
 

 
 

 
 

  warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Thompson, James. (2016) Brownian motion and the distance to a submanifold. Potential 
Analysis. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/79017         
       
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 4.0 International 
license (CC BY 4.0) and may be reused according to the conditions of the license.  For more 
details see: http://creativecommons.org/licenses/by/4.0/   
 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/79017
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk


Potential Anal
DOI 10.1007/s11118-016-9553-2

Brownian Motion and the Distance to a Submanifold

James Thompson1

Received: 25 August 2015 / Accepted: 15 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This is a study of the distance between a Brownian motion and a submanifold
of a complete Riemannian manifold. It contains a variety of results, including an inequal-
ity for the Laplacian of the distance function derived from a Jacobian comparison theorem,
a characterization of local time on a hypersurface which includes a formula for the mean
local time, an exit time estimate for tubular neighbourhoods and a concentration inequality.
The concentration inequality is derived using moment estimates to obtain an exponential
bound, which holds under fairly general assumptions and which is sufficiently sharp to
imply a comparison theorem. We provide numerous examples throughout. Further applica-
tions will feature in a subsequent article, where we see how the main results and methods
presented here can be applied to certain study objects which appear naturally in the theory
of submanifold bridge processes.

Keywords Brownian motion · Local time · Submanifold · Tube · Distance

Mathematics Subject Classifications (2010) 58J65 · 53B21 · 60J55

1 Introduction

Suppose that M is a complete and connected Riemannian manifold of dimension m, that
N is a closed embedded submanifold of M of dimension n ∈ {0, . . . , m − 1} and that
X(x) is a Brownian motion on M starting at x ∈ M with explosion time ζ(x). The main
objective of this paper is to study the distance between Xt(x) and N for each t ≥ 0. This is
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not something which has previously been considered in the literature, the closest reference
being the study of mean exit times given by Gray, Karp and Pinksy in [10]. Our main results
are Theorems 1, 8 and 9. We will denote by rN the distance function and assume that there
exist constants ν ≥ 1 and λ ∈ R such that the Lyapunov-like condition

1

2
�r2

N ≤ ν + λr2
N (1)

holds off the cut locus of N . Geometric conditions under which such an inequality arises,
which allow for unbounded curvature, are given by Theorem 1 (see Corollary 2), which is
derived from the classical Heintze-Karcher comparison theorem [12]. Under such assump-
tions we deduce a variety of probabilistic estimates, which are presented in Section 4. We do
so first using a logarithmic Sobolev inequality. Such inequalities were originally studied by
Gross in [11] and we refer to the article [7] for the special case of the heat kernel measure.
We then prove more general estimates using the Itô-Tanaka formula of Section 3, which
is derived from the formula of Barden and Le [17] and which reduces to the formula of
Cranston, Kendall and March [6] in the one-point case. The basic method is similar to that
of Hu in [14], who studied (uniform) exponential integrability for diffusions in R

m for C2

functions satisfying another Lyapunov-like condition. Indeed, several of our results could
just as well be obtained for such functions, but we choose to focus on the distance func-
tion since in this case we have a geometric interpretation for the Laplacian inequality (1).
Section 3 also includes a characterization of the local time of Brownian motion on a hyper-
surface and a couple of examples. The probabilistic estimates of Section 4 include Theorem
4 and its generalization Theorem 6, which provide upper bounds on the even moments of
the distance rN(Xt (x)) for each t ≥ 0. Using properties of Laguerre polynomials we use
these estimates to deduce Theorems 7 and 8, which provide upper bounds on the moment
generating functions of the distance rN (Xt (x)) and squared distance r2

N(Xt (x)) for each
t ≥ 0, respectively. The latter estimate improves and generalizes a theorem of Stroock.
Using Theorem 8 and Markov’s inequality we then deduce Theorem 9, which provides
an concentration inequality for tubular neighbourhoods. Note that in this paper we do not
assume the existence of Gaussian upper bounds for the heat kernel; the constants appearing
in our estimates are all explicit. This paper has been presented in such a way that it should
be possible for the reader to read Section 4 either before or after Sections 2 and 3.

2 Geometric Inequalities

We begin by deriving an inequality for the Laplacian of the distance function. This object
can be written in terms of the Jacobian determinant of the normal exponential map, so we
begin with a comparison theorem and inequalities for this object. The main references here
are [12] and [23].

2.1 Heintze-Karcher Inequalities

Suppose that M is a complete and connected Riemannian manifold of dimension m with
Riemannian volume measure volM and that N is a closed embedded submanifold of M of
dimension n ∈ {0, . . . , m−1} with induced measure volN and normal bundle πN : T N⊥ →
N . Fix ξ ∈ UT N⊥ := {ξ ∈ T N⊥ : ‖ξ‖ = 1} and choose t1 ∈ (0, fN(ξ)) where fN(ξ)

denotes the first focal time along the geodesic γξ with γξ (0) = πN(ξ) and γ̇ξ (0) = ξ . If
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p ∈ M with σp a two-dimensional subspace of TpM then denote by K(σp) the sectional
curvature of σp and let

κξ (t1) := min

{
K(σγξ (t)) :

σγξ (t) is any two-dimensional subspace of

Tγξ (t)M containing γ̇ξ (t) for any t ∈ [0, t1]

}
.

As regards the extrinsic geometry of the submanifold, denote by Aξ the shape operator
associated to ξ and by λ1(ξ), . . . , λn(ξ) the eigenvalues of Aξ . These eigenvalues are called
the principle curvatures of N with respect to ξ and their arithmetic mean, denoted by Hξ , is
called the mean curvature of N with respect to ξ . Let θN : T N⊥ → R denote the Jacobian
determinant of the normal exponential map expN : T N⊥ → T M (which is simply the
exponential map of M restricted to T N⊥) and for κ, λ ∈ R define, for comparison, functions
Sκ , Cκ , Gκ and Fλ

κ by

Sκ(t) :=

⎧⎪⎨
⎪⎩

1√
κ

sin
√

κt if κ > 0

t if κ = 0
1√−κ

sinh
√−κt if κ < 0

Cκ(t) := d
dt

Sκ(t)

Gκ(t) := d
dt

log(Sκ(t)/t)

F λ
κ (t) := d

dt
log(Cκ(t) + λSκ(t)).

If κξ (t1) is any constant such that κξ (t1) ≤ κξ (t1) then, as was proved by Heintze and
Karcher in [12] using a comparison theorem for Jacobi fields, and which was generalized
somewhat by Kasue in [16], there is the inequality

d

dt
log θN(tξ) ≤ (m − n − 1)Gκξ (t1)(t) +

n∑
i=1

F
λi(ξ)

κξ (t1)
(t) (2)

for all 0 ≤ t ≤ t1. Furthermore, if ρ
ξ
(t1) satisfies

(m − 1)ρ
ξ
(t1) = min{Ric(γ̇ξ (t)) : 0 ≤ t ≤ t1}

and ρξ (t1) is any constant such that ρξ (t1) ≤ ρ
ξ
(t1) then for n = 0 there is the inequality

d

dt
log θN(tξ) ≤ (m − 1)Gρξ (t1)(t) (3)

for all 0 ≤ t ≤ t1 and for n = m − 1 there is the inequality

d

dt
log θN(tξ) ≤ (m − 1)F

Hξ

ρξ (t1)
(t) (4)

for all 0 ≤ t ≤ t1. Heintze and Karcher’s method implies that the right-hand sides of
inequalities (2), (3) and (4) are finite for all 0 ≤ t ≤ t1. Note that the ‘empty sum is zero’
convention is used to cover the case n = 0 in inequality (2).
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2.2 Jacobian Inequalities

We use the Heintze-Karcher inequalities to deduce secondary estimates.

Proposition 1 For 0 ≤ t ≤ t1 we have

d

dt
log θN(tξ) ≤ (m − 1)

√
|κξ (t1) ∧ 0| +

n∑
i=1

|λi(ξ)|.

By Gronwall’s inequality and the fact that θN |N ≡ 1, this differential inequality implies
an upper bound on θN . By a change of variables, upper bounds on θN imply upper bounds
on the volumes of tubular neighbourhoods and the areas of the boundaries. In this way we
can obtain estimates on these objects which are more explicit than those found in [9]. These
calculations will not be presented here; they can be found in the author’s doctoral thesis. To
prove the proposition we will use two preliminary lemmas.

Lemma 1 If κξ (t1) ≥ 0 then for 0 ≤ t ≤ t1 we have

d

dt
log θN(tξ) ≤

n∑
i=1

λi(ξ).

Proof Setting κξ (t1) = 0 we have Sκξ (t1)(t) = t and Cκξ (t1)(t) = 1 and from inequality (2)
it follows that

d

dt
log θN(tξ) ≤

n∑
i=1

λi(ξ)

1 + λi(ξ)t

for all 0 ≤ t ≤ t1. The result follows by considering the cases λi(ξ) ≥ 0 and λi(ξ) < 0
separately.

Lemma 2 If κξ (t1) < 0 then for 0 ≤ t ≤ t1 we have

d

dt
log θN(tξ) ≤ (m − n − 1)

√
−κξ (t1)

+
n∑

i=1

(√
−κξ (t1)1{|λi (ξ)|<√−κξ (t1)} + λi(ξ)1{|λi (ξ)|≥√−κξ (t1)}

)
.

Proof Fix κ < 0 and λ ∈ R. Note that limt↓0 (coth(t) − 1/t) = 0,
limt↑∞ (coth(t) − 1/t) = 1 and that by Taylor’s theorem the derivative of this func-
tion is strictly positive for positive t . Therefore coth(t) − 1/t ≤ 1 for t ∈ (0,∞) and
Gκ(t) ≤ √−κ . Note that for each i = 1, . . . , k we have

− d

dt
F λ

κ (t) = κ + λ2

(Cκ(t) + λSκ(t))2

so Fλ
κ is increasing on (0, t1] if and only if |λ| <

√−κ . If |λ| ≥ √−κ then Fκ
λ is

nonincreasing and Fκ
λ (t) ≤ limt↓0 Fκ

λ (t) = λ. Conversely if |λ| <
√−κ then

Cκ(t) + λSκ(t) ≥ cosh
(√−κt

)− sinh
(√−κt

) = e−√−κt
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so Fκ
λ is defined on (0, ∞) and

Fκ
λ (t) ≤ lim

t↑∞ Fκ
λ (t) ≤ √−κ lim

t↑∞

(
sinh(t) + cosh(t)

cosh(t) − sinh(t)

)
= √−κ.

The lemma then follows from inequality (2) by setting κξ (t1) = κξ (t1).

We can now prove Propostion 1.

Proof of Proposition 1 By Lemmas 1 and 2 it follows that

d

dt
log θN(tξ)

≤
n∑

i=1

λi(ξ)1{κξ (t1)≥0} + (m − n − 1)
√

−κξ (t1)1{κξ (t1)<0}

+
n∑

i=1

(√
−κξ (t1)1{|λi (ξ)|<√−κξ (t1)} + λi(ξ)1{|λi(ξ)|≥√−κξ (t1)}

)
1{κξ (t1)<0}

≤
n∑

i=1

|λi(ξ)|1{κξ (t1)≥0} + (m − n − 1)
√

|κξ (t1) ∧ 0|

+n
√

|κξ (t1) ∧ 0| +
n∑

i=1

|λi(ξ)|1{κξ (t1)<0}

= (m − 1)
√

|κξ (t1) ∧ 0| +
n∑

i=1

|λi(ξ)|

as required.

Note that the factor (m − 1) is reasonable since an orthonormal basis of a tangent space
Tγξ M gives rise to precisely (m − 1) orthogonal planes containing the radial direction γ̇ξ .

2.3 Laplacian Inequalities

Denote by M(N) the largest domain in T N⊥ whose fibres are star-like and such that the
restriction of the exponential map expN |M(N) is a diffeomorphism onto its image. Then
that image is M \ Cut(N), where Cut(N) denotes the cut locus of N . Recall that Cut(N)

is a closed subset of M with volM -measure zero. With rN : M → R defined by rN (·) :=
dM(·, N) the vector field ∂

∂rN
will denote differentiation in the radial direction, which is

defined off the union of N and Cut(N) to be the gradient of rN and which is set equal to
zero on that union. If as in [9, p.146] we define a function N : M \ Cut(N) → R by

N := θN ◦ (expN |M(N)

)−1 (5)

we then have the following corollary of Proposition 1, in which cN(ξ) denotes the distance
to the cut locus along γξ .
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Corollary 1 Suppose that there is a function κ : [0, ∞) → R such that for each ξ ∈
UT N⊥ and t1 ∈ (0, cN(ξ)) we have κ(t1) ≤ κξ (t1) and that the principal curvatures of N
are bounded in modulus by a constant � ≥ 0. Then there is the estimate

∂

∂rN
log N ≤ n� + (m − 1)

√|κ(rN) ∧ 0| (6)

on M \ Cut(N).

Proof For each ξ ∈ UT N⊥ and t1 ∈ (0, cN (ξ)) we see by Proposition 1 that

∂

∂rN
log N(γξ (t1)) = d

dt
log θN(tξ)

∣∣∣∣
t=t1

≤ n� + (m − 1)
√|κ(t1) ∧ 0|.

Since for each p ∈ M \ (N ∪ Cut(N)) there exists a unique ξp ∈ UT N⊥ such that
γξp (rN(p)) = p, the result follows for such p by setting t1 = rN(p). For p ∈ N the radial
derivative is set equal to zero in which case the result is trivial.

Furthermore, following from remarks made at the end of Section 2.1, if there is a function
ρ : [0, ∞) → R such that for each ξ ∈ UT N⊥ and t1 ∈ (0, cN (ξ)) we have ρ(t1) ≤ ρ

ξ
(t1)

then for n = 0 there is the estimate
∂

∂rN
log N ≤ (m − 1)

√|ρ(rN) ∧ 0| (7)

on M \ Cut(N) and for n = m− 1 with |Hξ | ≤ � for each ξ ∈ UT N⊥ there is the estimate

∂

∂rN
log N ≤ (m − 1)

(√|ρ(rN) ∧ 0| + �
)

(8)

on M \ Cut(N). Thus we arrive at the main results of this section, which are the following
theorem and its corollary.

Theorem 1 Suppose that M is a complete and connected Riemannian manifold of dimen-
sion m and that N is a closed embedded submanifold of M of dimension n ∈ {0, . . . , m−1}.
Denote by Cut(N) the cut locus of N and rN the distance to N and suppose that there exist
constants C1, C2 ≥ 0 such that one of the following conditions is satisfied off Cut(N) ∪ N :

(C1) the sectional curvatures of planes containing the radial direction are bounded below
by −(C1 + C2rN )2 and there exists a constant � ≥ 0 such that the principal
curvatures of N are bounded in modulus by �;

(C2) n = 0 and the Ricci curvature in the radial direction is bounded below by −(m −
1)(C1 + C2rN )2;

(C3) n = m − 1 and the Ricci curvature in the radial direction is bounded below by
−(m − 1)(C1 + C2rN)2 and there exists a constant � ≥ 0 such that the mean
curvature of N is bounded in modulus by �.

Then for N , defined by Eq. 5, we have the inequality

∂

∂rN
log N ≤ n� + (m − 1)(C1 + C2rN)

where ∂
∂rN

denotes differentiation in the radial direction.

Note that if n = 0 then the mean curvature is not relevant and if m = 1 then the sectional
curvatures are not relevant but that the above estimates still make sense in either of these
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cases. Recall that we are primarily interested in the Laplacian of the distance function. If �
denotes the Laplace-Beltrami operator on M then, as shown in [9], there is the formula

1

2
�r2

N = (m − n) + rN
∂

∂rN
log N

on M \ Cut(N). This yields the following corollary.

Corollary 2 Under the conditions of Theorem 1 we have

1

2
�r2

N ≤ (m − n) + (n� + (m − 1)C1)rN + (m − 1)C2r
2
N (9)

on M \ Cut(N).

For the particular case in which N is a point p, it was proved by Yau in [26] that if
the Ricci curvature is bounded below by a constant R then the Laplacian of the distance
function rp is bounded above by (m − 1)/rp plus a constant depending on R. Yau then
used analytic techniques in [27] to prove that this bound implies the stochastic completeness
of M . A relaxation of Yau’s condition which allows the curvature to grow like a negative
quadratic in the distance function is essentially optimal from the point of view of curvature
and nonexplosion; this is why we did not feel it necessary to present Theorem 1 in terms
of a general growth function, although one certainly could. We will return to this matter
in Section 4.3. If in Yau’s example we set (m − 1)� = R, then inequality (3) and Taylor
expansions imply Gρ(t) ≤ −�t/3 for all t ≥ 0 if � ≤ 0 or for t ∈ [0, π√

�
) if � > 0, which

yields the simple estimate
∂

∂rp
log p ≤ −Rrp

3
on M \Cut(p). This has the advantage of taking into account the effect of positive curvature
and in turn yields the Laplacian estimate

1

2
�r2

p ≤ m − Rr2
p

3
(10)

on M\Cut(p), which is different to Yau’s bound. Note that inequalities (9) and (10) actually
hold on the whole of M in the sense of distributions.

3 Local Time

In this section we show how the distance function relates to the local time of Brownian
motion on a hypersurface. Since the boundaries of regular domains are included as exam-
ples, this could yield applications related to the study of reflected Brownian motion. The
main references here are [4, 17] and [6]. The articles [17] and [4] approach geometric
local time in the general context of continuous semimartingales from the point of view of
Tanaka’s formula while [6] approaches the topic for the special case of Brownian motion
using Markov process theory.

3.1 Itô-Tanaka Formula

Suppose that X is a Brownian motion on M defined up to an explosion time ζ and that U is a
horizontal lift of X to the orthonormal frame bundle with antidevelopment B on R

m. In [21]
it was proved, using the theory of viscosity solutions, that the cut locus of N is given by the
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disjoint union of two subsets C̊(N) and Č(N) where the connected components of C̊(N),
of which there are at most countably many, are smooth two-sided (m − 1)-dimensional
submanifolds of M and where Č(N) is a closed subset of M of Hausdorff dimension at
most m − 2 (and therefore polar for X by [25]). Also C̊(N) ∪ N has volM -measure zero so
it follows that ∫ ·

0

〈
∂

∂rN
,UsdBs

〉
= β·

where β is a standard one-dimensional Brownian motion, by Lévy’s characterization and the
fact that U consists of isometries. Furthermore, points belonging to C̊(N) can be connected
to N by precisely two length-minimizing geodesic segments, both of which are non-focal.
Using these observations, it follows from [17, Theorem 1] that rN(X) is a continuous semi-
martingale. In particular, if τ is a stopping time with 0 ≤ τ < ζ then there exist continuous
adapted nondecreasing and nonnegative processes LN(X) and LC̊(N)(X), whose associated
random measures are singular with respect to Lebesgue measure and supported when X

takes values in N and C̊(N), respectively, such that

rN (Xt∧τ ) = rN(X0) + βt∧τ + 1

2

∫ t∧τ

0
�rN(Xs)ds − L

Cut(N)
t∧τ (X) + LN

t∧τ (X) (11)

for all t ≥ 0, almost surely, where

dLCut(N)(X) := 1

2

(
D−

X − D+
X

)
rN(n)dLC̊(N)(X).

Here n is any unit normal vector field on C̊(N) and the Gâteaux derivatives D±rN are
defined for z ∈ C̊(N) and v ∈ TzM by

D+
z rN (v) := lim

ε↓0

1

ε

(
f (expz(εv)) − rN (z)

)
and D−

z rN (v) := −D+
z rN (−v). A detailed explanation of precisely how formula (11) is

derived from [17, Theorem 1] can be found in the author’s doctoral thesis. Note that the
integral appearing in formula (11) is well-defined since the set of times when X ∈ N ∪
Cut(N) has Lebesgue measure zero. The process LC̊(N)(X) is given by the local time of
d(X, C̊(N)) at zero so long as the latter makes sense, while for the one-point case the
process LCut(N)(X) coincides with the geometric local time introduced in [6]. The process
LN(X), which we will refer to as the local time of X on N , satisfies

LN(X) = L0(rN (X))

where L0(rN (X)) denotes the (symmetric) local time of the continuous semimartingale
rN (X) at zero. It follows that if n ≤ m − 2 then the local time of X on N vanishes. In fact,
if X is nonexplosive with n = m−1 then, since rN (X) is a continuous semimartingale with
d[rN (X)]s = ds, it follows that

LN
t∧τ (X) = lim

ε↓0

1

2ε

∫ t∧τ

0
1Bε(N)(Xs) ds (12)

for all t ≥ 0, almost surely. Note that the Brownian motion considered here can be replaced
with a Brownian motion with locally bounded and measurable drift.

3.2 Revuz Measure

In this subsection we consider an application of a different approach, based on the theory
of Markov processes. Although it is not always necessary to do so, we will assume that M
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is compact. We will also assume that N is a closed embedded hypersurface and that X(x)

is a Brownian motion on M starting at x. The convexity based argument of [6], which was
applied to the one point case, can be adapted to our situation and implies that with respect
to the invariant measure volM the local time LN(X(x)) corresponds in the sense of [22] to
the induced measure volN . By [8] this implies the following theorem, in which pM denotes
the transition density function for Brownian motion.

Theorem 2 Suppose that M is compact, that N is a closed embedded hypersurface and
that X(x) is a Brownian motion on M starting at x. Then

E

[
LN

t (X(x))
]

=
∫ t

0

∫
N

pM
s (x, y)d volN(y) ds (13)

for all t ≥ 0.

In a subsequent article we will calculate, estimate and provide an asymptotic relation
for the rate of change d

dt
E
[
LN

t (X(x))
]
. By a standard change of variables, it follows that

the expected value of the occupation times appearing inside the limit on the right-hand
side of Eq. 12 converge to the right-hand side of Eq. 13 as ε ↓ 0. If one could justify
exchanging this limit with the expectation, one would obtain a different proof of Theorem
2. The following corollary follows directly from Theorem 2 and basic ergodicity properties
of Brownian motion.

Corollary 3 Suppose that M is compact, that N is a closed embedded hypersurface and
that X is a Brownian motion on M . Then

lim
t↑∞

1

t
E

[
LN

t (X)
]

= volN(N)

volM(M)
.

Example 1 Suppose M = S
1 (i.e. the unit circle with the standard metric) and let X(x) be

a Brownian motion starting at x ∈ S
1. By formula (11) it follows that

r2
x (Xt (x)) = r2

x (x) + 2
∫ t

0
rx(Xs(x))dβs + t − 2

∫ t

0
rx(Xs(x))dLCut(x)

s (X(x))

for t ≥ 0, where β is a standard one-dimensional Brownian motion. But rx(x) = 0 and
Cut(x) is antipodal to x, which is a distance π away from x, so as dLCut(x)(X(x)) is
supported on {s ≥ 0 : Xs = Cut(x)} we deduce that

r2
x (Xt (x)) = 2

∫ t

0
rx(Xs(x))dβs + t − 2πL

Cut(x)
t (X(x)) (14)

for t ≥ 0. Now pS
1

t (x, ·) → (2π)−1 as t ↑ ∞ so

lim
t↑∞E

[
r2
x (Xt (x))

]
=
∫
S1

r2
x (y)

2π
d volS1(y) =

∫ π

−π

v2

2π
dv = π2

3
. (15)

Thus by Eqs. 14 and 15 it follows that

π2

3
= lim

t↑∞

(
t − 2πE[LCut(x)

t (X(x))]
)

which implies for large times t the approximation

E[LCut(x)
t (X(x))] = t

2π
− π

6
+ o(1).
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Corollary 3 and the previous example concern the behaviour of E
[
LN(X)

]
for large

times, in the compact case. In the next example we fix the time, instead considering the
effect of expanding size of the submanifold, using balls in Euclidean space as the example.

Example 2 For r > 0 denote by S
m−1(r) the boundary of the open ball in R

m of radius r

centred at the origin. If X is a Brownian motion on R
m starting at the origin then rSm−1(r)(X)

is a Markov process. It follows from general theory, as in [8], that formula (13) holds with
N = S

m−1(r) and M = R
m and therefore

1

r
E

[
L
S

m−1(r)
t (X)

]
=

�
(

m
2 − 1, r2

2t

)
�
(

m
2

)
where �(a, b) = ∫∞

b
sa−1 e−s ds is the upper incomplete Gamma function. In this setting

the process LS
m−1(r)(X) corresponds to the local time of an Bessel process of dimension m,

started at the origin, at the value r . In particular, for the case m = 2 we obtain

1

r
E

[
L
S

1(r)
t (X)

]
= �

(
0,

r2

2t

)
. (16)

By differentiating the exponential of the right-hand side of Eq. 16 we can then deduce
the curious relation

lim
t↑∞

(
log

(
2t

r2
+ 1

)
− 1

r
E

[
L
S

1(r)
t (X)

])
= γ

where γ denotes the Euler-Mascheroni constant.

4 Probabilistic Estimates

In this section we combine the geometric inequalities of the first section with the Itô-Tanaka
formula of the second section and deduce probabilistic estimates for the radial moments of
Brownian motion with respect to a submanifold.

4.1 A Log-Sobolev Inequality Approach

It is fairly standard practice to deduce exponential integrability from a logarithmic-Sobolev
inequality. In this subsection, we show how this can be done in a restricted version of the
situation in which we are otherwise interested. For this, denote by {Pt : t ≥ 0} the heat
semigroup on M (acting on some suitable space of functions).

Theorem 3 Suppose that M is a complete and connected Riemannian manifold of dimen-
sion m and that N is a closed embedded submanifold of M of dimension n ∈ {0, . . . , m−1}.
Assume that there exist constants C1, � ≥ 0 such that

{Ric(ξ, ξ) : ξ ∈ T M, ‖ξ‖ = 1} ≥ −(m − 1)C2
1 (17)

with at least one of the three conditions (C1), (C2) or (C3) of Theorem 1 satisfied with
C2 = 0. Then

Pt (e
θrN )(x) ≤ exp

[
θ
(
r2
N(x) + (m − n)t

) 1
2 + (n� + (m − 1)C1)θt/2 + θ2C(t)/2

]
(18)
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for all θ, t ≥ 0 and

Pt (e
θ
2 r2

N )(x) ≤ exp

⎡
⎢⎢⎢⎣

θ

((
r2
N(x) + (m − n)t

) 1
2 + (n� + (m − 1)C1)θt/2

)2

2(1 − C(t)θ)

⎤
⎥⎥⎥⎦ (19)

for all 0 ≤ θ < C−1(t), where

C(t) := e(m−1)C2
1 t − 1

(m − 1)C2
1

.

Proof Let X(x) a Brownian motion starting at x ∈ M , let {Di}∞i=1 be an exhaustion of M by
regular domains and denote by τDi

the first exit time of X(x) from Di . Using Itô’s formula
and formula (11), Corollary 2 and Jensen’s inequality, we see that

E

[
r2
N(Xt∧τDi

(x)
]

≤ r2
N(x) + (m − n)t + (n� + (m − 1)C1)

∫ t

0
E

[
r2
N(Xs∧τDi

(x)
] 1

2
ds

for all t ≥ 0. Since the term r2
N(x) + (m − n)t is increasing in t , Bihari’s inequality [5],

which is a nonlinear integral form of Gronwall’s inequality, implies

E

[
r2
N(Xt∧τDi

(x)
]

≤
((

r2
N(x) + (m − n)t

) 1
2 + (n� + (m − 1)C1)t/2

)2

for all t ≥ 0, from which it follows that

Pt (r
2
N)(x) ≤

((
r2
N(x) + (m − n)t

) 1
2 + (n� + (m − 1)C1)t/2

)2

(20)

for all t ≥ 0, by Fatou’s lemma. Now, Bakry and Ledoux discovered (see [3] or [7]) that
condition (17) implies the heat kernel logarithmic Sobolev inequality

Entt f 2(x) ≤ 2C(t)Pt

(
‖∇f ‖2

)
(x) (21)

for all f ∈ C∞(M) and t > 0. By a slight generalization of the classical argument of Herbst
(see [19]) it follows that for Lipschitz F with ‖F‖Lip ≤ 1 and θ ∈ R we have

Pt (e
θF )(x) ≤ exp

[
θPtF (x) + θ2C(t)/2

]
(22)

for all t ≥ 0 while it was proved in [1] (see also [2]) that the log-Sobolev inequality (21)
implies

Pt (e
θ
2 F 2

)(x) ≤ exp

[
θPtF

2(x)

2(1 − C(t)θ)

]
(23)

for all 0 ≤ θ < C−1(t). Since rN is Lipschitz with ‖rN‖Lip = 1, inequality (19) follows
from (20) by the estimate (23) while inequality (18) is proved similarly, by applying Jensen’s
inequality to (20) and using the estimate (22).

To obtain exponential integrability for the heat kernel under relaxed curvature assumption
we will use a different approach, which is developed in the next subsection. While the
estimates (18) and (19) are, roughly speaking, the best we have under the conditions of
Theorem 3, the estimate (19) does not reduce to the correct expression in R

m, as we will
see, and our later estimates will take into account positive curvature whereas the estimates
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of this subsection do not. Thus the later estimates are preferable from the point of view of
geometric comparison. On the other hand, the estimates given by [24, Theorem 8.62], which
concern the case N = {x}, suggest that the ‘double exponential’ feature of the estimates (18)
and (19) (which is the inevitable result of using Herbst’s argument and Bakry and Ledoux’s
log-Sobolev constant, as opposed to being a consequence of our moment estimates) is not
actually necessary.

4.2 First and Second Radial Moments

Suppose now that X(x) is a Brownian motion on M with locally bounded and measurable
drift b starting from x ∈ M , defined upto an explosion time ζ(x), and that N is a closed
embedded submanifold of M of dimension n ∈ {0, . . . , m − 1}. We will assume for the
majority of this section that there exist constants ν ≥ 1 and λ ∈ R such that the inequality(

1

2
� + b

)
r2
N ≤ ν + λr2

N (24)

holds off the cut locus. Unless otherwise stated, future references to the validity of this
inequality will refer to it on the domain M\Cut(N). If b satisfies a linear growth condition in
rN then geometric conditions under which such an inequality arises are given by Theorem 1
(see Corollary 2), the content of which the reader might like to briefly review. In particular,
there are various situations in which one can choose λ = 0. If N is a point and the Ricci
curvature is bounded below by a constant R then inequality (24) holds with ν = m and
λ = −R/3, as stated by inequality (10). Of course, if N is an affine linear subspace of Rm

then inequality (24) holds as an equality with ν = m − n and λ = 0. Note that inequality
(24) does not imply nonexplosion of X(x). This is clear by considering the products of
stochastically incomplete manifolds with ones which are not. We therefore use localization
arguments to deal with the possibility of explosion.

Theorem 4 Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality (24) holds.
Then

E

[
1{t<ζ(x)}r2

N(Xt (x))
]

≤ (r2
N(x) + νR(t))eλt (25)

for all t ≥ 0, where R(t) := (1 − e−λt )/λ.

Proof Let {Di}∞i=1 be an exhaustion of M by regular domains and denote by τDi
the first

exit time of X(x) from Di . Note that τDi
< τDi+1 and that this sequence of stopping times

announces the explosion time ζ(x). Then, by formula (11), it follows that

r2
N(Xt∧τDi

(x)) = r2
N(x) +2

∫ t∧τDi

0 rN (Xs(x))
(
dβs − dL

Cut(N)
s (X(x))

)
+ ∫ t∧τDi

0

(
1
2� + b

)
r2
N(Xs(x))ds

(26)

for all t ≥ 0, almost surely. Since the domains Di are of compact closure the Itô integral in
(26) is a true martingale and it follows that

E

[
r2
N(Xt∧τDi

(x))
]

= r2
N(x) −2E

[∫ t∧τDi

0 rN (Xs(x))dL
Cut(N)
s (X(x))

]
+∫ t

0E

[
1{s<τDi

}
(

1
2� + b

)
r2
N(Xs(x))

]
ds

(27)

for all t ≥ 0, where exchanging the order of integrals in the last term is easily justified by the
use of the stopping time and the assumptions of the theorem. Before applying Gronwall’s
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inequality we should be careful, since we are allowing the coefficient λ to be negative. For
this, note that

E

[
r2
N(Xt∧τDi

(x))
]

= E

[
1{t<τDi

}r2
N(Xt (x))

]
+ E

[
1{t≥τDi

}r2
N(XτDi

(x))
]

(28)

and that the two functions

t �→ E

[∫ t∧τDi

0
rN (Xs(x))dLCut(N)

s (X(x))

]
, t �→ E

[
1{t≥τDi

}r2
N(XτDi

(x))
]

are nondecreasing. If we define a function fx,i,2 by

fx,i,2(t) := E

[
1{t<τDi

}r2
N(Xt (x))

]
then fx,i,2 is differentiable, since the boundaries of the Di are smooth, and it follows from
(27) and (28) that we have the differential inequality{

f ′
x,i,2(t) ≤ ν + λfx,i,2(t)

fx,i,2(0) = r2
N(x)

(29)

for all t ≥ 0. Now applying Gronwall’s inequality to (29) yields

E

[
1{t<τDi

}r2
N(Xt (x))

]
≤ r2

N(x)eλt + ν

(
eλt − 1

λ

)
(30)

for all t ≥ 0, from which the result follows by the monotone convergence theorem.

Remark 1 If one wishes to include on the right-hand of inequality (24) a term that is linear
in rN , as in the estimate (9), or simply a continuous function of rN , as in the estimates (6),
(7) and (8), with suitable integrability properties, then one can do so and use a nonlinear
version of Gronwall’s inequality, such as Bihari’s inequality, to obtain an estimate on the
left-hand side of Eq. 25.

We will refer the object on the left-hand side of inequality (25) as the second radial
moment of X(x) with respect to N . To find an inequality for the first radial moment of X(x)

with respect to N one can simply use Jensen’s inequality. Note that limλ→0 R(t)eλt = t and
this provides the sense in which Theorem 4 and similar statements should be interpreted if
λ = 0.

4.3 Nonexplosion

That a Ricci curvature lower bound implies stochastic completeness was originally proved
by Yau in [27], as mentioned earlier. This was extended by Ichihara in [15] and Hsu in
[13] to allow the Ricci curvature to grow in the negative direction in a certain way (like,
for example, a negative quadratic in the distance function). Thus the following theorem is
well-known in the one point case (in terms of which it can be proved). Using Theorem 4
our proof is short, so we may as well include it so as to keep the presentation of this article
reasonably self-contained. So suppose that r > 0, let Br(N) := {y ∈ M : rN(y) < r} and
denote by τBr (N) the first exit time of X(x) from the tubular neighbourhood Br(N).

Theorem 5 Suppose that N is compact and that there exist constants ν ≥ 1 and λ ∈ R

such that inequality (24) holds. Then X(x) is nonexplosive.
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Proof By following the proof of Theorem 4, with the stopping times τDi
replaced by τBi(N),

one deduces

P{τBi(N) ≤ t} ≤
(
r2
N(x) + νR(t)

)
eλt

i2

for all t ≥ 0. This crude exit time estimate implies that X(x) is nonexplosive since the
compactness of N implies that the stopping times τBi(N) announce the explosion time ζ(x).

4.4 Higher Radial Moments

Recall that if X is a real-valued Gaussian random variable with mean μ and variance σ 2

then for p ∈ N one has the formula

E

[
X2p

]
=
(

2σ 2
)p

p!L− 1
2

p

(
− μ2

2σ 2

)
(31)

where Lα
p(z) are the Laguerre polynomials, defined by the formula

Lα
p(z) = ez z−α

p!
∂p

∂zp

(
e−zzp+α

)
for p = 0, 1, 2, . . . and α > −1 (for the properties of Laguerre polynomials used in this
article, see [18]). In particular, if X(x) is a standard Brownian motion on R starting from
x ∈ R then

E

[
|Xt(x)|2p

]
= (2t)p p!L− 1

2
p

(
−|x|2

2t

)

for all t ≥ 0. With this in mind we prove the following theorem, a special case of which is
Theorem 4, which will be used in the next section to obtain exponential estimates. Theorem
4 was stated separately because it constitutes the base case in an induction argument.

Theorem 6 Suppose that there exist constants ν ≥ 1 and λ ∈ R such that inequality (24)
holds and let p ∈ N. Then

E

[
1{t<ζ(x)}r2p

N (Xt (x))
]

≤ (
2R(t)eλt

)p
p!L

ν
2 −1
p

(
− r2

N(x)

2R(t)

)
(32)

for all t ≥ 0, where R(t) := (1 − e−λt )/λ.

Proof By the assumption of the theorem we see that on M \ Cut(N) and for p ∈ N we have(
1

2
� + b

)
r

2p
N ≤ p (ν + 2 (p − 1)) r

2p−2
N + pλr

2p
N ,

and by formula (11) we have

r
2p
N (Xt∧τDi

(x)) = r
2p
N (x) +2p

∫ t∧τDi

0 r
2p−1
N (Xs(x))

(
dβs − dL

Cut(N)
s (X(x))

)
+ ∫ t∧τDi

0

(
1
2� + b

)
r

2p
N (Xs(x))ds

for all t ≥ 0, almost surely, where the stopping times τDi
are defined as in the proof of

Theorem 4. It follows that if we define functions fx,i,2p by

fx,i,2p(t) := E

[
1{t<τDi

}r2p
N (Xt (x))

]
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then, arguing as we did in the proof of Theorem 4, there is the differential inequality{
f ′

x,i,2p(t) ≤ p (ν + 2 (p − 1)) fx,i,2(p−1)(t) + pλfx,i,2p(t)

fx,i,2p(0) = r
2p
N (x)

for all t ≥ 0. Applying Gronwall’s inequality yields

fx,i,2p(t) ≤
(

r
2p
N (x) + p (ν + 2 (p − 1))

∫ t

0
fx,i,2(p−1)(s)e

−pλsds

)
epλt (33)

for all t ≥ 0 and p ∈ N. The next step in the proof is to use induction on p to show that

fx,i,2p(t) ≤
p∑

k=0

(
p

k

)
(2R(t))p−k r2k

N (x)
�( ν

2 + p)

�( ν
2 + k)

epλt (34)

for all t ≥ 0 and p ∈ N. Inequality (30) covers the base case p = 1. If we hypothesise that
the inequality holds for some p − 1 then by inequality (33) we have

fx,i,2p(t) ≤
(

r
2p
N (x) + p (ν + 2 (p − 1))

p−1∑
k=0

(
p − 1

k

)
r2k
N (x)

�( ν
2 + p − 1)

�( ν
2 + k)

R̃(t)

)
epλt

(35)
for all t ≥ 0, where R̃(t) = ∫ t

0 (2R(s))p−1−k e−λsds. Using 2(p − k)R̃(t) = (2R(t))p−k

and properties of the Gamma function it is straightforward to deduce inequality (34) from
inequality (35) which completes the inductive argument. Since ν ≥ 1 we can then apply the
relation

Lα
p(z) =

p∑
k=0

�(p + α + 1)

�(k + α + 1)

(−z)k

k!(p − k)! ,

which can be proved using Leibniz’s formula, to see that
p∑

k=0

(
p

k

)
(2R(t))p−kr2k

N (x)
�( ν

2 + p)

�( ν
2 + k)

= (2R(t))pp!L
ν
2 −1
p

(
− r2

N(x)

2R(t)

)

and so by inequality (34) it follows that

fx,i,2p(t) ≤ (
2R(t)eλt

)p
p!L

ν
2 −1
p

(
− r2

N(x)

2R(t)

)
(36)

for t ≥ 0 and i, p ∈ N. The result follows from this by the monotone convergence theorem.

We will refer the object on the left-hand side of inequality (32) as the 2p-th radial
moment of X(x) with respect to N . One can deduce an estimate for the (2p − 1)-th radial
moment of X(x) with respect to N by Jensen’s inequality. We conclude this subsection with
an example where the even radial moments can be calculated explicitly.

Example 3 Denote by H
3
κ the hyperbolic space of dimension three with constant sectional

curvatures equal to κ < 0 and suppose that X(x) is a Brownian motion on H
3
κ starting at x.

Then the densities of X(x) are given by the deterministic heat kernel formula

p
H

3
κ

t (x, y) = 
− 1

2
y (x)(2πt)−

3
2 exp

[
−d2(x, y)

2t
+ κt

2

]
(37)
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for x, y ∈ H
3
κ and t > 0 where

y(x) =
(

sinh
(√−κry(x)

)
√−κry(x)

)2

. (38)

By a change of variables it follows that for each p ∈ N we have

E[r2p
x (Xt (x))] = (2t)p

�
(

3
2 + p

)
�
(

3
2

) 1F1

(
3

2
+ p,

3

2
,−κt

2

)

for all t ≥ 0, where 1F1 is the confluent hypergeometric function of the first kind, so in
particular

E[r2
x (Xt (x))] = 3t − κt2

for all t ≥ 0. This ties in with the fact, proved by Liao and Zheng in [20], that on general M

if X(x) is a Brownian motion starting at x ∈ M and if τε is the first exit time of X(x) from
the geodesic ball Bε(x) then

E

[
r2
x (Xτε∧t (x))

]
= mt − 1

6
scal(x)t2 + o(t2)

as t ↓ 0, where o(t2) might depend upon ε and where scal(x) denotes the scalar curvature
at x (since on H

3
κ the scalar curvature is constant and equal to 6κ). The asymptotics for the

distance function rN have yet to be investigated; this is a direction for future research.

4.5 Exponential Estimates

Before using the estimates of the previous subsection to obtain exponential inequalities, we
need the following lemma.

Lemma 3 For α, z ≥ 0 and p = 1, 2, . . . we have

p!Lα
p(−z) ≤ (12 (1 + z))p

� (α + 1 + p)

� (α + 1)
.

Proof Recall that

p!Lα
p(−z) =

p∑
k=0

(
p

k

)
zk � (α + 1 + p)

� (α + 1 + k)
. (39)

Now, since α, z ≥ 0 it follows that � (α + 1 + k) ≥ � (α + 1) and that zk ≤ (1 + z)p

for all k ∈ {0, . . . , p}. For such k there is the bound(
p

k

)
≤
(pe

k

)k

and since the largest binomial coefficient is ‘the middle one’ it follows that(
p

k

)
≤
⎧⎨
⎩
(

2pe
p+1

) p+1
2

if p is odd

(2e)
p
2 if p is even

and therefore we have the somewhat crude bound(
p

k

)
≤ 6p
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for k ∈ {0, . . . , p}. Substituting these bounds into Eq. 39 yields

p!Lα
p(−z) ≤ (p + 1)(6(1 + z))p

� (α + 1 + p)

� (α + 1)

from which the lemma follows since p + 1 ≤ 2p .

Theorem 7 Suppose that there exist constants ν ≥ 2 and λ ∈ R such that inequality (24)
holds. Then

E

[
1{t<ζ(x)}eθrN (Xt (x))

]
≤ 1 +

(
1 + R(t, θ, x)−

1
2

)(
1F1

(
ν

2
,

1

2
,R(t, θ, x)

)
− 1

)
(40)

for all t, θ ≥ 0, where

R(t, θ, x) := 12θ2
(
r2
N(x) + 2R(t)

)
eλt (41)

with R(t) := (1 − e−λt )/λ and where 1F1 is the confluent hypergeometric function of the
first kind.

Proof With the stopping times τDi
as in the proof of Theorem 4, for p ∈ N with p even we

see by inequality (36) that

E

[
1{t<τDi

}rp
x (Xt (x))

]
≤ (

2R(t)eλt
) p

2 �
(p

2
+ 1

)
L

ν
2 −1
p
2

(
− r2

N(x)

2R(t)

)

and so, by Jensen’s inequality, if p is odd then

E

[
1{t<τDi

}rp
x (Xt (x))

]
≤ (

2R(t)eλt
) p

2

(
�

(
p + 1

2
+ 1

)
L

ν
2 −1
p+1

2

(
− r2

N(x)

2R(t)

)) p
p+1

.

It follows from this and Lemma 3, since ν ≥ 2, that

E

[
1{t<τDi

}eθrN (Xt (x))
]

≤ 1 +∑∞
p=1

(
2θ2R(t)eλt

)p
(2p)! p!L

ν
2 −1
p

(
− r2

N (x)

2R(t)

)

+∑∞
p=1

(
2θ2R(t)eλt

) 2p−1
2

(2p−1)!
(

p!L
ν
2 −1
p

(
− r2

N (x)

2R(t)

)) 2p−1
2p

≤ 1 +∑∞
p=1

(
2θ2R(t)eλt

)p
(2p)!

(
12

(
1 + r2

N (x)

2R(t)

))p
�( ν

2 +p)
�( ν

2 )

+∑∞
p=1

(
2θ2R(t)eλt

) 2p−1
2

(2p−1)!
((

12

(
1 + r2

N (x)

2R(t)

))p
�( ν

2 +p)
�( ν

2 )

) 2p−1
2p

= ∑∞
p=0

(
24θ2

(
R(t)+ r2

N
(x)

2

)
eλt

)p

(2p)!
�( ν

2 +p)
�( ν

2 )

+∑∞
p=1

(
24θ2

(
R(t)+ r2

N
(x)

2

)
eλt

) 2p−1
2

(2p−1)!
(

�( ν
2 +p)

�( ν
2 )

) 2p−1
2p

.

Now using (2p)! = 2p(2p − 1)!, 2p ≤ 4p and �
(

ν
2 + p

) ≥ �
(

ν
2

)
, together with the

relation ∞∑
p=0

zp

(2p)!
�
(

ν
2 + p

)
�
(

ν
2

) = 1F1

(
ν

2
,

1

2
,
z

4

)
,
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which can be seen directly from the definition of 1F1 as a generalized hypergeometric series,
we deduce that

E

[
1{t<τDi

}eθrN (Xt (x))
]

≤ ∑∞
p=0

(4R(t,θ,x))p

(2p)!
�( ν

2 +p)
�( ν

2 )

+R(t, θ, x)− 1
2
∑∞

p=1
(4R(t,θ,x))p

(2p)!
�( ν

2 +p)
�( ν

2 )

= 1 +
(

1 + R(t, θ, x)− 1
2

) (
1F1

(
ν
2 , 1

2 ,R(t, θ, x)
)

− 1
) (42)

and the theorem follows by monotone convergence.

Remark 2 The right-hand side of Eq. 40 is a continuous function of t , θ and x and since the

function 1F1 satisfies 1F1

(
ν
2 , 1

2 , 0
)

= 1 and

lim
r↓0

r− 1
2

(
1F1

(
ν

2
,

1

2
, r

)
− 1

)
= 0

it follows that if x ∈ N then the right-hand side of inequality (40) converges to the
limit of the left-hand side as t ↓ 0. Furthermore, for the values of ν considered in the
theorem the right-hand side of Eq. 40 grows exponentially with R(t, θ, x) (in particular
1F1(1/2, 1/2, z) = ez).The theorem shows that under the assumptions of the theorem there
is no positive time at which the left-hand side of Eq. 40 is infinite.

For |γ | < 1 the Laguerre polynomials also satisfy the identity

∞∑
p=0

γ pLα
p(z) = (1 − γ )−(α+1)e

− zγ
1−γ , (43)

which is proved in [18]. It follows from this identity and Eq. 31 that for a real-valued
Gaussian random variable X with mean μ and variance σ 2 we have for θ ≥ 0 that

E

[
e

θ
2 |X|2] =

(
1 − θσ 2

)− 1
2

exp

[
θ |μ|2

2(1 − θσ 2)

]

so long as θσ 2 < 1 (and there is a well-known generalization of this formula for Gaussian
measures on Hilbert spaces). In particular, if X(x) is a standard Brownian motion on R

starting from x ∈ R then for t ≥ 0 it follows that

E

[
e

θ
2 |Xt (x)|2] = (1 − θt)−

1
2 exp

[
θ |x|2

2(1 − θt)

]

so long as θt < 1. With this in mind we state the following theorem.

Theorem 8 Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality (24) holds.
Then

E

[
1{t<ζ(x)}e

θ
2 r2

N (Xt (x))
]

≤ (
1 − θR(t)eλt

)− ν
2 exp

[
θr2

N(x)eλt

2(1 − θR(t)eλt )

]
(44)

for all t, θ ≥ 0 such that θR(t)eλt < 1, where R(t) := (1 − e−λt )/λ.
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Fig. 1 Consider the case N = {x} with ν = m and λ = −R/3. The solid curve on the left represents the
graph of the right-hand side of inequality (40) with R = 0. Above it is a dotted curve, which is the analogous
object for R = −1, and below it is a dashed curve, which is the analogous object for R = 1. The solid curve
on the right represents the graph of the right-hand side of inequality (44) with R = 0. Above it is a dotted
curve, which is the analagous object for R = −1, and below it is a dashed curve, which is the analagous
object for R = 1. We have set θ = 1

6 and m = 3 in all cases and the horizontal axes represent the time t .
Although not obvious from the two plots, the dotted and solid curves plotted on the left do not explode in
finite time while the dotted and solid curves plotted on the right explode at times t = 3 log 3 � 3.3 and t = 6
respectively

Proof Using inequality (36) and Eq. 43 we see that

E

[
1{t<τDi

}e
θ
2 r2

N (Xt (x))
]

= ∑∞
p=0

θp

2pp!fx,i,2p(t)

≤ ∑∞
p=0

(
θR(t)eλt

)p
L

ν
2 −1
p

(
− r2

N (x)

2R(t)

)

= (
1 − θR(t)eλt

)− ν
2 exp

[
θr2

N (x)eλt

2(1−θR(t)eλt )

]
where we safely switched the order of integration using the stopping time. The result follows
by the monotone convergence theorem.

Theorem 8 improves upon the estimate given by the second part of a similar theorem due
to Stroock (see [24, Theorem 5.40]), since the latter concerns only the one point case, does
not take into account positive curvature or the possibility of drift and does not reduce to the
correct expression in flat Euclidean space.

Example 4 For a qualitative picture of the behaviour of the above estimates, fix x ∈ M

and consider the case in which X(x) is a Brownian motion starting at x. Denote by R the
infimum of the Ricci curvature of M and assume that R > −∞. Then inequality (10)
implies that the assumptions of Theorems 7 and 8hold when N = {x} with ν = m and
λ = −R/3. For these parameters we plot in Fig. 1 the right-hand sides of the inequalities
(40) and (44) as functions of time for the three cases R ∈ {−1, 0, 1} with θ = 1

6 and m = 3.
Note that if R > 0 then the left-hand sides of these inequalities are bounded, by Myer’s
theorem.

The sharpness of our estimates allows for the following comparison inequality, for which
we note that if n = 0 then N is vacuously both totally geodesic and minimal, since in this
case it would be an at most countable collection of isolated points.

Corollary 4 Suppose that X(x) is a Brownian motion on M starting at x and that one of
the following conditions is satisfied:
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(I) n ∈ {0, . . . , m − 1}, the sectional curvature of planes containing the radial direction
is non-negative and N is totally geodesic;

(II) n ∈ {0,m − 1}, the Ricci curvature in the radial direction is non-negative and N is
minimal.

If Y (y) denotes a Brownian motion on R
m−n starting at y ∈ R

m−n with r2
N(x) ≤ ‖y‖Rm−n

then

E

[
e

θ
2 r2

N (Xt (x))
]

≤ E

[
e

θ
2 ‖Yt (y)‖2

Rm−n

]
for all t, θ ≥ 0 such that θt < 1.

Proof This follows directly from Theorem 8 and Corollary 2.

To find a comparison theorem which takes into account negative curvature seems harder.
We can, however, perform an explicit calculation for the following special case, which
compares favourably with our best estimate.

Example 5 Suppose that X(x) is a Brownian motion on H
3
κ starting at x. Then, using

formulae (37) and (38), one can show that

E[e θ
2 r2

x (Xt (x))] = (1 − θt)−
3
2 exp

[
− θκt2

2(1 − θt)

]
(45)

for all t > 0 and θ ≥ 0 such that θt < 1. Note that the explosion time of the right-hand side
of formula (45) is independent of κ .

4.6 Concentration Inequalities

If X(x) is a Brownian motion on R
m starting at x then it is easy to see that

lim
r→∞

1

r2
logP{Xt(x) �∈ Br(x)} = − 1

2t
(46)

for all t > 0. Note that the right-hand side of the asymptotic relation (46) does not depend
on the dimension m. Returning to the setting of Example 3 for a final time, we find another
situation where there is a relation of the type (46).

Example 6 Suppose that X(x) is a Brownian motion on H
3
κ starting at x. Then, by tedious

calculation, one can show that

lim
r→∞

1

r2
logP{Xt(x) �∈ Br(x)} = − 1

2t

for all t > 0.

A heat kernel comparison argument would suggest that a relation of this type should
hold in general for a Brownian motion X(x) on M but as an inequality, so long as the Ricci
curvature is bounded below by a constant. Indeed, it follows from [24, Theorem 8.62] that
in this case there is the asymptotic estimate

lim
r↑∞

1

r2
logP

{
sup

s∈[0,t]
rx(Xt (x)) ≥ r

}
≤ − 1

2t
.

For the general setting considered in this article, we have the following theorem.
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Theorem 9 Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality (24) holds
and suppose that X(x) is nonexplosive. Then

lim
r→∞

1

r2
logP{Xt(x) /∈ Br(N)} ≤ − 1

2R(t)eλt

for all t > 0, where R(t) := (1 − e−λt )/λ.

Proof The proof follows a standard argument. In particular, for θ ≥ 0 and r > 0 it follows
from Markov’s inequality and Theorem 8 that

P{Xt(x) /∈ Br(N)} = P{rN (Xt (x)) ≥ r}
= P{e

θr2
N

(Xt (x))

2 ≥ e
θr2

2 }
≤ e− θr2

2 E

[
e

θr2
N

(Xt (x))

2

]

≤ (
1 − θR(t)eλt

)− ν
2 exp

[
θr2

N (x)eλt

2(1−θR(t)eλt )
− θr2

2

]

so long as θR(t)eλt < 1. If t > 0 then choosing θ = δ(R(t)eλt )−1 shows that for any
δ ∈ [0, 1) and r > 0 we have the estimate

P{Xt(x) /∈ Br(N)} ≤ (1 − δ)−
ν
2 exp

[
r2
N(x)δ

2R(t)(1 − δ)
− δr2

2R(t)eλt

]
(47)

from which the theorem follows since δ can be chosen arbitrarily close to 1 after taking the
limit.

While Theorem 9 is trivial if M is compact, the concentration inequality (47) is still valid
in that setting. In fact, for r > 0 suppose that ν ≥ 1 and λ ≥ 0 are constants such that the
inequality (

1

2
� + b

)
≤ ν + λr2

N

holds on the tubular neighbourhood Br(N) (such constants always exist if N is compact, by
Corollary 1). Assuming that X(x) is non-explosive (which would be the case if N is com-
pact, by Theorem 5) then the methods of this chapter can also be used to estimate quantities
involving the process X(x) stopped on the boundary of the tubular neighbourhood. We will
not include such calculations here, to avoid extensive repetition, but doing so actually yields
the exit time estimate

P

{
sup

s∈[0,t]
rN (Xs(x)) ≥ r

}
≤ (1 − δ)−

ν
2 exp

[
r2
N(x)δ

2R(t)(1 − δ)
− δr2

2R(t)eλt

]

for all t > 0 and δ ∈ (0, 1), which improves inequality (47) for the λ ≥ 0 case.

4.7 Feynman-Kac Estimates

The following two propositions and their corollaries constitute simple applications of Theo-
rems 7 and 8 and provide bounds on the operator norm of certain Feynman-Kac semigroups,
when acting on suitable Banach spaces of functions.
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Proposition 2 Suppose there exists constants ν ≥ 2 and λ ≥ 0 such that inequality (24)
holds. Then

E

[
1{t<ζ(x)}eθ

∫ t
0 rN (Xs(x))ds

]
≤ 1 +

(
1 + R(t, θ t, x)−

1
2

)(
1F1

(
ν

2
,

1

2
,R(t, θ t, x)

)
− 1

)
for all t, θ ≥ 0, where R is defined by Eq. 41.

Proof Using the stopping times τDi
to safely exchange the order of integrals, we see by

Jensen’s inequality that

E

[
1{t<τDi

}eθ
∫ t

0 rN (Xs(x))ds
]

≤ 1

t

∫ t

0
E

[
1{s<τDi

}etθrN (Xs(x))
]
ds.

The result follows from this by the monotone convergence theorem and Theorem 7, since the
right-hand side of inequality (40) is nondecreasing in t (which is evident by the right-hand
side of inequality (42) and the fact that R(t, θ, x) is nondecreasing in t).

Corollary 5 Suppose there exists constants ν ≥ 2 and λ ≥ 0 such that inequality (24) holds
and that V is a measurable function on M such that V ≤ C(1 + rN ) for some constant
C ≥ 0. Then

E

[
1{t<ζ(x)}e

∫ t
0 V (Xs(x))ds

]
≤ eCt

(
1 +

(
1 + R(t, Ct, x)−

1
2

)(
1F1

(
ν

2
,

1

2
,R(t, Ct, x)

)
− 1

))

for all t ≥ 0, where R is defined by Eq. 41.

Using Theorem 8 the following proposition and its corollary can be proved in much the
same way.

Proposition 3 Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality (24)
holds. Then

E

[
1{t<ζ(x)}e

θ
2

∫ t
0 r2

N (Xs(x))ds
]

≤ (
1 − θtR(t)eλt

)− ν
2 exp

[
θr2

N(x)teλt

2(1 − θtR(t)eλt )

]

for all t, θ ≥ 0 such that θtR(t)eλt < 1.

Corollary 6 Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality (24) holds
and that V is a measurable function on M such that V ≤ C(1 + 1

2 r2
N) for some constant

C ≥ 0. Then

E

[
1{t<ζ(x)}e

∫ t
0 V (Xs(x))ds

]
≤ (

1 − CtR(t)eλt
)− ν

2 exp

[
Ct + Cr2

N(x)teλt

2(1 − CtR(t)eλt )

]

for all t ≥ 0 such that CtR(t)eλt < 1.

4.8 Further Applications

Important applications of the results and methods presented in this article have been
explored in the author’s doctoral thesis and will feature in a subsequent article. In particular,
we will show how one can use Theorem 1 and moment estimates for a certain elementary
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bridge process, related to Brownian motion, to deduce lower bounds and an asymptotic rela-
tion for the integral of the heat kernel over a submanifold. This object appears naturally
in the study of submanifold bridge processes, for which the lower bounds imply a gradient
estimate sufficient to prove a semimartingale property. This is a new area of study which
could lead to future developments related to the geometries of path or loop spaces.
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