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The process of coalescence of two identical liquid drops is simulated numerically

in the framework of two essentially different mathematical models, and the results

are compared with experimental data on the very early stages of the coalescence

process reported recently. The first model tested is the ‘conventional’ one, where it

is assumed that coalescence as the formation of a single body of fluid occurs by an

instant appearance of a liquid bridge smoothly connecting the two drops, and the

subsequent process is the evolution of this single body of fluid driven by capillary

forces. The second model under investigation considers coalescence as a process where

a section of the free surface becomes trapped between the bulk phases as the drops

are pressed against each other, and it is the gradual disappearance of this ‘internal

interface’ that leads to the formation of a single body of fluid and the conventional

model taking over. Using the full numerical solution of the problem in the framework

of each of the two models, we show that the recently reported electrical measurements

probing the very early stages of the process are better described by the interface

formation/disappearance model. New theory-guided experiments are suggested that

would help to further elucidate the details of the coalescence phenomenon. As a

by-product of our research, the range of validity of different ‘scaling laws’ advanced

as approximate solutions to the problem formulated using the conventional model is

established.
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I. INTRODUCTION

The phenomenon of coalescence where two liquid volumes, in most cases drops, merge

to form a single body of fluid exhibits a range of surprisingly complex behaviour that is

important to understand from both the theoretical viewpoint as well as with regard to a

large number of applications. The dynamics of coalescing drops is central for a whole host

of processes such as viscous sintering1, emulsion stability2, spray cooling3, cloud formation4,

and, in particular, a number of emerging micro- and nanofluidic technologies5. The latter

include, for example, the 3D-printing devices developed for the rapid fabrication of custom-

made products ranging from hearing aids through to electronic circuitry6,7. In this tech-

nology, structures are built by microdrops ejected from a printer; these drops subsequently

come into contact with a surface containing both dry solid substrate as well as liquid drops

deposited earlier, so that being able to predict the behaviour of drops as they undergo stages

of both spreading over a solid and coalescence is critical to improving the overall quality of

the finished product.

The spatio-temporal scales characterizing the coalescence process are extremely small, so

that resolving the key (initial) stages of the process experimentally is very difficult. This is

particularly the case in microfluidics where the process of coalescence as such is inseparable

from the overall dynamics. This difficulty, and the associated cost of performing high-

accuracy experiments, becomes a strong motivation for developing a reliable theoretical

description of this class of flows which would be capable of taking one down to the scales

inaccessible for experiments and allow one, in particular, to map the parameter space of

interest to determine, say, critical points at which the flow regime bifurcates.

From a fundamental perspective, the phenomenon of coalescence is a particular case from

a class of flows where the flow domain undergoes a topological transition in a finite time, so

that studying this phenomenon might help to elucidate common features and develop meth-

ods of quantitative modelling applicable to other flows in this class. Technically, coalescence

is the process by which two liquid volumes that at some initial moment touch at a point or

along a line, i.e. have a common boundary point or points, become one body of fluid, where

(a) there are only ‘internal’ (bulk) and ‘boundary’ points and (b) every two internal points

can be connected by a curve passing only through internal points. Once the coalescence as

defined above has taken place, the subsequent process is simply the evolution of a single
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FIG. 1. Sketch illustrating the scheme used in the conventional modelling of coalescence: the initial

contact (a) is instantly followed by a finite-size ‘bridge’ connecting the two fluid volumes (b), i.e.

r(0) = rmin > 0. The subsequent evolution of the single body of fluid is driven by the capillary

pressure, where the main contribution is due to the longitudinal curvature 1/d(t).

body of liquid and it can be described in the standard way.

In the conventional framework of fluid mechanics, the free surface has to be smooth as

otherwise, to compensate the action of the surface tension on the singularities of the free-

surface curvature, one has to admit non-integrable singularities in the bulk-flow parameters8.

Therefore, when applied to the coalescence phenomenon, the conventional approach essen-

tially by-passes the problem: it is assumed that immediately after the two free surfaces

touch, there somehow appears a smooth liquid bridge of a small but finite size connecting

the two fluid volumes (Figure 1). In other words, the coalescence, i.e. the formation of a

single body of fluid, has already taken place and the subsequent evolution of the free-surface

shape can be treated conventionally. Hence, theoretical studies of coalescence in the frame-

work of conventional fluid mechanics essentially boil down to a ‘backward analysis’ of the

process, i.e. to considering what happens in the limit t → 0+ as the time is rolled back to

the initial singularity in order to uncover what the early stages of the evolution of the free

surface and the flow parameters might be.

In the forthcoming subsections, we will describe how the development of new experimental

techniques and a new generation of experimental equipment, in particular the use ultra high-

speed optical cameras9 as well as novel electrical methods10, have made it possible to study

processes on the spatio-temporal scales that were previously unobtainable. Therefore, this

is a perfect opportunity for a detailed comparison between theory and experiment in order

to probe the fundamental physics associated with this ‘singular’ free-surface flow.
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II. BACKGROUND

A. Plane 2D flows

Much initial work on coalescence was motivated by Frenkel’s 1945 paper on viscous

sintering11 for inertialess viscous flow with an inviscid dynamically passive gas in the ex-

terior. Later, consideration of the plane 2-dimensional flow of high viscosity liquids led,

in particular, in the works of Hopper12,13,14,15 and Richardson16, to an exact solution for

coalescing cylinders obtained using conformal mapping techniques. Notably, as pointed out

in17, in this solution, for small radii of the liquid bridge one has that the radius of longitudi-

nal curvature d(t) = O(r3) as r → 0+ (Figure 1), i.e. it is asymptotically even smaller than

the undisturbed distance between the free surfaces, which is of O(r2) as r → 0+. In other

words, exact solutions obtained in the framework of conventional fluid mechanics confirmed

that this formulation predicts that the free-surface curvature is singular as t → 0+ and

hence the conventional model is used beyond its limits of applicability through the initial

stage of the process. Correspondingly, the flow velocity in the exact solution is also singular

as t→ 0+ and unphysically high for small t and r.

B. Scaling laws for axisymmetric flows

More recent works have been mainly concerned with deriving various ‘scaling laws’ for

the radius of the liquid bridge r(t), joining two drops of initial radius R, as a function of

time t (Figure 1). These scaling laws are obtained by balancing the factors driving and

resisting the fluid motion, with the appropriate assumptions about how these factors can be

expressed quantitatively.

From a theoretical viewpoint, consideration of scaling laws is analogous to the approach

of Frenkel, as opposed to the rigorous fluid mechanical treatment of coalescence initiated

by Hopper and Richardson, since, as in Frenkel’s paper11, to obtain the scaling laws, the

solution of the equations of fluid mechanics is found using some plausible assumptions rather

than being obtained directly. On the other hand, however, the simple results obtained using

the scaling laws approach, once tested experimentally, can give an indication as to whether

the rigorous analysis of a given problem formulation is worth pursuing.

Analytic progress has been achieved by assuming that the process is driven by surface
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tension σ and opposed either by viscous or inertial forces17. The driving force due to the

surface tension is calculated by assuming that the mean curvature κ of the free surface is

due primarily to the longitudinal curvature 1/d(t) (Figure 1): κ ∝ 1/d(t). In the inertia-

dominated case, it is assumed in17 that d(t) is determined by the initial free surface shape,

which for coalescing spheres gives d ∝ r2/R. As mentioned above, in the viscosity-dominated

regime it is shown in17 that when the surrounding gas is inviscid, one has d(t) ∝ r3/R. In

either case, one can calculate the surface tension force σκ(t) as a function of time. In the

situation where viscous forces dominate inertial ones and hence are the main factor resisting

the flow, a scale for velocity is Uvisc = σ/µ (so that the capillary number Ca = µUvisc/σ = 1)

and the corresponding time scale is Tvisc = Rµ/σ. Alternatively, if it is the inertial forces

that are the main factor resisting the motion, a scale for velocity is Uinert = (σ/ρR)1/2

(so that the Weber number We = ρU2
inertR/σ = 1) and the corresponding time scale is

Tinert = (ρR3/σ)1/2. In the viscous case, the simplest scaling is that the bridge radius

evolves as r/R ∝ t/Tvisc; however, in17 it is shown that there is a logarithmic correction to

this term so that

r/R = −Cvisc (t/Tvisc) ln (t/Tvisc) , (1)

where Cvisc is a constant. The limits of applicability of this scaling, based on the equivalence

of the two- and three-dimensional problems, is expected to hold17 for r/R < 0.03.

In17, it is suggested that when the Reynolds number, based on Uvisc as the scale for velocity

and the radius of the bridge r as the length scale, becomes of order one, Rer = ρσr/µ2 ≈ 1,

there will be a crossover point where the dynamics switches from Stokesian to Eulerian,

i.e. the main factor resisting the motion is now inertia of the fluid. This crossover point

correspond to r ≈ µ2/(ρσ) after which the balance of the surface tension and inertia forces

gives

r/R = Cinert (t/Tinert)
1/2 , (2)

where Cinert is a constant. Notably, for water the crossover from viscous to inertial scaling

is predicted to occur at r = 14 nm.

C. Numerical simulations

The use of computational simulation for what is, strictly speaking, the evolution of the

post-coalescence single body of fluid has focussed both on the very early stages of the process
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as well as on the global dynamics of the two drops17,18,19,20. In the early stages, computations

of the inviscid flow, using boundary integral methods, have shown the formation of toroidal

bubbles trapped inside the drops as the two free surfaces reconnect themselves in front of

the bridge18,21. The appearance of these bubbles, originally suggested in21, has been further

investigated in18 using inviscid boundary integral calculations, and an attempt has been

made to continue the simulation past the toroidal bubble formation. It was shown that,

despite the bubble generation, the scaling (2) still holds, with the prefactor determined to

be Cinert = 1.62 for the period in which bubble formation occurs (r/R < 0.035). However, as

the authors acknowledge, the computational approach for dealing with the reconnection pro-

cedure is not entirely satisfactory, with the robust simulation of such phenomena remaining

an open problem.

Simulations of the entire post-coalescence process have been performed to varying degrees

of accuracy, dependent in many cases on the computational power available at the time,

in19,22,23. A recurring question in these studies was how to initialize the simulation. For

example, in19, it is assumed that the singular curvature at the moment of touching of the

two fluid volumes is immediately smoothed out over a grid-size dependent region, so that as

the grid is refined, the radius of curvature decreases, i.e. the curvature tends to the required

singular initial condition. This behaviour is reflected in Figure 9 of19, showing the bridge

radius versus time, where changing the grid resolution changes the results considerably, i.e.,

as expected, the solution is mesh-dependent. A similar approach is used in20; however,

there, the results from the simulation are only plotted when the “transients from the initial

conditions have decayed” (see Figure 3 of this paper), so that it is difficult to observe the

influence of the initial conditions. Due to an inability to resolve multiscale phenomena

computationally, until now, no studies have considered in detail both the very initial stages

of coalescence alongside the global dynamics of the drops.

D. Experimental data

Several experimental studies have probed the dynamics of coalescing drops. The study of

coalescing free liquid drops (Figure 2a) is rather complicated, as it is difficult to control and

monitor the movement of the drops with the required precision. Therefore, since coalescence

as such is a local process, a common experimental setup is based on using supported hemi-
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spherical drops, with one drop sitting on a substrate, or being grown from a capillary tube,

and the other, a pendent drop, being grown from a capillary above (Figure 2b). As coales-

cence is initiated, the bridge radius is then measured as a function of time either optically or

using some indirect methods. To date the most exhaustive study of coalescence, using the

aforementioned experimental setup, has been carried out by Thoroddsen and co-workers9,

who investigated a range of viscosities and drop sizes, with the shapes of the drop monitored

using ultra high-speed cameras capable of capturing up to one million frames per second.

Similar experiments have been reported in24 and25 with the same setup.

As shown in9, after correcting the initial shapes of the drops to account for the influence

of gravity, the inviscid scaling law (2) appears to be in good agreement with experimental

results for the initial stages of the coalescence of drops of low viscosity (µ < 10 mPa s) fluid.

It is found in24,25 that the prefactor Cinert = 1.62 predicted in18 is considerably higher than

all the values obtained experimentally, which for hemispherical drops are seen to be around

Cinert = 0.8. Also, no toroidal bubbles have been observed26. At intermediate viscosities

(40 mPa s < µ < 220 mPa s), it is found in9 that neither the inertial nor viscous scalings

are able to fit the data whilst at the highest viscosity (µ = 493 mPa s) a region of linear

growth of the bridge radius with time is observed. In both9 and24, linear growth in the initial

stages shows no signs of the logarithmic correction as in equation (1). Instead, the scaling

r/R = Bt/Tvisc is shown to fit the data best, where B is the coefficient of proportionality.

Notably, the value of the constant B is seen to be a factor of two smaller in24 than in9.

Recently, a new experimental technique has been developed to study the coalescence

phenomenon at spatio-temporal scales inaccessible to optical measurements. In10,27,28, an

electrical method, extending the techniques utilized in29 to study drop pinch-off dynamics,

has been used to measure the radius of the bridge connecting two coalescing drops of an

electrically conducting liquid down to time scales of ∼ 10 ns, giving at least two orders

of magnitude better resolution than optical techniques. In doing so, it is shown that the

initial radius of contact is very small, as suggested in24, so that there is no evidence for the

initial area of ∼ 100 µm suggested in9. It is noted that the method loses accuracy towards

the end of the process (t > 400 µs for water), but that in this range optical experiments

are available and reliable, so that by using both electrical measurements alongside optical

ones, it is possible to obtain accurate measurements over the entire range of bridge radii

(see Figure 11 below where we do precisely this).
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FIG. 2. (a): Sketch of the benchmark problem of the coalescence of two free identical liquid

spheres. (b): typical experimental setup where drops are grown from capillaries until they begin

to coalesce.

In27,28, it is found that for low viscosity fluids a new regime exists for t < 10 µs which is

inconsistent with the assumption that the inertial scaling, equation (2), will kick-in almost

instantaneously for such liquids. In10, the same electrical method is used to measure the

influence of viscosity on the coalescence dynamics, with other parameters (surface tension,

density, drop size) almost constant, and similar behaviour is observed over two orders of

magnitude variation in the viscosity of water-glycerol mixtures, with, as before, the cross-

over time between different flow regimes being vastly different from what the combination of

scaling laws predicts. It is suggested in10 that this is because the cross-over from regimes is

based on the Reynolds number whose length scale is taken to be the bridge radius, whereas,

in fact it should be based on the undisturbed free surface height at a given radius, which

is proportional to r2 as opposed to r, giving a much later cross-over time, as observed

experimentally.

Thus, although in experiments one can observe some of the general trends following from

the scalings (1) and (2), experimental studies have been unable to validate these scaling

laws. At low viscosities, the prefactor obtained in18 for small bridge radii has not been
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confirmed; at intermediate viscosities, neither inertial nor viscous forces can be neglected

so that both scaling laws become inapplicable; whilst at the highest viscosities, logarithmic

corrections have not been observed and different experiments give different values of the

prefactor to a linear power law, which has not been predicted by theory. It should also be

pointed out that when using power laws, there is no guarantee that the prefactor which fits

the experimental data is necessarily the one that would be obtained from solving the full

problem formulation. Thus, it is clear that full-scale computational simulation of this class

of flows is called for. Such a simulation will allow one to accurately compare theoretical

predictions with experimental data and hence, first of all, show whether or not the model

itself accounts for all the key physics involved in the coalescence process. As a by-product,

the simulation will be able to test the validity of the scalings (1) and (2) by comparing them

to the exact solution.

E. Coalescence as an interface formation/disappearance process

In order to study coalescence over a range of viscosities for a sustained period of time and

to test the mathematical model of the phenomenon, as opposed to different approximations,

against experiments we need to use computational methods that are capable of solving the

full Navier-Stokes equations with the required accuracy. This would allow one not only

to account in full for the effects of inertia, capillarity and viscosity and hence make the

comparison of the conventional model with experiments conclusive; it will also make it

possible to incorporate and test against experiments the ‘extra’ physics that carries the

system through the topological transition, which is, technically, what coalescence actually

is and what is not considered in the conventional model.

As pointed out in the Introduction, the conventional fluid mechanics model essentially

deals with the post-coalescence process, i.e. the evolution of a single body of fluid that

the coalescence phenomenon has produced, and, as the limit t → 0+ is taken, gives rise

to unphysical singularities. This suggests that some ‘additional’ physics, not accounted

for in the conventional model, takes the system through the topological change, and the

conventional physics takes over when the liquid bridge between the two drops already has a

finite size determined by this ‘additional’ physics. The first study identifying this ‘additional’

physics, which was aimed at embedding coalescence into the general physical framework as a
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particular case of a more general physical phenomenon, has been reported in30. It has been

shown that coalescence is in fact a particular case of the interface formation/disappearance

process: as the two drops are pressed against each other, a section of their free surfaces

becomes trapped between the bulk phases (Figure 3). As this trapped interface gradually

(albeit, in physical terms, very quickly) loses its surface properties (such as the surface

tension), the angle θd (Figure 3) formed by each of the free surfaces of the drops with

the ‘internal interface’ sandwiched between the two drops goes to 90◦, so that eventually

a bridge of a finite physically-determined radius emerges and the conventional model takes

over. The outlined physics allows for the existence of a non-smooth free surface without

unphysical singularities in the flow field since the surface tensions acting on the line where

the free-surface curvature is singular are balanced not by the bulk stress, as in8, but by the

(residual) surface tension in the ‘internal’ interface. The existence of such non-smooth free

surfaces has been confirmed experimentally31 and has already been described theoretically

using the above approach30,32.

The approach outlined above removes the unphysical singularities in the mathematical

description of the coalescence process and allows one to treat it in a regular way, as just

one of many fluid mechanics phenomena. The developed model (which came to be known

as ‘interface formation model’ or, for brevity, IFM) unifies the mathematical modelling of

such seemingly different phenomena as coalescence30, breakup of liquid threads30,33 and free

films34, as well as dynamic wetting35,36,37,38; an exposition of the fundamentals of the theory

of capillary flows with forming/disappearing interfaces can be found in39.

Applying the interface formation model to coalescence phenomena results in a new per-

spective on the problem. Instead of thinking of coalescence as the process by which one

deformed body evolves, which is how equations (1) and (2) were derived, it is thought of as

the process by which two drops evolve into a single entity. Specifically, just after the drops

first meet, an internal interface divides them, which allows an angle to be sustained in the

free surface, and the coalescence process is thought of as the time it takes for this internal

divide between the two drops to disappear, and hence for the free surface to become smooth.

A characteristic time of this process is the surface tension relaxation time, and, given that

this parameter’s value is expected to be proportional to viscosity, it is likely that, for high

viscosity fluids, such as the 58000 mPa s silicon oil used in20, direct experimental evidence

for this model, in particular the angle in the free surface at a finite time after the drops first
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FIG. 3. Sketch illustrating the scheme used in the interface formation/disappeance theory: the

initial contact point (a) is followed by a fraction of the free surface being ‘trapped’ between the bulk

phases, forming a gradually disappearing ‘internal interface’ (b), and, as the ‘internal interface’

disappears and the ‘contact angle’ θd, being initially equal to 180◦, relaxes to its ‘equilibrium’

value of 90◦, the conventional mechanism takes over (c). The interface formation/disappearance

model provides boundary conditions on interfaces, which are modelled as zero-thickness ‘surface

phases’; these interfaces, including the ‘internal interface’ in (b), are shown as finite-width layers

for graphical purposes only.

come into contact, may be possible to observe in the optical range.

The local asymptotic analysis carried out in30,39 has shown that the singularities inher-

ent in the conventional treatment of the early stage of coalescence are removed, but, to

validate the theory experimentally, a global solution must be found. The obstacle here is

that the interface formation model introduces a new class of problems where boundary con-

ditions for the Navier-Stokes equations are themselves differential equations along a priori

unknown interfaces, and this class of problems poses formidable difficulties even for numer-

ical treatment. The decisive breakthrough in this direction has been made recently as a

regular framework for computing this kind of problems has been developed40. This advance

together with the development of the aforementioned novel experimental techniques, which

can probe the coalescence process on the spatio-temporal scales well beyond the reach of

previous studies, make a full comparison between theory and experiment possible for the

first time.
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F. Outline of the paper

The aim of this paper is to address whether the conventional model or the interface

formation model are able to describe experimental results which give the bridge radius as a

function of time over a range of viscosities. To do so, in Section III we present the problem

formulations for both models and, notably, list the equations of interface formation, with

a very brief description and references for detail. In Section IV, the computational tool,

which was originally devised to describe dynamic wetting flows, is briefly described and

references are given to the publications where detailed benchmarking and mesh-independence

tests have been reported. In Section V, simulations from this code, for both low and high

viscosity liquids, obtained using the conventional model, are shown to be in agreement with

previous benchmark computational results. Besides validating the code, this allows us to

consider the accuracy of the scaling laws proposed in various limits. Then, in Section VI, the

predictions of both the conventional model and the interface formation model are compared

to experiments conducted in both9 and10. This allows us to assess which of these models

describes the underlying physics of the coalescence phenomenon. Next, in Section VII, a

comparison is made to experiments in10 over a range of viscosities, in order to ascertain

how well the models are able to capture the observed drop behaviour. In subsections A and

B of Section VIII, we propose a theory-guided test case which could potentially bring the

differences between the two models’ predictions into the optical range. Concluding remarks

in Section IX summarize the main results and point out some open issues for future research.

III. MODELLING OF COALESCENCE PHENOMENA

Consider the axisymmetric coalescence of two drops whose motion takes place in the (r, z)-

plane of a cylindrical coordinate system. The liquid is incompressible and Newtonian with

constant density ρ and viscosity µ, and the drops are surrounded by an inviscid dynamically

passive gas of a constant pressure pg. To non-dimensionalize the system of equations for

the bulk variables, we use the drop radius R as the characteristic length scale; Uvisc = σ/µ

as the scale for velocities (so that Ca = µUvisc/σ = 1), where σ is the equilibrium surface

tension of the free surface; Tvisc = R/Uvisc = µR/σ as the time scale; and σ/R as the scale
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for pressure. Then, the continuity and momentum balance equations take the form

∇ · u = 0, Re

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇2u +Bo g, (3)

where t is time, u and p are the liquid’s velocity and pressure, and g is the gravitational

force density, which in the nondimensional formulation is a unit vector in the negative z-

direction. The non-dimensional parameters are the Reynolds number Re = ρσR/µ2 and

the Bond number Bo = ρgR2/σ. To simplify the computations, we shall assume that

gravitational forces are negligible Bo = 0, so that, for two identical drops of radius R, the

process can be regarded as symmetric with respect to the plane touching the two drops at

the moment of their initial contact, and we can consider the flow in one drop, using the

symmetry conditions at the symmetry plane z = 0. The point in the (r, z)-plane at which

the free surface meets the plane of symmetry will be referred to as the ‘contact line’, since,

as we will show below, there is a certain analogy between the process of dynamic wetting

and the coalescence phenomenon, where, in the present case, the drop (for definiteness, the

one above z = 0) ‘spreads’ over the plane of symmetry (see Figure 3). For the same reason,

the angle θd between the free surface and the symmetry plane z = 0 will be referred to as

the ‘contact angle’, so that, in the analogy with dynamic wetting, the ‘equilibrium’ contact

angle is 90◦.

The effect of neglecting gravity is estimated in the Appendix, where we show that, as one

would expect, gravity influences only the late stages of the drops’ evolution, i.e. the global

geometry of the flow, where it is important whether the drops are spherical or hemispherical.

In the present paper, we are interested primarily in the local process where coalescence as

such takes place, and this process can be studied without taking gravity into account.

The boundary conditions to equations (3) will be given by two different models. First,

we give the conventional model formulation routinely used for studying free-surface flows,

and then we will present the interface formation model, which, until now, has not been used

in full to describe this class of flows.

A. Conventional modelling

The standard boundary conditions used in fluid dynamics of free-surface flows are the

kinematic condition, stating that the fluid particles forming the free surface stay on the free
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surface at all time, and the conditions of balance of tangential and normal forces acting on

an element of the free surface from the two bulk phases and from the neighbouring surface

elements:
∂f

∂t
+ u · ∇f = 0, (4)

n ·
[
∇u + (∇u)T

]
· (I− nn) = 0, (5)

pg − p+ n ·
[
∇u + (∇u)T

]
· n = ∇ · n. (6)

Here f(r, z, t) = 0 describes the a priori unknown free surface, with the inward normal

n = ∇f/|∇f |; I is the metric tensor of the coordinate system, so that the convolution of a

vector with the tensor (I−nn) extracts the component of this vector parallel to the surface

with the normal n (in what follows, for brevity, we will mark these components with a

subscript ‖, so that u|| = u · (I− nn)).

At the plane of symmetry z = 0, one has the standard symmetry conditions of imperme-

ability and zero tangential stress,

u · ns = 0, ns ·
[
∇u + (∇u)T

]
· (I− nsns) = 0, (7)

where ns is the unit normal to the plane of symmetry. One also has the condition that the

free surface is smooth, i.e. θd ≡ π/2, or, in terms of the normals n and ns to the free surface

and the plane of symmetry, respectively, n · ns = 0.

We will consider an axisymmetric flow, and on the axis of symmetry the standard imper-

meability and zero tangential stress condition apply:

u · na = 0, na ·
[
∇u + (∇u)T

]
· (I− nana) = 0, (8)

where na is the unit normal to the axis of symmetry in the (r, z)-plane.

With regard to the overall drop geometry, there are two cases (Figure 2). In the case of

the coalescence of free spherical drop, one needs the symmetry condition on the free-surface

shape, namely that the free surface is smooth at the axis of symmetry,

n · na = 0, for f(0, z, t) = 0, t ≥ 0. (9)

In the case of hemispherical drops pinned to the solid support, we need the condition that

the coordinates of the free surface are prescribed where the free surface meets the solid:

f(1, 1, t) = 0 (t ≥ 0). (10)
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To complete the formulation, one needs the initial conditions, which we will discuss and

specify below.

B. The interface formation/disappearance model

The interface formation/disappearance model formulates the boundary conditions that

generalize (4)–(7) to account for situations in which the interfaces are forming or disappear-

ing. In these cases, the interfaces have dynamic interfacial properties, and, in particular, the

surface tension is no longer a constant; it varies as the interface is forming/disappearing,

and this creates spatial gradients of the surface tension which give rise to the Marangoni

flow in the bulk. The equations of the interface formation model consider interfaces as

two-dimensional ‘surface phases’ characterized, besides the surface tension, by the surface

density ρs and the surface velocity vs with which the surface density is transported. The

normal to the interface component of vs can differ from the normal component of the bulk

velocity u evaluated at the interface as there can be mass exchange between the surface and

bulk phases.

The details of the interface formation model can be found elsewhere39, so that here we

will give the necessary equations in the dimensionless form, using as characteristic scales

for ρs, vs and σ the surface density corresponding to zero surface tension ρs(0), the same

velocity scale as used in the bulk σ/µ, and the equilibrium surface tension of the liquid-gas

interface σ = σ1e, respectively. In what follows, subscripts 1 and 2 will refer, respectively, to

the surface variables on the free surface and on the plane of symmetry z = 0, which will be

regarded as a gradually disappearing ‘internal interface’ trapped between the two coalescing

drops as they are pressed against each other. Notably, the plane of symmetry z = 0 actually

cuts the internal interface into two symmetric halves and we consider the upper half of this

interface which, for brevity, is referred to as the ‘internal interface’.

On the liquid-gas free surface, we have

∂f

∂t
+ vs1 · ∇f = 0, (11)

pg − p+ n ·
[
∇u + (∇u)T

]
· n = σ1∇ · n, (12)

n ·
[
∇u + (∇u)T

]
· (I− nn) +∇σ1 = 0, (13)

(u− vs1) · n = Q (ρs1 − ρs1e) , (14)
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ε

[
∂ρs1
∂t

+∇ · (ρs1vs1)
]

= − (ρs1 − ρs1e) , (15)

4β̄
(
vs1|| − u||

)
= (1 + 4A)∇σ1, (16)

σ1 = λ(1− ρs1), (17)

where the following nondimensional parameters have been introduced: Q = ρs(0)/(ρστµ),

ε = στµ/R, β̄ = βR/µ, A = αβ, ρs1e = (ρs1e)dim/ρ
s
(0), λ = γρs(0)/σ1e. Here, we have used the

experimentally ascertained result41 that, for a class of fluids commonly used in experiments,

the characteristic relaxation time of the interface τ is linearly proportional to the liquid’s

viscosity, with coefficient of proportionality τµ, so that τ = τµµ.

Our assumption of symmetry between the two coalescing drops means that the position

of the ‘trapped’ ‘internal interface’ is known a priori, so that the normal stress condition,

which in the general case is used to find the interface’s shape, is not required, and we have

the following equations:

vs2 · n = 0, (18)

n ·
[
∇u + (∇u)T

]
· (I− nn) +∇σ2 = 0 (19)

(u− vs2) · n = Q (ρs2 − 1) , ε

[
∂ρs2
∂t

+∇ · (ρs2vs2)
]

= − (ρs2 − 1) , (20)

4β̄
(
vs2|| − u||

)
= (1 + 4A)∇σ2, σ2 = λ(1− ρs2). (21)

As one can see, these equations are the same as (11)–(17) with ρs1e = 1. This means that in

equilibrium the ‘internal interface’ vanishes, no longer having the surface tension and mass

exchange with the ‘bulk’, which are the only factors that distinguish it as a special ‘surface

phase’.

Although the boundary conditions of the interface formation model have been explained

in detail elsewhere39, it seems reasonable to briefly recapitulate their physical meaning. On

the free surface, besides the standard kinematic condition (11) and also standard conditions

on the normal and tangential stress (12) and (13), where the latter includes the Marangoni

effect due to the (potentially) spatially nonuniform surface tension, one has the conditions

describing the mass exchange between the interface and the bulk (14), (15), the equation

describing how the difference between the tangential components of the surface velocity

and the bulk velocity evaluated at the interface is related to the surface tension gradient

(16), and the surface equation of state (17). The conditions on the internal interface are
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a simplification of the conditions on the free surface due to the fact that the shape of this

interface is known (z = 0), so that the normal-stress boundary condition, which applied to

the entire internal interface, i.e. the upper and lower halves put together, is automatically

satisfied, due to the symmetry of the problem with respect to the z = 0 plane, and is

hence not needed, and the kinematic boundary condition simplifies to (18). In the case of a

problem not symmetric with respect to the plane z = 0 both of these conditions should be

used in their full form.

Estimates for the phenomenological material constants α, β, γ, ρs(0) and τ have been

obtained by comparing the theory to experiments in dynamic wetting, e.g. in41, but could

equally well have been taken from any other process involving the formation or disappearance

of interfaces.

Boundary conditions (11)–(21) are themselves differential equations along the interfaces

and therefore are in need of boundary conditions at the boundaries of the interfaces, i.e. at

the contact line where the free surface meets the internal interface, at the axis of symmetry

(if free drops are considered) or the solid boundary (in the case of pinned drops). At the

contact line, one has the continuity of surface mass flux and balance of horizontal projection

of forces due to surface tensions acting on the contact line:

ρs1
(
vs1|| −Uc

)
·m1 + ρs2

(
vs2|| −Uc

)
·m2 = 0,

σ2 + σ1 cos θd = 0. (22)

Here mi are the unit vectors normal to the contact line and inwardly tangential to the

free surface (i = 1) and the plane of symmetry (i = 2); Uc is the velocity of the contact

line (which is, obviously, directed horizontally). Equation (22) is the well-known Young’s

equation42 that introduces and determines the contact angle in the processes of dynamic

wetting. The present model essentially considers coalescence as the process where the two

drops ‘spread’ over their common boundary which gradually loses its ‘surface’ properties,

and the contact angle tends to its ‘equilibrium value’ of 90◦, where one will have the familiar

smooth free surface, whose evolution can be described by the conventional model.

For the bulk velocity u one again has (8) on the axis of symmetry and conditions (9) or

(10) for the free surface. Additionally, at the axis of symmetry (in the case of free drops) or

at the solid surface (in the case of the drops pinned to the solid), the boundary condition is
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the absence of a surface mass source/sink, so that one has

vs · k = 0, (23)

where k = na for the free drops and a unit vector tangential to the free surface in the case

of pinned drops.

Notably, at leading order in the limit ε → 0, which is associated with taking to zero

the ratio of the characteristic length scale of interface formation Uτ (= στµ) to that of the

bulk flow R, the interface formation model reduces to the standard model. In simple terms:

one can see that for ε = 0 equation (14) and the second equation in (20) immediately give

ρs1 = ρs1e and ρs2 = 1, i.e. the interfaces are in equilibrium, so that σ1 = 1 and σ2 = 0,

which results in the standard stress-balance and kinematic equations on the free surface,

the absence of an internal interface, and, from the Young equation (22), an instantaneously

smooth free surface θd = 90◦.

C. Initial Conditions

The initial conditions for the conventional model and the interface formation model are

essentially different as they represent how the two models view the onset of coalescence.

In the conventional model, it is assumed that, after coming into contact, the two drops

instantaneously produce a smooth free surface, i.e. they immediately coalesce and round the

corner enforced by the drops’ initial configuration at the moment of touching. Therefore,

besides prescribing the fluid’s initial velocity, which we will assume to be zero,

u = 0 at t = 0, (24)

we need to specify the initial shape as having, near the origin, a tiny bridge whose free

surface crosses the plane of symmetry at the right angle. The free-surface shape far away

from the origin (i.e. from the point of the initial contact) is the undisturbed spherical (or

hemispherical) drop. The initial radius of the bridge rmin is a parameter whose influence

is to be investigated, although it is known a priori that the limit rmin → 0 gives rise to

a singularity. For both a spherical and a hemispherical drop, the free surface below the

drop’s centre is conventionally prescribed as the one given by Hopper’s solution12, that is
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the analytic two-dimensional solution for Stokes flow, whose parametric form is

r(θ) =
√

2
[
(1−m2)(1 +m2)−1/2(1 + 2m cos (2θ) +m2)−1

]
(1 +m) cos θ,

z(θ) =
√

2
[
(1−m2)(1 +m2)−1/2(1 + 2m cos (2θ) +m2)−1

]
(1−m) sin θ, (25)

for 0 < θ < θu, where m is chosen so that r(0) = rmin and θu is chosen so that r(θu) =

z(θu) = 1. Notably, for rmin → 0 we have m→ 1 and r2 +(z−1)2 = 1, i.e. the drop’s profile

is a semicircle of unit radius which touches the plane of symmetry at the origin.

The interface formation model does not presume an instant coalescence, so that, after the

two drops touch and then establish a nonzero area of contact, (a) there is still an internal

interface between them, and hence coalescence as the formation of a single body of fluid is

only starting, and (b) the free surface is not smooth, as the initial angle of contact of 180◦

is only starting its evolution towards 90◦, i.e. a smooth interface. For both a spherical and

a hemispherical drop, the free surface below the drop’s centre can be prescribed as

(r − rmin)2 + (z − zc)2 = z2c , (26)

where zc = 1
2
(1 + (1 − rmin)2)/2, so that if there is no base, i.e. rmin = 0, one has zc = 1,

i.e. r2 + (z − 1)2 = 1, which is a circle of radius 1 centred at (0, 1) that coincides with the

shape obtained from (25) in the same limit. Importantly, for the interface formation model

the limit rmin → 0 does not give rise to a singularity.

In addition to the free-surface shape given by (26) and the flow field in the bulk, by (24),

we need to specify the initial state of the interfaces, which will be given by

ρs1 = ρs2 = ρs1e, (t = 0), (27)

These conditions in (27) describe the fact that (a) the free surface is initially in equilibrium,

and (b) the part of the free surface that has been sandwiched between the two drops and

becomes an ‘internal’ interface initially possesses the equilibrium properties of the free-

surface, since it can equilibrate to its new environment in a finite time. Then, for t > 0, the

internal interface will start to relax towards its equilibrium state, which in turn will drive

the free surface away from its initial (equilibrium) state, so that in the early stages of the

coalescence phenomenon both interface will be out of equilibrium and will, in particular,

deviate from the initial values given in (27). Notably, the assumption that all the interfaces

are unchanged from their pre-coalescence state is consistent with an initial contact angle
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of θd = 180◦, which follows from the Young equation (22) for σ1 = σ2 = 1, i.e. when

ρs1 = ρs2 = ρs1e.

IV. A COMPUTATIONAL FRAMEWORK FOR FREE-SURFACE FLOWS

WITH DYNAMIC INTERFACIAL EFFECTS

A finite-element-based computational platform for simulating free-surface flows with dy-

namic interfacial effects has been developed in40,43 and originally applied to microfluidic

dynamic wetting processes, which are the most complex case of these flows. The ability

of the developed framework to simulate flows involving strong deformations of a drop has

already been confirmed in44, where the predictions of the code are shown to be in excellent

agreement with previous literature for the benchmark test-case of a freely oscillating liquid

drop. In40, the interface formation model was incorporated in full into the framework and

allowed the simulation of microfluidic phenomena such as capillary rise, showing excellent

agreement with experiments, and, in44, the impact and spreading of microdrops on surfaces

of varying wettability. The exposition in40 together with the preceding paper43 provide a

detailed step-by-step guide to the development of the code, allowing one to reproduce all

results, as well as curves for benchmark calculations and a demonstration of the platform’s

capabilities. Therefore, here it is necessary only to point out a few aspects of the computa-

tions.

The code is based on the finite element method and uses an arbitrary Lagrangian-Eulerian

mesh design45,46,47 to allow the free surface to be accurately represented whilst bulk nodes

remain free to move. For the drop geometry, the mesh is based on the bipolar coordi-

nate system, and is graded to allow for extremely small elements near the contact line and

progressively larger elements in the bulk of the liquid. This ensures that all the physically-

determined smallest scales near the contact line are well resolved whilst the problem is still

computationally tractable. The conditions on the mesh needed to resolve the scales associ-

ated with the interface formation in dynamic wetting problems are given in40. However, for

the coalescence phenomenon, even smaller elements are required to capture the free-surface

shape associated with the conventional model. Indeed, the initial free-surface shape given

by (25) requires that the free surface bends near the plane of symmetry z = 0 to meet this

boundary perpendicularly at r = rmin. The radius of curvature of the free surface where
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it meets z = 0 is of O(r3min) and for rmin = 10−4, used in our computations, one has the

radius of curvature ∼ 10−12, i.e. extremely small and many orders of magnitude smaller

than the length scales associated with the interface formation dynamics. Here the model is

used beyond its area of applicability, as in the derivation of the capillary pressure due to

the free-surface curvature it is assumed that the radius of curvature is much larger than the

physical thickness of the interface, which is modelled as a geometric surface of zero thickness.

However, the conventional model dictates that this is the scale which needs to be resolved, so

that in order to provide mesh-independent solutions from this model the elements near the

contact line have to be exceptionally small. On such scales, it is somewhat surprising that,

even with the huge amount of care taken, we have been able to produce mesh-independent

converged solutions. Any further reduction of rmin for the conventional model has been seen

to be impossible. To capture dynamics on this scale would require one to ‘zoom in’ on the

coalescence event, which will initially be isolated from the global dynamics, and then stitch

this solution to a global result at a later time, i.e. essentially to mimic numerically the

technique of matched asymptotic expansions.

The result of our spatial discretization is a system of non-linear differential algebraic

equations of index two48 which are solved using the second-order backward differentiation

formula, whose application to the Navier-Stokes equations is described in detail in49, using

a time step which automatically adapts during a simulation to capture the appropriate

temporal scale at that instant.

V. BENCHMARK SIMULATIONS

In order to compare our computations for the conventional model to the numerical results

presented in20, we consider the coalescence of liquid spheres of radius R = 1 mm, density

ρ = 970 kg m−3, surface tension σ1e = 20 mN m−1 for viscosities µ = 1 mPa s and

µ = 58000 mPa s. For these parameters, the Reynolds numbers are Re = 1.9 × 104 and

Re = 5.8×10−6, respectively, which allows us to investigate both the inertia-dominated and

viscosity-dominated regimes.

Before doing so, we must make some comments regarding the computation of the very

initial stages of coalescence. In particular, in some simulations, for both the conventional

and the interface formation models, we have observed the tendency towards the formation
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FIG. 4. Free-surface profiles obtained using the conventional model for the coalescence of two

free drops with Re = 1.9 × 104 at intervals of 4t = 10−3. Dashed lines: the computed solution

in which the free surface is allowed to freely pierce the plane of symmetry (z = 0). Solid lines:

solution when the free surface is prevented, as it is henceforth, from crossing the symmetry plane.

of toroidal bubbles, as the disturbance to the free surface, initiated by the coalescence event,

leads to capillary waves which come into contact with the plane of symmetry (i.e., for the

two drops, into contact with each other), in front of the propagating contact line. This effect

is essentially the same as the one reported in18,21 and in our computations only occurs for

low-viscosity liquids. It is particularly severe for the conventional model’s computations,

where the contact angle variation, from 180◦ at the moment of touching to 90◦ when the

computations start, creates a greater disturbance of the initial (equilibrium) free-surface

shape and hence causes larger free surface waves than those produced by the interface

formation model when the contact line begins to move. Computationally, as only one drop

in this symmetric system is considered, there is nothing to stop the free surface piercing the

z = 0 plane of symmetry, and in Figure 4 the dashed curves show the profiles obtained if

no special treatment is provided, for computations of the Re = 1.9 × 104 liquid using the

conventional model, i.e. the worst case scenario.

Physically, if the two free surfaces reconnect instantaneously upon coming into contact,

i.e. begin to coalesce, then the simulation should be continued with a trapped toroidal bubble

and a multiply-connected domain. However, as the capillary waves propagating along the

free surfaces of the two drops try to reconnect, the viscosity of the gas in the narrow gap
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between them can no longer be neglected since the gas will be acting as a lubricant preventing

the free surfaces from touching. In any case, at present, accounting for the dynamics of a

trail of toroidal bubbles deposited behind an advancing free surface is beyond developed

computational methods. An alternative approach, is to assume that, as the free surfaces

of the two drops try to touch ahead of the contact line, they do not coalesce immediately,

i.e. remain free surfaces for the short time that they are in contact, as then the capillary

waves propagate further and these free surfaces separate. This approach may well mimic the

reality, as one has to drain the air film between the two converging surfaces before coalescence

can occur, which could explain why there is yet to be any experimental validation of the

existence of the toroidal bubbles. The profiles obtained using this approach are shown as

the solid lines in Figure 4, and it is this approach that we use henceforth in the situations

where the free surface touches or tries to pierce the plane of symmetry.

In Figure 5, one can see that the difference between the two approaches, i.e. between

allowing the free surface to freely pierce the plane of symmetry and using the plane of

symmetry as a geometric constraint, is visible but small, with the second approach (curve

1b), where the free surface is unable to pass through the symmetry plane, predicting a

slightly faster evolution of the bridge radius than when the penetration of the plane is

allowed (curve 1a). This phenomenon clearly deserves more attention, and the development

of more advanced computational techniques, but in what follows we use the method proposed

above and note that the specific treatment does not appear to have a significant influence

on the bridge radius, certainly compared to the error bars in the experiments shown in

Section VI (see for example Figure 14) and only affects the lowest viscosity liquid drops.

The log-log plot in Figure 5 shows the radius of the liquid bridge connecting the two

coalescing drops as a function of time. Henceforth, r refers to the radius of the free surface

at the plane of symmetry, i.e. r = r(0, t). The curves shown in Figure 5 have been computed

using either of the two approaches to deal with the capillary waves piercing through the plane

of symmetry: both curves 1a and 1b are graphically indistinguishable from the corresponding

numerical results obtained in20, so that circles had to be used to highlight the region, roughly

0.1 < t < 100, for which a comparison was available.

Our results also give an opportunity to compare the full numerical solution we obtained

to the scaling laws given by equations (1) and (2) described in Section II B. As one can

see in Figure 5, both scaling laws, (1) and (2), provide a good approximation of the con-
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FIG. 5. Bridge radius as a function of time obtained using the conventional model and scaling

laws (1) and (2). Curve 1a: the free surface is allowed to pierce the plane of symmetry; curve 1b:

simulations where piercing of the plane of symmetry was not allowed; curve 2: best fit (Cvisc = 0.19)

of the scaling law (1); curve 3: the inviscid scaling law (2) with Cinert = 1.62; circles: the numerical

solution obtained in20 for the same problem. After the initial stages curves 1a and 1b are graphically

indistinguishable and so the label curve 1 is used.

ventional model’s solution over a considerable period of time. As expected, the viscosity-

versus-capillarity scaling law (curve 2), with Cvisc = 0.19 in equation (1), provides a good

approximation for early time, until roughly t = 0.1. The inertia-versus-capillarity scaling

law (curve 3), with Cinert = 1.62 in equation (2) taken from18, despite being used well out-

side its limits of applicability, agrees fairly well with our numerical solution from roughly

t ≈ 0.1 until approximately t ≈ 10, at which point the (non-local) influence of the drop’s
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overall geometry becomes pronounced.

Of particular interest is that our simulations show the r ∼ t ln t behaviour predicted in17,

which, as far as we are aware, has never previously been observed in either experiments

or simulations. In17, it is claimed that the viscosity-versus-capillarity scaling law is only

valid when the Reynolds number Rer based on the bridge radius is less than one, i.e. Rer ≡

r Re < 1, which corresponds to r < 10−4 for our values of parameters. However, we observe

that the scaling law approximates the actual solution up until almost r = 10−1, i.e. well

outside its apparent limits of applicability. This is in agreement with the conclusions in10,

where it is claimed that, to ascertain the limits of applicability of the scaling law, one should

use the Reynolds number Reh based on the undisturbed height of the free surface at a given

radius, as opposed to the bridge radius itself. Given that h ∝ r2, we have the condition

Reh = r2Re < 1, which suggests that the scaling law is valid until r < 10−2, which is far

closer to what we see. The above regime is followed by the inertial one after which something

close to a t1/2 scaling is observed.

In Figure 6, we show the results obtained using the conventional model for the global

dynamics of the coalescence of low-viscosity (Re = 1.9 × 104) spherical drops, as those

considered in50. In this figure, we use the Cartesian x-coordinate instead of r to give the full

profile of the drops rather than just a half of it (r ≥ 0). As one can see from Figure 5, as

well as from the shape of the free surface in the last image in Figure 6 at t = 550, the free

surface continues to evolve for t > 550, but this period is concerned with the free oscillation

of a single liquid drop (see for example50), as opposed to the coalescence event which we are

interested in here.

The coalescence of the two high viscosity drops (Re = 5.8× 10−6) is shown in Figure 7,

where one can observe that, as one would expect, the drops coalesce without any oscillations.

The log-log plot in Figure 8 confirms that our code is giving results in agreement with

previous computations that used the conventional model20. This has been tested for both

rmin = 10−4, curve 1a, as well as rmin = 10−3, curve 1b, and we can see that both curves

converge well before reaching the circles which correspond to the results of20. It is interesting

to note that the curves converge on to curve 2 obtained from the viscosity-versus-capillarity

scaling law, equation (1) with Cvisc = 0.4, after a time of O(rmin), i.e. the effect of the finite

initial radius is lost after a (dimensionless) time rmin, which is generally very short in the

cases we consider for the conventional model. Our estimate above, based on the extended
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FIG. 6. Coalescence of two low-viscosity free liquid drops with Re = 1.9× 104.

period in which the scaling law held for a low viscosity fluid, suggested that this law will

be valid until Reh = r2Re < 1, which in this case gives r < 102, i.e. for the entire period of

motion. This cannot be the case as the scaling law blows up before reaching such radii, see

Figure 7, and in fact we see once again that the scaling law agrees with the simulation up

until almost r = t = 10−1. Notably, the t ln t behaviour approximates the simulation better

than the best linear fit, curve 3, in contrast to experimental results9,24 which suggest that

the linear fit is a better one. No t1/2 scaling, as predicted by the inertia-versus-capillarity

scaling law, is seen, as one would expect, and we have therefore omitted this case from the

plot.

Having confirmed that, for the conventional model, our framework is giving results that

are in agreement with previous studies into coalescence, and having used this model to study

the limitations of the scaling laws proposed in the literature, we can now turn to a direct
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FIG. 7. Coalescence of two high viscosity free liquid drops with Re = 5.8× 10−6.

comparison of the two theories, the conventional model and the interface formation model,

to recently published experimental data.

VI. COMPARISON OF DIFFERENT MODELS TO EXPERIMENT

In this section, we will compare the predictions of both the conventional model and

the interface formation model with experiments reported in9 and10. In both experimental

setups, drops are formed from two nozzles and slowly brought together until coalescence

occurs. In what follows, we will initially consider the drops to be hemispheres of radius

R = 2 mm, pinned at the nozzle edge from which they emanate (see Figure 2). In the

Appendix, the influence of gravity and of the far-field flow geometry are quantified and

shown to be negligible for the initial stages of coalescence which we are interested in, so

that, for example, altering the length of the capillary, or its inlet conditions will have no

influence on our forthcoming conclusions.

As in the experiments in10, we consider the dynamics of water-glycerol mixtures of density

ρ = 1200 kg m−3 and surface tension with air of σ1e = 65 mN m−1 for a range of viscosities

µ = 3.3, 48, 230 mPa s, which are chosen as some of the cases where σ1e and ρ vary

least51, giving Re = 1.4× 104, 68, 2.9. The dependence of the interface formation model’s
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parameters on surface tension and drop radius are

Q = q1σ
−1, ε = q2σR

−1, β̄ = q3R, A = 1, ρs1e = 0.6, λ = (1− ρs1e)−1, (28)

and estimates for the dimensional constants, the q’s, for water-glycerol mixtures have been

obtained from experiments on dynamic wetting41 as q1 = 3 × 10−4 N m−1, q2 = 7 ×

10−6 N−1 m2 and q3 = 5× 108 m−1.

Fortuitously, at the highest viscosity we can also compare our results to those in9 where

the same liquid mixture was used52. Furthermore, at the highest viscosity there are no com-

plications from toroidal bubbles and the viscosity ratio between the liquid and surrounding

air is large, so that all influences on the coalescence dynamics additional to those consid-

ered, such as the dynamics of the gas, are negligible. In other words, this is the perfect test

case for a comparison between the conventional model, the interface formation model and

experimental data.

Notably, in contrast to the coalescence of two free liquid drops, where the final stage of

the process is one spherical drop of the combined volume, the equilibrium shape of the two

coalescing hemispheres pinned at the capillary edge is no longer analytically calculable. So,

a simple code was written to solve for the static equilibrium shapes of the drops using the
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approach outlined in53. In Figure 9, snapshots from the coalescence event are shown and,

critically, it can be seen that our simulations predict the correct equilibrium shape. On this

scale, there is seemingly little difference between the two models’ predictions, as one would

expect given that the two equilibrium shapes are the same. To access verifiable differences

between the models and to compare the results with the experiments, we now consider the

initial stages of the coalescence process.

In Figure 10, we show the free-surface profiles obtained from our simulations using the

two different models. In the initial stages of coalescence, one can see that the conventional

model (upper curves) predicts a faster motion than that given by the interface formation

model (lower curves). As can also be seen from Figure 10, the contact angle predicted by

the interface formation model takes a finite time to evolve and establish the smooth free

surface. This time period is associated with θd > 90◦, and only towards the end of the

evolution of the free surface shown in the figure the contact angle approaches 90◦, indicating

that the physics embodied in the conventional model can take over. This gradual evolution

of the contact angle results in a slower motion in the initial stages than that predicted by the

conventional model where, as we know, the initial velocity, driven by a region of extremely

high curvature and hence high capillary pressure, is huge. As we shall see, this difference

between the models’ predictions will reduce as time from the onset of the process passes

and the two drops evolve towards the same equilibrium position. Therefore, it is the initial

stages of the evolution, such as those shown in Figure 10, that the discrepancies between

theory and experiment will be most easily picked up.

The bridge radius as a function of time for the highest viscosity (Re = 2.9) is given in

Figure 11, which shows a comparison between the two models’ predictions and the exper-
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imental data from in9 and10. In particular, the initial time of coalescence in the optical

experiment of9, which is known to be uncertain, is chosen such that one has an overlap

with the data of the electrical experiments of10, where the initial time was more accurately

determined.

It is immediately apparent that the bridge radius predicted by the conventional model

overshoots the experimental values of both studies for a considerable amount of time. For

the interface formation model, using parameters (28), we obtain curve 3. Alteration of any of

these parameters is seen to result in a worse agreement with experiment with the exception

of the parameter ρs1e, which is the equilibrium surface density on the free surface. Decreasing

its value to ρs1e = 0.2 gives curve 2, which goes through all of the error bars and data points

except for the very first one. As one would expect, all the curves coincide as the equilibrium
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parameters from (28); curve 3: the interface formation model with parameters from (28).

position is approached and both agree with the optical experiments in these final stages of

evolution.

In Figure 12, the distributions of the surface tensions along both the free surface and

the internal interface are shown at different instances through the simulation. Notably,

although the free surface is in equilibrium (σ1 = 1) both initially and at the end of the

coalescence process when one has a single body of fluid confined by a smooth free surface,

as the interface formation dynamics unfolds (t > 0), the surface tension distribution near

the contact line becomes driven away from equilibrium, with, in particular, σ1 = 0.63 at

the contact line when t = 10−2, which is not far away from its minimum value of σ1 = 0.61

reached at t = 0.017. As can be seen from Figure 10, it is at this time that the contact angle

rapidly decreases from its initial value of θd = 180◦, imposed by the initial conditions, to its

equilibrium value of θd = 90◦, which it is close to achieving by t = 10−1. Consequently, the

behaviour of σ1 is non-monotonic in time, with an initial decrease in its distribution near

the contact line followed by a relaxation back towards its equilibrium state. As one would

expect, when there is a separation of length scales between the drop radius and the length

scale of interface formation, the surface tension on the free surface far away from the contact

line, roughly s > 10−2, remains in its equilibrium state throughout the coalescence process.
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obtained using the interface formation model.

However, the internal interface, which has length s = 10−4 at the start of the simulation, is

comparable with the length scale on which the interface formation model acts, and hence,

as one can see from Figure 12, it takes a finite time for the interface to form, and for this

interface there is no ‘far-field’ where the interface is in equilibrium until around t = 10−1,

at which point the length of the internal interface has increased significantly.

In our comparison of the two models with experiments, the following two aspects can be

highlighted. Firstly, it is apparent that the conventional model considerably overpredicts the

speed at which coalescence occurs. This is consistent with the fact that this model introduces
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unphysical singular velocities at the start of the process, as the cusp in the free surface shape

is instantaneously rounded. In our computations, this unphysicality is moderated by our use

of the zero velocity initial condition (24) but the influence of this initial condition quickly

dies out, and one ends up with the rate of the widening of the bridge connecting the two

drops well above what is actually observed. In contrast, the interface formation model

predicts that the angle at which the free surface meets the plane of symmetry will relax

from its initial value of 180◦ to its eventual value of 90◦ gradually, over some characteristic

time scale. In Figure 10, this behaviour is observed, where the angle remains high for a

considerable amount of time, being greater than 170◦ until t = 10−2, gradually relaxing

to 90◦ and reaching this value at around t = 10−1. What is unexpected, is that the non-

dimensional relaxation time of the interface τnd = τ/(Rµ/σ) = τµσ/R = O(10−4) is not a

good approximation for the period in which the interface is out of equilibrium, i.e. the free

surface is not smooth; in fact, the time scale over which interface formation acts is much

larger, which suggests that the influence of these effects could extend outside the parameter

space previously identified.

The second aspect, which is perhaps more important, is the trends observed in experi-

ments and predicted by the two models. In experiment and in what the interface formation

model predicts, one can see what looks like two different regimes, roughly corresponding, co-

incidentally, to the ranges of the electric and optical measurements, whereas the conventional

model describes the process as ‘more of the same’, with no qualitative difference between

the early stages of the process and the subsequent dynamics. This is consistent with the fact

that the conventional model assumes that coalescence as such occurs instantly, resulting in a

single body of fluid whose subsequent evolution can be described in the standard way, as in

the drop oscillation problem, whilst the interface formation model suggests that the forma-

tion of a single body of fluid is the result of a process and hence presumes that this process

has a dynamics different from that of the drop oscillations. These differences between the

two models can be of great significance, for example, for the modelling of microfluidics, and

they indicate a promising direction of experimental research.
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VII. THE INFLUENCE OF VISCOSITY

In Figures 13 and 14 the influence of decreasing the fluid’s viscosity is explored by com-

puting curves for the Re = 68 and Re = 1.4 × 104 cases, respectively. In both figures, the

interface formation model provides a considerably better approximation of the initial stages

of the drops’ evolution. In the Re = 68 case we see a slightly better agreement with the

experimental data by taking ρs1e = 0.45 whilst little improvement is achieved by altering any

of the parameters for the lowest viscosity. Notably, it is apparent that the curves provided

by both models deviate from the experimental results at later times, with a more significant

error seen at lower viscosities. Given that the predictions of the two theories have begun to

coincide, this is the region in which the interface formation is completed, so that the surface

parameters take their equilibrium values and the free surface is smooth. In other words,

in terms of the interface formation model, this deviation corresponds to the period after

coalescence has happened, a single body of fluid formed and it is the physics incorporated

in the conventional model that determines the subsequent dynamics.

The deviation of both theories54 from experiment in the later stage of the process seen

in Figures 13 and 14 cannot, as shown in the Appendix, be attributed to the influence

of gravity deforming the drops’ shape, or to an incomplete description of the overall flow

geometry; these effects only influence the drops’ evolution on an even longer time scale.

Therefore, it seems most likely that the additional resistance to the drops’ motion near the

bridge is coming from the influence of air, which begins to resist the bridge’s propagation

more as the radius of the bridge, i.e. the surface area of the bridge region, increases. This

is consistent with the fact that the deviation becomes more pronounced as the air-to-liquid

viscosity ratio increases, i.e. the liquid’s viscosity goes down. This effect only kicks-in during

the mid-stages of the drops’ evolution, so that our conclusions about the initial stages are

not affected. An investigation into the role played by the ambient air in the process of what

is, strictly speaking, the post-coalescence evolution of a strongly deformed single body of

fluid is of considerable interest and will be the subject of future research. One also might

be interested in proposing a new scaling law for this effect to provide a simplified analytic

description that could be validated by the full numerical solution.

34



10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

r

1

2

3

t
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different models compared to experiments from10 (with error bars). Curve 1: the conventional

model; curve 2: the interface formation model with ρs1e = 0.45 and other parameters from (28);

curve 3: the interface formation model with parameters from (28).

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

r

1

2
t

FIG. 14. Bridge radius as a function of time for viscosity µ = 48 mPa s (Re = 1.4 × 104)

obtained using different models compared to experiments from10 (with error bars). Curve 1: the

conventional model and curve 2: the interface formation model with parameters from (28).
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VIII. THEORY-GUIDED EXPERIMENTS

A. Free-surface shape

Having found from the interface formation model that the free-surface shape is non-

smooth for a considerable amount of time, it is reasonable to ask why this has not been

reported from experiments and how this effect can be brought to light. Taking the largest

viscosity used in these experiments (230 mPa s), we see from Figure 10 that the contact

angle varies over the time period 10−2 < t < 10−1 during which, from Figure 11, the bridge

radius varies in the range 10−2 < r < 10−1. In other words, whilst the bridge evolves from

around 1% to 10% of the drop’s total radius, the free-surface profile is non-smooth. As can

be seen in Figure 11, some data points from the experiments of9 exist in this regime, so that,

in principle, this regime is within the range of optical experiments. In fact, in9, it is noted

(see their Figure 20) that, as the viscosity increases, for a given bridge radius (280 µm) the

curvature of the bridge’s profile increases rapidly as a function of viscosity. This is based

on fitting circles to the free surface images to extract a radius of curvature, a process which

(a) presumes that the free surface is smooth and (b) involves, as the authors admit, “some

subjectivity”. In fact, our results obtained in the framework of the interface formation

model suggest that, for the highest viscosity which we consider, when rdim = 2.8× 10−4 m,

so that r ≈ 10−1, the free surface will indeed be almost smooth. However, if instead one

considers t = r = 0.04, which corresponds to a dimensional bridge radius of 80 µm, then

our results suggest that the contact angle should be measurable, at around 115◦. This is

apparently within the optical range. Furthermore, if one goes to higher viscosities, there is

the possibility of making the contact angle even more pronounced.

It is interesting to note from Figure 10 that, when the angle is already not too large, i.e.

θd < 120◦, the profiles obtained using the interface formation model (lower curves) do not

look very sharp where they meet z = 0, and one can easily see how, without allowing for the

possibility that the free surface can be non-smooth, these angles could easily be attributed

to the errors associated with the optical resolution.

Here, we are interested in suggesting theory-guided experiments, which would allow ex-

perimentally obtained data to be interpreted in terms of the concepts that the interface

formation model adds to our conventional understanding of fluid mechanical phenomena,
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such as, in this particular case, describing how non-smooth free surface profiles can be

sustained. With the aforementioned estimates in mind, we return to the highest viscosity

fluid (58000 mPa s) used in20, and consider whether one can bring the differences between

the conventional model and the interface formation model into the optical range for these

parameters. In Figure 15, we give an example showing that this is indeed possible. In par-

ticular, we see that with the time of the order of 100 ms and the bridge radius of the order

of 100 µm, so that we are well within the optical range, there is a clearly verifiable difference

between the two models’ predictions. It should be pointed out that we have not been able

to ascertain the precise parameters which should be used for the interface formation model

for this particular fluid, and so have used the parameters (28) mentioned earlier. The key

point is that this is a perfect test case with which the use of the interface formation model

for the coalescence process could be scrutinized.

B. Kinematics

Another aspect of the interface formation model that lends itself to experimental verifi-

cation is the fact that the flow kinematics produced in the framework of this model indicates

that the fluid particles initially belonging to the free surface move across the contact line to

become the fluid particles forming, first, the internal interface and then the ‘ordinary’ bulk

particles. In other words, there is a qualitative difference with what one has in the conven-

tional model where the fluid particles once forming the free surface stay on the free surface

at all time. From an experimental viewpoint, this difference suggests ‘marking’ the fluid

particles of the free surface with microscopic ‘markers’, e.g. the molecules of a surfactant

with a sufficiently low concentration so that the surfactant remains a ‘marker’, as opposed

to influencing the fluid’s dynamics. Then, one could monitor the percentage of the ‘markers’

that find themselves in the bulk of the fluid when the drops coalesce to form a single body

of fluid.

Notably, the kind of kinematics outlined above has been observed in the experiments on

the steady free-surface ‘cusps’ forming in convergent flow55, albeit the ‘markers’ used in these

experiments (particles of a powder) were rather crude. It is also worth mentioning that, as it

has subsequently been shown, the ‘cusps’ themselves, first discovered in31, turned out to be

corners32, so that the ‘contact angle’ in the coalescence phenomenon is actually the unsteady
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FIG. 15. Example illustrating the dependence of the dimensional radius of the bridge on dimen-

sional time for the coalescence of two liquid spheres of radius 1 mm, viscosity 58000 mPa s and

surface tension 20 mN m−1 simulated using the conventional model (curve 1) and the interface

formation model (curve 2). Although on a large time scale the two curves are similar, on a shorter,

and yet easily measurable, time scale there are experimentally verifiable differences between the

predictions of the two models.

version of the corners observed in steady convergent flows. The similarity between the flow

kinematics in the steady convergent flows and the coalescence process indicates that the

appearance of singularities in the free-surface curvature and the corresponding qualitative

change in the flow kinematics could be a generic phenomenon with profound implications.
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IX. CONCLUDING REMARKS

Much literature on the coalescence of liquid drops has been concerned with producing

and testing various ‘scaling laws’, which, with the proper choice of constants, are expected

to approximate the actual solution one would obtain in the framework of the conventional

model. Here, we have used our computational platform to show that in many cases these

scaling laws indeed provide a fairly good fit to the predictions of the conventional model and

in some cases appear to work even outside their ‘nominal’ limits of applicability. However,

we have also shown that the conventional model itself is unable to describe the coalescence

phenomenon whose details have come to light with the new experimental data. In fact, for

the three viscosities considered, even on a log-log plot there is a clear discrepancy between

the predictions of the conventional model and experimental data in all cases except the late

stages of coalescence of the most viscous drop, i.e. the stages where coalescence as such is

already over. Clearly then, the scaling laws so often used in the literature are also ineffective

at describing these flows and any attempts to fit the data with different coefficients will

merely result in the dependencies that are no longer close to the solution of the equations

they are supposed to represent.

The mathematical complexity of the interface formation model has often been cited56,57

as its drawback, although there is no reason to expect that intricate experimental effects will

be describable by simple mathematics. We have overcome the mathematical difficulties of

incorporating the interface formation model into a numerical platform in our previous work40,

which allowed us to use and compare both the conventional and the interface formation

model in the context of dynamic wetting processes. In the present work, we have shown

that the interface formation model provides a natural description, as well as a considerably

easier numerical implementation compared to the conventional model, for the coalescence

phenomena. The reason for this is that the interface formation model is able to cope with

the coalescence event in a singularity-free manner, which makes computation far easier and

actually means that less resolution is required with this model than the conventional one.

The results of using the interface formation model agree well with all experimental data

apart from the late stages of low viscosity drops, in which coalescence as such, i.e. the

formation of a single body of fluid with a smooth free surface, has actually occurred already.

As previously mentioned, it seems most likely that the influence of the surrounding air,
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which is neglected in our description, is responsible for the above discrepancy between

the theories and experiment. The evidence in favour of this reason is that at the highest

viscosity, where the liquid-to-air viscosity ratio is large, µ/µair ∼ 104, there is no discrepancy

whereas at the lowest liquid-to-air viscosity ratio µ/µair ∼ 102, i.e. where the viscosities

are more comparable, an influence is seen. Including the ambient gas dynamics will be

the subject of future work where we will consider both the possibility of using lubrication

theory to determine the forces acting on the free surface from the gas, as well as extending

our computational framework to describe the gas flow.

Our computations have confirmed previous predictions that for low-viscosity fluids,

toroidal bubbles are to be expected. Such bubbles are particularly prevalent when one uses

the conventional model to describe coalescence as it introduces a stronger capillary wave

that leads to the trapping of the bubbles. Therefore, a potential test case for the two models

would be to predict when such bubbles exist and what the size distribution of the bubbles

will be. The problem of describing the dynamics of the trapped bubbles and, in particular,

their stability with respect to azimuthal disturbances, requires the development of more

powerful computer codes which would be capable of handling multiple topological changes

to the fluid’s domain. This is the subject of current work. From the theoretical standpoint,

it is yet unclear even how accounting for the ambient gas’ viscosity will affect the formation

of the bubbles, and a natural approach to this problem is to include the gas dynamics into

the computational framework. Ultimately, it will be for the experiments to ascertain the

appearance of the toroidal bubbles and the conditions that promote this effect. In this

regard, experiments in vacuum/low-pressure chambers are a particularly promising line of

enquiry as they could help to elucidate several aspects associated with the role of the gas.

Much debate exists in the literature as to whether the conventional model and its known

extensions are able to describe a variety of flow configurations in which, as suggested by

qualitative analysis, interfaces form or disappear. These flows are often characterized by the

conventional model predicting singularities of various kind, as is the case for coalescence30, or

not allowing a solution to exist at all, as in the case of dynamic wetting39. The advantage of

using the coalescence phenomena to investigate the possibility of dynamic interfacial effects

is that, in contrast to dynamic wetting experiments, there is no solid surface involved; the

solid’s properties, such as roughness and chemical inhomogeneity, are usually poorly defined,

which creates room for different interpretations of the experimental outcome. If viewed
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through the prism of the interface formation model, the coalescence process considered

here can be regarded essentially as the ‘dynamic wetting’ of a geometric surface (plane of

symmetry), where the ‘equilibrium contact angle’ is 90◦. In other words, in coalescence, any

observed non-smoothness of the free surface is evidence in favour of the interface formation

model. Furthermore, the known effect of ‘hydrodynamic assist of dynamic wetting’58,59

suggests that in the coalescence process, for the same liquid, the dynamic contact angle

versus contact-line speed curves will depend on the drops’ size, and a close investigation of

this effect could provide valuable information about the interfacial dynamics.

Our results suggest that, as drops’ size decreases, the deviation between the conventional

and the interface formation model will become more pronounced as the relative size of the

trapped ‘internal interface’ will increase, which is particularly the case for high-viscosity

liquids. However, as the size of the system goes down, one runs into the limitations of what

can be measured using the conventional optical techniques. To a certain extent, this catch

twenty-two situation has been resolved by the pioneering experiments from the Chicago

Group, e.g.10, which allow, for the first time, sub-optical measurements to be made reliably

and accurately. It would be interesting to see if a similar method can be applied to wetting

experiments to allow a similar resolution to be achieved there, i.e. to determine the radius

of the wetted area for a drop impact and spreading onto a solid substrate as a function of

time from the resistance which this area produces. Such a method could uncover the new

effects predicted in40, which are similar to those observed in coalescence, namely that, as the

interface formation model indicates, the onset of spreading corresponds to a much slower

initial motion of the wetting line than what the conventional models suggest. Of particular

importance is the predicted decrease of the dynamic contact angle as the contact-line speed

increases, which is a specific feature of unsteady dynamic wetting.

It was interesting to see that, with regard to the coalescence experiments, a better agree-

ment between theory and experiment was obtained by using a lower value of ρs1e as the

concentration of glycerol was increased in the mixture. As both water and glycerol have

a similar density, this may seem somewhat surprising; however, the hygroscopic nature of

glycerol suggests that at high concentrations often the interface of the drops can consist

of just one of the liquids, which then essentially acts as a kind of surfactant to the whole

mixture. We can speculate that this may be the nature of the observed effect, but the best

way to confirm that this is the case would be to use a different liquid, such as a silicon oil,
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which does not suffer from such effects, in order to conduct similar experiments and then, by

checking the results against the interface formation model’s simulations, determine whether

there is a variation of ρs1e with, say, viscosity.

APPENDIX: INFLUENCE OF INITIAL GRAVITY AND INITIAL SHAPE

To simulate the coalescence of two drops, which retain their axisymmetry but, due to,

say, gravity, lose their symmetry about the z = 0 plane is a computationally tractable

problem. Here we have assumed that such asymmetry will not have a significant influence

on the very initial stages of coalescence and, in particular, will not alter the conclusions

of our comparison between theory and experiment. Once gravity is included, it will act to

elongate/squash the upper/lower drop so that the radius of curvature of the upper/lower

drop at the point where the two drops meet is decreased/increased. Then, crudely, one could

argue that these two opposite influences, which will act to decrease/increase the speed of

coalescence, will neutralize each other. To provide bounds on the effects which gravity could

have, whilst retaining the plane of symmetry, we consider a body force which acts towards

the z = 0 plane, so that the drop, and its image, is elongated and the opposite case where

the body force is away from the z = 0 plane, acting to squash the drop. These tests, which

provide the worst case scenario where a elongated/squashed drop coalesces with a copy of

itself, so that there is no cancelling of effects, will provide a useful bounds on the influence

that correctly incorporating gravity into our framework would have.

In Figure 16, we see the influence which gravity has on the initial shapes and the sub-

sequent evolution of the drops considered in10, which are taken for the Re = 68 case. The

bridge radius is plotted for simulations using the conventional model with the two elongated

drops (curve 1) and the two squashed drops (curve 2) compared to the zero gravity case

(dashed curve), where perfect hemispheres coalesce. Also in the figure are the experimental

error bars from10 and, most importantly, one can see that over the range 0 < t < 1, the

effect of the initial shape, has very little influence on the drops’ dynamics.

Additionally, in Figure 16, we show that the non-local effect of the different flow geome-

tries used, i.e. free spheres and pinned hemispheres, have no influence on the very initial

stages of coalescence, where the comparison to experiment has been made. As one can see,

in this region the result for coalescing hemispheres (dashed line) is graphically indistinguish-
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FIG. 16. Left: Different initial shapes dependent on gravity for 2 mm drops. Right: Bridge radius

as a function of time for the drops with Re = 68 compared to error bars from10, with curve 1 cor-

responding to Bo = 0.74, curve 2 to Bo = −0.74 and the dashed curve is the hemispheres obtained

for Bo = 0. Curve 3 is for the coalescence of free spheres as opposed to pinned hemispheres.

able from that obtained using spheres (curve 3). Notably, the two equilibrium bridge radii

will differ, with the sphere obtaining a larger equilibrium radius.
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