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Abstract 

 X-ray computed tomography (XCT) was used to characterise the internal microstructure and 

clustering behaviour of TiB2 particles in in-situ processed Al-Cu metal matrix composites prepared 

by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly 

disperse TiB2 particles in the composite. Quantification of porosity and clustering of TiB2 particles 

was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-

cast sample using XCT. Results show that the porosity content was decreased by about 40% due to 

semi-solid forging as compared to the as-cast condition. Further, XCT results show that the 30% 

forging reduction resulted in greater uniformity in distribution of TiB2 particles within the 

composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show 

that the application of forging in semi-solid state enhances particle distribution and reduces porosity 

formation in cast in-situ Al-Cu-TiB2 metal matrix composites.  

 

Keywords: X-ray computed tomography, Al-Cu alloy, TiB2 particles, Metal matrix composite.  
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1. Introduction 

The demand for the development of light weight metal matrix composites (MMCs) has been 

increasing in automotive and aerospace sectors as their implementation results in greater  fuel 

efficiency and hence a reduction in  greenhouse gas emissions [1]. Aluminium based MMCs play an 

important role towards achieving these goals due to their excellent high strength to weight ratio, 

fracture toughness, electrical and thermal conductivity [2-4]. MMCs are usually prepared by 

addition of reinforcement particles externally into the metal matrix.  This method of adding  

reinforcement particles externally into the molten metal encounters with problems such as poor 

wettability, weak interfacial bonding and inhomogeneous distribution of particles  which ultimately 

results in inferior mechanical and performance properties of MMCs [5,6,7]. One alternative is to 

cast MMCs using in-situ processing methods which help in improving the wettability, uniform 

dispersion of particles and reduces unwanted reactions between matrix and reinforcements particles 

[5,6]. Synthesis of aluminium  based MMCs with in-situ TiB2 particles by flux assisted synthesis 

routes (FAS) using K2TiF6 and KBF4 salts (liquid metallurgy route) has garnered significant  

interest in this class of materials [8-10]. However, one of the main concerns with Al based TiB2 in-

situ composites is to ensure  uniform dispersion of TiB2 particles as particles have a great tendency 

to  cluster forming agglomerates which ultimately degrades the mechanical and performance 

properties of composites [2,3,11,12,13].  Previous research studies have shown that semi-solid 

processing of composites not only decreases porosity, but also greatly helps in uniform dispersion 

of particles in the alloy matrix. [14–16]. Sidhalingeswara and Herbert et al studied clustering 

behaviour of particles in Al-4.5Cu-5TiB2 semi-solid rolled composites and observed that after a 

critical number of passes , the particles tend to recluster and eventually resulted in formation of 

agglomerates in MMCs [17,18]. Though semi-solid processing of Al-Cu-TiB2 is an excellent 

synthesis method, but still there are few challenges that needs to be taken care such as (i) precise 

control of liquid fraction at the grain boundaries (ii) microstructure control, (iii) homogenization of 

matrix composition and most importantly (iv) redistribution of TiB2 particles [17, 18]. 
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Understanding the porosity formation and dispersion of reinforcement particles/clusters in bulk 

MMCs is essential to understand the mechanical and performance properties of MMCs. Though 2D 

image based microscopy techniques such as optical and SEM characterisation provides internal 

microstructural information of MMCs, it is difficult to obtain quantified information on porosity 

and particle size distribution using these techniques [19-21]. X-ray computed tomography (XCT) is 

a non-destructive technique which can provide a three dimensional (3D) visualisation of internal 

structure of inhomogeneities representative of bulk sample [22–25].  Hamilton et al [11,26] used 

XCT to study TiB2 particle clustering and its distribution in Al-TiB2 composites. Recently, Chen et 

al [12] used synchrotron XCT to study TiB2 particles in in-situ Al-TiB2 composites. In this 

publication, we present the application of XCT to visualise and quantify the porosity and TiB2 

particle distribution in cast in-situ Al-TiB2 semi-solid forged composites and compare with an as-

cast condition.  

 

2. Experimental details 

2.1 Processing of Al-4.5 wt% Cu-5 wt% TiB2 in-situ composite  

The Al-4.5 wt % Cu-5 wt % TiB2 composite was synthesized using flux assisted synthesis (FAS) 

technique where halide salts, K2TiF6 and KBF4 are added to molten Al-4.5Cu alloy at 800 °C. The 

exothermic reaction within the melt results in formation of titanium-diboride (TiB2) particles. The 

melt was stirred intermittently every 10 minutes to ensure complete reaction and homogenous 

distribution of TiB2 particles. After a reaction time of one hour, lighter dross was decanted and the 

melt was degassed using C2Cl6. The composite melt was finally poured into rectangular mild steel 

mould and subsequently samples of 10 mm x 10 mm x 60 mm were machined for forging in semi-

solid state.  Two samples in as-cast condition and four samples from thixo-forged condition were 

selected for microstructural and XCT characterisation studies. 
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The thixo-forging was carried out using 80 ton hydraulic press, at 150 kg/cm
2
 load at a ram speed of 

20 mm/sec. The specimens were subjected to forging up to 30% and 50% reduction in the semi-

solid range. The semi-solid forging temperature used was 632
o
C corresponding to a 0.3 volume 

fraction of liquid (Vfl) in the composite. The samples were soaked at 632
o
C for 10 minutes prior to 

forging. The K-type thermocouples were used to monitor the temperatures with an accuracy of ± 2 

°C.  

 

2.2 Optical microscopy 

Optical microscopy studies were carried out on mechanically polished samples using standard 

metallographic procedures. The polished samples were anodised with a Barker’s reagent (1.8% 

HBF4 in water) applying 23V dc for up to 1 minute. The dark and bright field microphotographs 

were captured using a NIKON (Model: ECLIPSE LV150N) metallurgical microscope.  

 

2.3 Scanning electron microscopy (SEM) 

SEM studies were carried out to obtain higher magnification images for better visualisation of 

microstructure of composite samples. . Micrographs were captured by a field emission scanning 

electron microscope (FESEM) using Zeiss, Carl Zeiss SMT AG instrument coupled with energy 

dispersive X-ray spectrometer (EDS). 

 

2.4 X ray computed tomography (XCT) 

X-ray computed tomography was carried out using the Zeiss versa 520 at WMG, University of 

Warwick, UK. The samples were prepared as 1 mm diameter cylinders and scanned under the 

conditions given in Table 1. To achieve high resolution, a 20x lens optic at the detector was used. 

Since the as-cast sample contains significantly larger features with greater pores and agglomeration 

of TiB2 particles, a lower resolution was employed moving the detector closer to the sample and 

binning pixels 2x2, seen to be sufficient in an ortho slice of the scan in figure 3. The advantage of 
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binning pixels during the scanning process is the increased amount of flux received by the detector 

that leads to shorter scan times. The detector consists of 2000 x 2000 pixels resulting in a 380 µm 

and 820 µm field of view for the 0.3 Vfl, 30% reduction/0.3 Vfl, 50% reduction and as-cast samples 

respectively. The images were reconstructed using the Zeiss reconstruction software that employs a 

filtered back projection algorithm [35]. The resultant volumes were then segmented and analysed in 

Avizo 9.0 (FEI, USA; http://www.fei.com/software/avizo3d).  

 

Table 1:   

 

Scanning parameter As-cast 0.3Vfl, 30% / 50% reduction 

Voltage (kV) 110 110 

Current (µA) 79 79 

Exposure (s) 15 32 

Filter (Quartz, mm) 1 1 

Number of Projections 3201 3201 

Pixel binning X2 X1 

Voxel size (nm) 820 190 

 

3. Results and Discussion  

Figure 2 shows the optical and SEM microscopy images for semi-solid processed Al-Cu-TiB2 in-

situ composites. Figure 2 (a-c) represents optical images at low magnification, while figure 2(d-f) 

represents SEM images at higher magnifications. As shown in figure 2(a) the as-cast microstructure 

of Al-4.5Cu-5TiB2 composite shows TiB2 clusters of varying size randomly distributed in the 

matrix. Deformation of composite up to 30% results in significant fragmentation of the TiB2 

particles within the matrix (Figure 2b). Further increase in deformation up to 50% leads to 

considerable alignment of TiB2 particles in the direction normal to forging direction, though few 

agglomerates still persist in the microstructure. The redistribution of TiB2 particles could be due to 

multiple phenomena that occur simultaneously such as - disruption of their grain boundary network 

by both viscous flow of liquid and either deformation or fragmentation of unmelted solid grains 
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during semi-solid state forging. It is evident from microstructures of the deformed samples that the 

TiB2 particles were driven from their original locations at grain boundaries by viscous drag of the 

intergranular liquid due to compression during forging.  

 

Figure 3 shows the two dimensional XY orthogonal slices obtained from XCT measurements for 

semi-solid processed Al-Cu-TiB2 in-situ composites.  The as-cast composite (Figure 3a) shows the 

presence of pores, clusters of TiB2 particles and elongated Al3Ti particles. Deformation up to 30% 

results in a significant reduction in porosity and the alignment of TiB2 particles in the form of 

strings as shown in figure 3b. The average size of the pore in as-cast condition was found to be 

165.5 µm
2
, an order of magnitude greater than the average 14.1 µm

2
 in 30% deformed condition. 

Further increase in deformation up to 50% (Figure 3c) resulted in a higher degree of fragmentation 

of TiB2 clusters as shown in figure 3c. Also, there was no evidence of Al3Ti particles in the semi-

solid processed composite which could be due to complete dissolution of Al3Ti particles in the 

liquid at forging temperature.  

 

To segment the volumes first a match contrast function was applied to the Vfl = 0.3, 30% reduction 

and as-cast volumes with Vfl = 0.3, 50% reduction as the reference volume. The function applies 

equalization and normalization to the target volume such that it has an almost homogeneous 

dynamic range as the reference volume. In doing so the same intensity-based image analysis can be 

applied to all data sets such that the segmentation is comparable. The implication of applying the 

function is shown in Figure 4 for the target volume Vfl = 0.3, 30% reduction. It can be seen that the 

overall grey level histogram for the volume now has its global maximum at a similar position to the 

reference volume. The effect on the grey values is more directly shown by observation of line 

profiles of grey values within the volume. As seen in Vfl = 0.3, 30% reduction this results in darker 

grey values for those which are already relatively low, and brighter grey values for those that are 
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relatively high with the intensity now more closely matched to the reference volume Vfl = 0.3, 50% 

reduction. The application of the match contrast function was similarly applied to the target volume 

of the as- cast condition against the reference volume Vfl = 0.3, 50% reduction. With the grey 

values now comparable, the same segmentation process can be applied across all volumes; a marker 

based watershed algorithm. This segmentation method is analogous to the flood filling of a 

topographical map where the height is equivalent to the grey value intensity. From initial markers of 

the individual phases the algorithm allows a gradient dependent flood filling of the map; where the 

gradient magnitude of grey value in the flooding direction is relatively high the filling is slower, and 

conversely where this gradient is relatively low the filling is faster. The volumes contained three 

distinct phases; pore, matrix and particles that were assigned initial threshold markers of 0-15000, 

20000-25000 and > 30000 grey values respectively. From these basins the watershed algorithm 

filled the rest of the volume for each of the phases simultaneously, resulting in the segmentation to 

be analysed. 

 

Figure 5 shows the fully segmented volume of Al-Cu-TiB2 in-situ composites. Aluminium matrix is 

represented in green, TiB2 particles in red and pores in blue color in figure 5. It is worth mentioning 

here that for better visualisation, we have isolated the pores from the matrix phase and particles in 

the top portion of sample volume and similarly TiB2 particles were isolated from other two phases 

in the middle region of the sample volume as represented by their respective colors in figure 5. The 

3D reconstructed XCT image shows the packing of the aluminium matrix along with the TiB2 

particles and included pores in the composite. 

 

Figure 6 shows the porosity distribution in Al-4.5Cu-5TiB2 composites for the entire volume. For 

better visualisation of porosity, we have removed matrix phase and particles from the entire volume. 

The as-cast Al-4.5Cu-5TiB2 composite shows that the porosity varies greatly in size distribution, 

whereas the composite deformed up to 30% exhibits minimal porosity as compared to other two 
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conditions. Further, the composite subjected to 50% deformation show a higher amount of porosity 

compared to the 30% deformation. Similar observations of increase in porosity with increase in 

compressive deformation in semi-solid state in Al-Cu alloy was made by Kareh et al[37] in their in-

situ synchrotron XCT measurements. They found that semi-solid alloy with a solid fraction greater 

than 70% causes porosity formation and subsequently leads to cracking of the sample. Phillion et al 

[38, 39] and Cao et al [40] studied the semi-solid alloy behaviour under compressive loading 

conditions. They found that initial stage of compression led to an increase in porosity and with 

further compression resulting shear induced dilation which drops the local pressure and causes 

small internal pores to coalesce and grow. 

 

In our study, the 30% reduction has drastically reduced the frequency of pores and the average pore 

size is found to be relatively smaller, but with increasing forging reduction to 50%, porosity was 

found to be slightly increased as visualised in figure 7(c). It is evident from figure 7(c) that small 

pores coalesce together to form bigger size pores in the 50% deformed composite. Further 

investigations such as in-situ XCT study in semi-solid Al-TiB2 composites are essential to 

understand the mechanism of porosity formation under compressive loading conditions. As shown 

in figure 7(a), the single largest pore size in the as-cast composite was found to be 30 µm wide and 

40 µm in length. This was significantly smaller in the 30% deformed sample and 50% deformed 

sample, 3 µm wide and 2 µm length 10µm width and 9 µm length respectively as shown in figure 

7(b) and 7(c). Also, the pores in as-cast composite are observed to be densely interconnected which 

is not observed in the 30% forge reduction.  

 

Figure 8 shows a thin slice of the segmented TiB2 particles in Al-Cu-TiB2 composites. As shown in 

figure 8, the as-cast sample exhibits relatively large size clusters of TiB2 particles that are densely 

interconnected, while forged samples have distribution of small sized TiB2 particles in the matrix as 

shown in Figure 8(b) and 8(c) respectively. Figure 9 shows the individual single largest 
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particle/cluster obtained from XCT data for Al-Cu-TiB2 composite. The single largest TiB2 cluster 

size in as-cast Al-4.5Cu-5TiB2 composite (Figure 9(a)) is approximately 200 µm wide and 400 µm 

in length. Whereas the largest TiB2 cluster size in 30% deformed sample is 30 µm wide and 60 µm 

length (Figure 9(b)) and the 50% deformed sample, with a 40 µm width and 120 µm length as show 

in figure 9(c).  

XCT data was analysed in order to quantify the porosity and TiB2 particle distribution in the 

composite. Figure 10(a) represents the quantified size distribution of porosity in Al-Cu-TiB2 in-situ 

composites. Though porosity is present in the forged samples, it is much small in average size 

compared to as-cast pores. Further, the average size of pores in 30 % reduction sample is smaller 

compared to 50% reduction sample.  As shown in Figure 10(b) the higher number of small size 

particles were present in 30% reduction sample than the 50% reduction samples.  

To further interrogate the distribution of particulates, a local thickness analysis was conducted on 

the segmented matrix phase in ImageJ (open source) using the plugin by Bob Dougherty (Optinav, 

USA). The algorithm calculates the local thickness using the method described by Hildebrand and 

Ruesgsegger [43], where each voxel is assigned a value equal to the diameter of the largest sphere 

that fits inside the object and contains the point. Example slices of the thickness calculation for the 

matrix are shown in Figure 11, where pores and particles have been masked out so appear as a zero 

thickness. 

Qualitative observation between the two 0.3 Vf conditions at 30% and 50% reduction demonstrate 

regions of greater local thickness in the 50% reduction than the 30% reduction. This is consistent 

with the greater amount of agglomeration of particles observed in the 50% reduction. Further, the 

distribution of thickness is relatively uniform in the 30% reduction in comparison to the 50% 

reduction that shows a large number of localised regions with a greater than average local thickness. 

Comparing this to the as-cast condition, the non-uniformity of clustered particles and pores is 

obvious, resulting in a number of regions with both relatively high and low local thicknesses. The 
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mean local thickness was 9.14 microns, 9.23 microns and 9.74 microns for the 30% reduction, 50% 

reduction and as-cast conditions respectively. The larger mean in the as-cast condition is a result of 

the non-uniformity of agglomerate distribution that has led to expanses with no particulate. The 

slightly lower mean in the 30% reduction than the 50% reduction is a result of the finer packing 

found in the 30% reduction. 

The present study using XCT technique clearly shows that the application of forging in semi-solid 

state drastically reduces the porosity and helps in deagglomeration of TiB2 particle clusters and 

uniform distribution of particles in the matrix. 3D visualisation and quantified information of 

porosity and TiB2 particle distribution obtained from XCT results are helpful not only in optimising 

the casting and semi-solid processing of composites, but also useful in modelling the mechanical 

and performance properties of the composites. [9,40,41,42].  

4. Summary 

 In-situ Al-4.5%Cu-5%TiB2 metal matrix composites were prepared using salt-

reactions by casting methods. The cast composites were semi-solid forged at 0.3 Vfl using 

two forging reduction such as 30% reduction and 50% reduction.  

 Submicron resolution XCT technique was used to study porosity distribution and 

TiB2 particle distribution in as-cast as well as in semi-solid forged MMCs.  

 XCT results showed that the size of forging in semi solid state significantly 

decreases the porosity as compared to as-cast condition. However, the porosity was found to 

be slightly increased with increasing forge reduction from 30% to 50% reduction.  

 Clusters of TiB2 particles were found be bigger in average size in as-cast composites 

compared to semi-solid forged composites. It was observed that 30% reduction resulted in 

uniform distribution of particles in the matrix and also helped in reducing the clustering of 

particles in the matrix as compared to as-cast and 50% reduction samples.  
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 XCT as well as optical and SEM microscopy results show that the application of 

forging in semisolid state helps reducing the porosity and uniform distribution of TiB2 

particles in-situ Al-TiB2 composites. These results will be very useful in modelling the 

mechanical and performance properties of Al-Cu-TiB2 metal matrix composites.  
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Fig. 8. 
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Figure captions 

 

Fig. 1. Schematic of flux assisted synthesis of in-situ Al-Cu-TiB2 composites. 

Fig. 2. Optical and SEM microstructure of Al-4.5Cu-5TiB2 composite (a) and (d) as-cast 

condition (b) and (e) 0.3Vfl, 30% reduction (c) and (f) 0.3Vfl, 50% reduction. (‘y’ represents 

the  forging direction).  

Fig. 3. Orthogonal slices of Al-4.5Cu-5TiB2 composite (a) as-cast condition (b)Vfl=0.3, 30% 

reduction (c) Vfl = 0.3, 50% reduction. (‘y’ represents the  forging direction).  

Fig. 4. a) Grey level histograms showing: Vfl = 0.3, 30% reduction; Vfl = 0.3, 50% reduction; 

and the match contrast function applied to Vfl = 0.3, 30% reduction with the reference volume 

Vfl = 0.3, 50% reduction. b) Line profiles of each volume showing how the match contrast 

function has affected the grey values in the case of Vfl = 0.3, 30% reduction, resulting in 

greater agreement of grey values for each phase. 

Fig. 5. 3-D reconstructed XCT images showing porosity (blue colour) as well as particles (red 

colour) in Al matrix (green colour) in-situ composite (a) as-cast condition (b) 0.3 Vfl, 30% 

reduction (c) 0.3 Vfl, 50% reduction. 

Fig. 6. 3-D XCT showing porosity distribution in Al-4.5Cu-5TiB2 composite (a) as-cast 

condition (b) 0.3 Vfl, 30% reduction (c) 0.3Vfl, 50% reduction. 

Fig.7. XCT rendering of single largest individual pore in Al-4.5Cu-5TiB2 composite (a) as -

cast condition (b) 0.3 Vfl, 30% reduction (c) 0.3 Vfl, 50% reduction. 

Fig. 8. 3-D XCT showing particle clusters (after removing porosity and Al matrix) in Al-

4.5Cu-5TiB2 composite (a) as-cast condition (b) 0.3 Vfl, 30% reduction (c) 0.3 Vfl, 50% 

reduction. 

Fig. 9. XCT rendering of single largest individual particle/cluster in Al-4.5Cu-5TiB2 

composite (a) as-cast condition (b) = 0.3 Vfl, 30% reduction (c) = 0.3 Vfl, 50% reduction. 

Fig.10. Quantified size distribution of (a) porosity (b) TiB2 particles/clusters.  

Fig.11. 2D slices of the local thickness calculation performed in Image J (a) as-cast condition, 

(b) 30% reduction, (c) 50% reduction. 
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Table Caption 

 

Table 1: X-ray tomography scanning parameters. 
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X-ray tomography studies on porosity and particle size distribution in cast in-

situ Al-Cu-TiB2 semi-solid forged composites 

 

Highlights:  

 XCT was used to visualise 3D internal structure of Al-Cu-TiB2 MMCs. 

 Al-Cu-TiB2 MMC was prepared by casting using flux assisted synthesis method. 

 TiB2 particles and porosity size distribution were evaluated. 

 Results show that forging in semi-solid condition decreases the porosity content and 

improve the particle dispersion in MMCs.  


