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Achieving both High Selectivity and Current Density for CO2 

Reduction to Formate on Nanoporous Tin Foam Electrocatalysts 

Dongwei Du,[a] Rong Lan,[a] John Humphreys,[a] Sivaprakash Sengodan,[a] Kui Xie,[c] Huanting Wang,[b] 

and Shanwen Tao*[a,b] 

Abstract: Currently, low catalytic activity, selectivity and stability are 

the biggest challenges which restrict the large scale applications of 

CO2 electrochemical reduction. Formic acid, one of the highest 

value-added products from electrochemical reduction of CO2, has 

gathered much interest. Here, we develop nanoporous tin foam 

catalysts which exhibit significantly high selectivity and faster 

production rate to formate. In a 0.1 M NaHCO3 solution, the 

maximum Faradaic efficiency for formate production reaches above 

90% with a current density over 23 mA cm-2, which are among the 

highest reported value to date under ambient conditions. The 

improved production rate can be attributed to the high surface area 

and porous structure. Moreover, the electrocatalysts are quite stable, 

namely, the Faradaic efficiency remains unchanged during 16 hour 

electrolysis. This is a promising technology to convert CO2 into 

useful hydrocarbons. 

Introduction 

It is generally believed that the rising CO2 in the atmosphere is 

the key factor for climate change because of its greenhouse 

effects.[1] It has been reported that the concentration of CO2 has 

increased from 278 ppm before the industrial revolution to 

around 400 ppm at present. The reduction of CO2 released and 

the conversion of CO2 to useful chemicals have become a 

significant challenge and many countries are expanding financial 

investment in this field. 

Generally, CO2 conversion can be grouped into four categories, 

namely, chemical methods,[2] photocatalytic reduction,[3] 

biotransformation[4] and electrocatalytic reduction[5]. Energy 

generated from carbon-free sources such as renewable energy 

(e.g., solar, wind, geothermal, wave etc.) and nuclear energy are 

generally in the form of electricity. The places where these 

sources are sufficient are usually far away from the places 

where there is a high energy demand.[6] Storing the redundant 

electric energy in the chemical form would be a good way to 

solve this energy imbalance issue. From this point of view, CO2 

would be an ideal feedstock to store the energy in chemical form 

by converting it into fuels. It is easy then to transport these 

synthesized fuels to the user sites. As a result, electrocatalysis 

of CO2 has aroused great attention among the many CO2 

conversion methods. Extensive studies have been reported for 

electrochemical reduction of CO2, among which the metals and 

their related compounds are frequently used as 

electrocatalysts.[7] 

Among all the available products from CO2 electroreduction, 

formic acid/formate is one of the highest value-added 

chemicals.[8] The demand of formic acid is dramatically 

expanding year by year due to its various applications, e.g., 

silage for animal, production of leather, and manufacturing of 

rubber. Recently formic acid has been proposed as a promising 

hydrogen carrier.[9] Tin is one of the most common catalysts with 

high selectivity for electrochemical reduction of CO2 to formic 

acid/formate. Lv et al. studied the catalytic properties of 

commercial tin foil for the electroreduction of CO2 to formate.[10] 

The optimal conditions were 0.1 M KHCO3 at -1.8 V vs. Ag/AgCl, 

under which the Faradaic efficiency was up to 91% however, the 

current density was only 2.5 mA cm-2. Zhang et al. prepared high 

surface area tin oxide nanocrystals by a facile hydrothermal 

method and investigated its capability for CO2 reduction to 

formate in 0.1 M NaHCO3 solution.[11] Wu et al. concluded the 

change of morphological and the corresponding Faradaic 

efficiencies on Sn particles gas diffusion electrode (GDE) during 

the electrolysis.[12] At -2.0 V vs. Ag/AgCl, the Faradaic 

efficiencies toward formate formation degraded to 56% after 

long term electrolysis. Using the similar cell system, Prakash et 

al. found that Nafion coated Sn powder GDL electrode achieved 

a high current density and Faradaic efficiency for the 

electroconversion of CO2 to formate.[13] A current density of 27 

mA cm-2 with faradaic efficiency of 70% was reached at -1.6 V 

vs. NHE. These studies reveal that the selectivity and activity of 

the tin catalysts are greatly affected by the microstructure and 

preparation conditions. 

Electrodeposition is an excellent method for the preparation of 

nano-structured materials. It has been reported that nanoporous 

3D metallic copper and tin have been successfully prepared by 

an electrodeposition method.[14] In a previous paper, it has been 

reported that the Faradaic efficiency and distribution of products 

formed from electrodoposited nanoporous copper differ 

significantly from those obtained at smooth electropolished 

copper electrodes.[15] In a recent report, a tin dendrite electrode 

has been prepared by an electrodeposition method and then it 

was pre-heated in air at 180 °C for 3 hours.[16] A current density 

of 17.1 mA cm-2 with Faradaic efficiency of 71.6% towards 

formate has been achieved when applied -1.36V RHE. In this 

study, nanoporous tin foam was also prepared by an 

electrodeposition method as described in a previous report.[14] 

The results show that the porous structure of the tin foams is 

highly depends on the electrodeposition time. The high surface 

area of the foam structure promotes the formate yield. At the 
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optimal potential, the Faradaic efficiency achieved 90% with 

current density over 23 mA cm-2 on the deposited cathode. 

Results and Discussion 

Characterization of tin foam electrodes 

 

Figure 1a shows the X-ray Diffraction (XRD) pattern of the 

electrodeposited tin foam on a tin substrate (90 s). The pattern 

matches well with the Sn in database (ICCD 04-013-6163) which 

indicates that pure tin foam electrode has been prepared. To 

eliminate the effects of tin substrate, electrodeposition of tin 

foam on a copper substrate was prepared using the same 

method (Figure S1). It can be seen that the patterns are totally 

the same as they on a tin substrate except for the (111), (210) 

and (222) peaks of Cu substrate. This indicates that tin was 

deposited on the copper foil. It can be reasonably deduced that 

tin was also deposited on tin foil under similar conditions. 

During the electrodeposition, the evolution of hydrogen is 

extreme because of the high current density applied. The 

hydrogen bubbles prevent the formation of a compact tin film on 

the substrate, leaving a porous foam structure. Figure 2 shows 

the typical SEM images of tin foams electrodeposited at different 

deposition times. Apparently, the foam structure significantly 

depends on the electrodeposition time. Foam structure is not 

formed after 30 s deposition (Figure 2a), and as the time 

increases to 60 s (Figure 2b) and 90 s (Figure 2c), the porous 

structure becomes more obvious. However, too many tin foams 

accumulate together when the deposition time was 120 s (Figure 

2d), leading to an uneven surface and unstable deposited layer. 

Under higher magnification, it is found that the foams are 

composed of small tin dendrites (Figure 2e) with diameter of 0.5 

– 1 µm (Figure 2f).  

 

Figure 1. XRD pattern of tin foam on a tin substrate (90 s). a) before and b) 

after controlled potential electrolysis (* corresponds to the (111) peak of SnO2). 

 

Figure 2. SEM images of electrodeposited tin foams on a tin substrate for a) 

30 s, b) 60 s, c) 90 s and d) 120 s; e, f) enlarged images of tin foam (90 s). 

Faradaic efficiencies for different applied potentials and 

electrodeposition time 

 

Figure 3. Cyclic voltammograms of a tin foam electrode (90s) in 0.1 M 

NaHCO3 solution after being bubbled with CO2 (solid line) or N2 (dash line) for 

60 minutes. The scan rate was 50 mV s-1. 

Figure 3 shows the CV of the tin foam electrodes in 0.1 M 

NaHCO3 solution after purging CO2 or N2 for 60 minutes. The pH 

values were 8.65 and 7.04 after bubbling N2 and CO2 for 60 min 

(see details from Tables S1 and S2).The anodic peaks around -
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0.5 V vs. Ag/AgCl can be attributed to the oxidation of tin while 

the cathodic peaks between -0.9 and -1.1 V should be caused 

by the reduction of the tin oxides. At the more negative potential, 

the current density sharply increases which is due to the 

massive reduction of water (N2 saturated), or CO2 and water 

(CO2 saturated). It can be seen that at -2.4 V vs. Ag/AgCl, the 

current density under CO2 saturated condition achieved 40 mA 

cm-2, nearly three times of the current density under N2 saturated 

condition.  

Table 1. Summary of tin electrocatalysts for CO2 reduction. 

Material Potential Electrolyte 

Formate 

Faradaic 

efficiencies 

(%) 

Current 

density 

(mA cm-2) 

Refer

ence 

Tin foil 
-1.75 V 

vs. SCE 

0.1 M 

KHCO3 
91 2.5 [10] 

Tin foil 
-2.0 vs. 

SCE 

0.5 M 

KHCO3 
63.49 28 [17] 

Tin gas 

diffusion 

electrode 

(GDE) 

-1.75 V 

vs. SCE  

0.5 M 

KHCO3 
72.99 13.45 [18] 

Reduced 

nano-

SnO2/gra

phene 

-1.8 V vs. 

SCE 

0.1 M 

NaHCO3 
93.6 10.2 [11] 

Tin 

dendrite 

 -2.0  vs. 

SCE 

0.1 M 

KHCO3 
71.6 17.1 [16] 

Tin foam 

electrode 

-1.95 V 

vs. SEC 

0.1 M 

NaHCO3 
90 23.5 

This 

work 

The value of potential is converted to SCE based on information from the 

articles. 

Based on the CV curves, the electrolysis experiments were 

carried out in a 0.1 M NaHCO3 solution with constant potential 

ranging from -1.4 to -2.4 V vs. Ag/AgCl at 0.2 V intervals. The 

electrolyte was saturated with CO2 before the electrolysis, and 

the results for 60 s tin foam electrode are presented in Figure 4a. 

It demonstrates that the total current density increases with 

increasing cathodic potential. The Faradaic efficiencies for 

formate at -1.4 and -1.6 V are below 65% while from -1.8 to -2.4 

V, the values increase to over 85%. The maximum current 

efficiencies reach 90% at -2.0 V with a current density of 23.5 

mA cm-2, which is one of the best performances on tin related 

catalysts for CO2 electroconversion to formate (Table 1). 

According to many works carried out with tin related 

electrocatalysts for CO2 reduction,[16, 19] the remaining current 

efficiencies is supposed to the evolution of hydrogen or carbon 

monoxide, which was indirectly evidenced by the bubbles at the 

cathode. At more negative potentials, more bubbles were 

produced which is due to the enhancement of gas evolution.[11]  

The SEM images in Figure 2 indicate that the surface area of tin 

foams increases as the increasing deposition time, which may 

lead to a higher CO2 catalytic property. The results shown in 

Figure 4b also provide evidence for this. Faradaic efficiencies 

and current density of formate as a function of the 

electrodeposition time at the optimal potential of -2.0 V vs. 

Ag/AgCl (Figure 4b) were measured. The highest Faradaic 

efficiency and current density reach 91% and 29 mA cm-2 at a 

120 s electrodeposited tin foam electrode. Although higher 

current density and Faradaic efficiency were observed for the tin 

cathode deposited for 120 seconds (Figure 4), the tin foam 

deposited for 120 s tends to fall off while the 90 s electrode is 

more mechanically robust. 

  

Figure 4. a) Comparison of total current density (blue circles) and Faradaic 

efficiencies (red squares) for formate production on tin foam electrodes (60 s) 

at different potentials; b) Faradaic efficiencies of formate as a function of the 

electrodeposition time at -2.0 V vs. Ag/AgCl. 

 

Reaction mechanisms 

 

The Formate Faradaic efficiencies on a tin foam electrode at 

different concentrations of NaHCO3 from 0.1 to 1.0 M are shown 

in Figure 5a. The Faradaic efficiencies significantly decline from 

90% at 0.1 M to 46% at 1.0 M, which means that more 

percentage of the current changes to H2 and CO evolution at 

high NaHCO3 concentrations.[16] The results also coincide with 

the previous work by Wu et al.[17] Figure 5b presents the pH 

value of different concentration of NaHCO3 before and after 
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saturating with CO2. The pH decreases after saturating CO2 at 

each concentration of NaHCO3 due to the reaction:  

CO2 + H2O ⇌ HCO3
 + H+           (1) 

Obviously, higher concentration of HCO3
will inhibit the 

generation of H+ during bubbling CO2, leading to higher pH value. 

Therefore the pH value of CO2-saturated NaHCO3 increases as 

the increasing concentration. In other words, the H+ 

concentration is higher at a more diluted NaHCO3 solution. Wu 

et al.[17] supposed that the H+ at the electrode surface [H+]surface, 

played a significant role for production of formate. At a more 

diluted concentration of electrolyte, more [H+] was accumulating 

at the electrode surface, generating higher [H+]surface, and finally 

promoted the Faradaic efficiencies.  

  

Figure 5. a) Variations in Faradaic efficiencies for formate production on tin 

foam electrodes (90 s) at -2.0 V vs. Ag/AgCl with concentration of NaHCO3; b) 

pH value at different concentration of NaHCO3 before (blue squres) and after 

(red circles) saturating with CO2. 

Zhang et al. proposed a possible mechanism shown in 

equations 1-5.[11] They found that the carbon in formate was 

derived from CO2 not the HCO3
, which is consistent with our 

results, namely, no formate was detected during N2 purging into 

NaHCO3 electrolyte during the electrolysis. From their studies, 

they also supposed that the rate-determining step for the 

reaction was the proton transfer from HCO3
 (equation 3) 

because the catalytic current densities perform a linear trend 

with the increasing concentration of NaHCO3 from 0 to 0.2 M. 

But in higher concentration of electrolyte, the situation may be 

different. Won et al. [16] suggested that the rate-determining step 

was the electron transfer step (equation 3). The tin foam 

structure prepared here may improve the stabilization of CO2
 

thus promote the overall reduction of CO2 to formate. 

CO2 (solution) → CO2 (ads)           (2) 

CO2 (ads) + e → CO2
 (ads)     (3) 

CO2
 (ads) + HCO3

 + e → HCO2
 (ads) + CO3

2 (4)   

HCO2
 (ads) → HCO2

 (solution)                   (5) 

CO3
2 + CO2 + H2O → 2HCO3

              (6) 

 

Stability of the electrodes 

 

As 90 s deposited electrode and -2.0 V vs. Ag/AgCl are the 

appropriate conditions for efficiently producing formate, constant 

potential electrolysis was conducted under the conditions to 

investigate the stability. The total current density and Faradaic 

efficiency during 0 to 16 h are presented (Figure 6). Clearly, the 

Faradaic efficiencies are relatively stable during the extended 

time of CO2 reduction, remaining in the range of 85%-92%. In 

terms of current density, it exhibited slight decrease during the 

first 8 h, and then reached a stable level at around 22 mA cm-2. 

Additionally, the SEM images in Figure S4 on tin foam electrode 

after electrolysis demonstrate that the morphology of the tin 

foams is unchanged. Although there is an extra small peak 

appearing in the XRD pattern of tin foams after electrolysis 

(Figure 1b), it is evident that the catalytic properties are not 

affected during our study. The extra peak might correspond to 

the strongest (111) face of SnO2 (ICDD 04-015-3275), but the 

formation procedures are not clear. Probably, the tin foams 

become easier to be oxidized in air after electrolysis. It has been 

reported that partially oxidized tin exhibits better catalytic activity 

and selectivity to formate production.[16, 19] The presence of O 

species could modify the adsorption affinity and 

thermodynamically stabilize the intermediate during the CO2 to 

formate therefore improving the selectivity and catalytic activity. 

 



 FULL PAPER    

 

 

 

 

 

Figure 6. Variations in total current density (blue circles) and Faradaic 

efficiencies (red squares) for formate production on tin foam electrodes (90 s) 

at -2.0 V vs. Ag/AgCl over 16 h.  

Conclusions 

In this work, a tin foam electrode is developed for 

electroreduction of CO2, and it exhibits high production rate and 

selectivity for formate. The electrodes are also stable at -2.0 V 

vs. Ag/AgCl without degradation during the 16 hour electrolysis. 

Moreover, the current density could be increased by 1-2 orders 

of magnitude by applying the catalysts in a flow cell or gas 

diffusion electrode.[20] From this point of view, the nanoporous tin 

foams are potential catalysts for practical application in the 

electroconversion of CO2 into formate to be further converted 

into formic acid at mild conditions therefore this is a promising 

technology to convert CO2 into useful hydrocarbons.  

 

Experimental Section 

Preparation of tin foam electrodes  

The tin foil (0.5 mm thick, 99.9%, Alfa Aesar) was cut into small pieces 

(2 × 1 cm2) and mechanically polished with 600 and 1200 grade 

sandpaper. Then they were sonicated with water and isopropyl alcohol. 

The surface of each tin foil piece was covered with silicone rubber, 

leaving 1× 1 cm2 active area and small places on the top for the electrode 

holder. The electrodeposition was conducted by a two electrode system 

as reported.[14-15] An appropriate amount of Tin(II) chloride dihydrate 

(Reagent Grade, Alfa Aesar) was dissolved in water at the concentration 

of 0.02 M. Two of the as-prepared tin foil electrodes were immersed into 

the solution as working and counter electrodes. A current of -0.5 A was 

applied to the working electrode for different time (30, 60, 90 and 120 

seconds).    

Physical Characterization 

X-ray Diffraction (XRD) was used to determine the crystal structures on 

a Panalytical X’Pert Pro Multi-Purpose Diffractometer (MPD) with Cu 

Kalpha1 radiation working at 45 kV and 40 mA. Scanning electron 

mircroscopy (SEM) studies were carried out with ZEISS SUPRA 55-VP 

operating at 10 kV. 

Electrochemical measurements 

As Zhang et al. reported that the formate would be oxidized on a Pt 

anode in KHCO3 solution.[21] A Nafion 211 membrane (Ion Power) 

separated two compartments of the H-type cell that was applied in this 

experiment for CO2 reduction (Figure S1). Each compartment contained 

50 mL of 0.1 M NaHCO3 solution (99% Alfa Aesar), and the cathode 

chamber was connected with a gas cylinder which allows N2 or CO2 to 

pass through the electrolyte. A typical three electrode system was 

applied for the measurements controlled by a Solartron 1287 

Electrochemical Interface. A Pt mesh (1 × 1 cm2) and Ag/AgCl electrode 

(sat. KCl) were used as counter and reference electrodes, respectively, 

which was determined to be very stable although the potential changed 

systematically.[22] The working electrode was the well-prepared tin foam 

electrode. All of the experiments were carried out under room 

temperature and atmospheric pressure.  

Cyclic voltammetry (CV) experiment was performed in the above-

mentioned system. Prior to the test, N2 or CO2 was aerated into the 

solution at 20 sccm to reach saturated condition. The potential applied 

was from 0 to -2.4 V vs. Ag/AgCl at a scan rate of 50 mV s-1.  

Controlled potential electrolysis was carried out under the same 

devices. For each electrolysis experiment, the electrolyte was saturated 

with CO2 before the experiment started and the CO2 was continuously 

bubbled at a flow rate of 20 sccm with vigorous stirring during the 

electrolysis process. Each electrolysis experiment was terminated when 

the total charge passed reached 10 C. All the current density recorded 

here was based on the geometric area of the electrodes. 

Product analysis  

Following the previous method reported,[23] 1D 1H Nuclear Magnetic 

Resonance (NMR) spectrometer (600 MHz, Bruker Avance) was 

employed to detect the concentration of formate products in the solution. 

4 μL of dimethyl sulfoxide (DMSO) was dissolved in D2O forming 5 mL 

solution, which was used as an internal standard for the test. The NMR 

sample was prepared by taking 500 μL of solution from the electrolysis 

cell and mixing with 100 μL prepared standard solution. To supress the 

water impact, the 1H spectrum was recorded with presaturation method.  

Typical 1H NMR spectra for DMSO and formate is shown in Figure S2.  

Quantification of formate and Faradaic efficiency  

The Faradaic efficiency for formate can be obtained by the following 

equation 7:[10] 

𝑓 = 𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑒2𝐹/𝑄         (7) 

where f is the Faradaic efficiency; nformate is the number of moles of 

formate produced which can be calculated according to NMR data; 2 

represents that two electrons are transferred for producing one molecule 

of formate from CO2; F is the Faradaic constant (96485 C mol-1); and Q is 

the total charge passed during the electrolysis process.  
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