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Abstract— This paper presents the results from a preliminary 
study where a wearable consumer electronic device was used to 
assess driver’s state by capturing human physiological response 
in non-intrusive manner. Majority of state of the art studies 
have employed medical equipment drivers’ state evaluation. 
Despite the potential gain in road safety this method of 
measuring physiology is unlikely to be accepted by private 
vehicle consumers due to its invasiveness, complexity, and high 
cost. This study was aiming to investigate possibility of 
employing a consumer grade wearable device to measure 
physiological parameters related to cognitive workload  in real-
time while driving i.e., drivers’ heart rate. Furthermore, 
validity of captured heart activity metrics was analyzed to 
determine if wearable devices could be embedded into driving 
at its current technological state. The driving context was 
reproduced in desktop driving simulator, with 14 participants 
agreeing to take part in the study (µ = 28, σ = 8.5 years). 
Drivers were exposed to various road types, including pure 
Motorway, Rural, and Urban scenario modes. An accident was 
simulated in order to generate sudden cognitive arousal and 
capture participants’ physiological response to the generated 
distress. It was found that a smartwatch is capable of reliable 
heart activity tracking in driving context. The results, 
supporting the relationship between cognitive workload level, 
generated by various complexity driving tasks, and Heart Rate 
Variability, were also presented.  

I. INTRODUCTION 

Despite recent advances in driver assistance and in-car 
safety systems the risk of serious accidents on the roads is 
still present; it was forecasted that the total number of road 
traffic deaths and injuries worldwide is expected to rise by 
65 percent between 2000 and 2020, putting road accidents 
into the third leading cause of the global deaths and injuries 
by 2020 [1]. According to World Health Organization, 
current road safety efforts fail to match the severity of this 
problem [2]. Therefore, it is important to scientifically 
approach the road safety issues and propose an innovative 
solution that could help to reduce road accident possibility. 
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There are many road accident-causing factors, with human 
error being significantly dominant. According to survey 
conducted by National Highway Traffic Safety 
Administration (NHTSA), human error is a cause of 
approximately 94 percent of observed road accidents [3]. 
The most detrimental human error types are: recognition 
error (i.e., inattention, internal and external distractions, 
41%), decision error (i.e., driving aggressively, driving too 
fast, 33%), performance error (i.e., overcompensation, poor 
directional control, 11%), and non-performance error (i.e., 
fatigue or sleepiness, 7%) [4]. Many studies have presented 
techniques to acknowledge and reduce different types of 
human error by detecting and counteracting error-causing 
factors in real time. For instance, driver workload, especially 
visual and manual origin of it, was found to cause driving 
performance impairments and distraction from the primary 
task of driving [5]. This is mostly due to presence of 
complex secondary tasks such as, use of In-Vehicle 
Information Systems (IVIS) or Consumer Electronic 
Devices (CEDs) while driving (e.g., cellular phone 
conversations, route navigation control and etc.) [5], [6]. 
Likewise, cognitive workload level can be affected due to 
presence of complex secondary tasks. Since cognitive state 
of a driver cannot be directly observed, the metrics of 
cognitive workload have to be gathered through human 
physiological response, performance metrics or by means of 
subjective measures [7]. However, subjective measures are 
fundamentally not suitable for commercial use, because they 
are generally measured before or after a driving activity by 
means of self-reporting therefore, cannot provide driver state 
reference for real-time systems. 
Physiological parameters were also found to correlate to the 
cognitive workload in previous studies [7]–[9]. The	method	
has	 been	 used	 priviously	 to	 assess	 the	 workload	
associated	with	voice-based	 in-vehicle	 interactions	 (e.g.,	
cellular	 conversations	 or	 voice	 comands),	 where	
performance	metrics,	 such	 as	 glancing	patterns,	 are	not	
directly	 impacted	 [10].	 The heart activity records were 
identified as being sensitive to cognitive workload. Mehler 
et al. [11] used mean Heart Rate (HR) to consistently 
estimate relative differences in secondary task periods from 
single task driving in both simulated and real world driving. 
Similarly, Heart Rate Variability (HRV), which is defined as 
“variability of time durations between every successful 
heartbeat”, was found to be influenced by cognitive 
workload [9], [12]. Some other human physiological 
parameters, such as brain activity, perspiration, and body 
temperature, were found to be sensitive to cognitive 
workload. However, Paxion et al. [7] concludes that the 
heart activity is the most sensitive physiological measure to 
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track cognitive workload. Kramer [8] has outlined some 
advantages of employing physilogical metrics in cognitive 
workload estimation, such as unobtrusive measurements 
(e.g., direct tracking through minituarised sensors), 
physiology can also provide information regarding drivers 
state during absence of performance activity, and finaly, 
mixure of physiological parameters can provide 
multidimentional measure of cognitive workload. Author 
also listed some of the disadvantages, such as necessity of 
specialised equipment, abdundance of noise, and influence 
by factors other than workload e.g., emotional state and 
enviromental impact. 
The sensory technology, harware and software have 
significantly advanced since early 90’s. By 2006 the non-
intrusive physiological tracking became available through 
wearable CEDs (e.g., fitness trackers, smartwatches, and 
chest straps).	 Some of these devices are embedded with 
multiple sensors capable of measuring number of steps, 
distance walked, Global Positioning System (GPS) 
coordinates, HR, HRV, Galvanic Skin Response (GSR), and 
Peripheral Body Temperature (PST) in real-time. These 
devices are mostly used to track physiology in health and 
fitness context and there is not much reported use in driving 
context. The metrics of numerous physiological parameters 
captured by such devices could be further fused with 
performance and contextual measurements to provide more 
reliable and valid driver state evaluation in real-time. 
Furthermore, these devices could be employed in 
development of driver state cautious Human-Machine 
Interfaces (HMIs) or adaptive Advanced Driver Assistance 
Systems (ADAS). Hence, contribute to improvement of road 
safety. Therefore, this paper primarily aims to explore the 
reliability and validity of wearable CEDs to measure human 
physiology while driving. As well as investigate validity of 
driver’s HR captured by a wrist-worn consumer electronic 
device and possibility of employing HRV in driver’s 
cognitive workload level estimation. It was hypothesized 
that, (i) HR activity measured from a smartwatch will not be 
significantly different to a baseline reference, (ii) variability 
of task complexity in different road types (i.e., motorway, 
rural, urban etc.) will influence HR, and (iii) HRV captured 
by a wearable device can be used to estimate level of 
cognitive workload in driving context. 

II. BACKGROUND 
This section includes the brief review of the literature that 
presents the potential for heart activity tracking in driving 
context for workload level estimation. 
The mean HR was found to successfully indicate increased 
levels of workload [9], [11], [13]. HR is usually presented in 
a form of mean number of heart Beats Per Minute (BPM). 
HR can be measured by means of Electrocardiography 
(ECG) or Photoplethysmography (PPG). ECG measures 
electrical heart activity and detects each QRS complex that 
forms Inter-Beat Intervals (IBIs), or normal-to-normal (NN) 
HR intervals. Whereas, PPG derives HR by detecting 
fluctuations in blood volume through a light emitting sensor. 
HRV describes the variations between consecutive 
heartbeats [14]. It was found to correlate with age, mental 

and physical stress and workload, as well as attention [15]. 
According to Lee & Park [16], increase in cognitive 
workload had no effect on HR, while decrease in HRV could 
be observed. The time-domain measures, such as square root 
of the mean of the sum of the squares of differences between 
adjacent NN intervals (RMSSD) and NNs over 50 ms count 
divided by the total number of all NN intervals (p50NN) can 
be used to investigate fluctuations of HRV. 
Frequency-domain analysis of HRV allows splitting the 
parameter into three frequency ranges: 0.0033-0.04 Hz Very 
Low Frequency (VLF), 0.04-0.15 Hz Low Frequency (LF), 
and 0.15-0.4 Hz High Frequency (HF). LF, HF and a ratio 
between those frequencies are mostly used to assess 
frequency-domain response of HRV. Lomb-Scargle 
Periodogram is a preferred method for calculating HRV 
frequency spectrum because it can directly use unevenly 
sampled IBIs and is robust to missed heart beats [17]. In 
summary, LF was found to reflect mainly sympathetic PNS 
tone. In the other hand, the HF was found to reflect 
parasympathetic PNS and is mostly influenced by breathing 
or Respiratory Sinus Arrhythmia (RSA) [18].  

III. METHODOLOGY 

A. Device Selection 
Intel’s BASIS Peak was chosen for this experiment. It is 
capable of tracking HR, forming minute-long estimates of 
Heart Beats Per Minute (BPM). It is also capable of 
measuring GSR, PST. This is a greater selection of 
physiological parameters than any other wrist-worn CED 
could offer. It also provides data collection and analysis 
benefits. However, for the purpose of this paper only HR 
metrics were taken into consideration. In order to evaluate 
the validity of HR captured by BASIS Peak it was compared 
to values collected by well-established  device – POLAR H7 
Heart Monitor. It measures electrical heart activity and is 
capable of detecting time between every successful heartbeat 
IBI (often referred to as “RR” interval). It also conforms to 
European Council Directive 93/42/EEC of 14 June 1993 
concerning medical devices. 

B. Desktop Simulator User Trials 
To evaluate how effective BASIS Peak smartwatch was at 
accurately tracking heart activity in a driving context a 
desktop driving simulator study was adopted. Reimer & 
Mehler [10] have demonstrated that physiological measures 
of workload can be productively modelled under simulated 
driving conditions. WMG’s 3xD Desktop Driving Simulator 
for Intelligent Vehicles (Figure 1), consisting of Logitech 
G27 steering wheel, pedal set, gear lever, and three 22” 
screens, as well as, software developed by XPI Simulation 
Ltd., was used. The desktop driving simulation was chosen 
to provide safe and comfortable environment for participants 
taking part in the experiment. Driving scenario consisted of 
simulated accident on the road in order to capture 
hypothesized human physiological response to a highly 
distressful and attention-demanding situation; therefore, real 
world driving was not suitable for such driving scenario 
setup. Likewise, fully controlled and repeatable driving 



  

scenario could not be implemented in real world, because 
there is a risk of uncontrolled events appearing during an 
experiment, which might influence driver’s state. The 
simulator allowed us to produce fully controlled driving 
scenario, where every surrounding vehicle was scripted to 
perform predefined movement sequences without any 
variance in environmental setup or traffic level. 
 

 
Figure 1: Desktop driving simulator. 

Participants were required to wear BASIS Peak smartwatch 
on their wrist of their preferred hand. A sweatband was 
added on top of the device to secure the position, cover it 
from any direct sunlight, as well as, reduce participants’ 
visual distraction caused by the device’s graphical display. 
Next, POLAR H7 Heart Monitor was fitted around a 
participant’s chest. The Heart Monitor requires direct access 
to the skin and its electrodes to be slightly moisturized. Once 
both devices were fitted, the participants were shown to the 
desktop driving simulator and guided through the setup. 
After that, familiarization with in-car interior and simulator 
controls took place. It was indicated that simulated vehicle 
has a dynamic model of a five-door Peugeot 206, which had 
an automatic transmission. The closed-loop practice scenario 
was loaded to allow participants to familiarize with vehicle 
controls. After a participant felt confident to continue the 
experiment, the experimental scenario was loaded. The 
capturing of resting BPM was initiated for the period of five 
minutes. Participants were asked to sit calmly for five 
minutes. Although, readings of resting HR were taken not in 
a supine position, it was ensured that participants are free 
from any distraction and manual activity. 

C. Participants 
The recruitment of participants was conducted internally at 
University of Warwick. The call for participants was 
disseminated using internal email advertisement and notice 
board posters put throughout the department. Participants 
were required to contribute 60 minutes of their time, and 
meet the following criteria: be over 21 years of age; hold full 
category “B” driving license; have normal or correct-to-
normal vision; and do not have any cardiovascular diseases. 
Suitable volunteers were issued with a Participation 
Information Leaflet, which provided an in-deep explanation 
of experiment methodology, risks involved, as well as, 
advantages and disadvantages of participation. Trials lasted 
for two and a half weeks from 13th to 29th of April 2015 with 
14 participants agreeing to take part. The sample consisted 
of participants of mixed age (µ = 28, σ = 8.5 years). 

D. Scenario Design 
The driving scenario was designed to allow participants to 
experience different levels of workload. This was achieved 
by incorporating three discrete types of roads, traffic levels, 
primary driving tasks, frequency of auditory navigation 
commands, and an accident simulation (see TABLE I). The 
assumption was made that variation in road complexity and 
demand have increased levels of visual, auditory, manual, 
and presumably cognitive workload. 
 
TABLE I: Scenario Design Summary. 

Scenario 
modes 

Duration 
(min) 

Road layout Traffic 
Density 

Speed 
Limit 
(mph) 

Resting 5 N/A N/A N/A 

Transition 7 Variable Variable Variable 

Urban 5 One lane with 
in-front 
vehicle present 

Heavy traffic 30 

Rural 7 One empty 
lane 

Absence of 
traffic 

60 

Motorway 10 Three empty 
lanes 

Absence of 
traffic 

70 

Accident 1 One empty 
lane 

One in-front 
vehicle 

60 

 
The minute when an interchange between road types 
(scenario modes) occurred was labelled as “Transition”. 
During the “Accident” an in-front vehicle was scripted to 
emergency stop rapidly decelerating to zero, causing a 
participant to react to the event i.e., avoid a crash by steering 
away or crash into the vehicle. This has, assumingly, caused 
participants to experience high arousal and sudden increase 
of workload level. Voice navigation commands were 
embedded into the scenario to ensure that subjects follow the 
pre-planned route, and were put before every junction and 
roundabout. The study researcher was present in the 
simulation room during the experiment to make sure that a 
participant follows the route correctly and answer any study 
related questions. Overall, the experimental driving scenario 
lasted for approximately 35 minutes, depending on driver’s 
performance. 

E. Data Collection 
The quantitative data sets (BPM, GSR, and PST) were 
collected throughout the desktop simulator user trials. These 
consist of captured sensory data from two wearable devices, 
BASIS Peak and POLAR H7. Data collection was initiated 
through two separate mobile devices. LG Nexus 7 tablet 
with preinstalled “HRV Expert by CardioMood” mobile 
application was synchronized with POLAR H7 and iPhone 6 
with preinstalled “Basis Peak” application was synchronized 
with BASIS Peak smartwatch. The quantitative data, 
participants’ answers to pre-experiment questionnaire, was 
collected at the beginning of every experiment in order to 
determine participants’ demographics, such as gender and 
age. Due to nature of this study i.e., benchmarking of 
consumer grade devices for physiological tracking in driving 
context, no additional participants’ information was 
recorded. 



  

F. Data preparation 
The raw heart activity data recorded through POLAR H7 
had to be averaged to form minute long measures of BPM. 
This was implemented in order to mirror the data format of 
BASIS Peak, which records average BPM per every minute. 
Additionally, BASIS Peak does round BPM values to the 
nearest whole number. We are not aware how this rounding 
is performed thus, this step was not added to the averaging 
algorithm for POLAR. The individual data sets recorded by 
POLAR H7 were run through BPM averaging script 
prepared in MATLAB. Next, data was imported into Excel 
spreadsheet for measurement times from both devices to be 
synchronized. Finally, the data set was imported into IBM 
SPSS Statistics 22 for an analysis. 
The HRV parameters were derived from RR intervals 
recorded by POLAR H7 during the user trials. Following the 
methods of deriving time-domain and frequency-domain 
HRV parameters, discussed in “Background” section, 
MATLAB script was written. The script continuously 
calculated time-domain measures: RMSSD of the last 10 
data points, as well as, RMSSD and p50NN of the last 100 
data points. It also continuously calculated HRV frequency 
spectrum using Lomb-Scargle method. The spectrum was 
split into the following frequency ranges: VLF, LF, HF, and 
LF to HF ratio of the last 100 data points. All derived 
parameters were exported into a separate comma-separated 
values (.csv) file. 

IV. RESULTS 

A. Participants 
Two participant’s data sets were corrupted and were 
excluded from the analysis. This was detected during initial 
visual evaluation of the acquired data. The continuous HR 
line graphs were plotted for every individual. One graph 
showed a significant data loss. This could happen due to 
displacement of POLAR H7 Heart Monitor during the trial. 
Another graph revealed lack of fluctuations of HR with 
unusual presence of artefacts (measures were out of 
maximum HR range). Therefore, initial sample containing 
481 data sets was reduced to 406 (12 participants’ data). 

B. Benchmarking BASIS against POLAR 
Mean BPM for the BASIS Peak, calculated over the entire 
duration of the driving scenario including all participants’ 
data, was 68.94 (σ = 10.35) and for the POLAR H7 it was 
69.99 (σ = 10.90). The absolute mean BPM for POLAR H7 
(non-averaged raw BPM values), which was 71.66 (σ = 
11.87) was also derived. It differs to an averaged value by 
1.67. This demonstrates that averaging an average can 
sometimes lead to variation for this type of analysis. Despite 
presence of an averaging mistake, mean BPM of per-minute-
average was used in further analysis to allow assessment of 
measurement differences between two devices. 
Neither measurement method (BASIS or POLAR) reveals 
unusual features, such outliers (Figure 2). The mean BPM 
differences between two measurements methods (POLAR 
minus BASIS) were not normally distributed (Shapiro-Wilk 
test, p<0.001), with distribution negatively (-0.3) skewed 

(Figure 3). Despite the mean difference between per-minute 
averaged readings being approximately one BPM, it was 
highly significant (Wilcoxon signed-rank test, Z = -10.47, 
p<0.001). This may be present due to BASIS Peak’s added 
BPM rounding step. However, there was a strong correlation 
between BPM readings captured by BASIS Peak and 
POLAR H7 (Pearson’s Correlation = 0.978, p<0.01). 
 

 
 
 
Figure 2: Heart Rate 
summary box plot for both 
measurement methods. 

 
Figure 3: Histogram of BPM 
differences between two 
measurement methods (POLAR 
minus BASIS). 

The impact of road types on BPM readings captured by 
BASIS and POLAR (averaged per-minute measurements) 
was investigated using univariate analysis of variance 
(ANOVA). Results suggest that BPM variance in both 
measurement methods was not significantly affected 
(BASIS: F=0.578, p=0.717; POLAR: F=0.476, p=0.794) by 
task complexity variations in different road types. However, 
raw BPM metrics, collected using POLAR H7, showed 
significant difference in various road types (ANOVA, 
F=31.339, p<0.001). The measurement methods were further 
visually compared using bar plot of BPM means categorized 
by driving scenario modes (Figure 4). The mean BPM tends 
to lower (although not significantly) with decreasing 
complexity of driving scenario in both measurement 
methods. 
 

 
Figure 4: Mean BPM measurements categorized by scenario mode. 

Furthermore, Scatter Plot of POLAR against BASIS 
measurement categorized by road type (Figure 5) was 
plotted to assess regression of metrics. Linear regression 
goodness-of-fit measures (R2 URBAN = 0.933, R2 RURAL = 
0.961, R2 MOTORWAY = 0.981) are also affected by increasing 
complexity of driving between road types. Regression tends 



  

to lower with increased level of workload (R2 URBAN < R2 

RURAL < R2 MOTORWAY). 
 

 
Figure 5: POLAR against BASIS measurements categorized by 
road type. 

C. Heart Rate Variability 
Figures 6 and 7 represent the mean affect of scenario mode 
complexity on longer-term HRV. In total 13980 RMSSD 
and p50NN of 100 IBI data points, continuously calculated 
over “Rest”, “Motorway”, “Rural” and “Urban” scenario 
modes, were analyzed. The impact of road types on HRV 
readings was investigated using ANOVA. Results suggest 
that RMSSD and p50NN variance was significantly affected 
(RMSSD100: F=96.61, p<0.001; p50NN: F=34.50, p<0.001) 
by variations of complexity in different scenario modes. The 
metrics were further analyzed using post-hoc pairwise 
comparison with Bonferroni correction. The variance in 
RMSSD100 and p50NN100 is not significantly different 
only between “Motorway” and “Rural” road types 
(RMSSD100: p=0.900; p50NN100: p=0.600). The rest of 
the road types demonstrated significant difference in 
variance between each other (p<0.001). 
 

 
Figure 6: Mean RMSSD of 100 
sample period categorized by 
scenario mode. 

 
Figure 7: Mean p50NN of 100 
samples period categorized by 
scenario mode. 

Figure 8 represents the mean affect of scenario mode 
complexity on short-term HRV. In total 19040 RMSSD of 
10 IBI data points, continuously calculated over “Rest”, 
“Motorway”, “Rural”, “Urban”, and “Accident” scenario 
modes, were analyzed. The impact of road types on short-
term HRV was investigated using ANOVA. Results suggest 
that RMSSD10 variance was significantly (F=44.23, 
p<0.001) affected by variations of complexity in different 
scenario modes. The RMSSD10 was further analyzed using 
post-hoc pairwise comparison with Bonferroni correction. 
The variance was shown not significantly different in 
“Motorway-Rural” (p=1.000) and “Urban-Accident” 

(p=1.000) cases. The rest of the scenario modes 
demonstrated significant difference in variance between 
each other. 
 

 
Figure 8: Mean RMSSD of 10 sample period categorized by 
scenario mode. 

HRV was further studied using its frequency-domain 
measures. MANOVA was used to study an impact of road 
types on HRV frequency-domain measures. Results suggest 
that VLF, LF, and HF variance was significantly affected 
(Pillai’s trace: F=255.45, p<0.001) by variations of 
complexity in different scenario modes. The post-hoc 
pairwise comparison with Bonferroni correction was applied 
to study differences in variance between scenario modes. 
The insignificance in variance was found between 
“Motorway” and “Rural” scenario modes in all frequency 
ranges (VLF: p=1.000; LF: p=0.152; HF: p=1.000). 
Additionally, the variance between “Rural” and “Rest” 
scenario modes in VLF range was also found insignificantly 
different (p=0.056). The LF to HF ratio was significantly 
affected by varying driving complexity in different scenario 
modes (F=263.619, p<0.001) (Figure 9). 
 

 
Figure 9: Mean LF/HF ratio of 100 sample period categorized by 
scenario mode. 

V. DISCUSSION AND CONCLUSIONS 
This preliminary study has addressed the need for 
innovative, non-intrusive and cost effective driver state 
monitoring solution that could help to estimate levels of 
workload in driving context. The feasibility of workload 
estimation through driver’s physiology has been confirmed 
previously in the literature however, most of the studies have 
employed medical equipment to capture human’s physiology 
for workload level estimation [15], [16]. This report includes 
results produced to support a potential use of a smartwatch 
as a tool to capture driver’s physiology in real-time. CEDs 
are mostly used to track physiology in health and fitness 



  

context and there is not much reported use in driving 
context. 
Our first hypothesis is that HR measured from a smartwatch 
will not be significantly different to a baseline reference. 
The validity of HR measurements was compared to the ones 
measured by POLAR H7 Heart Monitor, a well-established 
method of capturing electrical heart activity. According to 
the results, BASIS Peak smartwatch was found to reliably 
track HR. Although, two measurement methods did not 
agree, HR from BASIS was consistently just one BPM out 
across scenario modes and it demonstrated significant 
correlation with metrics measured by POLAR H7. No bias 
towards any particular BPM range or scenario mode was 
found. Therefore, we can accept Hypothesis “1” and say 
with some confidence that BASIS Peak could be employed 
in relatively accurate HR tracking in driving context.  
The affect of task complexity variation in different scenario 
modes on mean HR was also investigated. Results suggest 
that continuous minute-long BPM variance in both 
measurement methods was not significantly affected by task 
complexity variations in different road types. In contrast, the 
raw BPM values measured by POLAR H7 were found 
significantly different in various scenario modes. Perhaps, 
the BPM averaging stage has influenced the data by 
smoothing out some of the essential HR fluctuations. 
Besides, the data-averaging step significantly reduces 
number of data points and leads to wide confidence limits. 
Thus, Hypothesis “2” can be accepted according to analysis 
of raw BPM metrics from POLAR H7, but must be rejected 
in the case when per-minute averaging of BPM is performed 
(i.e., BASIS Peak’s averaging). 
In order to test Hypothesis “3”, the HRV was analyzed using 
time-domain and frequency-domain methods. The mean 
RMSSD and p50NN were studied across all scenario modes 
to identify any dependencies on task complexity. Both 
measures were found to be significantly different across 
most of the scenario modes. The short-term (10 IBIs) and 
long-term (100 IBIs) HRV was found to be very similar and 
insignificantly variant in “Motorway” and “Rural” scenario 
modes. This is an expected behavior for HRV and perhaps, 
occurred due to design similarities in those scenario modes. 
The HRV was also found to follow driving task complexity 
pattern. According to the literature time-domain measures of 
HRV tend to decrease with increased levels of workload [9]; 
this trend was confirmed in our findings. Similar trend was 
observed in frequency-domain metrics as well as similarities 
in “Motorway” and “Rural” scenario modes. Therefore, 
Hypothesis “3”, which states that HRV can be used to 
estimate level of cognitive workload in driving context, can 
be accepted for both time-domain and frequency-domain 
measures. 
In summary, this paper presents supporting evidence for 
adopting wrist-worn consumer grade device for the purpose 
of driver state monitoring. However, some limitations 
persist. It is necessary to capture all RR intervals in order to 
perform HRV analysis. None of the commercially available 
smartwatches are able to provide such data rate yet. In 
contrast, Renevey et al. [19] have demonstrated a proprietary 
wrist-worn devices capable of measuring RR intervals in 

real-time. The future studies aiming to embedded wrist-worn 
CEDs for physiological tracking in driving context should 
address this limitation. Future research should also focus on 
the following areas: (i) investigate user acceptance of 
physiological tracking by means of CEDs for safety 
purposes in driving context, (ii) investigate a possibility of 
embedding CEDs in real world driving from technological 
and human factors point of view, and (iii) further investigate 
potential for workload level estimation using HRV. 
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