
Supplementary material for
“Bayesian Survival Modelling of University Outcomes”

C.A. Vallejos and M.F.J. Steel

This document extends the descriptive analysis of the PUC dataset and provides further details regarding
the implementation of Bayesian inference and the properties of the MCMC chain. In addition, documentation
for the freely available R code is provided. Finally, we discuss the proportional odds assumption for our data.
Throughout, Sections and equation numbers not starting with S refer to the paper.

A. Descriptive analysis of PUC dataset

Table S1 breaks down the percentage of students satisfying the inclusion criteria (see Section 2) by program.
This inclusion percentage is at least 78% for the programmes analyzed in Section 5.

Table S1: PUC dataset. Amount of students satisfying the inclusion criteria using in this study by program.
Program No. students % students
Acting 362 80.1
Agronomy and Forestry Engineering 2,466 85.2
Architecture 841 69.9
Art 688 76.3
Astronomy 295 88.3
Biochemistry 331 85.5
Biology 791 83.9
Business Administration and Economics 2,027 72.7
Chemistry 379 82.0
Chemistry and Pharmacy 687 85.6
Civil Construction 1,930 86.0
Design 651 65.2
Education, elementary school 1,277 81.4
Education, elementary school (Villarrica campus) 301 80.5
Education, preschool 949 83.2
Engineering 3,522 69.3
Geography 534 84.5
History 552 76.6
Journalism and Media Studies 876 76.2
Law 2,303 84.2
Literature (Spanish and English) 911 80.8
Mathematics and Statistics 598 78.0
Medicine 972 89.8
Music 161 74.5
Nursing 886 78.6
Physics 237 85.9
Psychology 801 75.9
Social Work 440 87.5
Sociology 421 74.0
Total 27,189 78.7
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Figures S1 to S8 summarize a more complete descriptive analysis of the PUC dataset. These Figures
confirm strong levels of heterogeneity between different programmes of the PUC.
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Figure S1: Distribution of students according to sex (lighter area: males).
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Figure S2: Distribution of students according to region of residence (lighter area: Metropolitan area).
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Figure S3: Distribution of students according to educational level of the parents (lighter area: students for
which at least one of the parents has a university or technical degree).
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Figure S4: Distribution of students according to type of high school (from darkest to lightest, colored areas rep-
resent the proportion of students whose high school was: private, subsidized private and public, respectively).
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Figure S5: Distribution of students according to funding (from darkest to lightest, colored areas represent the
proportion of students who have: scholarship and loan, scholarship only, loan only and no aid, respectively).
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Figure S6: Distribution of students according to their selection score (lighter area: students with a selection
score of 700 or more, which is typically considered a high value - the maximum possible score is 850). The
minimum score required when applying to the PUC is 600 but exceptions apply for some education-related
programmes.
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Figure S7: Distribution of students according to their application preference (lighter area: students who applied
with second or lower preference to their current degree).
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Figure S8: Distribution of students according to the gap between High School graduation and admission to
PUC (lighter area: students with no gap).
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B. Markov Chain Monte Carlo implementation

Bayesian inference for a multinomial (or binary) logistic regression is not straightforward. There is no conjugate
prior and sampling from the posterior distribution is cumbersome [Holmes and Held, 2006]. Here we adapt the
hierarchical structure proposed in Polson et al. [2013] in order to implement posterior inference for the discrete
time competing risks model described in Section 3.1, under the prior described in Section 4.1.

For a binary logistic model with observations {yit : i = 1, . . . , n, t = 1, . . . , ti}, where yit = 1 if the event
is observed at time t for subject i, and yit = 0 otherwise, the key result in Polson et al. [2013] is that

[ ez
′
iβ
∗
]yit

ez
′
iβ
∗

+ 1
∝ eκitz

′
iβ
∗
∫ ∞
0

exp{−ηit(z′iβ∗)2/2}fPG(ηit|1, 0) dηit, (S1)

where zi is a vector of covariates associated with individual i, β∗ is a vector of regression coefficients, κit =

yit − 1/2 and fPG(·|a, b) denotes a Polya-Gamma density with parameters a and b [see Polson et al., 2013,
for a description of the Polya-Gamma distribution and its properties]. In terms of the model in equation (2) of
the paper, zi includes xi and the auxiliary binary variables linked to the δt’s. Thus, β∗ = (δ1, . . . , δt0 , β

′)′.
The result in (S1) can be used to construct a Gibbs sampling scheme for the multinomial logistic model

along the lines of Holmes and Held [2006]. Now let 0, 1, . . . ,R be the possible values for observations yit asso-
ciated with regression coefficients β∗(1), . . . , β

∗
(R). Conditional on fixed values of β∗(1), . . . , β

∗
(r−1), β

∗
(r+1), . . . , β

∗
(R),

the conditional likelihood function associated to β∗(r) is proportional to

n∏
i=1

ti∏
t=1

[
exp{z′iβ∗(r) − Cir}

]I(yit=r)
1 + exp{z′iβ∗(r) − Cir}

, where Cir = log

1 +
∑
r∗ 6=r

exp{z′iβ∗(r∗)}

 . (S2)

Assume a priori that β∗(r) ∼ Normalt0+k (µr,Σr), r = 1, . . . ,R and defineB∗ =
{
β∗(1), . . . , β

∗
(R)

}
. Using (S1)

and (S2), a Gibbs sampler for the multinomial logistic model is defined through the following full conditionals
for r = 1, . . . ,R

β∗(r)|ηr, β
∗
(1), . . . , β

∗
(r−1), β

∗
(r+1), . . . , β

∗
(R), y11 . . . , yntn ∼ Normalt0+k(mr, Vr), (S3)

ηitr|B∗ ∼ PG(1, z′iβ
∗
(r) − Cir), t = 1, . . . , ti, i = 1, . . . , n, (S4)

defining 1t as a vector of t ones, Z = (z1 ⊗ 1′t1 , . . . , zn ⊗ 1′tn)′, ηr = (η11r, . . . , ηntnr)
′, Dr = diag{ηr},

Vr = (Z ′DrZ+Σ−1r )−1,mr = Vr(Z
′κr+Σ−1r µr), κr = (κ11r, . . . , κntnr)

′ and κitr = I{yit=r}−1/2+ηitrCir

(where IA = 1 if A is true, 0 otherwise). The previous algorithm (implemented in the R library BayesLogit
by Polson et al) applies to the model in equation (6) of the paper with β∗(r) = (δ′(r), β

′
(r))
′, δ(r) = (δr1, . . . , δrt0)′,

β(r) being a vector of event type specific regression coefficients and defining zi in terms of auxiliary binary
variables related to the δrt’s and the observed covariates xi. Extra steps are required to accommodate the
prior adopted throughout the paper, which is a product of independent multivariate Cauchy and hyper-g prior
components. Both components can be represented as a scale mixture of normal distributions (see equations (8)
and (9) in the paper). Hence, conditional on Λ1, . . . ,ΛR, g1, . . . , gR (in (8) and (9)), the sampler above applies.
To complement the sampler, at each iteration, Λr’s and gr’s are updated using the full conditionals.

Λr|δ(r) ∼ Gamma

(
t0 + 1

2
,
δ′(r)δ(r)

2ω2

)
, r = 1, . . . ,R, (S5)

gr|β(r) ∝ g−k/2r exp

{
−
β′(r)X

′Xβ(r)

2gr

}
π(gr), r = 1, . . . ,R. (S6)

An adaptive Metropolis-Hastings step [see Section 3 in Roberts and Rosenthal, 2009] is implemented for (S6).

10



The extension to a sampler over model space as explained in Subsection 4.3 involves drawing from the full
conditionals

π(γj |γ−j , δ, B,Λ, g) ∝ L(γ)×

[ R∏
r=1

π(β(r)|gr;Xγ)

]
, (S7)

with γ−j = {γ1 . . . , γj−1, γj+1, . . . , γk∗}, δ = {δ(1), . . . , δ(R)}, B = {β(1), . . . , β(R)}, Λ = {λ1, . . . , λR}
and g = {g1, . . . , gR}. In (S7), L(γ) represents the likelihood function associated with the model in (6) and
the covariate configuration induced by γ. We use a Metropolis-Hastings step with “add/remove” proposals
(i.e. propose γj = 1 when the current value is equal to 0 and propose γj = 0 when the current value is equal to
1). To facilitate a faster exploration of the model space, we also use “forced moves” where, every 20 iterations,
we randomly choose one of the γj’s and directly sample its value from a Bernoulli(0.5) distribution (only one
of the γj’s is updated in this forced update).
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C. Convergence of MCMC chains and prior sensitivity

In this section we display some graphical summaries to visualise the convergence of the MCMC chains used
throughout in Section 5 of the manuscript. In addition, we provide results when using different priors for
the regression coefficients — based on the Zellner [1986] g-prior and the Benchmark-Beta hyper prior for
g used in Ley and Steel [2012]. Figures S9, S10 and S11 display cumulative estimates of MPPIs for three
priors, indicating both good convergence and similarity of results between these priors. Figure S12 presents
the traceplots of the regression coefficients, suggesting good mixing and convergence. Traceplots for the other
events and programmes lead to the same conclusions.

Figure S9: Chemistry students. Cumulative estimates of MPPIs under three different priors. Red lines corre-
spond to the prior used for the results displayed in Section 5. Dotted lines indicate the final estimates.
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Figure S10: Mathematics and Statistics students. Cumulative estimates of MPPIs under three different priors.
Red lines correspond to the prior used for the results displayed in Section 5. Dotted lines indicate the final
estimates.
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Figure S11: Physics students. Cumulative estimates of MPPIs under three different priors. Red lines correspond
to the prior used for the results displayed in Section 5. Dotted lines indicate the final estimates.
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Figure S12: Mathematics and Statistics students, graduation event. Traceplots for regression coefficients under
the prior described in Section 4.
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D. Documentation for the R code

Bayesian inference is implemented through the Markov chain Monte Carlo (MCMC) sampler and priors
described in Section 4. Inference was implemented in R1 version 3.0.1. The code is freely available at
https://github.com/catavallejos/UniversitySurvival

This includes the MCMC algorithm and the Bayesian variable selection methods described in the paper. Be-
fore using this code, the following libraries must be installed in R: BayesLogit, MASS, mvtnorm, Matrix
and compiler. All of these are freely available from standard R repositories and are loaded in R when “Inter-
nal Codes.R” is executed. The last two libraries speed up matrix calculations and the “for” loops, respectively.
Table S2 explains the notation used throughout the code. The implementation was based on three-dimensional
arrays, with the third dimension representing the event type.

Table S2: Notation used throughout the R code
Variable name Description
CATEGORIES Number of possible outcomes, excluding censoring (equal to 3 for the PUC dataset)
n Total number of students
nt Total number of multinomial outcomes (i.e.

∑
ti across all students)

t0 Number of period-specific baseline log-odds coefficients δrt (for each cause)
k Number of effects (t0 + number of covariate effects)
Y Vector of outcomes. Dimension: n ×1

X Design matrix, including the binary indicators (denoted by Z in the paper). Dimension: n × k

X.Period Design matrix related to period-specific baseline log-odds coefficients δrt’s only. Dimension nt × t0

inc Vector containing covariate indicators γ1, . . . , γk∗
beta β∗ (period-specific baseline log-odds and covariates effects for all event types)
mean.beta Prior mean for {β∗1 , . . . , β∗R}. Dimension: 1× k × CATEGORIES

prec.delta Precision matrix for (δr1, . . . , δrt0)′. Dimension: t0 × t0

df.delta Degrees of freedom for prior of (δr1, . . . , δrt0)′. Default value: 1
fix.g If TRUE, g1, . . . , gR are fixed. Default value: FALSE
prior Choice of hyper prior for gr: (i) Benchmark-Beta or (ii) Hyper-g/n [see Ley and Steel, 2012]
N Total number of MCMC iterations
thin Thinning period for MCMC algorithm
burn Burn-in period for MCMC algorithm
beta0 Starting value for {β∗1 , . . . , β∗R}. Dimension: 1× k × CATEGORIES

logg0 Starting value (log-scale) of {g1, . . . , gR}. Dimension: 1× CATEGORIES

ls.g0 Starting value (log-scale) of the adaptive proposal variance used in Metropolis-Hastings updates
of log(g1), . . . , log(gR). Dimension: 1× CATEGORIES

ar Optimal acceptance rate for the adaptive Metropolis-Hastings updates. Default value: 0.44
ncov Indicates how many potential covariates are included in the design matrix

(might not match the number of columns due to categorical covariates with more than two levels)
Default value: 8 (as in the PUC dataset)

include Vector indicating which covariates from the design matrix are to be included in the model
If missing a sampler over the model space will be run. Default: NULL

gamma γ (covariate inclusion indicators)

The code is separated into two files. The file “Internal Codes.R” contains functions that are required for
the implementation but the user is not expected to directly interact with these. These functions must be loaded

1Copyright (C) The R Foundation for Statistical Computing.
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in R before doing any calculations. The main function — used to run the MCMC algorithm — is contained in
the file “User Codes.R”. In the following, a short description of this function is provided. Its use is illustrated
in the file “Example.R” using a simulated dataset.

• MCMC.MLOG. Adaptive Metropolis-within-Gibbs algorithm [Roberts and Rosenthal, 2009] for the com-
peting risks Proportional Odds model used throughout the paper. If not fixed, univariate Gaussian
random walk proposals are implemented for log(g1), . . . , log(gR). Arguments: N, thin, Y, X, t0,
beta0, mean.beta, prec.delta, df.delta, logg0, ls.g0, prior, ar, fix.g, ncov and
include. The output is a list containing the following elements: beta MCMC sample of β∗ (ar-
ray of dimension (N/thin+1) × k × CATEGORIES), gamma MCMC sample of γ (matrix of di-
mension (N/thin+1) × k, logg MCMC sample of log(g1), . . . , log(gR) (dimension (N/thin+1) ×
CATEGORIES), ls.g stored values for the logarithm of the proposal variances for log(g1), . . . , log(gR)

(dimension (N/thin+1)× CATEGORIES) and lambda MCMC sample of λ1, . . . , λR), which are de-
fined in equation (9) in the paper (dimension (N/thin+1) × CATEGORIES). Recording ls.g allows
the user to evaluate if the adaptive variances have been stabilized. Overall acceptance rates are printed in
the R console (if appropriate). This value should be close to the optimal acceptance rate ar.
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E. Assessment of proportional odds assumption

Our modelling approach uses the proportional odds (PO) assumption. To approximately assess this assumption,
this Section displays non-parametric estimates of the ratio between the cause-specific hazard rates and the haz-
ard associated with no event, stratified by the levels of each covariate (irrespective of the value of the remaining
covariates). As defined by equation (4), if the PO assumption holds, these should be proportional. While the
proportional odds assumption does not seem too unreasonable for some covariates and degree programmes
(e.g. preference and gap covariates for the Mathematics and Statistics data), this is less obvious in other cases.
This is perhaps not that critical for those covariates that are not robustly associated with the analyzed outcomes
(e.g. for Physics students, where the null model concentrates more than 50% of the posterior probability). In
addition, this simple stratification per covariate does not account for imbalance in the other covariates (and we
would need a very large data set indeed to be able to resolve this), which could substantially affect the results.

Potential reasons for deviations from PO are unobserved confounders and time-varying covariate effects
(e.g. if some of the variables recorded at admission might have a diminishing effect throughout time). In such
cases, possible solutions would be to keep the proportional odds specification but to add an interaction effect
between time and covariates (e.g. different effect magnitudes during the first year of admission) and to incor-
porate random effects in order to account for unobserved sources of heterogeneity. This will be investigated
in future follow-up analyses. However, it should be borne in mind that inference in such more general models
might well be challenging with the available sample sizes.
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Figure S13: Chemistry students, graduation events. Non-parametric estimates for hazard ratio with respect to
no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S14: Chemistry students, involuntary dropout events. Non-parametric estimates for hazard ratio with
respect to no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S15: Chemistry students, voluntary dropout events. Non-parametric estimates for hazard ratio with
respect to no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S16: Mathematics and Statistics, graduation events. Non-parametric estimates for hazard ratio with
respect to no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S17: Mathematics and Statistics, involuntary dropout events. Non-parametric estimates for hazard ratio
with respect to no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S18: Mathematics and Statistics students, voluntary dropout events. Non-parametric estimates for haz-
ard ratio with respect to no event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S19: Physics, graduation events. Non-parametric estimates for hazard ratio with respect to no event
(h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S20: Physics, involuntary dropout events. Non-parametric estimates for hazard ratio with respect to no
event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.
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Figure S21: Physics, voluntary dropout events. Non-parametric estimates for hazard ratio with respect to no
event (h(r, t)/h(0, t)) stratified according to the levels of the available covariates.

27



References

H. Cho, J. G. Ibrahim, D. Sinha, and H. Zhu. Bayesian case influence diagnostics for survival models. Biomet-
rics, 65:116–124, 2009.

S. Geisser and W.F. Eddy. A predictive approach to model selection. Journal of the American Statistical
Association, 74:153–160, 1979.

C.C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian
Analysis, 1:145–168, 2006.

E. Ley and M.F.J. Steel. Mixtures of g-priors for Bayesian model averaging with economic applications.
Journal of Econometrics, 171:251–266, 2012.

X.L. Meng and S. Schilling. Warp bridge sampling. Journal of Computational and Graphical Statistics, 11:
552–586, 2002.

X.L. Meng and W.H. Wong. Simulating ratios of normalizing constants via a simple identity: A theoretical
exploration. Statistica Sinica, 6:831–860, 1996.

N. Polson, J. Scott, and J. Windle. Bayesian inference for logistic models using Polya-Gamma latent variables.
Journal of the American Statistical Association, 108:1339–1349, 2013.

G.O. Roberts and J.S. Rosenthal. Examples of adaptive MCMC. Journal of Computational and Graphical
Statistics, 18:349–367, 2009.

D.J. Spiegelhalter, N.G. Best, B.P. Carlin, and A. van der Linde. Bayesian measures of model complexity and
fit (with discussion). Journal of the Royal Statistical Society, B, 64:583–640, 2002.

A. Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P.K.
Goel and A. Zellner, editors, Bayesian Inference and Decision Techniques: Essays in Honour of Bruno de
Finetti, pages 233–243, North-Holland: Amsterdam, 1986.

28


