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IMAGES OF ADELIC GALOIS REPRESENTATIONS FOR
MODULAR FORMS

DAVID LOEFFLER

ABSTRACT. We show that the image of the adelic Galois representation at-
tached to a non-CM modular form is open in the adelic points of a suitable
algebraic subgroup of GLg (defined by F. Momose). We also show a similar
result for the adelic Galois representation attached to a finite set of modular
forms.

INTRODUCTION

Let E be an elliptic curve over Q, and p a prime number. Then the action of
the Galois group on the Tate module of ¥ determines a Galois representation

PEp Gal(Q/Q) — GL2(Zy).

If Z = Hp Z, is the profinite completion of Z (the integer ring of the ring Q of
finite adeles), then the product of the pg,, defines an adelic Galois representation

pE : Gal(Q/Q) — GLa(2).

Suppose E does not have complex multiplication. Then the images of these
representations are described by the following three theorems, all of which are due
to Serre:

(A) [Ser68| §IV.2.2] For all primes p, the image of pg , is open in GLa(Z,).

(B) [Ser72, Theorem 2] For all but finitely many p, the image of pg,, is the

whole of GL2(Z,).

(C) [Ser72, Theorem 3] The image of the product representation pg is open in

GLy(Z).

Note that (C) implies both (A) and (B), but the converse is not automatic;
theorem (C) shows that not only do the pg, individually have large image, but
they are in some sense “independent of each other” up to a finite error.

If one replaces the elliptic curve E by a modular eigenform f, then one has p-adic
Galois representations py,, and an adelic representation p¢, and it is natural to ask
whether analogues of theorems (A)—(C) hold in this context. For modular forms
of level 1, analogues of all three theorems were obtained by Ribet [Rib75]; but the
case of modular forms of higher level is considerably more involved, owing to the
presence of so-called “inner twists”.

The appropriate analogues of (A) and (B) for general eigenforms were deter-
mined by Momose [Mom81] and Ribet [Rib85] respectively. However, somewhat
surprisingly, there does not seem to be a result analogous to (C) in the literature
for general modular eigenforms f. The first aim of this paper is to fill this minor
gap, by formulating and proving an analogue of (C) for general eigenforms; see
in particular Theorem [2:3.1]
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2 DAVID LOEFFLER

The second aim of this paper is to extend these results to pairs of modular forms:
given two modular forms f, g, how large is the image of the product representation
pr % pg? In §3| we formulate and prove analogues of (A)—(C) for this product
representation. This extends earlier partial results due to Ribet [Rib75, §6] (who
proves the analogue of (B) for pairs of modular forms of level 1, and sketches an
analogue of (A)); and of Lei, Zerbes and the author [LLZI14l §7.2.2] (who prove an
analogue of (B) for pairs of modular forms of weight 2).

These results can all be extended to the case of arbitrary finite collections
(f1,..., fn) of modular forms, but we give the proofs only in the case n = 2 to
save notation.

In section [4] we give an application of these results which was the original mo-
tivation for our study of images of Galois representations; this is to exhibit cer-
tain special elements in the images of the tensor product Galois representations
Pfp ® pg,p Whose existence is important in Euler system theory. These results are
used in [KLZ15] in order to prove finiteness results for Selmer groups.

Acknowledgements. This paper was written while the author was a guest at
the Mathematical Sciences Research Institute in Berkeley, California, for the Fall
2014 programme “New Geometric Methods in Number Theory and Automorphic
Forms”. The author would like to thank MSRI, for providing such a fantastic work-
ing environment; and the many other MSRI guests with whom he had illuminating
conversations on this topic, notably Luis Dieulefait, Eknath Ghate, Kiran Kedlaya,
Ken Ribet, and Sarah Zerbes. The original impetus for writing this paper came
from an exchange on the website MathOverflow; the author would like to thank
Jeremy Rouse for his valuable suggestions during this discussion.

1. SOME PROFINITE GROUP THEORY
1.1. Preliminary lemmas.

Lemma 1.1.1 (Ribet). Let p > 5 be prime, and let K, ..., K; be finite unramified
extensions of Q,, with rings of integers O1, ..., O and residue fields k1, ..., k. Let
G be a closed subgroup of SLa(O1) X -+ - X SLa(Oy) which surjects onto PSLa (k1) x
e X PSLQ(]{Jt) Then G = SLQ(Ol) X oo X SLQ(Ot)

Proof. If we assume that G surjects onto SLa(k1) X - x SLa(k) this is a special
case of Theorem 2.1 of [Rib75]. So it suffices to check that there is no proper
subgroup of SLg (k1) x - - - x SLa(k;) surjecting onto PSLa (k1) X - - - x PSLa (k). But
this follows readily by induction from the case ¢ = 1, which is Lemma IV.3.4.2 of
[Ser68]. O

Lemma 1.1.2 (cf. [Ser68| Lemma IV.3.4.1]). Let K be a finite extension of Q, for
some prime p, and let Y1,Ys be closed subgroups of GLa(Ok) such that Y1 <4Ys and
Y2/Y1 is a nonabelian finite simple group. Then Ya/Y1 is isomorphic to one of the
following groups:

e PSLy(F), where F is a finite field of characteristic p such that #F > 4;

e the alternating group As.

Proof. Since the kernel of GLy(Of) — PGLa(k) is solvable, where k is the residue
field of K, we see that any such quotient Y5/Y7 is in fact a subquotient of PSLo (k).
The result now follows from the determination of the subgroup structure of PSLo(k),
which is due to Dickson; cf. [Suz82, Theorem 6.25]. O

Lemma 1.1.3. If k and k' are any two finite fields of characteristic > 5 and
¢ : PSLy(k) = PSLa(k') is a group isomorphism, then ¢ is conjugate in PGLa (k')
to an isomorphism induced by a field isomorphism k = k'.
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Proof. Since the groups PSLay(k) for finite fields & of characteristic > 5 are non-
isomorphic unless k& = &/, it suffices to check that every group automorphism of
PSLy(k) is induced by conjugation in PGLy(k), which is a standard fact. O

We also have an “infinitesimal” version of this statement, which we will use later
in the paper.

Lemma 1.1.4. If K and K’ are finite extensions of Q, for some prime p, B
and B’ are central simple algebras of degree 2 over K and K’ respectively, and the
Lie algebras sly(B) and sly(B’) are isomorphic as Lie algebras over Q,, then the
isomorphism is induced by a field isomorphism K = K' and an isomorphism of
central simple algebras B = B’ over K.

Proof. We may recover K from sly(B) as the algebra of Qp-endomorphisms of
sli (B) commuting with the adjoint action of sl;(B); thus it suffices to consider
the case K’ = K. There are exactly two central simple algebras of degree 2 over
any p-adic field (one unramified and one unramified), and their Lie algebras are
non-isomorphic; and every automorphism of either of these is inner (since the cor-
responding Dynkin diagram A; has no automorphisms). O

1.2. Subgroups of adele groups. Let F' be a finite étale extension of Q; that is,
F is a ring of the form @5:1 F;, where F; are number fields.

A quaternion algebra over F is defined in the obvious way: it is simply an F-
algebra B of the form @2:1 B;, where B; is a quaternion algebra over F; (a central
simple Fj-algebra of degree 2); we allow the case of the split algebra Maya(F;).
There is a natural norm map

normp,/p : B* — F*
(which is just the product of the reduced norm maps of the B; over F;).

We fix a homomorphism of algebraic groups k : G, — Resp/q Gy; this just
amounts to a choice of integers (ki,...,k;) such that k(\) = (A\F1 ... AFe).

Definition 1.2.1. For B, F, k as above, we let G and G° be the algebraic groups
over Q such that for any Q-algebra R we have

G(R) ={(z,\) € (B® R)* x R* : normp,p(x) = ' 7"},

and
G°(R) ={z € (B®R)™ :normp,p(z) = 1}.

Then G and G° are linear algebraic groups over Q, and G° is naturally a sub-
group of G. More generally, we may fix a maximal order Op in B and thus define
G and G° as group schemes over Z. For all but finitely many primes p, we then
have

G(Z,) = {(z,\) € GLa(Op) x Z,™ : det(z) = A'7F};
changing the choice of Op does not change G(Z,) away from finitely many primes
.

Theorem 1.2.2. Let U° be a compact closed subgroup of GO(Q), where Q = Q®Z
is the finite adeles of Q, such that:

o for every prime p, the projection of U° to G°(Qp) is open in G°(Q,);

o for all but finitely many primes p, the projection of U° to G°(Qy) is G°(Z,).
Then U® is open in G°(Q).

The proof we shall give of this theorem is a relatively straightforward generaliza-

tion of the case F' = Q, B = Msy2(Q), k = 2, which is the Main Lemma of [Ser68|
§TV.3.1].
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Proof. Let S be a finite set of primes containing 2, 3, all primes ramified in F/Q,
all primes at which B is ramified, and all primes p such that the projection of U°
to G°(Q,) is not equal to G°(Z,).

For a prime p, let k, = lep k., where the product is over primes w | p of F,
and k,, is the residue field of F' at w. Then for each p ¢ S we have a natural map

U° — PSLy(k,)

given by projection to the p-component and the natural quotient map. By the
definition of S, it is surjective. I claim that the restriction of this map to U°NG°(Z,)
is also surjective (where we consider G°(Z,) as a subgroup of G°(Q) in the natural
way).

If this is not the case, then the group

Q=U°/(U"NG(Zp)))

must have a quotient isomorphic to a nontrivial quotient of PSLa(k,), and in partic-
ular this group must surject onto the simple group PSLy (k) for some finite field &k of
characteristic p. However, the group @) is exactly the image of U° in H#p G°(Qq)-
Hence the finite simple group PSLs(k) must be a subquotient of an open com-
pact subgroup of H#p G°(Qg); but this is not possible, since Hq# G°(Qq) is a
compact subgroup of [],, GL2(L ® Q) for any étale extension L/F which splits
B, and thus is conjugate to a closed subgroup of the maximal compact subgroup
[, GL2(OL ®Z,), and we know that this group does not have PSLy (k) as a quo-
tient by Lemma[1.1.2] Hence U°NG°(Z,) is a subgroup of G°(Z,) = SLy (O ® Zy)
which surjects onto PSLy(k;), and by Lemma[L.1.1] this implies that G°(Z,) C U°.

So we have [] ;s G°(Z,) € U°. In order to show that U® is open in G°(Q), it
therefore suffices to show that the image of U° is open in [[ ¢ G°(Q,). However,
since G°(Q,) contains a finite-index pro-p subgroup for each p € S, and S is finite,
one sees easily by induction on #S that any subgroup of Hpe s G°(Qp) whose
projection to G°(Q,) is open for all p € S must itself be open. O

Theorem 1.2.3. Let U be a compact subgroup of G(Q), where Q =Q® Z is the
finite adeles of Q, such that:

o for every prime p, the projection of U to G(Qy) is open in G(F ® Q,);
o for all but finitely many primes p, the projection of U to G(Qp) is G(Z,);
e the image of U in QX 18 open.

Then U is open in G(Q).

Proof. Let U° =U NG°(Q). We claim U° satisfies the hypotheses of the previous
theorem.

Since G(Q)/GO(Q) =~ Q* is abelian, the group U° contains the closure of the
commutator subgroup of U. Since SLa(OF ® Z,,) is the closure of its own commu-
tator subgroup for p > 5, we see that if p > 5 and U surjects onto G(Z,), then U°
surjects onto G°(Zy).

Let us show that for an arbitrary prime p, the commutator subgroup of G°(Z,)
has finite index. It suffices to show the corresponding result for SL;(Op) for B a
quaternion algebra (possibly split) over a p-adic field; and this is equivalent to the
statement that the Lie algebra sl;(B) is a nontrivial simple Lie algebra, which is
clear since it becomes isomorphic to sly after base extension to any splitting field
of B.

By the previous theorem, we conclude that U contains an open subgroup of
G°(Q). But the image of U in QX is open by hypothesis, so we conclude that U is

in fact open in G(Q). O
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Remark 1.2.4. We cannot dispense with the hypothesis that the image of U in
Q* is open: there exist proper closed subgroups of Z* whose projection to Z; is
open for all p, but which are not open in 7>, such as the group 7%2. We may
even arrange that the projection to Z) is surjective for all p, as with the group
{2, €Z?Vp>2yU{x:x, ¢ Z3* Vp> 2}

2. LARGE IMAGE RESULTS FOR ONE MODULAR FORM

2.1. Setup. Let f be a normalized cuspidal modular newform of weight k > 2,
level N and character €. We write L = Q(an(f) : n > 1) for the number field
generated by the g-expansion coefficients of f. Note that L is totally real if ¢ = 1,
and is a CM field if € # 1.

Definition 2.1.1.

(1) For p prime, we write
prp: Gq = Gla(L ® Qp)

for the unique (up to isomorphism) representation satisfying Tr p f(agl) =
ag(f) for all £+ Np, where oy is the arithmetic Frobenius.
(2) We write
pr - GQ — GL2(L & Q)
for the product representation Hp pf.ps Where Q is the ring of finite adeles
of Q.

The condition (1) only determines py, up to conjugacy, and we can (and do)
assume that its image is contained in GL2(Or ® Zp), where Oy is the ring of
integers of L. Thus ps takes values in GL2(Of ® Z), where Z = [I,Z, is the
profinite completion of Z.

Remark 2.1.2. Our normalizations are such that if f has weight 2, py, is the
representation appearing in the étale cohomology of X7 (N) with trivial coefficients.
Some authors use an alternative convention that Trp;(os) = a¢(f), which gives
the representation appearing in the Tate module of the Jacobian Ji(N); this is
exactly the dual of the representation we study, so the difference between the two
is unimportant when considering the image.

2.2. The theorems of Momose, Ribet, and Papier. For x a Dirichlet charac-
ter, we let f ® x denote the unique newform such that a;(f ® x) = x(n)a,(f) for
all but finitely many primes .

Definition 2.2.1 ([Rib85l §3]). An inner twist of f is a pair (v, x), where v : L <
C is an embedding and y is a Dirichlet character, such that the conjugate newform
f7 is equal to the twist f ® x.

Note that we always have f = f ® ¢!, so any newform of non-trivial character
has at least one nontrivial inner twist.

Lemma 1.5 of [Mom&1] shows that if (v, x) is an inner twist of f, then x takes
values in L* and (L) = L. Thus the inner twists (v, x) of f form a group I" with
the group law

(v x) - (o) = (v -0, X7 - ).
Moreover, for any (v, x) € T, the conductor of x divides N if N is odd, and divides
4N if N is even.

It is well known that if there exists a nontrivial y such that f ® x = f, then f
must be of CM type and x must be the quadratic Dirichlet character attached to
the corresponding imaginary quadratic field.
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We now assume (until further notice) that f is not of CM type. Thus, for any
inner twist (v, x) € T, the Dirichlet character x is uniquely determined by f and 7,
and we write it as x,. The map (v, x) — < identifies I with an abelian subgroup
of Aut(L/Q); we write F for the subfield of L fixed by I". The extension L/F is
Galois, with Galois group T' [Mom&81), Proposition 1.7].

Let us write H for the open subgroup of Gq which is the intersection of the
kernels of the Dirichlet characters x., for v € I, interpreted as characters of Gq in
the usual way. Then for all o € H we have Trps(0) € F ® Q.

Theorem 2.2.2 (Momose, Ribet, Ghate-Gonzalez-Jimenez—Quer). There exists a
central simple algebra B of degree 2 over F, unramified outside 2N disc(L/Q)oo,
and an embedding B — Mayo(L), with the following property: we have

pr(H) C B(F ©Q)* C GLy(L® Q).

Moreover, for all but finitely many primes p we have B ® Qp = Maxo(F ® Qp),
and we may conjugate py, such that

(1) prp(H) = {o € GLo(OF ® Z,) : detw € 2"V}

Proof. This result is mostly proved in [Rib85], building on earlier results of Momose
[Mom&1]; the only statement not covered there is the explicit bound on the set of
primes at which B may ramify, which is Corollary 4.7 of [GGJQ05]. O

We will need later in the paper the following refinement:

Corollary 2.2.3 (Papier). Let p be such that B and L are unramified above p, and
psp(H) is the whole group (1); and let 0 € Gq(u,~)- Then the image of the coset
o-(HN GQ(#,,DO)) under py,, s the set

(g e(a)ooz_l> SLe(Or © Z,),

for any o € (O, ® Zp,)* such that y(a) = x(0)a for all v in Gal(L/F).

Proof. See [Rib85L Theorem 4.1]. (Strictly speaking, Ribet in fact only shows that
there is a € L* with this property, and excludes any primes p such that « is not
a p-adic unit. However, since we have assumed L/F is unramified above p, we can
always re-scale « to be a p-adic unit.) O

2.3. Adelic open image for GLy. Since the determinant of py|y is x' ="

, where
x:Gq — 7> is the adelic cyclotomic character, we can extend py to a homomor-
phism py : H — G(Q), where G is the algebraic group of Definition (for the
specific choices of B, F' and k as in this section). This homomorphism is character-
ized by the requirement that its projection to GLa(L ® Q) is py, and its projection
to Q* is the cyclotomic character.

Applying Theorem to ps(H), we obtain the first new result of this paper:

Theorem 2.3.1. The image of H under py is an open subgroup of G(Q).

Remark 2.3.2. One can show exactly the same result with modular forms replaced
by Hilbert modular forms for a totally real field F, since the Momose—Ribet theorem
has been generalized to this context by Nekovar [Nek12, Theorem B.4.10]. We have
stated the result only for elliptic modular forms in order to save notation.
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2.4. The CM case. For completeness, we briefly describe the image of p; in the
CM case.

Let us now suppose f is of weight £ > 2 and is of CM type, associated to some
Hecke character

¢ KX — L*
for some imaginary quadratic field K and Grossencharacter ¢ of infinity-type (1-
k,0), with ¢ taking values in some extension L of L. The relation between f and
1 is given by
ap(f) = v(w@p) + Y(@yp)

whenever p is a rational prime, not dividing the level of f, which splits in K as pp’.
Here w, € K* is a uniformizer at p.

Let us write 9 for the homomorphism K*\K* — (K Q@ L)* defined by
b(z) = &' ().
If we identify K*\K* with G via the Artin ma then the adelic Galois repre-
sentation p, is given by Indgz (1)).

Note that there is a finite-index subgroup U C @IX( contained in the kernel of v;
thus the image of 1/3 contains a finite-index subgroup of the group {z'=%: 2 € @IX(}
In particular, for almost all primes p the image of Gx under p, , contains the group

{70 2h)aconwz) ).

3. JOINT LARGE IMAGE

3.1. Preliminaries. Now let f, g be two newforms of weights k¢, k; > 2, levels
Ny, Ny and characters €y and €4, respectively. We assume neither f nor g is of CM
type, and we write Ly, L, for their coefficient fields. We will need the following
lemma:

Lemma 3.1.1. Suppose there exist embeddings Ly, Ly — C such that we have

a(f)?_ alg)?
Chs=le () LRa=le,y(0)

for a set of primes £ of positive upper density. Then there is a Dirichlet character
x such that g = f ® x.

Proof. This is a special case of Theorem A of [Ram00]. O

Remark 3.1.2. Recall that the upper density of a set of primes S is defined by

o Hltest<Xx)
UDES) =l sup == Xy

We will need below the easily-verified fact that if S1, ..., .S, are sets of primes, then
UD(S1U---US,) <UD(S]) + -+ UD(S,),

so if 7 U---U .S, has positive upper density, then at least one of the sets S; has
positive upper density.

INormalized in the French manner, so geometric Frobenius elements correspond to
uniformizers.
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We can obviously apply the theory of the previous section to each of f and g,
and we use the subscripts f, g to refer to the corresponding objects for each form:;
so we have number fields Fy, Fj;, quaternion algebras B¢, By, and algebraic groups
Gy,Gy.

We may unify these as follows: we let F' = Fy x F,, which is an étale extension
of Q, and B = By x By, which is a quaternion algebra over F'; and the group G°
of norm 1 elements of G is just G} x Gy. We let

k:Gpm — Resp/q G = Resp, /@ G X Resp, /@ G
be the character sending A to (A\*7, A\ks). Then Deﬁnition gives us an algebraic
group
G = {(x,)) € B* x G, : norm(z) = A!7*}
= {(zf,24,\) € Bf x B x Gy, : norm(zy) = AR norm(zy) = AR

This is, of course, just the fibre product of Gy and G, over G,,. Letting H =
Hy N H,, we have a representation

Prg:Gaq = G(Q),
and in particular

Prap: Gq = G(Qp)
for all primes p.

3.2. Big image for almost all p.

Proposition 3.2.1. Let p > 5 be a prime unramified in B, and let U be a subgroup
of G(Z,) which surjects onto Gy(Zp) and Gy4(Z,). Then either U = G(Z,), or
(after possibly conjugating U) there are primes v | p of Op,, w | p of O, and an
isomorphism

OFf,v = OFg,un

such that for all (x,y,\) € U we have (y mod w) = £A*r=%9)/2(3 mod v).

Proof. This is visibly a generalization of Proposition 7.2.8 of [LLZ14], and we follow
essentially the same argument. (We have changed notation from H to U to avoid
confusion with the Galois group H above.)

Let U° = U NG°(Z,). By the same commutator argument as before, U° is a
subgroup of G°(Z,) = G$(Z,) x Gy(Z,) which surjects onto either factor.

By Goursat’s Lemma, there are closed normal subgroups Ny < G;(Zp) and Ny <
Gg(Zyp) such that U® is the graph of an isomorphism ¢ : G$(Z,)/Ny = G¢(Zy)/Ny.

The maximal normal closed subgroups of G;(Zp) are precisely the kernels of the
quotient maps to PSLa(k,) for each prime v | p of Fy, and every automorphism
of PSLa(k,) is the composite of a field automorphism of k, and conjugation by
an element of PGLa(k,). Hence, after possibly replacing U by a conjugate of U
in G(Z,), we may find primes v | p of Fy and w | p of F,, and an isomorphism
OF; v = OF, v, such that U® is contained in a conjugate of the group

{(z,y) € G}(Zy) x Gy(Zy) : ® mod v = +y mod w}.

For a general element (z,y,\) € U, let t = (z mod v)~!(y mod w) € GLy(F),
and let [t] denote its image in GLy(F)/{£1}. For any element (u,v) € U°, we have
the same commutator identity as in [LLZI4, Proposition 7.2.8],

[w™ ] = [u e yu] = o7 [(2ua ™) T oy DIl e = [0 y] = (1],

since (zuz~!,yvy~!) € U°. This shows that [t] commutes with every element of
PSLy(F), so that t is a scalar matrix. It is clear that we must have t2 = \*s~*s by
comparing determinants, and this gives the result. U
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Theorem 3.2.2. If f is not Galois-conjugate to a twist of g, then for all but finitely
many primes p we have py g ,(H) = G(Z,).

Proof. Let us fix embeddings of Fy and Fj, into C, and let F' be their composite.
The above theorem shows that for all p outside some finite set S, if py 4 ,(H) #
G(Z,), then there is some prime v of F' above p dividing the product

[T (ae(r)® = 5 oy(an(9))?)

YEGal(F,/Q)

for all primes ¢ whose Frobenius elements lie in H. Since no nonzero element of F’
may be divisible by infinitely many primes, we deduce that either ps , ,(H) = G(Z,)
for all but finitely many p, or the above product is zero, so for each prime ¢ whose
Frobenius lies in H, there is v € Gal(F,/Q) (possibly depending on ¢) such that

we have
a(f)® ( ar(g)? )
C=Lep(0) T\ 1g,(0)
(since e7(€) = g4(¢) = 1 for all such £). Since there are only finitely many possible
7, there must be at least one v € Gal(F,/Q) such that the above equality holds
for a set of ¢ of positive upper density. By Lemma[3.1.1] this implies that for some
(and hence any) 4" € Gal(L,/Q) lifting v, the conjugate form ¢” is a twist of f. O

3.3. Open image for all p.

Proposition 3.3.1. Let p be arbitrary and let U be a subgroup of G(Z,) which
has open image in Gy(Z,) and G4(Z,). Then either U is open in G(Z,), or there
are primes v of Fy and w of Fy above p, a field isomorphism Fy, = F, ., and
an isomorphism By ® Fy, = By ® Fy ., such that U has a finite-index subgroup
contained in a conjugate of the subgroup

{(fl?,y, A) € G(Zp) L Yw = )\(kf_k.q)/va}

where x,, and y,, are the projections of x and y to the direct summands (B ® Fy,)*
and (By @ Fy )%

Proof. This follows in a very similar way to Proposition with all the groups
concerned replaced by their Lie algebras. We know that u = Lie(U) is a subalgebra
of Lie(G) which surjects onto Lie(Gy) and Lie(Gy). Since G} and Gy are semi-
simple we deduce that u® = Lie(U®) is a subgroup of Lie(G}) @ Lie(Gy) surjecting
onto either factor. By Goursat’s Lemma for Lie algebras, we deduce that it must
be contained in the graph of an isomorphism between simple factors of Lie(G;) and
Lie(Gy). Using Lemma we deduce the above result. O

Proposition 3.3.2. If f is not Galois-conjugate to a twist of g, then py g ,(H) is
open in G(Zy,) for all primes p.

Proof. By the previous result, if p¢ 4 ,(H) is not open in G(Zj), there is an element
v € Gal(Fy/Q) and a positive-density set of primes ¢ such that we have

a(f)? a(g)?
Ch=lep(0) 7 <€k_159(€)) '

Ramakrishnan’s theorem now tells us that g7 is a twist of f. U

3.4. Adelic big image.
Theorem 3.4.1. Let f, g be non-CM-type cusp forms of weights k¢, kg > 2. Then

either py 4(H) is open in G(Q), or ky = kg and f is Galois-conjguate to a twist of
g.
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Proof. Suppose f is not Galois-conjguate to a twist of g. Then, by the results of
the previous two sections, ps4(H) is a compact subgroup of G(Q) whose image
is open in G(Q,) for all primes p, and equal to G(Z,) for all but finitely many p.
Applying Theorem we deduce that this subgroup must be open in G(Z,). O

Via exactly the same methods and induction on n, one can prove the following
generalization. We shall not give the proof here, as the notation becomes somewhat
cumbersome, but the arguments are exactly as before:

Theorem 3.4.2. Let fi,..., fn be newforms of weights k1, ..., k, > 2. Then either

e there is a Dirichlet character x and i,j € {1,...,n} such that f; ® x is
Galois-conjugate to f;, with x #1 if i = j;

o or there is an open subgroup H of Gq such that the image of H under the
map

pp XX pp X x: Gq = CLa(Ly, ® Q) x --- x GLa(Ly, @ Q) x Q%

is an open subgroup of G(Q), where G is the algebraic group
{(gl,...,gn,)\) € B;l X oo X B;n X Gy, : norm(g;) = )\1_’”}.

Remark 3.4.3. Note that Serre [Ser94] has formulated a general conjecture on the
image of Galois representations for motives: for any motive M of rank r over a
number field K, one can define a connected subgroup MT (M) of GL, /Q such
that the image of pas : Gx — GL,(Q) is contained in MT(M)(Q). Thus a finite-
index subgroup H of Ggq lands in MT°(M)(Q), where MT?(M) is the identity
component.

In general one does not expect pas(H) to be open in MT?(M)(Q), because of
obstructions arising from isogenies; e.g. if M = Q(2), then MT(M) = G,,, but
the image of Gq is the group of squares in 7, which is not open. However, there
is a distinguished class of “maximal” motives for which this should be the case.

The motive M (f) attached to a weight k& modular form is not maximal if k& > 2,
but M(f) @ Q(1) is maximal if f is not of CM type (cf. §11.10 of op.cit.), and the
group G is the connected component of MT (M (f) @& Q(1)). Thus we have verified
Serre’s open image conjecture for the maximal motives

M(f)®---@M(fn) ® Q1)

whenever the f; are non-CM forms of weight > 2 and no f; is Galois-conjugate to
a twist of f;.

4. SPECIAL ELEMENTS IN THE IMAGES

4.1. Setup. This section is more technical, and was the original motivation for
the present work: to find elements in the images of py,, x pgy, With certain special
properties. In this section we fix newforms f, g as before, and a Galois extension
L/Q with embeddings Ly, Ly < L; we then have representations p¢ ,, pg.p : Gq —
GL2(Oy,) for each prime p of L.

Let V, be the four-dimensional L,-vector-space LEM, with Gq acting via the
tensor-product Galois representation ps, ® pg.p; and let T, be the Gg-stable Op, -
lattice O?t in V.

Our aim is to verify the following conditions, in as many cases as possible:

Hypothesis (Hyp(Q(pp=), Vp)).

1) V, is an irreducible L, |G «)|-module (where p is the rational prime
» P Q(up)
below p).
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(2) There is an element 7 € Gq(y,-) such that V, /(7 — 1)V}, has dimension 1
over Ly.

Hypothesis (Hyp(Qup=), Ty))-
(1) T, ® ky, is an irreducible k, [GQ(/WX,)]—module7 where k, is the residue field
of Ly.
(2) There is an element 7 € Gq(y,) such that T}, /(7 — 1)T}, is free of rank 1
over O ;.

Our formulation of these is exactly that of [Rub00, Chapter 2]. Note that
Hyp(Q(up=),Ty) = Hyp(Q(pp>=),Vy). We note the following preliminary nega-
tive result:

Proposition 4.1.1. Ifesey is the trivial character, then Hyp(Q(pp~), V) is false
(for every prime p).

Proof. 1f e is trivial, the image of Gq(y,) under pysy X pgp is contained in the
subgroup {(z,y) € GLa(Ly) x GLa(Ly) : det(zy) = 1}. An easy case-by-case check
shows that the image of this subgroup under the tensor-product map to GL4(Ly)
contains no element 7 such that 7 — 1 has one-dimensional cokernel. O

4.2. Special elements: the higher-weight case. In this section, we assume f
and g have weights > 2, both f and g are non-CM, and f is not Galois-conjugate
to any twist of g.

We say p is a good prime if the prime p of Q below p is > 5, p is unramified in the
quaternion algebra B over Fy @ F; described above, p t NyNy, and the conclusion
of Theorem holds for p. For any good prime, it is clear that the irreducibility
hypothesis (1) in Hyp(Q(up<),T}) is satisfied.

For convenience we set N = LCM(Ny, N,) if Ny and N, are both odd, and
N = 4LCM(Ny, N,) otherwise, so for any inner twist (v, x) of either f or g, the
conductor of y divides N.

Proposition 4.2.1. Let u € (Z/NZ)* be such that e(u)ey(u) # 1. Let p be a
good prime, and suppose that x~(u) = 1 for all v in the decomposition group of p
in I'y, and similarly for T'y.

Then Hyp(Q(up=), Vy) holds; and if p > 7 and eyeq4(u) # 1 mod p, then in fact
Hyp(Q (). Ty) holds.

Proof. The condition on the decomposition groups implies that for o € Gq(u,e)
whose image in (Z/NyN,Z)* is u, the quantities o arising in Papier’s theorem
(Corollary for f and g lie in Fy, and Fy , respectively, so we have p¢ (o) €
GL2(Fy,p) and pgp(0) € GLa(Fy ). Since

(pf»p X pg,p) (H n GQ(/LP‘X’)) = SLz(OFfrp) X SL2(OFy7p)7

it follows that the image of Gq(u,~) under pysy X pgp contains the element

()

for any = € O;f’p and y € O;q’p. Choosing z,y € Z with zy = 1 and 2% (u) #
1, 2%¢,4(u) # 1 we see that the image of this element under the tensor product map
is diagonal and has exactly one entry equal to 1, so Hyp(Q(upe), V;) holds.

If p > 7, then we may choose x such that 2 2e¢(u) # 1, 2%¢,(u) # 1 modulo p
(as there are at least three distinct quadratic residues modulo p); and the condition
efeg(u) # 1mod p implies that the fourth diagonal entry is also not equal to 1
modulo p. So Hyp(Q(ppe ), Ty) holds. O
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Remark 4.2.2. In particular, the proposition applies if efe, # 1 and Fy, = Ly,
and F,, = Lg,, since in this case both decomposition groups are trivial and we
may take any u with epe,(u) # 1. See [LLZ14, Proposition 7.2.18], which is the
special case where Ly, = Ly, = Q.

Proposition 4.2.3. Suppose there exists uw € (Z/NZ)* such that e4(u) = —1, but
X~y(w) =1 for all v € T'y. Then for all good primes p, Hyp(Q(ups),Ty) holds.

Proof. Since p { N;yNy, we may find o € GQ(u,~) mapping to u. By Papier’s
theorem (Corollary above), the image of the coset o - (H N Gq(u,)) under
Pfp X Pg,p is the set

{(.T,y) I xr e SLQ(Oth),y S (g 70?—1 ) SLQ(OFmp)} s

where v € Of  is any element such that y(a) = X, (o)a for all inner twists (7, x)

of g such that 'y lies in the decomposition group of p.
However, the coset (& _%1)SLy(Op, ) contains (&%) (% §) = (.2 2).

a”?t a"lo
Since « is only defined up to multiplication by Olﬁ,p, we may assume that a? #
1 mod p (using the assumption that p > 5). Then the element (agl (3) is conjugate

in GL2(OLg’p> to ((1) _01)

Hence the group GQ(upoo) contains an element 7 whose image in GLg((’)LM,) X
GL2(Oy,,p) is conjugate to ((§1),(§ %)), and this acts on T}, with cokernel free
of rank 1 as desired. O

Remark 4.2.4. Note in particular that the hypotheses of the preceding proposition
are satisfied if g has odd weight, and either Ny and IN; are coprime, or f has trivial
character and no nontrivial inner twists.

4.3. Special elements: the CM case. We now suppose that f, g both have
weights > 2, as before, and f is non-CM, but g is CM, associated to a Gréssencharacter
1 of an imginary quadratic field K. Let ig be the extension of L, in which the
values of ¢ lie, and let us suppose that our embedding L, < L extends to an
embedding ig — L.

We let H be an open subgroup of G, with Gx/H abelian, such that H C Hy
and 1/;(H) C (@K)X(l_’“). In this CM setting, we say a prime p of L (above some
rational prime p) is good if p f Ny Ny, p is unramified in Fy and in the quaternion
algebra By, the image of H under py , contains G;(Z,), and the image of Gk under
1, contains (Ox @ Z,)*=%). Since H is open in Gq, all but finitely many primes
p are good, as before.

Proposition 4.3.1. Suppose there exists u € (Z/NZ)* such that ejey(u) # 1 and
ex(u) =1, where e is the quadratic Dirichlet character attached to K.

Let p be a good prime such that Ly, = Ff, and Ly, = Qp. Then Hyp(Q(pp=), V)
holds; and if p > 7 and eye4(u) # 1 mod p, then in fact Hyp(Q(upe),Ty) holds.

Proof. This is similar to Proposition Since SLg(OFy) and Z,¢ have no com-
mon quotient, the image of H N Gq(yu,) under pygy X pgp is the whole of the

group
y 0\,
SLQ(OF’p) X {(0 y_1> Yy € Z;} .

If we choose 0 € Gq(u,) lifting u, then py,(0) € GL2(OFy), and pyy(0) is
diagonal; thus the image of the coset o - (H NGq(u,~)) contains all elements of the

form
(F T )

with z € O;‘fm and y € Z,. The proof now proceeds as before. O
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4.4. Special elements: the weight one case. We now assume g is a weight 1
form, so the Galois representation p, lands in GLa(L,) C GLy(L, ® Q), and has
finite image (i.e. it is an Artin representation). In this section we do permit g to
be of CM type. As in the previous section, we assume that our other newform f
has weight > 2 and is not of CM type.

Theorem 4.4.1. Suppose Ny is coprime to Ngy. Then for all primes p of L such
that p{ Ny and p is unramified in Fy and By, we may find T € GQ(uy) such that
Vo/(m = 1)V, is 1-dimensional over L.

For all but finitely many p, we may choose T such that T, /(T — 1)T}, is free of
rank 1 over Op, ;.

Proof. Let p be the rational prime below p. As p is unramified outside IV, and
pf.p is unramified outside pNy, and (pNy, Ng) = 1, we conclude that the splitting
field of pg is linearly disjoint from that of ps, and from Q(pp~). Hence, given any
a € py(Gq) and b € py (GQ(upoo))v we may find 7 € Gq(u,~) such that py(7) = a
and py,(T) =b.

We know that py is odd, so p(Gq) contains an element a conjugate to (' 7).

Meanwhile, since f is not of CM type, pf.p (Gq(u,~)) contains a conjugate of an
open subgroup of SLy(F} ), where Fy , is the fixed field of the extra twists of f as
in the previous section. In particular, it contains a conjugate of an open subgroup of
SLs(Z,); so, after a suitable conjugation, the image contains the element b = ((1) plr )
for r > 0. The preceding argument allows us to find 7 € Gq(u,) such that
pg(T) = a and psp(7) = b. As a ® b — 1 clearly has 1-dimensional kernel, we are
done.

For all but finitely many p we have the stronger result that p;, (GQ(upoo))
contains a conjugate of SLo(Op,), so we may take r = 0 and we deduce that
a ® b — 1 has 1-dimensional kernel modulo p. O

Remark 4.4.2. Further strengthenings of the results of this section may be possible:
it seems reasonable to expect that whenever e, is nontrivial, Hyp(Q(up),T})
should hold for all but finitely many p. But I have not been able to prove this.
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