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Abstract. Neutron diffraction and curvature measurements were conducted to investigate the 

residual stresses associated with Plasma Transferred Arc Cladding (PTA) of Ti-6Al-4V on a 

substrate of the same material. The wire-feed PTA coupled with 3-axis CNC machine was used 

as an Additive Manufacturing (AM) technique to build parts. A combination of the process 

parameters was chosen to investigate their effects on residual stress evolution. Neutron 

Diffraction (ND) measurements of residual strains were performed on the SALSA instrument 

at the Institut Laue-Langevin (ILL), Grenoble, France. Longitudinal stresses were also inferred 

by using a Coordinate Measurement Machine (CMM) and Euler-Bernoulli beam theorem. 

Furthermore, Optical Microscopy (OM) of the cross section of the parts was used to analyse 

the microstructural evolution. The results show the effect of shorter and longer ‘dwell time’ 

between layers on the evolution of residual stresses. 

Introduction 

Titanium alloys have become a material of great interest for different industrial applications 

due to their excellent corrosion resistance, low density, excellent high temperature mechanical 

properties and biocompatibility [1, 2]. Manufacturing components in a layer-by-layer fashion 

offers a high geometrical flexibility and great potential for time and cost savings in comparison 

to conventional manufacturing technologies [3]. The Additive Manufacturing (AM) of small 

and medium-sized Ti–6Al–4V parts represents an interesting business case for a number of 

industrial applications. 

The Plasma Transferred Arc Cladding (PTA) coupled with 3-axis CNC platform has recently 

been used as an AM technique. Linear beads of the material are deposited by using PTA. A 

range of metallic materials have been used in this technique, such as titanium alloys, Inconel 

and high chromium steel. Understanding the effects of the manufacturing process on the 

performance of the final part is the key when highly reliable final product is required [1-3]. 

Residual stresses are important in weld beads as they induce high, typically tensile stress are 

produced combined with unfavourable microstructure changes and flaws [4]. Diffraction 

techniques and in particular neutron diffraction is a viable option to measure residual stresses 

in weld depositions [5]. 

Another technique to measure residual stresses within coatings and layers is the curvature 

measurement method [6]. By using the Euler-Bernoulli theorem in bending, the resulting 

changes in curvature during deposition could be interpreted as bending stress which is an 

indication of residual stresses. Curvature can be measured using contact methods such as 

profilometry or without direct contact such as using laser scanning [6]. 



Experimental methods 

Manufacturing of the parts. Process parameters for a powder-based PTA welding are 

described in the literature [7]. For the wire-based PTA used in this study, the process 

parameters are summarised in Table 1. 

Table 1 – Process parameters for PTA as an AM process 

Parameter Value Range Unit 

Plasma Gas Flow Rate (PGFR) 0.5 l/min 

Wire Feed Rate (WFR) 1 m/min 

Traverse Speed/Weld Speed 50 mm/min 

Energy Density ~135 MJ/m2 

Deposition Strategy Linear - 

Dwell Time 60-180 sec 

The energy density in Table 1 has been calculated from both the traverse speed (weld speed) 

and current. Since the PTA cladding has been used as an AM technique, the phenomena 

between layers should be considered as a process parameter. This is considered to be the ‘dwell 

time’ between layers. This would give an indication of the temperature of the layer before 

depositing the next one. Also the AM building strategy should be taken into account as another 

process parameter for the AM process. In the case of PTA we define the building strategy to 

be the deposition direction. A linear deposition strategy is considered for this study although 

further is under way looking at the effect of path type (e.g. zig-zag). From Table 1, sample 1 

has a dwell time of 60 sec and sample 2 has a dwell time of 180 sec. 

The fixture of the substrate and deposition direction are shown in Fig 1. One-way deposition 

path was chosen due to the position of wire-feeder, electrode and torch on the PTA [8]. 

   

(a) One-way deposition; Torch 

and wire Feeder 

(b) Deposition direction and 

clamping of the substrate 

(c) Sample No. 1 

Fig. 1 – Building / deposition strategy and sample No. 1 

Material Model and Microstructural Analysis. Nominal material properties of the wire and 

substrate are given in Table 2. An optical microscope was used to study the microstructure of 

the cross section of the deposited beads. This facilitates an understanding of the phases on 

different regions of the samples cross section. 

Table 2 – Nominal material/mechanical properties of the Ti-6Al-4V wire 

Property Value Unit 

Tensile Strength, Ultimate 950 MPa 

Tensile Strength, Yield 880 MPa 

Modulus of Elasticity 113.8 GPa 

Poisson's Ratio 0.342 - 

Deposition Direction 

Start End 

Start 

End 



A two layer sample was built using a ‘linear’ deposition strategy. The direction of cladding and 

process parameters was the same as the actual parts for residual stress measurement to replicate 

the process. Micrographs were obtained by an optical microscope using polarised light to 

analyse the microstructure. 

Curvature Measurement. In the work presented here, two methods were used to measure the 

residual stress in the samples: curvature measurement and neutron diffraction [6]. 

According to curvature measurement technique, the resulting changes in curvature during 

deposition make it possible to calculate the corresponding variations in stress as a function of 

the geometry of the part and material property. The result for the deflection of the substrate in 

samples 1 and 2 are shown in Fig 2. A polynomial curve fitting process was conducted to derive 

the curvature equation. Therefore, the Euler-Bernoulli beam theory could be applied to 

calculate the internal bending moment as a function of the length of the bead (substrate) and 

then internal bending stresses can ben determined. 

  

(a) Sample 1 (low dwell time) (b) Sample 2 (high dwell time) 

Fig 2 – Z-deflection of the substrate 

 

Neutron Diffraction. The SALSA instrument at the Institut Laue-Langevin (ILL) was used to 

measure residual strains in the AM parts. Measurements were conducted along a longitudinal 

path at the middle of the height of the parts 20 mm below the reference surface (top bead). 

Seven points were chosen on this line starting from the lateral surface towards the middle of 

the sample. The distance between each scanned point was kept to be 5 mm. Thus, the scanned 

points started from 0 mm and ended at 30 mm with respect to the lateral surface on the start-

side of the beads as shown in Fig 3. 

 
Fig 3 – Schematic of the part and neutron diffraction measurement points 

 

Neutron diffraction provides information on the lattice spacing dhkl. Under stress, the atomic 

lattice deforms, consequently the lattice acts as a strain gauge [5]. The d spacing can be 

obtained by using Bragg’s law (Eq. 1) [5]. 



𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃     (1) 

Where λ is the wavelength, n is an integer, d is the spacing between the planes of the atomic 

lattice and 2θ is the angle between the incident and scattering beams. To calculate the principal 

strains a fixed wavelength and known θ0 (stress-free condition) is assumed. Then ‘d’ spacing 

is scanned in all three principal directions (Y: longitudinal, Z: Transverse and X: out of plane). 

The principal strains are calculated using Eq. 2 [5]. 

𝜀 =
𝑑−𝑑0

𝑑0
= −cot 𝜃. (𝜃 − 𝜃0)  (2) 

Results and Discussion 

Microstructural analysis reveals micrographs as shown in Fig 4. The images obtained from 

different regions to look at the differences between bottom, middle and top of the layers. 

 

Fig 4 – optical micrographs of the cross section of two layers of Ti-6Al-4V weld sample 

showing (a and a’) top, (b and b’) middle and (c and c’) bottom of the layers (HAZ) 

Fig 4 (a)-(c) indicates formation of columnar β grains which shows considerable increase in 

grain size from the bottom to the top edge of the deposition. This has been attributed to the rate 

of solidification during the process, where precipitation of directionally oriented Body Centred 

Cubic (BCC) β grains has been observed. Fig 1(a’) and (b’) illustrates a higher magnification 

optical micrographs of the selected regions from the top and middle layers. ‘Fine’ lamella type 

microstructure can be observed. This type of microstructure (widmanstatten type or Basket-

weave type) has been reported by previous researchers as a results of precipitation of α phase 

within the β grains due to rapid cooling cycles during the process [9]. A ‘coarser’ 

microstructure was seen towards the bottom of the layers [10]. 

Residual stresses calculated by bending (curvature measurement) and neutron diffraction for 

the two samples are plotted in Fig 5. 

Top 

Middle 

Bottom (HAZ) 



 
(a) Sample 1 (lower dwell time) 

 
(b) Sample 2 (higher dwell time) 

Fig 5 – Longitudinal residual stress measurement: bending stress by Curvature 

Measurement (CM) and actual stress by Neutron Diffraction (ND) 

Based on the distribution of the stress within the part, the longitudinal stress starts with a 

compressive stress at the lateral surface and then increases towards the centre of the part. 

Almost at the middle of the part a tensile stress can be observed by both bending measurement 

and neutron diffraction. Neutron diffraction results give a full image of the stress state at each 

point while the bending stress only represents the longitudinal stress at each point. However, 

comparing the results from neutron diffraction and curvature measurement, the majority of the 

stress magnitude can be assumed to be bending stress. This can be justified by the clamping 

strategy as well as geometrical condition of the deposition. Both of these two parameters 

replicated a beam-model scenario and stress induced in the same manner. The full stress state 

from neutron diffraction will be repeated in detail elsewhere. 

Comparing between the results for samples 1 and 2 shows that by increasing the dwell time 

between layers, the amount of tensile stress is decreased. In fact, by increasing dwell time, the 

cooling process happens more effectively and therefore, stress relief could occur between 

layers which helps reduce the residual stress evolution. 



Conclusion 

The wire-feed PTA coupled with a 3-axis CNC was used as an AM technique to build parts. 

This offers an exciting method for metal-based layer by layer manufacturing process. Neutron 

diffraction and curvature measurements were used to study the residual stresses associated with 

PTA of Ti-6Al-4V. Two samples with two different ‘dwell time’ were built to investigate the 

effect of longer and shorter cooling process between layers on the evolution of residual stresses. 

It was shown that increasing dwell time could reduce the level of residual stresses within the 

part. Residual stresses started with a compression at the lateral surface of the part towards a 

tension at the middle of the part. A correlation occurs between the results from Neutron 

Diffraction and curvature measurement which confirms that the majority of the residual stress 

could be interpreted as bending stress. 
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