1.1.3 Cause 

Williamson et al (2008) describe preterm birth as “a multi-factorial disease 

caused by genetic, social and environmental factors that most likely interact to 

increase risk”. Iatrogenic causes of preterm birth account for approx 30% of all 

cases and this rate has recently increased due to assisted reproductive 

technologies with its associated rise in multiple births. Improvements in 

ultrasound technology have also led to recognition of intrauterine growth 

restriction and fetal compromise (Danielian & Hall, 2005). Other causes include 

maternal factors such as cervical incompetence, general medical conditions, 

history of previous preterm birth and infection. Exposure to stress may lead to 

immunosuppression and infection and many commentators have highlighted the 

association of poor socioeconomic status with preterm birth (Williamson et al, 

2008).  Lifestyle factors such as poor diet, obesity, smoking, economic and 

educational status have all been associated with preterm birth (Tucker & 

McGuire, 2004).  The multifactorial causes and manifestations of preterm birth 

make it difficult to study.  The label of preterm birth covers a variety of 

underlying physical conditions, some well understood and some not.  Without 

further, in depth, understanding of the variance in the different causes of 

preterm birth, combined with appropriate diagnostic techniques to reliably 

differentiate between them, the treatment of preterm birth will remain 

problematic. 
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1.2. Tocolysis 

The term tocolysis is derived from the Greek toco for contractions or birth and 

lysis to untie or destroy.  The term was first used with regard to a therapeutic 

intervention in 1964.  The primary aim of tocolysis is to delay delivery long 

enough to allow for the administration of antenatal steroids and/or in utero 

transfer.  Antenatal steroids significantly reduce the occurrence of respiratory 

distress syndrome, neonatal death, intraventricular haemorrhage and cerebral 

palsy and in allowing time for their administration, tocolysis can improve 

neonatal outcomes (Eriksson et al, 2009).  The secondary aim is to reduce 

perinatal morbidity and mortality associated with prematurity, however if the 

uterine environment is hostile with the presence of infection the additional time 

in utero can be harmful.  In the absence of clear benefits it is therefore 

considered acceptable not to use tocolytics (Keirse, 2003).  The difficult decision 

of when, or whether to use tocolysis, and which drug to use lies solely with the 

individual clinician.  A number of compounds have been investigated as 

tocolytics including cyclooxygenase inhibitors, beta agonists, L-type calcium 

channel antagonists, magnesium sulphate and Oxytocin receptor antagonists.  To 

date no tocolytic has been shown to reduce the incidence of perinatal morbidity 

and mortality and no study has been carried out with sufficient power to show 

such a benefit (Di Renzo & Roura, 2006).  With a static or rising (dependent on 

the data source) preterm birth rate, increasing demand on neonatal services and 

the distress and long term social impact that preterm birth brings, there is an 

urgent need for new and effective treatments. 
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1.3 Clinical challenges in tocolytic use 

The clinical guidelines produced by the Royal College of Obstetricians and 

Gynaecologists (RCOG 2011) suggest that there is no clear evidence that 

tocolytics improve pregnancy outcome and as such it is reasonable not to use 

them (RCOG 2011). However, other interventions that have been demonstrated 

to improve neonatal outcomes include moving the expectant mother to a clinical 

area with availability of high level neonatal critical care facilities and expertise 

(in-utero transfer) (Marlow et al 2014), and the administration of corticosteroids 

to promote lung maturation (Roberts and Dalziel 2006). The antenatal 

administration of corticosteroids has been shown to significantly reduce the risk 

of neonatal death, respiratory distress syndrome, cerebroventricular 

haemorrhage, necrotising enterocolitis, need for respiratory support, intensive 

care admissions and systemic infections within the first 48 hours after birth 

(Roberts and Dalziel 2006). Current RCOG guidelines recommend either two 

intramuscular doses of betamethasone 12mg, 24 hours apart or four 

intramuscular doses of dexamethasone 6mg, 12 hours apart (RCOG 2010). With 

such advantages to neonatal wellbeing, often the aim of tocolysis is to delay 

birth sufficiently to allow for full 48 hour administration of  corticosteroids.  

A number of pharmacological agents have been, or still are, used routinely as 

tocolytics. In the UK a commonly used tocolytic was the β-adrenergic receptor 

antagonist, ritodrine. Although being effective in increasing time from 

administration to birth, ritodrine was also associated with maternal side-effects 

such as palpations, nausea and vomiting, tremor and cardiovascular effects, 

often resulting in discontinuation of treatment (Gyetvia et al 1999, de Heus 
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2009). Indomethacin, a COX-1 and COX-2 inhibitor has similarly been shown to 

increase time to birth but carries significant fetal side effects including reduced 

fetal urine output (oligohydrmanious), and if used after 32 weeks gestation can 

bring about the premature closing of the ductus arteriosus which has a 

detrimental effect on fetal circulation (Groom et al 2005). In view of these 

detrimental side effects ritodrine and indomethacin are not recommended as 

tocolytics of choice by the RCOG (RCOG 2011). 

Magnesium sulphate (MgSO4) is also used as a tocolytic agent, however it has 

been shown in trials to be ineffective in delaying birth (Crowther et al 2002). 

There have been recent suggestions that MgSO4 is useful as a neuroprotective 

agent to benefit neonatal outcomes and as such is used by some clinicians, 

particularly favoured in the USA, but evidence for this is not yet conclusive 

(Doyle et al 2009). Atosiban, an Oxytocin receptor antagonist is licensed for use 

as a tocolytic in the UK. In terms of increasing time to birth from administration, 

it is comparable to Nifedipine with Nifedipine demonstrating a significant 

reduction in respiratory distress syndrome (OR 0.55 CI 0.32-0.97) over atosiban 

(Coomarasamy 2003). There is currently a Dutch clinical trial (Assessment of 

Perinatal Outcome after Specific Tocolysis in Early Labour: APOSTEL III-Trial) in 

progress directly comparing Nifedipine to atosiban (van Vliet et al 2014). The 

primary outcome is neonatal morbidity, with maternal side effects leading to 

discontinuation as a secondary outcome. Long-term developmental follow-up is 

desirable but dependent on future funding (van Vliet et al 2014). Due to the 

methods of administration of both agents, Nifedipine oral and atosiban IV, the 

study design is random treatment allocation but is not blinded to administration 
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(van Vliet et al 2014). The results of this trial will hopefully add information as to 

the clinical advantage, if any, of one agent over the other. Without a 

demonstrated advantage the clinical decision on which tocolytic to use within 

the context of the NHS is often economic and policy driven. The cost of a full 48 

hour course of atosiban is approximately £500 with each 5 ml vial costing £52.82, 

whereas Nifedipine is considerably cheaper at less than £1 for a 48 hour course 

(max 60 mg) with an 84-blister pack of 10mg Nifedipine costing £6.53 (BNF 

2015). Anecdotally many NHS local policies reserve the use of atosiban for 

situations where Nifedipine does not appear to be effective and the prescriptions 

often require consultant level agreement. 

Nifedipine is not licensed as a tocolytic but is a commonly used calcium channel 

blocker (CCB) for the purpose of delaying birth with a similar agent, nicardipine 

also used. In a large systematic review including 38 trials where CCB's were 

compared to other tocolytics, 35 used Nifedipine and the remaining 3; 

nicardipine (Flenady et al 2014). CCB's were compared to β-mimetics (23 trials), 

MgSO4 (7 trials), atosiban (2 trials), terbutaline (4 trials), indomethacin (2 trials) 

with 1 trial comparing high dose verses low dose CCB (Flenady et al 2014).  

Overall, there was a reduction in birth within 48 hours (RR 0.30, CI 0.21 to 0.43) 

after administration with CCB's compared with other tocolytics; but an increase 

in maternal side effects RR 49.89 CI 3.13 to 795.02). When Nifedipine was 

compared with β-mimetic specifically, there was a significant reduction in very 

preterm birth (before 34 completed weeks) (RR 0.78 CI 0.66 to 0.93) and an 

increase in interval between trial entry and birth (Average 4.38 days) (Flenady et 

al 2014). Again, a significant reduction in respiratory distress syndrome was seen 
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with CCB's but no significant difference in perinatal mortality. Fewer women 

required discontinuation of therapy for adverse effects (RR 0.21 CI 0.11 to 0.40). 

High dose Nifedipine resulted in a statistically significant higher gestational age 

at birth but other than that there were no significant outcomes with low-dose 

compared to high-dose. The varied dose regimes and durations studied in this 

review make interpretation problematic.  Long-term outcomes of death and 

neurosensory impairment was only available for one study (children aged 9-12) 

showed no difference between CCB's and Ritodrine in terms of parental reported 

quality of life, behaviour, emotion, educational and motor quality (Flenady et al 

2014).  In a review of side effects from tocolytic use, the most commonly 

occurring serious (4/5) and mild (4/6) adverse event associated with Nifedipine 

was hypotension. In 6/7 cases, hypotension developed within 2 to 4 hours after 

the start of tocolysis where the dose used was 2 to 4 doses of 10 mg sublingual 

Nifedipine every 15 minutes followed by 20 mg slow release every four hours (de 

Heus et al 2009). It is not clear if in these cases the treatment was continued 

beyond a total amount of 60 mg, which is used as a cautionary cut-off threshold 

for increased likelihood of side-effects within the RCOG guidelines (RCOG 2011). 

Despite these incidents there was an absence of associated fetal compromise (de 

Heus et al 2009). de Heus et al (2009) also demonstrated an increased likelihood 

of adverse effects if more than one type of tocolytic was used in combination 

and their caution against this practice is echoed in the RCOG guidelines (RCOG 

2011). When single doses were administered, the rate of serious adverse drug 

reactions associated with β-mimetics was 1.7% whereas with Nifedipine the rate 

was 0.9% (de Heus et al 2009).  
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Overall Nifedipine, used as a short-term tocolytic, has an effect in delaying time 

from administration to birth, is economically favourable over other tocolytics, 

and has a more favourable safety profile than alternative agents. However, the 

cardiovascular side-effects remain of concern, and in order to avoid increasing 

this risk the dose is limited within currently recommended dose regimes; which 

may not always be sufficient to delay birth for administration of antenatal 

corticosteroids or allow for safe in-utero transfer. As such a new tocolytic regime 

that can delay birth for up to 48 hours without adding to existing side effects 

would be desirable. Drug regimes currently clinically recommended for tocolysis 

and feto-protection are summarised in Table 1.2. 
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Drug Initial dose  Route Maintenance Source 

Tocolysis 

Atosiban 6.75 mg  Intravenous 18 mg/hour for 3 
hours, the 6 
mg/hour for up 
to 45 hours (max 
of 330 mg/48 
hrs) 

RCOG Green 
top guideline 
No 1B (2011) 

Nifedipine 20 mg Oral 10-20 mg three 
to four times 
daily up to 48 hrs 
(total dose over 
60 mg associated 
with three to 
four-fold increase 
in side effects 

RCOG Green 
top guideline 
No 1B (2011) 

Fetal protection 

Magnesium 
Sulphate 
(neuroprotection) 

4-6 mg Intravenous 1-2 mg/hour (up 
to 24 hours) 

ACOG 
Committee 
Opinion No. 
455 (2010 
(revised 
2015)) 
RCOG 
Scientific 
Impact Paper 
No. 29 (2011) 

Betamethasone 
(Fetal lung 
maturation) 

12 mg (2 
doses 24 
hours apart) 

Intramuscular Total dose (24 
mg) over 48 
hours - most 
effective from 24 
hours - 7 days 
from last dose 

RCOG Green–
top Guideline 
No. 7 (2010) 

Dexamethasone 
(Fetal lung 
maturation) 

6 mg (4 
doses 12 
hours apart) 

Intramuscular Total dose (24 
mg) over 48 
hours - most 
effective from 24 
hours - 7 days 
from last dose 

RCOG Green–
top Guideline 
No. 7 (2010) 

Table 1.2: Main tocolytic drugs and drugs for feto-protection currently 

recommended for use in the UK 
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1.4  The problem of Post-Partum Haemorrhage 

Post partum hemorrhage (PPH) remains a significant clinical issue in women’s 

health.  Primary PPH is a significant blood loss that occurs within 24hrs of 

delivery and secondary PPH when occurring from 24hrs to 6 weeks post-partum.  

PPH is defined as a blood loss of 500 mls or more; but further categorized as a 

minor PPH when the loss is from 500ml-1000 mls, major PPH if 1000mls-

2000mls, and severe PPH when over 2000mls (RCOG, 2009).  Despite these 

classifications any blood loss can be significant if it leads to hemodynamic 

instability.  This is of particular significance in women that are anemic prior to 

delivery. This is more common in developing countries where PPH poses a 

significant risk of death to childbearing women. In the UK it is estimated that PPH 

occurs in 18% of all births and with 3% of all vaginal deliveries resulting in a 

severe PPH. WHO estimates the rate worldwide to be 6% rising to 10.5% in 

Africa.  PPH accounts for 30% of all maternal deaths in Africa and Asia (WHO, 

2007). Interventions to prevent PPH are a priority in the UN Millennium 

development Goals global effort to reduce the maternal mortality rates by three-

quarters by 2015 (UN, 2010) (Figure 1.4). 

The causes of PPH are either traumatic bleeding or atonic bleeding. Traumatic 

bleeding is as a result of mechanical injury to the uterus, cervix or genito-urinary 

tract during delivery. Atonic bleeding is due to the inability of the uterus to 

contract preventing compression of blood vessels and control of bleeding. 

Conditions that can impair contraction are retained placenta, retained placental 

tissue or membrane fragments, or the accumulation of blood clots. Loss of 
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uterine tone is the most common cause of primary PPH. Risk factors for uterine 

atony include prolonged labour, high parity, multiple pregnancies, large babies 

and polyhydramnios (WHO, 2008).  

PPH is an obstetric emergency and remains a leading cause of morbidity and 

mortality due to difficulty in management. Despite active management of the 3rd 

stage being routinely practiced in the UK, deaths from post-partum hemorrhage 

continue to occur.  The most recent report on confidential enquiries into 

maternal deaths show the number of deaths has halved to 5 from the previous 

report. Although this is a welcome reduction the trend throughout triennial 

reports from 1985 remains stable (Figure 1.5).  These enquiries point to 

substandard care as contributing factors to maternal deaths from PPH, which are 

considered preventable. With a potential blood loss of 500mls per minute, death 

from exsanguination can occur within 10 mins with an untreated severe PPH 

(WHO, 2008). Renal damage is possible sequelae in survivors due to renal tissue 

damage from hypovolemia.  
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Figure 1.4: Causes of maternal deaths from developing countries (percentage) 

from (UN, 2010) 

 

 

Figure 1.5: Graph showing deaths per 100 000 from haemorrhage from triennial 

Confidential Enquiry reports into maternal deaths from 1985. Year to year 

variance is due to low overall numbers but the trend remains stable. 
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1.5 Current treatments for the prevention and management of Post-partum 

haemorrhage 

1.5.1 Prevention of PPH 

Antenatal observation for risk factors is essential for the prevention and 

expectant management of PPH, however PPH cannot always be predicted.  

Active management of the third stage of pregnancy is a strategy that combines 

prophylactic administration of Oxytocin by intramuscular injection combined 

with delivery of the placenta by controlled cord traction.  Active management of 

the 3rd stage reduces the risk of PPH by 60% and reduces the risk for additional 

therapeutic oxytocics by 50% (RCOG, 2009). There continues to be consistent 

evidence of the benefits of active management strategies from trials comparing 

Oxytocin prophylaxis with placebo or no treatment (Westhoff et al 2013).  Active 

management with the administration of Oxytocin over any other currently 

available pharmaceutical agents is recommended globally (WHO, 2007).  

However, in a review of international guidelines, little agreement was found in 

timing and type of uterotonic use and dosage (Bohlmann and Rath 2014). There 

was agreement on Oxytocin as the first line choice for both prevention and 

management but with varied dosing protocols and methods of administration 

and much disagreement on the order and administration of second line agents 

(Bohlmann and Rath 2014). 

In a comparison of misoprostol versus Oxytocin for the prevention of PPH, 12% 

of the study group had PPH and 10 % of the control. There were no significant 

difference in other outcomes or in side effect reporting suggesting that 
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misoprostol is equally effective as Oxytocin for prevention of PPH (Firouzbakht et 

al 2013), however this finding was not held up in systematic review which found 

Oxytocin to be most effective (Westhoff et al 2013) . One benefit of misoprostol 

over Oxytocin is it stability at various temperatures and ease of administration 

which makes it an ideal choice in areas where access to other drugs is difficult or 

in the hands of unskilled attendants (Nasreen et al 2011).  There is currently a 

planned study for the combination of the antifibrinolytic agent tranexamic acid 

with prophylactic Oxytocin administration after singleton term planned vaginal 

births in order to prevent PPH (Sentilhes et al 2015), which indicates the desire 

to seek more effective methods of PPH prevention.  

1.5.2 Management of PPH 

Management strategies include clinical interventions such as catheterization and 

manual compression of the uterus as well as pharmacological management with 

the administration of uterotonics, (Oxytocin by intravenous infusion, 

prostaglandins - carboprost (PGF2α) by infusion or direct intramyometrial 

injection, or misoprostal (prostaglandin E1) by rectal administration).  If 

pharmacological and clinical interventions fail then surgical interventions may be 

indicated (balloon tapenade, haemostatic suturing, internal iliac artery ligation) 

with ultimately obstetric hysterectomy being the only effective solution.  The 

RCOG guidelines on the management of PPH (Figure 1.6) re-iterate the gravity of 

such an obstetric emergency. Management includes effective and timely 

communication, escalation to clinical seniors and access to appropriate facilities 

as essential aspects of care and crucial to a successful outcome as any individual 
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treatment. Individual cases may require specific approaches to management and 

escalation of recue measures. Any additional therapeutic options that can 

prevent morbidity would improve outcomes for women at risk of PPH. 
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Figure 1.6: Algorithm from RCOG guidelines (green top guideline no.52, 2009) on 

the management of major PPH illustrating the complex aspect of management 

from communication, escalation and cascade of mechanical and medical and 

surgical therapies. 
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1.6. The physiology of myometrial contraction. 

1.6.1 Uterine quiescence 

1.6.1.1 Progesterone/Progesterone receptor 

The progestogen, progesterone (P4) plays an important role in the maintenance 

of quiescence by suppressing expression of genes that increase myometrial 

contractility and by inhibiting inflammatory pathways. 

In many mammalian species circulating progesterone withdrawal is critical for 

increased uterine contractility leading to labour. In humans, circulating P4 levels 

remain elevated throughout the third trimester of pregnancy and into labour; 

increasing uterine contractility and the onset of labour maybe due to events that 

impair progesterone  receptor (PR) function rather than a reduction of circulating 

P4. 

P4 is secreted from the corpus luteum following ovulation.  In absence of 

pregnancy, falling circulating progesterone in the late secretory phase of the 

menstrual cycle leads to sloughing of the decidual layer and menstruation. If 

pregnancy occurs, human chorionic gonadotropin (hCG) secreted by trophoblast 

cells maintain the corpus luteum stimulating steroid hormone secretion. 

Interaction with the lutenising hormone choriogonadotropin receptor (LHCGR) 

promotes the secretion of P4 (Järvelä 2008). Increased angiogeneis and increased 

blood supply supplies the cholesterol needed for P4 synthesis (Takasaki 2009). At 

around 7-8 weeks there is a shift from extra-uterine P4 production to intra-

uterine and the regression of the corpus luteum can be seen from 10 weeks 
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onwards after which hCG levels start to decline. (Rowan et al 2008, Järvelä 2008).  

The corpus luteum is declining at around week 5-7 with the secretion of P4 

reaching its lowest ebb before increasing once supported by the placenta 

(Järvelä 2008). 

P4 exerts its action through binding to progesterone receptor (PR). PR receptor is 

a ligand-activated transcription factor with sequence specific binding regions.  In 

in vitro experiments, P4 exerts a dose-dependent inhibitory effect on myometrial 

contractility (Anderson et al 2009, Chen at al 2014, Arrowsmith et al 2016) and 

maintains uterine quiescence by promoting relaxatory factors. P4 suppresses the 

expression of connexin-43 (CX-43); a protein which is essential for the formation 

of gap junctions in the myometrium (Petrocelli and Lye 1993, Sheldon et al 

2014). Gap junctions are vital for the propagation of the action potential across 

myometrial smooth muscle cells in order to elicit global excitability and 

contraction (Sheldon et al 2014). CX-43 ribonucleic acid demonstrates a 

gestation-dependent functional increase towards term with a further increase at 

the onset of labour (Chow and Lye 1994). P4 also promotes cAMP to inhibit the 

immune regulating protein nuclear factor kappa-light-chain-enhancer of 

activated B cells, (NF-κB) activation downstream of  protein kinase A (PKA); and 

in turn enhances P4 activity to drive gene expression (Chen at al 2014). PKA 

reverses progesterone-induced suppression of inflammation leading to the onset 

of labour (Chen at al 2014).  

Two estrogen-regulated promoters generate transcripts encoding two 

functionally different, co-expressed PR forms; A and B (Kastner et al 1990).  The 
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PR-A isoform can repress PR-B by sequestering P;  leaving less available to bind 

PR-B (Wei 1997). A further form of PR, PR-C is an N-terminally truncated and 

lacks the DNA binding domain which means this form of PR is unable to bind DNA 

but is able to bind P4 (Wei et al 1997).  Similarly PR-C can bind to PR-B reducing 

PR-B availability to bind to PR (Wei et al 1997).  An altered PR-C/PR-B ratio 

reduces capacity of PR-B to maintain quiescence (Condon et al 2006). PR-C 

expression is increased in human fundal myometrium at term as a result of NF-κB 

activation (Condon et al 2006). 

The Zinc finger E-box binding homeobox proteins ZEB-1 and ZEB-2, inhibit the 

expression of contractile associated protein (CAP) genes OXTR (Oxytocin 

receptor), and CXN-43 (connexin-43) (Renthal et al 2010). ZEB-1 is up-regulated 

by P4/PR by binding of the PR to ZEB-1 promoter. As PR declines there is a 

reduction in ZEB-1 expression leading to up-regulation of miR-200 family which 

in turn repress the expression of ZEB-1 allowing expression of CAP genes. 

(Renthal et al 2010) The contribution of this pathway to contractility is further 

supported by the finding that the miRNA family miR-200 is increased at term 

(Renthal et al 2010). 

Estrogen receptors do not increase steadily toward term, but an increase in 

responsiveness to estrogen in labour, is due to an increased expression of ERα 

and ERβ (Mesiano 2002). P4 inhibits ERα expression, preventing estrogen-

stimulated production of contractile associated protiens.  
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There appears to be a fine balance between P4, estrogen and PR forms, with 

varying ratios resulting in functional progesterone withdrawal  and estrogen 

activation at the onset of labour. 

1.6.1.2 Inflammation and labour onset 

In observations made by stimulating myometrial inflammation through 

activation of  NF-κB by IL-1β; IL-1β inhibited PR expression and possibly increased 

PR gene silencing (Lee et al 2012) highlighting the influence of inflammation on 

P4 action. PR was associated genes concerned with cellular development, growth 

and proliferation but not on contraction associated proteins,  failing to support  a 

significant anti-inflammatory role of progesterone via PR and suggesting that 

activation of inflammatory mediators is more likely driven by NF-κB rather than 

P4 withdrawal (Lee et al 2012). 

Pro-inflammatory cytokines IL-1β induce calcium entry via increased expression 

of sacroplasmic reticulum calcium ATPase (SERCA) 2b (Tribe et al 2003). 

Increased cell excitability enhanced increased basal calcium entry  were 

observed, indicating a role for inflammatory cytokines in the modulation of the 

electrophysiological thresholds of myometrium towards term (Tribe et al 2003). 

There is some indication that inflammatory pathways may depend on location 

within the uterus.  NF-κB activation in term human myometrium occurs in the 

fundus but not in the lower segment (Condon et al 2006) and pro-inflammatory 

cytokines IL-1b, IL-6, CXCL-8 are increased in the lower segment during term 

labour (Shynlova et al 2013). The myometrial stimulator prostaglandin F2 alpha 
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(PGF2α) receptor is reduced by P4; IL-1β increases PGF2α receptor expression via 

PKC and NF-κB  (Liang et al 2008) 

A number of additional agents have been associated with the onset of human 

labour. For example, labour is associated with a reduction in the G protein alpha 

subunit (Gαs) levels in myometrium. Gαs activates adenylyl cyclase and the 

cAMP-dependent pathway to relaxation. Gαs expression was found to be 

reduced in women in spontaneous labour (Europe-Finner 1994). A summary of 

signalling/effecting molecules involved in maintaining quiescence and promoting 

contractility is found in Table 1.3. 

 Activation Relaxation Source 

Stretch Activates COX-2 via 
AP-1 system 
Action supressed by 
P4 

 Sooranna et al (2004) 
Shynlova et al (2008) 

Fetal hormones (SP-A) Stimulates  
microphage migration  
and NF-kB p65 and IL-
1β 

 Reini and England 
(2015) 
Mendelson & Condon 
(2005) 

NF-κB 
 

Increases expression 
of contractile 
activating proteins 
PGF2α receptor 
CX-43 
COX-2 (promotes) 
prostagladins 
OXTR 
Inhibited PR 
expression 

 Lindeström and 
Bennett (2005) 
Lee et al (2012) 

Chemokines/cytokines IL-1β (Ca
2+

 activation) 
IL-6 
CXCL-8 activation of 
NF-κB 

 Tribe et al (2003) 
Lee et al (2012) 

cAMP  Via PKA 
Reduces NF-κB 
activity 
Enhances P4 activity 
to drive gene 
expression 

Chen et al (2014) 

Gαs Decreased expression 
leads to decreased 
relaxatory effect of 

Increased expression 
leads to agonist 
induced cAMP 

Europe-Finner et al 
(1994) 
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cAMP formation via 
adenylyl cyclase 

PKA Reverses P4 induced 
suppression of 
inflammation  

 Chen et al (2014) 

G-protein coupled 
receptor 

Lutenising hormone 
(LH) 
Human corionic 
gonadotrophin (hCG) 
Cortico-trophin 
releasing hormone 
(CRH) 
Relaxin (RLX) 
Prostaglandin E2 
(PGE2) 
 

Promotion of 
Gαs 
cAMP 
PKA 

Gellerson & Brosens 
(2003) 
Europe-Finner (1994) 

20 α-HSD  Maintains P4 Ishida et al (2007) 
Piekorz et al (2005) 

 Activation Relaxation Source 

STAT5b Suppress 20a-HSD 
which regulates mi-
R200a which is a 
regulator of ZEB1 & 2 
which promote OXTR 
& CX-43 

 Williams et al (2012) 

Estradiol (E2) Increase towards 
term promotes pro-
inflammatory events; 
induce influx of 
macrophages and 
neutrophils,  
Enhances 
transcription of 
contractile activating 
proteins. 
Reduced PR function 

 Mesiano et al (2002) 

 

Table 1.3: Summary of some of the signalling/effecting molecules involved in 

maintaining uterine quiescence/promoting contractility 
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1.6.2 Pathways to contractility. 

The uterus is a uniquely adaptive organ with gradual transition from quiescence, 

whilst harbouring the developing fetus, to contractions during labour followed by 

a rapid remodelling in the immediate post partum period (Young, 2007).  There is 

evidence that the initiating hormonal cascades of parturition are prone to 

redundancy  (Blanks & Thornton, 2007).  When the Oxytocin gene is deleted in 

the knockout mouse (OT -/-) parturition continues within normal timings and 

leads to delivery of live pups (Nishimori et al 1996, Young et al 1996). However, 

pups fail to thrive postpartum due to failure of maternal milk ejection suggesting 

that in mice, Oxytocin is essential to successful lactation but non-essential in 

labour and birth (Nishimori et al 1996, Young et al 1996). Also, manipulation of 

the cytosolic phospholipase A2 (cPLA2)and cyclooxygenase-1 (COX-1) pathways 

prevents the formation of PGF2α, a rise in which usually brings about luteolysis 

and the subsequent onset of labour in mice; prevents normal parturition 

(Uozumi et al 1997, Gross et al 1998). The non-labour phenotype can be rescued 

with the addition of PGF2α, and normal parturition is restored (Uozumi et al 1997, 

Gross et al 1998). In the COX-1/OT knockout mouse, luteolysis occurs on the 

normal day of gestation but labour is prolonged and pups do not survive (Gross 

et al 1998). As luteolysis fails in COX-1 (-/-) knockout mice, this suggests that 

Oxytocin has an influence on luteolysis. This points to a compensatory 

mechanism where more than one agent can influence pathways to contractility. 

These described pathways activate G-protein coupled receptors, ultimately 

leading to an increase in [Ca2+]i and opening of voltage gated calcium channels 

(VGCC). Further evidence of this dual pathway is the effectiveness of tocolysis 
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that targets both simultaneously. When preterm labour is induced in sheep using 

glucocorticosteroids, dual treatment with the prostaglandin synthase type-2 

inhibitor nimesulide, and the Oxytocin receptor antagonist atosiban, delivery 

within the 48 hour treatment phase is completely prevented (Scott et al 2001). 

Pathways to contractility are complex and compete with the pathways that 

maintain quiescence. This means that targeted inhibition of one pathway (i.e. 

Oxytocin or prostaglandins) can be bypassed in the medium term (24-48hrs) by 

alternative stimulatory cascades.  As a consequence of this fact it is the 

contention of this thesis that targeting of proteins, downstream of the 

stimulatory cascade, will demonstrate efficacy regardless of the activating 

mechanism.  The therapies proposed herein rely on targeting voltage-gated 

calcium entry during a contraction, which is the key point at which contractility 

will occur.  

1.6.3 Role of Calcium in contractility 

Contractility is initiated by an increase in intracellular calcium ([Ca2+]i) from two 

possible sources; i) entry of extracellular Ca2+ ([Ca2+]o) into the myocyte through 

voltage gated calcium channels and TRP Ca2+ channels and ii) the release of 

[Ca2+]i from the sarcoplasmic reticulum (SR) (Parkington et al, 1999, Shmygol et 

al, 2007, Babich et al, 2004).  Influx of [Ca2+]o is essential for the propagation of 

action potentials and the generation of contractile force (Shmygol et al, 2007).  In 

rat myometrial tissue, Ca2+ spikes resulted in Nifedipine sensitive action 

potentials with varied initiation sites, spatial spread and frequency (Burdyga et 

al, 2009).  The role of Ca2+ release from the SR may not play as significant a role 
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in activating the contractile machinery as influx of [Ca2+]o, but there are 

indications of a role for the SR in contraction regulation by moderating available 

[Ca2+]i (Wray & Shmygol, 2007) (Figure 1.7). Spatially and localised Ca2+ signals 

may target specific signal transduction pathways such as the activation of Ca2+ 

activated K+ channels thus initiating hyperpolarisation (Wray & Shmygol, 2007). 

The gestational difference in expression in SR components (RyR's and BK 

channels) also point to a function of the SR in the regulation of quiescence (Wray 

& Shmygol, 2007). 

 The increase in [Ca2+]i activates, via calmodulin binding, the intracellular kinase 

myosin light chain kinase that phosphorylates myosin light chains allowing the 

interaction of myosin and actin resulting in contraction.  Myosin light chains are 

phosphorylated at its binding site by Ca2+-calmodulin dependant protein kinase 

II.  This drives the ATP dependent cross bridge cycling interaction between actin 

and myosin.  The excitation-contraction cycle is maintained by calcium entry 

during the length of the complex action potential thus creating the phasic 

contraction.  Myometrial relaxation is preceded by a repolarisation of the plasma 

membrane to resting membrane potential and a decrease in [Ca2+]i
  (McKillen et 

al, 1999, Parkington et al, 1999). 
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Figure 1.7: Mechanisms involved in smooth muscle calcium regulation from 

Sanborn, B found at: http://csu-

cvmbs.colostate.edu/academics/bms/Pages/barbara-sanborn.aspx 

 

1.6.4 Role of potassium in contractility 

Potassium is essential in all cell types in the control and maintenance of the 

membrane potential. Membrane potential is the difference that arises from the 

unequal distribution of ions either side of the membrane (Sanborn, 2000).  

Selective permeability of the plasma membrane and active transport of ions 

provide a mechanism by which the electro-chemical gradients are prevented 

from reaching equilibrium, generating a trans-membrane potential (Khan et al, 

2001).  The net direction of flux of a given ion is determined by the concentration 

gradient and the electromotive force (Sanborn, 2000) (Figure 1.8).  The net flux 

of a given ion is described by the Nernst equation where an ion reaches 

equilibrium (Ex) when the electromotive force exactly counters the force of the 
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concentration gradient.  If the membrane potential is more positive than the 

equilibrium potential for a specific ion, efflux of that ion from the cell is favoured 

(Sanborn, 2000).  Under these biophysical constraints potassium is responsible 

for setting the negative membrane potential in most excitable cell types.  This is 

a result of the increased permeability of the plasma membrane at rest to 

potassium when compared to the other important intracellular ions calcium, 

sodium and chloride.  In addition to the higher permeability to potassium of the 

plasma membrane, ionic pumps move potassium into the cell under active 

transport creating a trans-membrane gradient of high intracellular and low 

extracellular potassium.  Thus under resting conditions potassium ions constantly 

leak out of the cell down their chemical gradient shifting the trans-membrane 

potential towards the reversal potential for potassium Ek. 

The permeability of the plasma membrane to potassium at rest is conferred by a 

small subgroup of K+ channels that are active at negative potentials or are 

activated by [Ca2+]i.  It is the contention of this thesis that manipulation of these 

channels, specific to myometrial smooth muscle, will hyperpolarise the 

myometrial cell membrane and render it less likely to stimulation and hence a 

lower probability that L-type calcium entry will be triggered.   
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Figure 1.8: Electro-chemical gradient and membrane potentials for each ion in 

myometrial smooth muscle as calculated using the Nernst equation. Extracellular 

and intracellular volume data from Sanborn (2000) 

 

1.7. L-type calcium entry and the actions of Nifedipine 

The voltage gated L-type calcium channel (VGLCC) was first characterised by its 

binding to dihydropyridines (Kanngiesser 1988).  Several other types of voltage 

gated calcium channels have been identified through electrophysiology and are 

described as L,N,P/Q, R and T type channels.  The T type channel has been 

identified in human myometrium and when inhibited, contractile force is 

reduced (Young & Zhang, 2005).  There is no difference in the expression of this 

channel across gestation or with labour but it appears to be important in 

determining contractile frequency (Blanks et al, 2007).  The VGLCC allows for a 

large flux of calcium ions through the plasma membrane when activated by 

transmembrane voltage change. Ca2+ channel α subunits share a common 
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topology with four homologous domains, each of which is composed of six 

transmembrane segments (S1-S6) and two short segments that line the 

extracellular pore (SS1 and SS2) situated between S5 and S6 (Hockerman et al, 

1997). The S4 segments are the site of voltage activation sensors. 

Dihydropyridines can act as agonists or antagonists of the channel depending on 

the drug structure and specificity of action (Hockerman et al, 1997).  Antagonists 

favour inactivated state binding, stabilising a non-conducting blocked state that 

mimics a channel with a single Ca2+ ion in the filter (Hockerman et al, 1997, Wang 

et al, 2004).  The VGLCC is highly selective to Ca2+ and this is probably due to its 

size and charge (Boda et al, 2009). This theory of dual selectivity is referred to as 

charged/space competition or CSC.  Selectivity results from both the size of the 

cation and its carried charge.  In the case of the VGLCC it attracts divalent over 

monovalent selecting Ca2+ over Na+ when the two are of approximately similar 

size.   All other cations are excluded on the basis of size (Boda et al, 2009).  

Extracellular Ca2+ entry during a contraction is dependent on the opening of the 

VGLCC as confirmed by the action of Nifedipine in vitro on myometrium, 

whereby spontaneous or augmented contraction can be abolished by its 

administration (Shmigol et al, 1998, Brown et al, 2007).  Expression of the VGLCC 

modestly increases during pregnancy and labour (Mershon et al, 1994).  There is 

however a change in binding of Nifedipine with gestation and in labour in rat 

myometrium suggesting an isoform change of physiological significance 

(Mershon et al, 1994).  This suggests higher doses of Nifedipine may be 

necessary to inhibit contractions in preterm labour.  Further to blocking 

extracellular influx of Ca2+, Nifedipine also depletes [Ca2+]i  stores resulting in less 
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available calcium in the plasmalemmel space opening Ca2+ activated K+ channels 

(Young et al, 2001).  The action of Nifedipine is not specific to the uterus bringing 

about a simultaneous relaxatory effect on vascular smooth muscle through the 

VGLCC.  Nifedipine was shown to progressively dilate depolarisation-induced 

constrictions in rat mesenteric arteries but not veins despite similar expression of 

VGLCC in both tissues (Thakali et al, 2010).  This ‘silencing’ of VGLCC in venous 

smooth muscle suggests a mechanism by which Nifedipine reduces cardiac 

overload but not preload resulting in a relaxatory effect on arterial but not 

venous tone (Thakali et al, 2010).  Venous sensitivity to Nifedipine was increased 

when intracellular stores were depleted indicating a role for [Ca2+]i in providing 

negative feedback to VGLCCs supported by the proximity of the sarcoplasmic 

reticulum to the plasma membrane (Thakali et al, 2010).  Nifedipine was first 

introduced as a tocolytic in 1977 and despite never having been licensed for this 

purpose it continues to be used today (Keirse, 2003).  Nifedipine has commonly 

been used as an antihypertensive.  Advances in newer treatments for 

hypertension have led to this group of drugs becoming limited  

 

1.8. K+ channel openers in myometrial smooth muscle and vascular smooth 

muscle 

Prior to the establishing of this project, work undertaken in our laboratory 

identified a number of potassium channels that demonstrated differential 

expression between vascular and myometrial smooth muscle.  In a screen of 

laser captured material the expression levels of all known potassium channels in 
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the current build of the human genome were compared between vascular and 

myometrial smooth muscle.  A number of promising candidates were revealed in 

the screen and compounds were identified that might target these differentially 

expressed targets.  The hypothesis being that specific activation of potassium 

channels expressed in myometrial but not vascular smooth muscle would 

specifically hyperpolarise myometrial cells. It is hypothesised that by allowing K+ 

efflux the membrane potential is kept below the level at which VGCC activation 

occurs in addition to the therapeutically tolerated dose of Nifedipine, it is 

anticipated that the combined effect would be greater on maintaining 

hyperpolarisation than Nifedipine alone.  These compounds are summarised 

below. 

1.8.1 Pinacidil 

Pinacidil is an effective K+ channel opener functioning on the KATP channel and is 

used therapeutically as an antihypertensive. KATP channels are regulated by the 

metabolic messenger adenosine triphosphate (ATP) which couples energy 

metabolism to the electrical activity of the plasma membrane (Proks & Ashcroft, 

2009).  This protective function is important in many organ systems, including 

seizure protection in neurological cells, response to cardiac stress and ischemic 

preconditioning (Proks & Ashcroft, 2009).  This is best illustrated in pancreatic β-

cells where KATP function links plasma glucose levels with insulin secretion (Khan 

et al, 2001).  An increase in extracellular glucose and intracellular ATP 

metabolism results in the channel closing, allowing depolarisation via VGLCC and 

insulin secretion.   A fall in glucose, decreases ATP metabolism, opens the 
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channel bringing about hyperpolarisation and no insulin release (Proks & 

Ashcroft, 2009).  The KATP channel is made up of the KIR 6 pore forming subunit 

and the sulphonylurea receptor (SUR) subunits. This channel is an octomer made 

up of 4 KIR 6 subunits surrounded by 4 SUR subunits (Berridge, 2010).  The SUR 

subunits are responsible for trafficking, pharmacology and ATP sensitivity. The 

binding of the SUR subunit allows translocation of the channel to the plasma 

membrane as signalling from SUR is required for release from the ER/Golgi 

(Burke et al, 2008).  The SUR subunit is also important in regulation of channel 

function as demonstrated by the use of sulphonylureas as anti-diabetic drugs 

increasing insulin secretion by modulating channel function (Burke et al, 2008).  

In the rat uterus under hypoxic conditions which diminish ATP, an increase in K+ 

efflux is observed that is inhibited by the KATP blocker glibenclamide (Heaton et 

al, 1993).  This may be a protective mechanism to preserve myometrial integrity 

during labour (Heaton et al, 1993).  Investigations into the effect of Pinacidil on 

human myometrium have shown that Pinacidil reduces spontaneous and 

augmented contractility in both pregnant term and non-pregnant myometrium 

exerting a more potent relaxatory effect on term non-labouring tissue vs. 

preterm and labouring tissue (Morrison et al, 1993, Kostrzewska et al, 1996). 

Pinacidil has a endothelium-independent relaxatory effect on vascular smooth 

muscle by opening of KATP channels (Stojnic et al, 2007).  This is evidenced by 

reversal of this effect seen when the KATP channel blocker glibenclamide is added 

(Stojnic et al, 2007, Quast, 1993).  Since Pinacidil should work on both vascular 

and myometrial smooth muscle we utilised this as a positive control. 
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1.8.2 Riluzole 

Riluzole is a drug currently prescribed for the treatment of amyotrophic lateral 

sclerosis (ALS).  This progressive neurodegenerative disease results in muscle 

atrophy from motor neurone damage. Riluzole treatment has been shown to 

delay the time of death for ALS patients however the exact mechanisms of its 

neuroprotective effects are not fully understood (Table 1.4).  Some studies have 

shown that Riluzole potently reduces Na+ current particularly in neuronal tissues 

(Mohammadi et al, 2002, Hebert et al, 1994, Wang et al, 2008, Noh et al, 2000). 

Riluzole elicited a selective block of inactivated Na+ channels in rat brain tissue 

(Hebert et al, 1994).  Binding of Riluzole to closed and inactivated states 

preferentially blocks depolarised, hyperactive neurons and this targeting of 

abnormally active cells points to the neuroprotective effects of Riluzole and its 

usefulness as an anti seizure drug (Hebert et al, 1994).  Riluzole directly inhibits 

protein kinase C (PKC) by inhibition of the PKM catalytic domain rather than the 

ATP or DAG binding domains (Noh et al, 2000).  Inhibition by Riluzole of 

glutamate release has led to the investigation of its potential therapeutic use in 

psychological disorders, anxiety and depression as well as treatment for 

addictions (Besheer et al, 2009, Sofuoglu et al, 2008). In a small scale study into 

the possible interactions with d-amphetamines, 100 mg Riluzole was 

administered to healthy volunteers with no effect on blood pressure, heart rate 

or cortisol levels and reporting of a mild sedative effect (Sofuoglu et al, 2008). 

Riluzole may also have an effect of calcium currents.  Investigation into the effect 

of Riluzole on ionic currents in rat ganglion neurons showed an inhibition of P/Q 

and N type Ca2+ currents with no effect shown on L type currents (Huang et al, 



63 
 

1997).  This finding was supported by Siniscalchi et al (1997), who found that 

Riluzole increases the threshold for the generation of Ca2+ spikes, and thus limits 

the influx of Ca2+ ions.   

The dual action of Riluzole on the K2P channel TREK 1 channel results in rapid 

stimulation followed by a decline in activation and a strong inhibition of K+ 

current (Duprat et al, 2000).  This effect is also associated with an increase in 

intracellular cAMP which could be brought about by activation of the PKA 

pathway.  TREK 1 is expressed in human myometrium at term (Bai et al, 2005) 

and was described in our screen. 

A further channel identified in our screen and targeted by Riluzole is the SK3 

channel.  The small conductance calcium activated potassium channel SK3 is 

known to be expressed in myometrium (Brown et al, 2007).  Gating of the 

channel is dependent on calmodulin binding to Ca2+ which is constitutively bound 

to the channel (Nolting et al, 2007).  Calmodulin is also involved in trafficking the 

cell to the plasma membrane (Brainard et al, 2007).  SK channels are expressed in 

many sensory systems as well as in the heart, liver, skeletal muscle and urinary 

bladder.  They are widely expressed throughout the central nervous system 

(CNS) with activation by Ca2+ in these tissues having a neuroprotective effect 

(Dilly et al, 2005).  SK channels can be blocked by the bee venom toxin Apamin 

which assists in functional investigation (Nolting et al, 2007).  The SK3 channel is 

activated by Riluzole at concentrations at 3 µM and above (Grunnet et al, 2001).  

Brown et al (2007) describe the constitutive association with calmodulin and the 

SK3 channels sensitivity to [Ca2+]i levels provide an effective negative feedback 
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mechanism to regulate [Ca2+]i.  In non pregnant murine myometrial strips from 

mice genetically modified to either under or over express SK3 contractility was 

altered (Brown et al, 2007). Strips from mice with an overexpression of SK3 often 

failed to contract or produced contractions with less amplitude and force.  

Contractions were completely inhibited by Nifedipine and there was impaired 

response to Oxytocin. Strips from mice with a reduced expression of SK3 

produced larger contractions when compared to wild type (Brown et al, 2007).  

Pierce et al (2008) confirmed that overexpression of SK3 reduced contractility in 

vitro strips but additionally mice in which preterm labour was induced failed to 

labour effectively and often suffered dystocia of pups in birth canal.  Wild type 

mice and mice with reduced expression of SK3 delivered normally.  Work in 

similarly modified mice has been conducted with the aim of investigating arterial 

tone and blood pressure (Taylor et al, 2003).  SK3 was expressed in the 

endothelium but not in vascular smooth muscle.  The suppression of SK3 resulted 

in an elevation of arterial tone and blood pressure.  Similar results were seen in 

Burnham et al's (2002) work into porcine coronary arteries where a SK3 activator, 

substance P, brought about hyperpolarisation in endothelial cells.  The only study 

into the SK3 activity in human pregnant myometrium was conducted by Gillham 

et al (2007).  The authors found that the SK3 blocker Apamin inhibited 

endothelium-derived hyperpolarising factor (EDHF) mediated relaxation in 

myometrial vasculature.  The authors suggest there may be some significance in 

this mechanism in pre-eclampsia or intrauterine growth restriction where there 

is evidence of abnormal EDHF mediated relaxation.  Further investigation into 

SK3 function in myometrial and vascular smooth muscle is warranted 
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Possible mechanisms of action of Riluzole 

 

Reduction of voltage gated Na channels 

 

Inhibition of protein kinase C 

 

Inhibition/attenuation of arachidonic acid 

release 

 

Inhibition of glutamate release 

 

Inhibition of P/Q & N Ca2+ channels 

 

Opening of TREK-1 (via AA)-Screen positive 

 

Opening of SK3 channels-Screen positive 

 

Table 1.4: Summary of possible mechanisms of action of Riluzole derived from the 

literature. 
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1.9 Maternal vascular adaptations to pregnancy; VSMC and endothelial 

function 

From the start of pregnancy the cardiovascular system goes through adaptations 

to provide increased blood supply required for the development and growth of 

the fetus. The main cardiovascular change is a significant increase in circulating 

blood volume, which is initiated by increased blood flow to the uterus (Palmer et 

al 1992). These vital cardiac adaptations happen early in pregnancy with over 

70% of the increase in cardiac output and 85% of the decrease in systemic 

vascular resistance occurring by the 16th week (Clap & Capeless 1997). Cardiac 

output was seen to increase significantly by week 5 from a mean of 4.88 l/min 

from conception to a maximum of 7.21 l/min by 32 weeks (Robson et al 1989). 

Total peripheral vascular resistance falls during the first 20 weeks (Robson et al 

1989), and persists in normal (non-hypertensive) pregnancies throughout and 

into the postnatal period, with 23% of the increase in cardiac output and 30% of 

the decrease in systemic vascular resistance being still present 1 year 

postpartum (Clap & Capeless 1997).  The observation that the drop from pre-

pregnancy to post-partum mean arterial pressure was more significant in women 

who had a pregnancy compared to non-pregnant women over the same time 

scale, suggests that pregnancy-associated cardiovascular remodelling can be 

beneficial and may persist to subsequent pregnancies (Morris et al 2015). Palmer 

et al (1992) observed through ultrasound scan that the uterine artery diameter 

doubled by week 21 from 1.4 ± 0.1 to 2.8 ± 0.2mm, did not change from 21-30 

and increased between 30-36 to 3.4±0.2mm. As well as increased diameter there 

was a significant increase in uterine artery mean flow velocity from early to late 
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pregnancy from - 8.4±2.2 to 61.4 ±3.0cm/second. Their observation was that in 

early pregnancy the increase in uterine flow was due to changes in uterine artery 

diameter and mean flow but in late pregnancy the rise in flow was mainly 

attributable to faster velocity (Palmer 1992). 

This increase in flow to the uterus leads to a compensatory increase in heart rate 

and activation of volume-restoring mechanisms (Duvecot 1993). Cardiac output 

then increases due to a rise in stroke volume resulting from an increase in 

circulating blood volume. Appropriate and successful vascular remodelling is vital 

for fetal wellbeing and a good pregnancy outcome, as well as having implications 

for long term maternal health.  

In a large UK cohort study (129,920 subjects), women who had a baby with birth 

weight on the lowest quintile for gestational age, a preterm delivery or pre-

eclampsia were at increased risk of ischemic heart disease related admission or 

death (hazard ratio 1.9 (CI 1.5-2.4), 1.8 (CI 1.3-2.5), 2.0 (1.5-2.5) respectively) 

(Smith et al 2001). These associations were additive in that women with all three 

risk factors had a seven times increased risk of ischemic heart disease related 

admission or death (CI 3.3-14.5) (Smith et al 2001). 

Women who had a preterm birth, regardless of any hypertension during 

pregnancy, had higher blood pressure after pregnancy when compared with 

women who had term births (Catov et al 2013). Data from the World 

Health Organization Calcium Supplementation for the Prevention of 

Preeclampsia Trial showed that in 5,167 singleton pregnancies, a rise in systolic 

pressure of over 30 mmHg or diastolic pressure over 15 mmHg was associated 
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with a 2 – 3-fold increase in risk of spontaneous preterm birth (Zhang et al 2007). 

These finding suggest a possible role of impaired endothelial function and 

adaptation to pregnancy in the pathology of preterm birth. 

As in myometrial smooth muscle, vascular smooth muscle contractions can be 

stimulated by mechanical, electrical and chemical stimuli. Passive stretch brings 

about a myogenic response, membrane potential changes open VGCC allowing 

Ca2+ efflux raising [Ca2+]i and facilitating the contractile mechanism. Chemical 

stimuli include norephinephrine, angiotensin II, vasopressin, endothelin-1 and 

thromboxane A2, which all bind to specific receptors (Klabunde 2014). The end 

result in each case is a rise in [Ca2+]i allowing for binding with calmodulin, 

activating MLCK, which in turn phosphorylates myosin light chains allowing for 

cross-bridge formation of the myosin head with actin filaments and contracting 

the cell (Klabunde 2014). 

At the small artery level, vasoconstriction and vasodilatation is controlled by 

communication between VSMC and the endothelial layer, which in turn regulates 

vascular homeostasis. Bayliss (1902) first identified that regulation of arterial 

tone occurred independently of central nervous system involvement and was 

both peripheral and myogenic in nature, demonstrating an effect both in vivo 

and in vitro.  Endothelial cells are in contact with blood, and blood borne 

components, and are responsive to signalling to bring about constriction and 

relaxation. The endothelium is considered an endocrine organ and is made up of 

a monolayer of endothelial cells which line the entire vascular system. Versatile 

and multifunctional, the endothelium regulates thrombosis and thrombolysis, 
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platelet adherence, modulation of vascular tone and blood flow, and regulation 

of immune and inflammatory responses by controlling leucocyte monocyte and 

lymphocyte interactions with the vessel wall (Sumpio et al 2002) (Figure 1.9). 

Endothelial cells produce and release a variety of vasoactive substances such as 

prostacyclin and nitric oxide (NO), which inhibit platelet aggregation and cause 

vasodilation (Sumpio et al 2002). Endothelial cells from different locations, vessel 

types and individuals can differ in response to stimuli. Endothelial cells are 

exposed to a variety of microenvironments, when removed from native tissue for 

growth in tissue culture they undergo phenotypic changes making it very difficult 

to study cultured endothelial cells (Aird 2012).  

 

Figure 1.9: Known secretory/expression products of endothelial cells relating to 

vessel physiology; from: Sumpio et al 2002 
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Endothelial-derived vasodilation is regulated by NO. The enzyme endothelial 

nitric oxide synthase (eNOS) generates NO from L-arginine and O2 using 

nicotinamide adenine dinucleotide phosphate (NAPH+). NO stimulates soluble 

guanylyl cyclase, increasing cyclic guanosine monophosphate (cGMP), which 

brings about relaxation of the VSMC (Förstermann & Münzel 2006). NO can also 

generate superoxide anions (O2
-) in conditions of oxidative stress, this reacts with 

NO to form peroxynitrate and vascular protection diminishes (Förstermann & 

Münzel 2006). Peroxynitrate interacts with lipids, DNA and proteins via direct 

and indirect oxidative reactions resulting in oxidative injury, necrosis or 

apoptosis (Pacher et al 2007).  L-arginine availability is important for eNOS 

production of NO. Arginase II is an enzyme involved in the urea cycle in which the 

body eliminates harmful amonia which also utilises L-arginine as a common 

substrate and so competes for availability. Lower levels of L-arginine are found in 

pre-eclamptic placenta compared to normotensive, with levels of arginase II 

higher (Noris et al 2004). This suggests raised arginase II in pre-eclampsia leads 

to a deficiency in available L-arginine impeding NO production. NO is important 

in placental angiogensis and regulation of vascular tone and maladaption of 

endothelial cells to pregnancy is a contributing factor to the development of 

pregnancy related conditions such as pre-eclampsia and IUGR. In animal studies 

the long-term inhibition of eNOS can elicit a pre-eclampsia type phenotype(Salas 

et al 1999). 

Furchgott & Zawaszki (1980) found the vasodilator effect of acetylcholine is 

dependent on the presence of endothelium. They proposed that acetylcholine 

stimulated the release of unknown substance(s), which bring about a relaxation 
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of VSMC, and this factor still remains to be identified. This unknown form of 

communication was named as endothelial dependant hyperpolarisation factor 

(EDHF). There have been many theories relating to the nature of what EDHF may 

be. Adaptations of the NO pathway, endothelial-vascular gap junctions as well as 

Ca2+ signalling and K+ channels have all been identified as possible candidates for 

EDHF or play a contributing role in EDHF.  Although prostacyclin and NO were the 

earliest identified endothelium dependant vasodilation factors, it was found that 

vasodilation persisted with suppression of these factors and K+ channels were 

proposed as having a role in EDHF (Taylor and Weston 1988). 

Possible mechanism includes a spatial increase in [Ca2+]i which activates Ca2+ 

dependent K+ channels, leading to K+ efflux, and hyperpolarisation; or synthesis 

of a substance or generation of electrical signals which are capable of moving 

through membranes or myoendothelial gap junctions to influence VSMC (Luksha 

et al 2009). EDGF represents an additional layer of pathway to vasodilation. It 

has been proposed that EDHF may step in when the NO pathway is compromised 

(Luksha et al 2009) .It appears that the smaller the vessel , the larger the effect of 

EDHF (Taylor and Weston 1988).  In human gastroepiploic arteries the role of 

EDHF is significantly greater in microvessels than in large arteries, with NO and 

EDHF having equal effect in large arteries and EDHF having most effect in 

microvessels (Urakami-Harasawa et al 1996). This may be because EDHF more 

easily diffuses to VSMC in microvessels due to less tissue density or perhaps 

increased myoendothelial gap junctions. 

SK3 and IK3 have been identified as candidates for a role in EDHF and are located 

within endothelial cells and not in the VSMC (Luksha et al 2009), which is in 
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agreement with our own screen of VSMC's. While Ca2+ activated K+ channels, and 

SK3 in particular, are implicated as having a role in EDHF it is unclear how much 

this single protein contributes to the overall regulation of vascular tone (Luksah 

et al 2009, Lin et al 2012). While our initial screen differentiated channel 

expression between VSMC and MSMC the role these channels play in 

contributing to EDHF and therefore affect vascular tone is less clear and would 

require functional experiments to observe. 

Riluzole, which has been used therapeutically and has been the subject of long 

term use in clinical trials does not have cardiovascular side effects within its 

profile (Bensimon et al 1994)  

1.10  Inwardly rectifying potassium channel Kir 7.1 

A previous screen of K+ channel expression in myometrium identified the 

inwardly rectifying potassium channel Kir 7.1 as a channel of interest.  An 8-fold 

increase in the gene encoding Kir 7.1 KCNJ13 mRNA was seen in laser capture 

selected human myometrial smooth muscle compared to whole biopsy tissue at 

term.  An increase in KCNJ13 mRNA expression was also observed in murine 

myometrium, which peaked at D15 predicting a functional increase in expression 

towards term (Figure 1.10). 

Inwardly rectifying K+ channels demonstrate a greater flow into the cell rather 

than out as would be predicted by the Nernst equation and were previously 

described as anomalous rectifier K currents.  The behaviour of these channels is 

clearly different from Kv channels and instead of voltage-dependant activation 
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they rely on an electrochemical gradient minus equilibrium potential (Em-EK) 

(Hibino et al., 2010) (Figure 1.11). 

Under correct physiological conditions Kir channels generate large inward K+ 

conductance at potentials negative to EK and small outward currents when 

positive to EK (Nakamura et al., 1999). Cells that express a large Kir conductance 

are expected to have a resting membrane potential close to EK and generally 

have no spontaneous activity. The voltage independent nature of the channels 

allows Kir to play a key role in setting and maintaining resting potential and 

action potential duration.  This is demonstrated in vascular smooth muscle cells 

where Kir 2 influences K+ conductance at near resting potential modulated by 

hypoxia, hypo-osmotic stress and agonists. (Park et al., 2008).  The myometrial 

specific and gestational dependant increased expression of this channel 

observed by our group suggests Kir 7.1 may be involved in gestational dependant 

depolarisation of resting membrane potential in myometrium towards term. 

On studying Kir7.1 unique pore properties were observed (Krapivinsky et al., 

1998). Widely expressed in the purjinke layer of the cerebellum and pyramidial 

cells of the hippocampus both cells that demonstrate electrical excitability and 

where K+ channels play a role in the timing and duration of action potentials. A 

high expression was shown in kidney and small intestine but a low expression 

was found in the heart, placenta and ovary (Figure 1.12).  In thyroid follicular 

cells Kir 7.1 was found to co-localise with the Na+K+ATPase (Nakamura et al., 

1999).  A low single channel conductance was suggested to support a 
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hypothetical functional coupling, with Kir 7.1 providing K+ recycling required for 

Na+ pumping and maintaining resting membrane potential.  

Kir 7.1 was seen to be only 38% identical to its closest relative in the ROMK family 

Kir 1.3.  Among the unique features of Kir 7.1 is its low estimated single channel 

conductance ~50fS and a low sensitivity to Ba2+, Cs and Mg2+ block which is 

characteristic of ROMK.  The amino acids in the pore sequence differ from all 

other Kir channel proteins.  The channel consists of 360 amino acids with 95% 

identity rat- human.  The amino acid sequence of the pore region reveals 3 

differences in conserved locations when compared to homologous sequences of 

other Kir subunits.  Novel sequences at Ser-111, Met-125 and Gly-129 appear to 

be responsible for the channels unique properties and its voltage independent 

nature(Krapivinsky et al., 1998) (Figure 1.13).  

The specific function of Kir 7.1 has not been previously studied in myometrium.  

Study in other tissues was impeded by a lack of a specific pharmacological 

blocker.  The small molecule intracellular blocker of Kir 7.1 VU590 has been 

described by investigators searching for inhibitors of ROMK (Lewis et al., 2009) 

(Figure 1.14). They showed that at 10μM VU590 would elicit a 60% inhibition of 

Kir 7.1 current at 120mV. The availability of a pharmacological blocker provided 

an opportunity to investigate the functional contribution of Kir 7.1 to myometrial 

contractility.  Predicted enhanced contractility may be of clinical interest in the 

development of therapies for PPH. 
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Figure 1.10: Fold change in mRNA expression of KCNJ13 in cDNA generated from 

laser captured mouse myometrial smooth muscle mRNA. Individual points denote 

mean±SE for 5 mice. 

Figure 1.11: Topology of voltage gated and inward rectifier K+ channels. Kir 

channels have 2 hydrophobic membrane spanning domains whereas KV channels 

have 6. From (Brown, 1997) 

! $!

A      B   

 
Figure 1. A. Fold change in mRNA expression of KCNJ13 in cDNA generated from laser captured 

mouse myometrial smooth muscle mRNA.  Individual points denote mean±SE for 5 mice. Fold 

change calculated by the 2-! ! Ct method. B. Gestation dependent change in RMP in rats (From 

Casteels and Kuriyama J. Physiol. 1965;177;263-287)  

Analysis of KCNJ13 mRNA expression in human samples revealed that there was an 8-fold 

increase in expression (! Ct 22.57±0.17 (n=7), Total cDNA vs ! Ct 19.27±1.73 (n=5), Laser 

captured material) when comparing pure MSM population with total biopsy cDNA in term (prior to 

labour) samples.  At this gestation, mRNA for KCNJ13 was the 4th/22 most abundant gene 

transcript behind the previously well-described genes encoding the BKCa
2+ (KCNMA1 and 

KCNMB1)24 and the voltage-gated channel subunit KCNE425.  Expression of KCNJ13 mRNA in laser 

captured MSM from term (prior to labour) samples was not significantly different to laser 

captured MSM from non-pregnant patients.  During this proposal we determine whether KCNJ13 

mRNA expression is up regulated in women in a similar manner to the rodent in mid-gestation.  

A (d13 Mice Pre-absorbed) B (d15 Mice Pre-absorbed) C (Term NIL Human Pre-abs) 

 
D (d13 Mouse Kir7.1) E (d15 Mouse Kir7.1)  F (term NIL Human Kir7.1) 

 
Figure  2. Immunohistochemistry using anti-Kir7.1 antibody(brown colour) with haematoxylin 

counterstain.  In mice staining was most prominent on d15 in MSM under the placental bed (e). 

In term human samples, staining was present and specific for MSM (f). 

To support our observations using qRT-PCR analysis from laser captured MSM mRNA we 

undertook immuno-histochemical analysis of the protein product of KCNJ13, the inwardly 

rectifying channel Kir7.1.  In the mouse, we demonstrated specific Kir7.1-like immunoreactivity in 

longitudinal and circular myometrial cells at all gestational ages (d13, d15, d18).  Staining was 

most intense on d15, particularly in myocytes immediately under the site of placentation (Figure 

2e).  This is particularly interesting since it has been demonstrated that RMP is most negative 

under the site of placentation26.  We have also demonstrated specific Kir7.1-like immunoreactivity 

in MSM taken from women at term (prior to labour). (Figure 2f). 

The biophysics of Kir7.1 

Kir7.1 was first cloned in 1998 and is only 38% identical to its closest relative, Kir1.327-29.  Kir7.1 

displays none of the functional properties of the ATP-regulated inward rectifier (ROMK) class of K+ 

channel, instead displaying several unique properties such as low sensitivity to Ba2+ and Cs+, low 

single channel conductance, no internal block by Mg2+ ions, and a relative insensitivity to external 

K+ concentration, tetraethylammonium (TEA) (IC50>10mM), and 4-aminopyridine (4-AP) (IC50 

~10mM). In in vitro expression systems, Kir7.1 demonstrates rapid activation kinetics (²act=0.8 to 

1.8ms for Em -140 to -40mV)28 and is essentially non-inactivating at potentials negative to 

40mV27 with a small single channel conductance in both recombinant (50fS to 1pS) and native 

cells (2pS in bovine retinal epithelium)30.  Since the channel has a low conductance, little voltage 

or time dependence in physiological ranges, is most highly expressed in mid-gestation and is 
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Figure 1.12: Human multiple tissue cDNA panel PCR screening demonstrates 

expression of Kir7.1 in kidney, brain, and intestine and to a lesser extent in testis, 

liver, and prostate: (1) brain, (2) heart, (3) kidney, (4) liver, (5) lung, (6) pancreas, 

(7) placenta, (8) skeletal muscle, (9) colon, (10) ovary, (11) peripheral blood 

leucocyte, (12) prostate, (13) small intestine, (14) spleen, (15) testis, and (16) 

thymus. From (Krapivinsky et al., 1998) 
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Figure 1.13: Comparison of the amino acid sequences of Kir7.1 with representative 

subunits of other Kir subfamilies. The predicted 360 amino acids of human Kir7.1 (single-

letter code) are shown aligned with sequences of human Kir1.2 (GenBank accession 

number U73192), human Kir2.1 (U12507), human Kir3.3 (U52152), rat Kir5.1 (X83581), 

and human Kir6.2 (D50582). Residues are shaded in black in instances in which other 

subunits are identical to Kir 7.1; asterisks denote residues conserved in all known Kir 

channels, and boxed residues (arrowheads) indicate where Kir7.1 is different from the 

consensus of all other Kir channels. Outlined also are the transmembrane segments M1 

and M2 and the pore-forming P-region (H5). Amino acid gaps within the alignment are 

indicated by short bars. The GenBank accession number for the human and rat Kir7.1 

sequences are AJ006128 and AJ006129, respectively.From (Döring et al., 1998) 
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Figure 1.14:  Inhibition of K+ channels with novel small molecule intracellular 

channel blocker VU590. A 60% inhibition of Kir 7.1 current at 120mV is seen with 

10 μM VU590 From: Lewis et al 2009. 

 

1.12 Summary 

In a previous screen carried out within our group a number of K+ channels were 

identified of interest due to the level of expression, gestational dependent 

nature of expression or relative abundance when compared with vascular 

smooth muscle. This has led to the prospect of further examination of the 

function of these ion channels in myometrium with a view their potential as 

therapeutic targets. Crucially, in the contractility pathway, modulation of K+ 
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channel function has the potential to significantly impact on myometrial 

membrane resting potential and action potential, directly modifying contractility 

downstream of chemical stimuli or signalling (Figure 1.15). 

1.11.1  K+ channel openers combined with Nifedipine as potential targets for 

tocolysis 

The problem of preterm labour has not diminished in recent years.  There is a 

choice of tocolytic drugs available to clinicians for the treatment of preterm 

labour however none have demonstrated improved neonatal outcomes and 

efficacy is limited.  Nifedipine is a widely chosen tocolytic due to a relatively good 

safety profile at tentative doses but full tocolytic effect cannot be elicited 

without inducing maternal hypotension.  The use of K+ channel openers in 

combination with Nifedipine in myometrium may be a way to enhance the effect 

of Nifedipine as a tocolytic by modulating membrane potential and preventing 

opening of VGCC (Figure 1.15b).  Most importantly, in order to avoid 

exacerbation of the associated side effect of hypotension K+ channels targeted 

should show preferential expression and function in myometrial tissue over 

vascular smooth muscle. Selective targeting of myometrial specific K+ channels 

by specific K+ channel openers, in combination with Nifedipine, could provide a 

useful clinical tocolytic therapy. The first part of this thesis includes experiments 

aimed at confirming this theoretical possibility by examining the effects of select 

K+ channel openers, and thus K+channel function; together with Nifedipine in 

human myometrium and myometrial small arteries. 
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1.12.2 K+ channel blockers as potential therapeutic target for PPH 

PPH also continues to be an obstetric problem that threatens morbidity and 

mortality of women globally. Current prevention and management strategies 

rely heavily on the use of Oxytocin, which in the case of uterine atony is not 

always effective often leading to a further cascade of mechanical and chemical 

rescue measures. Morbidity and mortality can heavily depend on maternal 

location and level of skill and resources available. A uterotonic that would 

provide reliable contractile force would be of great benefit. The K+ channel Kir 7.1 

was identified as being expressed in myometrial smooth muscle. Theoretically it 

is possible that this channel contributes to maintaining resting membrane 

potential (Figure 1.15c). The action of Kir 7.1 has not previously been studied in 

myometrium, but this is now possible due to the availability of the selective Kir 

7.1 blocker, VU590.  The second part of this thesis aims to examine the effects of 

VU590, and thus the function of Kir 7.1 in murine and human myometrium with a 

view to a therapeutic potential for PPH. 
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Figure 1.15a: Exogenous activators of contractile action (such as Oxytocin, PGF2α) 

provide exogenous activation of the G-protein coupled receptors (GPCR) on the 

cell membrane. Intracellular signalling of the alpha subunit Gαs activates 

phospholipase C (PLC) which cleaves the phospholipid phosphatidylinositol 4,5-

biphosphate (PIP2) into diacyl glycerol (DAG) and inositol 1, 4, 5-triphopshate 

(IP3). IP3 activates calcium channels located in the sacroplasmic reticulum (SR), to 

release Ca2+ from stores into the cytoplasm. This increases the internal voltage of 

the cell, depolarising the cell membrane, allowing voltage-activated gating of the 

L-type calcium channel and Ca2+ entry. [Ca2+]i binds to calmodulin and the Ca-

calmodulin complex binds to myosin light chain kinase and phosphorylates 

myosin light chains. This allows binding with actin and ATP dependent cross-

bridge cycling, leading to contraction of the smooth muscle cell. This continues as 

long as [Ca2+]i is available. 
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Figure 15.1b: Application the Ca2+ channel blocker Nifedipine provides an external 

block L-type voltage gated calcium channel (LVGCC), reducing Ca2+ influx via a 

chemical block. The hypothesis is that application of  K+ channel openers will 

allow K+ efflux from the myometrial smooth muscle cell, maintaining a polarised 

state within the cell which prevents internal voltage-activation of the LVGCC, 

further suppressing the ability of Ca2+ and thus reducing the ability of the cell to 

contract. Concerns about maternal side-effects limits the dose of Nifedipine that 

can be safely administered as a tocolytic in current obstetric practice. The 

addition of a K+ channel opener that targets a myometrial specific K+ channel, 

could increase the potency of the effect of Nifedipine. 
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Figure 15.1c: The compound VU590 has been shown to inhibit the inwardly 

rectifying K+ channel Kir 7.1 in other tissues but has not previously been studied in 

myometrium. The hypothesised effect of a chemical block of Kir 7.1 in myometrial 

smooth muscle cells will lead to an accumulation of [K+]i and sustained 

depolarisation. This will allow continued voltage-gated activation of the VGLCC 

and sustained Ca2+ entry, this enhancing the action potential and increasing 

contractility. 
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2.  Materials and Methods 

2.1 Contractility 

2.1.1 General laboratory reagents 

Krebs TES: NaCl 125.72 mM, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) 10 mM, D+-glucose 10 mM, KCL 4.68 mM, NaHCO3 4.16 mM, sucrose 2.9 

mM, CaCl2 1.8 mM, MgCl2 0.5 mM, KH2PO4 0.44 mM, MgSO4 0.4 mM and K2HPO4 

0.34 mM, pH 7.4 

Krebs-Henseleit solution (KHS): NaCl 118 mM, NaHCO3 25 mM, KCL 4.8 mM, KH2PO4 

1.2 mM MgSO4 1.2 mM, glucose 11.1 mM and CaCl2 1.25 mM, pH 7.4 

 

2.1.2 Reagents and drugs 

Potassium channel openers, Dimethyl-sulphoxide (DMSO) and Nifedipine were 

obtained from Sigma Aldrich Chemical Co, MO, USA. Riluzole and Nifedipine were 

dissolved in DMSO, pinacidil in 0.1 M HCL and linoleic acid in 100% methanol and 

stored in aliquots at -20°C. Dosing concentrations were prepared by serial dilution 

from stock solution with fresh KHS immediately prior to addition to the organ bath 

(Table 2.1). 

 

 

 



85 
 

Riluzole DMSO  Pinacidil HCL 

(0.1M) 

 Linoleic 

Acid 

 Methanol  Nifedipine DMSO 

0.3 µM 0.0001%  0.3 µM 1 µM  3 µM 0.001%  3nM 0.003% 

1 µM 0.0003%  1 µM 3.3 µM  10 µM 0.003%  10nM 0.01% 

3 µM 0.001%  3 µM 10 µM  30 µM 0.01%  30nM 0.03% 

10 µM 0.003%  10 µM 33.3 µM  100 µM 0.03%  100nM 0.1% 

30 µM 0.01%  30 µM 0.1 µM  300 µM 1%    

 

Table 2.1: Table showing the doses of each drug used and their volume equivalent 

dilution in final concentration when added to 10 mls organ bath as vehicle controls. 

2.1.3 Isolation of tissue 

2.1.3.1 Mouse 

Experiments were carried out on whole tissue from day 15 (D15) and 18 (D18) B6 

CB F1 pregnant mice, killed by CO2 asphyxiation at the University of Warwick. The 

uterus was removed, stored in ice cold Krebs–Henseleit (KHS) solution and 

transported to the Clinical Sciences Research Laboratories where it was dissected 

within 4 hours. Strips of myometrium from the longitudinal layer (2 x 2 x 20 mm) 

were dissected and used for isometric force recording as per the following 

description (2.1.4 Measurement isometric tension). 
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2.1.3.2 Human 

Myometrial biopsies were obtained at elective caesarean section from women prior 

to the onset of labour.  Biopsies were taken from the lower edge of the upper part 

of the incision, placed in Krebs TES solution, stored at 4˚C and used within 24 hours. 

All participants were singleton pregnancies at term; defined as pregnancy at 37-41 

completed weeks (see Figure 2.1 & 2.2).  Local ethical committee approval was in 

place for the collection of myometrial biopsies and informed written consent was 

obtained from each participant (see appendix).  Women were eligible for elective 

caesarean surgery due to breech presentation, previous caesarean section, low-

lying placenta or unstable lie.  There was one participant with gestational diabetes 

and all others had no significant medical conditions. 

 

Figure 2.1: The distribution of gestation age of participants for dose response 

experiments. All participants were term; as defined by 37-41 completed weeks of 

pregnancy. The same biopsy was used for more than one experiment and so there is 

replication within the groups. 
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Figure 2.2: The distribution of gestation age of participants for combined dose 

experiments. All participants were term; as defined by 37-41 completed weeks of 

pregnancy. The same biopsy was used for more than one experiment and so there is 

replication within the groups 

2.1.4 Measurement of isometric tension 

Strips of myometrium (approx 10 x 2 x 2 mm) were mounted in 10ml organ bath 

chambers containing KHS at 37˚C, perfused with 95% O2/5% CO2 to maintain pH 7.4, 

and under 2mN tension (LSI Letica automated organ bath, AD Instruments Ltd, 

Oxfordshire, UK) (Figure 2.3).  Isometric force was measured with ML TO201/D 

transducers and recorded digitally with PowerLab Chart software (AD Instruments 

Ltd, Oxfordshire, UK).  Strips that failed to contract spontaneously within a 120 

minute equilibration period were excluded. Approximately 1:10 strips would fail to 

contract. Baseline activity was recorded for 30 minutes before the addition of study 

drug.  For dose response experiments drugs were added in a cumulative manner at 
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20 minute intervals following addition of Nifedipine (3nM, 10nM, 30nM, 100nM) 

whereas in combined dosing contractile activity was recorded for 40 min following 

dosing.  Simultaneous recordings were made from vehicle-exposed strips taken 

from the same biopsy.  

 

 

 

 

 

 

Figure 2.3: Diagramatic representation of tissue strip mounted in organ bath 

 

2.1.5 Data analysis & Statistics 

Each contractile phase was recorded using LabChart software and the following 

parameters were measured to quantify the phase plot of each contraction (Figure 

2.4). 
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Figure 2.4: Parameters of each contraction phase plot used for analysis of 

contractility. A. Represents maximal force and duration, with activity integral 

representing the area under the curve. B. Represents frequency of contractions 

observed over a 20 min period. 

Means of these parameters for pre-dose contractions (over 20 minutes) and 

contractions following each dose (per 20 min period) were calculated for both 

treated and paired vehicle control strips.  

2.1.5.1 Dose response experiments: 

Percentage inhibition from pre-dose period was compared to control for each dose 

period.  Data was tested for normal distribution by Shapiro-Wilk normality test.  

Data did not fit a normal distribution and so the non-parametric Wilcoxon Signed 

rank test was selected for sample group comparison.  Activity integral data was 

fitted to dose response curves for calculation of IC50. 
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2.1.5.2 Combined dosing: 

Data was analysed as described above.  Percentage inhibition from pre-dose period 

was compared to control for each matched dose.  Data was tested for normal 

distribution by Shapiro-Wilk normality test.  All data did not fit a normal distribution 

and so the non parametric Wilcoxon Signed Rank test was selected for sample 

group comparison.  There appeared to be a time dependent effect of riluzole 

combined with Nifedipine and so data at doses with significant results was further 

analysed in 4 separate 10 min periods from dosing. As the desired clinical outcome 

would be an immediate cessation of contractions combined dosing data was also 

tested for binomial distribution. A sign test with cessation of contractions within 40 

minutes following dosing was considered a successful outcome verses continuation 

of contractions. 

 

2.2 Electrophoresis 

2.2.1 General Laboratory Reagents 

RIPA Lysis buffer: (10x) 0.5M Tris-HCl, pH 7.4, 1.5M NaCl, 2.5% deoxycholic acid, 

10% NP-40, 10mM EDTA (Millipore, MA USA) 

Complete, Mini, EDTA-free Protease Inhibitor Cocktail tablets: (Roche) 

Laemmli Sample Buffer: 62.5 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 0.01% 

Bromophenol Blue  
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Bio-Rad DC Protein Assay Kit: used as per manufacturer's instructions(Bio-Rad CA, 

USA) 

Transfer buffer (1 litre): Glycine 2.93g, Tris 5.81g, SDS 0.375g, methanol 200 ml, 

ddH2O 800ml. Solution made in the lab. Powder ingredients from Sigma Aldrich 

10x Tris Buffered Saline (TBS): Tris HCL 24.2g (pH 7.6), NaCl 80g, ddH2O 1L Solution 

made in the lab 

Tris Buffered Solution-Tween (TBS-T): TBS x10 100 ml, ddH2O 900 ml, Tween-20  

1ml Solution made in the lab Tween-20 from Sigma Aldrich 

Blocking buffer: TBS-T 100 ml, Marvel 5g (5%) 

Primary antibody dilution buffer: TBS-T 20 ml, 1g Bovine Serum Albumin (BSA) (5%) 

 

2.2.2. Isolation of tissue and sample preparation 

Myometrial tissue samples were flash frozen in liquid nitrogen on retrieval from 

caesarean section and stored at -80 until use. Samples were selected that fell into 4 

equal groups, pre-term labour, pre-term non-labour, term labour and term non-

labour (Table 2.2). Samples were kept frozen, weighed and crushed. Tissue was 

suspended in RIPA lysis buffer (RIPA Lysis buffer (10x) 0.5M Tris-HCl, pH 7.4, 1.5M 

NaCl, 2.5% deoxycholic acid, 10% NP-40, 10mM EDTA, Millipore UK) containing 

protease inhibitor cocktail tablets (Complete, Mini, EDTA-free Protease Inhibitor 

Cocktail tablets, Roche) at a ratio of 3 mls per 1 g of tissue. Lysate was mechanically 
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homogenised and allowed to settle on ice, centrifuged at 12,000g for 15 mins at 

4°C. The supernatant was aliquoted and frozen and the pellet discarded. 

 

2.2.3 Protein quantification 

Lysate protein quantification was performed by creating a range of protein 

standards. These were quantified by using the colorimetric Bio-Rad DC protein 

assay kits as per manufacturer's instructions. 

2.2.4 Sample loading 

An initial set of experiments was undertaken using a range of µg/µl loading of 

samples prepared in either reducing or non-reducing buffer to optimise results. 

Following this the appropriate volume of each sample to achieve 20 µg loading was 

added to 35µl of Laemmli buffer. Some antibodies required ‘boiling’ prior to 

electrophoresis at 95˚C for 5 mins. Other proteins were found to aggregate at high 

temperatures and therefore did not separate during electrophoresis. For these 

experiments samples were incubated at 37oC for 30 mins prior to loading in the gels 

(Table 2.3). All samples were settled on ice following heating and centrifuged at 

13,000 rpm for 5 mins prior to loading. 

2.2.5 Protein separation by SDS-PAGE  

Novex© Tris-Glycine polyacrylamide gels from invitrogen were used in Invitrogen 

NuPage system tanks. Gels were run for 90-120 mins at 125V (constant) with 

Novex© Tris-glycine SDS running buffer (Novex©). Protein migration and transfer 
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was monitored with the use of Spectra Multicolor broad range protein ladder 

(Thermo Scientific, MA, USA).  

Proteins were transferred onto Amersham ECL nitrocellulose membrane using Bio-

Rad Trans Blot SD semi-dry blotting system. Transfer was achieved at 100mV for 50 

mins. Successful transfer was assessed by staining using Poncaeu S and once 

visualised washed with 0.1nM NaOH prior to blocking. 

Blocking of non-specific binding was achieved by washing in TBS-T blocking buffer 

solution for minimum of 4 hours at room temperature or overnight at 4°C. 

Following blocking, membranes were washed in TBS-T 3 times at 5 mins each wash 

prior to incubation with primary antibody. 

2.2.6 Primary, Secondary antibodies and loading control 

Incubation with primary antibody was at the appropriate dilution (Tables 2.3 & 2.4) 

in primary antibody dilution buffer for minimum of 2 hours at room temperature or 

overnight at 4˚C. Membranes were then washed 3 times for 5 mins each wash prior 

to incubation with secondary antibodies. Secondary antibody used was Dako 

polyclonal goat anti-rabbit HRP antibody at a dilution of 1:500 and was incubated in 

TBS-T blocking buffer for 1 hour. Membranes were washed for 1 hour (10min, 20 

min, 30 min wash) prior to electro-chemiluminescence. 

Following electro-chemiluminescence membranes were washed in TBS-T overnight 

at 4°C. They were then exposed to anti-β actin antibody at a dilution of 1:50,000 for 

1 hour before being washed in TBT-T 3 times for 5 mins each wash and then 
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incubated in anti- mouse secondary antibody for 30 mins, washed in TBS-T for 1 

hour before electrochemiluminescence.  

 

2.2.7 Electrochemiluminescence detection 

Membranes were incubated for 5 mins in SuperSignal West Pico Substrate (Thermo 

Scientific, MA, USA) for detection of horseradish peroxidase (HRP). Membranes 

were then exposed to Kodak medical x-ray film (general purpose, blue) until bands 

were visible. Size approximation was made on films from ladder visible on the 

membrane. 

 

2.2.8 Data analysis and statistics 

Film images were scanned and band density was measured using Image J software 

and the analyze gels function for measurement of density of bands in individual 

lanes. The density of each lane is plotted and area under the curve measured. Ratio 

of value of band from antibody of interest was calculated against β-actin band 

value. Ratios from each sample group were statistically compared using ANOVA for 

significant difference. 
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Group R number Gest age Indication for LSCS 

PTL R448 35 EMLSCS for premature labour in Twins 

PTL R385 35+3 EMLSCS previous LSCS plus Group B Strep infection 

PTL R611 35+3 EMLSCS Antepartum Haemorrhage  

PTL R525 35 EMLSCS failed induction for IUGR 

PTL R494 36+3 EMLSCS for Pre-eclampsia 

PTL R940 34 EMLSCS for fetal distress 

    PTNL R456 35 EMLSCS for  Pre-eclampsia  (2x prev LSCS) 

PTNL R1010 34 ELLSCS for Twins plus hypertension 

PTNL R766 33+6 EMLSCS for IUGR (1 x prev LSCS) 

PTNL R529 29 EMLSCS for Antepartum Haemorrhage 

PTNL R582 34 EMLSCS for maternal hypertension 

PTNL R898 29 EMLSCS for  Antepartum Haemorrhage 

    TL R829 40+1 EMLSCS failure to progress in 1st stage 

TL R1032 40 EMLSCS  failure to progress in 1st stage 

TL R814 39 EMLSCS  failure to progress in 1st stage 

TL R858 40 EMLSCS  failure to progress in 1st stage 

TL R886 40+3 EMLSCS sub optimal CTG plus poor blood gases 

TL R1017 40 

EMLSCS failure to progress in 1st stage plus fetal 

distress 



96 
 

 

Table 2.2: Characteristics of frozen samples used in western blotting protocol. Split 

into groups of interest – Pre-Term Labour (PTL), Pre-Term non-Labour (PTNL), Term 

Labour (TL), Term non-Labour (TNL). 

 

 

 

 

 

 

 

Table 2.3: preparation of samples, dilutions and gels used for each antibody plus 

expected kDa of proteins in western blotting protocol. 

 

TNL R971 41 ELLSCS breech presentation 

TNL R999 39 ELLSCS 1x previous LSCS 

TNL R981 39 ELLSCS breech 

TNL R1013 39 ELLSCS maternal cerebral palsy 

TNL R990 39+5 ELLSCS breech 

TNL R1302 39 ELLSCS 1 x previous LSCS 

Antibody dilution kDa of 

protein 

Sample 

preparation 

Gel 

Anti - Kv 2.1 1:200 96  37°C for 30 

mins 

8% gel 

Anti - Kir 7.1 1:200 55 95°C for 5 mins 8% gel 

Anti – SK 3 1:500 75 37°C for 30 

mins  

8% gel 

Anti – Trek 1 1:250 55 95°C for 5 mins 8% gel 
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Table 2.4: Details of antibodies used in western blotting protocol 

2.5 Wire myography 

Experiments on myometrial small arteries were performed at the Institute of 

Cellular Medicine’ department of Reproductive and Vascular Research at Newcastle 

University under the supervision of Professor Mike Taggart and Dr Michele Sweeney. 

2.5.1 General Laboratory Reagents 

Physiological salt solution (PSS): NaCl 127 mM, KCl 4.7 mM, MgSO4.7H2O 2.4 

mM,NaHCO2 25 mM, KH2PO4 1.18 mM, EDTA 0.07 mM, Glucose 6.05 mM, 

CaCl2.2H2O 1.6 at pH 7.4 gassed with 5% CO2 in air 

Antibody Raised in  gene Binding site Sourced 

from 

Anti - Kv 2.1 Rabbit 

polyclonal 

KCNB1 Amino acid residues 

755-804 

Abcam PLC 

Anti K2P2.1 

(TREK-1) 

Rabbit 

polyclonal 

KCNK2 Amino acid residues 8 

-25 

Alomone 

Labs UK 

Anti – KCa2.3 

(SK3) 

Rabbit 

polyclonal 

KCNN3 Amino acid residues 2 

-21 

Alomone 

Labs UK 

Anti- Kir 7.1 Rabbit 

polyclonal 

KCNJ13 Amino acid residues 

80-94 (rat, 13/15 

residues identical in 

human) 

Alomone 

Labs UK 
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Physiological Salt solution – high potassium (KPSS): PSS plus 60mM KCL 

2.5.2 Isolation of tissue 

Myometrial biopsies were obtained with consent from women undergoing elective 

cesarean section at term (39-41 weeks gestation) and stored in ice-cold KHS. Small 

diameter arterial branches (<300 µM) were dissected from the surrounding 

connective tissue from the whole biopsy and placed in ice cold PSS. Artery branches 

were trimmed to approx. 2-3mm in length as measured using a calibrated eyepiece 

micrometer ahead of mounting. 

Dissected arterial segments were threaded with 40μm wire as shown in Figure 2.5, 

and mounted in the M610-wire myograph (Danish Myotech, Aarhus, Denmark), one 

side attached to a force transducer and the other to a movable micrometer. Vessels 

were submerged in 6 mls of PSS pre-warmed to 37˚C and gassed with 5% CO2 in air.  

 

 

  

   

  

Figure 2.5: Small artery mounted within force transducer mechanism. Figure 

adapted from: Mulvany AND Aalkjkeir (1990) Structure and Function of Small 

Arteries The American Physiological Society Vol. 70, No. 4 
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2.5.3 Normalisation and measurement 

Following the mounting procedure vessels were left to equilibrate for 10 mins. 

Vessels were then partially stretched by widening the wires and allowed to 

equilibrate again for a few minutes. This stretching and equilibrium cycle was 

repeated for approx. 6-7 stretches until the vessels reached beyond a passive 

tension of approx. 13.3 kPa. Measurement and normalisation software (Myodata, 

Danish Myotech) calculated internal vessel diameter and wire tension was adjusted 

accordingly to create a passive tension of equivalent of 100mmHg/13.3kPa for each 

vessel. 

Following normalisation and equilibrium, vessels were assessed for tissue sample 

viability and constricted to maximal vessel tone using KPSS. A washout period of 30 

minutes allowed full return to resting tension. A thromboxane mimetic and known 

vessel constrictor U46619 (1 µM) was added for a baseline contractile response. 

Following a further washout period and resumption to baseline equilibrium, the 

experimental protocol was commenced. Drugs were added either alone or in 

combination with some vessels exposed to vehicle only to act as controls. Any 

change to baseline tension was noted over a 30 minute incubation period before 

re-exposure to U46619 (1 µM). Further washout periods were commenced at the 

end of drug exposure completed by a final exposure to U46619 (1 µM) for each 

vessel. 
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2.5.4 Data analysis and statistics 

Changes in maximal tension achieved by U46619 (1 µM) from pre, during and and 

post drug incubation exposure was measured using the Myodaq software (Version 

2.02 M Danish Myotech). This was expressed as a ratio of the maximal tension 

achieved under pre-experiment exposure to U46619 (1 µM). Difference in kPa 

achieved was calculated using vessel diameter and difference of contraction 

achieved (maximal contraction – baseline tone). 
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3. Results 

3.1 The effects of potassium channel openers on myometrial contractility 

3.1.1 Clinical relevance & background 

Calcium influx is essential for propagation of an action potential and also allows, 

via calmodulin, the interaction between actin and myosin that brings about 

contraction of the myocyte (Word et al, 1993).  This mechanism of action is 

mirrored in vascular smooth muscle with myogenic tone being attenuated in 

calcium free media and increased with additional extracellular calcium (Davis & 

Hill, 1999).  The resting potential for vascular smooth muscle ranges from -60 to -

75 in unpressurised arteries and arterioles with a graded depolarization as 

pressure increases (Davis & Hill, 1999).  This mechano-sensitive response is 

crucial for systemic blood pressure control.  The L-type calcium channels are 

voltage gated (VGLCC) and as such open in response to de-polarisation of the 

membrane potential allowing calcium entry and further de-polarising of the 

smooth muscle cell.  The activation threshold for the VGLCC is between -50 to -

60 mV (Davis & Hill, 1999).  In pregnancy the uterus is quiescent with resting 

potential of between -75 to -60 mV (Parkington et al, 1999).   As contractile 

associated proteins increase there is a shift in balance towards excitability with 

resting potential reaching -55 mV (Parkington et al, 1999). In blocking calcium 

entry via the VGLCC, the dihydropyridine Nifedipine impedes contractility in both 

vascular smooth muscle and myometrium. It is this that leads to the unwanted 

side effect of hypotension when Nifedipine is used as a tocolytic and makes the 
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optimal therapeutic dose required to abolish contractions impossible to 

administer (further detail found in introduction).  

Work carried out within our group, using laser capture micro-dissection, and PCR 

analysis has measured the expression of specific ion channels in myometrium in 

comparison to their expression in vascular smooth muscle.  Channels identified 

as of interest were potassium channels, which demonstrated higher expression 

in myometrium over vascular smooth muscle.  Potassium channels when open 

allow K+ efflux resulting in membrane repolarisation.   With the combined effect 

of less Ca2+ entry and increased K+ efflux, membrane potential should be 

‘dampened’ reducing the probability of the generation of action potentials and 

contractile activity (Figure 3.1.1). 

Our hypothesis was thereby developed that improving the potency of Nifedipine 

in the myometrium, but not vasculature, could be achieved by modulation of 

membrane potential via myometrial specific K+ channels.  K+ channels identified 

in the work detailed above that had known openers available were selected as 

targets for investigation.  Drugs chosen were Riluzole, a known activator of SK3, 

TREK-1 and an inhibitor of voltage gated Na+ channels; and linoleic acid, a known 

activator of KV2.1. Pinacidil a known activator of KATP channels has been shown to 

reduce myometrial contractility and is used as a clinical anti-hypertensive. In 

offering no selectivity between myometrium and vasculature, Pinacidil was 

expected to act as a positive control for the other compounds. 

 



103 

 

RyR

IP3R

3Na

Ca2+

SR
uptake

cytosolic
buffers

-

Ca
2+Ca

2+
3Na+

2K+2H+

Na+

channel

Ca2+

3Na+

K+ channels

(Kv, KIR, K2p KCa) Cl-

channel

Ca2+-ATPase Na+-Ca2+

exchanger

Na+-K+-ATPase

Ca2+ entry channels

(voltage-, 

receptor- and  

store-operated) 

Ca2+

Non-selective

Cation entry

channel

Ca2+ Ca2+

Cl-

channel

RyR

IP3RIP3R

3Na

Ca2+Ca2+

SR
uptake

cytosolic
buffers

-

Ca
2+Ca

2+
3Na+

2K+2H+

Na+

channel

Ca2+

3Na+

K+ channels

(Kv, KIR, K2p KCa) Cl-

channel

Ca2+-ATPase Na+-Ca2+

exchanger

Na+-K+-ATPase

Ca2+ entry channels

(voltage-, 

receptor- and  

store-operated) 

Ca2+Ca2+

Non-selective

Cation entry

channel

Ca2+ Ca2+

Cl-

channel

 

 

 

 

 

 

 

 

 

Figure 3.1.1: Diagram shows ion channels involved in modulation of membrane 

potential. Nifedipine blocks calcium entry through voltage gated calcium 

channels and potassium channel openers increase K+ efflux resulting in 

repolarisation of membrane potential. Modulating membrane potential in this 

way should reduce the probability of the formation of action potentials and 

contractile activity (diagram drawn by Henggui Zhang). 
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3.1.2 Aims 

3.1.2.1 Dose response experiments: 

The first aim was to establish the dose response effect of the selected potassium 

channel openers on myometrial contractility. Following this, the same dose 

response was applied to strips pre-treated with a range of concentration of 

Nifedipine. Percentage inhibition from pre-dose period was compared to control 

for each dose period.  Data was tested for normal distribution by Shapiro-Wilk 

normality test.  Data did not fit a normal distribution and so the non-parametric 

Wilcoxon Signed rank test was selected for sample group comparison.  Activity 

integral data was fitted to dose response curves to determine the IC50. 

3.1.2.2 Combined dosing: 

In an extension to this investigation a combined dose protocol was added. It was 

envisaged that a dual dose regimen would be used in clinical application and so 

dual dosing was performed in the organ bath. Data was analysed as described 

above.  Percentage inhibition from pre-dose period was compared to control for 

each matched dose.  Data was tested for normal distribution by Shapiro-Wilk 

normality test.  All data did not fit a normal distribution and so the non 

parametric Wilcoxon Signed Rank test was selected for sample group 

comparison.  There appeared to be a time dependent effect of Riluzole 

combined with Nifedipine and so data at doses with significant results was 

further analysed in 4 separate 10 min periods from dosing. As the desired clinical 
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outcome would be an immediate cessation of contractions following combined 

dosing, data was also tested for binomial distribution and sign test with cessation 

of contractions within 40 minutes following dosing considered a successful 

outcome verses continuation of contractions. 

 

3.1.3 Objective: 

i) To determine the effect of selective K+ channel openers, linoleic acid, Pinacidil 

and Riluzole, on the contractility of spontaneously contracting myometrial strips. 

ii) To determine the effect of selective K+ channel openers, linoleic acid, Pinacidil 

and Riluzole on the contractility of spontaneously contracting myometrial strips 

following pre-treatment with Nifedipine.  

 

3.1.4 Results   

3.1.4.1 Results - The effect of linoleic acid on myometrial contractility 

Linoleic acid showed no significant effect on any of the measured parameters 

either alone or when combined with Nifedipine (Figure 3.1.2). 
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Figure 3.1.2: Linoleic acid: Graphs showing mean inhibition of activity integral ± 

SEM when (A) Linoleic acid added to spontaneously contracting strips either not 

pre-treated (n=10) or treated with Nifedipine (3 nM (n=12), 10 nM (n=11), 30 nM 

(n=9), 100 nM (n=8)); or (B) vehicle control equivalent. There was no significant 

difference in inhibition between Linoleic Acid and vehicle control. 
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3.1.4.2 Results – The effect of Pinacidil on myometrial contractility 

Pinacidil reduced activity integral when added to spontaneously contracting 

strips alone at 3 µM (P=0.003) , 10 µM (P=0.0019) and 30 µM (P=0.0019) (Figure 

3.1.3) (IC50 1.85(± 0.03) µM) (Table 2). When pre-treated with 3 nM Nifedipine 

activity integral was also reduced at 3 µM (P=0.007), 10 µM (P=0.015) and 30 µM 

(P=0.015) (IC50 1.49(± 0.04) µM) (Table 3.1).  When pre-treated with 10 nM 

Nifedipine activity integral was reduced at 3 µM (P=0.005), 10 µM (P=0.0019) 

and 30 µM (P=0.003) (IC50 0.52(± 0.12) µM) (Table 3.1).  Pinacidil either alone or 

combined with 3 nM or 10 nM Nifedipine had similarly significant reduction in 

maximal force, contraction duration and frequency (Figures 3.1.3, 3.1.4, 3.1.5, 

3.1.6, 3.1.7, 3.1.8, 3.1.9, 3.1.10).  The lack of significant results in strips pre-

treated with 30 nM Nifedipine or higher reflects the inhibitory effect of 

Nifedipine at these doses, which exceeds any discernible effect of Pinacidil over 

control strips. The time dependent effect of Nifedipine seen in the reduction in 

contractility in control strips may also explain the lessening power of significant 

results at higher combined doses. 
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Figure 3.1.3:  Mean inhibition of activity integral ± SEM when Pinacidil (0.3, 1, 3, 

10 and 30 μM) added to spontaneously contracting strips either alone (n=11) or 

pre-treated with Nifedipine (3 nM (n=10), 10 nM (n=10), 30 nM (n=10), 100 nM 

(n=10)) . Activity integral is completely abolished at Pinacidil 10 μM alone. 
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Figure 3.1.4: Significant inhibition of activity integral as seen when compared to 

vehicle control equivalent in (A) Pinacidil alone (A: 3 µM P=0.003, B: 10 µM 

P=0.0019, C: 30 µM P=0.0019 n=11)  (B) Nifedipine 3 nM + Pinacidil (A: 3 µM 

P=0.007, B: 10 µM P=0.015, C: 30 µM P=0.015 n=10) and (C) Nifedipine 10 nM + 

Pinacidil (A: 3 µM P=0.005, B: 10 µM P=0.0019, C: 30 µM P=0.003 n= 10). 
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Figure 3.1.5: Mean inhibition of maximal force ± SEM after addition of Pinacidil 

(0.3, 1, 3, 10 and 30 μM) to spontaneously contracting strips either alone (n=11) 

or pre-treated with Nifedipine (3 nM (n=10), 10 nM (n=10), 30 nM (n=10), 100 

nM (n=10)). Maximal Force is completely abolished at Pinacidil 10 μM alone. 
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Figure 3.1.6: Significant inhibition of maximal force as seen when compared to 

vehicle control equivalent in (A) Pinacidil alone (A: 3 µM P=0.0009, B: 10 µM 

P=0.0009, C: 30 µM P=0.0009 n=11)  (B) Nifedipine 3 nM + Pinacidil (A: 10 µM 

P=0.015, B: 30 µM P=0.015 n=10) and (C) Nifedipine 10 nM + Pinacidil (A: 3 µM 

P=0.013, B: 10 µM P=0.0019, C: 30 µM P=0.003 n= 10). 
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Figure 3.1.7: Mean inhibition of contraction duration ± SEM when Pinacidil (0.3, 

1, 3, 10 and 30 μM) added to spontaneously contracting strips either alone (n=11) 

or pre-treated with Nifedipine (3 nM (n=10), 10 nM (n=10), 30 nM (n=10), 100 

nM (n=10)). Contraction duration is at zero by Pinacidil 30 μM alone 
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Figure 3.1.8: Significant inhibition of contraction duration as seen when 

compared to vehicle control equivalent in (A) Pinacidil alone (A: 10 µM P=0.0019, 

B: 30 µM P=0.0019 n=11)  (B) Nifedipine 3 nM + Pinacidil (A: 10 µM P=0.015, 

n=10) and (C) Nifedipine 10 nM + Pinacidil (A: 30 µM P=0.003 n= 10). 
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Figure 3.1.9: Mean inhibition of contraction frequency ± SEM when Pinacidil (0.3, 

1, 3, 10 and 30 μM) added to spontaneously contracting strips either alone (n=11) 

or pre-treated with Nifedipine (3 nM (n=10), 10 nM (n=10), 30 nM (n=10), 100 

nM (n=10)). Contraction frequency is at zero by Pinacidil 30 μM alone. 
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Figure 3.1.10: Significant inhibition of contraction frequency when compared to 

vehicle control equivalent in (A) Pinacidil alone (A: 3 µM P=0.03, B: 10 µM 

P=0.0019, C: 30 µM P=0.03 n=11)  (B) Nifedipine 3 nM + Pinacidil (A: 10 µM 

P=0.006, B: 30 µM P=0.015 n=10) and (C) Nifedipine 10 nM + Pinacidil (A: 3 µM 

P=0.03, B: 10 µM P=0.0015, C: 30 µM P=0.03 n= 10) and (D) Nifedipine 30 nM + 

Pinacidil (A: 10 µM P=0.015 n=10). 
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Table 3.1: IC50 for Pinacidil either alone (n=11) or with Nifedipine pre-treatment 

based on activity integral data (3 nM (n=10), 10 nM (n=10)). IC50s not calculated 

for higher doses of Nifedipine pre-treatment due to lack of significant results in 

these series. 

 

 

 IC50 ±SEM 

No pre-
treatment 

1.85 0.03 

Nifedipine 3 nM 1.49 0.04 

Nifedipine 10 nM 0.52 0.12 
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3.1.4.3 Results – The effect of Riluzole on myometrial contractility 

Riluzole significantly reduced activity integral and maximal force of contraction 

at 30 µM (P= 0.0078) when administered alone (Figure 3.1.11) (IC50 26.4 (± 0.06) 

µM) (Table 3.2). When combined with Nifedipine 3 nM activity integral was 

reduced at 3 µM (P=0.04) (Figure 3.1.12) (IC50 5.4 (± 0.04) µM) (Table 3.2) and 

maximal force reduced at 10 µM (P=0.041) and 30 µM (P=0.006) (Figure 

3.1.13,3.1.14).  There was an increased duration at 10 µM when pre-treated with 

Nifedipine 30 nM (P=0.0019) (Figure 3.1.15, 3.1.16).  On further investigation, it 

was observed that the phase plot shape of contraction had altered at this dose 

(Figure 3.1.17).  The duration of the upstroke of contraction was increased at this 

dose (Figure 3.1.17) illustrating that the increased duration is due to a slower 

climb to maximal force.  A similar change was evident in strips pre-treated with 

other doses of Nifedipine however analysis did not yield significant results in 

other strips.  This may be down to variance of sample group response, 

particularly at higher doses where contractions were small and short by duration 

bringing down duration average.  The lack of effect on frequency reflects the 

small short contractions that persisted at higher doses.  Again, as with Pinacidil 

experiments, the lack of significant results in strips pre-treated with 30 nM 

Nifedipine or higher reflects the inhibitory effect of Nifedipine at these doses 

being equal to control. 
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Figure 3.1.11: Mean inhibition of activity integral ± SEM when Riluzole (0.3, 1, 3, 

10 and 30 μM) added to spontaneously contracting strips either alone (n=9) or 

pre-treated with Nifedipine (3 nM (n=12), 10 nM (n=10), 30 nM (n=9), 100 nM 

n=10)). Activity integral was never completely abolished by Riluzole alone. 
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Figure 3.1.12: Significant inhibition of activity integral compared to vehicle 

control equivalent in (A) Riluzole alone (A: 30 µM P=0.0078 n=9) and (B) 

Nifedipine 3 nM + Riluzole (A: 30 µM P=0.04 n=12). 
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Figure 3.1.13: Mean inhibition of maximal force ± SEM when Riluzole (0.3, 1, 3, 

10 and 30 μM) added to spontaneously contracting strips either alone (n=9) or 

pre-treated with Nifedipine (3 nM (n=12), 10 nM (n=10), 30 nM (n=9), 100 nM 

n=10)). Maximal force was never completely abolished by Riluzole alone. 
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Figure 3.1.14 Significant inhibition of maximal force when compared to vehicle 

control equivalent in (A) Riluzole alone (A: 30 µM P=0.007 n=9), and (B) 

Nifedipine 3 nM + Riluzole (A: 10 µM P=0.04 n=10, and B: 30 µM P=0.006 n=12) 
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Figure 3.1.15: Mean inhibition of contraction duration ± SEM when Riluzole (0.3, 

1, 3, 10 and 30 μM) added to spontaneously contracting strips either alone (n=9) 

or pre-treated with Nifedipine (3 nM (n=12), 10 nM (n=10), 30 nM (n=9), 100 nM 

n=10)). 
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Figure 3.1.16: Significant increase in contraction duration in strips pre-treated 

with (A) Nifedipine 30 nM + Riluzole (A: 10 µM P=0.0019 n=9). Mean inhibition of 

contraction duration upstroke in (B) Riluzole ± SEM when compared with vehicle 

strip and Pinacidil at same dose (A: 10 µM P<0.05 n=11). 

 

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

D
u

ra
ti
o

n
 (

m
e

a
n

 
 S

E
M

)

[log Riluzole] (M)

 Nifedipine 30 nM + Riluzole

 Nifedipine 30 nM + DMSO

  

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
o

n
tr

a
c
ti
o

n
 u

p
s
tr

o
k
e

 d
u

ra
ti
o

n
 (

m
e

a
n

 
 S

E
M

)

(M)

 Nifedipine 30nM + Riluzole

 Nifedipine 30nM +DMSO

 Nifedipine 30nM +Pinacidil

 

A 

B

A 

abailey
Text Box
A

abailey
Text Box
A



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.17: Phase plots showing (A) a typical ‘plateau’ shape contraction seen 

in spontaneous contractions and (B) a ‘spike’ shape contraction seen following 

treatment with Riluzole with interrupted upstroke phase leading to longer 

contraction duration. 
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Figure 3.1.18:  Mean inhibition of frequency of contractions ± SEM when (A) 

Riluzole added to spontaneously contracting strips either alone (n=10) or pre-

treated with Nifedipine (3 nM (n=12), 10 nM (n=10), 30 nM (n=9), 100 nM (n= 

10)). Significant inhibition when Riluzole compared to vehicle control equivalent 

(B). There was no significant change in frequency at any other doses and the 

significant result shown (10 µM P=0.04 n=10) may be due to uncharacteristic rise 

in frequency in control data. 
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Table 3.2:  IC50 for Riluzole either alone (n=9) or with Nifedipine pre-treatment (3 

nM n=12) based on activity integral data. IC50s not calculated for higher doses of 

Nifedipine pre-treatment due to lack of significant results in these series. 

 

 

 

 

 

 IC50 ±SEM 

No pre-treatment 26.4 0.06 

Nifedipine 3 nM 5.4 0.04 
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3.2 The effects of combined dose of Nifedipine with potassium channel 

openers on myometrial contractility 

3.2.1 Clinical relevance and background 

Following results from previous experimental series where Nifedipine was used 

as pre-treatment and cumulative doses of compounds added, further 

contractility work was undertaken to assess the impact on spontaneous 

contractions of a combination of Riluzole + Nifedipine and Pinacidil + Nifedipine 

when administered simultaneously.  Due to the lack of effect shown with linoliec 

acid, it was omitted from further work.  Larger doses of Nifedipine appeared to 

mask any combinatory effect in previous work and so combined doses of 

Nifedipine was limited to 3 nM and 10nM.  A higher dose of Riluzole was added 

in this series as complete inhibition was not previously achieved at 30 µM. In 

order observe if the response Riluzole is mediated in the presence of 

physiologically occurring stimulators of contraction, combined doses were 

undertaken along with Oxytocin (1nM) and PGF2α (10 µM). The dose of 1 nM of 

Oxytocin was selected as this has previously been shown to be the EC50 of 

Oxytocin and this dose has been used previously in our laboratories with 

sufficient effect on contractility to increase tone and prolong the phase-plot 

(Åkerlund et al 1999, Gullam et al 2009). The increase in activity integral of 150% 

of control produced here is similar to that seen by other published work at the 

same dose, although variation was noted between the response of term tissue 
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and preterm so sample gestation/time to onset of labour variation may influence  

the response (Åkerlund et al 1999, Gullam et al 2009). 

Similarly, PGF2α 10 µM, has been shown to produce enhanced activity integral 

ranging from 125% to 259% in other publications with variation seen between 

term, non-labouring and early or late stage labouring tissue at the same doses 

(Fischer et al 2008, Friel et al 2015). 

 

3.2.2 Objective: 

I. To determine the effect of selective K+ channel openers, Pinacidil and 

Riluzole on the contractility of spontaneously contracting myometrial 

strips when administered simultaneously with 3 nM or 10 nM of 

Nifedipine. 

II. To determine the effect of Riluzole alone and in combination with 

Nifedipine in the presence of Oxytocin and PGF2α. 

3.2.3 Results 

3.2.3.1 Nifedipine combined with Pinacidil 

When Nifedipine 3 nM and 10 nM were combined with Pinacidil, contractions 

were frequently abolished from 3 µM dose and above.  Simultaneous dosing of 

Pinacidil + Nifedipine at all dose intervals resulted in either complete inhibition 

or continuation of contractions. Strips that continued to contract did so with no 

significant difference from control (Figure 3.2.1, 3.2.2). As the combined dosage 

of both compounds increased strips were more likely to discontinue contracting 
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altogether and all strips were inhibited by Pinacidil 30 µM combined with 

Nifedipine at 3 nM or 10 nM. Binomial sign test was applied to predict at what 

dose strips were significantly likely to have ceased 40 mins following 

administration of the dose (Figure 3.2.3). Strips were significantly likely to cease 

at a dose of, Nifedipine 10 nM + Pinacidil 3 µM (87% P < 0.05), 10 µM Pinacidil 

alone (80% P <0.05), Nifedipine 10 nM + Pinacidil 10 µM (87% P < 0.05), Pinacidil 

30 µM alone (100% P < 0.001), Nifedipine 3 nM  + Pinacidil 30 µM (100% P < 

0.01) and Nifedipine 10 nM  + Pinacidil 30 µM (100% P < 0.001). Combined doses 

administered simultaneously brought about complete inhibition in a greater 

percentage of strips at doses of Pinacidil 0.3 µM – 3 µM than when strips were 

pre-treated with Nifedipine in the same combinations although there was no 

significance with binomial sign test most likely due to insufficient n numbers to 

power the test (Figure 3.2.3). Strips pre-treated with Nifedipine at either 3 nM or 

10 nM with Pinacidil added at 10 µM from the experimental series presented in 

section 3.1.3.2 were significantly likely to result in complete inhibition (100% P < 

0.01) whereas this was not the case for the same dose combination in 

simultaneous dosing (Figure 3.2.4). 
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Figure 3.2.1: Inhibition of contraction activity integral (A), maximal force (B), 

contraction duration (D) and frequency (D) with the dual administration of 

Nifedipine 3 nM combined with either Pinacidil (0.3 µM (n=6/10), 1 µM (n=6/10), 

3 µM (n=3/10), 10 µM (n=2/8), 30 µM n=0/8) or control. All contractions were 

abolished at the Nifedipine 3nM + Pinacidil 30 µM dose hence no data shown. 
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Figure 3.2.2: Inhibition of contraction activity integral (A), maximal force (B), 

contraction duration (D) and frequency (D) with the dual administration of 

Nifedipine 10 nM combined with either Pinacidil (0.3 µM (n=3/10), 1 µM 

(n=4/10), 3 µM (n=1/8), 10 µM (n=1/8), 30 µM n=0/11) or control. All 

contractions were abolished at the Nifedipine 10 nM + Pinacidil 30 µM dose 

hence no data shown. 
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Figure 3.2.3: Graph showing the % of strips in each series that ceased to contract 

on addition of drug combinations. (A: Nifedipine 10 nM + Pinacidil 3 μM 87% 

P<0.05 n=8, B: Pinacidil 10 μM 80% P<0.05 n=10, C: Nifedipine 10 nM + Pinacidil 

10 μM 87% P, 0.05 n=8, D: Pinacidil 30 μM 100% <0.001 n=10, E: Nifedipine 3 nM 

+ Pinacidil 30 μM 100% <0.001 n=8, F: Nifedipine 10 nM + Pinacidil 30 μM 100% 

P<0.001 n=11) Statistical significance of likelihood to cease was calculated using 

binomial sign test. 
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Figure 3.2.4: Graph showing the % of strips in each series that ceased to contract 

on addition of either simultaneously added drug combinations (grey) or where 

strips were pre-treated with (A) Nifedipine at 3 nM (A, B, C P,0.05) or (B) 

Nifedipine 10 nM (A, B: P<0.05, C: P< 0.01 D: P< 0.001, E: P<0.01) prior to the 

addition of Pinacidil (red). Statistical significance of likelihood to cease was 

calculated using binomial sign test. 
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3.2.3.2 Nifedipine combined with Riluzole 

 

Data was initially analysed by averaging parameters over 40 min dosing period.  

When combined with 3 nM of Nifedipine, Riluzole reduced the maximal force of 

contraction at 3 µM, the maximal force, activity integral and contraction 

duration at 30 µM and the maximal force and activity integral at 100 µM.  There 

was no effect on frequency at any dose.  When combined with 10 nM Nifedipine  

Riluzole reduced the maximal force, activity integral and contraction duration at 

100 µM only (Figure 3.2.5 & 3.2.6).  When data from doses showing significant 

results was analysed in 4 separate 10 min periods from dosing the observed time 

dependent effect was confirmed. Significant results were seen when compared 

to control data at the same time interval following dosing (Figure 3.2.7 & 3.2.8).  

There is a more potent effect apparent when Nifedipine of either dose was 

combined with Riluzole 100 µM compared to Riluzole 30 µM. 

When the shape of the phase plot is examined, the maximal force is reduced, 

contraction duration increased and time from baseline to maximal force or the 

upstroke period is increased (Figure 3.2.9). The activity integral will be of similar 

value explaining the lesser significance of reduction of activity integral seen 

compared reduction in maximal force (Figure 3.2.10). 

The pattern seen with Pinacidil, where contractions were fully inhibited at 

certain combined doses was not seen in Riluzole with no combination likely to 

bring about total inhibition (Figure 3.2.11).  
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Figure 3.2.5: Mean inhibition of (A) activity integral (A: 30 µM P=0.03 n=11), (B) 

maximal force (A: 3 µM P= 0.007 n=9, B: 30 µM P=0.02 n=11, C: 100 µM n=0.03 

n=6) (C) contraction duration (A: 30 µM P=0.004 n=11) and (D) frequency ± SEM 

when Riluzole added to spontaneously contracting strips in combination with 3 

nM Nifedipine. 
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Figure 3.2.6: Mean (± SEM) inhibition of (A) activity integral (100 µM P=0.007 

n=10), (B) maximal force (A: 100 µM P=0.007 n=10), (C) contraction duration (A: 

100 µM P=0.015 n=10) and (D) frequency when Riluzole added to spontaneously 

contracting strips in combination with 10 nM Nifedipine. 
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Figure 3.2.7: Mean (± SEM) inhibition of spontaneously contracting strips: (A) 

activity integral following addition of Nifedipine 3 nM + Riluzole 30 µM (A: 20-30 

mins P=0.05 n11, B: 30-40 mins P=0.06 n=11), (B) maximal force following 

addition Nifedipine 3 nM  + Riluzole 30 µM (A:20-30 mins P=0.04 n=11 & B: 30-40 

mins P=0.02 n=11)  (C) activity integral flowing addition of Nifedipine 10 nM + 

Riluzole 30 µM, (D) maximal force following addition Nifedipine 10 nM  + Riluzole 

30 µM (A: 20-30 mins P=0.03 n=11) 
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Figure 3.2.8: Mean (± SEM) inhibition of (A) activity integral when Nifedipine 3 

nM added in combination with Riluzole 100 µM (A: 10-20 mins P=0.03 n=6), and 

(B) maximal force (A: 10-20 mins P=0.03 n=6 & B: 30-40 mins P=0.03 n=6), (C) 

activity integral when Nifedipine 10 nM added in combination with Riluzole 100 

µM (A: 0-10 mins P=0.007, B: 10-20 mins P=0.03, C: 20-30 mins P=0.007, D:30-40 

mins P=0.007 n=6), and (D) maximal force (A: 0-10 mins P=0.007, B: 10-20 mins 

P=0.007, C: 20-30 mins P=0.007, D: 30-40 mins P=0.007 n=6) 
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Figure 3.2.9: Mean (± SEM) inhibition of contraction upstroke in (A) Nifedipine 3 

nM added in combination with Riluzole 30 µM (A: 0-10 mins & B: 30-40 mins 

P=0.02 n=11), and (B) Nifedipine 3 nM added in combination with Riluzole 100 

µM (A: 10-20 mins P=0.03 n=6), (C) Nifedipine 10 nM added in combination with 

Riluzole 30 µM (n=11), and (D) Nifedipine 10 nM added in combination with 

Riluzole 100 µM (n=10) 
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Figure 3.2.10: Changed shape of the phase plot when dosed with Riluzole. 

Maximal force is reduced, contraction duration increased and time from baseline 

to maximal force or the upstroke period is increased, but with a similar area 

under the curve. 
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Figure 3.2.11: Graph showing the % of strips in each series that ceased to 

contract on addition of drug combinations. Statistical significance of likelihood to 

cease was calculated using binomial sign test. With Riluzole no combination was 

statistically likely to inhibit contractions. 
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3.2.3.3 Riluzole in combination with Nifedipine, PGF2α or Oxytocin 

 

Riuzole 100 µM alone, and dosed in combination with Nifedipine 3 nM was 

added to strips together with PGF2α 10 µM or oxytocin 1 nM in order to measure 

if these physiologically available contractile agents would mediate any previously 

seen effect. 

As expected, PGF2α and oxytocin alone brought about an increase contraction 

parameters when added to strips alone (Figure 3.2.12 & 3.2.13). When Riluzole 

100 µM was added along with PGF2α and oxytocin the contraction inhibition was 

similar to that seen without either PGF2α or oxytocin being present. These 

contractile promoters do not seem to inhibit the effect of Riluzole (Figure 3.2.12 

& 3.2.13). 
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Figure 3.2.12: Mean (± SEM) inhibition of activity integral, maximal force, 

and contraction duration in strips dosed with either 10 µM PGF2α (n=7), 

Riluzole 100 µM combined with 10 µM PGF2α (A: AI P=0.01, B: MF P=0.01, 

n=7), Nifedipine 3 nM combined with Riluzole 100 µM and 10 µM PGF2α 

(C: MF P=0.05 n=7), or Nifedipine 3 nM combined with 10 µM PGF2α (D: AI 

P=0.01, E: MF P=0.01 n=7). 

 

 

 

abailey
Text Box

abailey
Text Box

abailey
Text Box

abailey
Text Box

abailey
Text Box

abailey
Text Box
A

abailey
Text Box
B

abailey
Text Box
C

abailey
Text Box
D

abailey
Text Box
E



144 

 

1 n
M O

T

1 n
M O

T +
 R

il 1
00 µ

M

1 n
M O

T +
 R

il 1
00 µ

M +
 N

if 3
 n

M

1 n
M O

T +
 N

if 3
 n

M

0

50

100

150

200

*
*

*
* *

*

*

*

%
 c

h
a

n
g

e
 f
ro

m
 p

re
d

o
s
e

 c
o

n
tr

a
c
ti
o

n
s

 Activity Integral

 Maximal Force

 Duration

*

 

 

 

 

 

 

 

 

Figure 3.2.13: Mean (± SEM) inhibition of activity integral, maximal force, 

and contraction duration in strips dosed with either 1 nM oxytocin, 1 nM 

oxytocin and Riluzole 100 µM (A: AI P=0.03, B: MF P=0.01 C: Dur P=0.03 

n=7), 1 nM oxytocin with Riluzole 100 µM and Nifedipine 3 nM (D: AI 

P=0.01, E: MF P=0.01, F: Dur P=0.01 n=7), and 1 nM oxytocin and 

Nifedipine 3 nM (G: AI P=0.01, H: MF P=0.01, I: Dur P=0.01 n=7). 
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3.2.3 Conclusion 

There was no effect on contractility but linoloeic acid seen in these 

experiments. This could be because the target channel for this drug Kv 2.1 

does not contribute to resting membrane potential. However it could be to 

functional issues with the substance, as LA is a fatty acid full permeation of 

the drug into the myometrial strips could have not been successful and so 

there was no cellular level action. It could be that the dose range selected 

was insufficient to have an effect in the organ bath strips. In order to verify 

the original hypothesis, other substances to target Kv 2.1 could be sought. 

Pinacidil alone was effective at inhibiting contractions with total inhibition 

achievable within the dose range used. These findings support the hypothesis 

that by activating KATP channels in myometrium, a hyperpolarised state is 

maintained, preventing depolarisation and calcium entry via VGCC thus fully 

inhibiting contractions. The addition of Nifedipine further inhibits Ca2+ entry 

and critical threshold for action potential cannot be achieved at lower doses. 

Combination of Nifedipine with Pinacidil abolished contractions at a 

significantly lower dose than with Nifedipine alone (complete inhibition at 

Nifedipine 3 nM plus Pinacidil 10 µM, verses Nifedipine 30 nM alone). 

Pinacidil is well tolerated as an antihypertensive with also a good safety 

profile but chances of side-effect are higher due to its hypertensive action 

and further work on vascular effects will be required to assess this risk fully.  

Riluzole alone inhibited contractions, but within the dose range used, total 
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inhibition was not achieved. The inhibitory effect of Riluzole was further 

enhanced when combined with Nifedipine in increasing doses. Riluzole at 

most concentrated combinations brought about a diminishment of 

contractions over time and changed the shape of the contraction. Whether in 

vivo this diminishment would be sufficient to delay preterm labour is hard to 

determine. Riluzole is currently used as a long term therapy for delaying the 

progression of ALS, is not associated with hypotension and has a good safety 

profile. Combination with Riluzole in vivo may reduce the dose strength of 

Nifedipine required to inhibit contractions in preterm labour without 

additional side-effects. 

The mechanism of action underlying the effect of Riluzole on myometrial 

tissue is unknown. A number of possible mechanisms of actions that have 

been observed in other tissues points to a number of possibilities that would 

need further investigation. It may be that the inhibition seen is due to 

opening of potassium channel, either SK3 or TREK or a combination of these 

or other ion channels; and this is further explored in the discussion. If 

Riluzole is functioning on SK3 or TREK then perhaps a higher dose would be 

required to achieve sufficient K+ efflux to maintain hyperpolarisation. The 

effect seen was not mediated by PGF2α or oxytocin. 

Prior to considering clinical use of a combination of potassium channel 

openers with Nifedipine, effects on vascular smooth muscle must be 

investigated.  There needs to be strong indication that additional hypotensive 

effects will be avoided.  
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3.3 The effects of combined dose of Nifedipine with potassium channel 

openers on myometrial small arteries 

 

3.3.1 Clinical relevance and background 

 

The most commonly reported side effect associated with Nifedipine use as a 

tocolytic is hypotension, with concerns for fetal wellbeing as a result (de Heus et 

al 2009).  The overall efficacy of Nifedipine in halting labour and reducing length 

of time form treatment to birth is similar to other tocolytics, some of which are 

associated with additional maternal and fetal side-effects (de Heus 2009). Often 

tocolytic compounds lack full clinical effectiveness and preterm birth is not 

prevented. This could be attributed to incomplete inhibition of the contractile 

pathway. In theory, calcium channel blockers will halt the contractile 

mechanism definitively but preventing large conductance calcium entry. As 

demonstrated in the previous experiments an optimal dose of Nifedipine will 

entirely inhibit contractions, but the real and clear barrier to achieving this in 

vivo is the fact that higher dose of Nifedipine would have more significant 

cardiovascular side-effects leading to poorer outcomes and as such the 

Nifedipine dose for tocolysis is limited (RCOG 2011).  It has been the aim so far 

to establish the efficacy of a combined effect of Nifedipine with select 

potassium channel openers to enhance the tocolytic effect in the myometrium 

without additional cardiovascular impact. A previous screen has indicated that 

selected target K+ channels are not as abundantly expressed in VSMC as in 

MSMC. This led to the hypothesis that adverse cardiovascular effects would be 
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avoided. This would be vital to establishing any possible clinical relevance of 

drug combinations and would need to take into consideration the influence of 

endothelial- mediated response to these agents. Previous experiments have 

demonstrated the combined effects of select potassium channel openers and 

Nifedipine on myometrium. Therefore we undertook the next set of 

experiments to explore the effect of these drug combinations on myometrial 

small arteries. Small arteries were dissected from myometrial biopsies obtained 

with consent at elective caesarean section at term. After a period of 

normalisation myometrial small arteries were exposed to the thromboxane A2 

receptor agonist U46619 (1 µM), which also mimics the effect of vasopressin to 

bring about constriction of the artery. Following a washout period the selected 

drug combinations (or vehicle) were added for incubation to the myograph 

before a repeated exposure to U46619 (Figure 3.3.1). Data was analysed in 

terms of the ratio of pre-drug incubation constriction force/post-drug 

incubation constriction force (please see chapter 2 of this thesis for full details 

of methods used). 

 In addition we sought to quantify the expression of the target channels for 

these drugs, SK3  and TREK-1 in myometrial small arteries compared to 

myometrial smooth muscle to demonstrate selectivity.  
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Figure 3.3.1: Typical image of screen recording of artery contractile response to 

(A) U46691 alone, (B) response to U46619 following incubation with drug of 

interest (in this example Riluzole 100 µM), and (C) response to U46619 following 

washout. (The spikes in between contractile phases are artefacts caused by 

organ bath washout and fluid replenishing at approx 20 min intervals). Recorded 

using Miodaq 2.0 

 

 

3.3.2 Objective 

I. To determine the effect of selected combined doses of Nifedipine plus 

Pinacidil and Riluzole on the contractile responses of myometrial small 

arteries to U46619 

II. To determine the expression of SK3 and TREK-1 in human pregnant 

myometrium and human pregnant myometrial small arteries. 

 

 

A B C 
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3.3.3. Results 

 

 3.3.3.1 Results – the effect of Nifedipine on myometrial small arteries 

 

Nifedipine at 10 nM brought about a reduction in baseline tension of -2.31 ± 

0.72% from pre-incubation tone. When U46619 was added in the presence of 

Nifedipine 10 nM the maximal tone was significantly reduced at 56.84 ± 7.13% 

(P= 0.00006 n=8) of the non-treated response. Following a washout of the drug, 

re-exposure to U46619 elicited 89.04 ± 5.66% of the pre-treatment maximal 

tone (Figure 3.3.2). 

 

3.3.3.2 Results – the effect of Pinacidil on myometral small arteries 

 

Pinacidil at 3 μM brought about a mean reduction in baseline tension of -2.82 ± 

0.72% from pre-incubation tone. Contractile response to U46619 in the 

presence of Pinacidil 3 μM significantly reduced at a mean of 54.15 ± 16.32% 

(P= 0.039 n=6) of the non-treated response to U46619. As with the myometrial 

smooth muscle experiments, there were some arteries that showed a greater 

response and some less at 13.52, 20, 20, 85.56, 89.53, 96.30% respectively. 

Following a washout of the drug, re-exposure to U46619 elicited a mean of 

96.96 ± 13.18% of the pre-treatment maximal tone. 

Pinacidil at 10 μM resulted in a slight increase of mean baseline tone of 0.27 

±1.05, and when U46619 was added a mean of 35.49 ± 24.6% (P= 0.054 n=4) of 
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non-treated response was achieved. As in other experiments there was a split in 

response with individual responses of 6.75, 7.10, 19.08, 108.73% hence non-

significant results from the mean value. 

Following drug washout, exposure to U46619 resulted in mean 97.84 ±5.93% of 

pre-treatment maximal tone (Figure 3.3.2). 

 

3.3.3.3 Results – the effect of Nifedipine combined with Pinacidil on myometrial 

small arteries 

 

Simultaneous pre-dose incubation of Nifedipine 10 nM and Pinacidil 3 μM 

resulted in a slight reduction in mean baseline tension of -1.70 ±1.05%. When 

U46619 was added, there was a significant reduction in mean maximal tone of 

37.8 ±7.4% (P= 0.0005 n=6) of the pre-dose response. There was a less polarised 

response seen in this group with a range of 11.92-62.96%, hence the significant 

result. After the washout, a mean maximal tone achieved was 92.1 ±5.34% of 

the pre-dose response. 

Nifedipine 10 nM and Pinacidil 10 μM resulted in a mean baseline tension of 6.2 

±4.59%. With the addition of U46619 a mean maximal tone of 53.48 ±19.6% 

(P=0.74 n=5) of the pre-dose response. Once again there was a polarised 

response with individual artery responses of 3.49, 10.82, 69.84 and 101.28% 

explaining the non-significant result from the mean response. Following drug 

washout there was a mean maximal tone of 72 ±19.78% of the pre-dose 

response (Figure 3.3.2). 
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3.3.3.4 Results – the effect of Riluzole on myometrial small arteries 

 

Pre-dose incubation of Riluzole 100 μM resulted in a slight increase in mean 

baseline tone of 1.90 ± 1.15%. On addition of U46619, mean maximal tone 

achieved was 92 ±5.19 (P= 0.364 n=6) of the pre-dosed response.  The response 

was more consistent than seen with Pinacidil with a range of 72.77-96.30%. 

Following drug washout the mean maximal tone was 92 ±6.48% (Figure 3.3.2). 

 

3.3.3.5 Results – the effect of Nifedipine combined with Riluzole on myometrial 

small arteries 

 

Simultaneous pre-dose incubation of Nifedipine 10 nM and Riluzole 100 μM 

brought about a slight increase of baseline tension 0.75 ±0.56%. Following 

addition of U46619, mean maximal tone was 70.6 ±7.51% (P= 0.0102 n=5). 

After drug washout the mean baseline tone was 101.9 ±2.2% of the pre-dose 

tone (Figure 3.3.2). 
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Figure 3.3.2: Graph to show % of pre-incubation response to U46619 following 

20 minute incubation of the drug (black), response to U46619 while drug present 

(red) and response to U46619 following drug washout (blue) for the following 

drugs/combinations:  Vehicle control (VC) (n=5), Nifedipine 10 nM (A: P=0.00006 

n=8), Pinacidil 3 µM (B: P=0.039 n=6), Pinacidil 3 µM plus Nifedipine 10 nM (C: 

P=0.0005 n=6), Pinacidil 10 µM (n=4), Pinacidil 10 µM plus Nifedipine 10 nM 

(n=5), Riluzole 100 µM (n=6), Nifedipine 10 nM plus Riluzole  100 µM (D: 

P=0.0102 n=5). 
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Drug Vehicle 

Control 

NIF 10 PIN 3 PIN 3+ 

NIF 10 

PIN 

10 

PIN 10 

+ NIF 

10 

RIL 100 RIL 100 + 

NIF 10 

Drug incubation (% 

of pre-dosed 

maximal tone) 

-0.9 -2.31 -2.82 -1.70 0.27 6.2 1.90 -0.75 

± SEM (%) 0.911 0.72 1.32 0.7 1.05 4.59 1.15 0.56 

With U46619 

(% of pre-dosed 

maximal tone) 

89.69 56.84 54.15 37.8 35.41 53.48 92 70.6 

± SEM (%) 7 7.13 16.32 7.4 24.6 19.6 5.19 7.51 

T-test P value 0.4223

2 

0.0000

6*** 

0.039

* 

0.0005

*** 

0.054 0.074 0.364 0.0102* 

With U46619 

following drug 

washout 

(% of pre-dosed 

maximal tone) 

85.7 89.04 96.96 92.1 97.84 72 92 101.9 

± SEM (%) 11.9 5.66 13.18 5.34 5.93 19.78 6.48 2.2 

N 5 8 6 6 4 5 6 5 

 

Table 3.3: Summary of results (mean values) 
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3.3.3.6 Results – the expression of SK3 in human pregnant myometrium 

 

Tissue samples consisted of 4 groups of myometrium samples, pre-term labour 

(PTL n=6), pre-term non-labour (PTNL n=6), term labour (TL n=6), term non-

labour (TNL n=6) and quantified by western blotting. There was no significant 

difference in the expression of SK3 by gestation in myometrium, and no 

significant difference between labour and non-labour samples (Figure 3.3.3).  

 

 

 

 

 

 

 

 

 

Figure 3.3.3:  The expression of SK3 in myometrial tissue (ratio SK3/β-

actin) from 4 groups of samples: pre-term labour (PTL n=6), pre-term 

non-labour (PTNL n=6), term labour (TL n=6), term non-labour (TNL n=6) 

quantified by western blot. 
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3.3.3.7 Results – the expression of SK3 in human pregnant myometrial 

small arteries compared to expression in myometrium 

 

Myometrial small arteries were dissected from term non-labour (TNL 

n=6) myometrial biopsies and quantified by western blotting along with 

whole sample myometrium from additional term non-labour samples 

(n=2) (Figure 3.3.4). There was a non-significant difference in expression 

of SK3 with a tendency to higher expression in myometrial tissue 

compared to myometrial small arteries (Figure 3.3.5).  

 

 

 

 

 

 

 

 

 

Figure 3.3.4: Image of exposed western blot film to show bands detected 

for SK3 in myometrial small arteries (MA; term non-labor; n=6) and 

myometrial tissue (MYO; term non-labour; n=2) compared to the control 

protein β-actin. 
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Figure 3.3.5: Expression of SK3 (ratio SK3/β-actin) in myometrial small 

arteries (MA; term non-labour; n=6) and myometrial tissue (MYO; term 

non-labour; n=2). 

 

 

3.3.3.8 Results – the expression of TREK-1 in human pregnant myometrium 

Tissue samples consisted of 4 groups of myometrium samples, pre-term labour 

(PTL n=4), pre-term non-labour (PTNL n=4), term labour (TL n=4), term non-

labour (TNL n=3, (1 outlier excluded)) and quantified by western blotting. There 

was no significant difference in the expression of TREK-1 by gestation in 

myometrium, and no significant difference between labour and non-labour 

samples (Figure 3.3.6).  
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Figure 3.3.6:  The expression of TREK-1 in myometrial tissue (ratio TREK-1/β-

actin) from 4 groups of samples: pre-term labour (PTL n=4), pre-term non-labour 

(PTNL n=4), term labour (TL n=4), term non-labour (TNL n=3) quantified by 

western blot. 

 

3.3.3.9  Results - the expression of TREK-1 in human pregnant myometrial small 

arteries compared to expression in myometrium 

 

Myometrial small arteries were dissected from term non-labour (TNL n=6) 

myometrial biopsies and quantified by western blotting along with whole 

sample myometrium from additional term non-labour samples (n=2) (Figure 

3.3.7). No TREK-1 was detected in myometrial small arteries, but was detected 

in myometrial whole tissue (Figure 3.3.8). 
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Figure 3.3.7: Image of exposed western blot film to show bands detected for 

TREK-1 in myometrial small arteries (MA; term non-labor; n=6) and myometrial 

tissue (MYO; term non-labour; n=2) compared to the control protein β-actin. 

 

 

 

 

 

 

 

 

 

Figure 3.3.8: Expression of TREK-1 (ratio TREK-1/β-actin) in myometrial small 

arteries (MA; term non-labour; n=6) and myometrial tissue (MYO; term non-

labour; n=2). 
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3.3.4 Conclusion 

 

This group of experiments aimed to measure the effect of drug combinations on 

myometrial small arteries and the expression of select drug target K+ channels 

in myometrial small arteries compared to whole myometrial tissue in order to 

speculate as to the possible clinical side effects that may be seen with this 

regime.  

The myography experiments were conducted at Newcastle University's Institute 

of Cellular medicine under their guidance and the kind use of their equipment. 

There was a limited time available to conduct this work and so this is reflected 

in the low N in these experiments. Additional experiments with greater N would 

be beneficial to confirm the reliability of the results shown here and as such 

interpretation of findings is with caution.  

Pinacidil showed a relaxatory effect on small artery function, which was 

anticipated. There were polarised responses to Pinacidil with some tissue 

samples, which could be classified as 'non-responders' which is a phenomenon 

observed in previous contractility experiments. Nifedipine alone had a 

significant effect at near halving the response to U46619 than seen before drug 

incubation. Combination with Pinacidil 3 µM showed a cumulative effect on 

further relaxation, a trend that may have been evident at the 10 µM dose were 

it not for the 'non-responders' to Pinacidil.    

The reduced relaxatory effect on small arteries shown with Riluzole was initially 

reassuring as to its therapeutic potential. When combined with Nifedipine 

however, it appeared that the combination with Riluzole had a protective effect 
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on relaxation with less of a relaxatory response than when Nifedipine was 

dosed alone (70.6% vs 56.8%).  

Crane & Garland (2004) found that U46619 blocked SK3 channel in rat 

mesenteric artery, Riluzole (100 µM) evoked membrane hyperpolarisation from 

-55±2 mV to -71±3 mV (n=5) and this was reduced with repeated exposure to 

U46619 (incremental doses 1 nM to 0.1 µM) to 58±2 mV. Hyperpolarisation 

following application of levcromakalin (KATP activator) was unaffected by repeat 

exposure to U46619. 

Although this effect was only seen in repeated exposure to U46619 and in this 

set of experiments the dosing period was the second exposure to U46619 with 

drug pre-incubation preceding exposure (following a washout period) it is 

unclear to what extent there may have been a block of SK3 channels from 

U46619 that may have inhibited the effect of Riluzole in these experiments. 

Tissue samples used for protein quantification through Western blotting was 

obtained by dissecting myometrial small arteries from whole biopsies. This 

yielded a very small amount of tissue for sampling. Band variation in size and 

quality of blots mean that the results presented above are less than conclusive. 

Further, more accurate quantification of channel expression through techniques 

such as reverse transcription polymerase chain reaction (RT-PCR), or 

immunohistochemistry would be desirable before drawing any conclusions on 

difference in expression between myometrial smooth muscle and myometrial 

smooth arteries.   
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3.4. The effect of VU590 on myometrial contractility and expression of Kir7.1 

and Kv2.1 in human myometrium 

 

3.4.1 Clinical relevance and background 

3.4.1.1 Clinical relevance 

Post-partum haemorrhage (PPH) is a significant blood loss (> 500 mls) during or 

after the 3rd stage of labour and can occur following a normal, assisted or 

surgical birth.  Primary PPH is a significant blood loss in the 24 hours post birth 

with a secondary PPH occurring anywhere up to 6 weeks post-partum. Such a 

significant blood loss can lead to a rapid loss in haemodynamic stability, 

represents a risk to maternal morbidity and mortality; can often be 

unanticipated and is considered an obstetric emergency. 

Uterine atony is the most common cause of PPH. Clinical strategies to manage 

PPH include mechanical methods such as catheterisation, manual compression, 

balloon tamponade, internal iliac ligation; or pharmacoloigcal. 

Current pharmacological approaches include synthetic Oxytocin, ergot alkaloids, 

prostaglandins (PGF2α, prostaglandin E1). All of these have different 

pharmacological mechanism of action but ultimately result in increased Ca2+  

entry and therefore an increase in contractions. Often, more than one 

pharmacological agent or a mix of pharmacology and mechanical treatments are 

required to maintain uterine tone and haemostasis. If unsuccessful, then an 

obstetric hysterectomy is the only option. 
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3.4.1.2 Scientific background 

 

The inwardly rectifying potassium channel Kir 7.1 was identified as a channel of 

interest in a previous screen of myometrial specific K+ channel expression.   

In laser capture selected human myometrial smooth muscle, an 8-fold increase 

in the gene encoding Kir 7.1 KCNJ13 mRNA was seen compared to whole biopsy 

tissue at term as well as increased expression observed in murine myometrium 

which peaked at D15. 

Kir channels function through electrochemical gradient and are voltage 

independent and therefore have a potential role in setting and maintaining 

resting potential and action potential duration. The gestational dependant 

decrease in expression towards term observed in murine tissue points to a 

possible role for Kir 7.1 in the gestational-dependent depolarisation in resting 

membrane potential towards term in myometrium. The function of Kir 7.1 had 

not previously been investigated in myometrium but the availability of the novel 

intracellular blocker of Kir 7.1, VU590 has made investigation possible. Building 

on the previous work that identified expression of Kir 7.1 in human myometrium 

it is yet to be demonstrated if there is a gestational variation in expression in 

human myometrium which was observed in murine myometrium. 

We hypothesise that by blocking inwardly rectifying K+ current via Kir 7.1 would 

prevent repolarisation and prolong action potential by prolonging the voltage 

threshold for calcium entry via VGCCs. 
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3.4.2 Objective 

 

I. To assess the differential effect of the selective Kir 7.1 blocker VU590 on 

spontaneous murine myometrial contractility at day 15 and day 18 

gestation. To assess the combined impact of Oxytocin plus VU590 on 

spontaneous murine myometrial contractility at day 15 or day 18 

gestation. 

 

II. To assess the impact of VU590 on spontaneously contracting human 

myometrial strips. To assess the combined impact of Oxytocin plus VU590 

on spontaneously contracting human myometrial strips. 

 

III. To assess the expression of VU590 targets Kir 7.1 and Kv 2.1 in human 

pregnant myometrium 
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3.4.3 Results – the effect of VU590 on contractility of murine myometrium 

 

3.4.3.1 VU590 elicits a significant rise in baseline tone in murine myometrium 

with gestational dependent differences. 

 

Dose series administration of VU590 in D18 murine myometrium elicited a 

significant increase in baseline tone at 30 μM (167±45% (P<0.001 n=4)) and 100 

μM (343±113% (P<0.001 n=4)). No other parameters differed significantly from 

pre-dose values (Figure 3.4.1 (A)). VU590 10 μM elicited a baseline rise of 

112±28% (n=6) in D18 murine myometrium whereas the same dose in D15 tissue 

saw an increased baseline rise of 180±59% (n=6) demonstrating a gestational 

dependant difference in response to VU590 (Figure 3.4.1 (B&C)). 

 

3.4.3.2 VU590 combined with Oxytocin elicits a significant rise in baseline  

 

In combination with Oxytocin a more significant rise in baseline was observed in 

D18 (466±161% (n=3)) myometrium than D15 (252±75% (P<0.001)) (Figure 3.4.1 

(B&C)). The combination with Oxytocin had an effect that mimicked a 10 fold 

higher dose of VU590 alone in D18 tissue.  There was again no significant effect 

on other parameters. 
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Figure 3.4.1: % change in measured parameters from pre-dose contractions with 

dose spread of VU590 alone in D18 murine myometrium (A) (A: P<0.001 n=4, 

B:P<0.001 n=6), and 1 nM Oxytocin, 10 μM VU590 with and without Oxytocin in 

D15 (n=5) (B) (A: P<0.001, B: P<0.001 n=5) and D18 murine myometrium (n=5) (C) 

(A: P<0.0001 n=3). 
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3.4.3.3 VU590 alone and combined with Oxytocin elicits a significant rise in total 

activity integral in murine myometrium 

 

Such was the rise in baseline observed in the previously described experiments, 

with additional small contractile peaks above the baseline, re-analysis was 

undertaken where the whole time rise from baseline was recorded as activity 

integral and compared to pre-dose contraction activity integral. There was a 

dose-dependent and gestational differentiated increase in activity integral, rising 

to 1596±543% in day 18 myometrium and 1024±203% in day 15 myometrium 

following the highest dose of VU590 100 µM (Figure 3.4.2). 

With the combination of Oxytocin 1 nM and VU590 10 µM there was a 

17294±1457% increase in activity integral in day 15 and 8825±4310% in day 18 

myometrium compared to an increase with VU590 10 µM alone of 935±429% at 

day 15 and 528±78% at day 18 (Figure3.4.3). 
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Figure 3.4.2: Gestation and dose dependent effect of VU590 on total activity 

integral as a % of pre-dose contractions, mean and SE (*D15 vs D18 A,B,C: 

P=<0.05 n=5). 
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Figure 3.4.3: Gestation dependent effect of VU590 10µ M with and without 

Oxytocin 1 nM on total activity integral as a % of pre-dose contractions, mean 

and SE (*OT vs OT+VU590 A: P<0.05(D15) B:<0.05 (D18) n=5). 
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3.4.4 Results – the effect of VU590 on contractility of human myometrium 

 

3.4.4.1 VU590 alone 

Following administration of VU590 the effect on contractility differed from the 

immediate post-dose time period, through a prolonged contraction phase to 

remaining contractile activity. Based on this observation the overall effect was 

split into three phases in order to allow for more accurate quantification and 

comparison of effect (Figure 3.4.4).  Analysis was split in 3 phases (1) first five 

contractions following dosing, (2) prolonged contraction phase and (3) remaining 

contractions (Figure 3.4.4). For each phase the activity integral (AI), maximal 

force (MF) and contraction duration (CD) per contraction was measured and 

expressed as a percentage of mean baseline activity before dose.  Results are 

expressed as ±SEM. Significance was determined by Wilcoxon signed-rank test. 

 

3.4.4.2 VU590 augments spontaneous human myometrial contractions with 

prolonged contractile phase. 

 

Phase (1) First 5 contractions 

In the first 5 contractions AI increased on a contraction-by-contraction manner 

until reaching 167±22% (P=0.001 n=9) by contraction 5 following 1 μM VU590 

(Figure 3.4.5 (B)).  Following the first five contractions the 1 μM dose 

contractions continued at a regular rate and did not achieve the prolonged 

contraction phase seen in other doses. 
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There was also a dose dependent increase in AI at 3 μM (146±14% (P=0.05 

n=10)) increase by contraction 5 and 10 μM (171±38% (n=6)) increase by 

contraction 5. There was minimal effect of CD and MF within the first 5 

contractions.  At 30 μM there was a slight reduction in all parameters and at 100 

μM there was an increase in AI by contraction 5 where other parameters 

decreased (Figure 3.4.5).  

In strips dosed with either 30 μM or 100 μM, 40% and 60% respectively had 

already begun the prolonged contraction phase before the 5th contraction 

reducing the n numbers contributing to the data in the graphs. 

Phase (2) Prolonged contraction phase 

From 3 μM and higher a prolonged contraction was observed (table 3.4.1). This 

contraction would start with a regular upstroke and continue for a prolonged but 

gradually diminishing contraction. Peak effect was at 10 μM VU590 with CD of 

6.7±1.9 hrs (P= 0.001 n=7) (Figure 3.4.6) accompanied by increase in AI 

1139±305% (P<0.001, n=7) (Figure 3.4.7). 

Phase (3) Remaining contractions 

Of those experiments where contractions continued or resumed following 

prolonged contraction (Table 3.4.1) the remaining contractions were analysed 

(Figure 3.4.8). Experiments were often left running overnight meaning that the 

timescale for each experiment was an average of 18 hours. If contractions 

resumed they would continue until the experiment was discontinued. Maximal 

increase in AI from pre-dose at 203±27% (P<0.05, n=9) was with 3 μM VU590. All 

doses saw an increased AI and SD with diminishing MF reflecting a change in  
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contraction shape. The shape changed from a typical plateau shape to a box 

shape contraction with regular frequency (Figure 3.4.9). 

 

 

 

 

 

 

 

 

Figure 4.3.4: An example of a dose response to VU590 in spontaneously 

contracting human myometrium with illustration of divisions for analysis. 

Phase (1) – the first 5 contractions following dose (A), Phase (2) – the prolonged 

contraction phase (B), Phase (3) averaged remaining contractions (C). 
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Figure 3.4.5: The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of each of the first 5 contractions following 

dosing with either 1 μM (B)(A: P<0.001 n=9), 3 μM (A: P<0.001 n=10) (C), 10 μM 

(A: P<0.001 n=7) (D), 30 μM (n=6) (E), 100 μM (n=6)(F) VU590 or time matched 

control (A). 
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VU590 

dose 

Number of 

experiments with 

prolonged 

contraction 

Number of experiments 

with prolonged 

contraction that 

continued contracting 

3 μM 3/10 0 

10 μM 7/10 2/7 (28.5%) 

30 μM 8/10 6/8 (75%) 

100 μM 10/10 3/10 (30%) 

 

Table 3.4.1: Table showing the number of experiments with each dose that had a 

prolonged contraction phase and the number of those that continued to contract 

following the prolonged contraction. 

 

 

 

 

 

 

 

 

Figure 3.4.6: The average duration of the prolonged contraction phase in hours 

for each dose of VU590(n=7) 
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Figure 3.4.7: The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of the prolonged contraction phase following 

dosing with VU590 vs a time match control (A,B,C,D,E,F: P <0.05) 

 

 

 

 

 

 

 

 

Figure 3.4.8: The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of average of remaining contractions at 1 μM 

(A: P< 0.05, B: P<0.05 n=10), 3 μM (C: P<0.001, D: P<0.01 n=7), 10 μM (n=5), 30 

μM (E: P< 0.01 n=8), 100 μM (F: P< 0.05 n=3). 
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Figure 3.4.9: Examples of pre-dose contraction shape (A) and post-dose/recovery 

contraction shape (B) that was observed in all experiments with VU590 with 

Oxytocin or without. 

 

3.4.5  VU590 combined with Oxytocin 

 

The effect seen when VU590 was combined with VU590 was similarly suitable for 

division into three phases for analysis (Figure 3.4.4). 

 

VU590 combined with Oxytocin augments spontaneous human myometrial 

contractions with a lesser effect on prolonged contractile phase but increased AI 

at higher doses than when VU590 used alone. 
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present and so it is concluded that the immediate effect seen on the first 

contraction following dosing is due to the immediate effect of Oxytocin. When 

Oxytocin is combined with 1 μM VU590 there is a time dependant increase in 

activity integral similar to that seen with VU590 alone but with additive effects. 

At 1 μM VU590 + 1 nM Oxytocin AI has increased by 217±32 % (P<0.001 n=9) by 

contraction 5 whereas 1 nM OT alone reached 139±16% and VU590 alone 

reached 167±22% increase by contraction 5 (Figure 3.4.11). This time dependant 

increase was less significant with rising doses and a combined dose of 1nM 

Oxytocin with 100 μM VU590 demonstrated a clear time dependant diminishing 

effect (table 3.4.2). 

Phase (2) Prolonged contraction phase 

A prolonged contractile phase was seen in all doses including 1 μM VU590 + 1 

nM Oxytocin where this was not observed with 1 μM VU590 alone (table 3.4.2). 

The prolonged phase CD was maximal at 10 μM (3.3±1.2 hrs (n=5)), which was 

less than with 10 μM VU590 alone but demonstrated a greater increase in AI  

(2256±961 % (P<0.001, n=6)). (Figures 3.4.12,13,14).  MF was significantly 

reduced to 47±5.7% (P<0.001 n=7) average of predose contractions at 30 µM 

combined with 1 nM OT, with a similar reduction at 100 µM VU590 alone 

(46±6.5% (P<0.001 n=10)) (Figure 3.4.13 B). 

Phase (3) Remaining contractions 

All the strips dosed with 1 μM and 3 μM VU590 + 1 nM Oxytocin resumed 

contractions following the prolonged contraction phase (table 3.4.2).  Maximal 

increase in AI was at 3 VU590 + 1 nM OT (281±33% (P<0.05, n=10)).A similar 

shape change was observed in remaining contractions with an increased activity 
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integral, selection duration and reduction in maximal force. When compared to 

VU590 alone, combination with 1 nM Oxytocin resulted in a further increase in 

activity integral and selection duration at all doses with the exception of 3 μM 

which showed a greater effect when dosed alone and 100μM which was similar 

alone or combined (Figure 3.4.15). 
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Figure 3.4.10: The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of each of the first 5 contractions following 

dosing with 1 nM Oxytocin alone (A) (A: <0.01 n=10) or combined with either 1 

μM (A: P<0.01, B,C,D,E: P<0.001n=9) (B), 3 μM ( n=10) (C), 10 μM (A: P<0.01, B: 

P<0.05 n= 6) (D), 30 μM (A, B, C: P<0.01, n=7) (E), 100 μM (A: P<0.01 n=7) (F) 

VU590 (A-F P<0.01, G-L P<0.05 n=7). 
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Figure 3.4.11: The percentage of pre-dose contractions of activity integral of each 

of the first 5 contractions following dosing with 1 nM Oxytocin (A, D,G,J,M P<0.01 

n=10), 1 μM VU590 (B,E,H,K: P<0.01 n=7) and 1 μM VU590 combined with 1nM 

Oxytocin (C,F: P<0.05, I,L,N: P<0.0001 n=9). 

VU590 

dose 

Number of 

experiments with 

prolonged 

contraction 

Number of experiments 

with prolonged 

contraction that 

continued contracting 

1 μM 3/10 3/3 (100%) 

3 μM 7/10 7/7 (100%) 

10μM 6/10 3/6 (50%) 

30μM 9/10 6/9 (66.6%) 

100 μM 7/10 3/7 (42.8%) 

Table 3.4.2:Table showing the number of experiments with each dose combined 

with 1 nM Oxytocin that had a prolonged contraction phase and the number of 

those that continued to contract following the prolonged contraction. 
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Figure 3.4.12:The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of the prolonged contraction phase following 

dosing with 1 nM Oxytocin combined with VU590 1 μM (n=9), 3 μM (A,B,C: 

P<0.001 n=10), 10 μM (D,E,F: P<0.001 n= 6), 30 μM (G: P<0.01,H,I: P<0.001 n=7), 

and 100 μM (J,K,L: P<0.01 n=7). 
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Figure 3.4.13:The percentage of activity integral (A) (A,B,C: P< 0.001, D: P<0.01, 

E,F: P< 0.001), maximal force (B)(A, B: P< 0.001,C,D: P<0.01, E<F: P<0.001) and 

selection duration (C) (A,B,C: P<0.001, D:P<0.01, E,F,G P<0.001) of pre-dose 

contractions of the prolonged contraction phase following dosing with 1 nM 

Oxytocin combined with VU590 (right) or VU590 alone (left). 
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Figure 3.4.14: The average duration of the prolonged contraction phase in hours 

for each dose of VU590 alone and when combined with 1 nM Oxytocin 

 

 

 

 

 

 

 

 

Figure 3.4.15: The percentage of activity integral, maximal force, and selection 

duration of pre-dose contractions of remaining contractions with 1 nM OT and 

combination with 1 μM (A: AI P<0.05, B: Dur P<0.05, n=10), 3 μM (C: AI P<0.05, 

D: Dur P<0.05n=7), 10 μM (n=7), 30 μM (E: Dur P<0.05 n=7), 100 μM (n=6) VU590 
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      3.4.6 Results - The expression of Kir 7.1and Kv2.1 in human myometrium 

 

3.4.6.1 The expression of Kir 7.1 in human myometrium 

 

Western blotting was performed on myometrial tissue samples flash frozen 

at caesarean section for quantification of the expression of the protein Kir7.1. 

Samples used were from women grouped as being either in labour or not in 

labour at term or pre-term gestation (n=6 each group).  

Kir 7.1 expression in TL was significantly less than TNL (P=0.047), and 

expression in PTL was significantly less than TNL (P=0.049) (Figure 3.4.16,17).  

This is suggestive of a down-regulation of Kir 7.1 channel expression with the 

onset of labour. 

In order to explore the gestation-dependant expression of Kir 7.1 data was 

analysed on a gestational time-line for both labouring and non-labouring 

samples. The labour samples’ expression was lower with a downward trend 

towards term, with the opposite of a rising trend towards term seen in the 

non-labour group (Figure 3.4.18).  
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Figure 3.4.16: A typical film of a western blot quantifying the expression of Kir 7.1 

against the expression of the control protein β actin for pre-term labouring (PTL), 

pre-term non-labouring (PTNL), term labouring (TL), term non-labouring (TNL) 

samples of human myometrium. 

 

 

 

 

 

 

 

 

 

Figure 3.4.17: Graph showing individual Kir 7.1/β-actin ratios for blots in each 

group of samples of human myometrium - pre-term labouring (PTL), pre-term 

non-labouring (PTNL), term labouring (TL), term non-labouring (TNL). Kir 7.1 

expression in the pre-term labouring (PTL) group was significantly less than the 

term non-labouring (TNL) group by ANOVA (A: P=0.049 PTL: n=6 TNL: n=5). Kir 7.1 

expression in the term labouring (TL) group was significantly less than the term 

non-labouring (TNL) group by ANOVA (B: P=0.047 TL: n=6 TNL: n=5).  
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Figure 3.4.18: Kir 7.1 expression plotted by gestational age at delivery with a 

lower expression and a downward trend towards term in labouring samples (A) 

and with a higher expression and an upward trend towards term in the non-

labouring group (B) 
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3.4.6.2 The expression of Kv 2.1 in human myometrium 

 

Western blotting was performed on the same myometrial tissue samples as 

described above for quantification of the expression of the protein Kv 2.1.  

There was no significant difference in expression of Kv2.1 seen between 

either group of labouring or term or preterm samples (Figure 3.4.19,20). 

 

 

 

 

 

Figure 3.4.19: A typical film of a western blot quantifying the expression of Kv2.1 

against the expression of the control protein β actin for pre-term labouring (PTL), 

pre-term non-labouring (PTNL), term labouring (TL), term non-labouring (TNL) 

samples of human myometrium. 
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Figure 3.4.20: Graph showing individual Kv 2.1/β-actin ratios for blots in each 

group of samples of human myometrium - pre-term labouring (PTL)(n=6), pre-

term non-labouring (PTNL) (n=6), term labouring (TL) (n=6), term non-labouring 

(TNL) (n=6). There was no significant difference between any of the groups by 

ANOVA. 
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3.4.7 Conclusion 

 

 

VU590 increased baseline tone in murine myometrium. Gestational dependent 

effect was seen in dosing VU590 alone.  Addition of Oxytocin increased the effect 

10-fold in D18 mice. 

 

In human myometrium VU590 alone or with Oxytocin brought about a significant 

augmentation of contractility at lower doses. This exceeded the effect of 

Oxytocin alone with a further doubling of effect by contraction 5 when Oxytocin 

was combined with 1 μM VU590.  In higher doses a prolonged contraction phase 

was seen. VU590 combined with Oxytocin had a shorter CD in prolonged phase 

but a higher AI reflecting an improved maintenance of tone throughout the 

phase when compared to VU590 alone.  A change in the shape of contractions 

reflects a pro-longed depolarised state and delay in repolarisation and 

contraction relaxation. 

It appears that by blocking Kir 7,1 with VU590 resting membrane potential is 

maintained in a depolarised state allowing  for continued Ca2+ influx and 

sustained contraction. This suggests VU590 is a potent contractile agent and a 

potential therapeutic target for PPH. 
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4. Discussion 

4.1 Potassium channel openers combined with Nifedipine  as potential 

therapeutic targets for tocolysis 

4.1.1 Linoleic Acid and Kv 2.1 

With the exception of linoleic acid, the addition of potassium channel openers, 

independent of any other agents, to spontaneously contracting myometrial strips 

resulted in a reduction in contractility.  The lack of effect seen by linoleic acid may 

be due to a lack of perfusion into the tissue strip so it was unable to act at a cellular 

level.  Alternatively it may not act as expected on potassium channels, or the 

channels targeted may not be functional in reducing membrane potential.  It is 

worth noting that in western blotting experiments presented in section 3.4 of this 

thesis, Kv 2.1 was not found to have a significant gestational-dependent expression, 

which may support the theory that it does not significantly contribute to membrane 

resting potential in human myometrium. In further work (unpublished data) 

conducted within our research group, transgenic expression data and mathematical 

modelling was used to predict the function and contribution of specific ion channels 

in myometrial contractility. Predicted function of Kv 2.1 was tested in voltage-clamp 

experiments in murine myometrium and an increased action potential frequency 

and amplitude was observed in response to the Kv 2.1 blocker stromatoxin. 

However there was little change in resting membrane potential. Although it is 

problematic to infer open state function from experimental work from blockers, 

this data (unpublished) suggests a role for Kv 2.1 in modulating contractility 
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frequency and amplitude but a limited role in contributing to the resting membrane 

potential.  

Although LA and n-6 fatty acids appear to have a role in prostaglandin production 

and influence pregnancy duration (Wathes et al 2007, Allen & Harris 2001), it does 

not appear LA exerts a significant effect via membrane potential modulation. 

4.1.2 Pinacidil and Riluzole combined with Nifedipine 

Pinacidil resulted in a dose-dependent reduction of all parameters and achieved 

complete inhibition at higher doses.  This result is consistent with the findings of 

Mandi et al (2005), Kostrzewska et al (1996) and Khan et al (1998).  When Pinacidil 

was added following pre-treatment with Nifedipine, additional inhibition was 

observed.  Riluzole showed less potency but still elicited a significant inhibition 

when administered alone which was enhanced when combined with Nifedipine. 

The effect of Riluzole and Nifedipine together on the slow climbing phase and 

shape of contractions points to a possible ‘swinging’ of action potentials due to 

unstable membrane potential across cells within the strip.  This supports the 

hypothesis that the combination of potassium channel openers with a calcium 

channel blocker elicits a more potent inhibitory effect than calcium channel 

blockers alone.  This effect is mediated by dose as seen at the higher doses of 

Nifedipine due to the potency of Nifedipine effect on control strips.  In strips pre-

treated with Nifedipine followed by Pinacidil, Riluzole and their controls, 

contractions were almost completely abolished at the 100 nM (0.1 µM) Nifedipine 

dose.  



191 
 

With a typical tocolytic dose regimen, steady state in vivo plasma levels of 

Nifedipine reach 0.195±0.082 μM (Papatsonis et al, 2007), however the optimal 

dose of Nifedipine has not been defined and the different release characteristics of 

the formulations available may affect the dosage required to abolish contractions.  

An increased dose would induce increased incidence of maternal and fetal side 

effects (RCOG 2011). 

Pinacidil reduced contractility both on its own and inhibition became more potent 

when combined with Nifedipine.  The effect of Pinacidil on myometrial smooth 

arteries was similar to that of Nifedipine in limiting arterial response to U46619 1 

µM (56.84 ± 7.13% of pre-dose constriction with Nifedipine 10 nM and 54.15 ± 

16.32% with Pinacidil 3 µM). This was not particularly surprising as Pinacidil has 

been used clinically as a hypertensive and has been shown to have a high binding 

affinity and potent effect on the KATP channel which elicits an endothelial-

independent relaxatory effect on VSMC (Stojnic et al 2007, Atwal, K 1994). Pinacidil 

was selected to act as a positive control and performed as such within these 

experiments but supported the hypothesis that modulation of K+ current would 

inhibit VGCC Ca2+ entry. 

A surprising finding from this series of experiments was the apparent response or 

non-response to Pinacidil.  Consistently across myometrial smooth muscle and 

artery experiments there was a sub-group of tissue samples that failed to respond 

to Pinacidil with others exhibiting total inhibition of contractile force. There has 

been some discussion in other published work about the possible existence of 

different receptor sub-types that may influence the effect of KATP openers(Atwal 
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1994). Inagaki et al (1996) identified a novel sulfonylurea receptor SUR2, which they 

found bound to glibenclamide with a lower affinity than SUR1(Inagaki et al 1996). 

They identified that SUR2 is co-expressed with Kir 6.2 which reconstitutes some 

KATP channels that appear to have properties distinct from the β-cell KATP. The 

SUR2-Kir6.2 sub-type is less sensitive to ATP, glibenclamide and is not activated by 

the KATP opener diazoxide (Inagaki et al 1996). A similar selective effect is 

described by Liss et al (1999) who identified a sub-population of substantia nigra 

(SN) neurons that were not affected by pre-incubation with the ATP blocker 

rotenone. Whereas some SN neurons exhibited a large KATP current and 

membrane hyperpolarisation with pre-incubation of rotenone 100 nM, others were 

only partially activated by doses of rotenone 1-10 µM (Liss et al 1999). Those that 

were sensitive to rotenone expressed the subunit combination SUR1+Kir 6.2 and 

those that were non-sensitive expressed the subunit combination SUR2B+ Kir 6.2 

(Liss et al 1999). This suggests a metabolic sensitivity with particular subunit types. 

Further evidence of channel sensitivity comes from Nui et al (2011) who identified a 

sex specific response to Pinacidil in trigeminal ganglia in Sprague Dawley rats. All 

subunit components Kir 6.1, 6.2 and SUR1 and SUR2 were confirmed present in the 

tissue by PCR; but where 20 µg Pinacidil blocked capsaicin-induced mechanical 

sensitivity to pain in male rats, in females the maximum dose of 300 µ was only 

partially effective (Nui et al 2011). Some Type 2 diabetic patients fail to respond to 

sulfonylurea therapy while others appear over-sensitive with genetic 

polymorphisms possibly responsible for inter-individual variability (Aquilante 2010).  

With the burgeoning interest from drug companies into pharmacogenetics some of 

these variances and sensitivities will continued to be studied in future. Type 2 
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diabetes is a polygenetic disease with a complex aetiological pathway (Aquilante 

2010). Polymorphisms that influence an individual's risk of developing the disease 

or which are altered in disease progression may underlie variance in response to 

sulfonylurea therapy. It must be taken into consideration the rise in the incidence 

of Type 2 diabetes and other metabolic syndromes in the general population and 

the childbearing population. Diabetes and metabolic conditions are known risk 

factors for poor pregnancy outcomes and continue to be of concern to 

obstetricians. In our sample population there was a very low number of known 

diabetics, but it cannot be known if there was underlying metabolic impairment or 

simply variance in genetics of the sample population that led to a proportion being 

resistant to Pinacidil. This warrants further laboratory investigation, perhaps into 

the different subtypes of SUR receptors expressed in a diverse population of 

women. 

An additional factor to consider regarding variation in results and response to 

particular drugs, is the variability in the composition of myometrial muscle samples 

used.  Within strip control for analysis should have diminished variability due to 

strip size and muscle fibre density. Patient to patient differences in myometrial 

composition and variances in gestation and time to onset of spontaneous labour 

may have influenced response. All samples included in this experimental work were 

obtained from the lower segment of the uterus. The uterus is made up of the upper 

uterine body and corpus, the lower segment and cervix; and the uterine wall 

consists of three layers the endometrium (inner layer) the perimetrium  (outer 

layer) and the thickest layer between the two of the myometrium. The 
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myometrium consists mainly of smooth-muscle bundles and connective-tissue and 

is further structured within an external layer (stratum supravasculare), middle layer 

(stratum vasculare) and inner layer (stratum subvasculare) (Weiss et al 2005). 

Muscle fibres of the inner myometrium have a predominantly circular orientation 

whereas the intermediate and outer layers have a longitudinal orientation (Naftalin 

and Jurkovic 2009).  The endometrial-myometrial junction zone differs according to 

pregnant and non-pregnant state, as well as phase of menstrual cycle, with the 

subendometrial myometrium modulating uterine contractions throughout the 

menstrual cycle and implantation (Brosens et al 1995). In pregnancy, trophoblast 

invasion and vascular re-modelling reaches as far as the inner myometrium 

(Pijnenborg et al 2011). Myometrial zonal layers become less distinct in pregnancy 

and it is possible that in pregnancy there is endometrial infiltration into the 

myometrium, and there may be structural and functional differences in this layer 

(Turnbull et al 1995, Brosens et al 1995). 

Viewed through high resolution magnetic resonance diffusion tensor imaging, the 

uterus appears to be an anisotropic organ, but with a muscle fibre architecture that 

is complex. Muscle fibres in the different areas and different layers of the uterus 

were seen to be overlapping and multi directional (Weiss et al 2005). Differences in 

gene expression before and after the onset of labour, between the fundus,  lower 

segment and cervix have been demonstrated (Bukowski et al 2006, Romero et al 

2006). As all samples used within this work came from the inner edge of the lower 

segment, it is possible that functional variability may exist in the tissue samples 

received which may be an explanation for variation in responses or non-response in 

some biopsies. 
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Despite this demonstrated spacial variation; work by Luckas and Wray (2000) 

provide reassurance in their observation that there was no difference in the 

contractile rate, force production and area under the curve produced by 

myometrium from the upper and lower segments. The authors conclude that for 

contactility, the use of lower segment biopsy is appropriate (Luckas and Wray 

2000).  

Riluzole reduced contractility on its own and inhibition became more potent when 

combined with Nifedipine but to a lesser effect than Pinacidil.  Riluzole has a more 

promising safety profile which points to its suitability as a potential tocolytic when 

combined with Nifedipine.  Riluzole is currently used as a long term drug therapy 

thought to be effective in delaying the progression of amyotrophic lateral sclerosis 

(ALS), is not associated with hypotension and has a good safety profile (Lipp et al, 

2003, Bensimon & Doble, 2004).  Combination of Nifedipine with Riluzole in vivo 

may reduce the dose of Nifedipine required to inhibit contractions in preterm 

labour without additional side-effects.  It is envisaged that in clinical practice these 

drugs would be administered simultaneously.  As the above experiments 

investigated dose response following pre-treatment, further work was indicated to 

investigate simultaneous dosing to identify an optimal combined dose. 

Significant effects on contractility were observed with addition of Riluzole 

combined with Nifedipine at similar doses as was shown when doses were added 

incrementally. With Pinacidil there appears to be an immediate abolition of 

contraction whereas with Riluzole there appears to be a time-dependent effect. 

This could be due to a delay in this agent infiltrating the tissue strips or impedance 

in binding at a cellular level. This may also point to the fact that Nifedipine is more 
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potent than Riluzole when combined and so inhibition reflects that time dependent 

effect of Nifedipine. The faster response of Pinacidil and Nifedipine combined may 

point to a matched or increased contribution of Pinacidil into the combined effect. 

Riluzole had less of an effect on myometrial small arteries which is reassuring 

regarding it's potential as a tocolytic. Combined with Nifedipine the relaxatory 

effect was less than when Nifedipine was added alone. This could be an artefact of 

the experiments due to low n numbers, but could also indicate an effect of Riluzole 

in VSMC that mediates the function or affinity of Nifedipine to VGCC. As a 

significant effect on myometrial arteries was not observed with Riluzole this 

suggests endothelial-mediated relaxation of VSMC via SK3 was also not observed in 

these experiments. Previously, it has been demonstrated that suppression of SK3 

expression resulted in an elevation of arterial tone and blood pressure in modified 

mice, and in porcine arteries under exposure to the SK3 activator substance P 

(Taylor et al 2003, Burnham et al 2002). In view of this it was reasonable to expect 

prior to experimentation that in opening SK3 via Riluzole a more significant 

relaxatory effect may have been seen. 

Crane & Garland (2004) found that U46619 blocked SK3 channel in rat mesenteric 

artery, Riluzole (100 µM) evoked membrane hyperpolarisation from -55±2 mV to -

71±3 mV (n=5) and this was reduced with repeated exposure to U46619 

(incremental doses 1 nM to 0.1 µM) to 58±2 mV. Hyperpolarisation following 

application of levcromakalin (KATP activator) was unaffected by repeat exposure to 

U46619. Although this effect was only seen in repeated exposure to U46619 and in 

this set of experiments the dosing period was the second exposure to U46619 with 
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drug pre-incubation preceding exposure (following a washout period) it is unclear 

to what extent there may have been a block of SK3 channels from U46619 that may 

have inhibited the effect of Riluzole in these experiments. Repetition with a 

different vessel constricting agent may confirm whether this is the case. There 

appeared to be a non-significant reduction in the expression of SK3 in myometrial 

small arteries compared with whole myometrium, and in this set of tissue, TREK-1 

was absent from myometrial arteries. If Riluzole is predominantly targeting TREK-1 

in this tissue then this could be an explanation for the reduced relaxatory effect 

seen in the myography experiments.  Work by Duprat et al (2000) confirmed with 

patch-clamp experiments that Riluzole opens TREK-1 and allows K+ flow leading to 

hyperpolarisation. They observed that the current was not consistent, with a rapid 

stimulation followed by a decline and then inhibition of TREK-1 current (figure 4.1 

Duprat et al 2000). In the same set of experiments, it was also observed that TREK 1 

response is sensitive to variation in cAMP. After inhibition with exposure to 8-(4-

chlorophenylthio)(8CPT) cAMP 500 µM, the channel could not be re-activated by 

Riluzole. The authors conclude that Riluzole has an inhibitory effect on the PKA 

pathway, which they suggest is responsible for the inhibitory effect Riluzole on 

TREK-1 following initial activation (Duprat et al 2000). This described pattern of 

activation followed by inhibition of TREK-1 by Riluzole may present an explanation 

for the change in contraction shape seen in myometrial contractions following 

Riluzole. It may also explain why no dose brought about total inhibition. Whether 

the change in myometrial shape and strength with Riluzole and Nifedipine 

combined would be sufficient to decrease uterine tone in vivo requires further 

investigation. 
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Figure 4.1: Reproduction of figure 2 from Duprat et al (2000) - Dual effect of Riluzole 

on TREK-1 current. A, example of transient stimulation of TREK-1 current followed 

by an inhibition, recorded at 0 mV, during 90 s perfusion with 100 mM of Riluzole. B, 

bar graph of TREK-1 mean currents, recorded at 150 mV, before perfusion with  

Riluzole (100 mM) (control) and after 30 s and 90 s of perfusion (n 5 29, P 5 .002). 

 

4.2 The potassium channel blocker VU590 as potential therapeutic target for PPH 

In human myometrium VU590 alone or with Oxytocin brought about a significant 

augmentation of contractility at lower doses. This exceeded the effect of Oxytocin 

alone with a doubling of effect by contraction 5 when Oxytocin was combined with 

1 μM VU590.  In higher doses a prolonged contraction phase was seen. VU590 

combined with Oxytocin had a shorter CD in prolonged phase but a higher AI 

reflecting an improved maintenance of tone throughout the phase when compared 

to VU590 alone.  A change in the shape of contractions reflects a pro-longed 

depolarised state and delay in repolarisation and contraction relaxation. 
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It is hypothesised that the effect seen by VU590 in these experiments is due to the 

blockade of Kir 7.1.  In order to confirm this some preliminary contractility 

experiments (full data not available for this thesis) were performed with VU591 a 

compound developed to specifically target ROMK with no block of Kir 7.1.  No effect 

on contractility was seen on addition of this compound at the same dose spread 

used in VU590. This added confidence to the effects seen being due to Kir 7.1 

blockade. 

Other investigators have explored the effects of K+ channel blockers in 

myometrium.  BKCa blockers paxilline, iberiotoxin & penitrem A have not been 

shown to increase in contractility when dosed alone but have attenuated inhibitory 

effect of BKCa openers (Aaronson et al., 2006; Doheny et al., 2003). KV channel 

blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) have 

demonstrated an augmenting effect on myometrial contractility.  TEA 

demonstrated a 20% increase in maximum contraction amplitude by 20% (5mM) 

and 4-AP demonstrating a 121% increase in maximal contraction amplitude in late 

pregnant rat tissue but with reduced potency on early pregnant tissue (Aaronson et 

al., 2006). A similar effect of 4-AP was seen in non-pregnant murine myometrium 

with no effect in pregnant murine myometrium with an absence of expression of KV 

4.3 in pregnant tissue compared to non-pregnant revealed in western blotting.  A 

difference in response between these tissues combined with the change of 

expression led to the conclusion that 4-AP targets KV 4.3 (Smith et al., 2007).  To 

date no other K+ channel blockers have elicited the degree of response seen with 

the application of VU590.  
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Effects seen in this thesis suggest that Kir 7.1 plays a role in setting resting 

membrane potential in murine myometrium with blockade resulting in a rise in 

baseline tension that is gestation mediated. Kir 7.1 appears to play an important 

role in the repolarisation of membrane potential and the termination of action 

potential in human myometrium with blockade resulting in prolonged plateau 

phase of contraction and increased force with lower doses and with increasing dose 

profound and prolonged contractile phase.  

Together with results presented here and building on aforementioned work into K ir 

7.1 expression in myometrium, the results of additional study (and published paper) 

undertaken by our research team and collaborators support this hypothesis. 

Electrophysiology experiments on murine myometrial cells have demonstrated an 

inwardly rectifying potassium current was inhibited by VU590 under voltage-clamp 

conditions, and that this current was stronger at GD15 than GD18 in line with 

gestational decrease in expression of Kir 7.1 (Figure 4.2 from McCloskey et al 2014 

Appendix 2). This was further confirmed by modulation of expression of Kir 7.1 in 

murine myometrial strips. Using Anti-Kir 7.1 or +Kir 7.1 lentiviral vectors the 

channel was either over-expressed or under-expressed before tissue was used in 

contractility (organ bath) or voltage-clamp experiments. When Kir 7.1 is under-

expressed there was a significant increase in activity integral, maximal force and 

contraction duration in contractility, as well as a depolarised resting membrane 

potential with extended periods of excitability (McCloskey et al 2014 (Appendix 2)). 

When Kir 7.1 was over-expressed there was a decrease in measured contractility 

parameters and an observed hyperpolarisation and suppression of excitability 
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(McCloskey et al 2014 (Appendix 2)). This is strong and novel evidence of the 

contribution made to resting membrane potential and myometrial contractility of 

Kir 7.1. 

 

 

 

Figure 4.2: Results of electrophysiology experiments from our research group: 

Measurement of inwardly rectifying, VU590 sensitive current in GD15 murine 

myomentrial cells – voltage clamp recordings in the presesnce and absence of 10 

μM of VU590 (A), Current-voltage relation of current density (VU590 subtracted 

from from control (vehicle alone) n=5; mean ±SD) (B), and current density (pA/pF) at 

-150 mV and 500 ms in murine myometrial cells from GD15 and GD18 (n=5; mean 

±SD) *P<0.05 by Student’s t test (C). 

 

4.3 Overall conclusions 

This thesis set out to build on findings of a previous screen carried out within our 

group where a number of K+ channels were identified of interest. This led to further 
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examination of the function of these ion channels in myometrium with a view their 

potential as therapeutic targets.  

Pinacidil proved a successful positive control and demonstrated that by activating 

KATP and allowing K+ efflux myometrial contractility was diminished or abolished. 

This effect was further enhanced with the combination of Nifedipine bringing about 

abolition of contractions at a lower dose than with Nifedipine alone. 

Riluzole diminished myometrial contractility but was not able to abolish with the 

range of doses used.  This may not be down to lack of full tissue perfusion but may 

be down to the specific effect of Riluzole on smooth muscle. The specific K+ channel 

targeted by Riluzole cannot be determined. Although Riluzole is a known activator 

of SK3 some of the findings of experimental work presented here suggest that TREK-

1 may be the predominant channel targeted by Riluzole. There is the possibility that 

Riluzole is activating both SK3 and TREK-1. There was a cumulative relaxatory effect 

when Riluzole was dosed in combination with Nifedipine, again confirming our 

hypothesis that activation of K+ channels hyperpolarises membrane potential 

sufficiently to block VGCC Ca2+ entry and improve the potency of Nifedipine. The 

effect seen appears to be myometrial specific due to the reassuring nature of the 

artery experiments, suggesting that in vivo additional cardiovascular side-effects 

may be avoided. This makes Riluzole in combination with Nifedipine of further 

consideration as a potential tocolytic therapy. 

The K+ channel Kir 7.1 was identified as being expressed in myometrial smooth 

muscle and the availability of VU590 made experimental investigation of its action 

in MSMC possible. VU590 brought about significant and sustained myometrial 
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contraction in both human and myometrial smooth muscle. Further patch-clamp 

work has confirmed that VU590 is blocking Kir 7.1 in human myometrium as 

hypothesised. Together with the contractility experiments present in 3.4 of this 

thesis there is compelling evidence that blockade of Kir 7.1 via VU590 has potential 

therapeutic value in the treatment of PPH and warrants further investigation. 

This thesis has investigated how modulation of specific K+ channels in murine and 

human myometrium can modulate contractility with a view to therapeutic targets. 

This represents a novel set of observations that will add to knowledge of 

myometrial function and will inform further work which has the potential to benefit 

pregnancy outcomes. 

 

4.4 Future work 

4.4.1 The combination of K+ channel openers with Nifedipine for tocolysis 

This thesis did not determine the mechanism through which Riluzole exerted its 

action on myometrial contractility. K+ channel modulation was our hypothesised 

mode of action but which channel, or set of ion channels influenced by Riluzole is 

yet to be determined. Electrophysiology experiments to determine the effect of 

Riluzole on specific channels of interest would inform this further and advance 

understanding crucial for any prospective application of Riluzole as a tocolytic 

either on its own or in combination with Nifedipine. 

Further consideration of either Pinacidil alone or the combination of Pinacidil and 

Nifedipine at low doses as tocolytics. Careful consideration should be given to 
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potential cardiovascular side-effects and whether these may be improved or 

increased over Nifedipine as used in current practice. Additional in vitro myogenic 

tone experiments (pressure-induced flow) may inform this further.  

4.4.2 K+ channel expression quantification in myometrial small arteries compared to 

myometrial smooth muscle. 

The Western blots presented in this thesis did not provide data of sufficient quality 

to draw conclusions on variation of the relative expression of K+ channels in 

myometrial small arteries compared to myometrial smooth muscle. Further work in 

RT-PCR or immunohistochemistry or channel gene expression in these tissues is 

required to evidence tissue selectivity in expression. 

Further myometrial small arteries in functional response to drug combinations woul 

be beneficial including using pressure-flow technique. The N numbers used within 

this set of experiments was restricted by time demands and availability of 

equipment kindly supported by Newcastle University. Further work would 

strengthen the quality and reliability of the initial findings presented here. 

4.4.3 The potential of VU590 as a stimulator of myometrial contractility 

This thesis together with additional published work (McCloskey et al 2014 

Appendix) builds a strong case for VU590 blockade of Kir 7.1 as potent promoter of 

myometrial contractility. The potential of this compound or variations of this 

compound are worth future consideration as therapeutic agents for treatment or 

prevention of PPH, or labour augmentation. 

 



205 
 

References 

Aaronson, P. I., Sarwar, U., Gin, S., Rockenbauch, U., Connolly, M., Tillet, A., 

Watson, S., Liu, B. and Tribe, R. M. (2006). A role for voltage-gated, but not Ca2+-

activated, K+ channels in regulating spontaneous contractile activity in myometrium 

from virgin and pregnant rats. Br J Pharmacol, 147, 815-24. 

 

Abbott DS, Hezelgrave NL, Seed PT, Norman JE, David AL, Bennett PR, Girling JC, 

Chandirimani M, Stock SJ, Carter J, Cate R, Kurtzman J, Tribe RM, Shennan AH 

(2015) Quantitative fetal fibronectin to predict preterm birth in asymptomatic 

women at high risk  Obstetrics and Gynecology May;125(5):1168-76 

 

Åkerlund M, Bossmar T, Brouard R, Kostrzewska A, Laudanski T, Lemancewicz A, 

Serradeil-Le Gal C, Steinwall M (1999) Receptor binding of oxytocin and vasopressin 

antagonists and inhibitory effect on isolated myometrium from pre-term and term 

pregnant women British Journal of obstetrics and gynaecology Oct 106 (10) 1047-

1053 

 

Allen K, Harris M, (2001) The role of n-3 fatty acids in gestation and parturition 

Experimental biology and medicine 226 498-506 

 

tel:(10)%201047-1053
tel:(10)%201047-1053


206 
 

Anderson L, Martin W, Higgins C, Nelson SM, Norman JE. (2009) The effect of 

progesterone on myometrial contractility, potassium channels, and tocolytic 

efficacy. Reproductive Sciences 16 (11) 1052-1061 

 

Aquilante CL (2010) Sulfonylurea pharmacogenetics in Type 2 diabetes the 

influence of drug target and diabetes risk polymorphisms. Expert reviews in 

cardiovascular therapy 8 (3) 359-372  

 

Arrowsmith S, Neilson J, Bricker L, Wray S (2016) Differing In vitro potencies of 

tocolytics and progesterone in myometrium from singleton and twin pregnancies 

Reproductive Sciences Jan 23 (1) 98-111 

 

Atwal K (1994) Pharmacology and structure-activity relationships for KATP 

modulators tissue-selective KATP openers Journal of cardiovascular pharmacology 24 

Suppl 4 s12-s17 

 

Babich, L. G., Ku, C. Y., Young, H. W., Huang, H., Blackburn, M. R. and Sanborn, B. M. 

(2004) Expression of capacitative calcium TrpC proteins in rat myometrium during 

pregnancy. Biology of Reproduction, 70 919-924. 

 



207 
 

Bai, X., Bugg, G., Greenwood, S., Glazier, J., Sibley, C., Baker, P., Taggart, M. and 

Fyfe, G. (2005) Expression of TASK and TREK, two-pore domain K+ channels, in 

human myometrium. Reproduction, 129 (4): 525-530. 

 

Bafghi AS, Bahrami E, Sekhavat L (2015) Comparative Study of Vaginal versus 

Intramuscular Progesterone in the Prevention of Preterm Delivery: A Randomized 

Clinical Trial Electronic Physician Oct 19;7(6):1301-9 

 

Berghella V, Mackeen AD (2011) Cervical length screening with ultrasound-

indicated cerclage compared with history-indicated cerclage for prevention of 

preterm birth: a meta-analysis Obstetrics and Gynecology Jul;118(1):148-55 

 

Berridge, M. (2010) Cell Signalling Biology. [online] Available from: 

http://www.biochemj.org/csb/ (Accessed 23/04/10). 

 

Besheer, J., Lepoutre, V. and Hodge, C. (2009) Preclinical evaluation of riluzole: 

assessments of ethanol self-administration and ethanol withdrawal symptoms. 

Alcohol Clin Exp Res, 33 (8): 1460-1468. 

 

Blanks, A. M. and Thornton, S. (2007) Gene redundancy: Lessons for Tocolysis? In: 

Petraglia, F., Strauss, J.,F., Gabbe,S.,G., & Weiss, G. eds. Preterm Birth: Mechanisms, 

Mediators, Prediction & Interventions. Zug: Informa. 

 

http://www.biochemj.org/csb/


208 
 

Blanks, A. M., Zhao, Z. H., Shmygol, A., Bru-Mercier, G., Astle, S. and Thornton, S. 

(2007) Characterization of the molecular and electrophysiological properties of the 

T-Type calcium channel in human myometrium. J Physiol, Submitted  

 

Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, 

Garcia CV, Rohde S, Say L, Lawn JE (2012) National, regional, and worldwide 

estimates of preterm birth rates in the year 2010 with time trends since 1990 the 

selected countries as systematic analysis and implications Lancet 379 2162-72 

 

Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, Kinney M, Lawn J 

(2013) Born too soon: the global epidemiology of 15 million preterm births 

Reproductive health 10 (Suppl 1) S2 

 

Bloom SL, Yost NP, McIntire DD, Leveno KJ (2001) Recurrence of preterm birth in 

singleton and twin pregnancies Obstetrics and Gynecology 98 (3) 379-385 

 

Blumenfeld, Y. and Lyell, D. (2009) Prematurity prevention: the role of acute 

tocolysis. Curr Opin Obstet Gynecol, 21 (2): 136-141. 

 

Boda, D., Valiskó, M., Henderson, D., Eisenberg, B., Gillespie, D. and Nonner, W. 

(2009) Ionic selectivity in L-type calcium channels by electrostatics and hard-core 

repulsion. J Gen Physiol, 133 (5): 497-509. 

 

tel:379%202162-72
tel:(3)%20379-385


209 
 

Bohlmann MK, Rath W (2014) Medical prevention and treatment of postpartum 

hemorrhage a commparison of different guidelines Archives of Gynecology and 

Obstetrics 289, 555-567 

 

Brainard, A., Korovkina, V. and England, S. (2007) Potassium channels and uterine 

function. Semin Cell Dev Biol, 18 (3): 332-339. 

 

British National Formulary (2015) available via: www.medicinescomplete.com  

 

Brosens JJ, de Souza NM, Barker FG (1995) Uterine junctional zone function and 

disease Lancet Aug 346 558-560 

 

Brown AM (1997). Cardiac potassium channels in health and disease. Trends 

Cardiovasc Med, 7, 118-24. 

 

Brown, A., Cornwell, T., Korniyenko, I., Solodushko, V., Bond, C., Adelman, J. and 

Taylor, M. (2007) Myometrial expression of small conductance Ca2+-activated K+ 

channels depresses phasic uterine contraction. Am J Physiol Cell Physiol, 292 (2): 

C832-840. 

 

Bukowski R, Hankins GD, Saade GR, Anderson GA, Thornton S (2006) Labor-

associated gene expression in the human uterine fundus, lower segment and cervix 

PLoS Medicine Jun 3 (6) e169 

tel:346%20558-560


210 
 

 

Burdyga, T., Borisova, L., Burdyga, A. and Wray, S. (2009) Temporal and spatial 

variations in spontaneous Ca events and mechanical activity in pregnant rat 

myometrium. Eur J Obstet Gynecol Reprod Biol, 144 Suppl 1 S25-32. 

 

Burke, M., Mutharasan, R. and Ardehali, H. (2008) The sulfonylurea receptor, an 

atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ 

Res, 102 (2): 164-176. 

 

Burnham, M., Bychkov, R., Félétou, M., Richards, G., Vanhoutte, P., Weston, A. and 

Edwards, G. (2002) Characterization of an apamin-sensitive small-conductance 

Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to 

EDHF. Br J Pharmacol, 135 (5): 1133-1143. 

 

Chen L, Kaiyu L, Malawana J, Yulia A, Sooranna SR, Bennett PR, Liang Z, 

Grammatopoulos D, Johnson MR (2014) Cyclic AMP enhances progesterone action 

in human myometrial cells Molecular and Cellular Endocrinology 382 334-343 

 

Chow L, Lye SJ (1994) Expression of the gap junction protein connection-43 is 

increased in the human myometrium towards term and with the onset of labour 

American Journal of obstetrics and gynaecology Mar 170 (3) 788-96  

 

tel:(3)%20788-96


211 
 

Condon JC, Hardy DB, Kovaric K, Mendelson CR (2006) Up-regulation of the 

progesterone receptor (PR)-C iosform in labouring myometrium by activation of 

nuclear factor kappaB may contribute to the onset of labor through in the inhibition 

of PR function Molecular Endocrinology Apr 20 (4) 764-75 

 

Coomarasamy A, Knox EM, Gee H, Song F, Khan KS (2003) Effectiveness of 

nifedipine vs atosiban for tocolysis in preterm labour: a meta-analysis with an 

indirect comparison of randomised trials British Journal of Obstetrics and 

Gynaecology 110 1045-1049 

 

Copper RL, Goldenberg RL, Das A, Elder N, Swain M, Norman G, Ramsey R, Cotroneo 

P, Collins BA, Johnson F, Jones P, Meier AM (1996) The preterm prediction study: 

maternal stress is associated with spontaneous preterm birth at less than thirty-five 

weeks' gestation. National Institute of Child Health and Human Development 

Maternal-Fetal Medicine Units Network American Journal Obstetrics and 

Gynecology Nov;175(5):1286-92. 

 

Crowther CA, Hiller JE, Doyle LW. (2002) Magnesium sulphate for preventing 

preterm birth in threatened preterm labour. Cochrane Database of Systematic 

Reviews (4) 

 

tel:(4)%20764-75


212 
 

Danielian, P. and Hall, M. (2005) The epidemiology of preterm labour and delivery. 

In: Norman, J. and Greer, I. eds. Preterm Labour: Managing risk in clinical practice. 

Cambridge: Cambridge University Press. 

 

de Heus R, Mol BW, Erwich JJ, van Geijn HP, Gyselaers WJ, Hanssens M, Härmark L, 

Holsbeke CD, Duvekot JJ, Schoben FF, Wolf H, Visser GH (2009)  Adverse drug 

reactions to tocolytic treatment for preterm labour: prospective cohort study. 

British Medical Journal 338:b744. 

 

Deshpande SN, van Asselt AD, Tomini F, Armstrong N, Allen A, Noake C, Khan K, 

Severens JL, Kleijnen J, Westwood ME. (2013) Rapid fetal fibronectin testing to 

predict preterm birth in women with symptoms of premature labour: a systematic 

review and cost analysis. Health Technology Assessment Sep;17(40):1-138 

 

Di Renzo, G. and Roura, L. (2006) Guidelines for the management of spontaneous 

preterm labor. J Perinat Med, 34 (5): 359-366. 

 

Dilly, S., Graulich, A., Farce, A., Seutin, V., Liegeois, J. and Chavatte, P. (2005) 

Identification of a pharmacophore of SKCa channel blockers. J Enzyme Inhib Med 

Chem, 20 (6): 517-523. 

 



213 
 

Doheny, H. C., Houlihan, D. D., Ravikumar, N., Smith, T. J. and Morrison, J. J. (2003). 

Human chorionic gonadotrophin relaxation of human pregnant myometrium and 

activation of the BKCa channel. J Clin Endocrinol Metab, 88, 4310-5. 

 

Döring, F., Derst, C., Wischmeyer, E., Karschin, C., Schneggenburger, R., Daut, J. and 

Karschin, A. (1998). The epithelial inward rectifier channel Kir7.1 displays unusual 

K+ permeation properties. J Neurosci, 18, 8625-36. 

 

Dunietz GL, Holzman C, McKane P, Li C, Boulet SL, Todem D, Kissin DM, Copeland G, 

Bernson D, Sappenfield WM, Diamond MP (2015) Assisted reproductive technology 

and the risk of preterm birth among primiparas Fertility and Sterility Apr 103 (4) 

974-979 

 

Duprat, F., Lesage, F., Patel, A., Fink, M., Romey, G. and Lazdunski, M. (2000) The 

neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and 

TRAAK. Mol Pharmacol, 57 (5): 906-912. 

 

Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. (2009) Magnesium 

sulphate for women at risk of preterm birth for neuroprotection of the fetus. 

Cochrane Database of Systematic  Reviews (1):CD004661. 

 

tel:(4)%20974-979
tel:(4)%20974-979


214 
 

Eriksson, L., Haglund, B., Ewald, U., Odlind, V. and Kieler, H. (2009) Short and long-

term effects of antenatal corticosteroids assessed in a cohort of 7,827 children born 

preterm. Acta Obstet Gynecol Scand, 88 (8): 933-938. 

 

Europe-Finner GN, Phaneuf S, Tolkovsky AM, Watson SP, Lopez Bernal A (1994) 

Down-regulation of G alpha s in human myometrium in term and preterm labour: a 

mechanism for parturition Journal of clinical endocrinology and metabolism Dec 79 

(6) 1935-9 

 

 

Firouzbakht M, Kaipour A, Omidvar S (2013) Prevention of post-partum henorrhage 

by rectal misoprostol a randomized clinical trial Journal of Natural Science Biology 

and Medicine Jan 4 (1) 1334-7 

 

Fischer DP, Hutchinson JA, Farrar D, O'Donovan PJ, Woodward DF, Marshall KM 

(2008) Loss of prostaglandin F2 alpha but not thromboxane responsiveness in 

pregnant human myometrium during labour Journal of Endocrinology 197 (1) 171-9 

 

Flenady V, Wojcieszek AM, Papatsonis DNM, Stock OM, Murray L, Jardine LA, 

Carbonne B (2014) Calcium channel blockers for inhibiting preterm labour and 

birth. Cochrane Database of Systematic Reviews, Issue 6. 

 



215 
 

Friel AM, O'Reilly MW, Sexton DJ, Morrison JJ (2005) Specific PGF(2alpha) receptor 

(FP) antagonism and human uterine contractility in vitro British Journal of obstetrics 

and gynaecology 112 (8) 1034-42 

 

Gellersen B, Brosens J (2003) Cyclic AMP and progesterone receptor cross-talk in 

human endometrium:a decidualizing affair Journal of Endocrinology Sept 178 (3) 

357-72 

 

Groom KM, Shennan AH, Jones BA, Seed P, Bennett PR.(2005) TOCOX: a 

randomised, double-blind, placebo-controlled trial of rofecoxib (a  COX-2-specific 

prostaglandin inhibitor) for the prevention of preterm delivery in women at high 

risk. British Journal of Obstetrics an Gynaecology 112:725–30. 

 

Gross GA, Imamura T, Luedke C, Vogt S, Olson LM, Nelson DM, Sadovsky Y, Muglia 

LJ (1998) Opposing actions of prostaglandins and oxytocin determine the onset of 

murine labour Proceedings of the natural academy of sciences of the United States 

of America Sept 29, 95, (20) 11875-79 

 

Grunnet, M., Jespersen, T., Angelo, K., Frøkjaer-Jensen, C., Klaerke, D., Olesen, S. 

and Jensen, B. (2001) Pharmacological modulation of SK3 channels. 

Neuropharmacology, 40 (7): 879-887. 

 

tel:(8)%201034-42
tel:(3)%20357-72
tel:(3)%20357-72


216 
 

Gullam JE, Blanks AM, Thornton S, Shmygol A (2009) Phase plot analysis of the 

oxytocin effect on human myometrial contractility European Journal of obstetrics 

and gynaecology and reproductive biology 144S S20-S24 

 

Gyetvai K, Hannah ME, Hodnett ED, Ohlsson A. (1999) Tocolytics for preterm labor: 

a systematic review. Obstetrics and  Gynecology 94:869–77. 

 

Hardy DB, Janowski BA, Corey DR, Mendelson CR (2006) Progesterone receptor 

plays a major antiinflammatory role in human myometrial cells by antagonism of 

nuclear factor-κB activation of cyclooxygenase 2 expression Molecular 

endocrinology 20 (11) 2724-2733 

 

Heaton, R., Wray, S. and Eisner, D. (1993) Effects of metabolic inhibition and 

changes of intracellular pH on potassium permeability and contraction of rat uterus. 

J Physiol, 465 43-56. 

 

Hebert, T., Drapeau, P., Pradier, L. and Dunn, R. (1994) Block of the rat brain IIA 

sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol, 

45 (5): 1055-1060. 

 

Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I. and Kurachi, Y. (2010). 

Inwardly rectifying potassium channels: their structure, function, and physiological 

roles. Physiol Rev, 90, 291-366. 



217 
 

 

Hockerman, G., Peterson, B., Sharp, E., Tanada, T., Scheuer, T. and Catterall, W. 

(1997) Construction of a high-affinity receptor site for dihydropyridine agonists and 

antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. Proc 

Natl Acad Sci U S A, 94 (26): 14906-14911. 

 

Huang, C., Song, J., Nagata, K., Yeh, J. and Narahashi, T. (1997) Effects of the 

neuroprotective agent riluzole on the high voltage-activated calcium channels of rat 

dorsal root ganglion neurons. J Pharmacol Exp Ther, 282 (3): 1280-1290. 

 

Hughes K, Kane SC, Araujo Júnior E, da Silva Costa F, Sheehan PM(2015) Cervical 

length as a predictor of spontaneous preterm birth in high-risk singleton pregnancy 

- current knowledge Ultrasound in Obstetrics and Gynecology. Oct 8. 

 

Inagaki N, Gonoi T, Clement JP, Wang C, Aguilar-Bryan L, Bryan J, Seino S (1996) A 

family of sulfonylurea receptors determines the pharmacological properties of ATP 

sensitive K+ channels Neuron 16 1011-1017 

 

Ishida M, Choi J, Hirabayashi K, Matsuwaki T, Suzuki M, Yamanouchi K, Horai R, 

Sudo K, Iwakura Y, Nishihara M (2007) Reproductive phenotypes in mice with 

targeted disruption of the 20alpha-hydroxysteroid dehydrogenase gene Journal of 

reproduction and development 53 (3) 499-508 

 

tel:(3)%20499-508


218 
 

Järvelä I, Ruokenen A, Tekay A (2008) Effect of rising hCG levels on the human 

corpus luteum during early pregnancy Human reproduction 23 (12) 2775-2781 

 

Kanngiesser U, Nalik D, Pongs O (1988) Purification and affinity labelling of 

dihydrpyridine receptor from rabbit skeletal muscle membranes Proceedings of the 

natural academy of sciences of the United States of America 85 2969-2973 

 

Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990) 

Two distinct estrogen-regulated promoters generate transcript encoding the two 

functionally different human progesterone receptor forms A and B EMBO 9 (5) 

1603-1614 

 

Keirse, M. (2003) The history of tocolysis. BJOG, 110 Suppl 20 94-97. 

 

Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, Taylor DJ (2008) 

Childhood outcomes after prescription of antibiotics to pregnant women with 

preterm rupture of the membranes: 7-year follow-up of the Oracle I trial Lancet 372 

1310-18 

 

Khan, R. N., Matharoo-Ball, B., Arulkumaran, S. and Ashford, M. L. (2001) Potassium 

channels in the human myometrium. Experimental Physiology, 86 (2): 255-264. 

 

tel:372%201310-18
tel:372%201310-18


219 
 

King, J., Flenady, V., Papatsonis, D., Dekker, G. and Carbonne, B. (2003) Calcium 

channel blockers for inhibiting preterm labour; a systematic review of the evidence 

and a protocol for administration of nifedipine. Aust N Z J Obstet Gynaecol, 43 (3): 

192-198. 

 

Köck K, Köck F, Klein K, Bancher-Todesca D, Helmer H (2010) Diabetes mellitus and 

the risk of preterm birth with regard to the risk of spontaneous preterm birth 

Journal of maternal fetal and neonatal medicine Sep 23 (9) 1004-8 

 

Kostrzewska, A., Laudański, T. and Batra, S. (1996) Inhibition of contractile 

responses of human myometrium and intramyometrial arteries by potassium 

channel openers. Acta Obstet Gynecol Scand, 75 (10): 886-891. 

 

Krapivinsky, G., Medina, I., Eng, L., Krapivinsky, L., Yang, Y. and Clapham, D. E. 

(1998). A novel inward rectifier K+ channel with unique pore properties. Neuron, 

20, 995-1005. 

 

Lawn JE, Gravett MG, Nunes TM, Rubens CE, Stanton C and the GAPPS Review 

Group (2010) Global report on preterm birth and stillbirth (1 of 7): definitions, 

description of the burden and opportunities to improve data BMC pregnancy and 

childbirth 10 (Suppl 1) S1 

 

x-apple-data-detectors://embedded-result/1569
tel:(9)%201004-8


220 
 

Lee Y, Sooranna S, Terzidou V, Christian M, Brosens J, Hihtinen K, Poutanen M, 

Barton G, Johnson MR, Bennett P (2012) Interactions between inflammatory signals 

and the progesterone receptor in regulating gene expression in pregnant human 

uterine myocytes Journal of cellular molecular medicine 16 (10) 2487-2503 

 

Leitch H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P (2003) 

Bacterial vaginosis as a risk factor for preterm delivery: a meta analysis American 

Journal of obstetrics and gynaecology Jul 189 (1) 139-147 

 

Lewis, L. M., Bhave, G., Chauder, B. A., Banerjee, S., Lornsen, K. A., Redha, R., Fallen, 

K., Lindsley, C. W., Weaver, C. D. and Denton, J. S. (2009). High-throughput 

screening reveals a small-molecule inhibitor of the renal outer medullary potassium 

channel and Kir7.1. Mol Pharmacol, 76, 1094-103. 

 

Liang Z, Sooranna SR, Engineer N, Tattershall M, Khanjani S, Bennett PR, Myatt L, 

Johnson MR (2008) Prostaglandin F2-alpha receptor regulation in human uterine 

myocytes Molecular human reproduction Apr 14 (4) 215-23 

 

Lindström T, Bennett P (2005) The role of nuclear factor kappa B in human labour 

Reproduction 130 569-582 

 

tel:(1)%20139-147


221 
 

Liss B, Bruns R, Roeper J (1999) Alternative sulphonylurea receptor expression 

defines metabolic sensitivity of KATP channels in dopaminergic midbrain neurons 

EMBO 18(4) 833-846 

 

Lu MC, Halfon N (2003) Racial and ethnic disparities in birth outcomes and life-

course perspective Maternal and child health journal 7 (1) 13-14 

 

Luckas MJ, Wray S (2000) A comparison of the contractile properties of human 

myometrium obtained from the upper and lower uterine segments British Journal 

of obstetrics and gynaecology 107 (10) 1309-11 

 

Marlow N, Bennett C, Draper ES, Hennessy EM, Morgan AS, Costeloe KL (2014) 

Perinatal outcomes for extremely preterm babies in relation to place of birth in 

England: the EPICure 2 study Archives of Disease in Childhood - Fetal and 

Neonatal Edition 99(3): F181-F188. 

 

Mazaki-Tovi S, Romero R, Kusanovic JP, Erez O, Pineles BL, Gotsch F, Mittal P, Than 

NG (2007) Recurrent Preterm Birth Seminars in perinatology Jun 31 (3) 142-158 

 

McKillen, K., Thornton, S. and Taylor, C. W. (1999) Oxytocin increases the [Ca2+]i 

sensitivity of human myometrium during the falling phase of phasic contractions. 

Am J Physiol, 276 (2 Pt 1): E345-351. 

x-apple-data-detectors://embedded-result/143
tel:(3)%20142-158


222 
 

 

Meis PJ, Klebanoff M, Thom E, Dombrowski MP, Sibai B, Moawad AH, Spong CY, 

Hauth JC, Miodovnik M, Varner MW, Leveno KJ, Caritis SN, Iams JD, Wapner RJ, 

Conway D, O'Sullivan MJ, Carpenter M, Mercer B, Ramin SM, Thorp JM, Peaceman 

AM, Gabbe S; National Institute of Child Health and Human Development Maternal-

Fetal Medicine Units Network (2003) Prevention of recurrent preterm delivery by 

17 alpha-hydroxyprogesterone caproate. New England Journal of Medicine Jun 

12;348(24):2379-85. 

 

Mercer BM, Goldenberg RL, Das A, Moawad AH, Iams JD, Meis PJ, Copper RL, 

Johnson F, Thom E, McNellis D, Miodovnik M, Menard MK, Caritis SN, Thurnau GR, 

Bottoms SF, Roberts J (1996) The preterm prediction study: a clinical risk 

assessment system American Journal Obstetrics and Gynecology Jun;174(6):1885-

93 

 

Mershon, J. L., Mikala, G. and Schwartz, A. (1994) Changes in the expression of the 

L-type voltage-dependent calcium channel during pregnancy and parturition in the 

rat. Biology of Reproduction, 51 (5): 993-999. 

 

Mendelson CR, Condon JC (2005) New insights into the molecular endocrinology of 

parturition Journal of steroid biochemistry and molecular biology Feb 93 (2-5) 113-9 

  



223 
 

Mesiano S, Chan EC, Fitter JT, Kewk K, Yeo G, Smith R (2002) Progesterone 

withdrawal and estrogen activation in human parturition are coordinated by the 

progesterone receptor A expression in the myometrium Journal of clinical 

endocrinology and metabolism Jun 87 (6) 2924-30 

 

Mohammadi, B., Lang, N., Dengler, R. and Bufler, J. (2002) Interaction of high 

concentrations of riluzole with recombinant skeletal muscle sodium channels and 

adult-type nicotinic receptor channels. Muscle Nerve, 26 (4): 539-545. 

 

Morrison, J., Ashford, M., Khan, R. and Smith, S. (1993) The effects of potassium 

channel openers on isolated pregnant human myometrium before and after the 

onset of labor: potential for tocolysis. Am J Obstet Gynecol, 169 (5): 1277-1285. 

 

Nakamura, N., Suzuki, Y., Sakuta, H., Ookata, K., Kawahara, K. and Hirose, S. (1999). 

Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, 

intestinal epithelial cells and choroid plexus epithelial cells: implication for a 

functional coupling with Na+,K+-ATPase. Biochem J, 342 ( Pt 2), 329-36. 

 

National Institute for Health and Care Excellence (2015) Preterm labour and birth 

(NG25) NICE London 

 



224 
 

Nasreen HE, Nahar S, Al Mamun M, Afsana K, Byass P (2011) Oral misoprostol for 

preventing postpartum haemorrhage in home births in rural Bangladesh how 

effective is it? Global Health Action 4, 10.3402 

 

Naftalin J, Jurkovic D (2009) The endometrial-myometrial junction: a fresh look at a 

busy crossing Ultrasound in obstetrics and gynaecology 34 1-11 

 

Nishimori K, Young LJ, Guo Q Wang Z, Insel TR Matzuk MM (1996) Oxytocin is 

required for nursing but is not essential for parturition or reproductive behaviour 

Proceedings of the natural academy of sciences of the United States of America Oct 

15, 93 (21) 116  

 

Noh, K., Hwang, J., Shin, H. and Koh, J. (2000) A novel neuroprotective mechanism 

of riluzole: direct inhibition of protein kinase C. Neurobiol Dis, 7 (4): 375-383. 

 

Nolting, A., Ferraro, T., D'hoedt, D. and Stocker, M. (2007) An amino acid outside 

the pore region influences apamin sensitivity in small conductance Ca2+-activated 

K+ channels. J Biol Chem, 282 (6): 3478-3486. 

 

Norman JE, Shennan A, Bennett P, Thornton S, Robson S, Marlow N, Norrie J, 

Petrou S, Seibre N, Lavender T, Whyte S (2012) Trial Protocol OPPTIMUM - does 



225 
 

progesterone prophylaxis for the prevention of preterm labour improve outcome 

BMC pregnancy and childbirth 12 (79)  

 

Nui K, Salomon JL, Zhang Y, Ro JY (2011) Sex differences in the contribution of ATP-

sensitive K+ channels in trigeminal ganglia under acute muscle pain conditions 

Neuroscience 28 (180) 344-353 

 

Odibo AO, Farrell C, Macones GA, Berghella V (2003) Development of a scoring 

system for predicting the risk of preterm birth in women receiving cervical cerclage. 

Journal of Perinatology Dec;23(8):664-7. 

 

Office of National Statistics (2014) Gestation-specific infant mortality England and 

Wales 2012 ONS London 

 

Papatsonis DN, Bos JM, Geijn HP, Lok CA, Dekker GA (2007) Nifedipine 

pharmacokinetics and plasma levels in the 

management of preterm labor. American Journal of Therapeutics 14 (4), 346 

 

Park, W. S., Han, J. and Earm, Y. E. (2008). Physiological role of inward rectifier K(+) 

channels in vascular smooth muscle cells. Pflugers Arch, 457, 137-47. 

 



226 
 

Parkington, H. C., Tonta, M. A., Brennecke, S. P. and Coleman, H. A. (1999) 

Contractile activity, membrane potential, and cytoplasmic calcium in human uterine 

smooth muscle in the third trimester of pregnancy and during labor. Am J Obstet 

Gynecol, 181 (6): 1445-1451. 

 

Petrocelli T, Lye SJ (1993) Regulation of transcripts encoding the myomerial gap 

junction protein connexin-43 by estrogen and progesterone Endocrinology Jul 133 

(1) 284-90 

 

Piekorz RP, Gingras S, Hoffmeyer A, Ihle JN, Weinstein Y (2005) Regulation of 

progesterone levels during pregnancy and parturition by signal transducer and 

activator of transcription 5 and 20a-hydroxysteroid dehydrogenase Molecular 

Endocrinology 19 (2) 431-440 

 

Pierce, S., Kresowik, J., Lamping, K. and England, S. (2008) Overexpression of SK3 

channels dampens uterine contractility to prevent preterm labor in mice. Biol 

Reprod, 78 (6): 1058-1063. 

 

 

Pijneneborg R, Vercruysse L, Carter AM (2011) Deep trophoblast invasion and spiral 

artery remodelling in the placental bed of the lowland gorilla Placenta 32 586-591 

 

tel:(1)%20284-90
tel:(2)%20431-440
tel:32%20586-591


227 
 

Proks, P. and Ashcroft, F. (2009) Modeling K(ATP) channel gating and its regulation. 

Prog Biophys Mol Biol, 99 (1): 7-19. 

 

Quast, U. (1993) Do the K+ channel openers relax smooth muscle by opening K+ 

channels? Trends Pharmacol Sci, 14 (9): 332-337. 

 

RCOG (2009). Prevention & Management of Postpartum Haemorrhage. In: Royal 

College of Obstetricians & Gynaecologists. 

 

RCOG (2010) Clinical Guideline No.7 Antenatal corticosteroids to reduce neonatal 

morbidity and mortality Royal College of Obstericians & Gynaecologists, London.  

 

RCOG (2011) Clinical Guideline No.1 (B) Tocolytic Drugs for women in preterm 

labour Royal College of Obstericians & Gynaecologists, London.  

 

Reini EL, England SK (2015) Fetal-to-maternal signalling to initiate parturition 

Journal of clinical investigation Jul 125 (7) 2569-71 

 

Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR (2010) 

miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and 

contractility during pregnancy and labor PNAS Nov 107 (48) 20828-20833 

 



228 
 

Roberts D, Dalziel SR (2006) Antenatal corticosteroids for accelerating fetal lung 

maturation for women at risk of preterm birth. Cochrane Database of Systematic 

Reviews (3) 

 

Romero R, Tarca AL, Tromp G (2006) Insights into the physiology of childbirth using 

transcriptomics PLoS Medicine Jun 3 (6) e276 

 

Rowan K, Meagher S, Teoh M, Vollenhoven B, Choong S, Tong S (2008) Corpus 

luteum across the first trimester: size and laterality as observed by ultrasound 

Fertility and sterility Nov 90 (5) 1844-7 

 

Sanborn, B. M. (2000) Relationship of ion channel activity to control of myometrial 

calcium. J Soc Gynecol Investig, 7 (1): 4-11. 

 

Scott JE, Grigsby PL, Hirst JJ, Jenkin G (2001) Inhibition of prostaglandin synthesis 

and its effect on uterine activity during established premature labour in sheep 

Reproductive Sciences Sept/Oct 8 (5) 266-276 

 

Sentilhes L, Daniel V, Darsonval A, Deruell P, Vardon D, Perrotin F, Le Ray C, Senat 

MV, Winer N, Maillards F, Deneux-Tharaux C (2015) Study Protocol TRAAP 

Tranexamic acid for preventing post-partum haemorrhage after vaginal delivery a 



229 
 

multicentre, randomised, doule-blind, placebo-controlled trial BMC Pregnancy and 

Childbirth 15 135 

 

Sheldon RE, Mashayamombe C, Shao-Qing S, Garfield R, Shmygol A, Blanks AM, van 

den Berg H (2014) Alterations in gap junction connexin43/connexin45 ratio mediate 

a transition from quiescence to excitation in a mathematical model of the 

myometrium Journal of the royal society interface  Dec 11 (101)  

 

Shmigol, A. V., Eisner, D. A. and Wray, S. (1998) Properties of voltage-activated 

[Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J 

Physiol, 511 ( Pt 3) 803-811. 

 

Shmygol, A., Blanks, A. M., Bru-Mercier, G., Gullam, J. E. and Thornton, S. (2007) 

Control of uterine Ca2+ by membrane voltage: towards understanding the 

excitation-contraction coupling in human myometrium. Ann N Y Acad Sci,  

 

Shynlova O, Lee Y, Srikhajon K, Lye S (2013) Physiologic uterine inflammation and 

labour onset integration of endocrine and mechanical signals Reproductive Sciences 

20 (2) 154-167 

 

Shynlova O, Tsui P, Dorogin A, Lye SJ (2008) Monocyte chemoattractant protein-1 

(CCL-2) integrates mechanical and endocrine signals that mediate term and preterm 

labor Journal of immunology Jul 181 (2) 1470-9 

x-apple-data-detectors://embedded-result/508


230 
 

 

Siniscalchi, A., Bonci, A., Mercuri, N. and Bernardi, G. (1997) Effects of riluzole on 

rat cortical neurones: an in vitro electrophysiological study. Br J Pharmacol, 120 (2): 

225-230. 

 

Smith, R. C., McClure, M. C., Smith, M. A., Abel, P. W. and Bradley, M. E. (2007). The 

role of voltage-gated potassium channels in the regulation of mouse uterine 

contractility. Reprod Biol Endocrinol, 5, 41. 

 

Smith GC, Pell JP, Dobbie R (2003) Interpregnancy interval and risk of preterm birth 

and neonatal death: retrospective cohort study British medical journal 327:313 

 

Sofuoglu, M., Waters, A., Mooney, M. and Kosten, T. (2008) Riluzole and D-

amphetamine interactions in humans. Prog Neuropsychopharmacol Biol Psychiatry, 

32 (1): 16-22. 

 

Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR (2004) Mechanical 

stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor 

in human myometrial cells Molecular human reproduction Feb 10 (2) 109-13 

 



231 
 

Souka AP, Papastefanou I, Papadopoulos G, Chrelias C, Kassanos D (2015) Cervical 

length in late second and third trimesters: a mixture model for predicting delivery 

Ultrasound in Obstetrics and Gynecology Mar;45(3):308-12 

 

 

Stojnic, N., Gojkovic-Bukarica, L., Peric, M., Grbovic, L., Lesic, A., Bumbasirevic, M. 

and Heinle, H. (2007) Potassium channel opener pinacidil induces relaxation of the 

isolated human radial artery. J Pharmacol Sci, 104 (2): 122-129. 

 

Suhag A, Saccone G, Bisulli M, Seligman N, Berghella V (2015) Trends in cerclage use 

Acta Obstetricia et Gynecologica Scandinavica Nov;94(11):1188-94 

 

Takasaki A, Tamura H, Taniguchi K, Asada H, Taketani T, Matsuoka A, Yamagata Y, 

Shimamura K, Morioka H, Sugino N (2009)  Luteal blood flow and luteal function 

Journal of ovarian research Jan 14 (2) 1 

 

Taylor, M., Bonev, A., Gross, T., Eckman, D., Brayden, J., Bond, C., Adelman, J. and 

Nelson, M. (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) 

channels modulates arterial tone and blood pressure. Circ Res, 93 (2): 124-131. 

 

Thakali, K., Kharade, S., Sonkusare, S., Rhee, S., Stimers, J. and Rusch, N. (2010) 

Intracellular Ca2+ silences L-type Ca2+ channels in mesenteric veins: mechanism of 



232 
 

venous smooth muscle resistance to calcium channel blockers. Circ Res, 106 (4): 

739-747. 

 

Tribe RM, Moriarty P, Dalrymple A, Hassoni AA, Poston L (2003) Interleukin-1beta 

induces calcium transients and enhances basal and store operated calcium entry in 

human myometrial smooth muscle Biology of reproduction May 68 (5) 1842-9 

 

Tucker, J. and McGuire, W. (2004) Epidemiology of preterm birth. BMJ, 329 (7467): 

675-678. 

 

Turnbull LW, Manton DJ, Horsman A, Killick SR (1995) Magnetic resonance imaging 

changes in uterine zonal anatomy during a conception cycle British Journal of 

obstetrics and gynaecology 102 330-31 

 

United Nations (2010). Millennium Development Goals Report. In: New York,New 

York: United Nations Department of Economic and Social Affairs. 

 

United Nations (2015) The millennium development goals report 2015 United 

Nations New York 

 

United Nations (2016) UN Sustainable Development Goals; 17 Goals to transform 

our world United Nations New York available from 

www.un.org/sustainabledevelopment/ (accessed Feb 2016) 

tel:(5)%201842-9
tel:102%20330-31


233 
 

 

Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, Komagata Y, Maki K, 

Ikuta K, Ouchi Y, Miyazaki J, Shimizu T (1997) Role of cytosolic phospholipase A2 in 

allergic response and partuition Nature 390, 618-622 

 

van Vliet EOG, Schuit E, Heida KY, Opmeer BC, Kok M, Gyselaers W, Porath MM, 

Woiski M, Bax CJ, Bloemenkamp KWM, Scheepers HCJ, Jaquemyn Y, van Beek E, 

Duvekot HJJ, Franssen MTM, Bijvank BN, Kok JH, Franx A, Mol BWJ and Oudijk MA 

(2014) Nifedipine versus atosiban in the treatment of threatened preterm labour 

(Assessment of Perinatal Outcome after Specific Tocolysis in Early Labour: APOSTEL 

III-Trial) BMC Pregnancy and Childbirth 2014, 14:93 

 

Wang, Y., Lin, M., Lin, A. and Wu, S. (2008) Riluzole-induced block of voltage-gated 

Na+ current and activation of BKCa channels in cultured differentiated human 

skeletal muscle cells. Life Sci, 82 (1-2): 11-20. 

 

Wang, M., Tashiro, M. and Berlin, J. R. (2004) Regulation of L-type calcium current 

by intracellular magnesium in rat cardiac myocytes. J Physiol, 555 (Pt 2): 383-396. 

 

Wathes DC, Abayasekara RE, Aitken RJ (2007) Polyunsaturated fatty acids  in male 

and female reproduction Biology of reproduction 77 190-201 

 



234 
 

 

Weiss S, Jaermann T, Schmid P, Staempfli P, Boesiger P, Niederer P, Caduff R, Bajka 

M (2006) Three-dimensional fibre architecture of the nonpregnant human uterus 

determined ex-vivo though using magnetic resonance diffusion tensor imaging The 

anatomical record Part A 288A 84-90 

 

Wei LL, Norris BM, Baker CJ (1997) An N-terminally truncated third progesterone 

receptor protein PRc forms heterodimers with PRB but interferes in PRB-DNA 

binding Journal of steroid biochemistry and molecular biology Jul 62 (4) 287-97 

 

Westhoff G, Cotter AM, Tolosa JE (2013) Prophylactic oxytocin for the third stage of 

labour to prevent postpartum haemorrhage Cochrane Database Systematic Reviews  

Oct 30, 10 

WHO (2008). Managing Postpartum Haemorrhage. In: Education material for 

teachers of midwifery : midwifery education modules. – 2nd ed. World Health 

Organization. 

Williamson, D., Abe, K., Bean, C., Ferré, C., Henderson, Z. and Lackritz, E. (2008) 

Current research in preterm birth. J Womens Health (Larchmt), 17 (10): 1545-1549. 

 

Winer N, Bretelle F, Senat MV, Bohec C, Deruelle P, Perrotin F, Connan L, Vayssière 

C, Langer B, Capelle M, Azimi S, Porcher R, Rozenberg P, Groupe de Recherche en 

Obstétrique et Gynécologie (2015) 17 alpha-hydroxyprogesterone caproate does 



235 
 

not prolong pregnancy or reduce the rate of preterm birth in women at high risk for 

preterm delivery and a short cervix: a randomized controlled trial. American Journal 

of Obstetrics and Gynecology Apr;212(4):485 

 

Woelfer B, Salim R, Banerjee S, Elson J, Regan L, Jurkovuc D (2001) Reproductive 

outcomes in women with congenital uterine anomalies detected by three-

dimensional ultrasound screening Obstetrics and gynecology 98 (6) 1099-1103 

 

World Health Organisation (2015) Preterm birth Fact sheet N°363 WHO available 

from: http://www.who.int/mediacentre/factsheets/fs363/en/ (accessed Feb 2016) 

 

Wray, S. and Shmygol, A. (2007) Role of the calcium store in uterine contractility. 

Semin Cell Dev Biol, 18 (3): 315-320. 

 

Young, R. (2007) Myocytes, myometrium, and uterine contractions. Ann N Y Acad 

Sci, 1101 72-84. 

 

Young, R. C., Schumann, R. and Zhang, P. (2001) Intracellular calcium gradients in 

cultured human uterine smooth muscle: a functionally important subplasmalemmal 

space. Cell Calcium, 29 (3): 183-189. 

 

tel:(6)%201099-1103


236 
 

Young, R. C. and Zhang, P. (2005) Inhibition of in vitro contractions of human 

myometrium by mibefradil, a T-type calcium channel blocker: support for a model 

using excitation-contraction coupling, and autocrine and paracrine signaling 

mechanisms. Journal of the Society for Gynecologic Investigation, 12 (4): e7-12. 

 

Young WS, Shepard E, Amico J, Hennighausen L, Wagner KU, LaMarca ME, 

McKinney C, Ginns EI (1996) Deficiency in mouse oxytocin preents milk ejection, but 

not fertility or parturition Journal of Neuroendocrinology Nov 8 (11) 847-53 

 

Zlatnik MG, Cheng YW, Norton ME, Thiet MP, Caughey AB (2007) Placenta previa 

and the risk of preterm delivery Journal of maternal fetal and neonatal medicine 

Oct 20 (10) 719-23 

 

  

 

 

x-apple-data-detectors://embedded-result/1119
tel:(10)%20719-23
























Research Article

The inwardly rectifying K+ channel KIR7.1 controls
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Abstract

Abnormal uterine activity in pregnancy causes a range of impor-
tant clinical disorders, including preterm birth, dysfunctional
labour and post-partum haemorrhage. Uterine contractile patterns
are controlled by the generation of complex electrical signals at
the myometrial smooth muscle plasma membrane. To identify
novel targets to treat conditions associated with uterine dysfunc-
tion, we undertook a genome-wide screen of potassium channels
that are enriched in myometrial smooth muscle. Computational
modelling identified Kir7.1 as potentially important in regulating
uterine excitability during pregnancy. We demonstrate Kir7.1
current hyper-polarizes uterine myocytes and promotes quies-
cence during gestation. Labour is associated with a decline, but
not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral
expression of miRNA was sufficient to increase uterine contractile
force and duration significantly. Conversely, overexpression of
Kir7.1 inhibited uterine contractility. Finally, we demonstrate that
the Kir7.1 inhibitor VU590 as well as novel derivative compounds
induces profound, long-lasting contractions in mouse and human
myometrium; the activity of these inhibitors exceeds that of other
uterotonic drugs. We conclude Kir7.1 regulates the transition from
quiescence to contractions in the pregnant uterus and may be a
target for therapies to control uterine contractility.
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Introduction

At the end of pregnancy, the quiescent uterus must become highly

contractile to mediate parturition. While the mechanisms initiating

parturition in mammals are diverse (Smith, 2007), a final common

pathway of uterine transition to a contractile phenotype appears to

converge on the expression of a group of proteins, including the

oxytocin receptor, prostaglandin endoperoxidase synthase 2, ion

channels and connexin 43, that alter the uterine myometrial smooth

muscle (MSM) cell from a state of low intrinsic excitability and

refractory to stimulation, to a state that has high intrinsic excitabil-

ity and is susceptible to stimulation (Garfield et al, 1977; Fuchs

et al, 1982; Slater et al, 1995; Garfield & Maner, 2007). Control of

stimulation is itself subject to complex gene-environment interac-

tions, which act either independently of, or complimentary to, the

underlying physiological changes of the uterus (Cha et al, 2013).

Irrespective of the underlying stimulus, the regulation of the

duration and frequency of the myometrial contraction critically

depends on control of calcium entry through voltage-gated L- and

T-type calcium channels (Amedee et al, 1987; Blanks et al, 2007).

Calcium is not only an important second messenger in the genera-

tion of force via calcium-calmodulin-dependent myosin light chain

kinase, but also depolarizes the plasma membrane, allowing for

activation of other voltage-dependent ion channels (Word et al,

1994; Brainard et al, 2007). This voltage-mediated control of uterine

excitability is modulated in a gestation-dependent manner in all

mammalian species. In particular, mid-gestation is characterized by

a hyperpolarized membrane potential close to the reversal potential

for potassium Ek (Casteels & Kuriyama, 1965). As pregnancy

progresses towards term, the myometrium becomes increasingly
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depolarized, to approximately �45 mV at parturition (Casteels &

Kuriyama, 1965; Parkington et al, 1999). The mechanism underpin-

ning this crucial, evolutionarily conserved process remains

unknown.

A number of potassium channels have been demonstrated to

play a role in shaping the myometrial action potential and modulat-

ing myometrial contractility (Brainard et al, 2007). The putative

roles for the different channels are diverse and depend on the physi-

ological environment. These roles range from voltage-dependent

modulation of the action potential waveform (Knock et al, 1999), to

modulating responses to intracellular calcium release through BKca

and SK3 (Khan et al, 1993; Pierce et al, 2008), intracellular ATP

concentration through KATP (Khan et al, 1998) and uterine stretch

through tandem pore channels (Tichenor et al, 2005).

Within the potassium channel super-family, inwardly rectifying

potassium channels represents good candidates for the regulation of

resting membrane potential. Kir7.1 is a member of the inwardly

rectifying potassium channel sub-family and is only 38% identical

to its closest relative, Kir4.2 (Doring et al, 1998; Krapivinsky et al,

1998; Partiseti et al, 1998). Kir7.1 is expressed in visceral tissues

and some neurones within the CNS (Krapivinsky et al, 1998;

Nakamura et al, 1999; Ookata et al, 2000; Shimura et al, 2001),

although little is known about its functional role. Studies in retinal

pigment epithelial cells indicate that the channel may play an inte-

gral role in setting resting membrane potential and modulating K+

recycling (Shimura et al, 2001). A rare genetic mutation in Kir7.1

causes autosomal-dominant snowflake vitreoretinal degeneration

characterized by congenital degeneration of ocular tissues including

the vitreous (Hejtmancik et al, 2008). Kir7.1 has also been linked to

developmental pathways. For example, the jaguar/obelix mutation

in zebra fish renders the Kir7.1 homologue non-functional. As a

result, melanophores fail to respond appropriately to external cues,

leading to melanosome aggregation and the phenotype of a broader

striping pattern (Iwashita et al, 2006). Kir7.1 may also be involved

in palate formation in mice. Kcnj13 was identified as one of 8 genes

whose mis-expression correlates with formation of cleft palate in

TGF3beta knockouts, though the precise role of the channel remains

to be described (Ozturk et al, 2013).

In this study, we demonstrate the crucial importance of Kir7.1

in modulating uterine contractility in mice and humans. We show

that the physiological function of Kir7.1 is to maintain a hyperpo-

larized membrane potential during uterine quiescence and that

removal of this hyperpolarizing drive renders the uterus more

excitable. Furthermore, we show that Kir7.1 also modulates the

action potential waveform, modifying the excitation-contraction

cycle by participating in key stages of repolarization. Pharmaco-

logical manipulation of this normal physiological process could be

an alternative strategy to treat an atonic uterus and obstetric

haemorrhage.

Results

The aim of our study was to identify a potassium channel with the

appropriate biophysical attributes to regulate the myometrial resting

membrane potential during gestation. To identify candidates, we

undertook a genome-wide qRT-PCR screen of all known K+

channels and associated subunits in cDNA pools generated from

laser-capture micro-dissected MSM and whole myometrial tissue. Of

seven transcripts enriched in MSM (Supplementary Table S1), only

KCNJ13 coded for a K+ channel (Kir7.1) with appropriate biophysi-

cal attributes. Kcnj13 transcript levels increased markedly in the

pregnant mouse uterus during mid-gestation, peaking on gestational

day (GD) 15, and followed by a sharp decline towards term (C57BL/

6J mice deliver in the morning of GD19; Fig 1A). KCNJ13 transcript

levels (Fig 1B) were also significantly lower (P < 0.05) in samples

taken from pregnant women in labour at term than in samples from

women not in labour. Immunoblot of myometrial lysates from both

labour and non-labour samples demonstrated a single immuno-

reactive band at ~42 kDa. As positive and negative controls, we also

tested human eye and adipose cell lysate, respectively (Fig 1C and

Supplementary Fig S1). Furthermore, Kir7.1 immuno-reactivity was

expressed in MSMs and was absent in the vasculature in both

human and mouse myometrial samples (Fig 1D), supporting the

specificity of the laser-capture screen.

To determine the functional significance of this K+ channel in

the uterus, we first investigated its electrophysiological properties in

freshly dissociated mouse MSMs. Under voltage-clamp conditions,

an inwardly rectifying potassium current (Fig 2A,B) was inhibited

by VU590, a known Kir7.1 inhibitor (Lewis et al, 2009). Consistent

with the finding that Kir7.1 expression was higher at GD15 than

GD18, the VU590 sensitive current density at -150 mV was signifi-

cantly greater (P < 0.05) on GD15 when compared to GD18

(Fig 2C).

To understand the function of Kir7.1 in the generation of the

myometrial action potential, we modelled the potential impact of

changes in Kir7.1 channel density on myometrial electrogenesis

using a Hodgkin-Huxley type current summing model. In free-

running simulations of membrane potential, increasing Kir7.1 chan-

nel density (within the range measured in our experimental data)

hyperpolarized resting membrane potential and decreased calcium

entry during the action potential (Fig 3). Furthermore, simulations

predicted that overall membrane conductance during the excited

phase of the action potential is so finely balanced that small changes

in Kir7.1 current density exerted large effects on membrane poten-

tial. Given its expression profile and biophysical properties, we

hypothesized that Kir7.1 is a key regulator of myometrial membrane

potential during gestation.

To assess the role of Kir7.1 in regulating uterine contractility

experimentally, we used lentiviral vectors expressing miRNA target-

ing Kcnj13 or the human Kir7.1 channel to inhibit and over-express

the channel in murine MSM, both in vitro and in vivo. Knockdown

of Kir7.1, in vitro, significantly increased the contractile activity inte-

gral (2.5-fold) (area under the time-force curve), duration (2.2-fold)

and maximum force (1.3-fold) of phasic contractions when

compared to scrambled miRNA control (Fig 4 and Supplementary

Fig S2). Conversely, over-expression of Kir7.1 significantly

decreased all three parameters. To determine whether these altera-

tions in contractility were due to electrogenic effects, we used sharp

microelectrodes to measure membrane potentials in the treated

myometrial strips. Knockdown of Kir7.1 depolarized resting

membrane potential with extended excited periods (Fig 5A,B),

whereas over-expression of Kir7.1 hyperpolarized resting membrane

potential and suppressed excitability (Fig 5C). Mean resting

membrane potentials differed significantly between the two

treatment groups (Fig 5D).
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Figure 1. Kir7.1 is expressed in uterine myocytes and is regulated in pregnancy in mice and humans.

A mRNA expression of Kcnj13 in mice (n = 5; mean � SD, per GD) normalized to GD13. *P < 0.05, Student’s t-test.
B mRNA expression of KCNJ13 (plotted as arbitrary units relative to 18s rRNA) in human myometrial samples from women at term not in labour (NIL) and at term in

labour (LAB) (n = 8; mean � SD, per group). *P < 0.05, Student’s t-test.
C Immunoblot of pooled lysates from eye, adipose tissue, NIL and LAB myometrium (n = 4) probed with antibody to human Kir7.1 (full blot available in Supplementary

Fig S1).
D Immunohistochemistry for Kir7.1 in human NIL myometrium (left panel), GD13 murine myometrium (centre panel) and GD15 murine myometrium (right panel).

Arrow indicates absence of staining in blood vessel. Inset panels show tissue treated with pre-absorbed primary antibody control counterstained with haematoxylin.
Scale bar = 100 lm.

A B C

Figure 2. Kir7.1 current in uterine myocytes decreases from mid-pregnancy to term.

A Measurement of inwardly rectifying, VU590-sensitive current in freshly dissociated GD15 murine myometrial cells. Shown are voltage-clamp recordings in the
presence and absence of 10 lM VU590.

B Current-voltage relation (n = 5; mean � SD, per data point) of current density [VU590 subtracted from control (vehicle alone)].
C Current density (pA/pF) at �150 mV and 500 ms in freshly dissociated murine myometrial cells from GD15 and GD18 (n = 5 mean � SD, per GD). *P < 0.05, Student’s

t-test.
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Ion channel function in vivo may differ to that observed

in vitro, because of either effects of the sample preparation, or

influence of in vivo factors not captured in vitro. To account for

these potential experimental confounders and to assess the pheno-

type of targeting Kir7.1 during pregnancy, we injected mice uteri

on GD9 with anti-Kir7.1 miRNA or scrambled miRNA control. To

record uterine activity, we surgically implanted a pressure

catheter with remote telemeter into the injected horn of both

knockdown and control mice. Intra-uterine pressure was recorded

continuously, and the animals were monitored by video. Mice in

which Kir7.1 was knocked down had significantly increased intra-

uterine pressure when compared to control mice (Fig 6 and

Supplementary Fig S3). Consistent with our findings that Kir7.1

expression and channel activity were higher at GD15 than GD18,

the effect on intrauterine pressure was more pronounced in mid-

gestation.

Figure 3. A free-running simulation of the effect on the myometrial action potential waveform of increasing densities of Kir7.1.
Time-dependent effect of increasing Kir7.1 channel densities on Vm (mV, left) and [Ca]i (nM, right). Increasing density of Kir7.1 within experimentally determined values
hyperpolarizes resting membrane potential, whereas decreasing membrane excitability during depolarizing excursions in Vm leading to decreased calcium entry.

A B C

D E F

Figure 4. Knockdown of Kir7.1 in vitro increases myometrial activity and promotes tonic contractions.

A–C Representative time-force recordings of phasic contractions demonstrating (A) the effect of scrambled miRNA compared to (B) knockdown (Anti-Kir7.1) and (C)
overexpression (+Kir7.1) of Kir7.1 on contractility in murine GD15 myometrial strips.

D–F Mean data are summarized (n = 8; mean � SD, per group of experiments) as activity integral (area under the time-force curve) (D), contraction duration (E) and
maximum force (F). *P < 0.05, compared to scrambled control by ANOVA with Tukey’s post hoc test.
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The increased contractility associated with Kir7.1 knockdown

raised the possibility that pharmacological targeting of this ion

channel could be of clinical value, for example in the management

of severe post-partum haemorrhage. To assess this possibility,

we first performed current clamp microelectrode recordings of

spontaneous action potentials in isolated murine myometrial strips.

We observed slow, inter-contraction, depolarization of resting

membrane potential followed by transient complex action poten-

tials (Fig 7). Administration of 10 lM VU590 rapidly depolarized

resting membrane potential to threshold (Fig 7Ai), followed by a

sustained plateau potential that was reversible on wash out

(Fig 7Aii and Aiii). In myometrial strips from women, application

of VU590 increased the activity integral, largely due to an increase

in contraction duration (Fig 7B), with contractions lasting several

hours observed.

To assess the potential therapeutic benefit of inhibiting Kir7.1,

we compared the effect of VU590 with oxytocin, the established

front-line treatment for post-partum haemorrhage. The effect of

VU590 on contractile force in samples taken from GD15 and

GD18 mice was dependent on dose and gestation (Fig 8A) and

when used in combination with oxytocin, increased activity inte-

gral by 172 � 14 fold and 90 � 42 fold on GD15 and GD18,

respectively, as compared to 4 � 2 fold and 8 � 3 fold for OXT

treatment alone (Fig 8B). The effect of VU590 was similar in

human term myometrium, which was also dose-dependent, with

the observed increase in activity integral, largely due to an

increase in contraction duration (Fig 8C,D). Importantly, sufficient

channels remain at term to generate a significant phenotypic

effect, underscoring the potential post-partum benefit of pharma-

cological intervention.

A B

C D

Figure 5. Knockdown of Kir7.1 in vitro depolarizes resting membrane potential.

A–C Representative membrane potential recordings in current clamp configuration from murine myometrial strips (A) treated with scrambled control miRNA (B) treated
with Kir7.1 knockdown (Anti-Kir7.1) and (C) overexpressing Kir7.1 (+Kir7.1).

D Resting membrane potential in current clamp configuration from murine myometrial strips (n = 6; mean � SD) from experiments depicted in (5A–C). *P < 0.05 by
Student’s t-test.
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To expand the pharmacological tools for Kir7.1 inhibition, we

used population patch-clamp technology to screen a library of

known ion channel inhibitors in a Chinese Hamster Ovary cell line

expressing Kir7.1 (Supplementary Fig S4 and Supplementary Meth-

ods). We identified compounds with different structures than

VU590 to assess whether the phenotype of Kir7.1 inhibition was

similar (Fig 9A). We also manufactured a control compound 1,3-Bis

(5-nitro-1H-benzo[d]imidazol-2-yl)propane (BNBI), which is known

to inhibit the structurally related Kir1.1 (Renal outer medulla potas-

sium channel) but does not inhibit Kir7.1 (Bhave et al, 2011).

Administration of 100 lM BNBI had no detectable effect on uterine

contractility in the GD15 mouse (Fig 9B), suggesting that loss of effi-

cacy for Kir7.1 inhibition is associated with loss of pro-contractile

activity. Finally, administration of 10 lM MRT2000769, a potent

Kir7.1 inhibitor that is structurally unrelated to VU590, induced

long-lasting contractions similar to those observed with VU590

(Fig 9C). The effectiveness of MRT2000769 further supported the

correlation between effective Kir7.1 inhibition and the phenotype of

long-lasting contractions (Supplementary Fig S5).

Discussion

Inwardly rectifying potassium channels are known to regulate

diverse but important physiological processes such as insulin secre-

tion in the pancreas, regulation of the cardiac action potential, para-

sympathetic stimulation and potassium reuptake in the kidney

(Hibino et al, 2010). In most cases, the channels act to hyperpolar-

ize resting membrane potential by remaining persistently open,

allowing the efflux of potassium. In excitable tissues, this dampens

electrical activity, while in epithelial cells, the potassium gradient

created in combination with energy-dependent ion pumps is used to

transport other ions. In secretory cells, inhibition of the current

causes depolarization and calcium entry leading to a secretion event

(Liu et al, 2001; Ashcroft, 2005; Hebert et al, 2005). The important

physiological roles of Kir channels are underscored by the many

diseases that are associated with Kir channel malfunction, such as

Bartter’s syndrome, Anderson syndrome, short Q-T syndrome and

neonatal diabetes (Derst et al, 1997; Andelfinger et al, 2002; Edghill

et al, 2004; Priori et al, 2005; Ellard et al, 2007).

Here we present the novel finding that Kir7.1 is a crucial regula-

tor of membrane potential in uterine myocytes during pregnancy in

both mice and humans. In mid-gestation, high expression of Kir7.1

keeps the resting membrane potential close to the reversal potential

for potassium, increasing the depolarizing drive required to initiate

an action potential, calcium entry and subsequent contraction. At

term, this damping of excitability is lost by reduction, but not

complete loss, of Kir7.1. Our results also indicate that inhibition of

Kir7.1 when combined with oxytocin administration is synergistic, a

mechanism that may be related to the sensitivity of Kir7.1 to intra-

cellular phosphatidylinositol 4,5-bisphosphate depletion (Pattnaik &

Hughes, 2009). Such a mechanism, when acting in conjunction with

a decreased gap junction density and decreased receptors to stimula-

tory ligands, could provide a robust means of maintaining uterine

quiescence during gestation (Garfield et al, 1977; Fuchs et al, 1982;

Smith, 2007).

Within the Kir superfamily, Kir7.1 displays several unique prop-

erties such as low sensitivity to Ba2+ and Cs+, low single channel

conductance, no internal block by Mg2+ ions, and a relative insensi-

tivity to external K+ concentration, tetraethylammonium

(IC50 > 10 mM) or 4-aminopyridine (IC50 ~10 mM) (Krapivinsky

et al, 1998). In in vitro expression systems, Kir7.1 exhibits rapid

Figure 6. Knockdown of Kir7.1 in vivo significantly increases intrauterine pressure.
Mice in which Kir7.1 was knocked down (Anti-Kir7.1) had significantly increased intrauterine pressure when compared to mice injected with scrambled miRNA lentivirus
(scrambled) from GD13 to GD18 (Fig 6 and Supplementary Fig S3). (n = 6 per time point). *P < 0.05; see methods for statistical model.
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activation kinetics and is essentially non-inactivating at potentials

negative to 40 mV with a small single channel conductance in both

recombinant and native cells (Doring et al, 1998; Krapivinsky et al,

1998; Shimura et al, 2001). Since the channel has a low conduc-

tance and little voltage or time dependence in physiological ranges,

high expression of this channel gives rise to a stable and hyperpolar-

ized resting membrane potential. Thus, the biophysics of Kir7.1 is

ideally suited to regulating myometrial smooth muscle cells during

mid-gestation quiescence.

Transgenic mouse models have demonstrated the critical nature

of control of myometrial membrane potential during parturition. For

example, mice overexpressing the small conductance potassium

channel SK3 suffer acute uterine dystocia, and both mother and

pups die during delivery (Bond et al, 2000). Similarly, mice

harbouring a smooth muscle specific deletion of the important uter-

ine gap junction protein connexin43 demonstrate a significant delay

in delivery and increased mortality of pups (Doring et al, 2006).

These data, in conjunction with our in vivo observations demon-

strating a significant increase in intrauterine pressure in the absence

of endocrine changes, underline the importance of the development

of uterine excitability during gestation to the overall delivery

process. It is notable that the decrease in Kir7.1 expression precedes

progesterone withdrawal in the mouse suggesting that modulation

of excitability is, at least in part, independent of progesterone. These

biophysical factors act in addition to, and in concert with, other

endocrine/paracrine changes that alter uterine stimulants (Cha et al,

2013) and lead to uterine disorders such as preterm labour or

dysfunctional labour. The overall role of membrane potential in the

control of parturition in the context of other controlling factors is

summarized in Fig 10.

In addition to a clear effect on resting membrane potential, our

computer modelling predicted that increasing Kir7.1 activity

A

B
i

i

iii

i

i ii iii

ii

Figure 7. Pharmacological inhibition of Kir7.1 in vitro in human and murine myometrium induces membrane depolarization and long-lasting contractions.

A Representative membrane potential recording in current clamp configuration from a murine GD15 myometrial strip. (i) Addition of 10 lM VU590 depolarizes resting
membrane potential (note slope change from resting potentials of preceding phasic bursts) and leads to a sustained plateau potential. (ii) Upon washout, spike
potentials recover as plateau potential hyperpolarizes. (iii) On complete washout, phasic bursting resumes.

B Addition of 1 nM oxytocin and 10 lM VU590 to human myometrial strips stimulates long-lasting contractions. (i) Initial component of the response is phasic,
followed by establishment of a tonic contraction.
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modulates calcium entry during the plateau phase of the complex

action potential, resulting in a decrease in contractile force and inef-

ficient contractions. Decreasing Kir7.1 has the effect of stressing the

repolarizing drive such that increased contributions from other K+

channels are required to ensure action potential repolarization

(Supplementary Fig S6) (Fink et al, 2006; Greenwood et al, 2009;

McCallum et al, 2011). These effects explain the longer action

potentials observed during pharmacological inhibition and experi-

mentally induced reduction in the expression of Kir7.1 protein.

When Kir7.1 current density is reduced to very low levels, the

myometrial smooth muscle effectively loses phasic behaviour and

manifests a new tonic-like tone. The greatly increased contraction

length induced by Kir7.1 inhibition may be useful for reducing

blood loss in an atonic uterus. As a treatment for post-partum haem-

orrhage, Kir7.1 block would have the advantage of being more

potent than current first line treatments. The mechanism of action

also circumvents the agonist pathways (Fig 10) targeted by current

treatments that are prone to desensitization during failed labour

inductions.

Materials and Methods

Ethical approval

All procedures involving women were conducted within the guide-

lines of The Declaration of Helsinki and were subject to local ethical

approval (REC-05/Q2802/107). Prior to surgery, informed written

consent for sample collection was obtained.

All animal procedures complied with the guidelines for the

care and use of animals set forth by the National Institutes of

Health. The Animal Studies Committee at Washington University

in St. Louis approved all protocols (protocol number 20110138 to

Sarah K. England). Adult C57BL/6J (Jackson Laboratory) female

mice were mated at 8 weeks of age until 6 months of age. Mice

were mated for 2-h time periods, and the presence of a copula-

tory plug was marked 0 days postcoitum (dpc). Animals were

housed in Washington University School of Medicine vivarium in

the BJCIH building, which is an AAALAC (Association for Assess-

ment and Accreditation of Laboratory Animal Care International)

A B

C D

Figure 8. Pharmacological inhibition of Kir7.1 in vitro in human and murine myometrium stimulates longer-lasting contractions than oxytocin.

A Dose- and gestation-dependent effect of VU590 on murine myometrial contractility [n = 5, activity integral expressed as a fold-change of pre-treatment contractions
(mean � SD, per GD)]. *P < 0.05 GD18 vs GD15 per dose by ANOVA with Tukey’s post hoc test.

B As in (A) but comparing the effect of 1 nM oxytocin with 1 nM oxytocin + 10 lM VU590. *P < 0.05 OT vs OT = VU590 per GD by Student’s t-test.
C Dose-dependent effect of VU590 (Black Bars) and VU590 + 1 nM oxytocin (grey bars) on human myometrial contractility (n = 8; activity integral expressed as

fold-change over pre-treatment contractions, mean � SD). *P < 0.05 compared to control by ANOVA with Tukey’s post hoc test.
D Dose-dependent effect of VU590 on contraction duration in human myometrial strips taken at term (n = 8, mean � SD). *P < 0.05 compared to control by ANOVA

with Tukey’s post hoc test.
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approved animal care facility. For in vivo intrauterine pressure

measurements, eight pregnant mice were injected with scrambled

miRNA and eight pregnant mice were injected with Kir7.1

miRNA.

Subject criteria and selection

Subjects were recruited into two groups, spontaneous labour (LAB)

and elective caesarean section not in labour (NIL) between 38 and

40 weeks gestation. The LAB group was undergoing caesarean

section for reasons of undiagnosed breech. LAB was defined as

regular contractions (< 3 min apart), membrane rupture and cervi-

cal dilatation (> 2 cm) with no augmentation.

Sample collection

At caesarean section, samples were collected before syntocin admin-

istration by knife biopsy from the lower uterine segment incision.

Samples were washed briefly in saline and flash-frozen in liquid

nitrogen for mRNA, immunoblot or immunohistochemistry

analyses. Samples for cell isolation or contractility experiments were

placed in ice-cold modified Krebs–Henseleit (m-KHS) solution and

used the same day.

Laser capture screen

mRNA was extracted from 100 mg of frozen human myometrium

using Trizol reagent (Invitrogen), and further column purified by

RNeasy kit (Qiagen) according to the manufacturer’s instructions.

Total RNA was quantified by spectrophotometer and further tested

for quality and purity by bioanalyser (Agilent Technologies) accord-

ing to the manufacturer’s instructions. cDNA was generated from

100 ng of mRNA using Superscript III (Invitrogen) according to the

manufacturer’s instructions and stored at �80°C until qRT-PCR

analysis.

Laser Capture Microdissection (LCM): All slides, LCM caps,

Haematoxylin and Eosin (H&E) Staining Kit for LCM and solutions

were obtained from Molecular Machines & Industries. Briefly,

cryomold-mounted myometrial samples were transferred from

�70°C and equilibrated in a pre-cooled cryostat (�30°C) for

10 min. Sections (8 lM) were cut and H&E stained according to

A

B C

Figure 9. Stimulation of uterine contractions correlates with Kir7.1 inhibitory potency.

A The structures of the three compounds tested in this study. BNBI, a potent Kir1.1 inhibitor does not inhibit Kir7.1. MRT2000769 is structurally unrelated to VU590
and was identified as inhibiting Kir7.1 in a high throughput electrophysiology screen. VU590 is the first described inhibitor of Kir7.1.

B, C Effects of BNBI (B) and MRT2000769 (C) on murine GD15 myometrial contractility.
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the manufacturer’s instructions. Slides were dehydrated in graded

alcohols and xylene and placed in a desiccator until laser capture.

At least 50,000 lm2 of human uterine myocytes was captured for

each gene. mRNA was extracted from each isolation by using the

Picopure RNA isolation kit (Arcturus) according to the manufac-

turer’s instructions. Reverse transcription was as previously

described. PCR primer design and qRT-PCR are described in the

Supplementary Methods.

Immunohistochemistry

Frozen sections (8 lM) were fixed in ice-cold acetone for 5 min

prior to incubation in phosphate-buffered saline (PBS). Endogenous

peroxidase activity was blocked by immersing the slides for 30 min

in freshly prepared 0.3% hydrogen peroxide in PBS. Slides were

pre-incubated in 1.5% non-immune goat serum in PBS for 30 min at

room temperature and then in primary anti-Kir7.1 antibody (1:100;

Alomone) overnight at 4°C in a humidified chamber. Primary

Figure 10. Model of the role of Kir7.1 in maintenance of uterine quiescence.
In normal labour in the human myometrium, changes take place over a number of weeks that increase both the intrinsic electrical excitability of the cell (blue box) and, by
altering cellular receptors and contractile machinery, the susceptibility to stimulation. Alterations in stimulation either by infection or gene-environment interaction can
precipitate preterm labour (Cha et al, 2013); however, changes in control of the myometrial membrane potential or interference with functional gap junctions can affect
labour even under normal endocrine conditions (Bond et al, 2000; Doring et al, 2006). In this study, we demonstrate that alteration of the function of a single potassium
channel profoundly alters uterine contractility. Loss of Kir7.1 function depolarizes the plasmamembrane and promotes voltage-gated calcium entry. In addition, the duration
of the depolarization is extended, preventing the normal phasic contractions. In this way, the process of excitation-contraction coupling in uterine myocytes overrides
pharmaco-contraction coupling. This effect could be used for therapeutic benefit. (Key: CPI-17 = C-kinase potentiated protein phosphatase-1 inhibitor. CX26 = Connexin 26.
CX43 = Connexin 43. CX45 = Connexin 45. GEFs = Guanine nucleotide exchange factors. GPCR = G-protein coupled receptors. IP3 = inositol 1,4,5-trisphosphate.
IP3R = inositol 1,4,5-trisphosphate receptor. MLC = Myosin light chain. MLCp = Phosphorylated myosin light chain. PIP2 = Phosphatidylinositol 4,5-bisphosphate. PLC
b = Phospholipase C. RHOgtp = Ras homologue gene family, member A. RHO-K = Rho-associated, coiled-coil containing protein kinase 1.)
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antibody pre-absorbed for 24 h with recombinant antigen served as

negative control. Staining was visualized using the Vectastain Elite

ABC rabbit IgG kit (Vector Laboratories) according to the manufac-

turer’s instructions.

Immunoblot

After tissue was suspended in RIPA lysis buffer containing protease

inhibitor cocktail tablets, mechanically homogenized and cleared by

centrifugation, the supernatant was aliquoted and frozen. Whole

tissue and protein lysates from adult human eye, adult mouse

adipose and adult mouse brain were purchased from Novus Biologi-

cals (Cambridge, UK) at a stock concentration of 5 mg/ml. All

protein concentrations were confirmed with the BioRad assay (Bio-

Rad laboratories, Hemel Hempstead, UK). A total of 40 lg of

protein per sample (pooled from 4 biopsies each for NIL and LAB

samples) was subjected to SDS-PAGE according to standard proto-

cols. The membrane was blocked in 5% milk protein solution

(Marvel, Lincs, UK) for 1 h at room temperature, incubated with

primary rabbit polyclonal anti Kir7.1 antibody (1:200; Alomone

Labs, Jerusalem) overnight at 4°C in blocking buffer and then incu-

bated with polyclonal goat anti-rabbit HRP secondary antibody

(1:100; Dako, Ely, UK). ECL Plus (GE Healthcare LTD, Amersham

place, UK) was used to detect signal. To confirm equal loading, the

blot was treated with Restore western blot stripping buffer (Thermo

Fisher Scientific, Hemel Hempstead, UK) for 15 min at room

temperature, washed, blocked and re-probed with an antibody to

human b-actin.

Electrophysiology

Cell isolation

Strips of myometrium from the longitudinal layer (2 × 2 × 20 mm)

of time-mated C57BL/6J mice were isolated and washed in Ca2+

and Mg2+ free Hank’s balanced salt solution (HBSS) at 37°C for 10,

20 and 30 min, respectively, followed by 45 min incubations in

digestion solution (Roche Blendzyme 3) at 37°C according to the

manufacturer’s instructions. Digestion was terminated by several

dilutions with fresh HBSS. Cells were dispersed by slow trituration

through a wide-bore fire-polished glass pipette in HBSS. Single

myometrial cells were filtered through a 200-lM gauze and stored

in HBSS for use within six hours.

Voltage clamp

A drop of myometrial cell suspension was placed in a glass-

bottomed Petri dish and mounted on the stage of an inverted

microscope (IX51, Olympus). After settling (~ 10 min), cells were

perfused with bath solution at a rate of 1–2 ml/min at 37°C. Patch

pipettes were fabricated (Model P-87; Sutter Instruments, Novato,

CA, USA) from 1.5-mm glass capillaries and had a resistance of

2.0–4.0 MΩ when filled with pipette solution (containing in mM:

KCL 140; EGTA 1.1; CaCl2 0.06; Hepes 10; MgCl2 2; adjusted to

pH 7.2 at 25°C with 5 m NaOH). Liquid junction potential was

zeroed prior to seal formation. Transmembrane currents were

recorded with an amplifier (Axopatch 700b; Axon Instruments)

using the perforated patch configuration of the whole cell patch-

clamp technique (Rae et al, 1991). The antibiotic amphotericin B

(720 lg/ml) was used to perforate the cell membrane. Series resis-

tance was compensated after membrane perforation. Currents were

elicited by stepping to a range of potentials between �150 mV and

+80mV from a holding potential of �60 mV. To isolate currents

that were sensitive to inhibition by drug application, difference

currents were obtained by electronic subtraction of traces.

Currents were filtered at 10 kHz and sampled at 5 kHz. Voltage

protocols were delivered via a Digidata 1440a computer interface

using pCLAMP 9.0 software (Molecular Devices, Sunnyvale, CA,

USA).

Current clamp

Strips (5 × 10 mm) of murine myometrium from the longitudinal

layer were pinned out on a sylgard base and perfused with m-KHS

containing (in mM: NaCl, 133; KCl, 4.7; Tes, 10; glucose, 11.1;

MgSO4, 1.2; KH2 PO4, 1.2; CaCl2, 2.5; adjusted to pH 7.4 at 25°C

with NaOH) at 37°C on an upright microscope (MVX10, Olympus).

Tissue was incubated with 5 lM wortmannin (Sigma) to prevent

spontaneous contractions from dislodging impalements. Smooth

muscle cells were impaled with glass microelectrodes filled with

2 M KCl of resistance 80–120 MΩ. Transmembrane potentials were

recorded with an amplifier (Axopatch 700b; Axon Instruments)

and a Digidata 1440a computer interface running pCLAMP 9.0

software.

In vitro knockdown and contractility

Strips of GD15 or GD18 myometrium from the longitudinal layer

(2 × 2 × 20 mm) were washed in sterile Ca2+ and Mg2+ free HBSS

DMEM/F-12. Strips were placed (in triplicate) under 1.5× slack

length tension in media containing 2% dextran-coated charcoal-

treated foetal bovine serum with 0.5 mM 8-bromo-cAMP (Sigma),

10�6 M medroxyprogesterone acetate (Sigma) and pLenti6-cppt-

CMV-mCherry-mouse 543A miRNA (Anti-Kir7.1), pLenti6-cppt-

CMV-mCherry-neg miRNA (Scrambled), or pLenti6-cppt-CMV/TO-

humKir7.1-IRES-mCherry-opre (+Kir7.1). Construction of lentiviral

vectors is detailed in the Supplementary Methods.

On day five, strips were placed under 2mN tension in a four

channel flatbed organ bath (DMT) in m-KHS solution. Isometric

force was recorded on ADI Instruments LABCHART software. Activ-

ity integral was measured as the area under the time-force curve

(mN/s) over a 20-min period. Contraction duration was determined

as the mean duration (rise and fall to baseline) of contractions

within a 20-min period. Maximum force was determined as the peak

force measurement within a 20-min period. All measurements were

made over the same time period for all strips.

In vivo intrauterine pressure measurements

C57BL/6J time-mated mice were anesthetized on GD8 to GD10 by

intraperitoneal injection of ketamine (100 mg/kg) plus xylazine

(10 mg/kg, IP), and a PhysioTel PA-C10 transmitter (Data Sciences

International) was implanted in one horn of the pregnant uterus

between the uterine wall and foetal sacs. At this time, 3.7 × 105

particles/ml of pLenti6-cppt-CMV-mCherry-Neg miRNA (scrambled)

or pLenti6-cppt-CMV-mCherry-miRNA mouse Kir7.1 (Anti-Kir7.1)

were injected into the uterine muscle of the implanted horn. Five

days later, uterine pressures were continuously measured every

10 s at 500 Hz with Dataquest A.R.T. data acquisition system

version 4.31 (DSI) for 4–8 days.
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Data analysis and statistics for telemetry studies

Longitudinal changes in intrauterine pressure after infection with

pLenti6-cppt-CMV-mCherry-Neg miRNA (scrambled) or pLenti6-

cppt-CMV-mCherry-miRNA mouse Kir7.1 (Anti-Kir7.1) were analy-

sed by using a linear-mixed effect (LME) model implemented by

PROC MIXED in SAS 9.3. Before analysis, data were first temporally

aligned according to gestational days. The dependent (response)

variable was taken as the hourly average intrauterine pressure.

Fixed effects were treatment group (scrambled vs miRNA), gestation

day and their interaction. Random intercepts were also used to

incorporate mouse-specific effects. In addition, a first-order autore-

gressive correlation structure was used to account for the repeated

measurements over time, which implies that the temporal correla-

tion among repeated measures decays as a power function of the

time lag. Residuals from initial LME analysis displayed a skewed

distribution, and a square-root transformation of the response vari-

able was found to be effective to correct the non-normality in the

residuals. A few mice had negative hourly average pressures in

certain hours, and 58 such observations (around 3% of the entire

data set and split equally between the scrambled and miRNA group)

were excluded from the analysis.

Compound screening

Cell line generation, cell culture, and Kir7.1 automated electrophysi-

ology assay and data analysis are all described in the Supplementary

Methods. The MRCT ion channel focused compound file was

selected in collaboration with the Dundee Hit Finding Unit and

consisting of ~ 4,000 compounds. The set covered 119 bioactive

templates from nine categories of ion channel targets and molecular

weights of the screening compounds ranged between 150 and 450.

Computational simulations

Computational simulations are described in detail the Supplemen-

tary data.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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