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Nonlinear oscillations of coalescing magnetic flux ropes

Dmitrii Y. Kolotkov,∗ Valery M. Nakariakov,† and George Rowlands
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL, UK

(Dated: May 3, 2016)

An analytical model of highly nonlinear oscillations occurring during a coalescence of two magnetic
flux ropes, based upon two-fluid hydrodynamics, is developed. The model accounts for the effect
of electric charge separation, and describes perpendicular oscillations of the current sheet formed
by the coalescence. The oscillation period is determined by the current sheet thickness, the plasma
parameter β, and the oscillation amplitude. The oscillation periods are typically greater or about
the ion plasma oscillation period. In the nonlinear regime, the oscillations of the ion and electron
concentrations have a shape of a narrow symmetric spikes.

PACS numbers: 52.35.Mw – 95.30.Qd – 96.60.qe

INTRODUCTION

A current sheet is one of the fundamental building
blocks of natural and laboratory plasma systems [e.g.,
1, 2]. An important phenomenon is a coalescence of two
magnetic islands, which occurs in the interaction of two
twisted magnetic flux tubes (ropes) of the same sign of
helicity. This process is believed to occur in very differ-
ent plasma environments, for instance the solar corona
[e.g., 3, 4], the Earth’s magnetosphere [e.g., 4, 5], mag-
netar atmospheres [e.g., 6], and laboratory plasmas [e.g.,
7]. Dynamical processes in current sheets have inter-
esting observational manifestations, in particular various
oscillations detected remotely and in situ [e.g., 8–11]. An
analytical two-fluid model of the nonlinear stage of the
coalescence process, designed by [12] predicts a highly-
nonlinear oscillatory regime.

In the model of [12] (Fig. 1) two co-aligned plasma
currents jz generate poloidal magnetic fields which are
oppositely directed along the y-axis in the region of the
coalescence, which thus becomes a current sheet. It was
numerically found that in the explosive regime of the co-
alescence there appears a specific spatial scale λ of the
poloidal magnetic field (small in comparison with the
radii of the colliding magnetic ropes, R), where the field
lines can be considered as straight, and the current sheet
can be considered as one-dimensional. Hence for trans-
verse oscillations of the current sheet, one can take that
∂/∂x � ∂/∂y, ∂/∂z and ∇ = {∂/∂x, 0, 0}. The oscilla-
tion could be described by perturbations of the electric
field E = {Ex, 0, Ez} and magnetic field B = {0, By, 0},
the bulk plasma velocities of ion and electron plasma
species Vi,e = {Vx i,e, 0, Vz i,e}, and the variations of the
ion ni and electron ne concentrations. In this definition of
the electric field E, the x-component Ex is related to the
electrostatic field generated by the electric charge separa-
tion according to Poisson’s law, while the z-component
Ez is the induced electric field by Faraday’s law. Dy-
namics of these quantities is govern by two–fluid hydro-
dynamic equations and Maxwell equations.

In [12] self-similar solutions of the governing equa-

FIG. 1. Formation of a thin 1.5D current sheet (the hatched
vertical slab) by coalescence instability. jz – z-component of
the plasma current generating the poloidal magnetic field; λ –
scale length of the poloidal magnetic field By where the field
lines can be considered as straight, λ is small in comparison
with the radii of the colliding magnetic ropes R.

tions were obtained by introducing dimensionless time-
dependent scale factors a = a(t) and b = b(t) separately
for electron and ion dynamics, respectively, connected
with the plasma species concentrations as ne = n0/a,
and ni = n0/b, where n0 = ne = ni is the equilib-
rium concentration. Authors of [12] obtained an ana-
lytical solution of the problem only for the limiting case
when a = b, and, hence, the electron and ion plasma
concentrations were taken to be strictly equal to each
other, ne = ni. The electrostatic field Ex was consid-
ered to be non-zero, which is a crucial condition for the
oscillatory behaviour of the current sheet, generated by
this mechanism. Strictly speaking, this so-called quasi-
neutrality assumption is valid only for low-frequency pro-
cesses. However, the model contains the non-zero value
of the electron mass me, as well as the finite values of the
electron and ion plasma frequencies, ωe and ωi. Hence, it
would be natural to expect that the model also describes
high-frequency oscillations, where the electric charge sep-
aration effects are important.
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In this letter we demonstrate the possibility of a nonlin-
ear oscillatory regime of the evolution of a current sheet
formed by a coalescence of two magnetic ropes. The scale
factors a(t) and b(t) are considered to be not equal to each
other, i.e. the local electric charge separation is allowed.
Our solution covers both low-frequency oscillations, in-
cluding the limiting case ne = ni, considered in [12], and
the high-frequency case where the electric charge separa-
tion cannot be neglected.

ANALYSIS

Under the simplifying assumptions described above, it
was shown in [12] that the evolution of a current sheet is
governed by the following equations (namely, Eqs. (23)
and (24) in [12]):

d2 a

d t2
= −ω2

e

(a
b
− 1
)
− mi

me

V 2
A

λ2a2
+
mi

me

V 2
s

λ2aγ
, (1)

d2 b

d t2
= ω2

i

(
1− b

a

)
, (2)

where ω2
e,i = 4πn0e

2/me,i are electron and ion plasma

frequencies; V 2
A = B2

0/4πmin0 is the Alfvén speed, with
B0 and n0 being the equilibrium values of the poloidal
magnetic field and plasma concentration; V 2

s = P0/min0
is sound speed, with P0 being the equilibrium thermody-
namical gas pressure; γ is the adiabatic constant; λ is the
thickness of the current sheet. The plasma is assumed to
be sufficiently magnetised allowing for the neglecting of
the ion temperature, hence the pressure P0 is associated
with the electron temperature.

Introducing a small parameter ε = ω2
i /ω

2
e = me/mi

and the normalised time s = tωi, we re-write Eqs. (1)
and (2) as
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= −1

ε

{
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b
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φ

a2
− ψ
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}
, (3)

d2 b

d s2
= 1− b

a
, (4)

where φ = (VA/λωi)
2

and ψ = (Vs/λωi)
2

are dimension-
less constants.

Using the static solution of (3)–(4) obtained for
d/d s = 0,

ā = b̄ =

(
φ

ψ

) 1
2−γ
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(
V 2
A

V 2
s

) 1
2−γ
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(
B2

0
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) 1
2−γ

, (5)

and normalising (3)–(4) to the dimensionless value ā, we
can re-write Eqs. (1)–(2) as:

d2A

d τ2
= −1

ε

{
A

B
− 1 +

φ̄

A2
− φ̄

Aγ

}
, (6)

d2B

d τ2
= 1− B

A
, (7)

with a(s) = ā A(τ), b(s) = ā B(τ), s = ā1/2τ , and φ =
ā2 φ̄. In this normalisation the quantity A is equal to
unity at the initial instant of time A(τ)|τ=0 = 1.

Nonlinear analysis with the Bernoulli
pseudopotential

As ε tends to 0, for the left hand side of Eq. (6) to be
finite, the term {..} on the right hand side must tend to
zero. This condition in turn allows one to determine the
explicit dependence B (A):

B (A) =
Aγ+3

Aγ+2 − φ̄(Aγ −A2)
, (8)

which reduces to A = B in the limit considered in [12]
for small values of the parameter φ̄. We would like to
point out that in the general case when A 6= B,
considered in this paper, in addition to the ex-
pansion used in (8), another asymptotic expan-
sion of set (6)–(7) is also possible. Namely, in-
troducing the rapid time scale into the problem
through the re-normalisation of the time variable
τ to the small parameter

√
ε as τ̄ = τ/

√
ε, the func-

tion B demands to be linearly dependent upon τ̄ ,
B(τ̄) = C1τ̄ + C2 with C1 and C2 being a constants
(see Eq. (7)). The latter group of solutions de-
scribes the non-oscillatory behaviour of the ion
plasma component in the current sheet, accompa-
nied with the high-frequency oscillations of elec-
trons, and is beyond the scopes of the current
analysis.

Substituting (8) into (7) results in the second-order or-
dinary differential equation (ODE) for the function A(τ):

f(A)
d2A

d τ2
+

d f(A)

dA

(
dA

d τ

)2

= g(A), (9)

where the functions f(A) and g(A) are defined as:

f(A) =
A2(γ+2) − 3φ̄A2(γ+1) + φ̄(γ + 1)Aγ+4(

Aγ+2 − φ̄Aγ + φ̄A2
)2 , (10)

g(A) = 1− Aγ+2

Aγ+2 − φ̄Aγ + φ̄A2
. (11)

Eq. (9) describes oscillatory evolution of the current
sheet. Writing p(A) = dA/dτ allows us to reduce the
second-order ODE (9) to the first-order Bernoulli equa-
tion:

f(A)
d p(A)

dA
+

d f(A)

dA
p (A) =

g(A)

p(A)
, (12)
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with the first integral

1

2

[
f(A)

dA

d τ

]2
+ UB(A) = const, (13)

allowing for the application of the mechanical analogy
method. Indeed, considering A and τ as a generalised
spatial coordinate and time, respectively, Eq. (13) has
the form of the conservation energy law with a gener-
alised potential energy UB(A), also called the Bernoulli
pseudopotential:

UB(A) = −
∫ A

1

f(A)g(A) dA. (14)

Analysis of a second-order ODE with the Bernoulli
pseudopotential technique [13] is a recent extension of the
Sagdeev potential method used, in particular, in [12]. In
contrast to the Sagdeev method, this approach allows one
to analyse a broader class of second-order ODEs with
a squared first derivative, in particular Eq. (9). We em-
phasise the importance of the Bernoulli technique
and its ability to analyse the corresponding type
of ODEs, which is critical for the solution of the
general problem with A 6= B [cf. 12]. In the mechan-
ical analogy given by (13) the function f2(A) acts as an
effective mass, and as long as f2(A) 6= 0 the oscillating
“particle” position is governed by the potential UB(A)
(in the Sagdeev potential approach the effective mass is
a constant). More details about the Bernoulli pseudopo-
tential technique and examples of its application to anal-
ysis of nonlinear ion–acoustic waves and super-nonlinear
shear Alfvén waves in multi-component plasmas can be
found in [13–16], and in references therein. Applica-
tions of the Bernoulli pseudopotential method to
the analysis of nonlinear fluctuations in a self-
gravitating quantum plasmas and in two and
three dimensional graphene-like fluids are shown
in [17, 18], respectively.

Small-amplitude limit

We obtain a solution of Eq. (9) by considering the
function A (τ) to be of a small amplitude and with the
initial value of unity: A (τ) = 1 + ηx (τ). In this first-
order expansion η is a small parameter, and x (τ) char-
acterises the small-amplitude variations of the function
A (τ). Substitution of this expansion to Eqs. (10) and
(11) gives, up to the first order of η:

f =
[
1− φ̄(2− γ)

]
+ ηxφ̄{6− γ(γ + 1)− 2(2− γ)×

× [1− φ̄(2− γ)]}, and g = ηxφ̄(2− γ). (15)

Using (15) to re-write Eq. (9), and neglecting the terms
higher than the first order of η, we obtain

d2 x

d τ2
+

φ̄(2− γ)

φ̄(2− γ)− 1
x = 0. (16)

Eq. (16) is a harmonic oscillator equation with the period

P = 2π

(
1 +

1

φ̄(γ − 2)

)1/2

(17)

in the normalised units. For γ = 3, the expression re-

duces to P = 2π
(
1 + φ̄−1

)1/2
, and tends to 2π for large

values of φ̄.

NONLINEAR OSCILLATIONS

Consider specific examples of the Bernoulli pseudopo-
tential energy UB(A) given by Eq. (14) and the corre-
sponding numerical solutions of Eq. (9) for various com-
binations of the initial parameters. Fig. 2 shows that the
profile UB has a minimum at the point A = 1, corre-
sponding to the stable equilibrium state of the current
sheet, determined by static solution (5). Such a profile
allows for the existence of both linear and nonlinear peri-
odic solutions of Eq. (9) above the equilibrium. Two dif-
ferent cases of UB were found: when its left-hand, with re-
spect to the minimum, slope reaches the maximum value
faster than the right-hand slope, and the other case when
the right-hand slope reaches the maximum faster. The
behaviour is prescribed by the value of the parameter
φ̄. The threshold value of φ̄ which determines when UB

changes the behaviour, is about 0.685. At that value of
φ̄ the maximum values of the left and right slopes of UB

have the same heights.
Fig. 3 shows the time variations of the plasma species

concentrations ne and ni, obtained numerically from (9),
and corresponding to the different cases of UB shown in
Fig. 2. As follows from Eq. (8), the charge separation
reaches a large value for large values of φ̄, and is almost
negligible for small φ̄. Top panels of Fig. 3 demonstrate
two essentially opposite limits: small-amplitude quasi-
linear oscillations obtained near the bottom of the po-
tential well where it can be approximated by a parabolic
function; and large-amplitude nonlinear oscillations ob-
tained near the limit height of UB(A) (see Fig. 2). The
total energy of oscillations of a pseudo-particle in a pseu-
dopotential well is determined by the initial value of the
first derivative of a generalised coordinate with respect
to a generalised time, meaning the kinetic energy of an
initial excitation (13). In this study non-zero values of
the first derivatives used as the initial conditions for (9)
correspond to the speed of the coalescence of the ropes.

According to Eq. (17), for small amplitudes, the oscil-
lation period grows to arbitrarily long values for small
φ̄, while for large φ̄ the period tends to the constant
value 2π(Vs/VA)1/2ω−1i in the physical units. Fig. 2, bot-
tom panels show the dependence of the period on the
amplitude of the electron concentration variations, δne,
in the nonlinear regime. For φ̄ < 0.685 the period is
highly dependent upon the amplitude. For φ̄ > 0.685
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FIG. 2. Top: Bernoulli pseudopotential UB(A) (14) plotted
for γ = 3 and for: φ̄ = 0.685 (left solid), φ̄ = 0.3 (left dashed);
and φ̄ = 5 (right solid), φ̄ = 2 (right dashed). The upper
horizontal dotted line in the left panel shows the energy level
above which UB(A) experiences the change of behaviour, the
bottom dashed line shows the energy level of the oscillation
shown in Fig. 3, left bottom panel. The horizontal dotted line
in the right panel indicates the energy level of the nonlinear
signal shown in Fig. 3, right top and bottom panels. Bottom:
the oscillation period–amplitude dependence shown for φ̄ =
2 × 10−4 (a), 10−2 (b), and 0.3 (c) (the small φ̄ regime, left
panel); and for φ̄ = 5 (a), 10 (b), 100 (c) (the large φ̄ regime,
right panel), and φ̄ → ∞ (the period equals to 2π, dashed

line). The period is measured in units of (Vs/VA)1/2ω−1
i .

the oscillations are approximately isochronous (their pe-
riod depends weakly upon the amplitude even in the
nonlinear regime), that can be explained by the shape
of the function UB (A) with the corresponding value of
φ̄ = 5 (see Fig. 2, top right panel). Indeed, when φ̄ = 5,
the maximum value of the right slope of UB is located
much above the left one, which results in the almost
symmetric shape of UB in the regions supporting oscil-
lations. Although dependence (17) was initially derived
for the small-amplitude linear solutions of Eq. (9), the
isochronous nature of the illustrative examples in Figs. 2
and 3 allows one to utilise it for the nonlinear oscillations
too, when large values of φ̄ are considered. For small φ̄
(when φ̄ < 0.685, see Fig. 2) the shape of UB allows for
a longer-period oscillations.

The electrostatic field Ex (τ) generated by the local
charge separation with the use of Poisson’s equation is

FIG. 3. Top: variations of the electron ne = n0/a (thick lines)
and ion ni = n0/b (thin lines) concentrations, where the scale
factors a and b are obtained from the numerically obtained
solutions A(τ) of Eq. (9) with γ = 3, φ̄ = 5, A(0) = 1,
and dA

d τ

∣∣
τ=0

= 0.04 (left panel, quasi-linear oscillation); and
dA
d τ

∣∣
τ=0

= 0.155 (right panel, nonlinear oscillation). Bottom
left: variations of ne (dotted line) and ni (solid line, almost
indistinguishable from the dotted line) for γ = 3, φ̄ = 0.3,
A (0) = 1, and dA

d τ

∣∣
τ=0

= 0.426 (highly nonlinear case). Both

functions ne and ni are normalised to n0ā
−1. Bottom right:

variation of the electrostatic field energy E2
x normalised to

(4πen0λā
−1)2, generated by the local charge separation, in

the quasi-linear (thick line) and nonlinear (thin line) regimes
of the current sheet oscillation, shown in the top panels. The
vertical axes in all panels are plotted on a logarithmic scale.
The time τ is measured in units of (Vs/VA)1/2ω−1

i .

given by:

Ex (τ) =
4πen0λ

ā

(
1

B (τ)
− 1

A (τ)

)
, (18)

where A (τ) is obtained numerically from Eq. (9) (see
Fig. 3), and B (τ) from Eq. (8). In Eq. (18) the ex-
pressions n0/ā0B and n0/ā0A correspond to the ion and
electron concentrations, ni and ne, respectively.

While the cases for φ̄ < 0.685 result in long-period os-
cillations with small local electric charge separation (see
Fig. 3), and hence, give low values of the electric field Ex,
larger values of φ̄ allow for short-period oscillations with
large electric field, see Fig. 3. A small-amplitude solution
of Eq. (9) results in periodic small-amplitude variations
of E2

x , which are still quasi-harmonic with a doubled pe-
riod. In the nonlinear case, the oscillations have large
amplitude spikes of the electric field with a clear asymme-
try of the positive and negative half-periods. The highest
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electric field is generated during the positive half-periods
of the density oscillations when the strongest charge sep-
aration occurs.

DISCUSSION AND CONCLUSIONS

We have found a nonlinear oscillatory regime of the
evolution of a current sheet formed by a coalescence
of two magnetic flux ropes, which is accompanied by a
significant electric charge separation and generation of
a strong electric field. The characteristic time scales
are shorter than the time of magnetic reconnection
that is neglected. Specific regimes of the oscillations
are determined by the dimensionless parameter φ̄ =
(VA/Vs)

6(λD/λ)2 ≈ β−3(λD/λ)2 (6), where λ is the char-
acteristic thickness of the current sheet, λD = Vs/ωi is
the plasma Debye length, and β is the ratio of gas and
magnetic pressures in the plasma. These nonlinear oscil-
lations are rather intrinsic, and may occur in coalescence
of magnetic islands in natural (e.g., solar, space, magne-
tospheric) and laboratory plasmas.

The solutions obtained for small values of the param-
eter φ̄ < 0.685 describe perpendicular oscillations of the
current sheet, when electrons and ions oscillate almost
together and the effects of the local electric charge sep-
aration are negligibly small. The φ̄ = 0 limit gives the
solutions found in [12] for ne = ni. For sufficiently thin
current sheets (i.e. for λ ≈ λD) this regime is reached
when the plasma is of sufficiently high β. For thicker
sheets (λ� λD) this regime can be achieved for smaller
β. For φ̄ > 0.685, the oscillations produce high spikes
of the electric field caused by the electric charge separa-
tion. In both regimes, low amplitude oscillations have a
harmonic shape, while high amplitude oscillations have a
highly anharmonic shape: a series of distinct symmetric
spikes.

In the small φ̄ regime, the nonlinear oscillation periods
reach values that are several orders of magnitude larger
than the ion plasma period (see Fig. 2). For example,
for a 1 GHz electron plasma frequency and VA ≈ 4.8 ×
102 km s−1 and Vs ≈ 2.4 × 102 km s−1 giving Vs/VA ≈
0.5, typical for the coronal sites of solar flares [19], the
current sheet oscillation periods can reach one second
or longer. Periods of this order of magnitude are often
detected in the solar flare emission [e.g., 10, 20], and can
appear, e.g., in the gyrosynchrotron emission because of
the modulation of the local electron plasma frequency
[21]. For lower values of β these periods can be reached
for thicker current sheets. In the previous example, if the
current sheet thickness is 103 km with the plasma Debye
length of about 1 cm, the 1-s periods occur for the highly
nonlinear large-amplitude oscillations with δne ≈ n0.

In the large φ̄ regime, oscillation periods are
shorter than for small φ̄, and approach the value
2π(Vs/VA)1/2ω−1i . Thus, for low values of β, which are

also observed in solar coronal plasma structures (e.g.
β ≈ 0.01 [22]), for the electron plasma frequencies of
about 0.4 GHz, typical periods of current sheet oscilla-
tions are a few microseconds.
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