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 

Abstract— The complexity and strong nonlinearity of the 

model of a self-excited induction generator hinders the systematic 

design of a voltage regulation system. Using a special reference 

frame aligned with the stator voltage vector, the paper succeeds 

in developing a control-oriented linearized model that relates 

small deviations of the capacitance, load admittance, and angular 

velocity, to corresponding deviations of the voltage amplitude. 

Transfer functions are also computed based on the linear model. 

A stability analysis predicts rapidly-decaying oscillatory 

transients combined with a primary component with slower 

exponential decay. Simulated transient responses of the full and 

linearized models demonstrate the validity of the approximation 

and are in good agreement with experiments. 

 
Index Terms—induction generator, self-excitation, linearized 

dynamic model, renewable energy, electric machines. 

I. INTRODUCTION 

elf-excited induction generators (SEIG) have found 

applications in renewable energy (wind and hydro) for the 

off-grid production of power. The main advantage of 

SEIGs compared to synchronous generators is that they are 

relatively inexpensive and possess natural short-circuit 

protection properties. They are used for feeding pumps, 

heating and lighting systems, and as portable generators. 

One of the problems of power generation based on SEIG’s 

is the voltage fluctuations caused by load changes or angular 

velocity disturbances, restricting the types of possible loads. 

Researchers have proposed a number of solutions for voltage 

stabilization [1]-[2], based on electronic converters. They 

include controlled inductors, capacitors, and dump loads, 

which are generally referred to as electronic load controllers. 

Other solutions are based on voltage or current source 

inverters using a DC bus (also referred to as generalized 

impedance controllers), and static synchronous compensators. 
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In all cases, the control task is to stabilize the voltage at the 

output of the SEIG. In some of the systems, internal control 

loops are implemented for stator currents [3]-[6], load currents 

[7], and AC input/output currents of the converters [4], [8]-

[10] to make them current sources. Since the model of the 

SEIG is nonlinear and of high order (upwards from sixth order 

for purely resistive loads), the problem of systematic control 

design is very complicated. Therefore, typical control 

structures have been applied with P or PI voltage controllers 

whose parameters are chosen heuristically and iteratively 

based on simulations or experiments.  

In terms of control methodologies, a sliding mode voltage 

controller is designed in [11]. It is obtained for the SEIG with 

linear magnetics based on a model in stator coordinates. Space 

vector voltage control in an arbitrary rotating reference frame 

is developed in [12] based on a root locus approach and a 

linearized model obtained neglecting the nonlinearity of the 

magnetizing inductance. Validation is only provided through 

simulations in [11] and [12].  

A control system is implemented in [3] in a synchronous 

reference frame with four PI-controllers for voltage, 

frequency, and stator currents. The authors indicate that they 

are unaware of a proven systematic approach for control 

design or a suitable small-signal linearized model. The present 

paper aims to remedy this situation. 

An interesting solution is proposed in [4], where the choice 

of reference frame allows the decoupling of frequency and 

voltages in steady-state. The method utilizes a steady-state 

SEIG model derived from the nonlinear model in the 

synchronous reference frame, but does not use it to control the 

dynamics of the system.  

Direct voltage control is developed in [13], resulting in a PI 

voltage controller, a lead-lag compensator to increase stability 

margins, and a feedforward compensator for voltage 

harmonics. However, the results are obtained through a 

linearization of the SEIG model and do not account for 

magnetic saturation (the magnetizing inductance is assumed 

constant). The model is multi-input multi-output and is 

transformed into single-input single-output systems by 

considering cross-coupling terms as disturbances.  

A DC bus voltage controller is obtained in [14] based on 

input-output linearization applied to the model of the SEIG 

with inverter considering a constant magnetizing inductance. A 

sliding mode DC bus voltage controller is also designed. A 
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linear optimal controller is obtained for SEIG regulation 

through a static synchronous compensator in [9] based on 

augmented state equations derived from the model of the SEIG 

with the fluxes as state variables, but without accounting for 

magnetic saturation. The control law is implemented in the 

reference frame aligned with the load voltage vector. 

A linearized model of the SEIG is obtained in [15] by 

applying a Taylor’s expansion. However, the model is 

obtained from the simplified nonlinear SEIG model neglecting 

the time derivative of the magnetizing inductance (cross-

saturation effect) and ignoring additional terms in the 

linearized model. Such an approach is only correct for 

analyzing the system behavior around the zero steady state 

(self-excitation onset), but is questionable otherwise [15], [16]. 

In [17], a linearized SEIG model is developed for the case of 

the SEIG feeding an induction motor and provides useful 

insights into the dynamics of the system. However, it is not 

control-oriented and, like [15], describes a way of 

linearization, rather than an explicit model. A linearized model 

accounting cross-saturation effect is derived systematically in 

[18] and the stability of the operating points of the SEIG is 

assessed through computations of the eigenvalues.  

The objective of the present paper is to go beyond the 

previous analyses by developing a control- oriented linearized 

state-space model of the SEIG with capacitance, load 

admittance, and angular velocity perturbations as inputs to the 

system, and with voltage magnitude as an output. The 

derivation of the model is difficult, given the complexity of the 

strongly non-linear model of the SEIG, and it cannot be 

achieved through standard approaches of linearization theory. 

However, a solution can be reached by a specific alignment of 

the reference frame. The derived fifth-order transfer functions 

are validated through comparison of the simulated voltage 

transients of the linearized model with the transients of the 

nonlinear system as well as with experimental data. 

The paper is based on results presented earlier by the 

authors in [19]. The contributions of the present paper expand 

beyond the previous results by considering input actions such 

as load admittance and angular velocity, in addition to 

capacitance. Results are given using a different motor, 

providing additional validation of the model. Further, the 

validity is more clearly demonstrated by computing the 

instantaneous magnitude of the voltage vector based on 

measurements of the voltages of all three phases (in [19], only 

one phase voltage was measured). Simulations are also more 

carefully compared to experiments by applying the measured 

angular velocity in the simulations.  

II. MATHEMATICAL MODEL OF SEIG 

A. Nonlinear Model of SEIG 

Consider a two-phase model of the induction generator with 

capacitors and resistive loads connected in parallel with the 

stator windings. Each phase of the generator is assumed to 

contain a controllable, variable-capacitor and a variable load 

resistor. The variable capacitor can be obtained by engaging 

parallel capacitors through switching devices (relay, thyristor, 

or transistor switches), or through chopping of the current in a 

fixed capacitor. The variable resistor can also be obtained 

through an electronic load controller by engaging a dump 

resistor in parallel with the load. 

The state-space model of the SEIG accounting for cross-

saturation effect in a rotating reference frame was derived in 

[18] following the unified approach to modeling of induction 

machines with magnetic saturation from [20] 

 EX FX , (1) 
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In the model, 
e  is the arbitrary angular velocity of an F-G 

reference frame with respect to the stator frame, 
SFU , 

SGU , 

SFi , 
SGi  are the F and G components of the stator voltages and 

currents, respectively, 
RFi , 

RGi  denote the components of the 

rotor currents, 1/L LY R  is the admittance of the resistive 

load (per phase), C  is the value of the capacitor (also per 

phase),   is the angular velocity of the rotor, 
SR  and 

RR  are 

the stator and rotor resistances, 
SL  and 

RL  denote the stator 

and rotor leakage inductances, and 
pn  is the number of pole 

pairs. 

The magnetizing inductance ( )M ML f i  is a static 

function of the magnitude of the magnetizing current 

 
2 2

M MF MGi i i  , (2) 

where 
MF SF RFi i i   and MG SG RGi i i  . The model is based 

on the generalized two-phase model of an induction machine 

with a choice of stator and rotor currents as state variables. 

The differentiation of the product of the magnetizing 

inductance and the magnetizing current with respect to time 

introduces in the model the nonlinear inductances MFL , MGL  

and MFGL  [18], where 

 2 2( ) /MF M M MF ML L L L i i   , 2 2( ) /MG M M MG ML L L L i i   ,  

 2( ) /MFG M MF MG ML L L i i i  , (3) 

and / M M M ML L i dL di  denotes the dynamic magnetizing 

inductance (also the derivative of the magnetizing flux in 

respect to Mi ). 



  

B. Conditions for Self-Excitation 

Sustained self-excitation corresponds to the existence of a 

nonzero steady-state vector *X  such that 

 * * 0F X  , (4) 

where *F  is the function F  evaluated at the frequency *

e  

and *

ML  corresponding to *X . The special structure of the 

matrix F  allows one to transform the steady-state equation (4) 

into a complex form 

  * * *

1 2 0F jF Z  , (5) 

where * * *

1 2Z X jX  , * * *

1 2

T

X X X    . For (5) to have a 

non-zero solution, one needs 

 * *

1 2det( ) 0F jF  . (6) 

After simple manipulations, the real and imaginary parts of 

(6) give two equations from the original equation (4) [18]. The 

first is a polynomial of fifth order in *

e , with coefficients 

depending on the generator parameters and operating 

conditions. The (typically single) real root of the polynomial 

gives the reference frame angular velocity *

e  (also the 

generated frequency) associated with a constant state *X . The 

second equation is an explicit formula giving *

ML  as a function 

of *

e . For a typical magnetizing inductance curve [18], there 

can be up to two values of *

Mi  for a given *

ML , in general. 

The stator voltage amplitude is derived from (5) accounting 

for (2) evaluated at *X  [18] 
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The angle of the stator voltage vector is not uniquely defined 

(self-excitation can occur for any value of phase of the 

generated voltages). The other state variables are easily 

obtained from (5) based on (7) choosing an arbitrary angle of 

the voltage vector. 

C. Stability of Self-Excitation 

Rotation of the reference frame at the frequency *

e  transforms 

the limit cycles of self-excitation in the stator frame into 

constant state vectors *X . The stability analysis of these 

equilibria was performed in [18] based on linearization of the 

nonlinear differential (matrix) equation (1) and computation of 

the corresponding eigenvalues. For realistic generator 

parameters, the following properties of the six eigenvalues 

were always observed. Four of them were couples of complex 

conjugates with negative real parts, one was real, and one was 

equal to zero.  

The complex eigenvalues were found to be significantly 

further in the left-half plane than the fifth real eigenvalue in the 

vicinity of the corresponding self-excitation boundary, which 

is typically the realistic operating condition. The fifth 

eigenvalue was negative when there was a possible solution of 
*

Mi  belonging to the descending part of the 
ML  curve. The 

zero eigenvalue indicated neutral stability of the system and 

was associated with the lack of synchronization mechanism in 

the SEIG: any phase shift of the voltages and currents remains 

indefinitely. 

D. Linearized Model with Capacitance, Load Admittance, 

and Angular Velocity as Inputs 

The magnitude of the SEIG voltages depends on all the 

parameters including the rotational speed, the load resistance, 

and the capacitance. The paper considers the case where the 

capacitance or a part of the load admittance are control 

variables, whereas other variables are disturbances. The 

objective of the research is to derive a linearized model (and 

therefore, transfer functions) considering small independent 

perturbations of capacitance C , load admittance 
LY , and 

angular velocity   as inputs, and the voltage magnitude 

perturbation SU  as output. Such a model could be suitable 

for systematic SEIG control design. 

The derivation of the model presents several challenges, 

including: 

 The relationship between voltage and capacitance, load 

admittance, and angular velocity is highly nonlinear both for 

steady-state and dynamic responses. Besides magnetic 

saturation, a major problem is that the output variable, 

which is the peak voltage SU , is related nonlinearly to the 

state variables through 2 2

S SF SGU U U  . 

 The capacitance and load admittance are parameters of the 

system rather than external inputs. 

 Variations of capacitance, load admittance, or angular 

velocity cause a variation in the frequency *

e , which is 

another parameter of the model. It was found that not 

accounting for this effect could result in an unstable 

linearized system (even when the nonlinear system was 

stable).  

 The region of validity of a linearized model is bounded by the 

region of operation (i.e, self-excitation) of the system. 
 

These features make the problem unusual, and not fitting the 

usual framework of linearization theory. Interestingly, the 

neutral stability of the system is exploited here to resolve the 

problem associated with the nonlinearity 
2 2

S SF SGU U U  . 

In the process, one of the variables is eliminated and a system 

of reduced order (equal to 5) is obtained. 

To develop the technique, consider an equilibrium state *X  

and perturbations C , LY , and   causing perturbations of 

the vector  
T

SF SF RF SG SG RGX U i i U i i       , and 

simultaneous perturbations of the frequency e  and of the 

inductances ML , MFL , MGL , MFGL . Substitution of the 

perturbed variables into system (1) yields 

    * *  E X X F X X   , (8) 

where E  is E  computed for C C , * MF MFL L , 

* MG MGL L , *

MFG MFGL L , while F  is F  computed for 



  

C C , L LY Y ,   , * e e  , * M ML L . Subtracting 

(4) from (8), using * 0X  , and neglecting second-order 

perturbations, gives the linearized description of the SEIG 
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The perturbation 
ML  is found from the definition of the 

dynamic magnetizing inductance in (3) evaluated at *X . 

Necessary for its computation is the perturbation 
Mi , which 

is derived as a total differential from (2) [19]. Then, the term 
*

LM MF L  in equation (9) can be transformed to 

 * *

LM MF L F X   , (10) 

where 
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and the linearized model of the SEIG is 
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Note that the perturbations C , 
LY  and   are 

independent of each other, while 
e  depends on all of them. 

Computation of the perturbation 
e  is possible in the 

coordinate frame aligned with the stator voltage vector at all 

times (which is possible since steady-state phase is not 

uniquely defined). Thus, * *

SF SU U , * 0SGU  , SF SU U  , 

and 0SGU  . With ( ) / 0SGd U dt  , the fourth differential 

equation in (11) transforms into an algebraic equation 
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The linearized model of the SEIG in the reference frame 

aligned with the stator voltage vector is then obtained as 
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The stability properties of system (13) are determined by 

computation of the eigenvalues of 
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and *

CF , *

eF , *T

eXF , *

YLF , *F  remain, but with the fourth row 

dropped. 

The transfer functions of the system from C , 
LY , and 

  to the first element of the state vector are ( )CP s , the 

“plant” of a voltage regulator with capacitance as a control 

variable, ( )YLP s , the “plant” of a voltage regulator with load 

adjustment (or the transfer function from the load disturbance 

otherwise), and ( )P s , the response to an angular velocity 

disturbance (see Fig. 1).  
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Fig. 1.  Block diagram of the control-oriented model of the SEIG. 

 

The internal state that was dropped is associated with the 

phase of the generated voltages and currents, and does not 

affect the response from C , 
LY  or   to SU . The 

eigenvalues are the same as those of the original system, 

except for the zero eigenvalue that was eliminated. 

The model in Fig. 1 can be used for the systematic design 

of voltage controllers. The model is only valid for limited 

perturbations, and any control input or disturbance 

perturbation brings the system to another operating point, 

altering the parameters of the transfer functions. 

For model (13) to be valid, perturbations must be small 

enough for the initial and the final steady-states to be inside 

the corresponding self-excitation boundaries [18], [21], [22]. If 

the initial state is outside the self-excitation boundary, an 

unstable eigenvalue appears in (14). However, if the initial 

state is stable and the new state is outside the self-excitation 



  

boundary, the linearized model (13) will predict a stable 

steady-state, although the nonlinear system will not have a 

stable operating mode. Therefore, some restrictions must be 

imposed on the values of the perturbations. In the results 

presented below, it was checked that the initial and final 

operating points corresponded to stable self-excitation. 

III. COMPUTATIONS AND EXPERIMENTAL RESULTS 

A. Experimental Testbed 

This section presents the results of experiments and 

simulations designed to validate the linearized control-oriented 

model in the reference frame aligned with the stator voltage 

vector. A three-phase induction motor (Bk2208, with rated 

values 250 W, 240 V (∆), 50 Hz, and 1425 rpm) was used for 

experiments as SEIG. The following parameters of the 

generator were determined experimentally 
SR =31.65 Ω, 

RR =28.1 Ω, 
S RL L  =0.0921 H, 

pn =2. The analytic 

approximation of the magnetizing inductance is given in the 

appendix. 

The SEIG was coupled to another induction motor 

(M3AA090LB-4, with rated values 1.1 kW, 230 V (∆), 50 Hz, 

and 1435 rpm) controlled through the frequency converter 

ABB ACS355 with rated power 1.1 kW feeding the stator 

windings. The higher value of the motor’s power and the slip 

compensation function of the ACS355 provided some angular 

velocity stabilization during experiments.  

Voltages were measured in the testbed as line-to-line 

voltages. Computational values obtained from the analysis of 

Section II were converted using a Y to ∆ transformation to 

obtain line-to-line stator voltages. The excitation capacitors 

and the loads were Y-connected, and the values of load 

admittances and capacitances shown in the figures are actual 

values (i.e., line to neutral).  

The capacitor bank consisted of nine three-phase 

capacitors. Eight of them were engaged through three-phase 

relays controlled through dSPACE DS1104 logical outputs 

and transistors switches. Additional circuits were implemented 

to discharge the capacitors after disengaging. The load bank 

included six three-phase resistors controlled manually through 

two-pole toggle switches. The line-to-line voltage 

measurements were taken between all three phases through 

Hall effect voltage transducers LV25-P and read through 

DS1104 analog-to-digital converters. The angular velocity of 

the motor was monitored through an A2108 optical 

tachoprobe. 

B. Steady-State Voltage Magnitude Characteristics 

Computed and experimental steady-state values of the line-to-

line voltage magnitude 
*

SLU , as functions of the capacitance, 

are in good agreement and shown for different angular 

velocities and loads in Fig. 2. A similar accuracy was obtained 

for the steady-state voltages as functions of angular velocity 

(in the range from 150 rad/s to 190 rad/s) for C =19 µF, no 

load, 423 Ω and 523 Ω load resistance cases, and as functions 

of load admittance (from no load up to 1/423 1 ) for the 

cases of C =19 µF, 21 µF, 31 µF at 160.14 rad/s angular 

velocity. The relative steady-state error does not exceed 3%. 

Note that the voltages reach values significantly higher than 

the rated peak voltage of 339V. The wide range was chosen to 

demonstrate the validity of the model. However, only the 

lower values of capacitors would be used in practice, and were 

used for transient experiments.  
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Fig. 2.  Steady-state line-to-line voltage magnitude as a function of 

capacitance for different angular velocities and loads. 

C. Computation of Eigenvalues 

The eigenvalues of the matrix *A  were computed according to 

(14) for 160.14 rad/s and 1/ 423LY  Ω-1 within the 

corresponding self-excitation boundary. The complex 

eigenvalues were well into the stable side of the plane and the 

absolute values of their imaginary parts decreased 

monotonously with increasing capacitance. The main factor 

influencing the stability was therefore the real non-zero 

eigenvalue (referred to as #5), which was much closer to the 

imaginary axis for excitation conditions close to the boundary. 

The zero eigenvalue had no influence on the dynamics when 

considering the voltage magnitude as the output. 

Fig. 3 shows the possible solutions *

Mi  and their associated 

eigenvalue #5 over the range of capacitance. The smaller 

current corresponds to the ascending part of the ( )M ML f i  

curve (see Appendix) and the larger current corresponds to the 

descending part. In the region between about 31.5 and 396 µF, 

only the descending part yields a solution. All operating points 

of the SEIG belonging to the descending part are found to be 

stable. 

In the typical SEIG operation close to the self-excitation 

boundary, the computations of the eigenvalues through the 

ranges of angular velocity (for C =19 µF and 1/ 423LY  Ω-1) 

and of load admittance (for C =19 µF and 160.14 rad/s) 

have also shown the dominating influence of the eigenvalue 5 

on the transient behavior of the system. 

The eigenvalues of the model using a fixed  ML L were 

also determined. Eigenvalue 5 of the model became zero, 

while the others remained similar. In other words, an analysis 

that assumes a linear model with a fixed value of ML  in the 



  

saturation region (such as is sometimes used in the literature) 

will fail to predict the stability of the self-excited operating 

mode. 
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Fig. 3.  Eigenvalue #5 and magnetizing current as functions of capacitance. 

 

D. Transient Responses 

The transient responses *| | | | | |  SL SL SLU U U  of the 

linearized system are shown in Fig. 4 (a) for a step disturbance 

 =3.14 rad/s starting at t=5s. The figure also shows the 

corresponding experimental curve and transients computed for 

the nonlinear system (1)-(3) in the stationary stator reference 

frame A-B. Additional results are presented in Fig. 4 (b) both 

for the linearized and nonlinear models accounting for angular 

velocity changes starting at t=5s through incorporation of the 

measured velocity (Fig. 4 (c)) in the simulations. One finds 

that simulations based on the continuously varying angular 

velocity, obtained from measurement, are more accurate than 

those that assume a step change in rotational speed. The 

responses for step disturbances C =2 µF, C =-2 µF, and 

LR =100 Ω, and starting at t=5s are presented in Figs. 5-7 

respectively, and compared to the experiments. The measured 

rotational speed was used in all simulations. The initial 

operation started with  =160.14 rad/s, C =19 µF, and 

LR =423Ω, which was chosen because it provided an SEIG 

operating point where the voltage and frequency were close to 

their rated values. 

The transient behavior of the linearized model is very close 

to the nonlinear model, and is in a good agreement with the 

experiments. The transient responses fit the prediction of 

computed eigenvalues, with rapidly decaying oscillations 

appearing together with a slow exponential decay. Accounting 

for angular velocity variations in simulations correctly predicts 

the time and value of the initial overshoot (Fig. 4 (b)), and the 

small natural oscillations superimposed on the exponential 

decay (Figs. 4-7). In the case of Figs. 5-7, oscillations 

originate from oscillations in the angular velocity data in 

addition to the effect of variations of C and YL. Note that the 

angular velocity temporary decreases (Fig. 5) or increases 

(Fig. 6) from its steady-state value as a result of the torque 

change, with the slip compensation system eventually restoring 

the value of velocity. 

The large steady-state error between the linearized and 

nonlinear models in Figs. 5 and 6 is due to the strongly 

nonlinear behavior of the system that one is attempting to 

control. A reduction of the magnitude disturbance by a factor 

of ten makes the error negligible (Fig. 8). Note that, in the case 

of Fig. 5, the initial negative experimental voltage peak is 

bigger than simulated one. This feature is due to the fact that 

the model does not account for the difference between the 

initial capacitor voltage and the stator voltage. There is no 

such problem for the case of disengaging of the capacitor (Fig. 

6). 
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Fig. 4.  Voltage perturbations caused by  = 3.14 rad/s: (a) Step response 

simulations and experiment. (b) Simulations accounting for experimental 

angular velocity. (c) Measured angular velocity. 

 

The steady-state error between experiment and the 

simulation based on the nonlinear model in the case of Fig. 7 is 

a little bit higher than in previous cases, although the 



  

dynamical behavior is predicted correctly. This is due to the 

accuracy of the nonlinear model varying for different values of 

the parameters (see Fig. 2). 
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Fig. 5.  Voltage perturbations caused by C = 2 µF. 
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Fig. 6.  Voltage perturbations caused by C = -2 µF. 
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Fig. 7.  Voltage perturbations caused by 

LR = 100 Ω. 

 

Overall, the maximum difference between the voltage 

computed by the linearized system and the voltage measured in 

the experiments of Figs. 4-7 is less than 3% of the measured 

steady-state voltage. As a fraction of the voltage perturbation, 

the difference is at most 22.3% of the measured steady-state 

voltage perturbation. This error is reduced to 5.7% when the 

perturbation of the operating condition is sufficiently small 

(Fig. 4). 
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Fig. 8.  Voltage perturbations caused by C = 0.2 µF for the initial condition 

of Fig. 5. 

 

The space-state description (13), (15) yields the following 

transfer functions 

1 2 3

2 2 2 2

1 2 2 2 3 3 3

( )
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,
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 (16) 

where, for the specific conditions of Figs. 4, 5, and 7, 

32.012 /Ck V F , 1 6msCT , 
2 1.5msCT , 

3 0.866msCT , 
1 101.3msT , 

2 1.5msT , 
2 0.372 , 

3 0.792msT , 
3  0.16 , 3 143.407 10 /    YLk V , 

1 19.7msYLT , 
2 3.2msYLT , 

3 0.99msYLT , 0.213YL , 

  9.838 / /k V rad s , 
1 27.3msT , 

2 0.986msT , 

0.227 . 

E. Control Design 

Although control design and evaluation is beyond the scope of 

this paper, the transfer functions obtained as a result suggest 

the possibility of using modern and classic control 

methodologies in ways that have not been considered so far in 

the literature. For example, a state-space realization of PC(s) 

could be the basis of a design of an optimal linear quadratic 

controller, or of other robust controllers based on optimal and 

nonlinear control theories. Digital controllers might be derived 

applying the Z-transform and an appropriate sample time. The 



  

advanced methods will enable operation in a wide range of 

conditions. Further, if operation remains close to the self-

excitation boundary, the time constant T1 is much greater than 

the other time constants in the model. This property is 

reflected in the dominantly first-order response observed in 

Figs. 4-8. Then, it is possible that a model  

 
1

( )
1




C

C

k
P s

T s
 (17) 

reflects the dynamics of the system with a sufficient accuracy 

for the design of a feedback controller. In this case, a simple 

integral controller 

 ( )  I

I

k
C s

s
 (18) 

would result in poles determined by 

 2

1 0C IT s s k k   . (19) 

Both poles could be placed at s=-1/(2T1) by setting the gain at 

 
1

1

4
I

C

k
k T

 . (20) 

Smaller values of the gain could also be used, and the gain 

could be adjusted continuously based on the operating 

condition. In this manner, a controller could be systematically 

designed, as opposed to tuned manually. 

IV. EXTENSIONS 

A. Validation for a Time-Varying Angular Velocity Profile 

The effect of a time-varying angular velocity is shown in Fig. 

9 (a). The angular velocity profile is shown in Fig. 9 (b). The 

angular velocity was equal to 160.14 rad/s up to the start at 

t=5s. The voltage curves obtained from linear and nonlinear 

simulations are in good agreement with the experimental data. 
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Fig. 9.  Voltage deviations caused by time varying angular velocity 

perturbations: (a) Simulated and experimental voltage deviations. 

(b) Measured angular velocity perturbations. 

B. Case of Resistive-Inductive Loads 

The linearized model of the SEIG with series resistive-

inductive loads is derived similar to the pure resistive case 

following the approach in Section II.D. The derivation is based 

on the SEIG steady-state and dynamic analysis presented by 

the authors in [23]. The order of the model is 8 in this case 

with a state-space vector extended by two F and G load 

currents. The load inductance 
LL  appears in the analysis as an 

additional parameter. Fig. 10 shows the results of simulations, 

with voltage perturbations due to a step change of capacitance 

for the case of a resistive-inductive load. The curves for 

linearized and nonlinear models are in excellent agreement. 

Similar results were obtained for small perturbations  , 

LY , and 
LL .  
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Fig. 10.  Voltage perturbations caused by C = 0.2 µF in the case of 

resistive-inductive loads. 

 

The reduced-order state-space representation of the 

linearized model is similarly transformed to the corresponding 

transfer functions. The degrees of the polynomials in the 

transfer function for the capacitance disturbance input are 

increased by 2, so that 
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where the parameters corresponding to the conditions of 

Fig. 10 are: 39.263 /Ck V F , 1 6.1msCT , 
2 1.6msCT , 

3 0.831msCT , 
4 1.5msCT , 0.887C , 

1 124.4msT , 

2 1.6msT , 2  0.3182 , 3 1.4msT , 
3 0.896 , 

4 0.808msT , 
4  0.123 . 

Note that the parameters of the transfer function Pc(s) 

change significantly with the operating condition. For 

example, for the conditions of Fig. 6, 19.249 /Ck V F  and 

T1 = 54.4 ms (the other time constants remain significantly 

smaller). The linearized model makes it possible to compute 

the gain and the dominant time constant of the system, which 



  

can then be used for adaptation in the control law. 

The transfer function ( ) ( ) / ( )LL SL LP s U s L s   has the 

same form as ( )CP s , but with different gain, time constants 

and damping factors in the numerator. ( )P s
 has in the 

numerator an additional polynomial 2 2

3 3 31 2 T s T s    

compared to the pure resistive case. ( )YLP s  has a polynomial 

2 2

2 2 21 2 YL YL YLT s T s  instead of 
21 YLT s  for the resistive 

load. Note that the parameters of the transfer functions for 

resistive and resistive-inductive loads are labelled similarly, 

although their values are different. 

C. Applications to Larger Machines 

Although the experiments of this paper were performed with a 

small induction machine, the theoretical results and the linear 

approximation are applicable to larger machines as well. To 

support this statement, computations and simulations were 

performed for a three-phase generator model from [24]. The 

rated values of the machine were 415V, 7.8A, 3.6 kW, and 50 

Hz. The parameters of the model, adapted from [24], are given 

in the appendix. 
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Fig. 11.  Phase voltage magnitude perturbations caused by C =1 µF for a 

larger machine. 

 

Fig. 11 shows the transients caused by a step change of 

capacitance C =1 µF. The results of the linear and nonlinear 

models are close, validating again the linearized model. 

Similar results were obtained for a small decrease in 

capacitance, and for small angular velocity and load 

admittance perturbations. 

The transfer functions remain the same as for the smaller 

machine, but with different parameter. For the conditions of 

Fig. 11: 6.648 /Ck V F , 1 7.8msCT , 2 1.5msCT , 

3 1msCT , 1 122.7msT , 2 1.6msT , 2 0.417 , 

3 0.848msT , 
3  0.195 , 

3 110.5 10 /    YLk V , 

1 13.6msYLT , 2 5.7msYLT , 
3 1.1msYLT , 0.241YL , 

  6.118 / /k V rad s , 1 38.3msT , 2 1.1msT , 

0.275 . For possible comparison with [24], the constant 

Ck  is given here for a phase voltage instead of line-to-line.  

V. CONCLUSIONS 

The paper develops a control-oriented linearized SEIG model 

based on a full nonlinear model accounting for cross-saturation 

effect. Due to complexity and strong nonlinearity of the self-

excitation phenomenon, the linearization problem does not fit 

the traditional theoretical framework. The objective is reached 

through a specific orientation of the coordinate frame that 

aligns it with the stator voltage vector even during transients. 

The model is validated through a dynamic simulation 

comparing to the linearized and full models, together with 

experimental data. The model is presented in a compact state-

space form and as transfer functions suitable for systematic 

control system design. 

APPENDIX: ANALYTIC APPROXIMATION OF MAGNETIZING 

INDUCTANCE CURVE 

To facilitate numerical computations, an analytic 

approximation of the magnetizing curve obtained 

experimentally was used. Four regions were defined, with 

breakpoints iM1, iM2, and iM3:  

 for iM<iM1 (the ascending part of  the 
ML  curve):  

 2

1 1( )M MAX M ML L b i i   , (22) 

where 
MAXL  is a maximum (unsaturated) value of 

ML . If 

LM(0)=LM0, 
2

1 0 1( ) /MAX M Mb L L i  .  

 for iM1<iM<iM2 (the flat part): LM=LMAX,  

 for iM2<iM<iM3 (the descending part of 
ML  curve):  

 3 2 1

1 2 3 4 5M M M M ML p i p i p i p p i     , (23) 

 for iM >iM3:  

   3( )/

3 /
 

     M M Di i i

M MMAX MMAX M ML e i , (24) 

where 4 3 2

3 1 3 2 3 3 3 4 3 5     M M M M Mp i p i p i p i p . 

From experimental data, the parameters were determined to 

be: LMAX=1.87 H, LM0=1 H, iM1=0.333 A, iM2=0.401 A, 

b1=7.8457 H/A2, iM3=1.738 A, ΨMMAX=2.05 Wb, 

p1=-0.2116 H/A3, p2=1.33 H/A2, p3=-3.203 H/A, p4=3.807 H, 

p5=-0.342 HA, iD=1.414 A. 

The parameters of the machine adapted from [24] are: 

RS=1.7Ω, RR=2.7Ω, LσS=LσR=0.0114H, np=2, LMAX=0.295 H, 

LM0=0.23 H, iM1=1.2629 A, iM2=1.2657 A, b1=0.0408 H/A2, 

iM3=7.0711 A, ΨMMAX=2.05 Wb,  

p1=-0.00008362 H/A3, p2=0.003452 H/A2, p3=-0.05289 H/A, 

p4=0.3975 H, p5=-0.05177 HA, iD=18.835 A. 
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