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ABSTRACT

We present the first observational detection of radial and azimuthal oscil-

lations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs

well-observed by the Large Angle and Spectrometric Coronagraph (LASCO) from

February to June, 2011. Using the LASCO C3 running difference images, we

estimated the instantaneous apparent speeds of the HCMEs in different radial

directions from the solar disk center. We find that the development of all these

HCMEs is accompanied with quasi-periodic variations of the instantaneous radial

velocity with the periods ranging from 24 to 48 minutes. The amplitudes of the

instant speed variations reach about a half of the projected speeds. The ampli-

tudes are found to anti-correlate with the periods and correlate with the HCME

speed, indicating the nonlinear nature of the process. The oscillations have a clear

azimuthal structure in the heliocentric polar coordinate system. The oscillations

in seven events are found to be associated with distinct azimuthal wave modes

with the azimuthal wave number m = 1 for six events and m = 2 for one event.

The polarization of the oscillations in these seven HCMEs is broadly consistent

with those of their position angles with the mean difference of 42.5 degree. The

oscillations may be connected with natural oscillations of the plasmoids around a

dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of

Alfvénic vortices. Our results indicate the need for advanced theory of oscillatory

processes in CMEs.

Subject headings: Sun: coronal mass ejections (CMEs) — Sun: oscillations
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1. INTRODUCTION

Coronal mass ejections (CMEs) are the most spectacular eruptions from the Sun into

the heliosphere. They are usually main sources of geomagnetic storms (Gosling et al. 1991;

Gosling 1993). It has been found that the interplanetary propagation of CMEs is con-

trolled by the ambient solar wind (Lindsay et al. 1999; Gopalswamy et al. 2000, 2001a,b;

Vršnak & Žic 2007). Several authors (Vršnak et al. 2004; Yashiro et al. 2004) suggested that

the interaction between CMEs and the solar wind is an important mechanism that deter-

mines CME kinematics. One possible mechanism for the deflection of the CME trajectory

from radial is the asymmetric aerodynamic drag force associated with formation of Alfvénic

Kelvin-Helmholtz vortices (Foullon et al. 2011).

Dynamical processes in the solar corona are often accompanied by the excitation of

various kinds of oscillations of coronal plasma non-uniformities, with the periods ranging

from a fraction of a second to several hours. The majority of coronal oscillations have been

identified as magnetohydrodynamic (MHD) modes of the non-uniformities (see De Moortel

& Nakariakov 2012; Liu & Ofman 2014, for recent comprehensive reviews). The interest

in MHD oscillations is connected with a number of open questions, such as heating of the

plasma, presence of additional sinks for the energy released in flares, triggering the energy

releases, and MHD seismology - diagnostics of plasma parameters and physical processes

operating in the plasma by means of MHD oscillations.

It is reasonable to expect that CMEs are accompanied by MHD oscillations that appear

naturally as the response of the elastic and compressive plasma to the energy deposition.

However, there have been a very few observations of oscillations associated with CMEs. Per-

haps the first observation of CME oscillation was reported by Krall et al. (2001). Examining

the evolution of the speed pattern of the leading-edge and trailing-edge features for a flux-

rope-like CME, they found that the projected CME velocities varied with the period of about

4–6 hr. Shanmugaraju et al. (2010) developed that study, examining the speed-distance pro-

files of 116 CMEs with at least 10 height-time data points, and found that about fifteen

CMEs had quasi-periodic oscillation patterns. In addition, they showed that the oscillation

periods were within the range of the upper and lower limit of the Alfvén travel time along

the magnetic rope of the CME. Very recently, a vertically-polarized kink oscillation with the

period of about 11 min was detected in a raising magnetic rope observed in EUV in the low

corona (Kim et al. 2014).

In this Letter, we present the first detection of both radial and azimuthal oscillations in

HCMEs. This letter is organised as follows. In Section 2, we describe the data and analysis.

Results are given in Section 3. A brief summary and discussion are presented in Section 4.
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2. DATA AND ANALYSIS

We considered nine well-observed full HCMEs whose structures were clearly seen in the

Solar and Heliospheric Observatory (SoHO) Large Angle and Spectrometric Coronagraph’s

(LASCO, Brueckner et al. 1995) C2 and C3 fields of view from February to June 2011.

These HCMEs were observed at the heights from 4.0 to 27.3 R⊙ with the cadence time

about 12–15 minutes. The dates, times, source locations and other properties of the events

are summarized in Table 1. In the study we used running difference images obtained from

the CDAW LASCO CME online catalogue (http://cdaw.gsfc.nasa.gov/CME list/). Figure 1

shows a typical event analysed in this study, represented by three running difference images

taken at different instants of time.

For each available running difference image of the HCMEs we estimated locations of the

front edges of the HCME, the outermost and fastest moving structure, at the rays positioned

at every 15◦ of the azimuthal angle defined as a counterclockwise from the solar west. These

measurements were combined in the height-time maps constructed for different azimuthal

angles. The instantaneous speed (Vins) of the HCMEs was determined using two successive

height-time measurements at every azimuthal angle for at least four time intervals. Figure 2

shows that the instantaneous speed varies with time (height) quasi-periodically, rather than

monotonically increases or decreases.

Parameters of the oscillations we determined by best-fitting the dependence of the in-

stantaneous speed upon time by the harmonic function Vins = ∆V sin(ω(t−K)) + b, where

∆V is the amplitude, ω is the cyclic frequency, K is the phase, and b is the mean value, with

the use of the least-square method. We also estimated the observed projected speeds (Vpro)

of the HCMEs at every azimuthal angle, which was obtained from a linear fit of height-time

data. The results are shown in Table 1.

Some uncertainties in determining the speed of the HCMEs may exist because the

determination of the HCME front edge locations are made by the visual inspection. To

estimate the uncertainty of the instantaneous speed estimation, we made ten independent

trials of the measurements of the front edge locations. Then the error was calculated as its

standard deviations for each HCMEs, and the mean value was taken as the measurement. In

this study, we estimate the uncertainty of the speed measurement to be about 200 km s−1,

which is an average of the standard deviations. We find that the speed amplitudes ∆V in

all the analysed events.

Fig. 2 shows the oscillatory patterns in the instantaneous speed variation are rather

systematic, and have an obvious angular dependence. Several HCMEs (e.g., ♯ 1, 5, 9 in

Table 1) originated from the solar disk center and produced full-halo CMEs with mostly
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circular shapes. For these cases, the oscillation patterns of these HCMEs at a certain azimuth

angle approximately show radial oscillations. To quantify the azimuthal dependence of the

oscillatory patterns, we consider the azimuthal dependence in the form of the harmonic

function exp(imθ), where θ is the azimuthal angle, and m is an integer representing the

azimuthal wave number.

To determine the azimuthal wave number of the oscillations, we applied the following

procedure: (1) according to the phase of the oscillations (see the left panels of Fig. 2) we

grouped the oscillations detected along individual rays corresponding to different azimuthal

angles into “positive” and “negative”; these two groups are shown in the right panels of Fig. 2

by the red and blue circles; (2) we positioned nodal lines between the “red” and “blue” rays;

(3) the azimuthal mode number m of the oscillation was obtained as the number of the

nodal lines. The polarization of the oscillation was determined in the direction that was

perpendicular to the nodal line for m = 1, and 45◦ from the nodal line for m = 2. The white

and black arrows show the directions of the oscillation polarization. The yellow arrows

show the HCME position angles (obtained from the LASCO catalogue). We found that

the polarization directions are roughly consistent with the HCME position angles with the

average discrepancy of 42.5◦.

3. RESULTS

We estimated instantaneous radial speeds of nine full HCMEs at every 15◦ azimuthal

angle along 24 rays altogether for each HCME. We found that all the HCMEs had oscillatory

patterns in the instantaneous speeds. These oscillatory patterns were found to have opposite

phases in different groups of azimuthal directions. As seen in the right panel of Fig. 2, the

oscillatory patterns were clearly presented in about 40% of the azimuthal angles. In the

left panel of Fig. 2 we give several typical examples of the oscillations. In particular, the

2001 February 15 event (Fig. 2a) is a good example of the m = 1 mode. The observed

maximum projected speed and the instantaneous speed oscillation amplitude were found to

be about 800 km s−1 and 400 km s−1, respectively. The oscillation period of the HCME is

about 24 minutes. The 2011 June 2 event (Fig. 2b) is another case of the m = 1 mode. The

observed maximum projected speed and the instantaneous speed amplitude are 800 km s−1

and 300 km s−1, respectively. The oscillation period of the HCME is about 48 minutes. The

2001 June 4 event (Fig. 2c) is a good example of the m = 2 mode. The observed maximum

projected speed and the speed amplitude are 1,500 km s−1 and 800 km s−1, respectively. The

oscillation period of the HCME is about 24 minutes. The 2001 March 21 event (Fig. 2d) has

a rather complex azimuthal pattern. The red and blue circles appear mixed (Fig. 2, right
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panel). The observed maximum projected speed and the speed amplitude are 1,300 km s−1

and 700 km s−1. The oscillation period of the HCME is about 24 minutes.

Figure 3 shows two examples of HCME speed profile (Vins(max)) with the maximum

amplitude and their comparison with the harmonic functions. We find that the observed

maximum speeds are approximately fitted by the harmonic functions. The oscillation pa-

rameters and the azimuthal mode numbers of all nine events are summarized in Table 1.

Durations of the oscillations were found to range from 48 to 144 minutes. The oscillation

period ranges from 24 to 48 minutes with the average of 33.3 minutes. In all the events

except two the azimuthal wave patterns were found to belong to two lowest azimuthal wave

modes, m = 1 in six events and m = 2 in one event.

Figure 4a shows a relationship between the oscillation amplitude and maximum pro-

jected speed. We found that there is a good correlation, with the correlation coefficient of

0.92, between these two quantities. The speed amplitudes are about a half of the projected

speed. Fig. 4b shows a relationship between the speed amplitude and oscillation periods. It

is found that the speed amplitude anti-correlates linearly with the period. The oscillation

period is thus inversely proportional to the projected speed.

4. SUMMARY AND DISCUSSION

Our study demonstrates the periodic variation of the instantaneous projected radial

speed of halo coronal mass ejections. In the lower solar corona, long-period oscillations, with

the periods similar to discussed in this Letter, are often detected in prominences (e.g. Bi et

al. 2014; Foullon et al. 2009). The oscillations are detected to be either excited by impulsive

energy releases (e.g. Hershaw et al. 2011), or result from some over-stabilities processes (e.g.

Tripathi et al. 2009). It is not clear whether the HCME oscillations belong to the same

class of phenomena. At the coronagraph heights similar oscillations of the radial speed of

CMEs have been detected by Krall et al. (2001) and Shanmugaraju et al. (2010). The

HCME oscillations discussed here differ from them as we detect the oscillatory motion in

the plane perpendicular to the direction of the CME motion. However, if this oscillation is

observed from a line-of-sight almost, but not exactly perpendicular to the motion direction,

it could result in the variation of the instantaneous radial speed seen by (Krall et al. 2001;

Shanmugaraju et al. 2010).

We observe the oscillations in the radial direction on the plane of the sky. However,

the phases of the radial oscillations along different radial rays are not in phase. This finding

excludes the interpretation of the oscillations in terms of the sausage (m = 0) mode. The
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variations of the instantaneous speeds of HCME are found to have a clear structure in

the azimuthal direction around the Sun, which corresponds to the “kink” (m = 1) and

“fluting” (m = 2) oscillatory patterns. These oscillations could be caused by several physical

mechanisms, including natural oscillations, driven oscillations, and self-oscillations.

One interpretation is connected with the natural oscillations of the plasmoid displaced

from its equilibrium. In particular, estimations performed by Cargill et al. (1994) and

Filippov et al. (2001) showed that a curved magnetic rope could perform oscillations with a

period up to several tens of minutes. These models accounted for the restoring force caused

by the perturbations of the magnetic field and also the aerodynamic drag force. These results

would be consistent with the observed coincidence of the m = 1 oscillation polarization with

the direction along the HCME position angle. In this case, the observed mode would be

the second vertically polarized spatial harmonics (“swaying” oscillations, see Dı́az et al.

2006) that displaces the CME rope in its plane. The oscillation period of this mode can be

estimated as

Pswaying ≈ 3πDrope/CA, (1)

where CA is the Alfvén speed, and Drope is the major diameter of the rope, assuming it has a

circular shape. The rope major diameter can be taken as the HCME diameter divided by 1.5

or so. The factor of 3 accounts for the increase in the period because of effects of curvature

and twist (Cargill et al. 1994). From equation (1) we obtained that for the HCME diameter

D = 20R⊙ and the observed periods P = 30 min, the Alfvén speed should be far too high,

about 50,000 km s−1. Even if we neglect the factor of 3, and hence the twist and curvature in

equation (1) the Alfvén speed is about 16,000 km s−1, which is still unacceptably high. These

values can be reduced by some integer value if we assume that the oscillation corresponds

to a higher spatial harmonics along the rope axis, but there is no observational evidence

for that. But, it is necessary to stress that the estimation (1) was obtained for a slender

rope and it is not clear whether it is applicable to an HCME dynamics. Also, it is not clear

whether this model can explain the observed correlation between the oscillation amplitudes

and periods and the HCME speed. The established correlation of the oscillation amplitude

and the HCME speed is indicative of the nonlinear nature of the observed phenomenon, that

needs to be built-in the model.

Another possibility is connected with the typical zigzagging trajectory of an emerging

body, connected with shedding of vortices (see Nakariakov et al. 2009; Gruszecki et al. 2010,

for the discussion of this phenomenon in the coronal context). This mechanism belongs to

the class of self-oscillations that appear because of the nonlinear conversion of DC energy

(e.g. of the steady flow) in AC energy (e.g. the transverse oscillatory motion). In favor

of this interpretation could also be the established dependence of the oscillation period and

amplitude on the HCME speed. The period Pvort of the force experienced by a body due
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to shedding of vortices, which is perpendicular to the direction of the motion and hence

produces the transverse oscillations, is determined by the flow speed U and the diameter D

of the body, i.e. of the HCME plasmoid, as

Pvort ≈ (St)−1D/U, (2)

where St is a dimensionless coefficient known as the Strouhal number. For a bluff sphere, the

Strouhal number ranges from 0.2 to 2, see, e.g. Fig. 3 of Sakamoto & Haniu (1990). Making

an order of magnitude estimations, we obtain that for the observed period of 30 min, the

relative flow speed of 1,000 km s−1 (that can be considered as the difference between the

the observed projected speed of the HCME, Vpro, and the solar wind speed), and the HCME

diameter of 20R⊙, the Strouhal number should be about 7.7. This value may be acceptable

as this estimation is very basic and does not take into account effects of the magnetic field

strength and its orientation, and the plasmoid boundary elasticity. Also, the expansion of

the CME bubble should possibly lead to the change of the period with time. Perhaps, this

effect indeed takes place, but cannot be seen in our data because of the lack of resolution.

However, this interpretation should be accepted until detailed theoretical investigation of

Alfvénic vortex shedding by an elastic expanding sphere in a magnetized plasma is carried

out.
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Table 1: List of HCMEs with the oscillation parameters
Date Time

Source

location

Measurement

Position Angle
Duration Distance

Projected

speed

Speed

Amplitude
Period

Oscillation

direction

Wave

mode

(dd/mm) (UT) (deg) (min) R⊙
Vpro

(km s−1)

∆V

km s−1 (min) (deg) m = #

20110215 02:24:05 S02E12 279 60 5.4 - 16.7 800 400 24 75 1

20110307 20:00:05 N24W60 43 48 5.2 - 27.3 2100 900 24

20110321 02:24:05 N22W132 4 72 6.2 - 18.0 1300 700 24

20110424 21:24:09 N20W175 166 96 4.0 - 12.1 600 200 48 30 1

20110602 08:12:06 S19E25 188 120 4.8 - 19.0 800 300 48 135 1

20110604 06:48:06 N15W150 14 48 4.3 - 21.0 1500 800 24 15, 105 2

20110604 22:05:02 N15W160 30 74 5.2 - 23.6 1700 700 30 135 1

20110607 06:49:12 S21W54 340 76 5.6 - 20.5 1600 700 30 60 1

20110621 03:16:10 N39E01 155 144 5.7 - 13.6 600 400 48 120 1

Note. — Column 1-2: the first appearance date and time of the HCMEs in the LASCO C2 field of

view. Column 3-4: the source location and position angle reported in the CDAW LASCO CME catalogue,

respectively. Column 5-6: the duration of the observational interval and the distance range of the HCMEs.

Column 7-8: the maximum projected speed (Vpro), and the maximum oscillation amplitude (∆V ). Column

9-11: the period, direction, and azimuthal mode number of the oscillation. If the field is blank, it means a

rather complex wave pattern.

This preprint was prepared with the AAS LATEX macros v5.2.
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Fig. 1.— Running difference images of the propagation of the HCME on 2011 June 21 at

05:42 - 07:42 UT. The radial white lines show the rays taken every 15◦ from the west. The

black dots show the front edge of the HCME. The white circles on the occulting disks mark

the size of the Sun.
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Fig. 2.— Left panel: The variation of the instantaneous speed of the HCME with time along

different azimuthal rays. The red and blue colors correspond to two groups with different

phases. Right panel: the azimuthal dependence of the oscillations. The white numbers

enumerate the azimuthal rays. The red and blue circles indicate the oscillations of opposite

phases. The white and black arrows show the directions of the oscillation polarization. The

yellow arrows show the HCME position angles. In the left top corners the azimuthal mode

numbers are indicated.
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Fig. 3.— Two examples of HCME speed profiles Vins(max)(dashed line) with maximum am-

plitudes and their comparison with harmonic functions (solid line). The error bars denote

standard deviations.
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Fig. 4.— Correlation between (a) the observed maximum projected speed (Vpro) and the

oscillation amplitude (2∆V) (b) the oscillation period and amplitude. The dashed line

indicates linear fits to all data points and the solid line corresponds to that both quantities

are perfectly consistent with each other. The error bars denote standard deviations.


