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SUMMARY 

This thesis describes the application of optically active helical polymers to 
chiral stationary phases for high performance liquid chromatography. The use of 
porous graphitic carbon as a support for these phases is examined and its implication 
for the nature of the separation. 

In the first case 3,5-dimethylphenyl carbamate (CDMPC) was studied. This 
work continued the study by Grieb and Matlin. The use of porous graphitic carbon as 
a support for this polymer was examined. PGC is produced by Hypersil under the 
name Hypercarb. It is a porous carbon phase with virtually no surface functionalities. 
It was confirmed that a 25% w/w loading ofCDMPC produced using a batch coating 
method produced the optimum phase. The nature of the cellulose used to synthesise 
the CDMPC was also studied by gel permeation chromatography. It was found that 
Avicel cellulose (Merck) gave the best results. 

CDMPC has certain characteristics which make it an effective phase, these are; 
a) a-helical secondary structure and b) optical activity within the monomer unit. We 
decided to examine other polymers which possess these characteristics, in particular 
poly-L-Ieucine. It is believed that this polymer has an a-helical secondary structure and 
in its synthesis L-leucine is used as a single pure isomer. This polymer has been shown 
to be effective as an asymmetric organic catalyst. 

Poly-L-Ieucine was synthesised using condensation polymerisation with three 
methods of initiation using both L-Ieucine and N-carboxy anhydride L-Ieucine as 
monomers. N-carboxy anhydride L-Ieucine was initiated by ethylenediamine in solution 
and water via a humidity cabinet. L-Ieucine was polymerised using triphenyl 
phosphite, lithium chloride and N-methyl pyrrolidine. Poly-L-Ieucine containing a 
maximum of fifteen residues was synthesised using solid phase peptide synthesis 
techniques. 

These polymers were examined using MALDI-TOF and ESI mass 
spectrometry. The polymers synthesised from N-carboxy anhydride L-Ieucine were 
examined using viscometry. Comparing these results it was considered that the 
molecular weight of the water-initiated polymer was greater. This polymer was 
further modified by continuous extraction to remove lower molecular weight 
fragments. All of these polymers were coated onto the surface of PGC by evaporation. 
It was shown that a 20% w/w loading level was optimum for this type of phase. The 
optimum phase was found to be made from the water initiated polymer after 
continuous extraction. 

This phase was shown to be capable of the resolution ofa variety of racemic 
epoxides. 
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CHAPTER 1 

INTRODUCTION 

"I call any geometrical figure or any group of points, chiral, and say it has 

chirality, if its image in a plane mirror, ideally realised, cannot be brought to 

coincide with itself" LORD KELVIN 1893. 

In making this definition of chirality Lord Kelvin was defining a natural 

phenomenon that is expressed at all levels of life. The most obvious example is 

our hands, the left and right hands being non-superimposible mirror images of one 

another. However, chirality exists not only on the macro level but also on the 

molecular level. It is this molecular chirality which is of particular interest and 

• 1-2 Importance. 

Chirality is a dominant factor in all biological structure and function. 3-4 Therefore, 

if chirality is overlooked or misjudged the consequences may be disastrous. This 

was most visibly demonstrated through the thalidomide tragedy S ( Section 1.2). 

It is largely due to the adverse effects of thalidomide and the ever increasing 
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understanding of molecular structure and function, that the need to explore and 

control chirality and its implications has grown rapidly over recent years. 

1.0 IMPLICA TION OF CHIRALITY 

Chirality plays a major part in all biosynthetic pathways and metabolism. 

This is generally termed biodiscrimination. Optical isomers have identical 

chemical and physical properties in a symmetrical environment. However, it is 

when a chiral compound interacts with an asymmetric environment that its 

chirality becomes a dominant factor. It is usual that in vivo only one isomer is 

tolerated. This has produced a largely chiral environment with many receptors 

relying on some level of chirality to function. One of the first descriptions of 

biodiscrimination was given in 1886 by Puitti. 7 Puitti reported the isolation of 

dextrorotatory asparagine. When he compared its taste to that of the naturally 

occurring levorotatory asparagine he found the non-natural enantiomer to have a 

sweet taste while the natural enantiomer was tasteless. To the extent that 

stereoisomers such as asparagine interact with chiral receptors in vivo, 

biodiscrimination is a diastereomeric form of discrimination. There are many 

examples of enantiomers that display markedly differing behaviour. 8 This was 

most tragically demonstrated in the 1960s with the use of the pharmaceutical 

agent, thalidomide (Fig. 1.0). Thalidomide, in its racemic form, was prescribed 

to expectant mothers as a sedative and anti-nausea preparation to ease the 

symptoms ofmoming sickness. In 1979 it was discovered that the (S)-(-) 

enantiomer was teratogenic. This caused serious abnormalities in the developing 

foetus which led in particular to characteristic malformation of the limbs. 9 The 

use of thalidomide highlighted just how sensitive biological function is to chirality. 
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Figure 1.0 The enantiomers of thalidomide 

(S)-( -)-N-phthalyglutamic 
acid amide 

o 

: • N :a'H 
~ 0 N 0 
: H 0 , , 

(R)-( +)-N-phthalylglutamic 
acid amide 

Other examples of optical enantiomers which are therapeutically beneficial 

include (S)-(-)-3-(3,4-dihydroxyphenyl)-alanine which is commonly known as L-

DOP A and is a naturally occurring neurotransmitter which has been found to be 

active in the treatment of Parkinson's disease. 10 Morphine is widely used as a 

pain killer however, it is only the (-)-morphine enantiomer which possess this 

analgesic activity. 11 The active isomer is termed the eutomer while the inactive 

isomer is known as the distomer. The ratio between the eutomer and distomer, 

the eudismic ratio, is a measure of the stereo selectivity which exists in the 

biological system under examination. 

Generally, four types of behaviour are observed for enantiomers which are 

biologically active and these have to be considered thoroughly in the 

phannaceutical development of a compound, 

• the desired effect is entirely due to one enantiomer and the other is entirely 

without activity 

• the enantiomers have identical pharmacological activities 
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• the pharmacological activity of the enantiomers is qualitatively identical but 

quantitatively different 

• the pharmacological activity of the enantiomers IS both qualitatively and 

quantitatively different 

The effect of chirality is prominent not only in the development of 

phannaceuticals but also in agrochemicals and food and drink additives. In 

agrochemicals the synthesis of the single active isomer is more economical and 

minimises any toxic effects which might be exerted by the final product. As 

discussed previously it is known that many isomers possess different tastes or 

odours depending on their chirality. This is utilised by the food and drink industry 

as well as in perfumery. The (R)-isomer of aspartame, which is a low calorie 

sweetener marketed under the brand name Nutrasweet, is very sweet while the 

L,L-( -)-isomer is bitter. 12 Racemisation of the isomer therefore, is a problem as it 

will alter the flavour and aroma of the food or drink in which it is contained. 

A need exists, especially in the pharmaceutical industry, to have the ability to 

assess accurately the enantiomeric purity of a compound. The analysis of a 

mixture of enantiomers would provide valuable information on the ratio of the 

enantiomers present. This information is often needed before any purification or 

separation of the enantiomers can be attempted. 

1.0.1 Measuring enantiomeric purity 

A measure of optical purity can be obtained by following two distinct 

methodologies which involve the analysis of the intact mixture or the prior 

separation of the mixture into its constituent isomers. 
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Analysis of a mixture 

Polarimetry uses one of the basic characteristics of optical isomers, that is the 

ability to rotate the plane of plane-polarised light. Plane-polarised light has one 

vibrational plane which contains two oppositely circularly polarised vectors. 

When polarised light passes through a solution of the non-racemic mixture the 

two vectors interact differently with the chiral environment and this causes the 

plane of the light to rotate. The expression of this rotation for a sample of known 

concentration at known temperature is the measure of optical rotation. Optical 

rotation is qualified as being either levo (-) or dextro (+) rotatory depending on 

the direction of the rotation. 

To quantifY the optical purity of the sample a comparison is necessary between 

the sample and a standard of known optical purity, essentially a single optical 

isomer. This is often not readily available. 

Nuclear Magnetic Resonance (NMR) can be used to identifY differences 

between diastereomeric environments. The interaction therefore of the mixture of 

enantiomers with another isomer would produce a sample suitable for analysis by 

IHNMR. Burlingame and Pirkle13 synthesised a series of chiral trifluoromethyl 

aryl carbinols, which they described as chiral solvating agents (CSA). The 

complexation of an enantiomer by a CSA produces a change in the chemical shift 

of the observed resonances relative to that of its mirror image form. The size of 

this shift depends on the strength of the binding in the diastereomeric complex 

which is formed. Two signals for every resonance are therefore observed, one 

from each diastereomer. These signals can be integrated to give the ratio of 

enantiomers contained in the sample and therefore a measure of enantiomeric 
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purity. CSA do not have to be optically pure as this would only affect the size of 

the splitting and not the integration. 

An alternative method for the analysis of optical isomers by NMR is to use a 

chiral shift reagent (CSR). CSR are based on optically active paramagnetic metal 

complexes, the metal centre is usually taken from the lanthanide series14 

(Fig. 1.0.1). 

Figure 1.0.1 Typical chiral shift reagent 

R 3 

A CSR reagent reversibly co-ordinates to both enantiomers and the influence of 

the local magnetic field of the metal ion spreads out the spectrum. The co­

ordination of the CSR to the respective enantiomers differs due to the binding 

constants for the individual complexes. It is this difference in the binding 

constants which gives differing movement in the spectra of each enantiomer. 

The shift in the resonances allows the signals to be integrated and to provide a 

ratio of the enantiomers contained in the original sample. 

13 



Methods involving separation 

With the development ofliquid chromatography by Mikhail Tswett in 1903 a 

subtle approach to the separation of a mixture into its component parts became 

available. Tswett1S was a botanist who studied natural plant pigments in 

particular. He demonstrated the separation of a and p carotene on an inulin 

column which was eluted by ligroin. However, as this work was originally 

published in Russian it was not widely read. This technique was reproduced in 

the 1930s by Kuhn and Lederer 16, and it was this publication which began the 

wider study and use of liquid chromatography. Before undertaking a study on the 

application of liquid chromatography to the resolution of optical isomers it is 

worth discussing the theory of chromatography and the development of modem 

techniques, in particular high performance liquid chromatography. 

1.0.2 The Theory of Chromatography 

Chromatography requires two phases, a fluid mobile phase which is required to 

flow over the surface of a fixed stationary phase. The sample is introduced in to 

the mobile phase at one end of the system (Fig. l.0.2). 

Figure 1.0.2 Injection of sample into chromatographic system 

mobile phase 

sample 
stationary phase 

As the sample is carried along in the mobile phase it undergoes some form of 

interaction with the stationary phase. The nature of the interaction may be due to 

forces including van der Waals and polar interactions, the passage of the sample 
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relative to the mobile phase is therefore hindered. The sample therefore becomes 

distributed between the two phases in a dynamic equilibrium (Fig. 1.0.3). In size 

exclusion chromatography interaction with the stationary phase is not desirable 

and it is the mass transfer of the analyte within the porous structure of the 

stationary phase which determines separation. 

Figure 1.0.3 Separation of a mixture 

mobile phase 

II 
stationary phase 

The strength of the interaction of the sample with the stationary phase depends on 

the physicochemical nature of the sample molecules. Chromatography occurs 

because different chemical entities display different distribution coefficients (K) 

between the two phases. The rate of migration of each entity therefore will be 

different, the mixture will become separated into bands which each travel through 

the system at different speeds. The fluid which carries the analyte can be either a 

liquid or a gas and although gas chromatography is an established and widely 

used technique, however it is liquid chromatography which is of particular 

interest to this thesis. 

Twsett employed a polar packing material and a non-polar mobile phase. This 

combination is therefore known as normal phase chromatography. It is typified by 

the use of a silica stationary phase and a majority hexane with a small percentage 

alcohol mobile phase. When the polarities are reversed, reversed-phase 

chromatography is observed. The use of reversed-phase systems allows the 
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analyst to examine polar analytes which would not be available in normal phase. 

This technique is very widely used and is typified by the use of octadecyl modified 

silica stationary phase with an aqueous based mobile phase. 

1.1 Equations used to describe chromatography 

A number of equations exist for the calculation of the separation and retention 

characteristics as well as the overall performance of the column. A typical 

chromatogram is shown in 

Figure 1.1. 

Figure 1.1 Typical chromatogram of 2 analytes 

.. 

. to . 
:-4 ~ 

inject 

1 
. . . . 
• . . , 
'---...! '~ 

solvent 
W1 W2 or unretained 

peak 

The quantities to,t1 and h are the absolute retention times of three solutes, to 

represents an unretained analyte or a solvent flow marker. They can be measured 

in time, volume of solvent or distance on the chart recorder. These retention 
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times can vary with column length or mobile phase flow rate and therefore, do not 

provide a reproducible measure of an analytes retention. It is therefore, necessary 

to use capacity factors, k (Equation 1.0). 

Equation 1.0 Calculation of capacity factors 

t - t R 0 

k 

where k = capacity factor, tR = retention time of analyte, to = solvent flow marker 

Capacity values are usually between 1 -10, if the values are too low the peaks are 

not sufficiently retained while if the k values are too high the analysis time may be 

too long. The capacity factors of the two retained analytes can be used to 

calculate the selectivity or separation factor, a, of the two peaks relative to one 

another (Equation 1.1). By convention this equation is written so a ~ 1. 

Equation of 1.1 Calculation of separation factor, a. 

a = 
tR2 

= 

where a = separation factor, kl = capacity factor of first eluting analyte, k2 = 

capacity factor of second eluting analyte, tRI = retention time of first eluting 

analyte, tR2 = retention time of second eluting analyte, to= solvent flow marker 

This separation of one component from one another is described by the resolution 

factor, R.. This factor does take in to account the peak widths generated by the 

column (Equation 1.2). 
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Equation 1.2 Calculation of Resolution, Rs. 

where R. = resolution, tRI = retention time offirst eluting analyte, tR2 = retention 

time of second eluting analyte, WI = width of first eluting analyte at baseline, W2 = 

width of second eluting analyte at baseline 

Overall column performance can be calculated to take into account both retention 

and peak shape characteristics. Column performance is measured using plate 

number or plate height which are terms derived from distillation (Equations 1.3 

and 1.4). Of the two measurements plate height is generally used as it is a 

measure per unit length of column and can therefore, be used to compare different 

column lengths. 

Equation 1.3 Calculation of Plate number, N 

N =l{~r 
where N = plate number, tR = retention time of peak, w = width of peak at 

baseline 

Equation 1.4 Calculation of Plate height, H 

L 
H= 

N 

where L = column length, N = plate number 
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The equations shown here will be used to calculate all separation and resolution 

values for the columns discussed later. 

1.2 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 

In 1969 J.J Kirkland and L.R Snyderl7 described High Performance Liquid 

Chromatography (HPLC) for the first time. This technique overcame many of the 

problems that were inherent in classical liquid chromatography of the type first 

described by Tswett. Previously an open glass column was filled with the 

stationary phase of choice which was then eluted under gravity. This technique 

suffered in particular from, poor reproducibility, low resolution and long run 

times. Detection was tedious as samples were collected in fractions and analysed 

individually. This decreased the sensitivity of the technique because when the 

analyte was present in a fraction it was extremely dilute. With the development of 

in-line detection this problem was largely overcome. Detectors such as ultra­

violet diode arrays, fluorescence detectors and mass spectrometers provide 

sensitive and accurate analysis of the separation. The introduction of high 

pressure pumps and stainless steel columns allowed the system to be run at 

increased pressure which greatly decreased run times and improved peak shape. 

1.2.1 The modern HPLC system 

This diagram (Fig. 1.2.1) describes the basic configuration of a modem HPLC 

system. 
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Figure 1.2.1 Diagram of a HPLC system 
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As well as varying the solvents between aqueous and organic phases it is also 

important to be able to change the content of the column. This is the most 

important part of the HPLC system; there are many packing materials available 

which offer a very wide range of polar or non-polar and achiral or chiral 

environments. The most popular packing material is silica. Silica is often used on 

its own as a packing or as a base for coating and bonded phases. 

1.2.2 Silica as a stationary phase 

The silica which is produced as a chromatographic packing is amorphous. It is 

usually produced as porous particles of controlled dimensions. 18 The surface 

functionality is dominated by the presence of silanol residues. These are present 

in three forms (Fig 1.2.2). 
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Figure 1.2.2 Surface functionality of silica 
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The high percentage of these silanol residues are the reason for the very polar 

nature of this phase. The geminal and vicinal silanol residues can hydrogen bond 

to one another, and therefore can also interact strongly with any analyte present. 

The isolated silanol groups are the most acidic of the three silanol types. The 

concentration of isolated silanol groups can be controlled in manufacture. The 

higher the concentration the more hydrophilic the nature of the silica. 

As mentioned previously the dimensions of the silica particle can be controlled. 

These dimensions include particle size, pore size, pore volume and surface area. 

These dimensions are varied by each manufacturer to try to produce a phase with 

desirable characteristics which are tailored for specific applications. 

Silica however, has limited stability to the full pH range, especially high pH. 

The presence of hydroxyl ions cause dissolution of the silica packing material. 

Also the presence of the silanol functionality on the surface of silica provides a 

site for non-selective interaction. Also, the silanol groups do offer a site for 

covalent attachment of other chemical entities such as C \8 chains. Stationary 

phases are 
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available which do not have such limitations. One such group is the carbon based 

phases. 

1.3 POROUS GRAPHITIC CARBON AS A STATIONARY PHASE 

There are three types of carbon phases which have been investigated as 

chromatographic supports; 

Table 1.3.020 Comparison of carbon type phases 

Type Characteristics Usefulness in liquid 

chromatography 

Active charcoal/carbon High surface area Poor - extreme peak 

Microporous tailing 

Heterogeneous surface 

Graphitised carbon black Low surface area Good - however poor peak 

Very mechanically fragile shape in HPLC 

Heterogeneous surface 

Porous graphitised carbon Moderate surface area Very good - phase has high 

Wide pores capacity 

Mechanically robust 

Homogenous surface 
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1.3.1 Method of production 

In 1982 Knox et al. 19described the production of a new carbon phase which they 

called porous graphitic carbon (PGC). PGC was produced using a template of 

well-bonded silica gel of high porosity. It is this template which governs the final 

dimensions of the PGC particle. Initially the template was produced with 7 Ilm 

particle size with specific surface area of 50 m2/g and pore volume of 1.4 cm3/g. 

The template was then impregnated with a melt of phenol/hexamine in a 6: 1 

weight ratio. The impregnated material was then heated gradually to 150°C to 

form a phenol-formaldehyde resin with the porous structure of the template. This 

material was then heated in a oxygen-free atmosphere in a specially designed 

rotary oven. During this process 50 % of the weight of the polymer was lost and 

the density was increased to 2 g/cm3
. The material is then treated with hot 

aqueous potassium hydroxide which dissolves the silica template. The remaining 

material was porous glassy carbon which was heated to 2500 °C in an oxygen­

free atmosphere to produce porous graphitic carbon. 

1.3.2 Characterisation of PGC 

PGC has a porosity of 75 % and the particles are constructed from sheets of 

hexagonally arranged carbon atoms with Sp2 hybridisation. This layered structure 

is typical of a 2-dimensional graphite. The sheets of benzene rings are separated 

by 3.35A and the spacing of the carbon atoms within these sheets is very close to 

that in large polycyclic molecules such as anthracene. Within the sheets of carbon 

valency is fully satisfied. Therefore, there is little or no functionality present on 

the surface of PGC. These sheets of carbon are twisted together to form the 

random porous structure of the PGC particles (Fig. 1.3.2) 
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Figure 1.3.2 Porous structure of PGC 

The spacing between the graphitic layers is typical for a 3-dimensional graphite. 

However, unlike 3-dimensional graphite, PGC displays no ordering of the atoms 

between the layers. There is no relationship between one layer and it neighbour 

above or below. PGC is therefore a 2-dimensional graphite, or a turbostratic 

carbon (Fig. l.3 .3). It is believed that this lack of ordering between the layers 

underlies the high degree of mechanical strength which is displayed by PGC. 
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Figure 1.3.3 2-dimensional structure of graphitic - PGC 
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It has been suggested that carbon atoms at the edge of these sheets do not have a 

fully satisfied valency and can support functionality. 20 These functionalities are 

derived by exposure to the atmosphere and are therefore hydroxyl, carbonyl, 

carboxylic acid or amino groups. It is estimated that these surface functions 

compose less than 1 % of the total mass of the material. Their influence on 

chromatography therefore, although feasible, is minimal. 

PGC otTers many desirable properties and has therefore become a successful 

commercial product. PGC is produced by Hypersil and is sold under the trade 

b 20 
name Hypercar . 

These properties can be summarised as; 

• use with non-polar and polar solvents 

• homogenous surface with no surface functionality 

• unique retention mechanism 

• stereoselective surface allows the separation of geometric isomers ' .. 

• stable to a wide pH range 
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• resistant to solvent swelling or shrinkage 

Both PGC and silica have been used as the support for achiral and chiral CSP. As 

the topic of this thesis is the development of a novel chiral stationary phase for 

HPLC it is necessary to review other methods of effecting a chiral separation. 

1.4 CHIRAL SEPARATIONS IN HPLC 

Methods involving separation of the isomers before analysis can be divided into 

direct and indirect methods. 

Indirect methods for the separation of optical isomers rely on the formation of a 

diastereomer of each isomer before separation. If each isomer is covalently 

bonded to a pure single isomer then the diastereomers formed are no longer 

mirror images, and will have different physicochemical properties. This allows the 

diastereoisomers to be separated. The enantiomers can be recovered by removing 

the derivatising agent. 

Indirect methods do however have disadvantages: 

• the derivatising agent has to be enatiomerically pure and is therefore likely to 

be costly or require synthesis 

• the derivatising agent has to be easy to remove in such a way that it does not 

react with the analyte or alter its chirality. 

Direct methods rely on a chiral selector, an optically active compound, which is 

either present in the mobile phase or immobilised as a stationary phase. This 

approach therefore, does not require any derivatisation of the analyte. 
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Chiral mobile phase additives 

Many racemic mixtures have been separated on achiral columns using mobile 

phase additives such as camphorsulphonic acid 21 and perhaps the most widely 

used additives, cyclodextrins.22 This technique allows less expensive columns 

such as silica, CIS and PGC to be used. A wide variety of mobile phase additives 

are available. The additives however, as with derivatising agents, are single 

enantiomers and may be costly or require synthesis. The use of mobile phase 

additives also may limit the detection method or vice versa. These disadvantages 

however, mean that the use of chiral stationary phases dominates the field of 

chiral HPLC. 

1.4.1 Chiral Stationary Phases (CSP) for HPLC 

All of these techniques rely on the ability of the chiral selector to form a transient 

diastereomeric complex with the analyte enantiomers. The differing stability of 

these complexes leads to different retention times. The enantiomer that forms the 

less stable complex will be eluted first. 

In 1952 Dalgliesh 23 used paper chromatography to study the separation of amino 

acid enantiomers. Although he was not the first to report this separation he did 

correctly attribute it to the optically active molecules that made up the paper. He 

proposed some requirements for enantiorecognition to happen,24 

• three points of attachment are required for stereochemical specificity in 

adsorption 

• the amino, carboxylic acid and side chain in the amino acid participate in 

the molecular interactions through hydrogen bonding or steric repUlsions 
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Dalgliesh's work was not unique and had been preceded by work by 

Karagounis et al. 2S and Henderson et al. 26 who had demonstrated the separation 

of enantiomers on columns of powdered D- and L-quartz and lactose. These 

papers suggested the necessity of structural requirements for asymmetric 

recognition. 

Pirkle et al. 27 have explored the 'three point rule' which is believed to be 

necessary for enantioselectivity to occur. Pirkle suggests that, "Chiral recognition 

requires a minimum of three simultaneous interactions between the CSP and at 

least one of the enantiomers, with at least one of these interactions being 

stereo chemically dependent." 

This is demonstrated in Figure 1.4.0, 

Figure 1.4.0 The three point interaction rule 
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For simplicity HPLC-CSP are generally divided into 6 types; 

Ligand exchange chromatography (Type 1) involves the formation of a 

reversible metal complex by the co-ordination of substrates that act as ligands. 
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This technique was first demonstrated in LC by Davankov et al. 28 who used a 

resin packing of styrene-divinylbenzene to which amino acid residues were 

bonded. The resin was saturated by Cu(II) ions which formed a bis-amino acid 

copper complex. Commercial columns of this type are available including 

Chiralpak W from Diacel Industries Ltd. 

Charge transfer packing (Type 2) were first described by Gil-Av et al. 29, who 

wanted to separate helicene enantiomers. This was particularly hard as helicenes 

contain neither acidic nor basic functions to assist with chiral recognition. They 

effected this separation by bonding a chiral charge-transfer acceptor, tetranitrol-9-

fluorenylideneaminooxypropionic acid (TAPA) (Fig. 1.4. 1) to aminopropylated 

silica. 

Figure 1.4.1 tetranitrol-9-fluorenylideneaminooxypropionic acid, TAPA 

Asymmetric strand packings (Type 3) are often also called 'multiple 

interaction' or 'brush-type' phases. They consist of relatively simple organic 

molecules, with one or two asymmetric centres, which are chemically bonded to 

another support, usually silica. The organic molecules which act as the chiral 

selector are usually well defined and often contain one of the following functions 

near the chiral centre: 
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• a 7t-acidic or 7t-basic aromatic group which is capable of donor-acceptor 

interactions 

• a polar hydrogen donor/acceptor 

• a dipolar bond which is suitable for dipole-dipole interaction 

• a bulky non-polar groups for steric repulsion, van der Waals interactions or 

conformational control 

It is within this group of chiral stationary phases that the application of the three 

point interaction theory is most readily observed. 

This type of phase was first described by Pirkle et al. 30 in the 1970s. After initial 

successful studies Pirkle produced a range of dinitrobenzene modified phases, 

which are shown in Figure 1.4.2. 
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Figure 1.4.2 Early Pirkle phases 31-32 
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Pirkle suggested that there were two possible mechanisms of recognition: 

intercalative and nonintercalative. 

Intercalative interactions involve the penetration of the chiral units of the phase 

by analyte which has been selected by the esp. The mechanism depends on dipole 

stacking and hydrogen bonding. If the analyte has a long alkyl chain attached and 

this chain is orientated into the phase this may interfere with the specificity. This 

mechanism therefore, is promoted by producing a phase with a long anchor chain 

between the chiral selector and the base of the phase. 
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Nonintercalative interactions are characterised in particular by side-by-side 

dipole stacking and hydrogen bonding. This was suggested as there was an 

observed order in elution for different analytes or anchor chain length. 

This theory led to phases which contained the same chiral selector molecule which 

is bound at different sites. This changes the orientation of the chiral selector 

relative to the base of the phase. Such phases can be designed to be extremely 

selective for specific analytes. 

A wide variety of such asymmetric strand phases has since been designed and 

include acylated dimethylnapthyl-alkylamine or N-napthylamino acids. The use of 

bonded macro cyclic ligands has also produced some interesting phases including 

antibiotics such as vancomycin and teicoplanin. Such phases are multimodal and 

can be rapidly switched between normal and reversed-phase operation. 

Chiral cavity packings (Type 4) were first described by Cram et al. who 

described the use of chiral crown ether bound to silica gel. 33 

The use of cyclodextrins had also made an impact in this area. 34 Cyclodextrins are 

cyclic oligomers of D-glucose containing 6-8 units. Cyclodextrins assume a 

cylindrical shape. They contain 30-40 asymmetric centres. The molecule is 

overall hydrophilic. However, the cylindrical cavity is relatively hydrophobic 

owing to the lack of hydroxyl groups. It is possible, therefore, to separate a 

variety of water insoluble compounds as they can fit into the chiral hydrophobic 

cavity depending on the chirality and structure in general of the analyte. If the 

inclusion complexes which are formed differ in energy of formation then the 

cyclodextrin will discriminate between the enantiomers present (Fig. 1.4.3). 
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Figure 1.4.3 Chiral stationary phases based on bound cyclodextrin 
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CSPs based on polymers (Type 5) use both natural and synthetic polymers. 

This grouping also contains Type 6 CSPs using bound proteins 35 which in the 

broadest sense are natural polymers. 

This group of CSPs includes the phases which will be discussed throughout this 

thesis. It is therefore desirable to explore this group and the mechanisms of chiral 

recognition involved in detail. 

1.4.2 Synthetic polymers as chiral stationary phases 

Such synthetic polymers are produced using two methods, 

• polymerisation in a chiral environment, using a chiral catalyse6 

I .. f hi I 37 • po ymensatlon 0 c ra monomers 

Okamoto et al. were the first to exploit the use of a chiral catalyst. The 

polymerisation of triphenylmethyl methacrylate with a chiral sparteine-n-butyl 

lithium catalyst produces an isotatic polymer which is chiral owing to its helical 

secondary structure (Fig.s 1.4.3 and 1.4.4).36 A triphenylmethyl methacrylate 
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polymer chain with a degree of polymerisation over about 30 is conformationally 

stable at room temperature, while a degree of polymerisation over approximately 

80 units produces a polymer which is insoluble in common organic solvents. 

This phase has been particularly useful in low temperature chromatography for the 

separation of isomers which racemize easily. The separation of tris(9-

triptycyl)geranium chloride was described at -30°C using methanol as a mobile 

phase. 

Figure 1.4.3 Poly(triphenylmethyl methacrylate) 

Figure 1.4.4 Helical structure forced by the presence of the triphenyl group 

The polymer was coated on to silica and was found to be effective in the 

separation of some racemic alcohols, esters, amines and hydrocarbons. It is 
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generally accepted that separable analytes possess a rigid non-planar structure, for 

example trans-Stilbene oxide (Fig. 1.4.5) 

Figure 1.4.5 trans-Stilbene oxide 

0 ..... 0 
H 

The use of chiral monomer units is typified by polyacrylamide-based CSP 37. With 

these phases chirality is due to the chiral centre within the monomer and not to 

any macrostructural feature such as a helix. Huffer et al. 38 demonstrated the 

separation of chiral (5)-alkylated y (8)-lactones on a polyacrylamide based phase. 

1.4.3 Bound protein phases 

This type of phase is suited to the analysis of pharmaceutical or other biologically 

active molecules as the bound protein is likely to be very selective towards such 

analytes. The use of proteins in such a way is often termed 'affinity' 

chromatography. The development phases in this area used mainly bovine serum 

albumin39 or acid glycoprotein. However these phases suffered from poor 

reproducibility and column deterioration. 

A second generation of a.t-acid glycoprotein bound phases proved to be 

successful for the separation of a range of analytes including cationic drugs such 

as cocaine and methadone.
40 

a.t-Acid glycoprotein is a human serum transport 

globular protein of about 41,000 Da molecular weight. This protein consists of 
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nearly 200 amino acid residues and five carbohydrate units. Due to the highly 

complex structure of the protein the mechanism of stereo selectivity is not fully 

understood. 

Such bound protein phases are highly selective. However, they have a very low 

capacity so are not ideally suited to preparative separations. This brief review of 

chiral stationary phases has covered only a fraction of the overall number of 

phases which are currently commercially available to the analyst. One particular 

type of chiral stationary phase has however tended to dominate; these phases 

employ polysaccharides as the chiral selector. 

1.5 POLYSACCHARIDES AND THEIR USE IN CSP 

Polysaccharides are natural polymers of sugars, the most abundant being 

cellulose. Cellulose is a linear polymer of D-( + )-glucose coupled by P-I,4 

linkages. The glucose units are in the chair confirmation and have 3 hydroxy 

residues in the equatorial orientation at the 2,3 and 6-positions (Fig. 1.5. 0.) 

Figure 1.5.0 Cellulose 
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Cellulose is optically active, at the anomeric carbon, and is highly ordered in 

structure. This high degree of order is caused by the intra-molecular hydrogen 

bonding between chains, which gives cellulose its crystallinity. This high degree 

of crystallinity and highly ordered structure promotes the formation of a helical 
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secondary structure. 41 As discussed previously (Section 1.4) Dagliesh used paper 

as the stationary phase for chromatography, which was made up of cellulose 

chains, to resolve optically active amino acids. The use of cellulose as a CSP is 

particularly limited by the strong polar interaction which is possible between the 

analyte and the hydroxyl groups. 

Hesse and Hagel 42 were the first to use a derivatised form of cellulose to effect 

chiral separations. They produced the first completely acetylated microcrystalline 

cellulose using a heterogeneous reaction in benzene. They called this phase 

microcrystalline cellulose triacetate (MCCT) or CTA-I and found that it gave 

good enantioselectivity for several racemic compounds such as Troger's base. 

Hesse and Hagel described the reversal of elution order and the loss of resolution 

occurring when MCTA was dissolved then reprecipitated. 43 This phenomenon 

was attributed to the formation, through reprecipitation, of the less crystalline 

form of MCTA termed CTA-II. This cellulose derivative is also insoluble, owing 

to the presence of the hydroxyl groups. 

Okamoto44 suggested that the chiral recognition ability ofMCTA depends on the 

crystalline structure of native cellulose, and therefore, when dissolved in a solvent, 

different characteristics are displayed. When MCT A was deposited on to the 

surface of silica gel from a solution the phase produced was very different to 

unsupported MCT A. Okamot044 produced a phase of cellulose triacetate coated 

on to macroporous aminopropylated silica. He then expanded the study through 

the introduction of phenyl groups by using cellulose tribenzoate(CTB).45 

CTB and its derivatives show good chiral recognition when coated on to 

'I' I 46 W ' I 47-48 macroporous Sl Ica ge . amer et a , have extensively investigated the 

chiral recognition mechanism of CTB. They suggested that adsorption to the 
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carbonyl group occurs through dipole-dipole and hydrogen-bonding interactions 

leading to insertion of the analyte into a chiral ravine or cavity. As well as coating 

CTB phases on to silica gels Francotte et al. 49 demonstrated the use of 

methylbenzoyl cellulose beads. These beads are mechanically stable and efficient. 

They also offer one the opportunity to carry out preparative separations. 

The use of phenyl groups in CTB phases provided an opportunity for structural 

variation. 50·5 
1 It was found that substitution by electron-donating groups such as 

methyl improved the chiral recognition ability of the phase. The use of electron-

withdrawing substituents such as halogen groups however, decreased this ability. 

These substituents may change the polarity of the carbonyl groups of the benzoate 

residues and are the most important site of enantiorecognition. Indeed, cellulose 

tris(methylbenzoate) phases are used with and without silica gel support. 

Cellulose can also be derivatised by reaction of phenyl isocyanates to produce 

carbamate derivatives. 

1.5.1 Polysaccharide phenylcarbamates 

The use of various electron-withdrawing or donating substituents on the phenyl 

ring had previously been studied with respect to cellulose benzoate phases. As 

with the benzoate phases the chiral recognition ability of the carbamate phase 

depends on the nature and position of the substituents on the phenyl ring (Fig. 

1.5.1).52 
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Figure 1.5.1 Cellulose tris(phenylcarbamate) derivatives 

o~NH 
o 

x can include methoxy, alkyl, halogen, nitro on one or more positions 

The substitution of the phenyl ring determines the polarity of the carbamate 

linkage which is the ruling interaction site for chiral recognition (Fig. 1.5.2). 

Figure 1.5.2 Interaction of analyte with the urethane linkage in carbamate 
group 

g] /~urose 
;1" 0 

/ 
' H --L hydroge~ " I bondmg hydrogen N 

bonding A 0 ...... ·1 H"V/ 1 

V 
X 

These parameters can be investigated using IH_NMR which will measure any 

changes in the nature of the -NH- part of the urethane residue. When the phenyl 
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group was derivatised with methoxy or nitro groups, i.e. strongly electron 

donating and withdrawing respectively, the phase showed low chiral recognition. 

It was suggested that this was due to the interaction of these very polar groups 

with the analytes thereby preventing them from interacting with the site of chiral 

recognition, the urethane linkage. The position of these substitutions is also 

critical to the chiral separation ability of the phase and methyl or chloro groups in 

the 3,5 positions are particularly effective. 

Yashima et al. 53 pursued the mechanism of enantioselectivity of cellulose 

triphenylcarbamate (CTPC) through computational studies. Previously Zogt and 

Zugenmaier 54 studied CIPC using X-ray analysis to determine secondary 

structure. They determined that a fibre ofCTPC has a left-handed threefold (3/2) 

helical structure. Yashima based his studies on an octamer ofCTPC, which is 

described as displaying hydrogen-bonding between the NH protons of the 

carbamate groups at the 6-position and the carbonyl oxygens at the 2-positions. 

This bonding pattern is believed to produce a chiral cavity which allows 

discrimination to occur between the 2 enantiomers present. 

Daicel responded to the increase in derivatised polysaccharides discussed in the 

literature, to produce a range of commercially available chiral stationary phases 

(Fig. 1.5.3) 
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Figure 1.5.3 Commercially available chiral stationary phases produces by 
Daicel 

Derivative Commercial name 

Microcrystalline cellulose triacetate Chiralcel CA-I 

Cellulose triacetate* Chiralcel OA 

Cellulose tribenzoate* Chiralcel OB 

Cellulose tris(phenylcarbamate)* Chiralcel OC 

Cellulose tris(3,5-dimethyl phenylcarbamate)* Chiralcel OD (OD-H or OD-R) 

Cellulose tris( 4-chlorophenylcarbamate)* Chiralcel OF 

Cellulose tris( 4-methylphenylcarbamate)* Chiralcel OG 

Cellulose tris( 4-methylbenzoate) * Chiralcel OJ 

Cellulose tricinnamate* Chiralcel OK 

Amylose tris(3,5-dimethyl phenylcarbamate)* Chiralpak AD 

Amylose tris[ (S )-l-phenylethylcarbamate] * Chiralpak AS 

.. 
* these phases are coated on to bonded silica 

As discussed in both Chapters 1 and 2 chiral separations have been carried out 

very successfully with derivatised polysaccharides coated on to both silica gel and 

PGC. 50 Carbamate polysaccharides have several characteristics which underpin 

this ability. These can be summarised as: 

• a highly ordered crystalline structure 

• interaction of analyte with urethane group in a chiral environment 

41 



The implication of the helical secondary structure is the creation of a chiral 

'cavity' or 'ravine' which produces an enantiodiscriminatory environment. 

Recently Booth et al. 56 have examined the mode of enantiorecognition for a 

range of amylose-based phases. Amylose is a natural polymer analogous to 

cellulose. Whereas cellulose is constructed of glucose units joined by P-I,4 

linkages, amylose contains glucose units joined by ex-type linkages. They found 

that for the analytes examined, the order of elution is a function of the chirality of 

the amylose backbone, that is the nature of the chiral ravine. The magnitude of 

the enantioselective separation was found to depend on the chirality of the 

carbamate side chain. As discussed in section 1.4.1, the number of interaction 

sites in a derivatised polysaccharide phase is still vigorously debated. It is 

therefore, not possible to say unequivocally that all enantioselectivity of every 

analyte is always due to a 'three-point' interaction process. 57 

1.5.2 Use of porous graphitic carbon in liquid chromatography 

Many different types of analytes both chiral and achiral have been separated on 

PGC. PGC is particularly suited to the separation of geometric isomers which are 

very similar in structure. 58 An example is the separation of the meta-isomer from 

the para and ortho-isomers of a disubstituted benzene under isocratic elution 

conditions. It is possible to separate all three isomers by imposing a simple 

organic gradient. The order of elution of these compounds is reversed compared 

to bonded phases such as C\8 silica. Knox et a/. 59 described the same reversal of 

elution order for geometric xylene isomers. The ability ofPGC to distinguish 

between geometric isomers is believed to be due to the fact that the substituent on 
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the ring dictates sterically how the solute can approach and interact with the 

surface ofPGC. The main retention mechanism with PGC is through specific 

donor-acceptor interactions with the delocalised band of electrons at the surface. 

60 This will be discussed further in Chapter 2. 

PGC has also been used to separate diastereoisomers using either surface 

modification or chiral phase additives. Knox and Wan 61 coated PGC with a near­

monolayer of an adsorbed enantiomeric modifier, the L or D enantiomer of N-(2-

napthalene-sulphonyl)-phenylalanine, which acts as an adsorbed stationary phase. 

Through the complexation of cupric ions they were able to demonstrate the 

baseline resolution of a-amino and a-hydroxy acids. Both losefsson et al. 62 and 

Karlsson et af. 63 have shown that PGC is a suitable phase for crural ion-pair 

chromatography. 

The use of chiral additives has been demonstrated by Karlsson et af. 64 who used 

N-benzoxycarbonylglycyl-L-proline to separate enantiomeric polyaromatic 

amines. 

PGC has also been used in supercritical fluid chromatography. Wilkins et af. 65 

found that PGC was an ideal support for physically anchored chiral selectors. The 

anchor was based on polycyclic compounds. Anthracene was found to offer the 

best results. The chiral selector was derived from tartaric acid (Fig. 1.5.4). 
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Figure 1.5.4 Chiral selector and anchor group 

It was suggested that anthracene is completely adsorbed to the surface of the 

PGC. Indeed the phase was found to be extremely rugged and robust. This phase 

was found to be applicable to the separation of compounds such as benzoin and 

ibuprofen. 

As previously discussed in this section, PGC has often been used as the support in 

chiral mobile phase additive chromatography. Most recently Karlsson et al. 64 

describe the use ofPGC in the separation of aminoalcohols using N-derivatised 

dipeptides as the chiral counter-ions in the mobile phase. The use of PGC as a 

support for a derivatised polysaccharide type phases was first published by Grieb 

et al. 55
. They describe the production and proposed optimisation ofPGC coated 

with cellulose tris(3,5-dimethylphenyl carbamate). A review and the continuation 

of this work is discussed in Chapter 2 of this thesis. This work showed that PGC 

is a very suitable support for the use of chiral polymers to produce a chiral 

stationary phase for HPLC. 

1.5.3 Solvent considerations 

The majority of separations on derivatised polysaccharide coated phases have. 

been carried out under non-polar conditions. Usually hexanel2-propanol is cited 
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as the solvent mixture of choice for neutral analytes. The addition of a silanol 

suppressor, such as diethylamine, with basic analytes65 reduces peak tailing as 

does the use of an ionisation suppresser, such as tritluoroacetic acid, for acidic 

analytes. 66 Organic modifiers are also often used in the mobile phase to improve 

the observed resolution, these include ethanol and other straight or branched chain 

67 alcohols. 

The use of derivatised polysaccharide coated phases under reversed-phase 

conditions was demonstrated by Ichida et al . . 68 They used perchlorate buffered 

acetonitrile mobile phases for the separation of analytes including verapamil. 

Ishikawa and Shibata used a mixture of water and acetonitrile for the separation 

of neutral analytes, they added an anionic ion-pair reagents such as perchlorate 

and for acidic analytes the use of a strong acid such as perchloric acid improved 

h 69 the chromatograp y. 

1.6 SUMMARY 

The use of chiral stationary phases to obtain single pure isomers is very important 

and on both the analytical scale and the preparative scale is set to continue. The 

phases developed by Okamoto et al. 44 
have proved to be widely applicable, and 

have found a huge market in the pharmaceutical and related industries. 

PGC has been shown to be a good phase for chiral separations as it can be 

modified both by adsorbing the chiral selector to the surface to produce a pseudo-

bonded phase or by coating the surface with a monolayer of chiral selector. The 

use of PGC as a support for polymeric phases has not been investigated to the 

best of our knowledge, except within this group. It is the use ofPGC as a 
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support for optically active polymers and their application to chiral 

chromatography which is the basis of this thesis. 
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CHAPTER 2 

APPLICATION OF POROUS GRAPHITIC CARBON(PGC) AS 
A SUPPORT FOR CELLULOSE TRIS (3,5- DIMETHYL 

PHENYL CARBAMATE) 

Much work has been done on the use of various silicas and indeed PGC as a 

support for cellulose carbamates and in particular cellulose tris-(3,5-

dimethylphenyl carbamate).65 Initial work by Matlin and Grieb into the suitability 

ofPGC as a support examined several aspects of the complete phase. This chapter 

reviews that work and discusses supplementary work so as to draw conclusions as 

to the nature of the optimum PGC-based cellulose tris-(3,5-dimethylphenyl) 

carbamate phase. 

2.0.1 Optimum cellulose type 

The optimum cellulose to use to synthesise CDMPC has been previously 

investigated.65 It was concluded that, for bonded silica, Avicel gave better results. 

Carbamate derivatives of Avicel and Sigmacel Type 1 00 celluloses were examined 

using size exclusion chromatography to establish their respective polydispersities 

(POi) and molecular weight (Mn) (Fig. 2.0) relative to a polymethylmethacrylate 

standard. Polydispersity described the range of molecular weights observed, the 
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higher the polydispersity the broader the range. Mn is the number average 

mo lecular mass. 

This is often used instead of weight average molecular mass (Mw), polydispersity 

is defined as MnlMw • All SEC analysis was carried out in THF as the solvent with 

0.1 % toluene as a flow marker. 

Table 2.0 SEC data for Avicel and Sigmacel derivatives65 

Cellulose Mn Average number of glucose units per PDi 

chain (DPn) 

Avicel 51000 83 5.46 

Sigmacel Type 100 100000 164 4.18 

It was reasoned that because A vicel has the shorter chain length it is better able to 

fit into the porous structure of the particle and therefore produce a more 

homogenous coating, indeed it was discovered that the optimum loading for 

Avicel on APS-silica was 20% w/w as compared to 15% for Sigmacel. Upon 

later investigation in to the optimum cellulose to use with PGC however, 

Sigmacel had discontinued Type 100 and replaced it with Type 101 which the 

manufacturers claimed to be identical. Two columns were produced using the 

two available types of cellulose. Column 9 contained Sigmacel type 101 and 

Column 2 contained Avicel cellulose. The columns were compared for 3 

analytes, 1 neutral (benzoin methyl ether), 1 basic (alprenolol) and I acidic 

(2-phenoxypropionic acid) 
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Figure 2.0.2 Comparison of separation of benzoin methyl ether 

Column 9 

R.espoose 

Time (min) 

Mobile phase: hexane/2-propanol 
(90:10 v/v) 
Cellulose type: Sigmacel type 101 
a = 1.21, Rs = 0.74 

Column 2 

Response 

Time (min) 

Mobile phase: hexane/2-propanol 
(90: 10 v/v) 
Cellulose type: Avice! 
a = 1.37, Rs = l. 19 

It can be seen that there is marked difference in the chromatography produced by 

the 2 columns. Benzoin methyl ether is slightly less retained on column 9 than 

column 2. However, the peak shape displayed by column 9 is broader than 

column 2. This is especially visible in the flow marker which gives a very wide 

peak on column 9. Rs and a are also greatly reduced for column 9, with baseline 

resolution no longer observed (Fig. 2.0.2). 
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Figure 2.0.3 Comparison of separations of alprenolol 

Column 9 

Response 

Tirre(min) 

Mobile phase: hexanel2-propanol (90: 1 0 
v/v) + 0.1% DEA 
Cellulose type: Sigmacel type 101 
a = 1.48, Rs = 0.96 

Column 2 

Response 

Time (min) 

Mobile phase: hexane/2-propanol (90: 10 
v/v) + 0.1 % DEA 
Cellulose type: A vicel 
a = 3.20, Rs = 4.27 

Again for alprenolol (Fig 2.0.3), the broader peak shape and loss of retention on 

column 9 is observed. Although resolution is still baseline on column 9, it is much 

reduced. 

Figure 2.0.4 Comparison of separations of 2-phenoxy propionic acid 

Column 9 

Response \ 
I~ 
\ 

Time (min) 

Mobile phase: hexane/2-propanol (90: I 0 
v/v) + 0.1% TFA 
Cellulose type: Sigmacel type 101 
a = 1.66, Rs = 1.32 
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Column2 

Response 

lime (rrin) 

Mobile phase: hexane/2-propanol (90: 10 
v/v) + 0.1% TFA' '" .. 
Cellulose type: Avicel 
a = 2.33, Rs = 3.59 " '1 : : 



The same characteristics of column 9 seen for neutral and basic analytes are also 

observed for the acidic analytes tested (Fig 2.0.4). That is the separation observed 

for the Avicel column is far greater than the Sigrnacel type 10 1 column. 

Type 101 was investigated using GPC analysis (Table 2.0.1) 

Table 2.0.1 GPC analysis ofSigmacel Type 101 

Cellulose Mn Average number of glucose units per PDi 

chain 

Sigrnacel Type 101 57600 95 18.89 

The reason for the very large polydispersity of Sigmacel type 101 is its bimodal 

distribution of molecular mass. It is obvious therefore that Sigmacel Type 100 

and Type 101 are not identical and Type 101 can not be compared to Type 100 in 

a study of this nature. It can be suggested that Avicel produces a more 

homogenous phase which improves the opportunity for enantioselective 

interaction between the phase and the analyte. The large relative polydispersity of 

the Sigmacel type 101 cellulose produces makes this a far less homogenous phase 

as the range of molecular weight present is far greater. 

For the purpose of this work with cellulose carbamates it is necessary therefore, 

only to consider Avicel cellulose as the performance of the column produced 

using Sigmacel type 101 was extremely poor. The column which was produced 

using the CDMPC based on Avicel cellulose was shown to give superior results. 
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2.1 OPTIMUM LOADING OF CDMPC ON PGC 

It had been suggested that the optimum loading ofCDMPC on POC was 25% 

w/w 65 This was higher than observed for the same particle size APS-silica. This 

is due to the relatively large mean pore diameter ofPGC (2501\) compared to 

APS-silica. This larger pore allows a higher density of coating to be applied to 

the surface before the particles begin to adhere to one another because the surface 

and porous structure are overloaded. 

The protocol for the application of the phase had also been examined. It was 

suggested that a multiple step application of the CDMPC to the PGC surface 

would be advantageous. It was believed that this would produce a phase of 

greater homogeneity than if the application was carried out in one step. 

2.1.1 Optimum coating method 

Two columns were prepared using the same materials and conditions. Both were 

made using a coating ratio of25% w/w CDMPC to PGc. However, one column 

was prepared using a one-step coating method and the other using a multiple step 

or batch method. The batch method involves coating the PGC with, in this case, 

5 equal portions of CDPMC. This column will be referred to as Column 1. The 

column produced using the one-step method will be referred to as Column 2. 

Both of these columns were tested with six racemic analytes, two neutral, two 

acidic and two basic (Fig. 2.0). 
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Figure 2.1 Comparison of batch and single step coating methods 

Analyte Column k t k2 a. Rs 

BME 2 2.66 3.68 1.39 1.83 

2-PA 2 1.10 1.63 1.49 1.38 

MA 2 3.88 4.71 1.21 1.05 

2-PPA 2 2.80 6.90 2.46 3.91 

AL 2 0.61 1.49 2.44 2.67 

ORP 2 0.61 1.05 1.72 1.64 

BME 1 2.51 3.49 1.39 2.12 

2-PA 1 1.05 1.68 1.60 2.86 

MA 1 3.63 4.41 1.21 1.42 

2-PPA 1 2.85 7.73 2.71 4.92 

AL 1 0.71 1.68 2.38 2.98 

ORP 1 0.71 1.24 1.76 2.30 

Mobile phases: BME(benzoin methyl ether), hexane/2-propanol (95:5 v/v); 2-

PA(2-phenethyl alcohol), hexane/n-butanol (95:5 v/v); 2-PPA(2-phenoxy 

propionic acid), hexane/2-propanoVTFA (95:5:0.1 v/v); MA(mandelic acid), 

hexane/ethanoVTFA (95:5:0.1 v/v); AL(alprenolol), hexane/2-propanoVDEA 

(80:20:0.1 v/v); ORP( orphenadrine), hexane/2-propanoVDEA (90: 1 0:0.1 v/v). 

Flow rate: 0.5 mVmin 

Neutral analytes 

In one case the observed a value was higher for Column 1 than Column 2 and in 

the other case no difference was observed. An increase in the a value suggests an 

increase in the number or availability of sites of enantioselectivity. In both cases, 

however, the Rs value has increased. This reflects both the increase in selectivity 

and better peak shape observed on Column 1. 
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Acidic Analytes 

The result described for neutral analytes was repeated for the acidic analytes. 

Overall better results were gained from Column 1. It was necessary to use an 

acidic mobile phase additive when running acidic analytes in order to reduce peak 

tailing and retention. This technique was also described for cellulose carbamate 

phases based on silica. The implications of this for the PGC based phase will be 

discussed later. 

Basic Analytes 

For the basic analytes tested in both cases a higher Rs value was observed for 

Column 1 compared to Column 2. The situation with respect to a values 

however, is less clear as one result is higher for Column 1 and one is lower. 

2.1.2 Interpretation of Results from Table 2.1.1 

The results suggest that Column 1 (batch method) is superior to Column 2 (single­

step method). This means that the batch method produces a higher quality phase 

than the single step coating method. This is further illustrated by the respective 

plate height calculations for the 2 columns (Table 2.1.1); 

54 



Table 2.1.1 Plate Height results for Columns 1 and 2 

Column Plate Height Imm 

1 0.19 

2 0.22 

Plate height was calculated for the first eluting enantiomer of2-PA in both cases. 

A lower plate height for column 1 was observed for all 6 enantiomers tested. This 

means that the height equivalent to one resolving plate is less with the batch 

method than with the single-step method. These results suggest that the batch 

method produces a phase with significantly differing characteristics than a phase 

produced by a single step coating procedure. 

These characteristics are: 

• increased phase homogeneity 

• increased availability of sites for chiral discrimination 

The differences between the phases are clearly seen in the chromatographic 

results. It is desirable however to try to establish the physical nature of such 

differences. The coated particles were examined using two techniques, 

• Laser light scattering 
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• Scanning electron microscopy 

2.1.3 Investigation of the surface character of Column 1 and Column 2 
phases by laser light scattering 

Laser light scattering measures the average particle size in any given sample by 

the laser light scattering pattern obtained from that sample in suspension (Fig. 

2.1.3). 

Figure 2.1.3 A schematic of laser light scattering particle size instrument 

Large particles 
scatter at low angles 

-) 

Small particles 
scatter at high angles 

Detector 

'" 
Central 
detector 

Detector measures 
integral scattering of all 
particles simultaneously 

This technique was found to be inaccurate for actual particle size determination 

compared to the results obtained from the SEM. This was however due to the 

fact that the refractive index ofPGC was not corrected for. The sample was also 

suspended in methanol, and since methanol will swell the CDMPC coating and 

therefore may give a false representation ofparticIe size. Both of these factors 

mean that the absolute value obtained from the laser light scattering is not 

56 



representative of the sample. However the results are of value in a comparative 

study such as this (Table 2.1.4). The sample was analysed using a Malvern 

Instrument Mastersizer X. The sample was suspended in methanol with sodium 

dodecylsulphate added as a dispersant. 

Table 2.1.4 Comparison of single-step and batch methods of coating by 
laser light scattering 

Sample Observed particle size, Distribution 

J.lm 

PGC (124.11), 7~m 11.55 single 

Column 1 20.70 bimodal 

Column 2 13.35 bimodal 

The particle size observed for Column 1, made using the batch coating 

process was larger than for Column 2, made by the single-step process. It can be 

suggested that this is due to the increased tendency of the CDMPC to swell in the 

first sample. The particles have a greater surface area as they are still very porous 

compared to the particles coated using the single-step method. 

2.1.4 Investigation ofsurface character of Column 1 and Column 2 

phases by scanning electron microscopy (SEM) 

Scanning electron microscopy uses a beam of electrons which is moved over the 

surface of the sample to produce a real-time image of the topography of the 

sample surface. This technique is inherently more sensitive and accurate than 

light scattering and can be used to gain absolute particle size. The electron beam 
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is generated by a tungsten filament, the fine beam of electrons being scanned 

across the sample by the scan coils. As this proceeds, any low energy electrons or 

other radiation produced by each point on the sample are recorded. The sample is 

simultaneously scanned by a point from a cathode ray tube which is modulated by 

the signal from the radiation/electron detector. The combination of these two 

signals produces the images of the sample surface which are required. 

The work described here was carried out on a Cambridge Instruments Stereoscan 

S250 Mk3. The sample was presented on an aluminium sample stub and was 

splutter coated with gold to improve detection. 

Comparison of single-step and batch coating methods 

The PGC particles which have been coated using the batch method appear to have 

several differences from those coated using the single-step method. The porosity 

of the batch coated particles appears to be more evident than for the single-step 

particles (Fig.s 2.1.5 and 2.1.6). 
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Figure 2.1.5 SEM of Batch coated particles 

Figure 2.1.6 SEM of single-step coated particles 
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This supports the proposal that the improvement of the chromatography of 

Column 1 compared to Column 2 was due to the increase in surface homogeneity. 

The SEM study provides evidence for the suggestion that the batch coating 

method allows the CDMPC more time to distribute itself between the surface and 

the pores of the particle, while the single step method tends to inhibit the 

transport of the CDMPC on to the pores. It can be supposed that owing to the 

relatively short amount of time over which the coating is applied in single-step 

compared to batch addition that the coating does not have time to distribute itself 

evenly into the pores and on to the surface before all the solvent is removed and 

the process is halted. It also may be owing to the increase in the concentration of 

the coating sample in solution in the single-step process. The increased 

concentration may inhibit effective mass transfer of the CDMPC around the 

particle. 

2.2 THE USE OF ACIDIC AND BASIC MOBILE PHASE ADDITIVE 

The use of organic mobile phase additives in chromatography on silica based 

phases is common. For basic analytes the addition of a silanol suppresser, usually 

diethylamine (0.1 % v/vt7 or for acidic analytes an ionisation suppresser such as 

trifluoroacetic acid (0.5% V/V)68 recommended to reduce peak tailing. The use of 

these modifiers masks the majority of the non-selective interactions of the analyte 

with any residual silanol groups on the surface of the silica. It was hoped that this 

would be less of a problem for a PGC based phase as PGC has relatively no 

surface functionality in comparison to silica. However, the use of both acidic and 

basic additives improved chromatography on the PGC based phase. 
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2.2.1 Acidic mobile phase additives 

It was found that in contrast with the APS silica based phase acidic analytes could 

be successfully resolved on the PGC based phase without the addition of a mobile 

phase additive. It was the case however, that the addition of an acidic co-solvent 

improved the separation of the racemic mixture and reduced peak tailing.65 The 

initial study conducted by Grieb showed increases in both Rs and a however, no 

pattern was established for the retention characteristics of the column. 

2.2.2 Effect of TF A on peak widths, retention and resolution 

A series of four acidic analytes were resolved on an optimised CDMPC on a PGC 

column (Columnl) both with and without TFA (Table 2.2). 

Table 2.2 

Analyte 

MAA 

MAA 

2-PBA 
2-PBA 

MA 
MA 

2-PPA 

2-PPA 

The Effect ofTFA on the chromatographic behaviour of 
acidic analytes 

TFA 
concentration to tl t2 WI W2 k. k2 

0/0 

0 1.95 10.55 13.5 1.4 1.8 4.41 5.92 
0.1 1.95 9.6 12.65 1.18 1.65 3.92 5.49 

0 1.95 5.75 10.7 0.85 1.7 1.95 4.49 
0.1 1.95 5.55 10.9 0.82 1.95 1.85 4.59 

0 1.95 16.65 22 3.25 3.4 7.54 10.28 

0.1 1.95 14.6 18.55 2.15 2.8 6.49 8.51 

0 1.95 6.1 13.35 1.05 2.3 2.13 5.85 
0.1 1.95 5.9 13.1 1 2.2 2.03 5.72 

a 

1.34 
1.40 

2.30 
2.49 

1.36 

1.31 

2.75 
2.82 

Mobile phases: MAA, 2-PBA, MA and 2-PPA, hexane/2-propanol (90: 1 0 v/v). 

Flow rate: 0.5 mllmin 
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Rs 

1.84 
2.16 

3.88 
3.86 

1.61 

1.60 

4.33 

4.50 



It can be seen that the addition ofTFA to the mobile phase decreases the capacity 

factors of most acidic analytes. The exception to the overall improvement in 

separation is mandelic acid which shows a slight decrease in a value and no 

change in resolution. This situation will be discussed in more detail later. 

The column is being examined under normal phase conditions, therefore, no water 

is present. This eliminates any effect due to a decrease in pH from the addition of 

an acid. It can be suggested therefore that the observed decrease in retention is 

due to the competitive binding ofTFA to sites of non-stereospecific interaction on 

the surface of the stationary phase. As PGC is essentially void of surface 

functionality it can be assumed that the TF A is interacting mainly with the 

CDlvfPC portion of the phase. This is further displayed by Figures 2.2.2 and 

2.2.3. 

Figure 2.2.2 The Effect of TFA on capacity factors 

4 

6 

Av~k' value 

Acidic analytes : 1, MAA; 2, 2-PBA; 3, MA; 4, 2-PAA. 
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The addition of TF A to the mobile phase decreases the retention of the analyte. 

As the analyte is spending less time on the column there is less opportunity for 

non-specific interactions to occur. This acts to reduce peak tailing (Fig. 2.2.3). 

Figure 2.2.3 The Effect ofTFA on peak width 

. O.1%1FA 

. O%1FA 

4 

2.5 3. 

Peak width of 2nd elutingenantiomer 

However, more interestingly is the observed trend for an increase in a value. This 

suggests that after the addition ofTFA the enantioselective ability of the column 

increases (Fig. 2.2.4). 
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Figure 2.2.4 The Effect ofTFA on a value 

0.0 0.5 1.0 1.5 2.0 2.5 3. 

a value 

This perceived increase in enantioselectivity is likely to be due to TF A masking a 

non-stereoselective interaction probably within the CDMPC. 

2.2.3 The effect of changing concentration of DEA on column performance 

In contrast to chiral acids it has been observed that in the absence of DE A as a 

mobile phase additive, chiral bases are not eluted from naked or CDMPC coated 

POC phases. However, the addition of 0.1 % DEA to the mobile phase facilitates 

elution and produces resolution of the enantiomers. However, the effect of 

changing the concentration of DE A was unknown. The effect of changing the 

concentration of DE A between 0 to 2% (Fig 2.3 .0). 
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Figure 2.3.0 The effect of changing the concentration of DE A on k average 

and a 

• k average 
• ex. 

• 
• • Value • • • • • 

• 
0 .0 0 .5 1.0 1.5 2.0 

Concentration of DEA, % 

It can be seen that a maximum for both a and k average is achieved between 1-1 .5% 

DEA. This suggests that the sites of non stereospecific interaction are all masked 

at this concentration and any increase in DEA at this point will not improve 

chromatography. The maximum results from two opposing effects: 

• an increase in stereo selectivity with the increasing DEA which predominates at 

lower concentration values 

• a decrease in retention times due to increasing polarity of the mobile phase 

which is observed at higher concentration values 
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Table 2.3.1 

DEA 
concentration 

0.1 

0.2 
0.5 
1 

1.5 
2 

The effect of DEA concentration on retention and 
resolution characteristics 

k\ k2 k average a Rs 

1.36 4.15 2.76 3.06 3.57 
1.35 4.26 2.81 3.14 4.44 
1.36 4.50 2.93 3.31 4.80 
1.32 4.47 2.90 3.39 4.64 
1.23 4.26 2.74 3.46 5.24 
1.15 4.05 2.60 3.51 4.71 

Resolution reaches a maximum at 1.5 % DEA concentration, while a is at a 

maximum between 1.5 and 2 % DEA. The use of DE A is necessary for elution, 

indicating that the interactions which DEA masks are very strong and retentive. 

The retention mechanism of PGC has been studied by several groups, but usually 

under reversed- phase conditions. Reversed-phase conditions permit ionisation 

owing to the presence of water. However ionisation is not dominant under 

normal phase conditions. The main interactions which exist under normal phase 

conditions will therefore be the electronic interaction with the 7t-cloud of 

delocalised electrons present at the surface of PGC. Bassler et al 60 investigated 

the chromatography of substituted aromatic compounds under non-polar 

conditions and concluded that as well as dispersive interactions, electronic 

interaction with the delocalised band of electrons at the surface ofPGC was 

possible. Lim et al 69 
concluded that the retention on PGC of inorganic and 

organic cations and anions was due to a mixture of reversed-phase and electronic 

interactions. They termed this mechanism 'Electronic Interaction 
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Chromatography'. As our system is used in normal-phase, it can be suggested 

that electronic interactions will dominate. 

Karlsson et af 63 suggested that strong adsorption sites with limited capacities are 

responsible for the retention of aminoalcohols on PGC under normal phase 

conditions with low concentration of a chiral ion pair reagent. 

More recently Elfakir and Dreux 70 used PGC for the qualitative analysis of 

glucosinlates and desulfoglucosinolates. They used a variety of organic mobile 

additives and examined their effect on the retention of 5 analytes. They found 

that the additives HCI04 > NaCI04 > TF A> KH2P04. In each case there was 

only a small change in retention when the concentration of the organic modifier 

was increased. The number oftheoretical plates was also determined and was 

found to increase significantly with the increase in concentration of the organic 

modifier. Consequently, the characteristics of the system were found to be 

dependent on the nature and the concentration of the organic modifier. Although 

this study was carried out under reversed-phase conditions it is analogous to those 

obtained with the use of DE A under normal phase conditions. 

In conclusion, it can be suggested that the addition of acidic and basic analytes 

improve the chromatography of the test analytes under normal phase as well as 

reversed-phase conditions. This phenomenon is more pronounced with basic 

organic modifiers such as diethylamine. It has been suggested by Josefsson that 

the interaction the lone pair of electrons on the amine on the analyte interact with 

de localised band of electrons at the surface ofPGC and it is this which results in 

longer retention times. DEA provides another source of amine which can 

compete with the non-selective interaction of the analyte with the delocalised 

system of electrons. 
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The work carried out with basic analytes agrees with that of Josefsson. 62 

Accordingly, it can suggested that the main mechanism of retention under normal 

phase conditions is interaction with the delocalised band of electrons at the 

surface ofPGC. 

The work with acidic analytes also shows a small decrease in retention and an 

moderate increase in resolution on the addition ofTFA. This also suggests the 

presence of non-selective interaction. This is to a lesser extent than observed with 

basic analytes. 

2.3 PROBLEM COMPOUNDS ON PGC 

It has been previously observed 65 that some compounds do not give acceptable 

chromatographic separations on PGC based phases regardless of mobile phase 

additives or other conditions. This is demonstrated in Figure 2.3.1. 

Figure 2.3.1 Separation of Flavanone enantiomers on PGC and silica based 
phases 

CDMPCPGC 

Response 

Time (min) 

Mobile phase: hexane/2-propanol (90: 1 0) 
Flow rate: 1 mlIrnin 
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CDMPC Silica C I8 

Response 

Time (min) 

Mobile phase: hexane/2-propanol (90: 10) 
Flow rate: 0.5mVmin 



Other compounds which display poor chromatography on the PGC based phases 

include, those shown in Fig 2.3.2. 

Fig 2.3.2 Problem compounds on PGC 

Flavanone 

o 

Suprofen 

o 

1-(9-Anthryl)-2,2,2-trifluoroethanol 

It was also observed in studies by Grieb
65 

that the use ofPGC as a base for 

CDMPC as opposed to silica did not improve the chromatography of benzoin 

methyl ether, benzoin and benzyl mesityl sulfoxide. All of these analytes contain 2 

polycyclic systems, usually benzene rings joined by some unsaturated group, 

usually a carbonyl group. 

The analytes in Fig. 2.3.2 also contain multiple aromatic systems. All of the 

analytes can be considered to have a high degree of rigidity. The ability ora 

molecule to fit on to the surface of PGC has been suggested as the dominant 
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factor in retention. It has been shown that anthracene is very strongly adsorbed as 

it can easily accommodate itself freely on to the flat surface ofPGC. 

This feature ofPGC makes possible the separation of geometric isomers. 

The problem compounds possess large planar aromatic systems which were 

predicted to be strongly adsorbed to the surface ofPGC. 

2.4 CONCLUSIONS 

In support of the work of Grieb, 25 %w/w coating ofCDMPC on PGC by the 

batch method is the optimum phase. This phase has been used to separate a range 

of neutral, acidic and basic anaiytes. The effect of both acidic and basic mobile 

phase additives has been studied and the mechanism of retention has been further 

investigated. 

TF A was found to increase the capacity factor and reduce peak width for acidic 

analytes. It is assumed that this occurs owing to the binding of non-selective 

sites on the phase by the TF A in preference to the acidic analyte. 

DEA was found to have a dramatic influence on the chromatography of bases. 

On the addition of 0.1 % DEA elution was obtained with resolution of the 

enantiomers. Changing the concentration ofthe DEA revealed two opposing 

effects, the most interesting of which was the increase in stereoselectivity which 

was observed at low concentrations of DEA. 

lt can be suggested that this is owing to the masking of sites of non-specific 

interaction. This is analogous to the situation observed with acidic analytes but is 

far more pronounced for bases. 

The chromatography of problem compounds, such as flavanone, on PGC based 

phases has not been improved. However, it can be suggested that these 
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compounds are poorly resolved because of their highly planar aromatic structures 

which interact strongly with the delocalised 1t-system of electrons which is present 

at the surface of the PGC. 

The use of porous graphitic carbon as a support for cellulose tris (3,5-

dirnethylphenyl) carbamate produced a durable phase which can be easily 

switched between polar and non-polar conditions 65. This offers an advantage 

over silica based phases which are sold commercially as polar or non-polar 

dedicated columns. The use ofPGC as a support however, can not be 

comrnercialised at the present time due to the patent held by Daicel covering 

derivatised polysaccharide phases. For research purposes however, several areas 

of further work can be considered. The poor chromatography of compounds such 

as Suprofen on the PGC based phase compared to a silica based phase requires 

further work. The set of compounds described in this thesis did not provide a 

large enough group to allow any firm assessment of the structural characteristics 

which hinder the separation. The use of large polycyclic groups such as 

anthracene to block any interaction with the PGC may have improved the 

chromatography. The use of such a blocking agent or developing methods of 

improving the monolayer coverage to exclude unwanted interactions would be 

desirable. Methods of coverage other than evaporation such as precipitation may 

be more effective at delivering a homogeneous coating to the PGC surface. 

Derivatised polysaccharide phases can be considered to be possibly the most 

widely used phases for chiral separations within industry and academia. The use 

therefore, ofPGC as a support expands the knowledge of these phases and the 

conditions under which they can be used. 
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CHAPTER 3 

THE SYNTHESIS OF POLY-L-LEUCINE AND ITS 
ANALYSIS BY MALDI-TOF AND ESI MASS 

SPECTROMETRY 

Chiral stationary phases in liquid chromatography have made a very large 

contribution to both the analysis and production of single pure enantiomers. The 

method is fast, accurate, flexible and effective. However, as a technique, it does 

have some characteristics which may make it WlSuitable for a particular 

application. The analysis or resolution of a mixture of enantiomers, by definition, 

results in more than one component product. This therefore, means that the 

technique yields both enantiomers when only one may be required. This becomes 

a burden when the production moves to preparative scale, and may be prohibitive 

if the racemate is expensive, and of the two component product half is unwanted. 

The development of enantioselective organic synthesis has addressed this problem 

and offers many techniques for the synthesis of single enantiomers. 

Enantioselective organic synthesis can be defined as the de novo synthesis of a 

chiral substance from an achiral starting material such that one enantiomer 

predominates over the other. 
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Methods for enantioselective organic synthesis included; 

• use of enzymes in biotransformations - 'natural' chiral catalysts 

• use of organic and inorganic chiral catalysts 

These techniques have also been applied to chiral separations in liquid 

chromatography. Examples of this were discussed in Chapter 1 when it was 

shown that biomacromolecules, in particular bovine serum albumin and aI-acid 

glycoproteins, have been used as chiral selectors in liquid chromatography. The 

use of metal-ligand complexes in chiral LC has also been mirrored by the use of 

similar complexes in enantioselective organic synthesis. Chiralligand-exchange 

chromatography is performed by adding a selector ligand paired with a transition 

metal in the mobile phase. Many combinations of chiral selector, stationary phase, 

metal ion and selectand have been used. Lindner et af. 71 used the following 

combinations for the resolution of dansylated amino acids (Fig. 3.0.1); 

Figure 3.0.1 Chiralligand exchange combinations 

Chiral selector Stationary Metal ion Selectand 

phase 

L-2-isopropyl-4-N-octyl- Silica Cs Zn2+ DNS-D,L-amino 

diethylene-triamine Reversed-phase acids 

[(C3 - Cs) - diene] Silica Cg Zn2+, Cd2+ DNS-D,L-amino 

N-octyl-L-Pro-amide Reversed-phase N·2+ C 2+ I , u acids and dipeptides 

Hg2+ 
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This approach was also used in enantioselective organic synthesis, and was 

possibly best demonstrated by the work of Sharpless et al.72 (Fig. 3.0.2). This 

work showed the highly efficient stereocontrol1ed epoxidation of allylic alcohols 

in conjunction with the kinetic resolution of the unreacted starting material. 

Sharpless demonstrated an enantiomeric excess of >96%. 

Figure 3.0.2 Enantioselective synthesis followed by kinetic resolution 

OH 
L-(+)-DIPT 

t-BuOOH 

Ti(OiPr)4 

OH 

erythro 

erythro : threo 97:3 

The use of the chiralligand-transition metal approach was again highlighted by 

Sharpless working in conjunction with Katsuki,73 who demonstrated the use of 

complexes such as the one shown in Figure 3.0.3 to effect enantioselective 

epoxidation. 

Figure 3.0.3 Titanium complex implicated in Katsuki-Sharpless 
epoxidation 
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Techniques which are applied to enantioselective organic synthesis can also be 

used to effect a separation of isomers in chiralliquid chromatography. This is an 

obvious statement as a limited range of methods exist for the recognition of 

enantiomers, separation or selective synthesis occurs when the mechanism of 

recognition is stronger for one enantiomer than the other. 

A precedent therefore exists for the transfer of ideas from enantioselective organic 

synthesis to chiralliquid chromatography. 

This became a source of interest to us as more research was carried out into poly-

amino acids and in particular poly-L-Ieucine and its application in enantiomeric 

organic synthesis. Following the work of Okamoto who used optically active 

polymers as chiral selectors in chiralliquid chromatography, it was decided to 

explore the opportunity of using a polypeptide as a chiral selector coated on to 

PGC in chiral HPLC. The use of homo polypeptides coated onto the surface of a 

support material has to our knowledge not been previously reported. L-amino 

acids offer a cheap and enantiomerically pure range of compounds with various 
'-

derivatisable functionality. The use ofpoly-L-Ieucine provided an opportunity to 

explore the relationship between a homopolypeptide and PGC. Initially the use 

ofpoly-L-Ieucine provided a peptide which had been shown to have some degree 

of enantioselectivity under particular conditions
80

• It was hoped that this would 

not be lost due to interaction with the PGc. Poly-L-Ieucine coated on to PGC 

therefore, provides a novel system to study with the opportunity to exploit other 

amino acids in the future. 
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groups. Polypeptides tethered to a cross-linked polystyrene were also studied. 

The work led to the conclusion that the nature ofthe tenninal group did not 

influence the optical and chemical yield. However, tethering the poly-L-alanine to 

the insoluble polymer did mean that the catalyst was easier to recycle from the 

reaction mixture. 

Figure 3.2.0 Structural variation in polypeptide catalyst 

Degree of 

Catalyst polymerisation Chemical yield Enantiomeric 

(DP) (%) excess (%) 

Poly-L-alanine 19 76 80 

Po ly-L-alanine >50 92 96 

Poly-L-Ieucine 10 80 97 

The weight of the polypeptide is therefore considered to be important. However, 

the secondary structure i.e. a-helical conformation. is also considered to be 

necessary to the activity of the catalyst. This was shown when Julia and Colonna 

produced a range of random copolymers of different amino acids, each amino acid 

with a different tendency to fonn an a-helix (Fig. 3.2.1). 

Both alanine and leucine have a high tendency to fonn alpha helices when 

polymerised whereas valine has a low tendency. The nature and detennining 

factors of the a-helical conformation are discussed in detail in Chapter 4. 
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Figure 3.2.1 Random copolymer polypeptide catalysts 

Catalyst Tendency to Chemical yield [0.)2°578 Enantiomeric 

form a-helix (%) (CH2Ch) excess (%) 

[(L-Leu)\-(L-Ala)d High 67 -204 95 

[(L-Val)\-(L-Ala)d Low 39 -190.2 88 

[(L-Val)7-(L-Ala)3] Lower 14 -83.9 39 

[(L-Val)9-(L-Ala) \] Lowest 9 -25.8 17 

The results from Figure 3.2.1 by Julia and Colonna show that the formation of the 

a-helix is crucial to the activity of the polypeptide catalyst. 

3.3 APPLICATION OF THE WORK OF JULIA AND COLONNA TO 

INDUSTRIAL PROCESSES 

Asthma is a very serious disease in the Western world today which claims many 

lives and blights millions of others. The research into treatments led to the 

observation that leukotrienes are agents in the pathophysiology in asthma and 

related disease states. Lantos et of. 80 at SmithKline Beecham Pharmaceuticals 

developed a potent and selective leukotriene antagonist, SK & F 104353 (Figure 

3.3.1) 
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Figure 3.3.1 Leukotriene antagonist, SK & F 104353 

~C02H 
S 

OH 

This molecule contains both a chiral alcohol and chiral thiol in the (2S,3R) 

stereoconfiguration. These groups are easily obtainable from a chiral epoxide. 

Lantos et al. 80 chose to use poly-L-Ieucine as the catalyst to produce a chiral 

epoxide because the reaction conditions are mild, the reaction is relatively simple 

to carry out and the enantioselectivities can be exceedingly high (Fig. 3.3.2). 

Figure 3.3.2 Step 2 in synthesis of SK & F 104353 

Ar 

2 

Poly-L-Ieucine 

NaOH/aqueous H20 2 

n-Hexane 

3 

Ar 

The compound 3 was produced in 82 % chemical yield and 95 % enantiomeric 

excess, after re-crystallisations the enantiomeric excess was increased to >99.8 %. 

Poly-L-Ieucine was used in a large scale of>200g. 

Poly-amino acids were also used in the synthesis of the antibiotics methymicycin 

and erythromycin. 

Poly-L-leucine was used in this case in preference to poly-L-alanine. One reason 

for this was that as poly-L-leucine is more sterically hindered and therefore less 
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susceptible to hydrolysis in the basic reaction medium. This means that the 

polymer is still active after it has been recovered from the reaction medium and 

can therefore be recycled. 

The work of Julia and Colonna was developed by Roberts et at. 81 who aimed to 

expand the range of analytes to which poly-L-Ieucine is applicable. 

More recently Roberts 82 has described the use ofpoly-L-Ieucine in the 

unexpected synthesis of a variety of epoxides derived from enones, an enynone, 

enediones and an unsaturated ketoester (Fig. 3.3.3). 

Figure 3.3.3 Unexpected synthesis 

Epoxide 

o 

Chemical yield 

(%) 

78 

60 

>95 

Enantiomeric excess 

(%) 

59 

90 

>95 

Roberts et al. 83 examined the method of synthesis of the poly-L-Ieucine catalyst. 

They discussed two different initiation methods and a method for immobilising the 

poly-L-Ieucine on polystyrene. Poly-L-Ieucine is available commerically, but, it is 

very expensive. Both Julia and Colonna, and Roberts used polypeptides which 
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they synthesised in-house to carry out the enantioselective catalysis. In the next 

section (3.4) is a discussion of the synthetic methods that we used to produce 

poly-L-Ieucine. 

3.4 SYNTHESIS OF POLY -L-LEUCINE 

The usual method of synthesis of homo polypeptides depends on the synthesis of 

an active monomer, such as the N-carboxy anhydride of the amino acid (Fig. 

3.4.0), 

Figure 3.4.0 Synthesis of L-Ieucine-N-carboxy anhydride 

(Trichloromethyl chloroformate) 

.. o 

o 

Tetrahydrofuran 

Activated charcoal 
N-{ 
H 0 

degradation .. 
TCF phosgene 

This method developed by Kataki et af. 84 uses activated charcoal and a 

temperature (55°C) high enough to bring about the decomposition of 

trichloromethyl chloroformate to phosgene which is the active component in the 

synthesis of L-Ieucine NCA. Trichloromethyl chloroformate is used at a 40% 

excess. This is sufficient for complete conversion of amino acid to amino acid 

NCA. The polymerisation procedures depend on L-Ieucine NCA being very pure. 
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This is often the case without need for any further purification. however 

recrystallization from diethyl-ether is recommended. 

3.4.1 Initiation by water 

This monomer is polymerised through initiation by a nucleophile, in particular 

water or an amine. L-Ieucine-NCA was polymerised in a humidity cabinet to 

produce a homopolypeptide with tenninal carboxy and amine functionality (Fig. 

3.4.1). 

L-Leucine NCA, which is a white crystalline powder, is placed on a tray in the 

humidity cabinet and polymerisation takes place over 3 days approximately. 

Figure 3.4.1 Homopolymerisation of L-Ieucine-NCA in a humidity cabinet 

Initiation 

OH 

H 

/N~ 
+ / \"0 Loss of CO2 

Propagation 
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This method depends on the fact that the L-Ieucine NCA must be extremely pure. 

Nucleophilic attack by water opens the anhydride with the loss of carbon dioxide. 

This provides an amine functionality to propagate the further ring opening of L-

leucine NCA. A proposed mechanism of termination is attack by the nucleophilic 

amine group on the carbonyl group adjacent to the amine in L-Ieucine NCA. 

This results in the formation of a urea derivative terminated by two free carboxyl 

residues. This mechanism will be discussed in the sections relating to mass 

spectrometry later in this chapter. 

It is suggested however, that the majority of termination occurs when the 

monomer is completely depleted. This produces a homopolypeptide which has 

both free amine and carboxy terminal functionalities (Fig. 3.4.2). 

Figure 3.4.2 Free peptide synthesised by water initiation 

0 A 0 
H 

: N 

~~ 
0 

3.4.2 Initiation by amine 

The initiation ofL-leucine is also carried out in solution by a diamine, the reaction 

requiring a NCAIinitiator ratio of 30: 1. Ethylenediamine was used, which acts as 

a nucleophile and the mechanism of initiation is the same as with water. The 

reaction is carried out under stringent anhydrous conditions in dichloromethane. 
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The initiation by a diamine produces a polypeptide which is terminated by amine 

groups only (Fig. 3.4.3). 

Figure 3.4.3 Ethylenediamine initiated polymerisation of L-Ieucine NCA 
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3.4.3 Synthesis of poly-L-Ieucine from L-Ieucine 

This method has the advantage of using L-leucine as the monomer. The synthesis 

ofL-leucine NCA produces phosgene as the active species. However, this makes 

the synthesis operationally demanding. Hagashi et al. 83 described the use of 

polyvinyl pyrrolidine of various molecular weight ranges as a matrix to support 

the polymerisation ofL-leucine. The synthesis uses N-methyl pyrrolidine, LiCI 

and triphenylphosphite which combine to form an active species which initiates 

the polymerisation (Fig. 3.4.4) 
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Figure 3.4.4 Proposed active species in polymerisation of L-Ieucine 
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This complex has cr as a counter ion and labile phosphine ligands which can be 

substituted by L-leucine molecules through reaction with the carboxylic acid 

residue (Fig. 3.4.5). 

Figure 3.4.5 Proposed mechanism of initiation by complex in Figure 3.4.4, 

A + L-Ieucine 

o 

6 
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Activation ofthe L-Ieucine allows the reaction of the activated carboxyl group 

with the free amine of another L-Ieucine molecule. This produces a 

homopolypeptide with free carboxyl and amine terminal fuctionality. N-methyl 

pyrrolidine is used as the solvent with a 1:1 ratio ofL-leucine to triphenyl 

phosphite. The reaction mixture is refluxed for 16 hours. This is essentially a 

method of condensation polymerisation, the formation of cyclic polymers often 

occurs with such methods as the concentration of monomer falls. This was 

examined through the use of MALDI-TOF mass spectrometry. 

All of these methods of pol ymeri sat ion were applied on a 1 g scale to produce 

poly-L-Ieucine. This made it possible to examine the characteristics of this range 

of products using a range of techniques, ultimately as a chiral stationary phase in 

HPLC. 

3.4.4 Problems with the analysis of poly-L-Ieucine 

The main problem with the analysis ofpoly-L-Ieucine is its distinct lack of 

solubility. This is wholly due to the a-helical confirmation of the peptide chain 

which is stabilised by intrachain hydrogen bonding. The a-helix is necessary to 

the activity of poly-L-Ieucine as an asymmetric organic catalyst as seen in Section 

3.2. 

L-Leucine can be solubilized by disruption of the intrachain hydrogen bonds. This 

can be done by protonation by an acid, in particular trifluoroacetic acid (TF A). 

The use of neat TFA as a solvent is not desirable in many techniques such as 

liquid chromatography and particularly in size exclusion chromatography and this 

prevents easy access to molecular weight and polydispersity information. Nuclear 

magnetic resonance (NMR) has been used for analysis as d-TF A is available. In 

88 



addition, the analysis of large molecules, such as poly-L-Ieucine, is inherently 

difficult owing to their size. This is most obvious in NMR when the slow 

tumbling motion of such molecules leads to considerable signal broadening. 

Several other techniques have been used to probe the structure ofpoly-L-Ieucine 

and they will be discussed in detail later. One technique that has been proved to be 

effective for the analysis of polymers including proteins and peptides, is mass 

spectrometry and in particular MALDI-TOF and ESI. 

3.5 ANALYSIS OF POLY -L-LEUCINE BY MALDI-TOF AND ESI 
MASS SPECTROMETRY 

Both MALDI-TOF and ESI are considered to be soft ionisation techniques. This 

makes them suitable for the analysis of homo polypeptides as the fragmentation of 

the polymer chains can be avoided. This makes it possible to observe the 

complete structure including end-groups, which offers a probe into the mechanism 

of the synthesis. 

3.5.1 MALDI-TOF Mass Spectrometry 

Matrix Assisted Laser Desorption/Ionisation Time-of-Flight mass spectrometry 

(MALDI-TOF), as the name suggests, uses another molecule which must be 

highly UV-absorbing, to act as a matrix to aid transfer of the sample to the gas 

phase. This technique was first described by Karas and Hillenkamp84, and Tanaka 

et af. 85 in 1988. As described in Fig. 3.5.1 energy from the pulse of the laser, 

which is focused on to the solid sample, is transferred to the analyte molecules 

which are then ionised and vaporised. The production of intact, gaseous ions was 

most successfully described by Karas and Hillenkamp who were the first to use an 

organic molecule that adsorbed UV -light as a matrix. A solution of analyte and 

89 



matrix is placed on a stainless steel sample slide and allowed to dry. The solid 

sample contains homogeneously dispersed analyte molecules in a vast excess of 

matrix molecules. The energy of the pulse is transferred to the matrix and not 

directly to the analyte. A fraction of the matrix is vaporised carrying intact sample 

molecules into the gas phase. A charge is also transferred to the sample. This 

process of vaporisation and ionisation is not fully understood. 

It can be seen in Fig. 3.5.1 that the Kratos III MALDI-TOF has the ability to be 

used in either reflectron of linear modes. In reflectron mode a longer flight tube 

is used to record the time-of-flight data. This decreases the sensitivity and 

increases the resolution ofthe detector. The opposite effect is observed when the 

machine is run in linear mode. This study used only reflectron mode. In linear 

mode the signal to noise ratio was too high to permit accurate interpretation of 

the data. Generally however, the data recorded in linear mode included higher 

masses than observed in reflectron mode. However, the resolution was too poor 

for individual signals to be distinguished. 
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Figure 3.5.1 Schematic of Kratos III MALDI-TOF 
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3.5.2 Sample preparation 

The matrix which is commonJy used for proteins and peptides is a-cyano-4-

hydroxy cinnamic acid CACCA) (Fig. 3.5.2) or other cinnamic acid derivatives 

such as 3,5-dimethoxy-4-hydroxy-cinnamic acid. 86 For the study of poly-L-

leucine ACCA was found to give more consistent results and will therefore be the 

only cinnamic acid derivative matrix to be considered. 

Figure 3.5.2 a-cyano-4-hydroxy cinnamic acid (ACCA) 
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A popular matrix for use with synthetic polymers is dihydroxybenzoic acid (OHB) 

(Fig. 3.5.3), it was observed during this study that this matrix improves with 

ageing. Approximately 3 weeks after preparation the colour of the matrix 

darkens. It is suggested that this is owing to the formation of oxidation products. 

Figure 3.5.3 Dihydroxybenzoic acid(DHB) 

o OH 

HO OH 

The matrix is made up as a 0.1 M solution in 50:50 v/v acetone/distilled water. It 

is usual to dope the matrix with a salt. In our studies, this was, sodium chloride. 

The glassware which is used to prepare both the matrix solution and the analyte 

solution contains both sodium and potassium ions. These ions are picked up by 

the analyte and the matrix. The presence ofthese ions means that when the 

analyte is vaporised both sodium and potassium ions are gained by the analytes. 

When such a MALOI -TOF spectrum is recorded, two series of peaks are 

observed. One series will have sodium ion attachment and therefore have 23+ the 

mass of the analyte peak, while the potassium series of peaks have 39+ the mass 

of the analyte peak. Accordingly the matrix is doped with sodium chloride so 

sodium ions are present in excess and there is preferential attachment. When this 

spectrum is recorded only a sodium ion peak will be observed. This technique 

produces simpler spectra which are therefore easier to interpret. The salt is added 

to the matrix as a 0.001 M solution. 
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Poly-L-Ieucine is presented as a 1 mg/ml solution, although this may change 

depending on the nature of the analyte. The solutions are placed on to a stainless 

steel slide which has 20 small wells to hold the samples. The matrix (0.4 I.d) is 

spotted on to the slide using a syringe and allowed to dry. This is repeated once 

and the sample is placed on top of the matrix using the same procedure. The 

analyte and matrix may be premixed. However, in the case ofpoly-L-Ieucine. the 

matrix and analyte were added separately. 

3.6 ANALYSIS OF POLY -L-LEUCINE BY MALDI-TOF MASS 

SPECTROMETRY 

The lack of solubility ofpoly-L-Ieucine is a concern when producing a sample for 

analysis. It is important to include all molecular weight ranges in the analyte to 

ensure accurate analysis. Accordingly, poly-L-Ieucine is used as a solution of 

trifluoroacetic acid. The use of 100% trifluoroacetic acid(TF A) is not possible as 

when the sample is spotted on to the slide as the surface tension of the acid is too 

low to produce a droplet. It was therefore necessary to add water to the analyte 

to aid droplet fonnation. Poly-L-Ieucine is therefore used in 95/5 v/v TF Alwater. 

All the spectra shown in this chapter were recorded on a Kratos III MALDI-TOF 

machine. Fig. 3.5.3 shows the spectrum ofpoly-L-Ieucine produced in the 

humidity cabinet (1 week) from L-Ieucine-NCA. The sample was washed with 

diethyl ether to remove any unreacted L-leucine NCA. 
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Figure 3.5.3 MALDI-TOF oCPoly-L-leucine from L-Ieucine NCA 

(Water initiation) 
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In Fig. 3.5.3 is shown the range of poly-L-Ieucine chains which are detected, the 

most probable peak (Mp) observed by MALDI-TOF is 1199.8 which 

corresponded to a poly-L-Ieucine chain of 1 0 units. The molecular weight range 

observed increases to approximately 3000 Da. MALDI-TOF is very mass 

sensitive, this means that although we observe a mass range from 400 - 3000 Da 

this may not be the whole mass range represented in the sample. Much higher 

masses may be present in the sample and the~e will not be observed in MALDI-

TOF. It is not however, accurate to say that the intensities observed are 

representative for the whole analyte. 
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MALDI-TOF is accurate for the masses ofpoly-L-Ieucine chains which are 

observed. This makes possible the determination of end-group masses and the 

constitution of the chain. Accordingly, MALDI-TOF can distinguish between 

poly-L-leucine made by various methods . . Poly-L-Ieucine made by the amine 

initiation ofL-leucine NCA (Fig. 3.5.4) was analysed using the same procedure 

as the water initiated polymer. 

Figure 3.5.4 MALDI-TOF of amine initiated poly-L-Ieucine 
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In Fig. 3.5.4 is shown a distinctly different spectra from that of Fig. 3.5.3. The 

amine used to initiate the polymerisation was ethylenediamine. The reaction was 

catalysed by triethylaluminium. The monorner:initiator ratio used was 120: 1 and 

the catalyst was added in a 1: 1 ratio with the initiator. The proposed mechanism 

oftennination through attack by terminal amine on the a-carbonyl group to the . 
amine ofL-leucine NCA (Fig. 3.5.5) was not observed in MALDI-TOF. 
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Figure 3.5.5 Proposed termination mechanism of amine-initiated 

polymerisation of L-Ieucine NCA 

urea derivative 

Only one series of peaks was observed, separated by 113 mass units, the residue 

mass ofleucine (Fig. 3.5.4). The inferred structure of the polymer is shown in 

Fig. 3.5.7. The masses of the components ofthe polymer are given in Table 

3.4.8. The observed mass spectrum shows no evidence of the proposed 

termination by formation ofa urea derivative. If this mechanism was present a 

series of peaks of M + 60 would have been observed. This mass corresponds to 

the formation of the urea derivative. 

Figure 3.5.7 Proposed structure of amine-initiated poly-L-Ieucine 
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Table 3.5.8 MALDI-TOF characteristics of amine initiated poly-L-Ieucine 

Characteristic Mass 

Na+ ion attachment 23 

Leucine residue 113 

Terminal hydrogen 2 

Inclusion of amine initiator 58 

The alternative method for the synthesis ofpoly-L-Ieucine was to use L-Ieucine as 

the monomer(Section 3.4.3) through the use oftriphenyl phosphite and N-methyl 

pyrrolidine. This is a very different mechanism of polymerisation than when 

NCA-Ieucine is used as the monomer, this results in a very different MALDI-TOF 

mass spectrum with multiple series of peaks (Fig. 3.5.8). 
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Figure 3.5.8 MALDI-TOF of poly-L-Ieucine synthesised from L-Ieucine 

using triphenyl phosphite and N-methyl pyrrolidine 
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This MALDI-TOF spectrum has three clear series ofpeaks(Table 3.5.9), 

Table 3.5.9 Multiple series observed in Figure 3.5.8 

Marker Structure Typical mass(M + 23) 

Cyclic(Leu)" 1040.5 • . 
H.(Leu)".O' Na+ 1079.9 • 

• H.(Leu)".OH 1058.9 
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Although MALDI-TOF shows us that polymerisation has occurred and what the 

resulting polymer consists of, it does not give us any information about the 

molecular weight characteristics of the polymer. Since, MALDI-TOF is very 

mass sensitive, the detector does not produce a linear response to different 

masses. We can not say therefore, that the peak area is representative of the 

percentage contribution of that peak to the total sample. This means that high 

molecular mass peaks are not observed in MALDI-TOF or may appear to be 

insignificant. 

3.7 ANALYSIS USING ELECTRO SPRAY IONISATION MASS 

SPECTROMETRY (ESI) 

The use of electro spray as an ionisation technique for use with mass spectrometry 

was first described by Dole et al. 87 in 1968. Dole used a fine capillary supplied 

with an nebulising gas and applied voltage to produce a fine spray which could be 

analysed. 

ESI can therefore, be described as the electrostatic nebulisation of a charged 

analyte solution, followed by the evaporation of the resultant droplets, to produce 

both singly and multiply charged gas phase molecular ions. ESI is a relatively soft 

ionisation technique and is performed at atmospheric pressure. 

ESI discussed in this thesis was carried out on a VO "Quattro II" tandem 

quadrupole instrument equipped with an electrospray ionisation source (Fig. 

3.7.0). 
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Figure 3.7.0 Schematic of the "Quattro II" electrospray source 
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The production of multiply charged ions is advantageous as the effective mass 

range of the mass analyser is increased considerably. Very large compounds 

(greater than 100,000 Da) can therefore be detected by a mass analyser of modest 

masslcharge(m/z) range. This means that a quadrupole mass analyser is 

commonly used with ESI. 

The solvent system chosen for the analysis ofpoly-L-Ieucine was crucial as it had 

to allow the sample to be presented as a solution of trifluoroacetic acid, which is 

the only solvent which would allow total dissolution of the polymer. The solvent 

chosen for this was chloroforrn:methanol:water (20: I : 1) which is an unusual 

solvent in ESL 

The analysis of amine initiated poly-L-leucine shows several series of peaks which . 
result from multiply charged ions (Fig. 3.7.1) 
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Figure 3.7.1 ESI mass spectrum of amine initiated poly-L-Icucinc 
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ESI, like MALDI-TOF, does not give an accurate representation of the molecular 

weight profile of the whole sample. It does however, let us probe the primary 

structure ofpoly-L-Ieucine. As molecular weight is an important factor in the 

detennination of secondary structure and has been shown in both cellulose 

derivatives and poly-L-Ieucine to be important in the level of enantiorecognition 

which is expressed. In the next chapter ther~fore, methods for the control and 

determination of molecular weight of poly-L-Ieucine will be discussed. 
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3.8 CONCLUSIONS 

The use of several methods to synthesise poly-L-Ieucine produces a range of 

structural characteristics. These structural differences can be examined by a range 

of techniques especially MALDI-TOF and electro spray ionisation mass 

spectrometry. The molecular weight range of the polymers will be investigated 

using viscometry. This difficult to obtain from SEC due to the lack of solubility. 
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CHAPTER 4 

CHARACTERISATION OF STRUCTURAL 
CONFORMATION AND CONTROL OF MOLECULAR 

WEIGHT PROFILE OF POLY-L-LEUCINE 

This chapter is intended to examine the characteristic ofpoly-L-Ieucine which may 

make it suitable for use in a chiral stationary phase. The a-helical secondary 

structure of poly-L-Ieucine has been discussed previously (Section 3.2) and the 

need for a regular structure in a chiral stationary phase based on polysaccharides 

was discussed in Section 1.5. It is desirable however, to probe the conformation 

ofpoly-L-Ieucine and how differences in synthesis effect this and the application 

to chromatography. 

The manipulation of the molecular weight profile ofpoly-L-Ieucine can offer 

several different types of peptide to use for chromatography. The molecular 

weight ofpoly-L-leucine was controlled using the technique of solid phase 

peptide synthesis to produce a peptide of predetennined mass. The molecular 

mass ofpoly-L-Ieucine produced using techniques discussed in Section 3.4 was 

also manipulated using continuous extraction. The products of both processes 

were examined by MALDI-TOF and ESl mass spectrometry. 
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4.1 SOLID PHASE PEPTIDE SYNTHESIS (SPPS) 

In 1963 Merrifield 89 first described the technique of solid phase peptide synthesis, 

it was for the development of this technique which he was awarded the Nobel 

Prize for Chemistry in 1984. This technique has proved valuable for the synthesis 

of an extensive library of pep tides. 91 

The essence of SPPS is to retain the proven solution phase chemistry but to add a 

covalent attachment step which links the peptide chain to an insoluble peptide 

support. The solid phase avoids the need for solvent extraction, filtration and 

recrystallisation which are all necessary in classical liquid phase method. 

The peptide is extended through a series of coupling steps which must proceed 

with high yield and accuracy to ensure that the final product is homogenous. The 

coupling steps are driven by the presence of excess reagents, which are removed 

by filtration and washing. This technique lends itself very well to automation 

although the scale is smaller than when the technique is carried out manually. 

It was decided that poly-L-Ieucine should be produced as a 15-mer as it was 

believed that 15 amino acid residues would produce an a-helical secondary 

structure. It was hoped that the absolute control of molecular weight would 

allow us to probed the mechanism of enantiorecognition displayed by poly-L­

leucine and the role of the a-helix. 

All of the solid phase peptide synthesis discussed in this chapter was carried out in 

the laboratory of Dr Brian Ridge (Department of Chemistry, University of Exeter) 

under the supervision of Dr Ridge and Miss M. Palmer. 
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There are several variables in SPPS, these include; 

• Protection scheme 

• Polymeric support 

• Coupling reagents 

• Monitoring techniques 

• Cleavage techniques 
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Figure 4.1.0 Schematic of stepwise solid-phase peptide synthesis of linear 
peptides 
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Protection of either the amine or carboxy terminal functionality allows control of 

the reaction between the end residue of the nascent peptide chain and the 
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incoming amino acid. This prevents reaction between the bulk amino acids in 

solution. One of the most popular forms of protection is the use ofFmoc (N(X-9-

tluorenylmethoxycarbonyl) (Fig. 4.1.0) protection of the amino functionality. The 

use of this temporary base labile group was first described by Carpino et al,91 

Fmoc-amino acids are completely stable to acids and can be stored at O°C with 

little decomposition. Fmoc-amino acids are usually prepared from 

tluorenylmethyl succinimidyl carbonate (Fmoc-OSu). 

Figure 4.1.0 Na-9-fluorenylmethoxycarbonyl (Fmoc) protecting group 

It is this method of protection which was chosen to be used for the synthesis of 

poly-L-IeuI5 because of the mild deprotection step and the commercial availability 

of Fmoc-L-Ieucine. 

4.1.2 Polymeric Support 

The support is often a polystyrene suspension polymer which had been cross-

linked with 1 % of 1 ,3-divinylbenzene; this produces 0.2mmoVg- ' to 1.OmmoVg-' 

functionality at the surface of the bead. The dry beads are usually 50llm in 

diameter although when the beads are swollen for use this can increase to 300llm. 
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Almost all SPPS is carried out in the C~N direction and therefore the first 

reaction in the series is to anchor the initial amino acid to the bead either through 

a suitable handle or directly through the carboxy functionality. 

Fmoc amino acids have been traditionally used with Wang resins 92. These use 4-

alkoxybenzyl alcohol resinl4-hydroxymethylphenoxy (HMPIP AB) linker. In the 

synthesis of poly-L-Ieucine however, the Barlos resin 93 was used. This resin 

(Fig. 4.1.1) uses 2-chlorotrityl chloride as the linker which allows a loading for 

the first amino acid of typically between 0.5-0.8 mmoVg. 

Figure 4.1.1 Barlos resin 
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4.1.3 Coupling procedure 

There are 4 major kinds of coupling techniques that are used in step-wise SPPS; 

• In-situ reagents 

• Active esters 

• Pre-formed symmetrical anhydrides 

• Acid halides 

In-situ reagents are typified through the use ofN,N' -dicyclohexylcarbodiimide 

(nCC) 94 which is also used in solution couplings. Such couplings are often 

carried out in the presence of I-hydroxybenzotriazole (HOBt) which accelerates 

the reaction, suppresses racemisation and inhibits dehydration of the 

carboxyamide side chain of the amino acid to the corresponding nitrile. HOBt 

(Fig. 4.1.2) is a coupling reagent in its own right as it acts as an active ester. It 

was active esters which were chosen to be used as the coupling technique in the 

synthesis ofpoly-L-Ieuts. The hydroxybenzotriazole ion stabilises the transition 

state of the reactive intermediate through anchimeric assistance. This brings the 

free amine of the amino acid residue in line to react with the active ester of the 

carboxy group of the resin bound peptide chain. 2-(IH-Benzotriazole-l-yl)-

1,1 ,3,3-tetramehtyluronium hexafluorophosphate (HBTU) (Fig. 4.1.2) which acts 

in the same manner as HOBt was also used in the synthesis ofpoly-L-Ieuts as it 

provides the hydroxybenzotriazole ion and acts to prevent racemisation of the 

optically pure amino acids. 
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Figure 4.1.3 Active ester coupling reagents 

HOBt 

I-Hydroxybenzotriazole 2-(1 H-Benzotriazole-I-yl)-I, 1 ,3,3-
tetramethyluronium hexafluorophosphate 

The proposed mechanism for coupling using HOBtlHBTU is shown in Figure 

4.1.4. This mechanism begins with the activation of Fmoc.Leu.OH by 

diisopropylethylamine (DIEA) through the deprotonation of the carboxylic acid 

residue. The deprotonated acid then goes on to form an active ester (Fig. 4.1.4). 
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Figure 4.1.4 Formation of the active ester using HOBt 
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Both HOBt and HBTU provide the hydroxybenzotriazole ion which stabilises the 

transition state of the reactive intermediate by anchimeric assistance. This brings 

the free amine of the new leucine in to line to react with the active ester of the 

carboxy group of the resin bound peptide chain. HBTU has a dual purpose in this 
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synthesis; it provides excess hydroxybenzotriazole ion, and it is also an excellent 

agent to prevent racernisation of the optically pure amino acids. 

At this point in the synthesis a test is required to ensure that the next residue has 

been successfully joined to the resin bound peptide chain, this test is called the 

Kaiser test.95 The Kaiser test is based on the use of ninhydrin which produces a 

colour change in the presence of free amine residues (Fig. 4.1.5). Therefore the 

coupling of amino acid to the resin bound chain can be considered to be complete 

on the observation of a negative Kaiser test. 

Figure 4.1.5 Kaiser test 
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As well as the Kaiser test it is important to have an understanding of how much of 

the original loading of peptide chain is still involved in coupling. It is inevitable 

that as the couplings proceed some peptide chains will not be available for 

reaction due to micro heterogeneity; this is the main reason for aiming to have 
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100% reaction every time. The loading study is conducted as an assay of the 

presence ofFmoc residues (Fig. 4.1.6). Fmoc is cleaved with piperidine which 

leads to the formation ofthe piperidine-dibenzofulvene adduct; the production of 

this adduct is conveniently monitored at A = 290nm. 

Figure 4.1.6 UV assay of Fmoc protecting group 
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The absorbance of the solution at 290nm can be converted into a loading value 

through a formula developed by Ridge and Palmer 96 (Fig. 4.1.7), 

Figure 4.1.7 Formula to determine loading in sequential SPPS 
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where; 

A = absorbance at A=290nm 

y = loading, mmol/g 

x = mass of sample in grams 

4.2 THE SYNTHESIS OF POLY-L-LEU1S 

The technique of sequential solid phase peptide synthesis discussed in the previous 

Section allows absolute control over the number of amino acids in the chain. The 

initial approach to the synthesis of poly-L-IeuI5 was to use a sequential approach, 

which proceeded without problem until the coupling of residue 7. Although the 

coupling had been carried out in the same way as all previous couplings when the 

Kaiser test was carried out it was positive. This positive test to the presence of 

free amine suggested that the reaction was either partially complete or had not 

occurred at all. This failure was unexpected. The coupling was repeated with a 

higher concentration of reagent and the reaction was heated to 37 ± 2.0e. The 

synthesis was completed, (the details can be found in Chaper 6). 

The synthesis was also carried out using the coupling of penta-peptides to avoid 

these problem coupling steps. Both of these peptides were analysed using mass 

spectrometry. 

4.2.1 Analysis ofH.LeuI5.0H synthesised by coupling of penta-pep tides 

It was necessary to examine H.Leu5.0H before the coupling of the penta-peptides 

was carried out (Fig. 4.2.1). 
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Figure 4.2.1 ESI mass spectrum ofH.Leus.OH 
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The analysis ofH.LeuI5.0H made by the coupling of penta-pep tides showed that 

several species were present under the ionisation conditions used (Fig. 4.2.2). 

Figure 4.2.2 ESI mass spectrum ofH.LeulS.OH synthesised by penta­

peptide coupling 
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4.2.2 Analysis of sequential synthesis by MALDI-TOF 

MALDI-TOF was used to examine the product of the sequential synthesis as the 

formation of multiply charged ions is not observed. This produces only one series 

of peaks and therefore, the spectra are less complicated (Fig. 4.2.3). 

Figure 4.2.3 MALDI-TOF of sequential synthesis of Fmoc.LeuJ5.0H 
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Fig 4.2.3 shows the MALDI-TOF of the Fmoc protected polymer. The main 

peak is due to the protected fifteen residue peptide, the smaller peaks are due to 

incomplete reaction. The main fragments are due to peptides often and above 

residues. 

4.3 CHARACTERISATION OF THE STRUCTURAL 
CONFORMATION OF POLY -L-LEUCINE 

It was discussed in Chapter 2 that the a-helical secondary structure of cellulose 

derivatives used in the Chiralcel phases is necessary to the enantiorecognition of 
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the phase. The a-helical secondary structure ofpoly-L-Ieucine was also shown to 

be necessary to its ability to participate in asymmetric organic synthesis 

successfully. It is necessary to understand the mechanism of formation and the 

nature of the a-helix in poly-L-Ieucine. It is also necessary to ensure that an a­

helix is produced through the synthesis of both poly-L-Ieu15 and the synthetic 

methods discussed in Chapter3. 

4.3.1 a-helical secondary structure of poly-L-Ieucine 

The helix propensity of a particular amino acid is a measure of how its side chain 

influences the conformation of the peptide backbone. This propensity arises from 

the short range interactions of the side chain with the peptide backbone and the 

solvent, and from the interactions of the peptide backbone with its self and the 

solvent. Baldwin and Chakrabartty 97 describe the helix propensity of an amino 

acid with reference to helix propagation parameters of helix-coil transition theory; 

the s value described by Zimm and Bragg 98 and the w value from the Lifson-Roig 

99 theory. For the purpose of this thesis only the s values described by Zimm and 

Bragg are discussed, however the trends observed for these values are mirrored 

by the w values described by Lifson-Roig (Table 4.3.1). The use of such values 

can determine the tendency of an amino acid to produce a helix; this may be used 

to predict the location of a particular amino acid in a protein. 
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Table 4.3.1 Helix propensity (s values) values for several amino acids 

Residue Structure AK/AQ EAK E4K4 

Alanine 
+~o H3N 1.54 1.81 2.19 

0 

Leucine 0.92 1.03 1.55 
-

+ 0 
H3N 

0 

Serine +~o H3N 0.36 0.28 0.86 

0 

Valine +~o 
H3N 0.22 0.18 0.93 

0 

These s values are based on reference to different monomeric peptides of known 

structure and configuration, the helix propensity of an amino acid was measured 

by substituting the guest amino acid at one or more positions in the reference 

peptide. The change in the conformation of the peptide was measured by circular-

dichroism then analysed using one of the helix-coil transition theories discussed 

previously. 

Leucine has a high tendency to form an a-helix, while alanine was observed to 

have the highest tendency. Serine appears to be indifferent to forming a-helices, 
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while valine is resistant to the formation of an a-helix. Although the s values do 

not agree numerically they are however, highly correlated, and the differences 

between the sets are systematic. The disagreement can be explained by the 

activity of non-helix propensity factors including; helix capping and ion-pair 

interactions that are not corrected for in the analysis. 

4.3.2 The structure of leucine and its implication for the helix propensity 

Leucine has a high propensity to form an a-helix for the following reasons; 

• little loss of side-chain entropy on helix formation 

• the small non-polar side chain can participate in hydrophobic interactions 

with the peptide backbone 

• side chain can not participate in hydrogen-bonding which can de stabilise the 

helix backbone 

The hydrophobic side chain has a strong tendency to avoid exposure to the 

aqueous environment. This is largely due to a entropic effect reflecting the 

unfavourable free energy offorrning a water-hydrocarbon interface. This 

therefore, favours the formation of a low-energy secondary structure which in the 

case ofpoly-L-leucine is an a-helix. 

4.3.3 Implication of the polymeric structure 

The characteristics of a polymer are determined by its secondary structure which 

in turn is determined by the primary structure, that is the monomers from which it 

is constructed. The macrostructure (secondary structure) of the polymer 

determines its physicochemical characteristics such as solubility, melting 

temperature and crystallinity. Poly-L-Ieucine is highly insoluble due to its a­

helical secondary structure. It is possible to form a solution ofpoly-L-leucine 
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using trifluoroacetic acid as a solvent. It can be suggested that this strong acid 

disrupts the hydrogen-bonding which forms the helix. When the helix is broken 

the structure becomes less rigid and is dissolved. 

4.4 ANALYSING THE SECONDARY STRUCTURE OF POLY -L­

LEUCINE 

As poly-L-Ieucine is insoluble without destroying the helix it is not possible to 

examine the secondary structure within a liquid state. H.LeuJs.OH is sufficiently 

soluble in acetonitrile to carry out analysis using circular dichroism. 

4.4.1 Circular dichroism of H.Leuls.OH 

The CD spectrum for H.LeuJs.OH is shown in Figure 4.4.1. 

Figure 4.4.1 CD ofH.Leuls.OH 
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A right-handed a-helix has several distinct characteristics in CD. Essentially, 

these area large maxima at 190nm and two smaller maxima at 208 and 220nm. 
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The CD spectra ofH.Leuls.OH does display a maxima at 190nm. the maxima at 

208 and 220nm are however, less obvious. It can be suggested that this is due to 

'end effects'. The four amino acid residues at the two ends of the peptide do not 

contribute largely to the helical structure. For H.LeulS.OH this means that half of 

the peptide is not involved in the rigid structure. These end residues are 

influenced by the effects of the bulk solvent. As 3.8 residues are required to 

complete one tum of the helix, a maximum of two turns is possible in 

H.Leu\s.OH. The a-helical structural motif ofH.Leu\s.OH is therefore limited. 

In Chapter 5 we examine the effect of this on the enantiorecognition ability of this 

peptide. 

4.4.2 X-ray powder diffraction of poly-L-Ieucine 

The lack of solubility ofpoly-L-Ieucine makes X-ray powder diffraction an ideal 

technique for its study. This study was carried out within the Department of 

Physics at the University if Warwick using a Philips Horizontal Goniometer. The 

spectra was recorded using CuKa light wavelength 1.54178A. Both of the 

samples discussed here had been previously extracted to remove any 

contamination. Figure 4.4.3 shows the X-ray powder diffraction of a amine 

initiated polymer. Figure 4.4.4 shows the X-ray powder diffraction of a sample 

produced in the humidity cabinet. 
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Figure 4.4.3 Amine initiated poly-L-Ieucine 
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Figure 4.4.4 Poly-L-Ieucine from humidity cabinet 
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The very sharp signals which appear after 30 28 are due to the aluminium slide on 

which the sample was mounted. Sharp signals are due to any material which has a 

high level of crystalline structure while amphorous regions generate broad signals. 
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Comparing the two samples it can be suggested that although both samples give 

broad relatively broad signals Fig. 4.4.4 shows some sharper signals. This result 

would suggest that the humidity cabinet method of synthesis produces a polymer 

which is more crystalline. If the poly-L-Ieuicne produced in this manner is more 

crystalline this suggests it has a more regular structure and therefore a higher 

percentage of a-helical structure than material prodcued through diamine 

initiation. 

4.5 CONTROL OF MOLECULAR WEIGHT PROFILE OF POLY -L­

LEUCINE 

It has been shown in previous sections that the molecular weight ofpoly-L­

leucine can be absolutely controlled using the technique of solid phase peptide 

synthesis. Continuous extraction can be used to change the molecular weight 

profile ofpoly-L-Ieucine made using condensation polymerisation. The 

polymerisation of L-Ieucine-NCA by water initiation yielded poly-L-Ieucine 

which can be easily and clearly analysed by MALDI-TOF mass spectrometry. 

This makes this poly-L-Ieucine sample ideal for continuous extraction. It was 

believed that the lower molecular weight components within the whole sample are 

more soluble. This increased solubility is due to the decrease in the relative 

amount of a-helical secondary structure. It was believed that the removal of 

these lower molecular weight fragments would improve the chromatography of 

the complete phase. This is due to the observed increase in the molecular weight 

and the resulting increase in overall a-helical content. Figure 4.5 shows the 

results of the continuous extraction. 
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Figure 4.5 

100 l 
] 27 1.7 

80 ~ 
1 
1 
1 

60 J 

40 ..., I I 

I 

i 
1 

20 • 

~ 
4 

0 ..1 

' \ 

(uLI ./ 
/ 

MALDI-TOF showing poly-L-Ieucine before and after 

continuous extraction 

831.2 

I 
I 
I 

/ , 

,/ 

,/ 

1000 

/t 
/ 

/ 

,// 
/ 

/ 

339.3 

/ ju 

2000 

Mass/Charge 

1170.3 

I I 

It can be seen from Figure 4.5 that the foreground spectra which is the sample 

before continuous extraction has a lower mass centred distribution that the sample 

after continuous extraction. 

4.6 MEASURMENT OF MOLECULAR WEIGHT PROFILE OF 

POLY -L-LEUCINE 

As discussed previously poly-L-Ieucine is insoluble in anything but very strong 

acids. This precluded the use ofGPC to determine the relative molecular weights 

and polydispersity of different samples. Poly-L-Ieucine was examined using 

viscometry and NMR which both provide an insight into the molecular weight 

characteristics ofpoly-L-Ieucine. 
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4.6.1 Viscometry 

Poly-L-Ieucine samples which were synthesised using both L-Ieucine NCA 

initiated by amine and water were examined using this technique. To the best of 

our knowledge the Mark-Houwink parameters are not known for poly-L-Ieucine. 

This means that the viscometry can only produce relative data for the samples 

rather than absolute values. The viscometry was recorded in trifluoroacetic acid. 

The reduced viscosity is the most appropriate measure of viscosity to compare as 

it considers the concentration of the sample. Equations 4.6.1, 4.6.2 and 4.6.3 are 

the formulas used to viscometry. 

Equation 4.6.1 Relative viscometry, Tlrel 

llrel 

to 

where t = time for sample to move inside viscometer 
to = time for solvent to move inside viscometer 

Equation 4.6.2 Specific viscometry, Tlsp 

where t = time for sample to move inside viscometer 
to = time for solvent to move inside viscometer 
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Equation 4.6.3 Red uced viscometry, TJred. 

ll sp 

c 

where C = concentration 

Graph 4.6 Reduced viscosity of Poly-L- Ieucine samples 
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When concentration is equal to zero we measure the viscosity of the sample. 

This value is directly related to the molecular weight of the sample via the Mark-

Houwink constants. To the best of our knowledge the Mark-Houwink constants 

for these samples are not known, it can be assumed however, due to the closeness 

of general structure between the samples these constants may be similar. The 

molecular weight ofpoly-L-leucine synthesised using L-leucine polymerised in a 

humidity cabinet is higher than the L-Ieucine NCA polymerised using a diarnine. 
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4.7 CONCLUSIONS 

A high degree of control over molecular weight ofpoly-L-Ieucine was observed 

through the use of solid phase peptide synthesis. This method did not however, 

produce the homogenous product which was originally expected due to 

unforeseen experimental difficulties. Analysis of the IS-mer peptide using circular 

dichroism showed that although the peptide tended to fonn an a-helix the 

terminal residues of the peptide were not strongly involved in the formation of this 

secondary structure. The analysis ofpoly-L-Ieucine has been limited by its lack of 

solubility in all but high strength acid. 
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CHAPTERS 

THE APPLICATION OF POLY-L-LEUCINE TO 
CHIRALHPLC 

It was shown in Chapters 1 and 2 that optically active polymers, especially those 

based on cellulose. have been very successful as chiral stationary phases for 

HPLC. The synthesis and analysis of poly-L-Ieucine described in Chapters 3 and 

4 show many similar characteristics to the cellulose-based materials. These 

characteristics include; 

• a.-helical secondary structure 

• optically active monomer unit 

The combination of POC with CDMPC was successful for the separation of a 

wide range of analytes. It was hoped that coating POC with poly-L-Ieucine 

would be equally successful and produce a durable and versatile phase. 

5.0 APPLICATION OF CHROMATOGRAPHY TO CHIRAL LIQUID 
CHROMATOGRAPHY OF DIPEPTIDES 

The use of end capped poly-leucine and poly L-phenyl alanine as enantioselective 

agents in liquid chromatography has been described by Hirayama el al .. 100 They 
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discussed the separation ofD-D and L-L dipeptides containing leucine and one 

other amino acid. NCA L-Ieucine was co-polymerised with y-benzyl-L-glutamate 

by amine initiation as well as being used to produce poly-L-Ieucine. They 

prepared polymer bonded and non-bonded phases for use under normal phase 

conditions. The non-bonded spheres were produced by evaporation of a 

suspension of the polymer while the bonded phase was produced using cross 

linked polymer spheres with amine functionality on the surface. They evaluated 

the influence of the N-terminal protecting group on the enantioselectivity of the 

phase. They found that the larger, more bulky the group the lower the 

enantioselectivity of the phase. They concluded that this was due to the increase 

in steric hindrance ofthe peptide toward the analyte. 

Hirayama et al. loo considered the secondary structure of the polymer to be very 

important in the level of enantiorecognition it displayed. They determined by FT­

IR that the polymers they had produced contained a high percentage of a-helix. 

They suggested that the successful use of leucine in a chiral stationary phase was 

due to the presence of the high a-helical content and the stereospecificity of the 

leucine residues within the helix. 

5.1 CHOICE OF ANAL YTES 

Julia and Colonna described chalcone-a,p-epoxide as the first analyte to which 

poly-L-Ieucine successfully showed some enantioselectivity. This analyte was 

used to test column B with reference to blank PGC (Fig. 6.2.2 and Fig. 6.2.1). 
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Figure 5.1.1 Chalcone-a,J3-epoxide on blank PGC 
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Figure 5.1.2 Chalcone-a,J3-epoxide on poly-L-Ieucine coated PGC 
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The structure of chalcone-a,f3-epoxide is shown in Figure 5.2.3. 

Figu re 5.1.3 Chalcone-a,J3-epoxide 

o 

5.2 PREPARATION OF PGC COATED WITH POLY-L-LEUCINE 

The solution ofpoly-L-Ieucine was coated on to the surface using evaporation, 

the phase was then sieved and dried overnight. The phase was slurry packed 

using polar solvents. Typically the phase was packed in to a 100 mm column, 

unless otherwise stated. 

5.2.1 Optimum coating level ofPGC coated with poly-L-Ieucine phases 

The optimum coating level was determined for poly-L-Ieucine using L-Ieucine 

NCA initiated using ethylenediamine. These results are reported in Table 6.1.1 

Table 5.2.1 Coating level ofpoly-L-Ieucine on PGC 

Coating 

Column Analyte level k, kz a 
(% w/w) 

A Chalcone-a,j3-epoxide 10 5.21 5.42 1.04 

B Chalcone-a,j3-epoxide 20 4.45 7.12 1.61 
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A loading level of 30 % w/w was attempted. The POC particles were very 

overloaded with poly-L-Ieucine and could not be sieved. The optimum loading of 

poly-L-Ieucine on POC was therefore, determined to be 20 % w/w. This loading 

level was used for the coating of all samples of poly-L-Ieucine regardless of its 

method of synthesis. 

5.3 ORDER OF ELUTION DISPLAYED BY POLY-L-LEUCINE 
PHASES 

Julia and Colonna found that the main enantiomer produced with poly-L-Ieucine 

was levorotatory and in the case of chalcone-a,p-epoxide the absolute 

configuration is (2R, 3S). Two pure single optical isomers were used to test the 

order of elution ofpoly-L-Ieucine phases. The results of this study are shown in 

Table 5.3.1. 

Table 5.3.1 Isomers used to test order of elution 

Elution Rotation 

Name Structure time direction 

(min) 

(2S,3S)-( -)-3-phenyl 

O~OH 
7.05 levorotatory 

glycidol 
~" 'H 

~I 

(2R,3R)-( + )-3-phenyl 0 dextrorotatory 
H,.L~ ", 

~ 
" .' OH 

glycidol I 
H 7.55 

~ 

132 



In the case of this particular compound (Fig. 5.3.1) the (S)-(-)-enantiomer elutes 

first. This result suggests that the transient interaction complex between poJy-L-

leucine and the (R )-(+)-enantiomer is more stable than that between poly-L-

leucine and the (S)-( -)-enantiomer. In asymmetric organic synthesis 77 the use of 

poly-L-alanine and poly-L-Ieucine generates the levorotatory enantiomer as the 

major product. 

The preference ofa homopoly-L-peptide for (R )-(+)-enantiomers has been shown 

by Hirayama et 01.100 They describe the interaction ofpoly-L-Iysine with a 

cyanine dye NK-2012 (Fig. 5.3.2). 

Figure 5.3.2 Cyanine dye NK-2012 

In the presence ofpoly-L-Iysine the achiral dye molecules dimerize to form chiral 

aggregates with (R )-(+) chirality. Poly-L-lysine is a right-handed a-helix, the 

same structural motif observed with poly-L-leucine. This supports the work 

described in Table 5.3.1. The implication of this study will be discussed with 

respect to a proposed mechanism of enantiorecognition for poly-L-Ieucine later in 

this chapter. 
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5.4 COMPARISON OF POLY-L-LEUCINE TYPES 

As previously discussed poly-L-Ieucine was synthesised using four different 

methods; 

• L-Ieucine NCA initiated by water (Column C) 

• L-Ieucine NCA initiated by diamine (Column B) 

• L-Ieucine polymerised by triphenyl phosphite in N-methyl pyrrolidine 

• solid phase synthesis ofH.LeuI5.0H (Column D) 

Three of these methods produced poly-L-Ieucine that was believed to be suitable 

for application to HPLC. The polymerisation ofL-leucine NCA using water or a 

diamine to initiate the reaction produced linear polymers which can be considered 

to have an a-helical secondary structure. The peptide H.LeuI5.0H, although this 

was found to contain some contamination by lower mass fragments, is essentially 

monodispersed relative to the other poly-L-Ieucine samples. 

The use oftriphenyl phosphite in N-methyl pyrrolidine has been shown by 

MALDI-TOF to contain cyclic peptides. As it is not possible from MALDI-TOF 

to assess what percentage of the sample is cyclic peptide, this sample was not 

used for chromatography. This thesis is particularly interested in the relationship 

between enantioselectivity and the a-helical secondary structure. The presence of 

cyclic peptides is therefore, not desirable. The results of these columns with 

chalcone-a.~-epoxide is shown in Table 5.3.0 
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Table 5.4.0 Comparison of different poly-L-Ieucine samples 

Column kl kz a Rs 

B 4.45 7.13 1.61 1.30 

C 4.33 8.57 1.98 1.49 

D 4.82 - - -

Mobile phase: Acetonitrile/water (90: 1 0 v/v), column B contains diamine initiated 

poly-L-Ieucine, column C contains water initiated poly-L-Ieucine, column D 

contains H.Leu\s.OH. Flow rate: 0.5mVrnin 

Colurrm B displays baseline separation of chalcone-a,p-epoxide with good peak 

shape. Colurrm C displays both higher selectivity and resolution than column B. 

It displays baseline separation with good peak shape. Column D showed no 

separation for chalcone-a,p-epoxide and displays a very tailed peale For the 

separation ofchalcone-a,p-epoxide therefore, the use ofpoly-L-Ieucine 

synthesised using water initiation is most successful. 

5.4.1 Unexpected separation of trans-Stilbene oxide 

Chalcone-a,p-epoxide was the first analyte to be used successfully with poly-L­

leucine as an asymmetric organic catalyst.77 It fonns the structural basis for many 

ofthe analytes which have been successfully used with poly-L-Ieucine. The need 

for the presence of an a,p-unsaturated ketone functionality was considered to be 

necessary for the action ofpoly-L-Ieucine. It was unexpected therefore, when 

trans-stilbene oxide (Fig. 5.4.1) was successfully resolved on a poly-L-Ieucine 

column. 

135 



Figure 5.4.1 trans-Stilbene oxide 
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trans-stilbene oxide was therefore used to compare columns B and C (Fig. 5.4.2) 

Figure 5.4.2 Comparison of different poly-L-Ieucine samples using 

trans-stilbene oxide 

Column k. k2 a Rs 

B 5.20 5.69 1.09 0.49 

C 4.35 4.92 1.13 0.71 

D 4.65 - - -

Mobile phase: Acetonitrile/water (90: 10 v/v), column B contains diamine initiated 

poly-L-Ieucine, column C contains water initiated poly-L-Ieucine, column D 

contains H.Leu\s.OH. Flow rate: 0.5ml/min 

The results shown for chalcone-a,~-epoxide are repeated for trans-stilbene oxide. 

The use ofpoly-L-Ieucine made from L-Ieucine-NCA by water initiation produces 

the most successful phase. Column C displays the largest capacity factor, a, 

which suggests that this form ofpoly-L-Ieucine has a higher level of 

enantiorecognition that poly-L-Ieucine made by amine initiation. 
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5.4.2 Explanation of differences between Columns Band C 

It was shown in Chapter 4 that the molecular weight of amine initiation poly-L­

leucine was lower than the water initiated sample. It can be suggested therefore, 

that the water initiated polymer has a higher level of a.-helical structure. It can 

also be suggested that the inclusion within the polymer of the diamine initiator 

may disrupt the secondary structure. This however, has not been investigated. 

Roberts et al. 81 have investigated the use of various poly-L-Ieucine samples 

including polymers made by both water and amine initiation. Using this procedure 

described by Itsuno 100, Roberts et al. 102 also produced an immobilised poly-L­

leucine sample (Section 3.4.4). The immobilised poly-L-Ieucine gave superior 

enantiomeric purity and chemical yield compared with non-immobilised samples. 

Roberts et al. 101.102 found that material produced using the humidity cabinet gave 

both higher optical and chemical yield than the amine-initiated polymer. This 

supports the results obtained from 

columns B and C. It can be suggested that the method of synthesis of poly-L­

leucine effects the secondary structure and therefore, the enantioselective ability 

of the polymer. 

5.5 THE EFFECT OF MOLECULAR WEIGHT ON THE 

ENANTIOSELECTIVITY OF POLY-L-LEUCINE PHASES 

Molecular weight has been controlled using solid phase peptide synthesis and 

continuous extraction. Both of these peptides were applied to chromatography. 

5.5.1 The application of B.LeuIs.OB to chromatography 

It was shown in Sections 5.3.0 and 5.4.2 that column D does not resolve either of 

the analytes tested. This column was produced using poly-L-Ieucine using solid 

phase peptide synthesis. Although from examination by MALDI-TOF 
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H.Leu\s.OH contains peptides with 10,11,12,13 and 14 residues. These peptides 

are due to the incomplete synthesis of each stage in the solid phase synthesis. 

Comparing this peptide to a polymer made by condensation polymerisation it can 

be considered to be essentially monodisperised. Analysis ofH.Leu\s.OH by 

circular dichroism, discussed in Section 4.3, discusses the percentage of a-helical 

secondary structure contained within the IS-residue peptide. The rather low 

percentage can be considered to be due to the end-effects of the peptide. The 

terminal four amino acid residues of the peptide will be interacting with the bulk 

solvent, this prevents them from being wholly included in the intra-chain hydrogen 

bonding which holds the a-helical structure together. In a peptide of 15 residues 

therefore, half the peptide is not wholly involved in forming the helical structure. 

This low helical content could explain the lack of enantioselectivity observed for 

this peptide. 

5.5.2 The application of a continuously extracted poly-L-Ieucine 

to chromatography 

The result of the continuous extraction ofpoly-L-leucine made by water initiation 

of L-leucine NCA is discussed in Chapters 4 and 6. A column (column E) was 

produced using this polymer is the usual manner. Some results of this column are 

shown in Table 5.5.2 

Table 5.5.2 Continuous extraction polymer column - column E 

Analyte k. k2 a Rs 

Chalcone-a,p-epoxide 4.39 9.02 2.05 1.52 

trans-stilbene oxide 4.38 5.19 1.18 0.95 
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These results are better than was observed for columns B and C. It can be 

suggested therefore, that continuous extraction does provide a polymer with 

increased enantioselectivity due to the increase in molecular weight distribution 

due to the removal of lower mass fragments. 

5.6 PRODUCTION OF OPTIMUM COLUMN 

To explore the use of several different analytes we produced an optimum column. 

Poly-L-Ieucine which had undergone continuous extraction was chosen as the 

enantioselective section of the phase. The phase was produced as a 20% w/w 

loading, this was packed into a 250mrn x 4.6 i.d. column. This column was used 

to successfully resolve several racemic epoxides discussed in Table 5.6.1. 

These epoxides have several structural characteristics, and in essence they are all 

electron-deficient epoxides. To the best of our knowledge trans-stilbene oxide has 

not been discussed in the literature previously with reference to poly-L-Ieucine. 

This compound differs as it does not contain an a-ketone group. This compound 

is resolved completely on a poly-L-Ieucine based column. This suggests that 

although an a-ketone group may improve the interaction between poly-L-Ieucine 

and the analyte it does not appear to be a necessity. Ethyl-(±)-3-phenyl glycidate 

is the only compound discussed which does not contain two phenyl groups. This 

compound does show the lowest resolution and capacity factors. This suggests 

that the enantioselective interaction between this compound and poly-L-Ieucine is 

relatively weak. From these results it can be seen that the presence of an 0.­

ketone group to the epoxide which has an aromatic system either side, provides 

the highest level of enantioselective interaction. 
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Table 5.6.1 Successful chromatography on 250mm column 

Name 

Chalcone-a,p-epoxide 

trans-stilbene oxide 

ethyl-(±}-3-phenyl glycidate 

trans-4-phenylbut-2-ene-

1,4-dione 

bis-(3-phenyl-oxiranyl 

methanone} 

Structure 

o 

o 

o 

o~ 

o 
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4.35 10.68 2.56 

4.33 5.82 1.34 

2.05 2.42 1.18 

5.58 12.45 2.13 

6.47 12.30 1.90 



5.6.2 Separation of bis-phenyl-oxiranyl methanone 

This compound exists as a mixture of two pairs ofenantiomers (Fig. 5.6.2). 

Figure 5.6.2 Mixture of enantiomers 

Left hand side Right hand side Characteristic 

epoxide epoxide 

R,S R,S half of enantiomer pair 

R,S S,R meso mixture 

S,R R,S meso mixture 

S,R S,R half of enantiomer pair 

When this mixture of isomers is resolved on a column the meso mixture would 

not be resolved. This would led to three peaks being observed. The separation of 

bis-phenyl-oxiranyl methanone is shown in Fig. 5.6.3. 
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Figure 5.6.3 Resolution of bis-phenyl-oxiranyl methanone on column E 
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Mobile phase: acetonitrile/water (90: 1 0 v/v) 
Flow rate: 0.5 mL/min 

Fig. 5.6.3 shows the expected three peaks. The small peak at the front of the 

chromatogram is flow marker. It is possible to assign these peaks by weight. The 

peaks which correspond to the pair of enantiomers should be equivalent in weight. 

The meso mixture will be ofless weight as the formation of this mixture is not 

favoured. Fig. 5.6.4 shows the assignment ofthese peaks. 

142 



Figure 5.6.4 Assignmnent of peaks in the resolution of bis-phenyl-oxiranyl 

methaDone 

Peak number Average weight of 
Assignment 

(with order of peaks 

elution) (g) 

1 0.0156 meso mixutre 

2 0.0234 enantiomer 1 

3 0.0243 enantiomer 2 

From this study it can concluded that 24.6% of the sample of bis-phenyl-oxiranyl 

methanone is produced as a meso mixture of enantiomers, (R,S), (S,R) and (S,R), 

(R,S). Having characterised the peaks within the spectra it is possible to 

determine selectivity and resolution values for the enantiomers. The a-value for 

the two enantiomers was found to be 0.53, while the resolution value was found 

to be 1.23, which corresponds to baseline resolution. 

5.7 UNSUCCESSFUL CHROMATOGRAPHY 

In the same way that as an asymmetric organic catalyst poly-L-leucine was 

inactive with certain compounds, the use ofpoly-L-Ieucine in a CSP has also been 

shown to be unsuccessful for particular compounds. These compounds are shown 

in Table 5.7.1. 
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Table 5.7.1 Unsuccessful analytes for poly-L-Ieucine column E 

(±)-glycidyl-2-methylphenyl ether 

(±)-l ,2-epoxy-3-phenoxy propane 

(±)-2,3-epoxycyclohexanone 

benzoin methyl ether 

~o~ 
U 

o 

o 

The unsuccessful compounds in two cases contain terminal epoxides, poly-L-

leucine does not offer any selectivity between these enantiomers. Benzoin methyl 

ether does not contain an epoxide. On celluose based phases this compound is 

very well resolved. Poly-L-Ieucine does not separate these enantiomers. (±)-2,3-

epoxycyclochexanone was used by Julia et af. 79 and its synthesis was found not to 

be effected by the presence ofpoly-L-Ieucine. This compound was not resolved 

on the poly-L-Ieucine column. 

5.8 PROPOSED MECHANISM OF ENANTIORECOGNITION OF 
POLY-L-LEUCINE 

Julia et of .. 79 suggest that hydrogen bonding between the carbonyl functionality of 

the chalcone and the peptide group ofpoly-L-Ieucine is responsible for the 

asymmetric synthesis of the epoxide. The resolution of trans-stilbene oxide on a 
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poly-L-Ieucine column shows that although this hydrogen bonding between the 

poymer and the carbonyl group may be a contributory factor to the 

enantioselectivity of the phase it can not be the whole reason. Interaction 

between the epoxide and poly-L-Ieucine appears to be far more important. 

The order of elution study shows that levorotatory enantiomer eluted first and this 

enantiomer is the major product from asymmetric synthesis. This suggests that 

the levorotatory epoxide enantiomer interacts less strongly with poly-L-Ieucine 

than the dextrorotatory epoxide enantiomer. It could be suggested that the 

transition state of the levorotatory enantiomer with poly-L-Ieucine is of lower 

energy and therefore, dominates. This leads to the synthesis oflevorotatory 

product in preference to dextrorotatory product. In our work the only compound 

present was the epoxide, no a,(3-unsaturated ketone was present. We can not say 

therefore, that the interaction which cause poly-L-Ieucine to discriminate between 

epoxides are necessarily the interactions which cause the production of single 

enantiomers from an a,(3-unsaturated ketone. 

It can be suggested that hydrogen bonding between the electron-deficient epoxide 

and the peptide group determines the enantiorecognition. The non-uniformity of 

the separations observed teU us that this interaction is different in the different 

samples ofpoly-L-Ieucine produced. To establish whether the primary structure of 

diamine initiated poly-L-Ieucine or its lower molecular weight profile relative to 

poly-L-Ieucine produced in the humidity cabinet is responsible for the differences 

observed in enantioselectivity will require more work. Computer modelling of the 

polymers could be used draw conclusions as to the nature and energy of the 

binding of an epoxide. Establishing the role of molecular weight depends on the 

ability to control the synthesis and develop adequate techniques for analysis. 
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5.9 CONCLUSIONS 

It has been shown that porous graphitic carbon coated with poly-L-Ieucine is an 

effective chiral stationary phase for high perfonnance liquid chromatography. 

Although the range of analytes resolved on these columns is limited to epoxides, 

this is consistent with the work of Julia and Colonna, and Roberts with the 

exception of the resolution of trans-stilbene oxide. It has been demonstrated that 

poly-L-Ieucine produced from the homopolymerisation ofL-leucine-NCA in a 

humidity cabinet and its subsequent continuous extraction produced the optimum 

phase ofthis study. MALDI-TOF allowed us to probe the primary structure of 

poly-L-Ieucine produced using several methods. Using comparative MALDI­

TOF spectra we can suggest that the extracted poly-L-Ieucine had a higher 

molecular weight distribution and this appears to contribute to the increase in 

enantiorecognition. The secondary structure ofpoly-L-Ieucine has been probed 

by FT -IR and circular dichrosim and has been shown to be dominated by the 0.­

helical structural motif This helical secondary structure appears also to be very 

important in the enantiorecogntion ability of the poly-L-Ieucine samples tested. 

Although the exact nature of the enantiorecognition ofpoly-L-Ieucine has not 

been absolutely determined it has been shown that poly-L-Ieucine can discriminate 

between enantiomers while it is coated on to a surface. 

The range of compounds tested both in this study and in the literature in general 

suggests that poly-L-Ieucine has a highly specific structural requirement from the 

analyte in order to display anyenantioselectivity. This feature however, limits the 

applicability of this phase. The commercial possibilities for this phase are 

extremely limited due to the highly specific nature ofthe enantiomers which it will 

separate. The production of this phase does however, introduce useful 
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technology and methods which may be exploited in the future to produce CSP 

which can rival derivatised polysaccharides. The use of amino acids in CSP offers 

an interesting opportunity to exploit the wide range of functionality available. 

Many amino acids have pendant functionality such as aspartic acid and tyrosine 

which contain carboxyl and phenolic residues respectively. This functionality 

offers the opportunity for derivatisation in an analogous manner to the carbamate 

and benzoate derivatisation of polysaccharide phases. The production of a helical 

secondary structure which appears to be necessary for enantioselectivity could be 

encouraged through the production of co-polymers with amino acids which 

possess a high tendency to form helices such as leucine and alanine. The use of 

such polymers can be envisaged not only in CSP but also as irnmobilised catalysts 

for asymmetric organic synthesis. 
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CHAPTER 6 

EXPERIMENTAL 

6.0 SOLVENTS, CHEMICALS AND INSTRUMENTATION 

All infra-red spectrometry was carried out using a Perkin-Elmer 1720X series FT­

IR instrument. The ultra-violet spectrometry data was recorded using a Unicam 

8700 series spectrometer. All melting point data was recorded using a 

Gallenkamp digital melting point apparatus and are uncorrected. Analysis of the 

percentage content carbon, hydrogen and nitrogen was taken at the University of 

Warwick using a Leeman Labs. Inc. CE440 elemental analysis apparatus. In all 

case duplicate analysis was carried out. Nuclear magnetic resonance (NMR) data 

were recorded using a Bruker ACF 250, proton NMR was recorded at 250 MHz 

and the carbon NMR was recorded at 62.9 MHz. The mUltiplicity of the data is 

reported as; s = singlet, d = doublet, t= triplet, q = quartet, quin = quintet, m = 

multiplet and br = broad. Coupling constants, 1, are reported in Hz. 

Thin layer chromatography (TLC) was carried out using silica-gel 60 plates with 

fluorescent indicator (Merck). 
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Chromatography was carried out using silica gel (Keislegel 60), compressed air 

was applied to produce flash chromatography. 

All Hypercarb PGC and silica were gifts from Hypersil. Sigmacel cellulose was 

purchased from Sigma (UK) and A vicel cellulose was purchased from Merck 

(Germany). 3,5-dimethylphenyl isocyanate was purchased from Lancaster (UK). 

N,N-dimethylacetamide and trifuoroacetic acid were purchased from Aldrich 

(UK). 

Pyridine was obtained from Fluka. All other solvents (HPLC grade) were 

obtained from Rathburn (UK). 

In the synthesis of poly-L-leucine using solid phase peptide techniques all reagents 

were purchased from Novabiochem and were used without further purification, 

with the exception of hydroxybenzotriazole (HOBt). HOBt was purchased from 

Lancaster and was recrystallised from methanol to constant melting point. DMF 

was purchased from Rathburn (AR grade) and was distilled before use. 

6.1 SYNTHESIS OF CDMPC 

This reaction was carried out in a fume hood as 3,5-dimethylphenyl isocyanate is 

lachrymatory and toxic. 

Cellulose was dried over P20s for 24 hours, then refluxed in dry pyridine 

(50 mLig of cellulose) for 24 hours to ensure complete wetting of the cellulose. 

The reaction was then allowed to cool to ambient temperature, 3,5-

dimethylphenyl isocyanate(3.5 equivalents) was added. The reaction was refluxed 
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filtered and washed with ice cold methanol (5 x 20 mL) or until the odour of 

pyridine is no longer detected. The cellulose carbamate was dried at 50°C to 

constant weight. Yields are shown in Table 6.1. 

Table 6.1 Yields of the synthesis of CDMPC 

Amount of Amount of 
Sample Cellulose cellulose(g) isocyanate Yield (g) Yield (%) 

type (mL) 

CDMPC-l Avicel 1.60 5.0 4.40 73.9 

CDMPC-2 Avicel 1.60 5.0 5.80 97.35 

CDMPC-3 Sigrnacel 1.60 5.0 5.70 94.0 

6.2 ELEMENT AL ANALYSIS 

The results are shown in table 6.2. 

Table 6.2 C,H and N results for CDMPC 

Sample % carbon % hydrogen % nitrogen % conversion 
ofOH 

groups· 
Theoretical 65.67 6.14 6.97 100 

values 
CDMPC-l 63.89 6.12 6.54 93.4 

CDMPC-2 64.02 6.13 6.65 96.8 

CDMPC-3 63.85 6.10 6.61 92.6 

* calculated by using the line of best fit through carbon values for mono, di and 

tri-substituted derivatives and then substituting the percentage carbon value to 
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obtain the number of groups which have been successfully derivatised (Graph 

6.2.1). 

Graph 6.2.1 Conversion of cellulose by 3.5-dimethylphenyl isocyanate 

65 

1.0 1.5 2.0 2.5 3.0 

No. of hydroxy residues oonverted 

6.3 PREPARATION OF CDMPC-COATED PHASES 

6.3.1 Preparation of CDMPC-coated APS phase 

Hypersil APS (Batch 3156, 3.0 g, 5 Jlm) was refluxed for 30 minutes in THF (60 

mL). CDMPC-2 (0.75 g) was dissolved in THF(20 mL) and N,N-

dimethylacetamide (2.22 mL). The carbamate solution was added to the PGC and 

placed on a rotary evaporator in a batlled flask to aid mixing of the two solutions. 

A light vacuum is applied to the batlled flask for 1 hour. The temperature is raised 

to 35-40 DC, the solvents are therefore removed to yield a white powder. To 

removed all traces on N,N-dimethylacetarnide the baffled flask is attached to a 

vacuum pump for 3 hours. 
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6.3.2 Preparation of CDMPC-coated PGC phases 

PGC( 1.1 g, 5 Jlm particle diameter) was weighed in to a baffled flask and refluxed 

in THF (30 mL). CDMPC was stirred in THF until the carbamate had dissolved. 

The CDMPC solution was added to the PGC, the solvents were then slowly 

removed in vacuo. The exact quantities are shown in table 6.3. 

Batch coating 

The carbamate solution was divided into five equal portions. One portion was 

added to the PGC and the solvents were removed in vacuo. When dryness was 

achieved the PGC was broken up and the next portion of CDMPC was added. 

This process was repeated until all of the CDMPC solution had been added. 

Single step coating 

The carbamate solution is added in one portion to the PGC, the solvents are 

removed and the PGC processed as normal. 

Table 6.3 Quantities used for the preparation of CDMPC phases 

Sample Coating Mass of Mass of each % coating 
method CDMPC(g) portion(g) J,w/wl 

PGC-1 Batch 0.40 0.08 25 

PGC-2 Single-step 0040 - 25 

PGC-3 Batch 0.514 0.171 30 

6.3.3 Packing procedures 

The coated PGC sample (1.1 g) was slurried in hexane/2-propanol (1: 1 v/v, 30 

mL) and was sonicated for 3 minutes. The Haskel 780-3 column packer was 
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purged with packing solvent (hexane/2-propanol, 80:20). The slurried solid was 

quickly added to the solvent reservoir (30 mL), which had been previously 

connected to the column packer. A HPLC column (100 rnm x 4.6 rnm i.d.) was 

connected to the top of the reservoir. The column was upward slurry packed at 

8000-9000 psi. for 10 minutes or until approximately 150 mL of solvent had been 

passed. The column was then inverted and downward packed for the same 

amount of time or for the same volume of solvent. The pressure was then slowly 

released to atmosphere and the column could be removed from the packer. A 1-2 

cm sample plug ofCDMPC-PGC was retained in the solvent reservoir which can 

be examined to determine the effects, ifany, of the packing procedure on the 

characteristics of the CDMPC-PGC. The columns are equilibrated with hexanel2-

propanol (90: 10 v/v) for 24 hours at 0.5 mL/min. 

6.4 GEL PERMEATION CHROMATOGRAPHY (GPC) 

GPC was carried out to establish the molecular weight distribution of the sample 

with reference to a known standard. The system in this case was calibrated by a 

series of standard Polymethylmethacrylate samples supplied by Polymer 

Laboratories. 

The instrument used was a dual piston HPLC pump (ICI instruments LC 1110) 

with a refractive index detector (lCI instruments LC 1240). The guard column 

used was a Polymer Laboratories 5 J..Im (5.0 x 7.5 rnm) and a main column of 

Polymer Laboratories mixed E phase 3 J.1m (300 x 7.5 rnm). The samples were 

prepared in THF with 0.1 % toluene as a flow marker. The results are shown in 

Chapter 2, Table 2.0.1. 
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6.5 DETERMINATION OF PARTICLE SIZE 

As discussed in Chapter 2 particle size was determined by both laser light 

scattering and scanning electron microscopy. 

Laser light scattering was carried out using a Malvern Mastersizer X. A control 

measurement was taken using HPLC grade methanol. The sample was sonicated 

in HPLC grade methanol with sodium diphosphate added as a dispersant. The 

optimum concentration of sample was found to be 3 mglmL. The slurry was 

pipetted into the test cell until the obscuration measurement was in the normal 

range and a measurement was taken. The results can be seen in table 6.4. 

Table 6.4 Results from laser light scattering 

Sample Carbamate Mean particle Observed particle 
loading (% w/w) size (J.1m) size distribution 

CDMPC-PGC-I 25 bimodal, very wide 

(Batch coating) 13.35 distribution 

CDMPC-PGC-2 25 bimodal, less broad 

(Single-step 20.70 distribution than 

coating) CDMPC-PCG-l 

Scanning electron microscopy(SEM) 

The work here was carried out in the Department of Physics, University of 

Warwick, using a Cambridge Instruments Stereoscan S250 Mk3. The sample was 

held on an aluminium sample stub and was sputter coated with gold to improve 

detection. 
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The results can be seen in chapter 2, section 2.1.4. 

6.6 CHROMATOGRAPHIC EVALUATION OF CDMPC-COATED 

PHASES 

All separations in this thesis was carried out on a system consisting of a Waters 

510 pump, a Pye Unicam UV detector, Rheodyne 7125 injector with a 10 Jllloop 

and a J Instruments CR650 chart recorder. 

All the separations were carried out at ambient temperature using the conditions 

decreased with each experiment. A suitable wavelength was chosen for the 

detection of each analyte. This was usually 254 nm, unless an alternative 

wavelength was chosen. The mobile phase was filtered through a porous glass 

filter (grade 2) then degassed by sonicating under vacuum for 5 minutes before 

use. The dead time (to) of the column was determined by addition of 1,3,5-tri­

tert-butylbenzene in normal phase and acetone in reversed-phase conditions. 

6.7 SYNTHESIS OF POLY-L-LEUCINE 

L-Ieucine used was purchased from Lancaster, OH( 250 MHz; 0 20; NaOD) 1.19-

1.23 (6 H, m, 2-CH3), 1.69-2.02 (4 H, m, 2-CH and CH2), 3.67-3.72 (lH, m, 

NH2). 

Anhydrous conditions 

When anhydrous conditions are required the reaction was carried out using a 

Schlenk line attached to nitrogen and vacuum. The glassware used was flame 

dried under alternate vacuum then nitrogen atmosphere to remove all surface 

bound water and oxygen. 
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6.7.1 Synthesis of N-carboxy anhydride L-Ieucine (NCA L-Ieucine) 

This procedure was described by Katakai and Iizuka82 
• 

This reaction was carried out under anhydrous conditions. The reaction was put 

under an inert atmosphere which all excesses gases being passed through water. 

The whole apparatus was set up in a fume cupboard. 

L-Ieucine (6.1 g, 0.054 mol) and activated charcoal (0.2 g) were suspended in 

THF (60 mL). To the suspension was added trichioromethyl chloroformate 

(TCF) (15 g, 0.076 mol, 40 % excess). The reaction temperature was gently 

increased to 55°C. When this temperature was reached the amino acid dissolved 

to produce a yellow/green solution. The solution was left at this temperature and 

stirred for 2 hours. Remaining in the fume cupboard, the solution was then 

filtered through celite. The filtrate was reduced in vacuo at 30°C to a yellow oil. 

The product was obtained from this oil as the ice-cold hexane(60 mL) insoluble 

fraction. L-leucine NCA was recrytallised twice from diethyl etherlhexane (1: 1 , 

20 mL), this yielded a highly crystalline white product (7.1 g, 0.0496 mol, 91.9 

%). mp = 76.7 °C (lit., = 76-77 °C); IR(KBr) vmax/cm- I 

3297.6, 1831.6, 1754.1, 1458.6; oH(250MHz, CDCh) 0.96 (6H. t, 2-CH3), 1.74 

(4H, m, CH and CH2), 4.35 (lH, m, NH). 

6.7.2 Polymerisation of L-Ieucine NCA using the humidity cabinet 

The humidity cabinet used in this process was a modified desiccator. The base of 

the desiccator was filled with distilled water. The top of the desiccator was 

connected to a supply of compressed air with had been previously bubbled 

through water. 
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L-Ieucine NCA (7.1 g, 0.0496 mol) was placed on a watch glass then placed in 

the modified desiccator for 3 days. Poly-L-Ieucine was recovered as a white 

powder(6.5 g). The poly-L-Ieucine was then washed with diethyl ether (40 rnL) 

to remove any unreacted L-Ieucine NCA, this yielded poly-L-Ieucine (6.3 g). 

mp = > 250°C decomp., IR(KBr) vmax/cm-I 3287.0, 1655.3, 1461.5; Found: C, 

61.68; H, 9.63; N, 11.98. Calc. for (C6N)OIH II )x : C, 63.12; N, 12.38; H, 9.73; 

oH(250MHz, CDCh) 1.19-0.95 (rn, br, CH3), 1.82-1.73 (rn, br, CH2 and CH) 

4.58-4.87 (rn, br, NH). 

6.7.3 Polymerisation of L-Ieucine NCA via amine initiation 

This reaction was carried out in a fume cupboard using anhydrous conditions. 

L-Ieucine NCA (2.50 g, 15.92 rnmol) was stirred in anhydrous dichloromethane. 

In another flask ethylenediamine (8.89 mL, 0.133 mmol) and triethylaluminium 

(0.07 mL, 0.133 rnmol) were mixed in anhydrous toluene (10 mL). The L-Ieucine 

NCA solution was slowly added to the initiator/catalyst solution, on addition the 

solution became opaque white. The reaction was stirred overnight. The solvents 

were removed in vacuo to yield a white solid. Poly-L-Ieucine was washed with 

toluene (3 x 10 mL), then dried over P20 S overnight. Poly-L-Ieucine was 

recovered as a white powder( 1.98 g). mp = > 250°C decomp. Found: C, 63.21; 

H, 9.62; N, 12.26. Calc. for (C6NIOIHII)x : C, 63.12; N, 12.38; H, 9.73; 

oH(250MHz. CDCh) 0.83-0.95 (rn, br, CH3), 1.18-1.32 (rn, br, CH2), 1.55-1.58 

(rn, br, CH) 3.46-3.74 (rn, br, NH). 
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6.7.4 Polymerisation of L-Ieucine 

LiCI (1.0 g) and poly-vinylpyrrolidine (1.0 g, molecular weight = 3.6xl0s) were 

dissolved in N-methyl pyrrolidine (30 mL). L-Ieucine (1.13 g, 0.01 mol) and 

triphenylphoshite ( 3.1 g, 0.01 mol) were added to this solution with stirring. The 

solution was heated to 80°C and left to stir for 8 hours. The solvent was removed 

in vacuo to yield poly-L-Ieucine as a pale yellow solid. Poly-L-Ieucine was 

washed in boiling methanoVwater (I: 1 v/v, 50 mL) for 1 hour, this was followed 

by 1 hour washing in boiling water (50 mL). The polymer was recovered by 

centrifugation as a white/yellow solid product (0.96 g), mp = >250 °C, Found: C, 

63.21; H, 9.62; N, 12.26. Calc. for (C6N 10 1H ll)x : C, 61.12; N, 10.18; H, 9.33; 

OH(250MHz, CDCh) 0.80-0.89 (m, br, CH3), 1.05-1.12 (m, br, CH2), 1.32-1.40 

(m, hr, CH) 3.76-3.94 (m, br, NH). 

6.7.6 Continuous extraction of poly-L-Ieucine 

Poly-L-Ieucine (2.0 g) (section 6.7.2) was extracted using the soxhlet extraction 

technique. The solvent used was DMF/ethanol (5: lv/v, 150 mL). The sample 

was extracted for 48 hours. The solvent was dried in vacuo to yield a solid white 

product (0.4912 g). The extracted sample was a fine white powder (1.48 9g, 74.5 

% yield by weight). Found: C, 63.70; H, 9.71; N,12.39. Calc. for (C6N 10 1H lI )x : 

C, 63.12; N, 12.38; H, 9.73. 

6.8 SOLID PHASE SYNTHESIS OF H.LEUls.OB 

When anhydrous conditions were required the glassware was oven dried at 

250°C, then purged with argon. An inert atmosphere of argon was maintained 

throughout the reaction. 
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All reagents were purchased from Novabiochem and were used without further 

purification. with the exception ofhydroxybenzotriazole (HOBt). HOBt was 

purchased from Lancaster and was recrystallised to constant 

6.8.1 Functionalisation ofthe resin 

This reaction was carried out under inert conditions. 

Fmoc.Leu.OH (0.565 g, 1.6 mmol) was dissolved in anhydrous dichloromethane 

(20 mL) and dimethyiformamide(DMF) (1.0 mL). This solution was added to 2-

chlorotrityl chloride resin(2.011 g) with diisopropylethyl amine(DIEA) (3.44 g, 

0.46 mL, 1.32 mmol) in anhydrous dichloromethane (20 mL). The reaction was 

left to stir for 5 minutes. Diisopropylethyl amine in dichloromethane(CH2Ch) (1: 1 

v/v, 0.92 mL) was added to the reaction. resulting in the liberation of white fumes 

ofHCl. The reaction was left to stir for a further 20 minutes. Excess methanol (4 

mL) was added and the reaction was left to stand for a further 10 minutes. 

6.8.2 Washing procedure 

This procedure is used after every coupling step and uses alternate solvents which 

swell the resin then cause it to contract (Table 6.8.2). This promotes through 

washing of the resin and removal of all excess reagents. 

The resin is washed with the following solvents, after each washing step the 

solvent is removed with vacuum. 
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Table 6.8.2 Standard washing procedure 

Volume per 

Solvent Repetitions repetitions 

(mL) 

dichloromethane 3 10 

dimethylforrnamide 2 10 

2-propanol 2 5 

dimethylforrnamide 2 5 

2-propanol 2 5 

methanol 2 5 

diethyl ether 2 5 

6.8.3 Equipment used in SPPS 

The glassware used in these reactions was designed to allow all the processes to 

be carried out without the resin having to be transferred between vessels. The 

glassware shown in figure 6.8.3 was designed by Dr B Ridge and was made in­

house in the Department of Chemistry, University of Exeter. 
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Figure 6.8.3 Glassware used in SPPS 
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6.8.4 Ultra-violet monitoring of Fmoe residue 

Three silica UV-cells were used to record the UV absorbance of the sample at 

A, = 290nm (Table 6.8.4). 

Table 6.8.4 UV monitor for Fmoe residue 

UVeell 1 2 3 

Contents Blank Img of resin 1 mg of resin 

Washed resin (1 mg) is placed in a clean, dry silica UV cell. A solution of 20% 

piperidine in anhydrous dimethylformamide (3 mL) is added to each cell. The UV 

absorbance at 290nm was recorded. Using equation 6.8.4.1 the absorbance data 
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can be used to calculate the concentration (mmol/g) of Fmoc residues present and 

therefore assay the level of derivatisation. 

Equation 6.8.4.1 Assay of Fmoc derivatisation 

Mean absorbance 

(Fmoc residues] mmoVg 

Extinction coefficent x Mean mass of sampJe(g) 

where Extinction coefficent = 1650 

6.8.5 Loading profile of sequential SPPS of H.Leuls.OH 

Using the assay ofFmoc residues to monitor every coupling step a graph can be 

plotted to show the progression of the reaction(Graph 6.8.5). 

Graph 6.8.5 Fmoc assay of sequential synthesis ofH.Leuls.OH 
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As is expected the loading decreases as the reaction proceed. This is due to 

incomplete coupling or deprotection steps which are inevitable. 

162 



6.8.6 Deprotection of tethered peptide to produce free amine residue 

After the first coupling the resin was dried at 50°C overnight, however this is the 

only coupling which requred this step. A solution of 5% piperidine in DMF/CH2CI2 

(1:1 v/v, 20 mL) was added to the resin and mixed for 20 minutes. The resin was 

filtered to remove the solution. A solution of20% piperidine in DMF (20 mL) 

was added to the resin and mixed for 10 minutes then removed. This step was 

repeated, the resin was then washed. To test that this deprotection step was 

successful a sample of the resin was tested using the Kaiser test. 

6.8.7 Kaiser test 

Three stock solutions were produced; Ninhydrin in ethanol (5 g in 100 mL), 

phenol in ethanol (80 g in 20 mL) and aqueous potassium cyanide (2 mL, 0.001 

Min 100 mL). 

Two sample of the resin were taken (approximately 10-20 grains each) and placed 

in clean soda-glass ignition tubes. Three drops of each stock solution was added 

to each resin sample and to a empty tube as a control. All three tubes were placed 

in an oven at 120°C for five minutes. A dark blue/purple colour change relative 

to the yellow colour of the control indicates a positive test and therefore a 

successful deprotection step. 

6.8.8 Standard coupling step 

After a positive Kaiser test had been observed the second Fmoc.Leu.OH residue 

could be coupled. 

Fmoc.Leu.OH (1.61 g, 4.56 mmol) was dissolved in DMF(5 mL), this solution 

was added to a solution of I-hydroxybenzotriazole (HOBt)(0.615 g, 4.56 mmol) 

and 2-( I H-benzotriazo le-l-yl)-l , 1,3,3 -tetramethyluronium hexafluorophosphate 
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(HBTU)(1.73 g, 4.56 mmol) in DMF (10 mL). DIEA (1.59 mL, 9.12 mmol) is 

added to activate the mixture. This reaction is left stirring for 3.5 hours at 

ambient temperature. 

6.8.9 Problem coupling steps 

Coupling of the seventh residue 

Fmoc.Leu.OH (5.43 g, 15.4 mmol) in DMF (5 mL) was added to a solution of 

HBTU (5.399 g, 14.2 mmol) and HOBt (2.067 g, 15.3 mmol) in DMF (20 mL). 

DIEA (5.29 mL, 40.9 mmol) was added to the reaction. The reaction was 

allowed to proceed for 3.5 hours. The Kaiser test was positive. The reaction was 

heated to 35°C and left to stir overnight. The resin was then filtered and washed. 

The Kaiser test was negative. 

Coupling of the tenth residue 

Standard coupling procedure was carried out, however a positive Kaiser test 

suggested that the coupling of the tenth residue was unsuccessful. The standard 

coupling procedure was repeated at 40°C for 12 hours. The Kaiser test was 

however, still positive. 

Fmoc.Leu.OH (5.43 g, 15.4 mmol) in DMF (20 mL) was added to a solution of 

HOBt (2.07 g, 15.3 mmol) and HBTU (5.77 g, 15.3 mmol) in DMF (20 mL). 

This solution was activated by the addition of DIE A (5.30 mL, 40.1 mmol). The 

reaction was heated to 40°C and left stirring for 12 hours. The Kaiser test of this 

resin was negative. 
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Coupling of the eleventh residue 

Standard coupling procedure was attempted this however, yielded a positive 

Kaiser test. O-(7-aza-benzotriazole-l-yl)-l, 1 ,3,3-bis(tetramethylene) uronium 

hexatluorophosphate (HAPyU) (0.66 g, 1.52 mmol) in DMF(IO mL) was added 

to the resin. DIEA (0.146 mL, 0.84 mmol) was added to the reaction. The 

reaction was heated to 35°C and left to stir for 12 hours. The Kaiser test was 

slightly positive. 

The reaction liquor was very dark brown in colour, the resin was filtered to 

remove the discoloured supernatant. Fmoc.Leu.OH (594 mg, 1.68 mmol) in 

DMF (2 mL) was added to a solution ofHBTU (637 mg, 1.68 mmol) and HOBt 

(227 mg, 1.68 mmol) in DMF (10 mL). DIEA (0.29 mL, 1.68 mmol) and 

HAPyU (265 mg, 1.68 mmol) were added to the final solution. The reaction was 

left to stir for 12 hours. The resin was washed twice using the standard washing 

procedure and gave a negative Kaiser test. 

The remaining coupling steps were carried out using the standard coupling 

procedure described in section 6.8.8. In each step the amounts of reagents used 

had been corrected for the UV assay obtained for the eleventh residue; 

Fmoc.Leu.OH (602 mg, 1.68 mmol), HBTU (637 mg, 1.68 mmol), HOBt (227 

mg, 1.68 mmol) and DIEA (0.29 mL, 1.68 mmol). 

6.8.10 Cleavage of the peptide from the resin 

After the coupling of the fifteenth residue had been confinned by a negative 

Kaiser test result the resin was washed using the standard washing procedure. 

The resin was placed in a vacuum oven at 50°C for 12 hours. The dry resin 

(2.853 g) was deprotected in the usual way (section 6.8.6). The resin (2.853 g) 
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was placed in a clean dry flask to which was added anhydrous 

cH2C12/trifluoroethanoVacetic acid (3: 1: 1 vlv, 20 rnL). The reaction was left to stir 

at ambient temperature for two hours. The resin was filtered and the filtrate was 

reserved. The resin was then washed with fresh anhydrous 

CH2Ch/trifluoroethanoVacetic acid (3: 1: 1 vlv, 10 mL) which was also collected. 

Water (HPLC grade, 10 mL) was added to the combined filtrates. The CH2Ch 

was removed in vacuo. Poly-L-Ieucine was formed as a white precipitate. Water 

(2 mL) and trifluoroacetic acid (3 mL) were added and the precipitate was taken 

into solution. The sample was lyopbilised to yield poly-L-Ieucine as a fine white 

powder(0.985 g); ESI-MS, 1715.3,1371.9,1149.7 

6.9 SYNTHESIS OF H.LEUlS.OH USING PENTA-PEPTIDE 

COUPLING 

6.9.1 Synthesis of penta-peptide 

The synthesis of the penta-peptide was carried out using the same methods as 

described for the sequential synthesis. After the initial derivatisation of the 

resin(2.0 g) with the first Fmoc.Leu.OH (0.565 g, 1.6 mmol) residue the loading 

was determined to be 0.59 mmoVg. Fmoc.Leu.OH (1.25 g, 3.54 mmol) was 

dissolved in DMF (5 mL). This solution was added to HOBt (0.478 g, 3.54 

mmol) and HBTU (1.34 g, 3.54 mmol) in DMF (10 mL). DIEA (1.23 mL, 7.08 

mmol) was added to the final solution, which was allowed to stir at ambient 

temperature for 3.5 hours. After the successful coupling of the fifth residue the 

resin was dried in a vacuum oven at 65°C for 12 hours to yield dry resin (2.93 g). 

6.9.2 Cleavage of the penta-peptide from the resin 

DMF/trifluoroethanoVacetic acid (3:1:1 vlv, 40 mL) was added to the dry resin 

(2.51 g) in a clean dry flask. The reaction was vigorously stirred for 45 minutes. 
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The resin was then filtered and washed thoroughly with 

DMF/trifluoroethanol/acetic acid (3: 1: 1 v/v, 20 mL). Water (HPLC grade, 30 

mL) was added to the combined filtrate. The filtrate was lyophilised to yield a 

fine white powder, Fmoc.leus.OH (709 mg, 0.88 mmol,); ESI-MS (H+), mlz 584.7 

(~, 100 %),433.6 (23); MALDI-TOF-MS (Na+), mlz 606.7 (~, 96%). 

6.9.3 Thin layer chromatography (TLC) of Fmoc.leus.OH 

Of all the peptides synthesised only Fmoc.leu5.0H is sufficiently soluble to be 

examined using TLC. 

The sample was eluted using N-butanol/pyridine/distilled water (20:10:1, lOmL). 

Two spots were observed, however, it was established that only spot A was 

peptide and spot B was DIEA contamination (Table 6.9.3) 

Table 6.9.3 TLC analysis of Fmoc.leus.OH 

Spot Rrvalue Visualising method 

A 0.81 CI chamber followed by starchIKI spray 

B 0.06 ninhydrin 

Purity of Fmoc.leus.OH by TLC = 100% 

6.9.4 Analysis of Fmoc.leus.OH by reversed-phase HPLC 

The sample was eluted using a reversed-phase gradient. Figure 6.9.4 shows the 

change in percentage acetonitrile changing with time. The total mobile phase was 

acetonitrile/water (x%, 100 - x%) + 0.1 % trifluoroacetic acid. 
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Figure 6.9.4 Schematic describing gradient elution for Fmoc.leus.OH 

100 

oL-~--~~~-L __ ~ __ L-~ __ J-__ ~~ 

o ~ ~ ro 100 

Time (minutes) 

Column: Hypersil 5J.l CI8 BDS, 250 X 4.6mm. 

Flow rate: 0.5mVmin 

Retention time: 57.3 mins 

Fmoc.leu5.0H was found to be 89% pure by HPLC. 

6.9.5 Coupling of penta-peptides 

Resin (0.165 g) was swollen using DMF (10 mL). Fmoc.Leu5.0H ( 354 mg, 

0.44 mmol) was dissolved in OMF (5 mL). This solution was added to HQBt ( 

59 mg, 0.44 mmol) and HBTU (167 mg, 0.44 mol) in OMF (10 mL). OlEA 

(0.076 mL, 0.88 mmol) was added to the final solution. The reaction was allowed 

to stir at ambient temperature for 3.5 hours. The resin gave a negative Kaiser 

test. The resin was prepared for the next coupling in the usual manner. The third 

penta peptide was coupled to the tethered peptide using the same method 

described earlier in this section. 
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6.9.6 Fmoc assay of block coupling synthesis of H.Leuls.OH 

0.6 

0.5 

0.4 

Loading (mmoVg) 

0.3 

2 4 6 8 10 12 14 

Leucine residue 

9.6.7 Preparation of H.LeuI5.0H from the resin 

The peptide was deprotected in the usual manner. The resin (2.67 g) was dried 

overnight in a vacuum oven at 50 °e. The dry resin ( 2.34 g) was cleaved from 

the resin using the standard procedure as previously described. After 

lyophilisation the peptide (0.562 g) is obtained as a fine white powder; Found, e, 

63.04; H, 9.75; N 12.26. Calc. for C90NISOl6HI67 : C, 63.02; N, 12.26; H, 9.75. 

Purification of this peptide was attempted using Sephadex LH-20 and Biobeads. 

The differences between the peptides was not great enough to effect any 

significant separation. It was therefore, not possible to carry out an efficient 

preparative separation. The peptides were used unpurified. 

9.6.8 Circular dichroism (CD) 

This analysis was carried out on a Jasco J-150 spectropolarimeter under the 

supervision of Dr A Rodger, University of Warwick. The instrument was set-up 

using the parameters shown in table 9.6.8. 
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column was equilibrated for 24 hours at 0.5 mL/min(acetonitrile:water, 90: 1 0 v/v) 

The component masses used to produce a particular column as shown in Figure 

6.7. 

Figure 6.7 Poly-L-Ieucine on PGC packing materials 

Column Mass of Poly-L-
Mass ofPGC Column 

leucine(g) length 
(g) 

(mm) 

A 0.1084* 1.1 100 

B 0.2510* 1.1 100 

C 0.7558· 3.05 250 

D 0.2561 0 1.07 100 

E 0.272· 1.09 100 

* denotes poly-L-leucine synthesised through amine initiation (section 6.7.3) 

• denotes poly-L-Ieucine synthesised from L-Ieucine NCA in humidity cabinet 

(section 6.7.2) 

o denotes poly-L-Ieucine synthesised from L-Ieucine NCA in humidity cabinet 

after continuos extraction (section 6.7.6) 

... denotes H.LeulS.0H (section 6.9) 

6.7.1 Microanalysis of PGC-Poly-L-Ieucine phases 

Microanalysis allows us to make an assessment of the loading ofpoly-L-Ieucine 

(Table 6.7.1). 
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Table 6.7.1 Microanalysis of PGC-Poly-L-Ieucine phases 

Column %Carbon %Hydrogen %Nitrogen % w/w loading 

POC 99.84 - - -

A 87.84 0.95 1.15 10 

B 84.93 2.02 2.61 20 

C 85.05 2.03 2.59 20 

D 84.99 1.94 2.39 20 

E 85.10 1.95 2.43 20 

6.7.2 Synthesis of racemic epoxides 

Toluene (4.7 mL/mmol of substrate) was added to a solution ofNaOH (12 equiv.) 

in distilled water (0.5 mL/mmol of substrate) at O°C. EDTA (0.0025 equiv.), the 

enone (1 equiv.) and Aliquat 336 (0.1 equiv.) were added to the mixture. 30% 

aqueous H202 (21 equiv.) was added dropwise to the mixture with stirring at 

ambient temperature. The reaction was followed using TLC 

(ethanoVchloroformlpet. ether, 2:5:93v/v) which was visualised using 

phosphomolybdic acid in ethanol (20% v/v). The final reaction was diluted with 

diethyl ether (10 mL) and the aqueous phase was extracted with diethyl ether (3 x 

10 mL). The combined organic phase was washed with water (10 mL), brine (10 

mL) then dried over magnesium sulphate. The solution was reduced in vacuo, 

then further purified by recrystallisation from diethyl etherlhexane (50:50 v/v). 

(±)-2,3-epoxycyclohexanone'9 

2-Methyll,4-naphthoquinone (1.23 g, 7.5 mmol), 30% H202 (5.36 g, 0.158 mol), 

reaction time = 72 hours, (±)-2,3-epoxycyclohexanone (0.95 g, 5.05 mmol, 67.3 
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% yield); mp 95.8 °C (from diethyl etherlhexane) (lit., 96°C); oll(250MHz, 

CDCb) 8.00 - 7.72 (4H, m, phenyl), 3.85 (IH, s, Clf), 1.72 (3H, s, CH). 

trans-4-phenylbu t-2-ene-l ,4-d ion elOJ 

trans-l,2-dibenzoyl-ethylene (3.0 g, 12.7 mmol), 30% H202 (9.07 g, 0.267 mol), 

reaction time = 72 hours, (1.92 g, 7.61 mmoi, 59.9 %); mp 121.2 °C (from diethyl 

ether/hexane) (lit., 121-123 °C); oH(250MHz, CDCb) 7.28-7.38 (1OH, m, 

phenyl), 4.5 (IH, d, J 1.6, I-H); oc(62.9MHz, CDCb) 136.1 (2-CO), 129.3 

(phenyl), 129.0(phenyl), 126.3(phenyl), 124. 1 (phenyl), 67.3 (CH). 

6.7.3 Synthesis of bis-(3-phenyl-oxiranyl)-methanone1o4 

This reaction was carried out using standard anhydrous conditions. 

Dibenzylideneaectone (1.0 g, 4.3 mmol) was dissolved in anhydrous THF (20 

mL). Urea.H202 (0.956 g, 10.16 mmol) and 1,8-diazabicyclo[5.4.0]octane (DBU) 

(1.28 mL, 8.6 mmol) were dissolved in anhydrous THF (20 mL) and added to the 

dibenzylideneaectone solution. The solution was stirred under an inert 

atmosphere at ambient temperature for 48 hours. The reaction was followed 

using TLC (ethanol/chloroform/pet. ether, 2:5:93 v/v) which was visualised using 

phosphomolybdic acid in ethanol (20% v/v); Rf= 0.17. Distilled water (10 mL) 

was added to the reaction mixture. The reaction was extracted by toluene (3 x 10 

mL). The organic extract was dried over magnesium sulphate and reduced in 

vacuo to yield an oil. The oil was placed in the refrigerator overnight. The 

resulting crystals were washed with ice cold ethanol (2 x 5 mL) to yield a 
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crystalline product (0.681 g, 2.5 mmol, 60.5% yield); mp 119°C; oH(250MHz, 

CDC h) 7.28-7.38 (lOH, m, phenyl), 4.18 (IH in minor product, d, J 1.59, I-H), 

4.1 (lH, d, J 1.5, I-H), 3.72 (lH in minor product, d, J 1.60, I-H), 3.81 (lH, d, J 

1.5, I-H); oc(62.9MHz, CDCh) 134.9 (CO), 129.6 (phenyl), 129.1(phenyl), 

126.1(phenyl), 124.2(phenyl), 61.3 (CH), 59.36 (CH). 
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