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Abstract

We introduce and study submanifold bridge processes. Our method involves proving

a general formula for the integral over a submanifold of the minimal heat kernel

on a complete Riemannian manifold. Our formula expresses this object in terms

of a stochastic process whose trajectories terminate on the submanifold at a fixed

positive time. We study this process and use the formula to derive lower bounds, an

asymptotic relation and derivative estimates. Using these results we introduce and

characterize Brownian bridges to submanifolds. Before doing so we prove necessary

estimates on the Laplacian of the distance function and define a notion of local

time on a hypersurface. These preliminary developments also lead to a study of the

distance between Brownian motion and a submanifold, in which we prove exponential

bounds and concentration inequalities. This work is motivated by the desire to

extend the analysis of path and loop space to measures on paths which terminate

on a submanifold.
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Introduction

Brownian motion is an important stochastic process which can be naturally associ-

ated to any Riemannian manifold. The Brownian bridge is given by conditioning

Brownian motion to hit a fixed point at a fixed positive time. We extend this concept

by replacing the fixed point with a submanifold. More generally, we investigate sub-

manifold bridge processes, by which we mean Brownian motions with drift which

arrive in a fixed submanifold at a fixed positive time.

We hope this work will lead to a future study of the space of continuous paths which

end on a submanifold, shedding light on the relationship between the geometry of

the path space, the intrinsic geometry of the ambient manifold and the extrinsic

geometry of the submanifold.

For the present study, the ambient manifold M will be a complete and connected

Riemannian manifold of dimension m. While dealing with stochastic incompleteness

is an important part of this thesis, let us assume for this introduction that M is

compact. To complete the set-up, we suppose also that N is a closed embedded

submanifold of M of dimension n ∈ {0, . . . ,m− 1} and we fix a positive time T .

Our first example of a submanifold bridge process, given in terms of the distance

function rN (·) := d(·, N), is then the diffusion onM starting at x with time depend-

ent generator
1

2
4− rN

T − t
∂

∂rN

where ∂
∂rN

denotes differentiation in the radial direction. We refer to it as the Fermi

bridge between x and N in time T and it coincides with the usual Brownian bridge
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if N is a point in Rm. We study the radial part of the Fermi bridge in Chapter

4 and use it to access information about the heat kernel and its integral over the

submanifold.

This leads to our next example of a submanifold bridge process. If we denote by

X(x) a Brownian motion on M starting at x and by pM the heat kernel of M , then

we define the integrated heat kernel by

pMt (x,N) :=

∫
N
pMt (x, y) d volN (y)

and prove that if t ∈ [0, T ) then for a bounded FX(x)
t -measurable random variable

F we have

E [F |XT (x) ∈ N ] =
E
[
pMT−t(Xt(x), N)F

]
pMT (x,N)

. (1)

This gives rise to a diffusion on the time interval [0, T ) starting at x and arriving in

N at time T , with time-dependent infinitesimal generator

1

2
4+∇ log pMT−t(·, N).

We call this a Brownian bridge to a submanifold and study it in Chapter 6. To show

that it is a semimartingale on [0, T ] we prove the gradient estimate

‖∇ log pMt (x,N)‖2 ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
(2)

and derive a Hessian estimate as corollary. These estimates are the main results in

Chapter 6 and are given by Theorem 6.3.2 and Corollary 6.3.4.

A Heat Kernel Formula

We prove (2) using Bismut’s formula and a lower bound on the integrated heat

kernel. To deduce this lower bound we must first prove another of our main results,
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Theorem 5.2.1, which in terms of a Fermi bridge X̂(x) states that

pMT (x,N) = (2πt)−
(m−n)

2 exp

[
−d

2(x,N)

2t

]
lim
t↑T

E

[
exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
(3)

where dA denotes an absolutely continuous random measure given in terms of Jacobi

fields while dL denotes a singular continuous random measure given in terms of the

local time of X̂(x) on the cut locus of N . Formula (3) extends the formulae of

Elworthy and Truman [1982] and Ndumu [1989]. The lower bound we derive from

(3) is of the form

pMt (x,N) ≥ Ct−
(m−n)

2 exp

[
−d

2(x,N)

2t

]
(4)

which is stated more generally in Theorem 5.3.2. Combining this lower bound with

a suitable upper bound we also prove the asymptotic relation

lim
t↓0

t log pMt (x,N) = −d
2(x,N)

2
(5)

which is stated in Theorem 5.3.8. An exact expansion for pMt (x,N) away from the

cut locus was previously calculated by Ndumu [2011] using a submanifold bridge

process called the semiclassical bridge which we also discuss in Chapter 4.

Local Time on a Hypersurface

The role of local time in formula (3) is to take in account the effect of the cut locus

and Chapter 2 includes an investigation of the notion of local time on a hypersurface.

This is based upon the work of Barden and Le [1995], who generalized Cranston,

Kendall and March [1993]. In particular, we prove a Tanaka formula

drN (Xt(x)) = dβt +
1

2
4rN (Xt(x))dt− dLCut(N)

t (X(x)) + dLNt (X(x)). (6)

The local time LN (X(x)) of X(x) on N , given by the (symmetric) local time of

rN (X(x)) at zero, vanishes if n ≤ m− 2 while if n = m− 1 we prove the occupation
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times approximation

LNt (X(x)) = lim
ε↓0

1

2ε

∫ t

0
1Bε(N)(Xs(x)) ds. (7)

We also deduce Theorem 2.4.1, which states that

E
[
LNt (X(x))

]
=

∫ t

0
pMs (x,N) ds (8)

which leads to the relation

lim
t↑∞

1

t
E
[
LNt (X(x))

]
=

volN (N)

volM (M)
. (9)

A Laplacian Inequality

The Jacobi fields in formula (3) take into account the geometry of M in between N

and the cut locus. This component of the theory is considered in Chapter 1 using the

comparison theorem of Heintze and Karcher [1978]. Although for this introduction

we have assumed that M is compact, the majority of our formulae and estimates do

not require this assumption. We will usually only require the existence of constants

ν ≥ 1 and λ ∈ R such that the Lyapunov condition

1

2
4r2

N ≤ ν + λr2
N (10)

holds off the cut locus. Giving geometric meaning to this assumption is a key object-

ive in Chapter 1, the main result being Theorem 1.4.5. In particular, suppose that

there exists a function κ : [0,∞)→ [0,∞) such that one of the following conditions

is satisfied off N and its cut locus:

(C1) n ∈ {0, . . . ,m − 1}, the sectional curvature of planes containing the radial

direction is bounded below by −κ2(rN ) and the absolute value of the principal

curvature of N is bounded by a constant Λ ≥ 0;

(C2) n = 0 and the Ricci curvature in the radial direction is bounded below by

−(m− 1)κ2(rN );
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(C3) n = m − 1, the Ricci curvature in the radial direction is bounded below by

−(m−1)κ2(rN ) and the absolute value of the mean curvature of N is bounded

by a constant Λ ≥ 0.

Then we will prove that the inequality

1

2
4r2

N ≤ (m− n) + (nΛ + (m− 1)κ(rN )) rN (11)

holds off the cut locus pointwise and on the whole ofM in the sense of distributions.

It follows that inequality (10) holds if N is compact and the curvature in the radial

direction is bounded below by −C(1 + rN )2.

Radial Moment Estimates

In Chapter 3 we demonstrate a robust method of moment estimation based on in-

equality (10) and Laguerre polynomials. The main result Theorem 3.2.10 states

that

E
[
1{t<ζ(x)}e

θ
2
r2N (Xt(x))

]
≤ (1− θtλ(t))−

ν
2 exp

[
θr2
N (x)eλt

2(1− θtλ(t))

]
(12)

for all t, θ ≥ 0 with θtλ(t) < 1, where ζ(x) denotes the explosion time of X(x) and

λ(t) :=


(eλt − 1)/(λt) if λ 6= 0

1 if λ = 0.

This improves and generalizes a theorem of Stroock [2000] and can be used to deduce

a comparison theorem, concentration inequalities and exit time estimates. Other

results which are contained in this thesis and of independent interest include Theorem

1.4.8 on estimating the volume of tubes, Theorem 4.3.1 on the equivalence of bridge

processes and Theorem 5.4.5 on the existence of solutions to the martingale problem

for singular drift.

The organization of each chapter is described, alongside various literary remarks, in

the introductions to each chapter. The six chapters are followed by four short ap-

pendices containing supplementary material on Hausdorff measure, the Fermi bridge
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and upper and lower bounds for the integrated heat kernel.
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Chapter 1

Geometry of Submanifolds

Introduction

In this chapter we present a concise review of all geometric ideas relevant to later

chapters. We prove several new results including the Jacobian inequalities (1.24),

(1.25) and (1.26) which we use to deduce the main result in this chapter, Theorem

1.4.5, which gives an inequality for the Laplacian of the distance to a submanifold.

We also use the Jacobian inequalities to obtain Theorem 1.4.8, which provides a

estimate on the volume of tubes.

Section 1.1 is short, containing a few basic definitions on curvature and submani-

folds which serve to clarify our notation. There are many excellent introductions to

Riemannian geometry, including those by Chavel [1993], Sakai [1996], Lee [1997] and

Petersen [1998].

Section 1.2 includes preliminary material on the exponential map and the cut locus

of a submanifold. While the cut locus of a point has been studied by many authors,

such as by Kobayashi [1961], Crittenden [1962], Warner [1967], Ozols [1974] and

Hebda [1987], having been introduced as a concept originally by Poincaré [1905], it

was not until after the development of the theory of viscosity solutions to Hamilton-

Jacobi equations that the cut locus of a submanifold received full consideration, such

as in the work of Mantegazza and Mennucci [2003].
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Section 1.3 focusses on Jacobian comparison and the Laplacian of the distance func-

tion. A standard approach, as in Greene and Wu [1979] for the one point case, is

to use Jacobi fields to prove a Hessian comparison theorem, from which a Laplacian

comparison is derived as a corollary. There are alternative approaches which do

not rely on Jacobi fields, including methods based on mean curvature or the Boch-

ner identity, but we are primarily interested in the Laplacian of the distance to a

submanifold and this seems best understood in terms of Jacobi fields.

Warner [1966] showed how Rauch’s comparison theorem can be extended to a par-

ticular class of Jacobi fields associated to submanifolds, following Berger [1962] who

considered the geodesic case. The comparison theorem which forms the basis of our

geometric inequalities came later and is that of Heintze and Karcher [1978], which

was soon after generalized slightly by Kasue [1982].

The Laplacian comparison implied by the Heinzte-Karcher theorem is too unwieldy

for our purposes, so in Section 1.4 we deduce the secondary estimates (1.24), (1.25)

and (1.26). These are used to prove Theorem 1.4.5 whose applications will be con-

sidered in later chapters. The secondary estimates will also be used to deduce volume

estimates for tubular neighbourhoods. This topic was considered by Eschenburg

[1987], who deduced a relative volume comparison for tubes around totally geodesic

hypersurfaces of finite volume, and Gray [1982], who proved a comparison theorem

for the volume of tubes generalizing Weyl’s formula. The estimates we derive, given

in Theorem 1.4.8, are more explicit than those found in these articles or in the book

by Gray [2004]. The codimension one case is somewhat special, so a good example to

have in mind throughout is the one where the submanifold is given by the boundary

of a smooth domain.
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1.1 Basic Riemannian Geometry

1.1.1 The Ambient Manifold

Suppose that M is a smooth manifold of finite dimension m and suppose that it is

connected, metrizable and without boundary. Let π : TM →M denote the tangent

bundle of M , equipped with the canonical smooth structure. For the remainder of

this chapter suppose also that M is equipped with a Riemannian metric. Then,

by Sasaki [1958, 1962], there is a canonical choice of Riemannian metric on TM ,

called the Sasaki metric, which takes the form of a Whitney sum metric and with

respect to which TM is a 2m-dimensional Riemannian manifold. Since these metrics

will remain fixed throughout we will not refer to them explicitly. We will denote by

volM the Riemannian volume measure associated toM and by d(·, ·) the Riemannian

distance function and we will assume thatM is complete with respect to this metric.

1.1.2 Sectional and Ricci Curvature

Adapted to the Riemannian structure on M there is a unique torsion-free affine

connection, called the Levi-Civita connection, which we will denote by ∇ and in

terms of which we define curvature. In particular, the Riemann curvature tensor is

defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for smooth vector fields X,Y and Z where [X,Y ] denotes the Lie bracket of the

vector fields X and Y . If m ≥ 2 suppose that x ∈ M with σx a two-dimensional

subspace of TxM spanned by orthogonal unit vectors v1 and v2. Then K(σx), called

the sectional curvature of M at x associated to σx, is defined by

K(σx) := 〈Rx(v1, v2)v2, v1〉.

One can check that this definition is independent of the choice of v1 and v2 and one

should note that if m = 2 then K(TxM) is just the Gaussian curvature of M at x.

The Ricci curvature is the field of quadratic forms, denoted by Ric and given, for
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each x ∈M and ξ ∈ TxM , by

Ricx(ξ, ξ) =
m−1∑
i=1

〈Rx(ξ, ei)ei, ξ〉

where {ei}mi=1 is any orthonormal basis of TxM with 〈em, ξ〉 = ‖ξ‖. The Ricci

curvature, when acting on unit tangent vectors, is therefore given by the sum of

m − 1 sectional curvatures. When we later refer to bounds on the Ricci curvature,

we will be referring to bounds on the restriction of Ric to unit tangent vectors.

1.1.3 The Submanifold

Now suppose that N is an closed embedded submanifold of M of dimension n ∈

{0, . . . ,m− 1}, equipped with the Riemannian structure induced by the embedding.

If n = m − 1 then N is a called a closed embedded hypersurface. If the image of

the embedding is a compact subset of M then we will refer to N as a compactly

embedded submanifold. In either case we will identify N with its image under the

embedding and we will assume that N has no boundary. We will denote by volN the

induced Riemannian volume measure on N . If n = 0 then volN is simply a counting

measure.

1.1.4 The Normal Bundle

For each p ∈ N we view TpN as a subspace of TpM and denote its orthogonal

complement by TpN⊥. If TN⊥ :=
⊔
p∈N TpN

⊥ then πN := π|TN⊥ : TN⊥ → N has

the structure of a vector bundle over N and is called the normal bundle of N . In this

way TN⊥ can be thought of as anm-dimensional Riemannian submanifold of TM , as

in Borisenko and Yampol’skii [1987], and the restriction to N of the tangent bundle

of M takes the form of a Whitney sum which can be written TM |N ∼= TN ⊕ TN⊥.

For ξ ∈ TM |N we will denote by ξ> and ξ⊥ the projections of ξ onto TN and

TN⊥ respectively. When restricted to a common domain, the TN -component of the

Levi-Civita connection on M agrees with the Levi-Civita connection on N .

9



1.1.5 The Shape Operator

If p ∈ N with ξ ∈ TpN⊥ then ξ can be extended locally to a smooth normal vector

field on N and the shape operator Sξ : TpN → TpN is defined for v ∈ TpN by

Sξv = (∇vξ)>. The shape operator can also be understood in terms of the second

fundamental form of N . The latter object is a symmetric (0, 2)-tensor field on N ,

denoted by II and taking values in TN⊥, which relates to the shape operator via the

property 〈Sξv1, v2〉 = −〈II(v1, v2), ξ〉 for all v1, v2 ∈ TpN . Note that the operator Sξ
is also known as the Weingarten map and that it is trivial if n = 0.

1.1.6 Principal and Mean Curvature

If ξ ∈ TN⊥ then the eigenvalues {λi(ξ)}ni=1 of Sξ are called the principal curvatures

of N with respect to ξ. Their arithmetic mean is called the mean curvature of N

with respect to ξ and is denoted by H(ξ). If the mean curvature is everywhere zero,

then N is said to be minimal. The submanifold N is totally geodesic if and only if II

vanishes in which case Sξ vanishes and the principal curvatures are all equal to zero.

Consider, for example, the situation in which N is a closed geodesic.

1.1.7 A Connection on the Normal Bundle

There is a linear connection ∇⊥ on the normal bundle πN : TN⊥ → N , whose

covariant derivative is defined on N for a smooth tangent vector field X and a

smooth normal vector field ξ by ∇⊥Xξ := (∇Xξ)⊥. For each ξ ∈ TpN⊥ the connection

induces a direct sum decomposition TξTN⊥ = Hξ ⊕ Vξ where Hξ is isomorphic to

TpN and where Vξ is isomorphic to TpN⊥. This allows us to identify TξTN⊥ with

TpN ⊕ TpN
⊥. Given (A,B) ∈ TpN ⊕ TpN

⊥ and ξ ∈ TN⊥ we will denote the

corresponding element of TξTN⊥ by (A,B)ξ.
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1.2 The Exponential Map and Cut Locus

1.2.1 Gauss’s Lemma

For ξ ∈ TM denote by γξ the unique maximal geodesic in M satisfying γ̇ξ(0) = ξ

and γξ(0) = π(ξ). Then, by the Hopf-Rinow theorem, γξ is defined on the whole

of the real line. This property is called geodesic completeness. The exponential

map exp : TM → M is defined by exp(ξ) := γξ(1) and we call the smooth map

expN := exp |TN⊥ the normal exponential map. A basic fact of Riemannian geometry

concerning the exponential map is Gauss’s lemma. It states, roughly speaking, that

the normal exponential map is a radial isometry. More precisely and as in [Sakai,

1996, p.60], the lemma states that if ξ ∈ TN⊥ then Dtξ expN (0, tξ)tξ = tγ̇ξ(t) and if

(A,B) ∈ TpN ⊕ TpN⊥ then 〈Dtξ expN (A, tB)tξ, γ̇ξ(t)〉 = t〈B, ξ〉.

1.2.2 The Focal Locus

We will denote by F(N) the set of all critical points of expN . This set is sometimes

called the tangential focus locus of N . These are the points in TN⊥ at which the

differential D· expN : T·TN
⊥ → TM fails to be of maximal rank. It follows from

basic existence and uniqueness theory for ordinary differential equations that expN

is a local diffeomorphism around any point belonging to the zero section of πN :

TN⊥ → N . In particular, if N is compact then there exists a tubular neighbourhood

of the zero section on which the normal exponential map is a diffeomorphism onto

its image. The focal locus of N , which we will denote by F (N) and which is referred

to as the conjugate locus if N is a point, is defined to be the image of F(N) under

expN . A consequence of Sard’s theorem is that F (N) has volM -measure zero. Since

points outside F (N) are regular values of expN it follows from the regular value

theorem and our completeness assumption that the preimage of such a point is a

countable collection of isolated points in TN⊥. If F (N) is empty then expN is a

local diffeomorphism and therefore a covering map.
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1.2.3 The Cut Locus

Now consider the unit normal bundle

UTN⊥ := {ξ ∈ TN⊥ : ‖ξ‖ = 1}

with fibre UTpN⊥. Then the function fN : UTN⊥ → (0,∞] defined by fN (ξ) :=

inf{t > 0 : tξ ∈ F(N)} is the the first focal time along the geodesic γξ. Itoh

and Tanaka [2001] proved that for each ξ ∈ UTN⊥ with fN (ξ) < ∞ the function

fN is locally Lipschitz around ξ. The function cN : UTN⊥ → (0,∞] defined by

cN (ξ) := sup{t > 0 : d(γξ(t), N) = t} is called the distance to the cut locus of N along

γξ. A consequence of Jacobi’s criterion is that cN (ξ) ≤ fN (ξ) for all ξ ∈ UTN⊥. We

define the tangential cut locus of N by

C(N) := {cN (ξ)ξ : cN (ξ) <∞, ξ ∈ UTN⊥}

and the cut locus of N , denoted by Cut(N), is defined to be the image of C(N) under

expN (it is interesting to note that the tangential focal and cut loci need not have

a point in common, as proved by Weinstein [1968]). If ξ ∈ UTN⊥ with t > 0 then

it follows from the triangle inequality that the geodesic segment γξ|[0,t] is the unique

length minimizing path between the points π(ξ) and γξ(t) if t < cN (ξ) and that it

fails to minimize if t > cN (ξ). Furthermore, if cN (ξ) < ∞ then γξ|[0,cN (ξ)] is also

length minimizing. Itoh and Tanaka [2001] proved also that for each ξ ∈ UTN⊥ with

cN (ξ) <∞ the function cN is locally Lipschitz around ξ. Therefore if M is compact

then cN is globally Lipschitz which implies Cut(N) has finite (m − 1)-dimensional

Hausdorff measure (see Appendix A for a definition of Hausdorff measure). Other

basic properties of Cut(N) are that it is closed with volM -measure zero and that if

q ∈ Cut(N) then, in a non-exclusive sense, either q ∈ F (N) or there are at least two

distinct length minimizing geodesic segments connecting q with N .

Mantegazza and Mennucci [2003] used an approach based on Hamilton-Jacobi equa-

tions to prove that the cut locus Cut(N) can be expressed as the disjoint union of two
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sets C̊(N) and Č(N), where the connected components of C̊(N), of which there are

at most countably many, are smooth two-sided (m − 1)-dimensional submanifolds,

and where Č(N) is a closed set of Hausdorff dimension at most m − 2. Moreover,

points in C̊(N), which are referred to as cleave points, can be connected to N by

precisely two length-minimizing geodesics segments both of which are non-focal (i.e.

fN > cN for the two associated normal tangent vectors). A more detailed descrip-

tion of the cut locus than this, upto sets of Hausdorff codimension three, is given by

[Ardoy and Guijarro, 2011, Theorem 2.2.] but the one given here will suffice for our

purposes. Now consider the set

M(N) := {tξ : 0 ≤ t < cN (ξ), ξ ∈ UTN⊥}

with fibre at p ∈ N denoted byMp(N). ThenM(N) is the largest domain in TN⊥

whose fibres are star-like and such that expN |M(N) is a diffeomorphism onto its

image. If we define the open domain M(N) to be the image ofM(N) under expN

then M(N) = M \ Cut(N). We will define the injectivity radius of N by

inj(N) := inf{cN (ξ) : ξ ∈ UTN⊥}

so that inj(N) = dist(N,Cut(N)) which could be equal to zero unless N is compact.

For a simple example where inj(N) = 0 consider a line in the product of R and S1

warped by the function f : R→ [0,∞) given by f(x) = ex.

1.2.4 Examples of Focal and Cut Loci

If p ∈ M and the exponential map expp : TpM → M is a diffeomorphism then

M(p) = TpM and the cut locus of p is empty. In this case one says that p is a

pole for M . The Cartan-Hadamard theorem states that if a complete Riemannian

manifold has non-positive sectional curvature then the exponential map at any point

is a covering map and that if such a manifold is simply connected then every one of

its points is a pole. The function theory of non-positively curved manifolds with a

pole was studied by Greene and Wu [1979].
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For a more specific example, suppose that p is a point in the unit circle S1, equipped

with the standard metric. Then Cut(p) is the point antipodal to p, which can be

connected to p by precisely two length minimizing geodesic segments, and so in this

case Cut(p) = C̊(p). Alternatively, suppose that m ≥ 2 with p a point in the m-

dimensional unit sphere Sm, equipped with the standard round metric. Then Cut(p)

is again the point antipodal to p, but which this time can be connected to p by

infinitely many length minimizing geodesic segments. In this case Cut(p) = Č(p)

and the antipodal point is focal. For a point p in the cylinder S1×R, equipped with

the standard product metric, the cut locus of p is the line {q} × R, if q denotes the

point in S1 antipodal to p, providing another simple example where the cut locus

consists entirely of cleave points.

A less trivial example was considered by Gravesen, Markvorsen, Sinclair and Tanaka

[2005] who provided a description and visualization of the cut locus of a point for a

class of tori of revolution, which includes standard tori in three dimensional Euclidean

space.

1.2.5 The Distance Function

We will define the distance function rN : M → R by

rN (q) := d(q,N) = inf{d(p, q) : p ∈ N}.

By the triangle inequality, rN is Lipschitz continuous while r2
N is locally Lipschitz

continuous. Mantegazza and Mennucci [2003] showed that rN is a viscosity solution

to the eikonal problem 
‖∇u‖ = 1 in M \N

u = 0 on N
(1.1)

and that it is the unique solution among continuous functions on M which are

bounded from below. Similarly, they showed that r2
N is a viscosity solution to the

14



problem 
1
2‖∇u‖

2 − 2u = 0 in M

u = 0 on N
(1.2)

and it is the unique solution among continuous functions on M whose zero set is

contained in N .

Figure 1: Suppose M = S1. Then on the left are graphs of rN and 1
2r

2
N for the case in

which N is a single point while, on the right, are graphs of rN and 1
2r

2
N for the case in

which N is given by the union of two points. The points of non-differentiability are evident

in each case.

By first using the theory of viscosity solutions to show that rN is locally semiconcave

on M \ N , Mantegazza and Mennucci proved that Cut(N) is equal to the closure

of the set of all points at which r2
N fails to be differentiable, that rN is smooth on

M(N) \N and that r2
N is smooth on M(N). Therefore ‖∇rN‖ = 1 on M(N) \N in

the classical sense (which is also a consequence of Gauss’s lemma).

1.2.6 The Radial Derivative

We will denote by ∂
∂rN

differentiation in the radial direction. In other words, ∂
∂rN

denotes the vector field on M which is equal to the gradient of rN on M(N)\N and

which vanishes elsewhere. Note that for q ∈M(N)\N there is a unique ξq ∈ UTN⊥
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such that γξq(rN (q)) = q, in which case it follows that

∂

∂rN
f(q) =

d

dt
f(γξq(t))|t=rN (q)

for any function f which is differentiable on M(N) \N . Note also that according to

these definitions we have ∂
∂rN

r2
N = 2rN on M(N).

1.2.7 The Laplacian of the Distance Function

The Laplace-Beltrami operator 4 is given by the trace of the Hessian, the latter

object being defined in terms of the Levi-Civita connection in the usual way. While

Wu [1979] studied the convexity and subharmonicity of distance functions on man-

ifolds with nonnegative curvature, we wish to allow unbounded negative curvature.

We will use the fact that the Laplacian of the distance function can be expressed in

terms of the exponential map. Indeed, consider the function θN : TN⊥ → R defined

by

θN (ξ) := |detDξ expN | (1.3)

for each ξ ∈ TN⊥. Sometimes referred to as Ruse’s invariant, θN is the Jacobian

determinant of the normal exponential map (for the case in which N is a point, a

remarkable probabilistic formula for this object, given in terms of an integral over

loops, can be found in [Bismut, 1984, p.147]). If we let ΘN : M(N)→ R be defined

by

ΘN := θN ◦
(
expN |M(N)

)−1 (1.4)

then, as proved in Gray [2004], there is the formula

4rN =
m− n− 1

rN
+

∂

∂rN
log ΘN (1.5)

on M(N) \ N . The Laplacian of rN can elsewhere be interpreted in the sense of

distributions and extended to give a Radon measure. Indeed, in Savo [2001], who

considers eigenvalue comparison and heat content on tubular neighbourhoods, it is

proved that there exists a non-negative distribution 4cutrN supported on Cut(N)
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such that

4rN =


4regrN −4cutrN if n ≤ m− 2

4regrN −4cutrN + 2δN if n = m− 1

(1.6)

where 4regrN is the distribution corresponding to the right-hand side of (1.5) sup-

ported on M(N) \N and where δN is the distribution corresponding to the Radon

measure volN . Note that the function given by the right-hand side of (1.5) is ab-

solutely continuous on M(N) \ N and locally integrable (see Appendix A of Savo

[2001] for proof). It follows from formula (1.5) that

1

2
4r2

N = m− n+ rN
∂

∂rN
log ΘN (1.7)

on M(N) = M \ Cut(N).

1.2.8 Change of Variables Formulae

If one has an atlas for N then, by using either Cartesian or polar coordinates on

Mp(N) for each p ∈ N , varying smoothly in p, one can obtain an atlas for M(N).

Coordinates belonging to such an atlas are called Fermi coordinates. If N is a

point then these are called geodesic normal coordinates. In these terms we have the

following change of variables formulae.

Theorem 1.2.1. For any non-negative measurable f : M → R we have∫
M
f(q) d volM (q)

=

∫
M(N)

f(expN (ξ))θN (ξ) d volTN⊥(ξ)

=

∫
N

∫
Mp(N)

f(expN (ξ))θN (ξ) dξ d volN (p)

=

∫
N

∫
UTpN⊥

∫ cN (ξ)

0
f(expN (tξ))θN (tξ)tm−n−1 dt dσm−n−1(ξ) d volN (p)

where σm−n−1 denotes the natural spherical measure on UTpN⊥ for any p ∈ N and

where volTN⊥ denotes the natural measure on TN⊥.
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Proof. SinceM(N) does not contain any critical points of expN and since Cut(N)

has volM -measure zero, the first equality follows from the usual change of variables

formula and the definition of θN . The second equality, whose right-hand side takes

the form of an integral with respect to Cartesian Fermi coordinates, then follows

from the smooth coarea formula (see Nicolaescu [2007]). The third equality, whose

right-hand side takes the form of an integral with respect to polar Fermi coordinates,

then follows by applying a standard change of variables on eachMp(N).

For r > 0 we will denote by Br(N) the tubular neighbourhood of radius r around

N , which is to say Br(N) = {q ∈M : rN (q) < r}.

Corollary 1.2.2. Suppose that inj(N) > 0 with r ∈ (0, inj(N)). Then for any non-

negative measurable function f : M → R we have the change of variables formulae

∫
Br(N)

f(q) d volM (q)

=

∫
N

∫
UTpN⊥

∫ r

0
f(expN (tξ))θN (tξ)tm−n−1 dt dσm−n−1(ξ) d volN (p); (1.8)

∫
∂Br(N)

f(q) d vol∂Br(N)(q)

=

∫
N

∫
UTpN⊥

f(expN (rξ))θN (rξ)rm−n−1 dσm−n−1(ξ) d volN (p). (1.9)

Proof. Equation (1.8) follows immediately from Theorem 1.2.1 while equation (1.9)

follows by applying equation (1.8) to the submanifold ∂Br(N) with a limiting argu-

ment.

Setting f = 1 in the previous corollary provides formulae for the volume and surface

area of the tubular neighbourhood. We will return to these quantities, studied by

Gray [2004], at the end of the chapter.
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1.3 Jacobian Comparison

1.3.1 Jacobi Fields

For p ∈ N and a unit normal vector ξ ∈ TpN
⊥, a smooth vector field Y along

the geodesic γξ is called a Jacobi field along γξ if it satisfies the Jacobi equation

D2
t Y + R (Y, γ̇ξ) γ̇ξ = 0 where Dt denotes covariant differentiation along γξ with

respect to the Levi-Civita connection. Given initial conditions Y (0) ∈ TpM and

DtY (0) ∈ TpM there exists a unique solution to the Jacobi equation which satisfies

the initial conditions. If in addition we suppose that A := Y (0) ∈ TpN with B :=

DtY (0) − SξY (0) ∈ TpN⊥ then Y is called an N -Jacobi field along γξ. In this case

Y (t) = Dtξ expN (A, tB)tξ. The collection of all N -Jacobi fields along γξ is a vector

space of dimension m and will be denoted by JN (ξ). For a nontrivial Y ∈ JN (ξ) it

follows that Y (t) = 0 if and only if expN (tξ) is focal for N . The (m−1)-dimensional

subspace of JN (ξ) defined by the condition Y⊥γ̇ξ will be denoted by J ⊥N (ξ).

1.3.2 Heintze-Karcher Comparison

Fix p ∈ N , a unit normal vector ξ ∈ TpN⊥ and a time t1 ∈ (0, fN (ξ)), where fN (ξ)

is the first focal time in the direction ξ. Define

κξ(t1) := min

K(σγξ(t)) :
σγξ(t) is any two-dimensional subspace of

Tγξ(t)M containing γ̇ξ(t) for any t ∈ [0, t1]

 (1.10)

and let κξ(t1) be any constant which satisfies κξ(t1) ≤ κξ(t1). Suppose that M̃

is a complete simply connected m-dimensional Riemannian manifold with constant

sectional curvature equal to κξ(t1) and let Ñ be a n-dimensional closed embedded

submanifold of M̃ for which there exists p̃ ∈ Ñ and ξ̃ ∈ Tp̃Ñ
⊥ such that Sξ̃ and

Sξ have the same set of eigenvalues {λi(ξ)}ni=1. Such an embedding can always be

constructed, as noted by [Sakai, 1996, p.159]. Now choose a basis {Yi}m−1
i=1 of J ⊥N (ξ)

and for each i = 1, . . . ,m − 1 define Ai := Yi(0) and Bi := DtYi(0) − SξYi(0). Set
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Ui(t) = Ai + tBi and define a function f by

f(t) :=
‖Y1(t) ∧ . . . ∧ Ym−1(t)‖
‖U1(t) ∧ . . . ∧ Um−1(t)‖

for t ≥ 0. Choose also a basis {Ỹi}m−1
i=1 of J ⊥

Ñ
(ξ̃) and define a function f̃ similarly.

Then it follows, as proved by Heintze and Karcher [1978], that t1 < fÑ (ξ̃) and that

for 0 < t ≤ t1 we have
d

dt
log f(t) ≤ d

dt
log f̃(t). (1.11)

This implies a comparison theorem for the logarithmic derivative of the Jacobian

determinant of the normal exponential map, since this object can be expressed in

terms of N -Jacobi fields. Indeed, choose the N -Jacobi fields {Yi}m−1
i=1 so that the

collection {Ai(0)}ni=1 forms an orthonormal basis of TpN consisting of eigenvectors

of Sξ with Bi = 0 for i = 1, . . . , n and so that the collection {Bi}m−1
i=n+1 forms an

orthonormal basis of TpN⊥∩ξ⊥ with Ai = 0 for i = n+1, . . . ,m−1. Then it follows

that

f(t) = ‖Y1(t) ∧ · · · ∧ Ym−1(t)‖ · ‖U1(t) ∧ · · · ∧ Um−1(t)‖−1

= ‖Dtξ expN (A1, 0)tξ ∧ · · · ∧Dtξ expN (An, 0)tξ

∧Dtξ expN (0, tBn+1)tξ ∧ · · · ∧Dtξ expN (0, tBm−1)tξ‖

· ‖(A1, 0) ∧ · · · ∧ (An, 0) ∧ (0, tBn+1) ∧ · · · ∧ (0, tBm−1)‖−1

= |detDtξ expN |

= θN (tξ)

(1.12)

for all t > 0. For comparison, let M̃ , Ñ , p̃ and ξ̃ be as above and for κ, λ ∈ R define

functions Sκ, Cκ, Gκ and F λκ by

Sκ(t) :=


1√
κ

sin
√
κt if κ > 0

t if κ = 0

1√
−κ sinh

√
−κt if κ < 0
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Cκ(t) :=
d

dt
Sκ(t)

Gκ(t) :=
d

dt
log(Sκ(t)/t)

F λκ (t) :=
d

dt
log(Cκ(t) + λSκ(t)).

Suppose that {Ẽi}m−1
i=1 is a collection of parallel vector fields along γξ̃ such that

{Ẽi(0)}ni=1 forms an orthonormal basis of Tp̃Ñ consisting of eigenvectors of Sξ̃ and

such that {Ẽi(0)}m−1
i=n+1 forms an orthonormal basis of Tp̃Ñ⊥ ∩ ξ̃⊥. If we define

Ỹi =


(Cκξ(t1) + λi(ξ)Sκξ(t1))Ẽi if i ∈ {1, . . . , n}

Sκξ(t1)Ẽi if i ∈ {n+ 1, . . . ,m− 1}

then it follows that {Ỹi}m−1
i=1 forms a basis for J ⊥

Ñ
(ξ̃) and

f̃(t) =

(
Sκξ(t1)(t)

t

)m−n−1 n∏
i=1

(
Cκξ(t1)(t) + λi(ξ)Sκξ(t1)(t)

)
(1.13)

for all t > 0. It follows, by (1.11), (1.12) and (1.13), that

d

dt
log θN (tξ) ≤ (m− n− 1)Gκξ(t1)(t) +

n∑
i=1

F
λi(ξ)
κξ(t1)(t) (1.14)

for all 0 ≤ t ≤ t1. Note that the right-hand side of inequality (1.14) is finite for all

0 ≤ t ≤ t1 since t1 < fÑ (ξ̃).

Recall that n ∈ {0, . . . ,m− 1} and that inequality (1.14) was deduced using a lower

bound on sectional curvature. If n ∈ {0,m− 1} then the above method can instead

be formulated in terms of a lower bound on Ricci curvature and an upper bound on

mean curvature. For this let ρ
ξ
(t1) satisfy

(m− 1)ρ
ξ
(t1) = min{Ric(γ̇ξ(t), γ̇ξ(t)) : 0 ≤ t ≤ t1} (1.15)

and let ρξ(t1) be any constant which satisfies ρξ(t1) ≤ ρ
ξ
(t1). Then, as explained by
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Sakai [1996], for n = 0 it follows that

d

dt
log θN (tξ) ≤ (m− 1)Gρξ(t1)(t) (1.16)

for all 0 ≤ t ≤ t1 while if n = m − 1 and λ(ξ) is any constant which satisfies

H(ξ) ≤ λ(ξ) then
d

dt
log θN (tξ) ≤ (m− 1)F

λ(ξ)
ρξ(t1)(t) (1.17)

for all 0 ≤ t ≤ t1. Note that the right-hand sides of inequalities (1.16) and (1.17)

are finite for all 0 ≤ t ≤ t1.

1.3.3 Hyperbolic, Euclidean and Spherical Spaces

By equation (1.13) it follows that if N is a submanifold of Rm then

θN (tξ) =

n∏
i=1

(1 + λi(ξ)t) (1.18)

for any ξ ∈ UTN⊥ and t ≥ 0. In particular, if p ∈ Rm then θp(tξ) = 1. If p ∈ Smκ ,

the m-dimensional sphere with constant sectional curvature κ > 0, then

θp(tξ) =

(
sin(
√
κt)√
κt

)m−1

from which it follows, by expanding the cotangent function, that

t
d

dt
log θp(tξ) = 2(m− 1)

∞∑
k=1

κt2

κt2 − π2k2

≤ −2(m− 1)κt2

π2

∞∑
k=1

1

k2

= −(m− 1)κt2

3
.

If p ∈ Hm
κ , the m-dimensional hyperbolic space with constant sectional curvature

κ < 0, then

θp(tξ) =

(
sinh(

√
−κt)√
−κt

)m−1

(1.19)
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from which it follows, again by Taylor expansion, that

t
d

dt
log θp(tξ) ≤ −

(m− 1)κt2

3
.

So this inequality holds on each of the model spaces, for which there is no dependence

on ξ due to the radial symmetry. Note that we will usually write Hm = Hm
−1 and

Sm = Sm1 .

1.3.4 Laplacian Comparison

For the unit normal vector ξ now suppose that t1 < cN (ξ), where cN (ξ) is the

distance to the cut locus of N in the direction ξ. For q ∈M(N) \N we have

∂

∂rN
log ΘN (q) =

d

dt
log θN (tξq)|t=rN (q)

where ξq is the unique element in UTN⊥ such that expN (rN (p)ξq) = q so it follows

from inequality (1.14) and formula (1.5) that we have the Laplacian comparison

4rN ≤ (m− n− 1)
Cκξ(t1)(rN )

Sκξ(t1)(rN )
+

n∑
i=1

F
λi(ξ)
κξ(t1)(rN ) (1.20)

along γξ|(0,t1], where {λi(ξ)}ni=1 are the principal curvatures in the direction ξ. Note

that we use the ‘empty sum is zero’ convention to cover the case n = 0 here and

in the future. Inequalities (1.16) and (1.17) provide alternative comparisons for the

case n ∈ {0,m− 1}. In particular, if n = 0 then there is the well-known comparison

4rN ≤ (m− 1)
Cρ

ξ
(t1)(rN )

Sρ
ξ
(t1)(rN )

(1.21)

along γξ|(0,t1], while if n = m− 1 then there is Kasue’s comparison

4rN ≤ (m− 1)F
H(ξ)
ρ
ξ
(t1)(rN ) (1.22)
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along γξ|(0,t1], where H(ξ) is the mean curvature of N with respect to ξ. Note that

if m = 1 then there is no sectional curvature but by formulae (1.5) and (1.7) and

Gauss’s lemma it is nonetheless clear that in this case 4rN = 0 on M(N) \N and
1
24r

2
N = 1 on M(N).

1.4 Geometric Inequalities

1.4.1 Jacobian Inequalities

The objective now is to prove a simple inequality for the Laplacian of the distance

function. As in Subsection 1.3.2, fix p ∈ N , a unit normal vector ξ ∈ TpN⊥, a time

t1 ∈ (0, fN (ξ)) and let κξ(t1) be defined by (1.10).

Lemma 1.4.1. If κξ(t1) ≥ 0 then for 0 < t ≤ t1 we have

d

dt
log θN (tξ) ≤

n∑
i=1

λi(ξ).

Proof. Setting κξ(t1) = 0 we have Sκξ(t1)(t) = t and Cκξ(t1)(t) = 1 and from inequal-

ity (1.14) it follows that

d

dt
log θN (tξ) ≤

n∑
i=1

λi(ξ)

1 + λi(ξ)t

for all 0 ≤ t ≤ t1. The result follows by considering the cases λi(ξ) ≥ 0 and λi(ξ) < 0

separately.

Lemma 1.4.2. If κξ(t1) < 0 then for 0 < t ≤ t1 we have

d

dt
log θN (tξ) ≤ (m− n− 1)

√
−κξ(t1) +

n∑
i=1

(√
−κξ(t1)1{|λi(ξ)|<

√
−κξ(t1)}

+λi(ξ)1{|λi(ξ)|≥
√
−κξ(t1)}

)
.
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Proof. Fix κ < 0 and λ ∈ R. Note that

lim
t↓0

(coth(t)− 1/t) = 0, lim
t↑∞

(coth(t)− 1/t) = 1

and that by Taylor’s theorem the derivative of this function is strictly positive for

positive t. Therefore coth(t) − 1/t ≤ 1 for t ∈ (0,∞) and Gκ(t) ≤
√
−κ. Note also

that we have

− d

dt
F λκ (t) =

κ+ λ2

(Cκ(t) + λSκ(t))2

so F λκ is increasing on (0, t1] if and only if |λ| <
√
−κ. If |λ| ≥

√
−κ then F κλ is

non-increasing and F κλ (t) ≤ limt↓0 F
κ
λ (t) = λ. Conversely if |λ| <

√
−κ then

Cκ(t) + λSκ(t) ≥ cosh
(√
−κt

)
− sinh

(√
−κt

)
= e−

√
−κt

so F κλ is defined on (0,∞) and

F κλ (t) ≤ lim
t↑∞

F κλ (t) ≤
√
−κ lim

t↑∞

(
sinh(t) + cosh(t)

cosh(t)− sinh(t)

)
=
√
−κ.

The lemma then follows from inequality (1.14) by setting κξ(t1) = κξ(t1).

Proposition 1.4.3. For 0 < t ≤ t1 we have

d

dt
log θN (tξ) ≤ (m− 1)

√
|κξ(t1) ∧ 0|+

n∑
i=1

|λi(ξ)|. (1.23)

Proof. By Lemmas 1.4.1 and 1.4.2 it follows that

d

dt
log θN (tξ)

≤
n∑
i=1

λi(ξ)1{κξ(t1)≥0} + (m− n− 1)
√
−κξ(t1)1{κξ(t1)<0}

+
n∑
i=1

(√
−κξ(t1)1{|λi(ξ)|<

√
−κξ(t1)} + λi(ξ)1{|λi(ξ)|≥

√
−κξ(t1)}

)
1{κξ(t1)<0}

≤
n∑
i=1

|λi(ξ)|1{κξ(t1)≥0} + (m− n− 1)
√
|κξ(t1) ∧ 0|
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+ n
√
|κξ(t1) ∧ 0|+

n∑
i=1

|λi(ξ)|1{κξ(t1)<0}

= (m− 1)
√
|κξ(t1) ∧ 0|+

n∑
i=1

|λi(ξ)|

as required.

Note that the factor (m−1) appearing on the right-hand side of (1.23) is reasonable

since an orthonormal basis of a tangent space TγξM gives rise to precisely (m − 1)

orthogonal planes containing the radial direction γ̇ξ. In the next corollary we assume

the existence of radially uniform lower bounds on curvature.

Corollary 1.4.4. Suppose that there is a function κ : [0,∞)→ R such that for each

ξ ∈ UTN⊥ and t1 ∈ (0, cN (ξ)) we have κ(t1) ≤ κξ(t1). Furthermore, suppose that

the principal curvatures of N are bounded in modulus by a constant Λ ≥ 0. Then

∂

∂rN
log ΘN ≤ nΛ + (m− 1)

√
|κ(rN ) ∧ 0| (1.24)

on M(N).

Proof. For each ξ ∈ UTN⊥ and t1 ∈ (0, cN (ξ)) we see by Proposition 1.4.3 that

∂

∂rN
log ΘN (γξ(t1)) =

d

dt
log θN (tξ)

∣∣∣∣
t=t1

≤ nΛ + (m− 1)
√
|κ(t1) ∧ 0|.

Since for each p ∈M(N)\N there exists a unique ξp ∈ UTN⊥ such that γξp(rN (p)) =

p, the result follows for such p by setting t1 = rN (p). For p ∈ N the radial derivative

is set equal to zero in which case the result is trivial.

Following from remarks made at the end of Subsection 1.3.2, for the case n ∈ {0,m−

1} there are alternative estimates available in terms of Ricci and mean curvature.

In particular, recall that ρ
ξ
(t1) is defined by (1.15) and suppose that there is a

function ρ : [0,∞) → R such that for each ξ ∈ UTN⊥ and t1 ∈ (0, cN (ξ)) we have
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ρ(t1) ≤ ρ
ξ
(t1). If n = 0 then

∂

∂rN
log ΘN ≤ (m− 1)

√
|ρ(rN ) ∧ 0| (1.25)

on M(N) while if n = m− 1 and for each ξ ∈ UTN⊥ we have |H(ξ)| ≤ Λ then

∂

∂rN
log ΘN ≤ (m− 1)

(√
|ρ(rN ) ∧ 0|+ Λ

)
(1.26)

on M(N).

1.4.2 Laplacian Inequalities

The following theorem follows immediately from Corollary 1.4.4 and the remarks

which followed it. It is our main result in this chapter, so we restate the hypotheses

for clarity.

Theorem 1.4.5. Suppose that M is complete and connected Riemannian manifold

of dimension m and that N is a closed embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}. Denote by Cut(N) the cut locus of N , by rN the distance to N ,

by ∂
∂rN

the radial vector field and suppose that there exist constants C1, C2 ≥ 0 such

that one of the following conditions is satisfied off N and Cut(N):

(C1) n ∈ {0, . . . ,m− 1}, the sectional curvature satisfies the lower bound

K

(
∂

∂rN
∧ ·

)
≥ −(C1 + C2rN )2

and the absolute value of the principal curvature of N is bounded by a non-

negative constant Λ;

(C2) n = 0 and the Ricci curvature satisfies the lower bound

Ric

(
∂

∂rN
,
∂

∂rN

)
≥ −(m− 1)(C1 + C2rN )2; (1.27)

(C3) n = m−1, the Ricci curvature satisfies the lower bound (1.27) and the absolute

value of the mean curvature of N is bounded by a non-negative constant Λ.
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Then, with ΘN defined by (1.4), we have the inequality

∂

∂rN
log ΘN ≤ nΛ + (m− 1)(C1 + C2rN ) (1.28)

from which it follows that we have the estimate

1

2
4r2

N ≤ (m− n) + (nΛ + (m− 1)C1)rN + (m− 1)C2r
2
N (1.29)

on M \ Cut(N).

It is important to point out that the conditions of Theorem 1.4.5 refer only to

curvature involving the radial direction ∂
∂rN

. Of course, these conditions all hold if

M is compact. Note also that if n = 0 then the mean curvature does not play a role

and if m = 1 then the sectional curvatures do not play a role, but that in either case

the above estimates still make sense.

Corollary 1.4.6. The assumptions of Theorem 1.4.5 imply

1

2
4r2

N ≤ ν + λr2
N (1.30)

on M \ Cut(N) where


ν = m− n+ 1

2 (nΛ + (m− 1)C1)

λ = 1
2 (nΛ + (m− 1)C1) + (m− 1)C2.

For the particular case in which N is a point p, it was proved by Yau [1976] that if the

Ricci curvature is bounded below by a constant R then the Laplacian of the distance

rp is bounded above by (m − 1)/rp plus a constant depending on R. In Yau [1978]

that bound was shown to imply the stochastic completeness ofM . Yau used analytic

techniques, whereas in Chapter 3 we use a more probabilistic approach. A relaxation

of Yau’s condition which allows the curvature to grow like a negative quadratic in

the distance function is essentially optimal from the point of view of curvature and

non-explosion. This is why we did not feel it necessary to present Theorem 1.4.5
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in terms of a more general growth function, as we did in the introduction. We will

return to this matter in Section 3.1. If in Yau’s example we set (m− 1)% = R then

by inequality (1.16) and Taylor approximation, as explained in Subsection 1.3.3, it

follows that G%(t) ≤ −%t/3, for all t ≥ 0 if % ≤ 0 or for t ∈ [0, π√
%) if % > 0, which

implies the simple estimate
∂

∂rp
log Θp ≤ −

Rrp
3

(1.31)

on M \ Cut(p), having the advantage of taking into account the effect of positive

curvature. This in turn yields the Laplacian estimate

1

2
4r2

p ≤ m−
Rr2

p

3
(1.32)

on M \ Cut(p), which is different to Yau’s bound. We will use the estimates (1.31)

and (1.32) in a couple of examples.

Remark 1.4.7. By equation (1.6) it follows that the Laplacian inequalities (1.29),

(1.30) and (1.32) hold on all of M in the sense of distributions.

1.4.3 Volume Inequalities

If ξ ∈ UTN⊥ with t1 ∈ (0, fN (ξ)) with κξ(t1) defined by (1.10) then by applying

Gronwall’s inequality to the differential inequality (1.11) it follows, by equations

(1.12) and (1.13), that

θN (tξ)tm−n−1 ≤ Sκm−n−1
ξ (t1)(t)

n∏
i=1

(
Cκξ(t1)(t) + λi(ξ)Sκξ(t1)(t)

)

for all 0 ≤ t ≤ t1. By the inequality for arithmetic and geometric averages this

implies

θN (tξ)tm−n−1 ≤ Sm−n−1
κξ(t1) (t)

(
Cκξ(t1)(t) +H(ξ)Sκξ(t1)(t)

)n
for all 0 ≤ t ≤ t1. Gray [2004] used inequalities of this type to deduce comparison the-

orems for the volume of tubular neighbourhoods. We can instead use the secondary

estimates obtained in Subsections 1.4.1 and 1.4.2. For example, since θN |N = 1, the
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assumptions of Theorem 1.4.5 imply by Proposition 1.4.3 and Gronwall’s inequality

that

θN (tξ) ≤ e(nΛ+(m−1)(C1+C2t))t (1.33)

for all ξ ∈ UTN⊥ and t ∈ [0, fN (ξ)). In order to estimate the volume of a tubular

neighbourhood Br(N), however, we only need bounds on the curvature within the

tube.

Theorem 1.4.8. Suppose that N is compact with r > 0. If n ∈ {0,m − 1} then

denote by (m − 1)%(r) the minimum of the Ricci curvature on Br(N) and by Λ the

maximum of the absolute value of the mean curvature of N . Otherwise denote by %(r)

the minimum sectional curvature on Br(N) and by Λ the maximum of the absolute

values of the principal curvatures of N . Then

volM (Br(N)) ≤ volRm−n(BcN∧r(0)) volN (N)e(nΛ+(m−1)
√
|%(r)∧0|)(cN∧r) (1.34)

where cN := sup{cN (ξ) : ξ ∈ UTN⊥}.

Proof. By Theorem 1.2.1, Proposition 1.4.3 and Gronwall’s inequality we see that

∫
M

1Br(N)(q) d volM (q)

=

∫
N

∫
UTpN⊥

∫ cN (ξ)

0
1Br(N)(expN (tξ))θN (tξ)tm−n−1 dt dσm−n−1(ξ) d volN (p)

≤
∫
N

∫
UTpN⊥

∫ cN∧r

0
e(nΛ+(m−1)

√
|%(r)∧0|)ttm−n−1 dt dσm−n−1(ξ) d volN (p)

≤ volRm−n(BcN∧r(0)) volN (N)e(nΛ+(m−1)
√
|%(r)∧0|)(cN∧r)

and so the proposition is proved.

If M is non-negatively curved then from the original Heintze-Karcher inequalities it

follows, by comparison with the flat case, that one has the superior estimate

θN (tξ) ≤ (1 + Λt)k (1.35)
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for all ξ ∈ UTN⊥ and t ∈ [0, cN (ξ)), which yields the superior bound

volM (Br(N)) ≤ volRm−n(BcN∧r(0)) volN (N)(1 + Λ(cN ∧ r))k. (1.36)

For the case n = 0 there are alternative estimates, given by the following proposition,

which we will use on several occasions in Chapters 5 and 6.

Proposition 1.4.9. Fix p ∈ M and suppose that the Ricci curvature is bounded

below by R. Then

θp(tξ) ≤ e−
Rt2

3 (1.37)

for all p ∈M , ξ ∈ UTpM and t ∈ [0, fp(ξ)).

Proof. The proposition follows from inequality (1.31) and Gronwall’s inequality.

If R > 0 then the proposition implies, by a change of variables, that volM (M) ≤

(3π/R)
m
2 . It also implies, by a different change of variables, that if p ∈ M with

0 < r < inj(p) and if R(r) denotes the minimum Ricci curvature in the ball Br(p)

then there is a Bishop-Gromov-type inequality

volM (Br(p)) ≤ volRm(Br(0))e−
R(r)r2

3 . (1.38)

One can also use the Jacobian estimates (1.33), (1.35) and (1.37), together with the

change of variables formula (1.9) in Corollary (1.2.2), to obtain estimates for the

area of the boundary of tubes around N of sufficiently small radius, simpler than

those in Gray [2004] which are based directly on the Heintze-Karcher comparison.
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Chapter 2

Semimartingales, Local Time and

Brownian Motion

Introduction

Our main result in this chapter is the Tanaka formula given in Subsection 2.3.2, which

leads to a concept of local time on a hypersurface. Applying this to Brownian motion

will yield formula (2.14) for the radial part, which is used throughout Chapter 3 and

which could have applications to the study of reflected processes. For the Brownian

case we also prove an occupation times approximation, given by formula (2.16),

a formula for the expected local time, given by Theorem 2.4.1, and a large time

relation, given by Corollary 2.4.2.

Section 2.1 is a short review of basic definitions and notation for the local time of

real semimartingales. See Revuz and Yor [1999].

Section 2.2 summarizes the basic theory of semimartingales on manifolds, including

stochastic development and Itô’s formula. See Elworthy [1982] and Émery [1989].

In Section 2.3 we define local time on a hypersurface, using the description of the cut

locus given in Chapter 1 and the formula in Barden and Le [1995], which generalizes

the formula of Cranston, Kendall and March [1993] to semimartingales. The one-
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dimensional Tanaka formula gives meaning to local time for real semimartingales, so

it seems natural to consider semimartingales in the manifold setting. The approach

based on Markov theory used by Cranston, Kendall and March is not as well suited

to the bridge processes we introduce in Chapter 4, since it requires the existence of

an excessive reference measure.

Section 2.4 considers the special case of Brownian motion, for which it suffices to

consider the Markovian approach. This uses the fact, originally proved by Revuz

[1970], that with respect to a suitable reference measure there is a one-to-one cor-

respondence between continuous additive functionals and smooth Radon measures

which do not charge semi-polar sets. Cranston, Kendall and March used this fact

in conjunction with smooth approximation (see Azagra, Ferrera, López-Mesas and

Rangel [2007] for more about the smooth approximation of Lipschitz functions) to

derive their formula for the distance between Brownian motion and a point, which

applies more generally to certain functions which are locally the difference of two

convex functions (see Bačák and Borwein [2011] for more on such functions). Smooth

approximation also features in Barden and Le’s approach but not explicitly so, since

it is used to derive the one-dimensional Tanaka formula on which their proof is based.

We conclude the chapter with a couple of examples. The first is an example of

Corollary 2.4.2, based on the unit circle, while the second considers how the expected

local time of an Rm-valued Brownian motion on the boundary of a ball scales for

large times as the radius of the ball remains fixed.

2.1 Local Time for Real Semimartingales

2.1.1 Real Semimartingales

Suppose that (Ω,F , {Ft}t≥0,P) is a filtered probability space satisfying the usual

conditions. A process X : [0,∞)×Ω→ R is a called an (Ft,P)-semimartingale if X

has the decomposition X = M+V whereM is an (Ft,P)-local martingale and where

V is an (Ft)-adapted process of locally bounded variation. Our filtered probability
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space will remain fixed throughout this chapter, so we can safely drop reference to it

from our terminology. If X is a continuous semimartingale, then the decomposition

is unique with respect to the filtration and the processes into which X decomposes

must also be continuous. We will only be concerned with continuous processes. If

X is such a process then we denote by [X] the quadratic variation of X and Itô’s

formula states that for f ∈ C2(R) we have

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)d [X]s (2.1)

for all t ≥ 0, almost surely. This formula can be extended in a number of ways,

summarized by Ghomrasni and Peskir [2003], including convex functions. Indeed,

suppose that f : R → R is a convex function. Then f is differentiable at all but a

countable set of points and the left and right derivatives of f , which we will denote

by f ′− and f ′+ respectively, exist everywhere. For a continuous semimartingale X it

can be proved, using Itô’s formula and approximation by C2 functions, that there

exist continuous non-decreasing processes Af,− and Af,+ such that the formulae

f(Xt) = f(X0) +

∫ t

0
f ′−(Xs)dXs +Af,−t

f(Xt) = f(X0) +

∫ t

0
f ′+(Xs)dXs +Af,+t

hold for all t ≥ 0, almost surely.

2.1.2 Local Time

Suppose that f(x) = |x|. If we define the two functions

sgn−(x) :=


1 if x > 0

−1 if x ≤ 0

, sgn+(x) :=


1 if x ≥ 0

−1 if x < 0

then f ′−(x) = sgn−(x) and f ′+(x) = sgn+(x) and it follows that for any a ∈ R there

exist continuous, non-decreasing and non-negative processes La,−(X) and La,+(X)
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such that the formulae

|Xt − a| = |X0 − a|+
∫ t

0
sgn−(Xs − a)dXs + La,−t (X) (2.2)

|Xt − a| = |X0 − a|+
∫ t

0
sgn+(Xs − a)dXs + La,+t (X) (2.3)

hold for all t ≥ 0, almost surely. Either of these equations can be referred to as

Tanaka’s formula. We will refer to the process La,−(X) as the left local time of X at

a and to the process La,+(X) as the right local time of X at a. Roughly speaking,

these processes record the amount of time spent by X at a but they do not in general

agree with one another. In fact, by subtraction, equations (2.2) and (2.3) imply

1

2

(
La,−t (X)− La,+t (X)

)
=

∫ t

0
1{Xs=a}dXs (2.4)

for all t ≥ 0, almost surely. Given a convex function f we can also consider the

symmetric derivative given by 1
2

(
f ′− + f ′+

)
. For example, if f(x) = |x| then the

symmetric derivative of f is given by the function

sgn(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

. (2.5)

With this in mind, suppose that X is a continuous semimartingale and consider the

process

La(X) :=
1

2

(
La,−(X) + La,+(X)

)
which will we refer to as the symmetric local time of X at a, and see by equations

(2.2) and (2.3) that

|Xt − a| = |X0 − a|+
∫ t

0
sgn(Xs − a)dXs + Lat (X) (2.6)
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for all t ≥ 0, almost surely. In particular, if X is a continuous semimartingale then

the Tanaka formula implies that |X| is also a continuous semimartingale.

2.1.3 Basic Properties of Local Time

There exists a modification of the process {La,−t (X) : a ∈ R, t ∈ [0,∞)} such that

the map (a, t) 7→ La,−t (X) is continuous in t and càdlàg in a, almost surely, as shown

in Revuz and Yor [1999]. This modification is the only version to which we will refer

and it satisfies La−,−(X) = La,+(X).

Lemma 2.1.1. For any continuous semimartingale X we have L0(|X|) = L0(X).

Proof. First note that L0,+(|X|) = L0−,−(|X|) = 0. Furthermore, according to

[Revuz and Yor, 1999, p.232], if a ≥ 0 then La,−(|X|) = La,−(X)+L(−a)−,−(X) and

therefore L0,−(|X|) = L0,−(X) +L0,+(X). So the lemma follows from the definition

of the symmetric local time.

Associated to the processes La,−(X) and La,+(X) there are the random measures

dLa,−(X) and dLa,+(X) whose support is contained in the set {t ≥ 0 : Xt = a}.

The occupation times formula states, in terms of the left local time, that for any

non-negative measurable function f : R→ R we have

∫ t

0
f(Xs)d [X]s =

∫
R
f(a)La,−t (X)da

for all t ≥ 0, almost surely. This formula and the right continuity of the left local

time imply

La,−t (X) = lim
ε↓0

1

ε

∫ t

0
1[a,a+ε)(Xs)d [X]s

from which it follows that

L0
t (|X|) =

1

2
L0,−
t (|X|)

= lim
ε↓0

1

2ε

∫ t

0
1[0,ε)(|Xs|)d [|X|]s

= lim
ε↓0

1

2ε

∫ t

0
1(−ε,ε)(Xs)d [|X|]s

(2.7)
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for all t ≥ 0, almost surely. These equations imply that processes of locally bounded

variation do not generate local time. The occupation times formula can be used to

show that if X is a local martingale then the processes La,−t (X) and La,+t (X) agree

with one another. If these two processes agree do with one another then La(X) is

continuous in a and can unambiguously be referred to as local time of X at a.

2.2 Semimartingales on Manifolds

2.2.1 Semimartingales on Rm

We say that an Rm-valued process X = (X1, . . . , Xm) is a semimartingale if each

of its components Xi is a semimartingale in the sense of the previous section. As

mentioned above, we are concerned only with continuous semimartingales. If X =(
X1, . . . , Xm

)
is such a process then Itô’s formula states that for f ∈ C2(Rm) we

have

f(Xt) = f(X0) +

∫ t

0
Dif(Xs)dX

i
s +

1

2

∫ t

0
Djkf(Xs)d[Xj , Xk]s (2.8)

for all t ≥ 0, almost surely, where Di and Djk stand for the first and second partial

derivatives of f and where we employ the usual summation convention over repeated

up-down indices.

2.2.2 Semimartingales on M

Suppose that M is a smooth metrizable manifold of dimension m. We say that

an M -valued process X is a semimartingale if for each f ∈ C2(M) the real-valued

process f(X) is a semimartingale in the sense of the previous section. Note that

if M = Rm then this definition agrees with the one in the previous subsection.

The collection of continuous semimartingales exhibits certain stability properties.

For example, if F : M → M̃ is a smooth map between manifolds and if X is a

continuous semimartingale on M then F (X) is a continuous semimartingale on M̃ .

Furthermore, if X is a continuous semimartingale with respect to P and if Q is a

probability measure which is absolutely continuous with respect to P then X is a

continuous semimartingale with respect toQ. It follows that if P andQ are equivalent
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then the collection of processes which are continuous semimartingales with respect

to P coincides with the collection of those which are with respect to Q.

2.2.3 The Orthonormal Frame Bundle

Now suppose that M is a Riemannian manifold equipped with its Levi-Civita con-

nection. In this setting we wish to write down a version of Itô’s formula for M -

valued continuous semimartingales. In order to do this we must first introduce

some auxilliary objects. An orthonormal frame at p ∈ M is an R-linear isometry

u : Rm → TpM and the collection of all orthonormal frames at a point p is denoted

by Op(M). The orthonormal frame bundle is then defined to be the disjoint union

O(M) :=
⊔
p∈M Op(M). Since each fibre Op(M) is diffeomorphic to the orthogonal

group O(m,R), it follows that O(M) can be made into a differentiable manifold of

dimension m
2 (m+ 1) and the canonical projection Π : O(M)→M is a smooth map

between manifolds.

2.2.4 Horizontal Lifts and Antidevelopment

A smooth curve U taking values in O(M) is called horizontal if for each e ∈ Rm

the vector field Ue is parallel along the curve ΠU . If u ∈ O(M) then a vector in

TuO(M) is called horizontal if it is the tangent vector to a horizontal curve starting

at u. We denote by HuO(M) the space of all horizontal tangent vectors at u. It

follows that TuO(M) = ker(DuΠ)⊕HuO(M) and for u ∈ O(M) there is a canonical

lift map H(u) : Rm → HuO(M) given by

H(u)e = (DuΠ|HuO(M))
−1(ue).

An O(M)-valued continuous semimartingale U is called horizontal if there exists

an F0-measurable O(M)-valued random variable U0 and an Rm-valued continuous

semimartingale Z such that U solves the Stratonovich equation

dUt = H(Ut) ◦ dZt (2.9)
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with initial condition U0. For the sense in which this equation should be interpreted,

see Elworthy [1982]. The process Z, which if it exists can be shown to be unique,

is called the antidevelopment of U . If X is an M -valued continuous semimartingale

then an O(M)-valued horizontal continuous semimartingale U is called a horizontal

lift ofX if ΠU = X. If one specifies an F0-measurable O(M)-valued random variable

U0 such that ΠU0 = X0 then there exists a unique horizontal lift U of X with initial

condition U0 and the dependence of the process U (and of its antidevelopment Z) on

the choice of U0 commutes with the action of the orthogonal group. Alternatively,

if we begin with an F0-measurable O(M)-valued random variable U0 and an Rm-

valued continuous semimartingale Z then we say that the projection onto M of the

maximal solution to equation (2.9) with inital condition U0 is the development of

the semimartingale Z onto M with respect to U0.

2.2.5 Itô’s Formula

We are now in a position to write down an intrinsic version of Itô’s formula. In

particular, if f ∈ C2(M) withX a continuous semimartingale onM with a horizontal

lift U and anti-development Z and if (e1, . . . , em) is an orthonormal basis for Rm

then

f(Xt) = f(X0) +

∫ t

0
Useif(Xs)dZ

i
s +

1

2

∫ t

0
UsejUsekf(Xs)d[Zj , Zk]s

for all t ≥ 0, almost surely, which can can be written more succinctly as

f(Xt) = f(X0) +

∫ t

0
〈∇f(Xs), UsdZs〉+

1

2

∫ t

0
tr HessXs f(Us, Us)d [Z]s . (2.10)

Note that if M = Rm then, after the usual identifications, we can choose Us =

idRm and Z = X and this formula reduces to formula (2.8). Just as the basic Itô

formula (2.1) can be extended from C2 functions to those which can be written as

the difference of two convex functions, so formula (2.10) can be extended to a wider

class of possibly non-differentiable functions.
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2.3 Local Time for Semimartingales on Manifolds

2.3.1 Barden and Le’s Formula

In this section we begin by stating a generalization of Itô’s formula due to Barden

and Le [1995], some consequences of which were considered in Barden and Le [1997].

Recalling that a connected (m − 1)-dimensional submanifold N is called two-sided

if its normal bundle is trivial, suppose that f : M → R is a continuous function

which fails to be C2 on an at most countable disjoint union L of open subsets Oi of

two-sided submanifolds of M . Suppose that for each i there is an open subset Ui of

M such that Oi = L ∩Ui and such that Ui \Oi has two components. Choose a unit

normal vector field n on L and for each i let U+
i be the component of Ui \Oi into

which n points and let U−i be the other component. If we define H ±
i := Oi ∪ U±i

then suppose further that for each i there are C2 functions g±i on Ui such that

f |H ±
i = g±i |H

±
i and denote by P i orthogonal projection onto Oi, uniquely defined

on an open set containing Oi. If X is a continuous semimartingale on M with

horizontal lift U and antidevelopment Z then Barden and Le proved that there exist

two continuous, non-decreasing and non-negative predictable processes L±n,L (X),

whose associated random measures dL±n,L (X) are supported by L , almost surely,

such that

f(Xt) = f(X0) +

∫ t

0
1{Xs 6∈L }〈∇f(Xs), UsdZs〉

+

∫ t

0
1{Xs∈Oi}〈∇(f ◦ P i)(Xs), UsdZs〉

+
1

2

∫ t

0
1{Xs 6∈L } tr HessXs f(Us, Us)d [Z]s

+
1

2

∫ t

0
1{Xs∈Oi} tr HessXs(f ◦ P i)(Us, Us)d [Z]s

+
1

2

∫ t

0

(
D+
Xs
f(n)dL−n,Ls (X)−D−Xsf(n)dL+n,L

s (X)
)

for all t ≥ 0, almost surely, where the summation convention applies to the index i

and where the Gâteaux derivatives D±f are defined by
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D+
p f(v) := lim

ε↓0

1

ε

(
f(expp(εv))− f(p)

)
, D−p f(v) := −D+

p f(−v)

for p ∈ M and v ∈ TpM . The proof of this formula given in Barden and Le [1995]

argues that one can assume, by localizing to a coordinate patch, that M = Rm

equipped with the metric induced by the coordinates and that L = {(x1, . . . , xm) ∈

Rm : x1 = 0} with H + = {(x1, . . . , xm) ∈ Rm : x1 ≥ 0}. The proof then refers

to the one-dimensional setting in order to obtain a version of the desired formula in

local coordinates. Finally it is checked that the result is independent of the choice of

coordinates. As noted by Barden and Le, the proof shows that if we define a process

Y L for times during which X is in a small neighbourhood of L to be d(X,L ) on

the side of L into which n points and −d(X,L ) on the other, then L±n,L (X) =

L0,±(Y L ). Given this interpretation of the processes L±n,L (X) and the observation

that the quantity (D+ −D−)f(n) represents the gradient discontinuity of f on L

in the normal direction, the intuition behind the above formula is hopefully clear.

2.3.2 Tanaka Formula

Definition 2.3.1. Suppose that N is a closed embedded hypersurface and that X

is a continuous semimartingale. If rN (X) is a continuous semimartingale then the

process

LN (X) := L0(rN (X)) (2.11)

will be called the local time of X on N .

Suppose in addition that N is two-sided. Then it follows, by the regularity properties

of rN and Cut(N) given in Chapter 1, that if Č(N) is polar for X (i.e. if the first

hitting time of Č(N) by X is almost surely infinite) then we can apply Barden and

Le’s formula to the function rN with L = C̊(N) ∪ N to deduce that rN (X) is a

continuous semimartingale. In this case Definition 2.3.1 is explained by the following

remarks. Firstly, since the random measures dL±n,C̊(N)∪N (X) are supported by

C̊(N) ∪N almost surely and since N and C̊(N) are disjoint it follows that we can
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write

L±n,C̊(N)∪N (X) = L±n,C̊(N)(X) + L±n,N (X)

where the processes L±n,C̊(N)(X) and L±n,N (X) have associated random measures

whose supported is contained in the sets C̊(N) and N , respectively. Now, if n is a

unit normal vector field on C̊(N) ∪N then

D+rN (n)|N = −D−rN (n)|N = 1

and so it follows that

∫ t

0

(
D+
Xs
rN (n)dL−n,Ns (X)−D−XsrN (n)dL+n,N

s (X)
)

= L−n,Nt (X) + L+n,N
t (X)

for all t ≥ 0, almost surely. If we define the process Y N for N just as the process

Y L was defined for L at the end of the previous subsection then

1

2

(
L−n,N (X) + L+n,N (X)

)
= L0(Y N ).

For times during which X is close to N we have |Y N | = rN (X), so it follows from

Lemma 2.1.1 that L0(Y N ) = L0(rN (X)) and Definition 2.3.1 therefore seems reason-

able. Denoting by C̊i(N) the connected components of C̊(N) and by PN orthogonal

projection onto N , uniquely defined on a neighbourhood of N , it follows that we

have a Tanaka formula

rN (Xt) = rN (X0) +

∫ t

0
1{Xs 6∈N∪C̊(N)}〈∇rN (Xs), UsdZs〉

+

∫ t

0
1{Xs∈N}〈∇(rN ◦ PN )(Xs), UsdZs〉

+

∫ t

0
1{Xs∈C̊i(N)}〈∇(rN ◦ P i)(Xs), UsdZs〉

+
1

2

∫ t

0
1{Xs 6∈N∪C̊(N)} tr HessXs rN (Us, Us)d [Z]s

+
1

2

∫ t

0
1{Xs∈N} tr HessXs(rN ◦ PN )(Us, Us)d [Z]s
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+
1

2

∫ t

0
1{Xs∈C̊i(N)} tr HessXs(rN ◦ P i)(Us, Us)d [Z]s

+
1

2

∫ t

0

(
D+
Xs
rN (n)dL−n,C̊(N)

s (X)−D−XsrN (n)dL+n,C̊(N)
s (X)

)
+ LNt (X)

for all t ≥ 0, almost surely. There does not seem to be a statement of this formula

elsewhere in the literature, except for in the one point case. Note that the indicator

functions used above correspond, in some sense, to the use of symmetric derivatives

which is why the final correction term corresponds to a symmetric local time. Since

rN (X) is evidently a continuous semimartingale one can apply equation (2.7) to see

that

LNt (X) = lim
ε↓0

1

2ε

∫ t

0
1Bε(N)(Xs)d [rN (X)]s (2.12)

for all t ≥ 0, almost surely, where Bε(N) denotes the tubular neighbourhood of N

of radius ε. While the two basic assumptions made in this subsection were that N

should be two-sided and that Č(N) should be polar for X, the latter assumption is

not necessary in order for LN (X) to be well-defined. The two-sidedness assumption

is also not necessary under certain circumstances, as in the next section.

Note that given a predictable stopping time ζ one can also define M -valued semi-

martingales on the stochastic time interval [0, ζ), using time-change. In particular,

if X is a continuous semimartingale defined up to a predictable stopping time ζ and

if τ is a stopping time with 0 ≤ τ ≤ ζ and τ < ζ if ζ > 0 then the formulae of this

subsection also hold for the process X at the random times t ∧ τ .

2.4 Local Time for Brownian Motion

2.4.1 Brownian Motion

A continuous stochastic process taking values onM with the strong Markov property

and defined upto a predictable stopping time whose infinitesimal generator is of the

form 1
24+b, for some locally bounded measurable vector field b, is called a Brownian
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motion with drift b or simply a Brownian motion if b = 0. Any elliptic diffusion

operator induces a Riemannian structure with respect to which it can be written in

the form 1
24 + b for some smooth vector field b. For general conditions on b under

which this operator generates a strongly continuous Markovian semigroup in L2(M),

see Shigekawa [2010].

If X is a Brownian motion with locally bounded and measurable drift b defined upto

a predictable stopping time ζ with initial distribution X0 then X is a continuous

semimartingale and if τ is a stopping time with 0 ≤ τ ≤ ζ and τ < ζ if ζ > 0 then

Itô’s formula implies that for f ∈ C2(M) we have

f(Xt∧τ ) = f(X0) +

∫ t∧τ

0
〈∇f(Xs), UsdBs〉+

∫ t∧τ

0

(
1

2
4+ b

)
f(Xs)ds

for t ≥ 0, almost surely, where {Us : 0 ≤ s < ξ} is a horizontal lift of {Xs : 0 ≤

s < ξ} whose antidevelopment has martingale part given by an Rm-valued Brownian

motion B and finite variation part given by
∫ ·

0 U
−1
s b(Xs)ds. In fact, a continuous

semimartingale on M is a Brownian motion if and only if it is the development of

a Brownian motion on Rm. In particular, if x ∈ M with U0 ∈ Ox(M) then the

development of an Rm-valued Brownian motion with respect to U0 is an M -valued

Brownian motion X(x) starting at x defined upto an explosion time ζ(x).

The explosion time is the predictable stopping time at which X(x) leaves all compact

subsets of M . If ζ(x) is almost surely infinite and if M is connected then it follows

that all Brownian motions onM are non-explosive. This property is called stochastic

completeness. If M is stochastically complete with m ≥ 2 then by removing a

single point from M one obtains a manifold which is stochastically complete but

not geodesically complete. As mentioned below in Section 3.1, there are plenty of

manifolds which are geodesically complete but not stochastically complete.

2.4.2 Brownian Local Time

Suppose that M is a complete and connected Riemannian manifold of dimension m,

that N is a closed embedded submanifold of M of dimension n ∈ {0, . . . ,m − 1}
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and that X is a Brownian motion on M with locally bounded and measurable drift

b defined upto an explosion time ζ. It follows from [Taylor and Watson, 1985,

p.331] that if A ∈ B(M) with dimH(A) < m − 1 (where dimH denotes Hausdorff

dimension, as in Appendix A) then P{Xt ∈ A for some 0 < t < ζ} = 0. Therefore

Č(N) is polar for X since, as mentioned in Chapter 1, Č(N) is a set of Hausdorff

dimension at most m − 2. Now assume only that volM (A) = 0. Then one can

show, using Fubini’s theorem and the existence of transistion densities for X, as in

[Karatzas and Shreve, 1991, p.105], that for almost all ω ∈ Ω the Lebesgue measure

of {0 ≤ t < ζ(ω) : Xt(ω) ∈ A} is zero. An example of such a set is given by

N ∪ C̊(N). Since stochastic integrals with respect to a continuous semimartingale

Z are only defined upto d [Z]-equivalence classes, sets of d [Z]-measure zero can be

can be discarded from such integrals. In particular, since B is a Brownian motion it

follows that the four terms on the right-hand side of the Tanaka formula in Subsection

2.3.2 involving orthogonal projection vanish, almost surely, and that

∫ ·
0
1{Xs 6∈N∪C̊(N)}〈∇rN (Xs), UsdBs〉 =

∫ ·
0

〈
∂

∂rN
, UsdBs

〉
= β· (2.13)

where β is a standard one-dimensional Brownian motion, by Lévy’s characterization

and the fact that U consists of isometries. Consequently d [rN (X)]s = ds and so

by equation (2.4) it follows that the two processes L±n,C̊(N)∪N (X) agree with one

another, almost surely. In this setting it is therefore not necessary to assume that

N is two-sided in order for the Tanaka formula of Subsection 2.3.2 to be valid. It

follows that if τ is a stopping time with 0 ≤ τ < ζ then

rN (Xt∧τ ) = rN (X0) + βt∧τ +

∫ t∧τ

0

(
1

2
4+ b

)
rN (Xs)ds− LCut(N)

t∧τ (X) + LNt∧τ (X) (2.14)

for t ≥ 0, almost surely, where the non-negative process LCut(N)(X) is defined by

dLCut(N)(X) := −1

2

(
D+
X −D

−
X

)
rN (n) dLC̊(N)(X). (2.15)

Note that the integral on the right-hand side of (2.14) is well-defined since, as men-

tioned above, the set of times at which X takes values in N ∪Cut(N) has Lebesgue
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measure zero. Of course, if n ≤ m − 2 then N is polar for X and the local time

LN (X) vanishes while if n = m− 1 then

LNt∧τ (X) = lim
ε↓0

1

2ε

∫ t∧τ

0
1Bε(N)(Xs) ds (2.16)

almost surely, by equations (2.12) and (2.13).

Before moving on to consider the Markovian approach, we should mention that the

concept of local time on a submanifold has previously been considered in the context

of reflected diffusions in a smooth domain, which relates to the Neumann problem

and in which the local time appears as part of the solution to a corresponding Skorok-

hod problem. See [Wang, 2014, Chapter 3] and the references contained therein for

more about this connection. For the case in which N is a point, formula (2.14) was

proved in Cranston, Kendall and March [1993] using the approach mentioned in the

next subsection.

2.4.3 Revuz Measure

We have thus far approached local time for the point of view of continuous semi-

martingales and the Tanaka formula. An alternative approach comes from the the-

ory of Markov processes. This is not well suited to the processes considered in later

chapters but it does work well for Brownian motion. Suppose that M is compact,

that N is a closed embedded hypersurface and that X(x) is a Brownian motion onM

starting at x. Then the convexity based approach of Cranston, Kendall and March,

which they applied to the one point case, adapts to our situation and implies that

with respect to the invariant measure volM the non-negative process LCut(N)(X(x)),

defined by (2.15), corresponds in the sense of Revuz [1970] to the measure

−1

2
(D+ −D−)rN (n)Hm−1

M

which is Radon when restricted to Cut(N). Here Hm−1
M denotes the (m − 1)-

dimensional Hausdorff measure of M , normalized so as to agree with the induced
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measure on hypersurfaces (as in Appendix A). Similarly, the local time LN (X(x)),

defined by (2.11), corresponds to the induced measure volN , which ties in with Savo’s

decomposition of the distributional Laplacian given in Subsection 1.2.7. By a result

of Fitzsimmons, Pitman and Yor [1993] this implies the following theorem, in which

pM denotes the transition density function of Brownian motion.

Theorem 2.4.1. Suppose that M is compact, that N is a closed embedded hyper-

surface and that X(x) is a Brownian motion on M starting at x. Then

E
[
LNt (X(x))

]
=

∫ t

0

∫
N
pMs (x, y)d volN (y) ds (2.17)

for all t ≥ 0.

In Chapter 5 we will calculate, bound and provide an asymptotic relation for the rate

of change d
dtE

[
LNt (X(x))

]
. Note that, by the change of variables formula (1.8), the

expected value of the occupation times appearing inside the limit on the right-hand

side of (2.16) converges to the right-hand side of (2.17) as ε ↓ 0.

Corollary 2.4.2. Suppose that M is compact, that N is a closed embedded hyper-

surface and that X is a Brownian motion on M . Then

lim
t↑∞

1

t
E
[
LNt (X)

]
=

volN (N)

volM (M)
. (2.18)

Proof. Li [1986] proved that limt↑∞ p
M
t = volM (M)−1 so the corollary follows from

Theorem 2.4.1.

Example 2.4.3. SupposeM = S1 (the unit circle equipped with the standard metric)

and let X(x) be a Brownian motion starting at x ∈ S1. By formula (2.14), or

equivalently by the formula of Cranston, Kendall and March [1993], it follows that

r2
x(Xt(x)) = r2

x(x) + 2

∫ t

0
rx(Xs(x))dβs + t− 2

∫ t

0
rx(Xs(x))dLCut(x)

s (X(x))

for t ≥ 0, where β is a standard one-dimensional Brownian motion. But rx(x) = 0

and Cut(x) is antipodal to x, which is a distance π away from x, so as dLCut(x)(X(x))
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is supported on {s ≥ 0 : Xs = Cut(x)} we deduce that

r2
x(Xt(x)) = 2

∫ t

0
rx(Xs(x))dβs + t− 2πL

Cut(x)
t (X(x)) (2.19)

for t ≥ 0. Now pS
1

t (x, ·)→ (2π)−1 as t ↑ ∞ so

lim
t↑∞

E
[
r2
x(Xt(x))

]
=

∫
S1

r2
x(y)

2π
d volS1(y) =

∫ π

−π

v2

2π
dv =

π2

3
. (2.20)

Thus by equations (2.19) and (2.20) it follows that

π2

3
= lim

t↑∞

(
t− 2πE[L

Cut(x)
t (X(x))]

)
which implies that for large times t we have the approximation

E[L
Cut(x)
t (X(x))] ' t

2π
− π

6
. (2.21)

This agrees with numerical approximation, as shown by Figure 2.

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 2: The solid curve represents the graph of the left-hand side of (2.21), calculated

numerically using formula (2.17) by expressing pS
1

as a theta function. The dashed line

represents the graph of the right-hand side of (2.21). The horizontal axis represents the

time t.
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Example 2.4.4. For r > 0 denote by Sm−1(r) the boundary of the open ball in Rm

of radius r centred at the origin. If X is a Brownian motion on Rm starting at the

origin then, using polar coordinates, we deduce

1

r
E
[
L
Sm−1(r)
t (X)

]
=

Γ
(
m
2 − 1, r

2

2t

)
Γ
(
m
2

) . (2.22)

In particular, for the case m = 2 we obtain

1

r
E
[
L
S1(r)
t (X)

]
= Γ

(
0,
r2

2t

)
. (2.23)

By differentiating the exponential of the right-hand side of equation (2.23) one de-

duces the curious relation

lim
t↑∞

(
log

(
2t

r2
+ 1

)
− 1

r
E
[
L
S1(r)
t (X)

])
= γ,

where γ denotes the Euler-Mascheroni constant. Note that if m = 1 then the expo-

nential of the left-hand side of (2.22) diverges in t exponentially, while for m ≥ 3 it

does so logarithmically. Only for m = 2 is the divergence linear.

49



Chapter 3

From Geometric Inequalities to

Probabilistic Estimates

Introduction

The main results in this chapter are Theorem 3.2.6, which is a sharp radial moment

estimate, and Theorem 3.2.10, which is an exponential estimate derived from the

moment estimate. Theorem 3.2.10 improves and generalizes a theorem of Stroock

and the improvements lead to a comparison theorem. In particular, the constants

appearing in our estimates are given explicitly. We use Theorem 3.2.10 to derive a

concentration inequality for tubes, given by Theorem 3.2.14, and various Feynman-

Kac estimates, given in Subsection 3.2.9.

Section 3.1 presents a brief overview of stochastic completeness. See Grigor’yan

[1999] and Li [2000] for excellent surveys of this topic.

Section 3.2 is a study of the distance between Brownian motion and a submanifold.

This is something which has not been previously emphasised in the literature. We

are particularly interested in exponential integrability, which in other contexts has

been studied by Aida, Masuda and Shigekawa [1994] and Aida and Stroock [1994]

using a log-Sobolev inequality. In Subsection 3.2.1 we use the heat kernel log-Sobolev

inequality of Bakry and Ledoux [2006] to obtain exponential estimates under a lower
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bound on Ricci curvature. For the remainder of Section 3.2 we consider a more

general situation and use induction on moments to obtain our estimates. Hu [1999]

used a similar approach to study the uniform exponential integrability of Rm-valued

diffusion processes under C2 functions satisfying a Lyapunov condition. Several

of the results in this section also apply to such functions, but we focus on the

distance function. Section 3.2 concludes with an estimate on the first exit time of

a Brownian motion (with drift) from a tubular neighbourhood, the mean exit time

having previously been studied by Gray, Karp and Pinsky [1986], who calculated

an asymptotic expansion. The results of Section 3.2 are of independent interest,

although the methods will also be used later in the thesis.

Section 3.3 includes the version of Girsanov’s theorem to which we will later refer

and several remarks which are of relevance to Chapter 4.

3.1 Stochastic Completeness

3.1.1 An Overview

Yau [1978] proved that a lower bound on Ricci curvature implies stochastic com-

pleteness. This was extend by Ichihara [1982] to allow the Ricci curvature to grow in

the negative direction in a certain way, like for example a negative quadratic in the

distance function. Conversely, if M has a pole p and there exist constants C3 ≥ 0,

C4 > 0 and ε > 0 such that

sup{K(σx) : σx is a two-dimensional subspace of TxM} ≤ −C3 − C4rp(x)2+ε

for each x ∈ M then M is not stochastically complete, as proved by Varopoulos

[1983]. It follows that for the applications considered in the next section, the

curvature assumptions appearing in Theorem 1.4.5 are essentially the best that one

could hope for while discarding the effect of the cut locus.

More sophisticated conditions are given in terms of isomperimetric constants or

volume growth. Ichihara [1982], for example, found a necessary and sufficient condi-
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tion for the stochastic completeness of non-compact manifolds with radial symmetry,

in terms of the growth of the ratio of the volume of a ball with the area of its bound-

ary. Grigor’yan [1987] proved that if for some p ∈ M , with Vr(p) denoting the

volume of the ball Br(p), and a fixed r0 > 0 one has

∫ ∞
r0

rdr

log V (p, r)
=∞

then M is stochastically complete. Using this condition and Theorem 1.4.8 we

therefore have another proof of the quadratic curvature condition. Note, however,

that Grigor’yan’s condition takes into account the effect of the cut locus in a way

that the quadratic curvature condition does not. A weak uniform cover criterion

was given in Li [1994a]. It would be interesting to know whether this criterion

covers Grigor’yan’s result. In Li [1994b] it was shown that completeness at one

point implies completeness everywhere. In Subsection 3.3.3 we prove a condition for

stochastic completeness given in terms of infinitesimal volume.

3.2 Radial Moment Estimates

3.2.1 A Log-Sobolev Approach

It is fairly standard practice to deduce exponential integrability using a log-Sobolev

inequality. In this subsection we will show how this can be done for a special case

of the more general situation considered later. In the following theorem {Pt : t ≥ 0}

denotes the heat semigroup.

Theorem 3.2.1. Suppose that M is a complete and connected Riemannian manifold

of dimension m and that N is a closed embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}. Assume that there exist constants C1,Λ ≥ 0 such that

Ric ≥ −(m− 1)C2
1

and such that at least one of the conditions (C1), (C2) or (C3) of Theorem 1.4.5
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is satisfied with C2 = 0. Then

Pt(e
θrN )(x) ≤ exp

[
θ
(
r2N (x) + (m− n)t

) 1
2 + (nΛ + (m− 1)C1)θt/2 + θ2C(t)/2

]
(3.1)

for all θ, t ≥ 0 and

Pt(e
θ
2 r

2
N )(x) ≤ exp

θ
((
r2N (x) + (m− n)t

) 1
2 + (nΛ + (m− 1)C1)θt/2

)2
2(1− C(t)θ)

 (3.2)

for all 0 ≤ θ < C−1(t), where

C(t) :=
e(m−1)C2

1 t − 1

(m− 1)C2
1

.

Proof. Let X(x) a Brownian motion starting at x ∈M , let {Di}∞i=1 be an exhaustion

of M by regular domains (which certainly exists, since we are assuming that M is

connected) and denote by τDi the first exit time of X(x) from Di. By Itô’s formula

(2.1), formula (2.14), Theorem 1.4.5 and Jensen’s inequality, we see that

E
[
r2
N (Xt∧τDi (x)

]
≤ r2

N (x) + (m− n)t+ (nΛ + (m− 1)C1)

∫ t

0
E
[
r2
N (Xs∧τDi (x)

] 1
2
ds

for all t ≥ 0. Bihari’s inequality, which is a nonlinear integral form of Gronwall’s

inequality, then implies (the right-hand side of the following inequality is the exact

solution to the corresponding Bernoulli differential equation)

E
[
r2
N (Xt∧τDi (x)

]
≤
((
r2
N (x) + (m− n)t

) 1
2 + (nΛ + (m− 1)C1)t/2

)2

for all t ≥ 0, from which it follows that

Pt(r
2
N )(x) ≤

((
r2
N (x) + (m− n)t

) 1
2 + (nΛ + (m− 1)C1)t/2

)2

(3.3)

for all t ≥ 0, by Fatou’s lemma. Now, Bakry and Ledoux discovered (see Bakry and

Ledoux [2006] or Driver and Hu [1996]) that the Ricci bound implies the heat kernel
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log-Sobolev inequality

Entt(f
2)(x) ≤ 2C(t)Pt

(
‖∇f‖2

)
(x) (3.4)

for all f ∈ C∞(M) and t > 0. By a slight generalization of the classical argument

of Herbst (see Ledoux [1999]) it follows that for Lipschitz F with ‖F‖Lip ≤ 1 and

θ ∈ R we have

Pt(e
θF )(x) ≤ exp

[
θPtF (x) + θ2C(t)/2

]
(3.5)

for all t ≥ 0. Furthermore, it was proved by Aida, Masuda and Shigekawa [1994]

that the log-Sobolev inequality (3.4) implies

Pt(e
θ
2
F 2

)(x) ≤ exp

[
θPtF

2(x)

2(1− C(t)θ)

]
(3.6)

for all 0 ≤ θ < C−1(t). Since rN is Lipschitz with ‖rN‖Lip = 1, inequality (3.2)

follows from (3.3) by the estimate (3.6) while inequality (3.1) is proved similarly, by

applying Jensen’s inequality to (3.3) and using the estimate (3.5).

An estimate given by [Stroock, 2000, Theorem 8.62], which concerns only the case

N = {x}, suggests that the double exponentials in the estimates (3.1) and (3.2) are

not actually necessary (but note that they are the inevitable result of using Herbst’s

argument and Bakry and Ledoux’s log-Sobolev constant, as opposed to being a

consequence of our moment estimates). To obtain exponential integrability for the

heat kernel under relaxed curvature assumption we will use a different approach,

which is developed in the next subsection. While the estimates (3.1) and (3.2) are,

roughly speaking, the best we have under the conditions of Theorem 3.2.1, our later

estimates will have the advantage of taking into account positive curvature. Thus

our later estimates are preferable from the point of view of comparison.

3.2.2 Lyapunov Assumptions

For the remainder of this section we suppose that X(x) is a Brownian motion on M

with locally bounded and measurable drift b starting from x ∈ M , defined upto an
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explosion time ζ(x), and that N is a closed embedded submanifold ofM of dimension

n ∈ {0, . . . ,m− 1}. We will assume that there exist constants ν ≥ 1 and λ ∈ R such

that the inequality (
1

2
4+ b

)
r2
N ≤ ν + λr2

N (3.7)

holds onM(N) (i.e. off the cut locus). All statements made in this chapter regarding

the validity of this inequality refer to it over the domain M(N), unless otherwise

stated. If b grows linearly in rN then geometric conditions under which such an

inequality arises were given by Theorem 1.4.5 (see Corollary 1.4.6), the content

of which the reader might like to briefly review. In particular, there are various

situations in which one can choose λ = 0. Alternatively, if N is a point with b = 0

and the Ricci curvature is bounded below by a constant R then inequality (3.7) holds

with ν = m and λ = −R/3, as stated by inequality (1.32). If N is an affine subspace

of Rm with b = 0 then inequality (3.7) holds as an equality with ν = m − n and

λ = 0.

3.2.3 First and Second Radial Moments

We are now in a position to deduce two basic moment estimates.

Theorem 3.2.2. Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequality

(3.7) holds. Then

E
[
1{t<ζ(x)}r

2
N (Xt(x))

]
≤
(
r2
N (x) + νR(t)

)
eλt (3.8)

for all t ≥ 0, where R(t) := (1− e−λt)/λ.

Proof. Let {Di}∞i=1 be an exhaustion of M by regular domains and denote by τDi

the first exit time of X(x) from Di. These stopping times announce the explosion

time ζ(x). By Itô’s formula (2.1) and formula (2.14), it follows that

r2
N (Xt∧τDi (x)) = r2

N (x) + 2

∫ t∧τDi

0
rN (Xs(x))

(
dβs − dLCut(N)

s (X(x))
)

+

∫ t∧τDi

0

(
1

2
4+ b

)
r2
N (Xs(x))ds

(3.9)
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for all t ≥ 0, almost surely. Since the domains Di are of compact closure the Itô

integral in (3.9) is a local martingale and it follows that

E
[
r2
N (Xt∧τDi (x))

]
= r2

N (x)− 2E
[∫ t∧τDi

0
rN (Xs(x))dLCut(N)

s (X(x))

]

+

∫ t

0
E
[
1{s<τDi}

(
1

2
4+ b

)
r2
N (Xs(x))

]
ds

(3.10)

for all t ≥ 0, where exchanging the order of integrals in the last term is justified by

the use of the stopping time and the assumptions of the theorem. Before applying

Gronwall’s inequality we should be careful, since we are allowing the coefficient λ to

be negative. For this, note that

E
[
r2
N (Xt∧τDi (x))

]
= E

[
1{t<τDi}

r2
N (Xt(x))

]
+ E

[
1{t≥τDi}

r2
N (XτDi

(x))
]

(3.11)

and that the two functions

t 7→ E
[∫ t∧τDi

0
rN (Xs(x))dLCut(N)

s (X(x))

]
, t 7→ E

[
1{t≥τDi}

r2
N (XτDi

(x))
]

(3.12)

are non-decreasing. If we define a function fx,i,2 : [0,∞)→ [0,∞) by

fx,i,2(t) := E
[
1{t<τDi}

r2
N (Xt(x))

]
then fx,i,2 is differentiable, since the boundaries of the Di are smooth, and it follows

from (3.10) and (3.11) that we have the differential inequality


f ′x,i,2(t) ≤ ν + λfx,i,2(t)

fx,i,2(0) = r2
N (x)

(3.13)

for all t ≥ 0, where we used the assumption ν ≥ 0. Applying Gronwall’s inequality

to (3.13) yields

E
[
1{t<τDi}

r2
N (Xt(x))

]
≤ r2

N (x)eλt + ν

(
eλt − 1

λ

)
(3.14)
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for all t ≥ 0, from which the result follows by the monotone convergence theorem.

We will refer the object on the left-hand side of inequality (3.8) as the second radial

moment of X(x) with respect to N . Note that

lim
λ→0

(1− e−λt)/λ = t

and that this provides the sense in which Theorem 3.2.2 and similar statements

should be interpreted if we set λ = 0. Note also that if λ ≥ 0 then by comparing

Taylor coefficients we see that R(t) ≤ t, yielding a slightly simpler estimate, while if

λ < 0 then there is the bound

E
[
1{t<ζ(x)}r

2
N (Xt(x))

]
≤ −ν

λ

for all t ≥ 0.

The short time asymptotics of the second radial moment in the one point case have

been studied by Liao and Zheng [1995]. In particular, they proved that if X(x) is a

Brownian motion on M and if τε denotes the first exit time of X(x) from the ball of

radius ε centred at x then

E
[
r2
x(Xτε∧t(x))

]
= mt− 1

6
scal(x)t2 + o(t2) as t ↓ 0, (3.15)

where o(t2) might depend upon ε and where scal(x) denotes the scalar curvature

at x and they proved that the stopping time can be dispensed with under certain

conditions, such as when M is compact.

Example 3.2.3. Suppose that X(x) is a Brownian motion on H3
κ starting at x.

By the heat kernel formula (5.2) given below and the Jacobian formula (1.19) given

above it follows that

E[r2
x(Xt(x))] = 3t− κt2

for all t ≥ 0. This ties in with Liao and Zheng’s relation (3.15) since on H3
κ the

scalar curvature is constant and equal to 6κ. We will return to this example several
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times in this chapter.

Kim, Park and Jeon [2004] improved the original method to calculate the asymptotics

upto order four. The asymptotics for the submanifold case have yet to be investig-

ated; this is a direction for future research. For the hypersurface case n = m− 1 one

can find an inequality for the first radial moment using an approach similar to the

proof of Theorem 3.2.2, since in this case the factor involving the reciprocal of rN

in formula (1.5) disappears. For generality it will suffice to use Jensen’s inequality

to deduce the following corollary.

Corollary 3.2.4. Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequal-

ity (3.7) holds. Then

E
[
1{t<ζ(x)}rN (Xt(x))

]
≤
((
r2
N (x) + νR(t)

)
eλt
) 1

2 (3.16)

for all t ≥ 0.

We will refer the object on the left-hand side of inequality (3.16) as the first radial

moment of X(x) with respect to N .

3.2.4 Non-explosion

The quadratic curvature condition mentioned in Section 3.1 is implied by the follow-

ing theorem, which is a simple consequence of our moment estimates.

Theorem 3.2.5. Suppose that N is compact and that there exist constants ν ≥ 1

and λ ∈ R such that inequality (3.7) holds. Then X(x) is non-explosive.

Proof. For i ∈ N denote by τBi(N) the first exit time of X(x) from the tube Bi(N).

By following the proof of Theorem 3.2.2 with the stopping times τDi replaced by

τBi(N) we deduce

P{τBi(N) ≤ t} ≤
(
r2
N (x) + νR(t)

)
eλt

i2

for all t ≥ 0. This crude exit time estimate implies that X(x) is non-explosive, since

the compactness of N implies that the stopping times τBi(N) announce the explosion

time ζ(x).
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For non-compact N , however, the validity of inequality (3.7) is generally not a suffi-

cient condition for the non-explosion of X(x) since this does not rule out situations

where X(x) explodes in a direction tangential to N . Simple examples of such situ-

ations are given by the products of stochastically complete manifolds with ones which

are not.

3.2.5 Higher Radial Moments

Recall that if X is a real-valued Gaussian random variable with mean µ and variance

σ2 then for p ∈ N the p-th absolute moment of X is given by the formula

E [|X|p] = 2
p
2σp

Γ(1+p
2 )
√
π

1F1

(
−p

2
,
1

2
,− µ2

2σ2

)
(3.17)

where Γ is the gamma function and where 1F1 is the confluent hypergeometric func-

tion of the first kind. We note that for even moments equation (3.17) can be written

E
[
|X|2p

]
=
(
2σ2
)p
p!L
− 1

2
p

(
− µ2

2σ2

)
(3.18)

where Lαp (z) are the Laguerre polynomials, defined by the formula

Lαp (z) = ez
z−α

p!

∂p

∂zp
(
e−zzp+α

)
for p = 0, 1, 2, . . . and α > −1. For example, if X(x) is a standard Brownian motion

on R starting from x ∈ R then

E
[
|Xt(x)|2p

]
= (2t)p p!L

− 1
2

p

(
−|x|

2

2t

)
(3.19)

for all t ≥ 0. An important fact about Laguerre polynomials used in the proof of

the next theorem is that

Lαp (z) =

p∑
k=0

Γ(p+ α+ 1)

Γ(k + α+ 1)

(−z)k

k!(p− k)!
(3.20)

59



which can be proved using Leibniz’s formula, as in Lebedev [1972]. Although The-

orem 3.2.2 is a special case of the following theorem, which we will later use to

obtain exponential estimates, we stated it separately both for clarity and because it

constitutes the base case in an induction argument.

Theorem 3.2.6. Suppose that there exist constants ν ≥ 1 and λ ∈ R such that

inequality (3.7) holds. Then for each p ∈ N it follows that

E
[
1{t<ζ(x)}r

2p
N (Xt(x))

]
≤
(

2R(t)eλt
)p
p!L

ν
2
−1

p

(
−
r2
N (x)

2R(t)

)
(3.21)

for all t ≥ 0, where R(t) := (1− e−λt)/λ.

Proof. For p ∈ N we have, off the cut locus, that

4r2p
N = r2p−2

N

(
p4r2

N + 4p(p− 1)
)

(3.22)

and therefore

(
1

2
4+ b

)
r2p
N ≤ p (ν + 2 (p− 1)) r2p−2

N + pλr2p
N . (3.23)

By Itô’s formula (2.1) and formula (2.14) we see that

r2p
N (Xt∧τDi (x)) = r2p

N (x) + 2p

∫ t∧τDi

0
r2p−1
N (Xs(x))

(
dβs − dLCut(N)

s (X(x))
)

+

∫ t∧τDi

0

(
1

2
4+ b

)
r2p
N (Xs(x))ds

(3.24)

for all t ≥ 0, almost surely, where the stopping times τDi are defined as in the proof

of Theorem 3.2.2. If we define the function fx,i,2p : [0,∞)→ [0,∞) by

fx,i,2p(t) := E
[
1{t<τDi}

r2p
N (Xt(x))

]
then, arguing as we did in the proof of Theorem 3.2.2, we deduce from (3.23) the
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differential inequality


f ′x,i,2p(t) ≤ p (ν + 2 (p− 1)) fx,i,2(p−1)(t) + pλfx,i,2p(t)

fx,i,2p(0) = r2p
N (x)

(3.25)

for all t ≥ 0. Applying Gronwall’s inequality to (3.25) yields

fx,i,2p(t) ≤
(
r2p
N (x) + p (ν + 2 (p− 1))

∫ t

0
fx,i,2(p−1)(s)e

−pλsds

)
epλt (3.26)

for all t ≥ 0 and p ∈ N. The next step in the proof is to use induction on p to show

that

fx,i,2p(t) ≤
p∑

k=0

(
p

k

)
(2R(t))p−k r2k

N (x)
Γ(ν2 + p)

Γ(ν2 + k)
epλt (3.27)

for all t ≥ 0 and p ∈ N. Inequality (3.14) covers the base case p = 1. If we

hypothesise that the inequality holds for some p − 1 then by inequality (3.26) we

have

fx,i,2p(t) ≤
(
r2pN (x) + p (ν + 2 (p− 1))

p−1∑
k=0

(
p− 1

k

)
r2kN (x)

Γ(ν2 + p− 1)

Γ(ν2 + k)
R̃(t)

)
epλt (3.28)

for all t ≥ 0, where

R̃(t) =

∫ t

0
(2R(s))p−1−k e−λsds.

Using the fact that

2(p− k)R̃(t) = (2R(t))p−k

together with the relation

p

(p− k)

(
p− 1

k

)
=

(
p

k

)

and the definition of the Gamma function, inequality (3.27) follows from (3.28) and

so the inductive argument is complete. Since ν ≥ 1 we then can apply relation (3.20)
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to see that

p∑
k=0

(
p

k

)
(2R(t))p−kr2k

N (x)
Γ(ν2 + p)

Γ(ν2 + k)
= (2R(t))pp!L

ν
2
−1

p

(
−
r2
N (x)

2R(t)

)

and so by inequality (3.27) it follows that

fx,i,2p(t) ≤
(

2R(t)eλt
)p
p!L

ν
2
−1

p

(
−
r2
N (x)

2R(t)

)
(3.29)

for t ≥ 0 and i, p ∈ N. The result follows from this by the monotone convergence

theorem.

We will refer the object on the left-hand side of inequality (3.21) as the (2p)-th radial

moment of X(x) with respect to N . Note that ifM = R with N the origin and b = 0

with ν = 1 and λ = 0 then the right-hand side of inequality (3.21) is equal to the

right-hand side of equation (3.19). It is important to note that our estimates have

this property; we will later sum the even moments to obtain a sharp exponential

estimate.

Example 3.2.7. Suppose that X(x) is a Brownian motion on H3
κ starting at x.

Using the heat kernel formula (5.2) and the Jacobian formula (1.19) we calculate

that for each p ∈ N we have

E[r2p
x (Xt(x))] = (2t)p

Γ
(

3
2 + p

)
Γ
(

3
2

) 1F1

(
3

2
+ p,

3

2
,−κt

2

)

for all t ≥ 0.

One can also deduce from Theorem 3.2.6 an estimate for the (2p−1)-th radial moment

of X(x) with respect to N , again by Jensen’s inequality.

3.2.6 Exponential Estimates

Before using the estimates of the previous subsection to derive exponential estimates,

we need an inequality for Laguerre polynomials. Articles such as those by Love

[1997] and Pogány and Srivastava [2007] include numerous inequalities for these
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polynomials but none which are suited to our purposes. We therefore include the

following lemma.

Lemma 3.2.8. For α, z ≥ 0 and m = 1, 2, . . . we have

p!Lαp (−z) ≤ (12 (1 + z))p
Γ (α+ 1 + p)

Γ (α+ 1)
.

Proof. By formula (3.20) it follows that

p!Lαp (−z) =

p∑
k=0

(
p

k

)
zk

Γ (α+ 1 + p)

Γ (α+ 1 + k)
.

Since α, z ≥ 0 it follows that Γ (α+ 1 + k) ≥ Γ (α+ 1) and zk ≤ (1 + z)p for all

k ∈ {0, . . . , p}. For k ∈ {1, . . . , p} there is the bound

(
p

k

)
≤
(pe
k

)k
and since the largest binomial coefficient is ‘the middle one’ it follows that

(
p

k

)
≤


(

2pe
p+1

) p+1
2 if p is odd

(2e)
p
2 if p is even

which yields the simple bound (
p

k

)
≤ 6p

for k ∈ {0, . . . , p}. Substituting these bounds into the equation above yields

p!Lαp (−z) ≤ (p+ 1)(6(1 + z))p
Γ (α+ 1 + p)

Γ (α+ 1)

from which the lemma follows since p+ 1 ≤ 2p.

Theorem 3.2.9. Suppose that there exist constants ν ≥ 2 and λ ∈ R such that

inequality (3.7) holds. Then

E
[
1{t<ζ(x)}e

θrN (Xt(x))
]
≤ 1 +

(
1 + R(t, θ, x)−

1
2

)(
1F1

(
ν

2
,

1

2
,R(t, θ, x)

)
− 1

)
(3.30)
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for all t, θ ≥ 0, where

R(t, θ, x) = 12θ2
(
r2
N (x) + 2R(t)

)
eλt (3.31)

with R(t) := (1− e−λt)/λ and where 1F1 is the confluent hypergeometric function of

the first kind.

Proof. With the stopping times τDi defined as in the proof of Theorem 3.2.2, for

p ∈ N with p even we see by inequality (3.29) that

E
[
1{t<τDi}

rpN (Xt(x))
]
≤
(

2R(t)eλt
) p

2
Γ
(p

2
+ 1
)
L
ν
2
−1

p
2

(
−
r2
N (x)

2R(t)

)

and so, by Jensen’s inequality, if p is odd that

E
[
1{t<τDi}

rpN (Xt(x))
]
≤
(

2R(t)eλt
) p

2

(
Γ

(
p+ 1

2
+ 1

)
L
ν
2
−1

p+1
2

(
−
r2
N (x)

2R(t)

)) p
p+1

.

It follows from these estimates and Lemma 3.2.8, since ν ≥ 2, that

E
[
1{t<τDi}

eθrN (Xt(x))
]

≤ 1 +
∞∑
p=1

(
2θ2R(t)eλt

)p
(2p)!

p!L
ν
2
−1

p

(
−
r2
N (x)

2R(t)

)

+

∞∑
p=1

(
2θ2R(t)eλt

) 2p−1
2

(2p− 1)!

(
p!L

ν
2
−1

p

(
−
r2
N (x)

2R(t)

)) 2p−1
2p

≤ 1 +
∞∑
p=1

(
2θ2R(t)eλt

)p
(2p)!

(
12

(
1 +

r2
N (x)

2R(t)

))p Γ
(
ν
2 + p

)
Γ
(
ν
2

)
+
∞∑
p=1

(
2θ2R(t)eλt

) 2p−1
2

(2p− 1)!

((
12

(
1 +

r2
N (x)

2R(t)

))p Γ
(
ν
2 + p

)
Γ
(
ν
2

) ) 2p−1
2p

=

∞∑
p=0

(
24θ2

(
R(t) +

r2N (x)
2

)
eλt
)p

(2p)!

Γ
(
ν
2 + p

)
Γ
(
ν
2

)
+
∞∑
p=1

(
24θ2

(
R(t) +

r2N (x)
2

)
eλt
) 2p−1

2

(2p− 1)!

(
Γ
(
ν
2 + p

)
Γ
(
ν
2

) ) 2p−1
2p

.
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Using (2p)! = 2p(2p− 1)!, 2p ≤ 4p and Γ
(
ν
2 + p

)
≥ Γ

(
ν
2

)
the theorem follows from

this by monotone convergence, since there is the relation

∞∑
p=0

zp

(2p)!

Γ
(
ν
2 + p

)
Γ
(
ν
2

) = 1F1

(
ν

2
,
1

2
,
z

4

)
(3.32)

which can be seen directly from the definition of 1F1 as a generalized hypergeometric

series.

The right-hand side of (3.30) is a continuous function of t, θ and x and since the

function 1F1 satisfies 1F1 (ν/2, 1/2, 0) = 1 and

lim
r↓0

r−
1
2

(
1F1

(
ν

2
,
1

2
, r

)
− 1

)
= 0

it follows that if x ∈ N then inequality (3.30) provides a sharp estimate for small

times. Furthermore, for the values of ν considered in the theorem the right-hand

side of (3.30) grows exponentially withR(t, θ, x) (in particular 1F1(1/2, 1/2, z) = ez).

The theorem shows that under the given assumptions there is no positive time at

which the left-hand side of (3.30) is infinite.

A further property of Laguerre polynomials that will be of use to us is the fact that

∞∑
p=0

γpLαp (z) = (1− γ)−(α+1)e
− zγ

1−γ (3.33)

for |γ| < 1, as proved in Lebedev [1972]. It follows from this and equation (3.18)

that for a real-valued Gaussian random variable X with mean µ and variance σ2 we

have for θ ≥ 0 that

E
[
e
θ
2
|X|2
]

=
(
1− θσ2

)− 1
2 exp

[
θ|µ|2

2(1− θσ2)

]

if θσ2 < 1. A generalization of this formula for a Gaussian measures on Hilbert

spaces is well-known, which proves of a special case of Fernique’s theorem. If X(x)

is a standard Brownian motion on R starting from x ∈ R then for t ≥ 0 it follows
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that

E
[
e
θ
2
|Xt(x)|2

]
= (1− θt)−

1
2 exp

[
θ|x|2

2(1− θt)

]
(3.34)

so long as θt < 1.

Theorem 3.2.10. Suppose there exists constants ν ≥ 1 and λ ∈ R such that in-

equality (3.7) holds. Then

E
[
1{t<ζ(x)}e

θ
2
r2N (Xt(x))

]
≤
(

1− θR(t)eλt
)− ν

2
exp

[
θr2
N (x)eλt

2(1− θR(t)eλt)

]
(3.35)

for all t, θ ≥ 0 such that θR(t)eλt < 1, where R(t) := (1− e−λt)/λ.

Proof. Using inequality (3.29) and equation (3.33) we see that

E
[
1{t<τDi}

e
θ
2
r2N (Xt(x))

]
=

∞∑
p=0

θp

2pp!
fx,i,2p(t)

≤
∞∑
p=0

(
θR(t)eλt

)p
L
ν
2
−1

p

(
−
r2
N (x)

2R(t)

)

=
(

1− θR(t)eλt
)− ν

2
exp

[
θr2
N (x)eλt

2(1− θR(t)eλt)

]
where we safely switched the order of integration using the stopping time. The result

follows by the monotone convergence theorem.

Theorem 3.2.10 improves upon the estimate given by the second part of [Stroock,

2000, Theorem 5.40] since Stroock’s estimate concerns only the one point case, does

not take into account positive curvature or the possibility of drift and does not reduce

to the correct expression in Euclidean space. If there is a version of Itô’s formula

to which inequality (3.7) can be applied in the sense of distributions, then Theorem

3.2.10 could itself be improved (in the proofs of Theorems 3.2.2 and 3.2.6 discard

the local time and apply inequality (3.7) almost simultaneously).

Corollary 3.2.11. Suppose that X(x) is a Brownian motion on M starting at x

and that one of the following conditions is satisfied:

(I) n ∈ {0, . . . ,m − 1}, the sectional curvature of planes containing the radial dir-

ection is non-negative and N is totally geodesic;
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(II) n ∈ {0,m− 1}, the Ricci curvature in the radial direction is non-negative and

N is minimal.

If B(y) denotes a Brownian motion on Rm−n starting at y ∈ Rm−n with r2
N (x) ≤

‖y‖Rm−n then

E
[
e
θ
2
r2N (Xt(x))

]
≤ E

[
e
θ
2
‖Bt(y)‖2

Rm−n
]

(3.36)

for all t, θ ≥ 0 such that θt < 1.

Proof. This follows directly from Theorems 1.4.5 and 3.2.10.

The point here is that (3.34) provides an explicit formula for the right-hand side of

(3.36). To find a comparison theorem which takes into account negative curvature

seems harder. We can, however, perform an explicit calculation for the following

special case, which compares favourably with our best estimate.

Example 3.2.12. Suppose that X(x) is a Brownian motion on H3
κ starting at x,

with κ < 0. Then by (5.2) and (1.19) we have

E[e
θ
2
r2x(Xt(x))] = (1− θt)−

3
2 exp

[
− θκt2

2(1− θt)

]
(3.37)

for all t, θ ≥ 0 such that θt < 1. Note that the explosion time of the right-hand side

of (3.37) is independent of κ. One does not expect this to be true for the general

situation of unbounded curvature considered in Theorem 3.2.10.

3.2.7 Qualitative Comparison

For an illustration of the behaviour of the estimates given by Theorems 3.2.9 and

3.2.10, fix x ∈M , suppose that X(x) is a Brownian motion starting at x and suppose

that the Ricci curvature of M is bounded below by a constant R. Then inequality

(1.32) implies that the assumptions of Theorems 3.2.9 and 3.2.10 hold when N = {x}

with ν = m and λ = −R/3. For these parameters we plot the right-hand sides of the

estimates (3.30) and (3.35) as functions of time for the three cases R ∈ {−1, 0, 1}

with θ = 1
6 and m = 3. Note that if R > 0 then the left-hand sides of the estimates

(3.30) and (3.35) are bounded, by Myer’s theorem.
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Figure 3: Suppose N = {x} with ν = m and λ = −R/3. The solid curve on the left is

the graph of the right-hand side of (3.30) for R = 0. Above it is a dotted curve, which is

the graph for R = −1, and below it is a dashed curve, which is the graph for R = 1. The

solid curve on the right is the graph of the right-hand side of (3.35) for R = 0. Above it

is a dotted curve, which is the graph for R = −1, and below it is a dashed curve, which is

the graph for R = 1. We have set θ = 1
6 and m = 3 in all cases and the horizontal axes

represent the time t. Although not obvious from the two plots, the dotted and solid curves

plotted on the left do not explode in finite time while the dotted and solid curves plotted

on the right explode at times t = 3 log 3 ' 3.3 and t = 6 respectively.

3.2.8 Concentration Inequalities

If X(x) is a Brownian motion on Rm starting at x then

lim
r→∞

1

r2
logP{Xt(x) 6∈ Br(x)} = − 1

2t
(3.38)

for all t > 0. Note that the right-hand side of the asymptotic relation (3.38) does

not depend on the dimension m. Returning to the setting of Example 3.2.3, we find

another situation where there is a relation of the type (3.38).

Example 3.2.13. Suppose that X(x) is a Brownian motion on H3
κ starting at x.

Then, by formula (5.2), we have

lim
r→∞

1

r2
logP{Xt(x) 6∈ Br(x)} = − 1

2t

for all t > 0.
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A heat kernel comparison argument would suggest that a relation of this type should

hold in general for a Brownian motion X(x) on M but as an inequality, so long as

the Ricci curvature is bounded below by a constant. In fact, it follows from [Stroock,

2000, Theorem 8.62] that if the Ricci curvature is bounded below then there is the

asymptotic estimate

lim
r↑∞

1

r2
logP

{
sup
s∈[0,t]

rx(Xt(x)) ≥ r
}
≤ − 1

2t
. (3.39)

For the general setting considered in this section, we have the following theorem.

Theorem 3.2.14. Suppose there exists constants ν ≥ 1 and λ ∈ R such that in-

equality (3.7) holds and suppose that X(x) is non-explosive. Then

lim
r→∞

1

r2
logP{Xt(x) /∈ Br(N)} ≤ − 1

2R(t)eλt

for all t > 0, where R(t) := (1− e−λt)/λ.

Proof. For θ ≥ 0 and r > 0, Markov’s inequality and Theorem 3.2.10 imply

P{Xt(x) /∈ Br(N)} = P{rN (Xt(x)) ≥ r}

= P
{
e
θr2N (Xt(x))

2 ≥ e
θr2

2
}

≤ e−
θr2

2 E
[
e
θr2N (Xt(x))

2

]
≤
(

1− θR(t)eλt
)− ν

2
exp

[
θr2
N (x)eλt

2(1− θR(t)eλt)
− θr2

2

]

so long as θR(t)eλt < 1. If t > 0 then choosing θ = δ(R(t)eλt)−1 shows that for any

δ ∈ [0, 1) and r > 0 we have the estimate

P{Xt(x) /∈ Br(N)} ≤ (1− δ)−
ν
2 exp

[
r2
N (x)δ

2R(t)(1− δ)
− δr2

2R(t)eλt

]
(3.40)

from which the theorem follows since δ can be chosen arbitrarily close to 1 after

taking the limit.

While Theorem 3.2.14 is trivial if M is compact, the concentration inequality (3.40)
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is valid in that setting and can be improved in certain circumstances. Indeed, for

r > 0 suppose that ν ≥ 1 and λ ≥ 0 are constants such that inequality (3.7) holds

on the tubular neighbourhood Br(N) (such constants always exist if N is compact,

by Corollary 1.4.4). Assuming X(x) to be non-explosive (which would be the case if

N is compact, by Theorem 3.2.5) then the methods of this chapter can also be used

to estimate certain quantities involving the process X(x) stopped on the boundary

of the tubular neighbourhood. We will not include such calculations here, to avoid

extensive repetition, but doing so yields the exit time estimate

P
{

sup
s∈[0,t]

rN (Xs(x)) ≥ r
}
≤ (1− δ)−

ν
2 exp

[
r2
N (x)δ

2R(t)(1− δ)
− δr2

2R(t)eλt

]

for all t > 0 and δ ∈ (0, 1), which improves inequality (3.40) for the λ ≥ 0 case.

3.2.9 Feynman-Kac Estimates

The following two proposition and their corollaries constitute simple applications of

Theorems 3.2.9 and 3.2.10 and can be used to bound the operator norms of certain

Feynman-Kac semigroups, acting on bounded functions.

Proposition 3.2.15. Suppose there exists constants ν ≥ 2 and λ ∈ R such that

inequality (3.7) holds. Then

E
[
1{t<ζ(x)}e

θ
∫ t
0
rN (Xs(x))ds

]
≤ 1 +

(
1 + R(t, θt, x)−

1
2

)(
1F1

(
ν

2
,

1

2
,R(t, θt, x)

)
− 1

)

for all t, θ ≥ 0, where R is defined by (3.31).

Proof. Using stopping times τDi to safely exchange the order of integrals, we see by

Jensen’s inequality that

E
[
1{t<τDi}

eθ
∫ t
0 rN (Xs(x))ds

]
≤ 1

t

∫ t

0
E
[
1{s<τDi}

etθrN (Xs(x))
]
ds

and the result follows by the monotone convergence theorem and Theorem 3.2.9,

since the right-hand side of inequality (3.30) is non-decreasing in t (which is evident

from the way in which it was derived).
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Corollary 3.2.16. Suppose there exists constants ν ≥ 2 and λ ∈ R such that inequal-
ity (3.7) holds and that V is a measurable function on M such that V ≤ C(1 + rN )

for some constant C ≥ 0. Then

E
[
1{t<ζ(x)}e

∫ t
0 V (Xs(x))ds

]
≤ eCt

(
1 +

(
1 +R(t, Ct, x)−

1
2

)(
1F1

(
ν

2
,
1

2
,R(t, Ct, x)

)
− 1

))

for all t ≥ 0, where R is defined by (3.31).

Using Theorem 3.2.10 the following proposition and its corollary can be proved in

much the same way.

Proposition 3.2.17. Suppose there exists constants ν ≥ 1 and λ ∈ R such that

inequality (3.7) holds. Then

E
[
1{t<ζ(x)}e

θ
2

∫ t
0 r

2
N (Xs(x))ds

]
≤
(

1− θtR(t)eλt
)− ν

2
exp

[
θr2
N (x)teλt

2(1− θtR(t)eλt)

]
(3.41)

for all t, θ ≥ 0 such that θtR(t)eλt < 1.

An estimate found in [Wang, 2014, Subsection 2.6.1] on the left-hand side of (3.41)

for the one point case when λ ≥ 0 is implied by Proposition 3.2.17.

Corollary 3.2.18. Suppose there exists constants ν ≥ 1 and λ ∈ R such that inequal-

ity (3.7) holds and that V is a measurable function on M such that V ≤ C(1 + 1
2r

2
N )

for some constant C ≥ 0. Then

E
[
1{t<ζ(x)}e

∫ t
0 V (Xs(x))ds

]
≤
(

1− CtR(t)eλt
)− ν

2
exp

[
Ct+

Cr2
N (x)teλt

2(1− CtR(t)eλt)

]

for all t ≥ 0 such that CtR(t)eλt < 1.

3.3 Additional Drift

3.3.1 Girsanov’s Theorem

Suppose that X(x) is a non-explosive Brownian motion on M starting from x with

locally bounded and measurable drift b and suppose that c is a measurable vector
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field on M with

P
{∫ t

0
‖c(Xs(x))‖2ds <∞

}
= 1 (3.42)

for all t ≥ 0. If U is a horizontal lift of X(x) whose antidevelopment has martingale

part B then it follows that the stochastic integral
∫ ·

0〈c(Xs(x)), UsdBs〉 is a well-

defined continuous local martingale. For t ≥ 0 we can therefore set

Zt(c(X(x))) := exp

[∫ t

0
〈c(Xs(x)), UsdBs〉 −

1

2

∫ t

0
‖c(Xs(x))‖2ds

]

so that

Zt(c(X(x))) = 1 +

∫ t

0
Zs(c(X(x)))〈c(Xs(x)), UsdBs〉

which shows that Z(c(X(x))) is a continuous local martingale with Z0(c(X(x))) = 1.

In terms of these objects the version of Girsanov’s theorem that will be of use to us

is the following one, given by Elworthy [1982] and Karatzas and Shreve [1991].

Theorem 3.3.1. Suppose thatM is a complete Riemannian manifold and that X(x)

is a non-explosive Brownian motion on M with drift b starting at x and defined on

the filtered probability space (Ω,F , {Ft}t≥0,P). Suppose that c is a measurable vector

field on M satisfying (3.42) and assume that Z(c(X(x))) is a martingale. If for

t ≥ 0 we define a new measure Qt on Ft by

dQt

dP
:= Zt(c(X(x)))

then Qt is a probability measure and with respect to Qt the process {Xs(x) : 0 ≤ s ≤ t}

is identical to a Brownian motion on M with drift b+ c starting at x.

3.3.2 A Martingale Criterion

If ‖c‖ is bounded then Z(c(X(x)) is obviously a martingale, by Novikov’s criterion.

For more generality we deduce the following proposition, which is applied in the next

chapter.

Proposition 3.3.2. Suppose that there exist constants ν ≥ 1 and λ ∈ R such that
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inequality (3.7) holds (in case N is non-compact we assume also that X(x) is non-

explosive). If c is a measurable vector field such that ‖c‖ ≤ C(1 + rN ) for some

constant C ≥ 0 then Z(c(X(x))) is martingale.

Proof. Condition (3.42) is checked using inequality (3.14) and the monotone conver-

gence theorem. The rest follows from Proposition 3.2.17, together with Novikov’s

criterion and the fact that Brownian motion is a time-homogeneous Markov pro-

cess.

Note that the condition on c which appears in Proposition 3.3.2 is less general than

the condition on b used in the previous section. Indeed, while the question of non-

explosion depends only on the radial part of the vector field, the total magnitude of

the vector field must be controlled if we wish to deduce the martingale property using

the above approach. Note also that these results apply to suitable time-dependent

vector fields, since one recovers time-homogeneity in the space-time setting.

3.3.3 A Non-explosive Diffusion

Suppose now that expN : TN⊥ → M is a diffeomorphism. Then Cut(N) is empty

and ∇ log ΘN is smooth. A diffusion on M whose infinitesimal generator is given by

1

2
4+∇ log Θ

− 1
2

N

will be called a Brownian-Riemannian motion, by analogy with the terminology

of Elworthy [1982]. Using Itô’s formula and equation (1.5) we see, modulo ini-

tial conditions, that the radial part of a Brownian-Riemannian motion satisfies the

same stochastic differential equation as that which is satisfied by the radial part

of a Brownian motion in Rm−n. It follows that if N is compact then a Brownian-

Riemannian motion Y never explodes and thus, by Girsanov’s theorem, we conclude

that if Z(∇ log Θ
− 1

2
N (Y )) is a martingale then M is stochastically complete. This

is, for example, true if ‖∇ log ΘN‖ ≤ C(1 + rN ) for some constant C ≥ 0. The

non-explosive diffusion Y serves as a precursor to the semiclassical bridge considered

in the next chapter.
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Chapter 4

Semiclassical and Fermi Bridges

Introduction

In this chapter we present two preliminary examples of submanifold bridge processes.

In order to do so, we suppose that M is a complete and connected Riemannian

manifold of dimension m and that N is a closed embedded submanifold of M of

dimension n ∈ {0, . . . ,m− 1}. The two processes introduced in this chapter will be

defined in terms of the function q· (·, N) : (0,∞)×M → R given by

qt(x,N) := (2πt)−
(m−n)

2 exp

[
−
r2
N (x)

2t

]
(4.1)

for t > 0 and x ∈M .

Section 4.1 describes the first of these processes, called the semiclassical bridge, which

is defined also in terms of the Jacobian determinant of the exponential map. It was

studied by Elworthy [1982] and Watling [1986], who considered the one point case,

and by Ndumu [1989], who considered the general case. They used it to derive heat

kernel formulae, which we will state in Chapter 5.

Section 4.2 introduces a different process, which we call the Fermi bridge and in

terms of which we will formulate the main theorem of Chapter 5. The key estimates

in this section are Lemmas 4.2.3 and 4.2.4.
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Section 4.3 compares the semiclassical bridge with a conditioned diffusion and in-

cludes an observation regarding the Riemann zeta function.

Throughout this chapter we fix the vector field b and assume that it is locally bounded

and measurable. Both the terminal time T and target submanifoldN will also remain

fixed.

4.1 Semiclassical Bridges

4.1.1 Definition

Throughout this section suppose that expN : TN⊥ → M is a diffeomorphism and

fix T > 0. Then the cut locus of N is empty and for each t ∈ [0, T ) the function

qT−t(·, N) is smooth on M . For y 6∈ N denote by γy,N the unique length-minimizing

geodesic segment between y and N parametrized to take unit time with γy,N (0) = y

and γy,N (1) ∈ N and define the smooth function SN : M → R by

SN (y) := exp

[∫ 1

0
〈γ̇y,N (s), b(γy,N (s)〉 ds

]

if y 6∈ N and by SN (y) = 1 if y ∈ N . Then the function CN : M → R defined by

CN := SNΘ
− 1

2
N is smooth with CN |N = 1 and for each t ∈ [0, T ) the vector field

∇ logCNqT−t(·, N)

is smooth (and if N is a point with b a gradient vector field then ∇ logSN = −b). A

diffusion on M starting at x ∈M defined upto a predictable stopping time which is

less than or equal to T whose time-dependent infinitesimal generator is of the form

1

2
4+ b+∇ logCNqT−t(·, N)

is called a semiclassical bridge between x and N in time T . Such processes were

once referred to as Brownian-Riemannian bridges, which explains the terminology

of Subsection 3.3.3. If we do not assume that expN is a diffeomorphism then such
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processes can still be defined upto the exit time from a domain whose closure is

contained in M \ Cut(N).

4.1.2 Radial Part and Bridge Property

The proofs we give for the following lemma and proposition are similar to those

found in Watling [1986] and Ndumu [1989].

Lemma 4.1.1. For all y ∈M we have

〈
∂

∂rN
, b(y) +∇ logSN (y)

〉
= 0.

Proof. It suffices to assume that y 6∈ N . For such y note that

1

2
∇r2

N (y) = −γ̇y,N (0)

so we have

〈
∇ logSN (y),

1

2
∇r2

N (y)

〉
= − d

ds
logSN (γy,N (s))

∣∣∣∣
s=0

.

On the other hand, from the definition of SN we have

logSN (γy,N (s)) =

∫ 1

s
〈γ̇y,N (u), b(γy,N (u))〉du,

from which it follows that

− d

ds
logSN (γy,N (s))

∣∣∣∣
s=0

= 〈γ̇y,N (0), b(y)〉 = −1

2
〈∇r2

N (y), b(y)〉.

We have therefore deduced that

〈
b(y) +∇ logSN (y),

1

2
∇r2

N (y)

〉
= 0

from which the lemma follows since 1
2∇r

2
N = rN

∂
∂rN

.
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Proposition 4.1.2. Suppose that m−n ≥ 2 and that Ŷ (x) is a semiclassical bridge

between x and N in time T . Then the radial part of Ŷ (x) is identical to that of a

Brownian bridge on Rm−n between a point of distance rN (x) from the origin and the

origin in time T .

Proof. Since m − n ≥ 2 it follows that N is polar for Ŷ (x) and so by Itô’s formula

we have

rN (Ŷt(x)) = rN (x) + βt +

∫ t

0

〈
∂

∂rN
, b(Ŷs(x)) +∇ logSN (Ŷs(x))

〉
+

∂

∂rN
log Θ

− 1
2

N (Ŷs(x)) +
1

2
4rN (Ŷs(x))

+
∂

∂rN
log qT−s(Ŷs(x), N) ds

for all t ∈ [0, T ), almost surely, where β is a standard one-dimensional Brownian

motion. Using Lemma 4.1.1, formula (1.5) and the definition of q·(·, N) we see that

rN (Ŷt(x)) = rN (x) + βt +

∫ t

0

m− n− 1

2rN (Ŷs(x))
− rN (Ŷs(x))

T − s
ds

for all t ∈ [0, T ), almost surely, which by comparing to the Euclidean case yields the

claim.

Besides characterizing the radial part of the semiclassical bridge, Proposition 4.1.2

tells us that a semiclassical bridge does not explode prior to the terminal time T . In

particular, the proposition implies the bridge property

lim
t↑T

rN (Ŷt(x)) = 0

almost surely. Therefore, if N is a point p ∈M then a semiclassical bridge Ŷ (x) can

be extended to give a continuous process defined on the closed time interval [0, T ]

by setting ŶT (x) := p.
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4.2 Fermi Bridges

4.2.1 Definition

In the previous section we assumed that the normal exponential map was a global

diffeomorphism. In this section we do not make this assumption. In general, for

T > 0 fixed and with the function q· (·, N) defined by equation (4.1), the time-

dependent vector field

1M(N)∇ log qT−t(·, N) = − rN
T − t

∂

∂rN

with t ∈ [0, T ) is smooth away from the cut locus but generally not continuous on

the cut locus. One imagines the deterministic flow associated to this vector field as

being one for which Cut(N) is a source and for which N is a sink. The strength

of the flow increases dramatically as the terminal time T is approached, while the

vector field vanishes on N . Given the locally bounded and measurable vector field

b fixed at the beginning of this chapter, a diffusion on M starting at x ∈ M and

defined upto a predictable stopping time which is less than or equal to T whose

time-dependent infinitesimal generator is of the form

1

2
4+ b− rN

T − t
∂

∂rN

will be called a Fermi bridge between x and N in time T . We call such a process a

Fermi bridge since the time-dependent part of the drift acts in the normal direction,

which corresponds to the radial part of polar Fermi coordinates, and since under

suitable conditions we will prove that such a process arrives at N at time T almost

surely. To help understand the effect of the drift discontinuity, two real-valued dif-

fusions whose drifts exhibit similar jump discontinuities are considered in Appendix

B. It should be noted that our definition is related to one which appeared in Stroock

[2001], in which the Ornstein-Uhlenbeck process onM was defined to be any diffusion
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starting at x ∈M whose infinitesimal generator is of the form

1

2
4− αrx

∂

∂rx

for some α > 0. Stroock proved that the corresponding Markov semigroup is hyper-

contractive, provided the Ricci curvature is bounded below. We are, however, more

interested in the behaviour of the radial part of the Fermi bridge, since suitable

bounds on that object will imply lower bounds on integrals of the heat kernel.

Of course, if expN is a diffeomorphism with ∇ log ΘN = 0 then the definitions of the

semiclassical and Fermi bridges coincide. In particular, if M = Rm with N a point

and b = 0 then the definitions of these two processes reduce to that of a standard

Brownian bridge.

4.2.2 Radial Part

Suppose that X̂(x) is a Fermi bridge between x and N in time T defined upto the

minimum of T and its explosion time. Suppose that D is a regular domain in M

and denote by τ̂D the first exit time of X̂(x) from D. Then X̂(x) is, in particular, a

continuous semimartingale upto time T ∧ τ̂D and, since Č(N) is polar for X̂(x) and

since the martingale part of any antidevelopment of X̂(x) is a standard Brownian

motion, it follows from the Tanaka formula of Subsection 2.3.2 that

rN (X̂t∧τ̂D(x)) = rN (x) + βt∧τ̂D +

∫ t∧τ̂D

0

(
1

2
4+ b

)
rN (X̂s(x)) ds

−
∫ t∧τ̂D

0

rN (X̂s(x))

T − s
ds− LCut(N)

t∧τ̂D (X̂(x)) + LNt∧τ̂D(X̂(x))

(4.2)

for all t ∈ [0, T ), almost surely, where β is a standard one-dimensional Brownian mo-

tion and where the non-negative non-decreasing continuous process LCut(N)(X̂(x))

is defined by

dLCut(N)(X̂(x)) := −1

2

(
D+

X̂(x)
−D−

X̂(x)

)
rN (n) dLC̊(N)(X̂(x)) (4.3)
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using the notation of Subsection 2.3.2. With this formula we can estimate the radial

moments of the Fermi bridge, as we did for Brownian motion in the previous chapter.

For now we restrict our attention to the domain D.

Theorem 4.2.1. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then we have

E
[
1{t<τ̂D}r

2
N (X̂t(x))

]
≤
(
r2
N (x)

(
T − t
T

)
+ νt

)(
T − t
T

)
eλt (4.4)

for all t ∈ [0, T ).

Proof. Define the function f̂x,2 : [0, T )→ R by

f̂x,2(t) := E[1{t<τ̂D}r
2
N (X̂t(x))]

for t ∈ [0, T ). By Itô’s formula and formula (4.2) and using an argument similar to

that given for the proof of Theorem 3.2.2 we deduce the differential inequality


f̂ ′x,2(t) ≤ ν +

(
λ− 2

T−t

)
f̂x,2(t)

f̂x,2(0) = r2
N (x)

for all t ∈ [0, T ). Applying Gronwall’s inequality to it yields

f̂x,2(t) ≤

(
r2
N (x) + ν

∫ t

0

(
T

T − s

)2

e−sλds

)(
T − t
t

)2

eλt

≤
(
r2
N (x) + νt

(
t

T − t

))(
T − t
t

)2

eλt

where we used the assumption λ ≥ 0 for the second inequality.

Notice that we now assume λ ≥ 0 while in the previous chapter we allowed for

negative values of λ. This extra assumption is to avoid the future occurrence of

certain exponential integrals that cannot be evaluated explicitly. Note that for M =

Rm with N a linear subspace and b = 0, with ν = m − n and λ = 0, one can set

D = M and inequality (4.4) holds as an equality. Also, Jensen’s inequality implies
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the following estimate on the first radial moment.

Corollary 4.2.2. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then we have

E[1{t<τ̂D}rN (X̂t(x))] ≤
((

r2
N (x)

(
T − t
T

)
+ νt

)(
T − t
T

)) 1
2

e
λt
2

for all t ∈ [0, T ).

Additional estimates can be found in Section C.1 of Appendix C. These include an

exponential estimate, a concentration inequality and an integrability theorem, whose

relevance is explained in Section C.2. In the next subsection we consider the case

where there exist constants ν ≥ 1 and λ ≥ 0 such that inequality (3.7) holds on the

whole of M \ Cut(N).

4.2.3 Bridge Property

Suppose for this subsection that b satisfies ‖b‖ ≤ C(1 + rN ), for some C ≥ 0, and

that there exists constants ν ≥ 1 and λ ≥ 0 such that inequality (3.7) holds on

M \ Cut(N). Suppose also that X(x) is a non-explosive Brownian motion on M

with drift b starting at x, defined on the filtered probability space (Ω,F , {Ft}t≥0,P).

Recall that if N is compact then inequality (3.7) implies the non-explosion of X(x).

For t ∈ [0, T ) then define

Mt := exp

[
−
∫ t

0

rN (Xs(x))

T − s

〈
∂

∂rN
, UsdBs

〉
− 1

2

∫ t

0

r2
N (Xs(x))

(T − s)2
ds

]

where U is a horizontal lift of X(x) whose antidevelopment has martingale part given

by a Brownian motion B. It follows from Proposition 3.3.2 that M is a martingale

up to time t for each t ∈ [0, T ). We can therefore define a probability measure QT−

on FT− by
dQT−|Ft
dP

= Mt
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for each t ∈ [0, T ). It follows by Girsanov’s theorem that the process X(x) when

restricted to the time interval [0, T ) and considered on the filtered probability space

(
Ω,FT−, {Ft}t∈[0,T ),QT−

)
is a Fermi bridge between x and N in time T . Since QT− and P are equivalent on

FT− it follows that this process is a continuous semimartingale upto time T , by the

stability properties of such processes discussed in Chapter 2, and that it does not

explode prior to this terminal time. The equivalence also implies the existence of

transition densities and the polarity of Č(N). If this new process is denoted by X̂(x)

then, by considering an exhaustion ofM by regular domains, Theorem 4.2.1 and the

monotone convergence theorem imply the bridge property

lim
t↑T

rN (X̂t(x)) = 0

almost surely. Therefore, if N is a point p ∈ M then one then can extend X̂(x) to

a continuous process on the time interval [0, T ] by setting X̂T (x) := p.

4.2.4 Two Integrability Lemmas

Returning to the setting of Subsection 4.2.2, suppose once more that D is a regular

domain in M and that X̂(x) is a Fermi bridge between x and N in time T defined

upto the minimum of T and its explosion time. The following two lemmas are the

basic integrability estimates that we will use in Chapters 5 and 6 to deduce heat

kernel lower bounds and gradient estimates.

Lemma 4.2.3. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then we have

sup
t∈[0,T )

E

[
1{t<τ̂D}

∫ t

0

r2
N (X̂s(x))

T − s
ds

]
≤
(
r2
N (x) + νT

)
eλT .
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Proof. By Theorem 4.2.1 we see that

E

[
1{t<τ̂D}

∫ t

0

r2
N (X̂s(x))

T − s
ds

]
≤
∫ t

0

E[1{s<τ̂D}r
2
N (X̂s(x))]

T − s
ds

≤ t
(
r2
N (x) + νt

T

)
eλt

for all t ∈ [0, T ) and so the lemma is proved.

Lemma 4.2.4. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then we have

sup
t∈[0,T )

E

[
1{t<τ̂D}

∫ t

0

rN (X̂s(x))

T − s
ds

]
≤ 2

(
r2
N (x) + νT

) 1
2 e

λT
2 .

Proof. By Corollary 4.2.2 we see that

E

[
1{t<τ̂D}

∫ t

0

rN (X̂s(x))

T − s
ds

]
≤
∫ t

0

E[1{s<τ̂D}rN (X̂s(x))]

T − s
ds

≤
(
r2
N (x) + νt

T

) 1
2

e
λt
2

∫ t

0
(T − s)−

1
2 ds

= 2
(
r2
N (x) + νt

) 1
2 e

λt
2

(
1−

(
T − t
T

) 1
2

)

for all t ∈ [0, T ) and so the lemma is proved.

4.3 Comparison of Bridge Processes

4.3.1 An Equivalence Theorem

Suppose that N is a point p and that p is a pole forM . In this setting, the difference

between the semiclassical and Fermi bridges is evident since their generators are given

explicitly. So let us compare the semiclassical bridge with a conditioned diffusion.

For this, fix T > 0, x ∈M , suppose that the vector field b is smooth and suppose that

Ŷ (x) is a semiclassical bridge between x and p in time T , defined as in Subsection

4.1.1 on the filtered probability space (Ω,F , {Ft}0≤t≤T ,P). Recall that the process
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Ŷ (x) has time-dependent infinitesimal generator

1

2
4+ b+∇Wt

for t ∈ [0, T ) where Wt(·) := logCpqT−t(·, p) and for t ∈ [0, T ] define the random

variable ht(x, p) by

ht(x, p) = exp

[∫ t

0
(C−1

p

(
1

2
4+ b

)
Cp)(Ŷs(x))ds

]

whenever the expression on the right-hand side is finite.

Theorem 4.3.1. Suppose that p is a pole for M , that b is smooth and that

C−1
p

(
1

2
4+ b

)
Cp

is bounded above on M . Then there exists a probability measure P′, defined on FT

by
dP′|FT
dP

=
hT (x, p)

EP [hT (x, p)]
,

under which the process Ŷ (x) is identical to a Brownian motion with drift b started

at x and conditioned to arrive at p at time T .

Proof. For t ∈ [0, T ) define a measure P′t on Ft by

dP′t
dP

=
pM,b
T−t(Ŷt(x), p)

pM,b
T (x, p)

exp

[
−
∫ t

0

〈∇Ws(Ŷs(x)), ÛsdBs〉 −
1

2

∫ t

0

|∇Ws(Ŷs(x))|2ds
]

(4.5)

where Û is a horizontal lift of Ŷ (x) whose antidevelopment has martingale part B

and where pM,b denotes the transition densities of a Brownian motion with drift b.

By Girsanov’s theorem it follows that P′t is a probability measure under which the

process Ŷ (x) is, upto time t, identical to a Brownian motion with drift b started at x

and conditioned to arrive at p at time T . The stochastic integral on the right-hand
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side of equation (4.5) can be eliminated using Itô’s formula, which yields

dP′t
dP

=
pM,b
T−t(Ŷt(x), p)

pM,b
T (x, p)

exp

[
W0(x)−Wt(Ŷt(x)) +

∫ t

0

〈∇Ws(Ŷs(x)), b(Ŷs(x))〉ds

+

∫ t

0

∂

∂s
Ws(Ŷs(x)) +

1

2
4Ws(Ŷs(x)) +

1

2
|∇Ws(Ŷs(x))|2ds

]
.

(4.6)

For the term inside the first integral we calculate

〈∇Ws, b〉 = C−1
p bCp −

〈∇r2
p, b〉

2(T − s)
.

For the first term inside the second integral we calculate

∂

∂s
Ws =

m

2(T − s)
−

r2
p

2(T − s)2
.

For the second term inside the second integral we calculate

1

2
4Ws = − m

2(T − s)
+
〈∇r2

p,∇ log Θ
− 1

2
p 〉

2(T − s)

+
1

2
C−1
p 4Cp −

1

2
‖∇ logCp‖2.

For the third term inside the second integral we calculate

1

2
‖∇Ws‖2 =

1

2
‖∇ logCp‖2 −

〈∇r2
p,∇ logSp〉

2(T − s)

+
r2
p

2(T − s)2
−
〈∇ log Θ

− 1
2

p ,∇r2
p〉

2(T − s)
.

Using these calculations and Lemma 4.1.1 we deduce from equation (4.6) that

dP′t
dP

=
pM,b
T−t(Ŷt(x), p)

pM,b
T (x, p)

exp

[
W0(x)−Wt(Ŷt(x)) +

∫ t

0

(C−1p

(
1

2
4+ b

)
Cp)(Ŷs(x))ds

]
.

Substituting in Elworthy, Truman and Watling’s formula for pM,b, given below by
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Theorem 5.1.4, yields

dP′t
dP

=
EP
[
hT−t(Ŷt(x), p)

]
ht(x, p)

EP [hT (x, p)]

for 0 ≤ t < T . Since we assume that C−1
p

(
1
24+ b

)
Cp is bounded above it follows

immediately that

lim
t↑T

EP[hT−t(Ŷt(x), p)] = 1

from which the result follows.

Brownian motions with drift b started at x and conditioned to arrive at p at time

T , on manifolds with non-negative Ricci curvature, were the object of study in Qian

[1994]. We will consider processes similar to these in Chapter 6.

4.3.2 A Consequence of the Equivalence

It follows from our equivalence theorem and the heat kernel formula (5.2) given

below that semiclassical bridges are identical to Brownian bridges in H3
κ. This can

also be seen directly from formula (5.2), while Theorem 4.3.1 describes the difference

between these two processes in Hm
κ for dimensions other than (one and) three. In

the study of the maximum of Bessel bridges it turns out that dimensions one and

three have special significance; see [Pitman and Yor, 1999, p.18]. Let us focus on

dimension three and suppose that X(0) is a Brownian bridge in R3 starting at the

origin and returning to it at time 1. If we define

M3 := sup
0≤t≤1

r0(Xt(0))

then for θ > 0 it was observed by Chung [1982] that there is the relation

E
[
e−

θ2

2
M2

3

]
=

(
πθ
2

sinh
(
πθ
2

))2

and that a similar formula exists in dimension one. Note that the right-hand side

of this formula is similar to that of formula (1.19) in dimension three. Furthermore,
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for any complex number z there is also the remarkable formula

E[M z
3 ] = 2−

z
2 z(z − 1)Γ

(z
2

)
ζ(z) (4.7)

where ζ denotes the Riemann zeta function, proved in Biane and Yor [1987]. A

similar formula exists in dimension one. See the articles Biane, Pitman and Yor

[2001] and Williams [1990] for more about the relationship between Brownian bridges

and the Riemann zeta function. We observe that a consequence of Biane and Yor’s

formula and our Theorem 4.3.1 is that if X(p) is a Brownian bridge in H3
κ starting

at p and returning to it at time 1 and if

M3,κ := sup
0≤t≤1

rp(Xt(p))

then for any complex number z it follows that

E[M z
3,κ] = 2−

z
2 z(z − 1)Γ

(z
2

)
ζ(z). (4.8)

It is slightly intriguing that this should be true for any κ < 0.
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Chapter 5

Heat Kernel Formulae and

Estimates

Introduction

In this chapter we prove formulae and estimates for the integral of the heat kernel over

a submanifold. The main results, given in Sections 5.2 and 5.3, will be used in the

next chapter to study Brownian bridges to submanifolds. They are also connected

to local time, by formula (2.17).

A separate reason why we study this object relates to the splitting of heat kernels.

The heat kernel on Rm is essentially the product of heat kernels on Rn and Rm−n,

so we might wonder: is a sense in which this property can be expressed for the heat

kernel on a Riemannian manifold? We will show that integrating the heat kernel

over a totally geodesic or minimal submanifold yields a formula in which only the

effect of the cut locus and the curvature in the radial direction appear explicitly. We

also prove Theorem 5.3.8, which shows how asymptotic splitting occurs in a more

explicit sense.

The main result in this chapter is Theorem 5.2.1, in which we express the integral of

the heat kernel over a submanifold in terms of an integral over the paths of a Fermi

bridge. A special case is thus a formula for the heat kernel itself. We use Theorem
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5.2.1 and results from the previous chapter to prove Theorem 5.3.2 which gives lower

bounds (needed for the final chapter). Our approach to upper bounds assumes N

is compact and obtains them from the lower bounds using a result of Grigor’yan,

Hu and Lau [2008]. This simple approach is reasonable since the distance to the

submanifold is defined as an infimum.

Before proving these results, we discuss the elementary formula of Elworthy and

Truman [1982]. An extension of this formula to a Hamiltonian setting, motivated

by analogy with the Schrödinger equation for a magnetic field, was developed by

Watling [1986, 1988, 1992]. Applied to the heat kernel, Watling’s assumptions imply

the existence of a pole, as required by the elementary formula. A different extension

has been considered by Ndumu [1989, 1991, 1996, 2011], who places emphasis on

the integral of certain Dirichlet heat kernels over a submanifold. We discuss these

formulae in Section 5.1.

Section 5.4 is something of an aside. We apply Gaussian upper bounds on the heat

kernel and a Jacobian estimate from Chapter 1 to obtain estimates on the Lqq′-norm

of the heat kernel, extending a result of Krylov and Röckner [2005] to the manifold

setting. We use our estimates to prove the existence of solutions to a martingale

problem for singular drift. This is the content of Theoerm 5.4.5.

5.1 The Heat Kernel

5.1.1 Dirichlet and Minimal Heat Kernels

Suppose that M is a Riemannian manifold of dimension m and that X(x) is a

Brownian motion on M starting at x defined up to an explosion time ζ(x). Recall

that an open connected subset D of M is called a regular domain if it has smooth

boundary and compact closure. If pD denotes the Dirichlet heat kernel on D then

pD is the unique positive fundamental solution to the heat equation on D with

Dirichlet boundary conditions. A probabilistic interpretation of pD is that if f is a
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non-negative measurable function then

E
[
1{t<τD}f(Xt(x))

]
=

∫
M
f(y)pDt (x, y)d volM (y)

for all t > 0, where τD denotes the first exit time of X(x) from D. We will define pD

on (0,∞)×M ×M by setting this function equal to zero if at least one of the space

variables is not contained in D. Now suppose that M is connected and recall that a

collection {Di}∞i=1 of subsets of M is called an exhaustion of M by regular domains

if each Di is a regular domain with Di ⊂ Di+1 and ∪∞i=1Di = M . If pDi denotes the

Dirichlet heat kernel on Di then the minimal heat kernel on M is denoted by pM

and defined by the increasing limit pM := limi↑∞ p
Di which is independent of the

choice of exhaustion. The minimal heat kernel is the minimal positive fundamental

solution of the heat equation on M and coincides with the transition densities of

Brownian motion. In particular, if f is a non-negative measurable function then

E
[
1{t<ζ(x)}f(Xt(x))

]
=

∫
M
f(y)pMt (x, y)d volM (y)

for all t > 0. It follows that M is stochastically complete if and only if

∫
M
pMt (x, y)d volM (y) = 1

for all t > 0, in which case pM can unambiguously be referred to as the heat kernel

of M . For more about pM see the article Yau [1978], the book Chavel [1984] or the

survey Saloff-Coste [2010].

Example 5.1.1. On the Euclidean space Rm the heat kernel is given by the Gauss-

Weierstrass kernel

pR
m

t (x, y) = (2πt)−
m
2 exp

(
−
r2
y(x)

2t

)
(5.1)

for x, y ∈ Rm and t > 0.

Example 5.1.2. If H3
κ denotes the hyperbolic space of dimension 3 with constant
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sectional curvature κ then

p
H3
κ

t (x, y) = (2πt)−
3
2 exp

[
−
r2
y(x)

2t

] √
−κry(x)e

κt
2

sinh
(√
−κry(x)

)︸ ︷︷ ︸
≤1

(5.2)

for x, y ∈ H3
κ and t > 0.

Example 5.1.3. If S1 denotes the unit circle then

pS
1

t (x, y) = (2πt)−
1
2 exp

[
−
r2
y(x)

2t

]∑
k∈Z

exp

[
−2πk(ry(x) + πt)

t

]
︸ ︷︷ ︸

≥1

(5.3)

for x, y ∈ S1 and t > 0.

Grigor’yan and Noguchi [1998] and Nagase [2010] provide iterative formulae for the

heat kernels on the standard hyperbolic spaces and spheres, respectively, of arbitrary

dimension.

5.1.2 Elworthy, Truman and Watling’s Formula

Suppose that M is connected, that b is a smooth vector field on M and that V is a

smooth function on M which is bounded above. Then the Riemannian Schrödinger

equation
∂

∂t
u =

(
1

2
4+ b+ V

)
u (5.4)

has a unique minimal fundamental solution, defined for positive times, which we will

will denote by pM,b,V . Suppose that X(x) is a Brownian motion on M with drift

b starting at x and defined up to an explosion time ζ(x). If f is a non-negative

measurable function on M then a probabilistic interpretation of pM,b,V is that

E
[
1{t<ζ(x)}f(Xt(x)) exp

[∫ t

0

V (Xs(x))ds

]]
=

∫
M

f(y)pM,b,V
t (x, y)d volM (y) (5.5)

for all t > 0. This is the Feynman-Kac formula. In certain circumstances it is

possible to obtain a probabilistic formula for pM,b,V . For the case in which M has

a pole there is the following one, due to Elworthy and Truman [1982] and [Watling,
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1986, Section 7].

Theorem 5.1.4. Suppose that p is a pole for M and that C−1
p

(
1
24+ b

)
Cp is

bounded above. Then for T > 0 and x ∈M we have

pM,b,V
T (x, p) = qT (x, p)Cp(x)E

[
exp

[∫ T

0

(C−1p

(
1

2
4+ b+ V

)
Cp)(Ŷs(x))ds

]]
(5.6)

where Ŷ (x) is a semiclassical bridge between x and p in time T .

Elworthy and Truman proved the formula for the case b = 0, using a Feynman-Kac-

Girsanov transformation and Itô’s formula, while Watling allowed for the drift b.

Remarks on this formula can be found in [Elworthy, 1988, Chapter V].

Example 5.1.5. On Hm
κ we have

1

2
Θ

1
2
y (x)4Θ

− 1
2

y (x) =
(m− 1)2κ

8
+

(m− 1)(m− 3)

8r2
y(x)

1−

( √
−κry(x)

sinh
(√
−κry(x)

))2


for x, y ∈ Hm
κ so for m = 3 (and in the absence of a drift and potential) formula

(5.6) reduces to formula (5.2).

We would like to point out that a geometric interpretation of the boundedness as-

sumption in Theorem 5.1.4 is not entirely obvious. Nonetheless, Aida [2004] used

formula (5.6) to obtain gradient and Hessian estimates for the heat kernel on man-

ifolds with a pole by differentiating it directly. Unfortunately this required rather

heavy assumptions of asymptotic flatness.

One can also use Theorem 5.1.4 to obtain a formula which is valid under more

general assumptions. Following [Elworthy, 1988, p.389], suppose only that there

exists p ∈ M for which expp is a local diffeomorphism. Then expp makes TpM into

a Riemannian manifold by pulling back the metric on M . When endowed with this

metric the tangent space TpM will be denoted by M̃ . The Laplacian on M̃ will be

denoted by 4̃ and the Riemannian distance function by d̃. It follows that expp is a

local isometry when considered as a map from M̃ toM and the origin is a pole for M̃ .

Supposing that b = 0 (so that pM,V is symmetric in its space variables) and that V is
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a function on M which is smooth and bounded above, denote by PM,V the minimal

semigroup for the operator 1
24 + V and by pM,V the associated kernel. Defining a

function Ṽ on M̃ by Ṽ = V ◦ expp, denote by P M̃,Ṽ the minimal semigroup for the

operator 1
24̃ + Ṽ and by pM̃,Ṽ the associated kernel. Then, since our assumptions

imply that expp is a covering map, it follows that for each x ∈M there are at most

countably many elements in the preimage of x under expp. Denoting by Θ̃0 the

Jacobian determinant of the inverse exponential map of M̃ based at the origin, we

therefore have the following corollary of Theorem 5.1.4.

Corollary 5.1.6. Suppose that there exists p ∈ M such that expp is a local diffeo-

morphism with Θ̃
1
2
0

(
1
24̃+ Ṽ

)
Θ̃
− 1

2
0 bounded above on M̃ . Then for all T > 0 and

x ∈M we have

pM,V
T (x, p) =

∑
ξ∈exp−1

p (x)

q̃T (ξ, 0)Θ̃
− 1

2
0 (ξ)E

[
exp

[∫ T

0

(Θ̃
1
2
0

(
1

2
4̃+ Ṽ

)
Θ̃
− 1

2
0 )(Ŷs(ξ))ds

]]

where for each ξ ∈ exp−1
p (x) the process Ŷ (ξ) is a semiclassical bridge on M̃ between

ξ and the origin in time T and where the function q̃T (·, 0) is defined by

q̃T (ξ, 0) := (2πT )−
m
2 exp

(
− d̃

2(ξ, 0)

2T

)

for ξ ∈ M̃ .

Proof. The following argument is due to Elworthy [1988]. Since expp is a cover-

ing map it follows that if U(x) is a sufficiently small open neighbourhood of x

then its preimage under expp is a countable collection of pairwise disjoint open

sets {Uξ(x)}ξ∈exp−1
p (x) and each Uξ(x) has the same volume as U(x), by the local

isometry. It follows that

PM,V
T 1U(x)(p) =

∑
ξ∈exp−1

p (x)

P M̃,Ṽ
T 1Uξ(x)(0),

by the Feynman-Kac formula, and if we choose U(x) to be a ball around x with
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suitably small radius then we can let the radius of the ball tend to zero to see that

pM,V
T (x, p) =

∑
ξ∈exp−1

p (x)

pM̃,Ṽ
T (ξ, 0)

by the symmetry of pM,V
T . The corollary follows by Theorem 5.1.4.

If the exponential map is a local diffeomorphism then there is a one-to-one corres-

pondence between points in preimage of x under expp and geodesic segments in M

which connect p with x in unit time. Expressed in these terms, Corollary 5.1.6 be-

comes the sum over geodesics formula found in Arede [1985] and Elworthy [1988].

In the latter the function V is merely assumed to be continuous and bounded above.

5.1.3 The Integrated Heat Kernel

Now suppose that N is a closed embedded submanifold of M of dimension n ∈

{0, . . . ,m−1}. For a regular domain D consider the integrated Dirichlet heat kernel

pD· (·, N) : [0,∞)×M → R defined by

pDT (x,N) :=

∫
N
pDT (x, y) d volN (y) (5.7)

for T > 0 and x ∈M and the integrated minimal heat kernel pM· (·, N) : [0,∞)×M →

R defined by

pMT (x,N) :=

∫
N
pMT (x, y) d volN (y) (5.8)

for T > 0 and x ∈M . For y ∈M one can think of pM· (·, y) as a solution to the heat

equation on M with a measure-valued initial condition given by the Dirac measure

based at y. Similarly, the integrated heat kernel, considered as a function of time and

space, can be thought of as a solution to the heat equation on M for the measure-

valued initial condition volN . For example, if N is a closed embedded surface in

R3 uniformly heated at time zero then the integrated heat kernel describes how the

heat diffuses for positive times. If N is a closed embedded loop in R3 then it could

be modelling a hot metal wire. A probabilistic interpretation of the integrated heat
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kernel will be given by Theorem 6.1.1 in the next chapter.

Remark 5.1.7. Using a non-negative measurable function f with volN (f) <∞ one

could more generally replace volN with the measure f ·volN . As remarked upon below,

the main result of this chapter, Theorem 5.2.1, extends to measures of this form. It

follows that if N is compact then one could instead consider the probability measure

volN (N)−1 · volN . All results obtained in Chapter 6 for the measure volN can be

applied to the normalized measure too, upto a constant.

Example 5.1.8. For r > 0 denote by S1(r) the circle of radius r in R2 and suppose

that φ is a continuous function on R2 with compact support. Then, using the polar

coordinates (r, θ), we see that

1

2πr

∫
S1(r)

φ(y)d volS1(r)(y) =
1

2π

∫ 2π

0
φ((r, θ))dθ →r↓0 φ(0) (5.9)

so that

lim
r↓0

1

2πr

∫
S1(r)

φ(y)d volS1(r)(y) =

∫
{0}

φ(y)d vol{0}(y). (5.10)

In this and other examples where N is of finite volume, normalizing therefore leads to

additional continuity properties, but in this chapter we wish to avoid extra assump-

tions and study the integrated heat kernel for the reasons given in the introduction.

In particular, we wish to compare it to the function q·(·, N) defined by (4.1), motiv-

ated by the fact that if Rn is viewed as an affine subspace of Rm then

pR
m

T (x,Rn) = qT (x,Rn). (5.11)

If n = 0 then volN is a counting measure so the results we prove for the integrated

heat kernel apply also to the heat kernel itself.

Example 5.1.9. For r > 0 denote by S1(r) the circle of radius r in R2. Then for

t > 0 and x ∈ R2 calculation yields

pR
2

t (x,S1(r)) = rt−1 exp

[
−
(
r2 + ‖x‖2

)
2t

]
BesselI

(
0,
r‖x‖
t

)
(5.12)
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where BesselI denotes the modified Bessel function of the first kind. In Figure 4

below we use this expression to produce a density plot of the integrated heat kernel at

a small positive time for the case r = 1.

Figure 4: A density plot of the right-hand side of (5.12) for r = 1 at a fixed small time

t > 0. The origin is located at the center of the image.

5.1.4 Ndumu’s Formula

Ndumu [1989] proved a formula which generalizes Theorem 5.1.4. Note that Ndumu’s

formula, and those we obtain below in Theorems 5.2.1 and 5.2.2, can all be extended

to the case in which volN is replaced by f · volN for a suitable function f .

Theorem 5.1.10. Suppose that N is compact and that b and V are smooth. Let D
be a regular domain compactly contained in the connected open set M \Cut(N) and
let x ∈ D. Let Ŷ (x) be a semiclassical bridge between x and N in time T and denote
by τ̂D the first exit time of this process from D. If pD,b,V denotes the fundamental
solution to equation (5.4) on D with Dirichlet boundary conditions then

pD,b,VT (x,N) = qT (x,N)CN (x)E
[
1{T<τ̂D} exp

[∫ T

0

(
C−1
N

(
1

2
4+ b+ V

)
CN

)
(Ŷs(x))ds

]]
.
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Unfortunately, it is not generally possible to construct an exhaustion of M using

regular domains contained inM \Cut(N). Furthermore, the regularity of ΘN on the

cut locus and around Č(N) is not known. It is therefore difficult to use Ndumu’s

formula to access information about the behaviour of pM on the cut locus. While the

‘quantum potential’ appearing in Ndumu’s formula is rather difficult to work with,

as remarked upon earlier, Ndumu used this formula to deduce an exact expansion

which he extended in Ndumu [2011] using a theorem of Azencott. We will mention

Ndumu’s expansion later in the chapter but we will not state it.

Example 5.1.11. With the 2-dimensional hyperbolic space H2 viewed as a totally

geodesic embedded submanifold of H3, Ndumu used Theorem 5.1.10 and formula (5.2)

for the case κ = −1 to show that

pH
3

t (x,H2) = (2πt)−
1
2 exp

[
−
r2
H2(x)

2t

]
e−

t
2

cosh(rH2(x)))

for t > 0 and x ∈ H3. If X(x) is a Brownian motion in H3 starting at x then it

follows, by formula (2.17), that

lim
t↑∞

E
[
LH2

t (X(x))
]

= sech(rH2(x)))

∫ ∞
0

(2πt)−
1
2 exp

[
−
r2
H2(x)

2t
− t

2

]
dt

= sech(rH2(x)) exp [−rH2(x)] .

In contrast, if R2 is embedded as a linear subspace of R3 with X(x) is a Brownian

motion in R3 starting at x then

lim
t↑∞

E
[
LR2

t (X(x))
]

=∞.

The formula we prove in the next section is one in which the effect of the cut locus

is not neglected and in which the ‘quantum potential’ appearing in the formulae of

Elworthy, Truman, Watling and Ndumu is replaced by something more amenable to

analysis.
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5.2 General Formulae

5.2.1 A Formula the Integrated Heat Kernel

In this subsection we take b = 0 and V = 0 (we consider a drift and potential in the

next subsection). The following is the main result of this chapter.

Theorem 5.2.1. Suppose that M is a complete and connected Riemannian manifold

of dimension m, that N is a closed embedded submanifold of M of dimension n ∈

{0, . . . ,m − 1} and that D is a regular domain in M . Suppose that x ∈ M with

T > 0 and that X̂(x) is a Fermi bridge between x and N in time T , defined upto

the minimum of T and its explosion time, and denote by τ̂D the first exit time of

this process from D. Then, with q·(·, N) and pD· (·, N) defined by (4.1) and (5.7)

respectively, we have

pDT (x,N) = qT (x,N) lim
t↑T

E

[
1{t<τ̂D} exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
(5.13)

where

dAs :=
∂

∂rN
log Θ

− 1
2

N (X̂s(x))ds, dLs := dLCut(N)
s (X̂(x)). (5.14)

Proof. We begin by using Theorem 1.2.1 to see that

lim
t↑T

∫
M

pDt (x, y)qT−t(y,N)d volM (y)

= lim
t↑T

∫
N

∫
TpN⊥

(pDt (x, expN )1Mp(N)θN )(ξ)(2π(T − t))−
(m−n)

2 exp

[
− ‖ξ‖2

2(T − t)

]
dξd volN (p)

= lim
t↑T

∫
N

∫
TpN⊥

(pDt (x, expN )1Mp(N)θN )(
√
T − tξ)(2π)−

(m−n)
2 exp

[
−‖ξ‖

2

2

]
dξd volN (p)

=

∫
N

∫
TpN⊥

(pDt (x, expN )1Mp(N)θN )(0p)(2π)−
(m−n)

2 exp

[
−‖ξ‖

2

2

]
dξd volN (p)

=

∫
N

pDT (x, p)d volN (p)

where 0p denotes the origin of the vector space TpN⊥ and where the third equality is

justified by the compactness of the closure of D, the dominated convergence theorem

and the fact that that for each p ∈ N the indicator function 1Mp(N) is continuous

on TpN
⊥ in a neighbourhood of the origin. Then, denoting by {PDt : t ≥ 0} the
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Dirichlet heat semigroup for the domain D, it follows from Girsanov’s theorem that∫
N
pDT (x, y)d volN (y)

= lim
t↑T

∫
M
pDt (x, y)qT−t(y,N)d volM (y)

= lim
t↑T

PDt qT−t(·, N)(x)

= lim
t↑T

E
[
1{t<τ̂D}qT−t(X̂t(x), N)M̂t

]
where

M̂t∧τ̂D = exp

[∫ t∧τ̂D

0

rN (X̂s(x))

T − s

〈
∂

∂rN
, ÛsdBs

〉
− 1

2

∫ t∧τ̂D

0

r2
N (X̂s(x))

(T − s)2
ds

]
(5.15)

with Û a horizontal lift of X̂(x) whose antidevelopment has martingale part given

by an Rm-valued Brownian motion B. Itô’s formula and formula (4.2) imply

log qT−(t∧τ̂D)(X̂t∧τ̂D(x), N)

= log qT (x,N)−
∫ t∧τ̂D

0

rN (X̂s(x))

T − s

〈
∂

∂rN
, ÛsdBs

〉

+

∫ t∧τ̂D

0

∂

∂s
log qT−s(X̂s(x), N)ds+

∫ t∧τ̂D

0

r2
N (X̂s(x))

(T − s)2
ds

+
1

2

∫ t∧τ̂D

0
4 log qT−s(X̂s(x), N)ds

+

∫ t∧τ̂D

0

rN (X̂s(x))

T − s
dLCut(N)

s (X̂(x)).

and so we can eliminate the stochastic integral in (5.15) by rearrangement and sub-

stitution. Finally, using the fact that

∂

∂s
log qT−s(·, N) =

m− n
2(T − s)

−
r2
N (·)

2(T − s)2

and also that

4 log qT−s(·, N) = −
4r2

N (·)
2(T − s)
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onM(N) together with equation (1.7), we can further simplify the resulting formula

so as to obtain the desired expression.

Theorem 5.2.2. Suppose that {Di}∞i=1 is an exhaustion of M by regular domains.

Then we have

pMT (x,N) = qT (x,N) lim
i↑∞

lim
t↑T

E

[
1{t<τ̂Di} exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
(5.16)

where A and L are defined by (5.14).

Proof. Recalling that pM is given as the limit of the increasing sequence of Dirichlet

heat kernels pDi , it follows from the monotone convergence theorem that

pMT (x,N) = lim
i↑∞

pDiT (x,N)

and so the result follows by Theorem 5.2.1.

Note that the integrator in the exponent in formula (5.16) is given as the sum of an

absolutely continuous part

dA =
∂

∂rN
log Θ

− 1
2

N (X̂(x)) ds,

whose support is contained in the set of times at which X̂(x) is in M \Cut(N) (i.e.

off the cut locus) and a singular part

dL = dLCut(N)(X̂(x)) = −1

2

(
D+

X̂(x)
−D−

X̂(x)

)
rN (n) dLC̊(N)(X̂(x))

whose support is contained in the set of times at which X̂(x) is in Cut(N) (i.e. on

the cut locus). These two random measures describe how the kernel qT (x,N) differs

from the true integrated heat kernel pMT (x,N). The comparison theorem of Heintze

and Karcher [1978] (see Section 1.3) and the monotone convergence theorem imply

the following corollary.

Corollary 5.2.3. Suppose that M is stochastically complete, that the cut locus of N

has Hausdorff dimension at most m − 2 and that one of the following conditions is
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satisfied:

(I0) n ∈ {0, . . . ,m − 1}, the sectional curvature of planes containing the radial

direction vanishes and N is totally geodesic;

(II0) n ∈ {0,m − 1}, the Ricci curvature in the radial direction vanishes and N is

minimal.

Then we have

pMT (x,N) = qT (x,N)

for all x ∈M and T > 0.

Consequently one recovers the identity (5.11) in the Euclidean setting.

Example 5.2.4. Theorem 5.2.2 implies that for the m-dimensional sphere Smκ with

constant sectional curvature κ we have

p
Smκ
T (x, y) = qT (x, y)E

[ ∞∏
k=1

exp

[∫ T

0

(m− 1)κr2
y(X̂s(x))

(T − s)(π2k2 − κr2
y(X̂s(x)))

ds

]]

by the monotone convergence theorem and the expansion for the cotangent function

given in Subsection 1.3.3. Note that the set of times at which the denominator of the

integrand vanishes has Lebesgue measure zero.

While passing the two limits in formula (5.16) through the integral does not seem to

be a hugely important thing to do, this matter has been considered in Section C.2,

where a few additional remarks about the formula itself can also be found.

5.2.2 A Formula for the Feynman-Kac Kernel

One can include a smooth drift b and a smooth potential V using a similar approach.

In particular, for the special case in which N is a point, the Feynman-Kac formula
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(5.5) yields the formula

pM,b,V
T (x, y) = qT (x, y) lim

i↑∞
lim
t↑T

E
[
1{t<τ̂Di}

exp

[∫ t

0
V (X̂s(x))ds

+

∫ t

0

ry(X̂s(x))

(T − s)
∂

∂ry

(
log Θ

− 1
2

y (X̂s(x))− b(X̂s(x))

)
ds

+

∫ t

0

ry(X̂s(x))

(T − s)
dLC(y)

s (X̂(x))

]]

where for convenience we have defined ∂
∂ry

b :=
〈
∂
∂ry

, b
〉
and where we should re-

call that X̂(x) is a diffusion on M starting at x with time-dependent infinitesimal

generator
1

2
4+ b− ry

T − s
∂

∂ry
.

In particular, if M = Rm and b is bounded then by Corollary C.1.4 we have the

representation formula

pR
m,b

T (x, y) = pR
m

T (x, y)E

[
exp

[∫ T

0

ry(X̂s(x))

T − s

〈
∂

∂ry
, b(X̂s(x))

〉
ds

]]
.

Estimation and comparison of the transition densities of a Brownian motion with

drift b, whether it be smooth and bounded or only measurable and under a growth

condition, has already been considered in the series of articles Qian and Wei [1991],

Qian [1994, 1995] and Qian and Zheng [2004]. For the remainder of this thesis

we will therefore focus on how our approach can be applied to the submanifold

generalization and assume that b = 0 for simplicity. Under suitable assumptions

on b it should nevertheless be possible to use our formulae, and the upper bounds

of Qian [1994] where appropriate, to deduce estimates and asymptotic relations for

pM,b and its integrals which are similar to those for pM given later in the chapter.
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5.3 Estimates and Asymptotic Relations

5.3.1 Lower Bounds

The history of Gaussian heat kernel estimates begins with the famous work of Nash

[1958], on the local Hölder continuity of solutions of second order uniformly parabolic

equations in Rm with non-smooth coefficients. Nash derived regularity properties of

the general solutions to these equations using properties of the fundamental solutions,

the key result being a moment estimate similar to the one we proved in Corollary

3.2.4. The upper and lower bounds which Nash proved in the appendix to that article

were later improved with a Harnack inequality by Aronson [1967, 1968] before Fabes

and Stroock [1986] demonstrated that the method of Nash can be improved without

using a Harnack inequality.

The heat kernel lower bounds of Cheeger and Yau [1981], for balls in Riemannian

manifolds, were proved using a bound on the Ricci curvature in the radial direction

and a Laplacian comparison theorem. These are similar to the objects we will use,

but our method is quite different. Our method is closer in spirit to that of Wang

[1997], who also used stochastic techniques with unbounded curvature (but only for

the one point case). Our lower bounds for the integrated heat kernel will be deduced

from the following proposition, for which we recall that the functions q·(·, N) and

pM· (·, N) are defined by (4.1) and (5.8) respectively.

Proposition 5.3.1. Suppose that M is stochastically complete and that there exist

constants α, β ≥ 0 such that

∂

∂rN
log ΘN ≤ α+ βrN . (5.17)

Then for any x ∈M and T > 0 we have the lower bound

pMT (x,N) ≥ qT (x,N) exp

[
−α

(
r2
N (x) + νT

) 1
2 e

λT
2 − β

2

(
r2
N (x) + νT

)
eλT
]

where ν = m− n+ α
2 and λ = α

2 + β.
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Proof. Using the non-explosive Fermi bridge X̂(x) constructed in Subsection 4.2.3

we see, by Theorem 5.2.2 and the fact that LCut(N)(X̂(x)) is non-decreasing, that

pMT (x,N) ≥ qT (x,N) lim
i↑∞

lim
t↑T

E

[
1{t<τ̂Di}

exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]]

where the non-negative function f is defined by f(x) = 1
2

(
αrN (x) + βr2

N (x)
)
for

x ∈M . For t ∈ [0, T ) we see that

1{t<τ̂Di}
exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]

= 1{t<τ̂Di}

∞∑
p=0

(
−
∫ t

0
f(X̂s(x))
T−s ds

)p
p!

= 1{t<τ̂Di}
− 1 +

∞∑
p=0

(
−1{t<τ̂Di}

∫ t
0
f(X̂s(x))
T−s ds

)p
p!

= 1{t<τ̂Di}
− 1 + exp

[
−1{t<τ̂Di}

∫ t

0

f(X̂s(x))

T − s
ds

]

from which it follows, by Jensen’s inequality, that

E

[
1{t<τ̂Di}

exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]]

≥ QT−{t < τ̂Di} − 1 + exp

[
−E

[
1{t<τ̂Di}

∫ t

0

f(X̂s(x))

T − s
ds

]]
.

(5.18)

For the exponential term on the right-hand side of inequality (5.18), our assumptions

imply that (3.7) holds with ν and λ as given so by Lemmas 4.2.3 and 4.2.4 we have

E

[
1{t<τ̂Di}

∫ t

0

f(X̂s)

T − s
ds

]

≤ α

2
E

[∫ t

0

rN (X̂s(x))

T − s
ds

]
+
β

2
E

[∫ t

0

r2
N (X̂s(x))

T − s
ds

]

≤ α
(
r2
N (x) + νT

) 1
2 e

λT
2 +

β

2

(
r2
N (x) + νT

)
eλT .

(5.19)
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For the first term on the right-hand side of inequality (5.18), we note that

lim
i↑∞

lim
t↑T

QT−{t < τ̂Di} = lim
i↑∞

QT−{X̂s(x) ∈ Di, ∀s ∈ [0, T )}

= QT−{X̂s(x) ∈M,∀s ∈ [0, T )}

= 1

(5.20)

by the dominated convergence theorem and non-explosion property. Combining

(5.18) with (5.19) and (5.20) yields the desired estimate.

Theorem 5.3.2. Suppose that M is stochastically complete and that there exist

constants C1, C2,Λ ≥ 0 with respect to which at least one of the conditions (C1),

(C2) or (C3) of Theorem 1.4.5 is satisfied. Then for any x ∈ M and T > 0 the

assumptions of Proposition 5.3.1 hold with α = nΛ + (m− 1)C1 and β = (m− 1)C2.

In particular, for each T > 0 there exists a constant C ≥ 0, depending only on

T,C1, C2,Λ,m and n, such that

pMt (x,N) ≥ t−
(m−n)

2 exp

[
−
r2
N (x)

2t
− C(1 + r2

N (x))

]

for all x ∈M and t ∈ (0, T ].

Proof. The theorem follows from Theorem 1.4.5 and Proposition 5.3.1, since they

imply the lower bound

pMt (x,N) ≥ qt(x,N) exp
[
−(nΛ + (m− 1)C1)

(
r2
N (x) + νt

) 1
2 e

λt
2

−(m− 1)C2

2

(
r2
N (x) + νt

)
eλt
]

where ν = m− n+ nΛ+(m−1)C1

2 and λ = nΛ+(m−1)C1

2 + (m− 1)C2.

Appendix D includes an alternative lower bound for the case C2 = 0 , which is less

explicit but has better large time behaviour. Since we we are primarily interested

in applications to the study of bridge processes, our focus will be on short time

estimates.
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Corollary 5.3.3. Suppose that M is stochastically complete and that one of the

following conditions is satisfied:

(I) n ∈ {0, . . . ,m − 1}, the sectional curvature of planes containing the radial dir-

ection is non-negative and N is totally geodesic;

(II) n ∈ {0,m− 1}, the Ricci curvature in the radial direction is non-negative and

N is minimal.

Then we have the comparison

pMT (x,N) ≥ qT (x,N)

for all x ∈M and T > 0.

Proof. The curvature assumptions imply ∂
∂rN

log ΘN ≤ 0, by Theorem 1.4.5, so the

assertion follows from Theorem 5.3.2.

The constants C1, C2 and Λ typically depend upon N . For lower bounds on the heat

kernel which are uniform in both space variables we have the following corollary of

Theorem 5.3.2, which we include for completeness.

Corollary 5.3.4. Suppose Ric ≥ −(m − 1)C2
1 , for some constant C1 ≥ 0. Then

there exists a constant C ≥ 0, depending only on T,C1 and m, such that

pMt (x, y) ≥ t−
m
2 exp

[
−
r2
y(x)

2t
− C(1 + ry(x))

]

for all x, y ∈M and t ∈ (0, T ].

Proof. The corollary follows from Theorems 1.4.5 and 5.3.2, since they imply the

lower bound

pMt (x, y) ≥ qt(x, y) exp

[
−(m− 1)C

(
r2y(x) +

(
m+

(m− 1)C

2

)
t

) 1
2

e
(m−1)Ct

4

]
.
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The following corollary shows that the large-time behaviour of our estimates can be

improved in the compact case.

Corollary 5.3.5. Suppose that M is compact, let −C2
1 be a lower bound on the

sectional curvatures of M with C1 ≥ 0 and let Λ be an upper bound on the absolute

value of the principal curvatures of N . Then

pMT (x,N) ≥ qT (x,N) exp
[
−α

(
r2
N (x) + νT

) 1
2

]
for all x ∈M and T > 0, where α = nΛ + (m− 1)C1 and ν = m− n+ diam(M)α.

Proof. By Theorem 1.4.5 the assumptions of Proposition 5.3.1 are satisfied with α =

nΛ+(m−1)C1 and β = 0, while inequality (3.7) holds with ν = m−n+diam(M)α

and λ = 0.

Example 5.3.6. Suppose that M = Rm with

N = {(x1, . . . , xm) ∈ Rm : x2
1 + · · ·+ x2

n+1 = 1, xn+2 = · · · = xm = 0}

equipped with the induced metric. By Theorem 5.3.2 there is the lower bound

pMT (0, N) ≥ (2πT )−
m−n

2 exp

[
− 1

2T
− n

(
1 +

(
m− n

2

)
T
) 1

2
e
nT
4

]
(5.21)

for all T > 0. On the other hand, we know that

pMT (0, N) = (2πT )−
m
2 exp

[
− 1

2T

]
volN (N)

for all T > 0. So the difference between the powers of T appearing in the two

prefactors is balanced by the exponential factor on the right-hand side of (5.21),

which contains information about curvature. If we define

fT (x,N) :=
pMT (x,N)

qT (x,N)
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then in this example, where the origin is focal for N , we see that

fT (0, N) = volN (N)(2πT )−
n
2

for all T > 0. In the general setting, it would be interesting to determine the order

in T of the ratio fT (x,N) when x ∈ Cut(N) is a focal point.

5.3.2 Local Time Comparison

Given formula (2.17), the lower bounds of the previous subsection imply lower bounds

on the expected value of the local time of Brownian motion on a hypersurface. In

particular, we have the following comparison.

Theorem 5.3.7. Suppose that N is a minimal hypersurface, that the Ricci curvature

in the radial direction is non-negative and that X(x) is a non-explosive Brownian

motion on M starting at x. Then

E[LNt (X(x))] ≥ E[L0
t (B(rN (x)))]

for all t ≥ 0, where B(rN (x)) denotes a Brownian motion on R starting at rN (x)

(or at −rN (x)).

Proof. The comparison follows from Corollary 5.3.3 and formula (2.17).

Note that the factor s−
(m−n)

2 appearing in the definition of qs(x,N) is integrable

only in the hypersurface case and that in the notation of the above theorem we have

E
[
L0
t (B(0))

]
=

√
2t

π

for all t ≥ 0.

5.3.3 Asymptotic Relations

Since the heat kernel is a positive fundamental solution to the heat equation, fixing

one of the spatial variables for small times will result in densities whose mass is
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localized around that fixed point. Riemannian manifolds are locally Euclidean, so

we might expect that the resulting densities should, for these small times, look like

the Gauss-Weierstrass kernel (5.1). The precise sense in which this is true is given by

Varadhan’s asymptotic relation, proved originally in the articles Varadhan [1967a,b].

In particular, for the minimal heat kernel pM of a complete Riemannian manifold

M it was proved by Varadhan that

lim
t↓0

t log pMt (x, y) = −d
2(x, y)

2
(5.22)

uniformly on compact subsets ofM×M . Hsu [1990] found the best conditions under

which Varadhan’s relation holds on noncomplete Riemannian manifolds.

Similarly, the embedding in M of a submanifold N is locally diffeomorphic to an

affine embedding of Rn in Rm and so one might expect that for small times the

integrated heat kernel pM· (·, N) should look something like the kernel q·(·, N). Our

lower bounds on the integrated heat kernel, combined with the pointwise relation

(5.22), allow us to deduce an asymptotic relation for the integrated heat kernel which

makes this intuition precise.

Theorem 5.3.8. Suppose that M is a complete and connected Riemannian manifold

of dimension m and that N is a compactly embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}. Then

lim
t↓0

t log pMt (x,N) = −d
2(x,N)

2
(5.23)

uniformly on compact subsets of M .

Proof. It is a simple matter to show that the left-hand side of (5.23) is less than or

equal to the right-hand side, using Varadhan’s relation and the fact that rN (x) ≤

ry(x) for all y ∈ N . To prove the other inequality first assume that M is compact.

Then the result follows immediately from Corollary 5.3.5. So let us assume that M

is non-compact, let K be any compact subset ofM and for x ∈ K and y ∈ N denote

by Γx,y the set of all length-minizing geodesic segments between x and y, viewed as
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a subset of M . Then Γx,y contains (the image of) at least one such geodesic and by

the triangle inequality the set

ΓK,N :=
⋃

x∈K,y∈N
Γx,y

is a bounded subset of M . Now let D be any regular domain in M containing ΓK,N .

Modify M outside of D so as to obtain a compact Riemannian manifold MD (by

doubling, for example) and suppose that D is sufficiently large so that

lim
t↓0

pDt (x, y)

pMD
t (x, y)

= 1

uniformly for x ∈ K and y ∈ N . This is the principle of not feeling the boundary

(see Hsu [1995]). Such D can always be found since we are assuming that M is

non-compact (see Norris [1997]). Then for all ε > 0 there exists tε,K > 0 such that

for t ∈ (0, tε,K) we have

(1− ε)pMD
t (x,N) ≤ pDt (x,N) ≤ pMt (x,N)

for all x ∈ K. It follows from this and the result in the compact case that

lim
t↓0

t log pMt (x,N) ≥ −
d2
MD

(x,N)

2

where dMD
denotes the distance function on MD. But since ΓK,N is contained

in D it follows that x ∈ K and y ∈ N implies dMD
(x, y) ≤ d(x, y). Therefore

dMD
(x,N) ≤ d(x,N) and the result follows.

The expansion of Ndumu [2011], while only valid away from the cut locus, could be

used as an alternative to our lower bounds by connecting points in K to N with

smooth curves, covering them with small balls and invoking the Markov property.

Alternatively, note that Hino and Ramírez [2003] proved, in the context of Dirichlet

spaces, that

lim
t↓0

t logP{X0 ∈ A;Xt ∈ B} = −d
2(A,B)

2
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for all measurable sets A and B of positive measure, where X denotes the Markov

process associated with the underlying local regular Dirichlet form and where d is the

associated intrinsic distance. Using the upper bounds of Sturm [1995] and pointwise

lower bounds, one can deduce from this the pointwise relation of Varadhan, as shown

by [Ramírez, 2001, Theorem 4.1]. A modification of this approach, replacing balls

with tubular neighbourhoods and pointwise lower bounds with our integrated heat

kernel lower bounds, can also be used to deduce a relation similar to (5.23).

Example 5.3.9. Suppose that D is a regular domain in M ; then ∂D is a compactly

embedded hypersurface. According to [Hsu, 2002, Theorem 5.2.6] one has

lim
t↓0

t logP{τD(x) < t} = −d
2(x, ∂D)

2

for all x ∈ D, where τD(x) denotes the first exit time from D of a Brownian motion

X(x) starting at x. On the other hand, according to [Norris, 1997, Theorem 1.2]

one has

lim
t↓0

t log pMt (x,D, x) = −d
2(x, ∂D)

2

for all x 6∈ D, where pMt (x,D, y) := pMt (x, y) − pM\Dt (x, y) is the measure of heat

passing through D. Theorem 5.3.8 implies, in either case, that

lim
t↓0

t log
d

dt
E
[
L∂Dt (X(x))

]
= −d

2(x, ∂D)

2

by Theorem 2.4.1.

Example 5.3.10. If TM is equipped with the Sasaki metric then Theorem 5.3.8

implies

lim
t↓0

t log pTMt (ξ,M) = −‖ξ‖
2

2

uniformly for ξ in compact subsets of TM .
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5.3.4 Obtaining Upper Bounds from Lower Bounds

The compact case implies that in general one should only expect a Gaussian upper

bound on the heat kernel to hold over a finite time interval. Such bounds were proved

by Cheng, Li and Yau [1981] assuming bounded curvature and later extended to a

wider class of kernels by Cheeger, Gromov and Taylor [1982]. Soon after, Li and

Yau [1986] used their famous gradient estimates to derive upper and lower bounds

via a Harnack inequality.

In the series of articles Davies [1987a,b, 1988] and Davies and Pang [1989] it was

shown that a uniform bound of the type pt(x, y) ≤ c(t) on the kernel of a second order

hypoelliptic operator implies a Gaussian estimate and that no further hypotheses are

needed. In particular, for the case of the Laplace-Beltrami operator on a complete

Riemannian manifold M , if for T > 0 there exists a constant c1 such that the on-

diagonal upper bound

pMt (x, x) ≤ c1t
−m

2 (5.24)

holds for all t ∈ (0, T ] then for arbitrary δ > 0 there exists a constant cδ, which

might depend on T , such that

pMt (x, y) ≤ cδt−
m
2 exp

[
− d2(x, y)

2(1 + δ)t

]
(5.25)

for all t ∈ (0, T ]. As noted in Davies [1987a], the on-diagonal estimate is known to

hold if the Ricci curvature is bounded below with the injectivity radius positive.

While the upper bound (5.25) will suffice, we obtain a more complete argument by

referring to the work of Grigor’yan, Hu and Lau [2008], who showed how upper

bounds can be obtained from lower bounds. Lower bounds are frequently obtained

from upper bounds, as in the method of Aronson, while theirs was the first result to

go in the other direction. To use their result we need the following definition.

Definition 5.3.11. We say that volM is lower regular if there exist constants T0, C >

0 such that

Vr(x) ≥ Crm
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for all x ∈M and 0 < r <
√
T0.

If the injectivity radius ofM is positive and if the Ricci curvature is bounded above by

a constant (for example if M is compact) then volM is lower regular. For geometric

assumptions which imply a positive injectivity radius, see Cheeger, Gromov and

Taylor [1982]. Let us assume that volM is lower regular and also that the Ricci

curvature of M is bounded below by a constant. Then the lower bound of Corollary

5.3.4 holds and implies a near-diagonal lower estimate of the form

pMt (x, y) ≥ C ′t−
m
2

for all 0 < t < T0 and x, y ∈ M satisfying d(x, y) < t
1
2 . It follows from [Grigor’yan,

Hu and Lau, 2008, Corollary 3.5] that we have, automatically, the existence of con-

stants c, σ2 > 0 (which might depend upon T0) such that

pMt (x, y) ≤ ct−
m
2 exp

[
−d

2(x, y)

σ2t

]
(5.26)

for all t ∈ (0, T0) and x, y ∈ M . We therefore have the following theorem, by

observing that y ∈ N implies ry(x) ≥ rN (x).

Theorem 5.3.12. Suppose that the Ricci curvature of M is bounded below by a con-

stant, that volM is lower regular and that N is compact. Then there exist constants

c, σ2 > 0 (which might depend upon T0) such that

pMt (x,N) ≤ ct−
m
2 exp

[
−
r2
N (x)

σ2t

]

for all x ∈M and t ∈ (0, T0).

5.4 The Martingale Problem for Singular Drift

5.4.1 Lqq′ Estimates for the Heat Kernel

For this section, in which we apply the Gaussian upper bounds and Proposition 1.4.9

to a problem of independent interest, suppose that M is a complete and connected
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Riemannian manifold of dimension m with

R := inf{Ric(ξ, ξ) : ξ ∈ UTM} > −∞

and suppose also that the volume measure volM is lower regular. These conditions

guarantee the existence, upto time T0, of the Gaussian upper bound (5.26) and

c, σ2 > 0 will denote the constants appearing in that bound (these constants, as

previously mentioned, might depend upon T0). If for q ∈ [1,∞) we denote by

‖ · ‖Lq(M) the usual norm on Lq(M) then we have the following lemma.

Lemma 5.4.1. Assume that 0 < t < T0 and that

q > σ2

(
−R

3
∨ 0

)
t. (5.27)

Then for all x ∈M and 0 < s ≤ t we have

‖pMs (x, ·)‖Lq(M) ≤ C(c, σ2, R, q,m)s
m
2

(
1
q
−1
)

(5.28)

where C(c, σ2, R, q,m) > 0 is a constant.

Proof. Using the fact that if a > 0 then

∫ ∞
0

exp
[
−ar2

]
rm−1ds =

Γ(m/2)

2a
m
2

, (5.29)

the heat kernel upper bound (5.26) and Proposition 1.4.9 we see that

‖pMs (x, ·)‖qLq(M)

≤
∫
M

(
cs−

m
2 exp

[
−
r2
y(x)

σ2s

])q
d volM (y)

= cqs−
mq
2

∫
UTxM

∫ cx(ξ)

0
exp

[
− qr

2

σ2s

]
θx(rξ)rm−1 dr dσm−1(ξ)

≤ cqs−
mq
2

mπ
m
2

Γ(m2 + 1)

∫ ∞
0

exp

[(
−q
σ2s
− R

3

)
r2

]
rm−1dr

≤ cqs−
mq
2

mπ
m
2

Γ(m2 + 1)

∫ ∞
0

exp

[(
−q + σ2

(
−R

3 ∨ 0
)
t

σ2s

)
r2

]
rm−1dr
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≤ cqs−
mq
2

mπ
m
2

Γ(m2 + 1)

Γ(m/2)

2

(
q − σ2

(
−R

3 ∨ 0
)
t

σ2s

)−m
2

= cq

(
σ2π

q − σ2
(
−R

3 ∨ 0
)
t

)m
2

s
m
2

(1−q)

where UTxM := {ξ ∈ TxM : ‖ξ‖ = 1}.

Note that condition (5.27) always holds for sufficiently small t and that for M = Rm

the inequality (5.28) holds as an equality for the constant C(q,m) = (2π)
m
2

( 1
q
−1)

q
−m

2q .

For T > 0, q, q′ ∈ [1,∞) and a non-negative measurable function V : [0, T ]×M → R

define

‖V ‖Lq
q′ ([0,t]×M) :=

(∫ t

0
‖V (s, ·)‖q

′

Lq(M)ds

) 1
q′

for t ∈ (0, T ].

Lemma 5.4.2. In addition to the assumptions of Lemma 5.4.1 suppose also that

1

q
+

2

mq′
> 1. (5.30)

Then it follows that

sup
x∈M
‖pM· (x, ·)‖Lq

q′ ([0,t]×M) ≤ C(c, σ2, R, q, q′,m)tγ(m,q,q′)

where C(c, σ2, R, q, q′,m) ≥ 0 and γ(m, q, q′) > 0 are constants.

Proof. Using Lemma 5.4.1 we see that

‖pM· (x, ·)‖q
′

Lq
q′ ([0,t]×M)

≤ C(c, σ2, R, q,m)q
′
∫ t

0
s
mq′
2

(
1
q
−1
)
ds

= C(c, σ2, R, q,m)q
′ t

mq′
2

(
1
q
−1
)

+1

mq′

2

(
1
q − 1

)
+ 1

.

The right-hand side of this inequality is finite by assumption (5.30) and independent

of x and so the lemma follows.
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A consequence of Lemma (5.4.2) is that, under the conditions of the lemma, we have

lim
t↓0
‖pM· (x, ·)‖Lq

q′ ([0,t]×M) = 0.

This observation will be put to use in the following subsection.

5.4.2 Feynman-Kac Potentials in Lpp′([0, T ]×M)

Suppose that V : [0, T ]×M → R is a non-negative and measurable function and for

each x ∈M let X(x) be a Brownian motion onM starting at x. Then Khasminskii’s

lemma (see Fitzsimmons and Pitman [1999]) implies for each t ∈ [0, T ] that if there

is a constant 0 ≤ α < 1 such that

sup
(t0,x)∈[0,t]×M

E
[∫ t−t0

0
V (t0 + s,Xs(x))ds

]
= α

then it follows that

sup
(t0,x)∈[0,t]×M

E
[
exp

[∫ t−t0

0
V (t0 + s,Xs(x))ds

]]
≤ 1

1− α
.

We use this to deduce the next proposition.

Proposition 5.4.3. Assume that there exist p, p′, q, q′ ∈ [1,∞] such that

i) 1
p + 1

q = 1
p′ + 1

q′ = 1;

ii) 1
q + 2

mq′ > 1;

iii) ‖V ‖Lp
p′ ([0,T ]×M) <∞.

Then there exists 0 < t̃ < T such that

sup
x∈M

E

[
exp

[∫ t̃

0
V (s,Xs(x)) ds

]]
<∞. (5.31)

Proof. Suppose that 0 < t < T and that p, p′, q, q′ ∈ (1,∞). Then for (t0, x) ∈
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[0, t]×M we see, by Tonelli’s theorem and Hölder’s inequality, that

E
[∫ t−t0

0
V (s+ t0, Xs(x) )ds

]
=

∫ t−t0

0

∫
M
V (s+ t0, y)pMs (x, y) d volM (y) ds

≤
(∫ t−t0

0
‖V (t0 + s, ·)‖p

′

Lp(M) ds

) 1
p′
(∫ t−t0

0
‖pMs (x, ·)‖q

′

Lq(M) ds

) 1
q′

≤ ‖V ‖Lp
p′ ([0,T ]×M)‖pM· (x, ·)‖Lq

q′ ([0,t]×M).

We next wish to apply Lemma 5.4.2. For this we must satisfy condition (5.27). If

R ≥ 0 then this condition is clearly satisfied for all 0 < t < T0 ∧T but if R < 0 then

we should additionally assume that

t <
3

σ2|R|

which implies condition (5.27) since q ≥ 1. Applying Lemma 5.4.2 to such t implies

sup
(t0,x)∈[0,t]×M

E
[∫ t−t0

0
V (t0 + s,Xs(x))ds

]
≤ ‖V ‖Lp

p′ ([0,T ]×M)C(c, σ2, R, q, q′,m)tγ(m,q,q′). (5.32)

There exists α ∈ [0, 1) and t̃ ∈ (0, T0 ∧ T ∧ 3(σ2|R|)−1) such that for all t ∈
(
0, t̃
]

the right-hand side of inequality (5.32) is less than or equal to α, so it follows by

Khasminskii’s lemma that

sup
(t0,x)∈[0,t̃]×M

E

[
exp

[∫ t̃−t0

0
V (t0 + s,Xs(x))ds

]]
<∞.

In particular, this implies inequality (5.31) which is what we wanted to prove. The

remaining cases for the exponents p, p′, q and q′ can be dealt with similarly.

Proposition 5.4.3 can be improved, as shown by the following corollary.
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Corollary 5.4.4. Under the same conditions as Proposition 5.4.3 it follows that

sup
x∈M

E
[
exp

[∫ T

0
V (s,Xs(x))ds

]]
<∞.

Proof. For each k ∈ N and i ∈ {1, . . . , k} consider the function V (i)
k :

[
0, Tk

]
×M → R

defined by V
(i)
k (s, y) := V (s + T (1 − i

k ), y). Then, by the Markov property of

Brownian motion, we see that

E
[
exp

[∫ T

0
V (s,Xs(x))ds

]]
≤ E

[
exp

[∫ T (1− 1
k

)

0
V (s,Xs(x)) ds

]]
sup
x∈M

E

[
exp

[∫ T
k

0
V

(1)
k (s,Xs(x)) ds

]]

for all x ∈M . Proceeding inductively we find that

sup
x∈M

E

[
exp

[∫ T

0

V (s,Xs(x)) ds

]]
≤

k∏
i=1

sup
x∈M

E

[
exp

[∫ T
k

0

V
(i)
k (s,Xs(x)) ds

]]
. (5.33)

Now, since

‖V i
k‖Lp

p′ ([0,
T
k

]×M) ≤ ‖V ‖Lpp′ ([0,T ]×M) <∞

for each k ∈ N and i ∈ {1, . . . , k}, we can apply Proposition 5.4.3 to deduce that

there exists k̃ ∈ N such that

sup
x∈M

E

[
exp

[∫ T
k̃

0
V

(i)

k̃
(s,Xs(x))ds

]]
<∞

for each i ∈ {1, . . . , k̃}. Using this value of k, each term in the product in the

right-hand side of inequality (5.33) is finite and since there are only a finite number

of terms in the product it follows that the product itself is finite, which yields the

desired result.

5.4.3 Solving the Martingale Problem

Theorem 5.4.5. Suppose that M is a complete and connected Riemannian man-

fiold of dimension m. Suppose that the Ricci curvature of M is bounded below by
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a constant and that the volume measure is lower regular. Let X(x) be a Brownian

motion on M starting at x ∈ M , U a horizontal lift of X and B the associated

antidevelopment, all defined on a suitable filtered probability space. Fix T > 0 and

suppose that b : [0, T ] ×M → TM is a measurable (time-dependent) vector field on

M . Suppose that there exist p, q, p′, q′ ∈ [1,∞] such that 1
p + 1

q = 1
p′ + 1

q′ = 1 with

‖b‖2 ∈ Lpp′([0, T ]×M) and 1
q + 2

mq′ > 1. Then

{
exp

[∫ t

0
〈b(s,Xs), UsdBs〉 −

1

2

∫ t

0
‖b(s,Xs)‖2ds

]
, t ∈ [0, T ]

}

is a martingale.

Proof. By Novikov’s condition (see Stummer [1993] for the appropriate version), it

suffices to check

Ex
[
exp

[
1

2

∫ T

0
‖b(s,Xs)‖2ds

]]
<∞.

The theorem thus follows from Corollary 5.4.4 by setting V = 1
2‖b‖

2.

Corollary 5.4.6. Under the conditions of Theorem 5.4.5, there exists a solution to

the martingale problem for the time-dependent generator 1
24+ b up to time T .

Proof. The corollary follows by Girsanov’s theorem and Theorem 5.4.5.
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Chapter 6

Conditioning and Derivative

Estimates

Introduction

In this chapter we introduce and establish the basic properties of Brownian bridges

to submanifolds. There has so far been almost no research on such processes, even

for the case in which the ambient space is Euclidean, although they have appeared

in the context of Wiener measure approximation.

In particular, Smolyanov, Weizsäcker and Wittich [2000] considered a compact sub-

manifold embedded in an Euclidean space. They proved that the law of a Brownian

motion started on the submanifold and conditioned to return to it at the end of

each interval of a partition of the unit interval converges in law as the mesh of the

partition goes to zero to the law of a Brownian motion on the submanifold. On each

interval of the partition this conditioned process is an example of the type of process

we have in mind.

In Section 6.1 we construct the bridge measure on path space, using upper bounds on

the heat kernel and a Jacobian estimate. We then prove a concentration inequality

and identify the generator of the conditioned process in terms of the logarithmic

derivative of the integrated heat kernel, motivating the next two sections.
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Our main result in Section 6.2 is a formula for the derivative of the integrated heat

kernel, valid in a polar setting and given by Theorem 6.2.1. Different formulae for

the derivatives of the heat kernel, upto any order, were proved by Norris [1993], using

an extension of the method of Bismut [1984]. Norris used them to deduce that for x

and y not in one another’s cut locus there is the asymptotic relation

lim
t↓0

tl
∇lpMt (x, y)

pt(x, y)
= γ̇(0)⊗l

where γ is the unique geodesic from x to y in time 1, which Bismut had previously

deduced for l = 1. Malliavin and Stroock [1996] showed that away from the cut

locus there is actually cancellation between powers of t so that

lim
t↓0

tHess log pMt (x, y) = −1

2
Hess d2(x, y)

uniformly on compact subsets ofM \Cut(y), with versions of this relation also being

valid for higher derivatives. The small-time asymptotics of the gradient and Hessian

of the logarithm of the heat kernel on the cut locus were completely studied by Neel

and Stroock [2004] and Neel [2007] who showed that the cut locus is precisely the

set of points where the Hessian blows up faster than t−1.

Section 6.3 includes our estimates on the gradient and Hessian of the logarithm of

the integrated heat kernel. These are given by Theorem 6.3.2 and Corollary 6.3.4,

respectively. The small time behaviour of our estimates is explained in the one point

case by the asymptotics discussed in the previous paragraph. We prove them using

the method of Stroock [1996], the inductive element of which had previously been

discovered by Cheng, Li and Yau [1981]. Our results generalize the main theorem

of Engoulatov [2006] and the gradient and Hessian estimates of Hsu [1999], who

considered only the one point case. We apply Theorem 6.3.2 to prove that Brownian

bridges to submanifolds are, under appropriate conditions, semimartingales.
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6.1 Brownian Bridges to Submanifolds

6.1.1 The Canonical Probability Space

Suppose that M is stochastically complete, fix T > 0 and x ∈ M and consider the

associated canonical probability space (W (M),B(W (M)),Px) equipped with canon-

ical filtration {Bt(W (M))}0≤t≤T . HereW (M) denotes the space of continuous paths

defined on [0, T ] taking values inM , Bt(W (M)) denotes the σ-algebra generated by

the coordinate maps upto time t and Px denotes Wiener measure, with respect to

which the coordinate process {Xt : t ∈ [0, T ]} is a Brownian motion on M starting

at x.

6.1.2 Conditioning on the Distance Function

Now suppose that N is a compactly embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}.

Theorem 6.1.1. Choose t ∈ [0, T ) and suppose that F is a bounded Bt(W (M))-

measurable random variable on W (M). Then

Ex [F (X)|XT ∈ N ] =
Ex
[
pMT−t(Xt, N)F (X)

]
pMT (x,N)

. (6.1)

Proof. For small ε > 0 it follows from the definition of conditional expectation, the

Markov property, Fubini’s theorem and Corollary 1.2.2 that

Ex [F (X)|rN (XT ) < ε]

=
Ex
[
1{rN (XT )<ε}F (X)

]
Px{rN (XT ) < ε}

=
Ex
[
EXt

[
1{rN (XT−t)<ε}

]
F (X)

]
Px{rN (XT ) < ε}

=

∫
Bε(N) E

x
[
pMT−t(Xt, y)F (X)

]
d volM (y)∫

Bε(N) p
M
T (x, y) d volM (y)

=

∫
N

∫
Bpε (0) E

x
[
pMT−t(Xt, expN (ξ))F (X)

]
θN (ξ) dξ d volN (p)∫

N

∫
Bpε (0) p

M
T (x, expN (ξ))θN (ξ) dξ d volN (p)
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where Bp
ε (0) denotes the open ball in TpN⊥ of radius ε centred at the origin. Since

the volume of these balls is constant and independent of p, it follows by the continuity

of the above integrands and the fact that θN |N = 1 that

lim
ε↓0

Ex [F (X)|rN (XT ) < ε] =

∫
N Ex

[
pMT−t(Xt, p)F (X)

]
d volN (p)∫

N p
M
T (x, p)d volN (p)

from which the result follows, by the definition of the left-hand side of (6.1) as a

Radon-Nikodym derivative.

For each t ∈ [0, T ) it follows, by Theorem 6.1.1 and Corollary 1.2.2, that conditioning

Brownian motion to be in the interior of a tubular neighbourhood of N of radius r at

time T while separately conditioning Brownian motion to belong to the boundary of

that tubular neighbourhood at time T results in two measures on Bt(W (M)) which

converge weakly to the same limit as ε ↓ 0.

6.1.3 Existence of the Bridge Measure

Suppose, temporarily, that N is a point y ∈ M . If we define a measure Px,y;T on

B(W (M)) by Px,y;T {A} = P{A|XT = y}, for A ∈ B(W (M)), then Theorem 6.1.1

implies that Px,y;T is absolutely continuous with respect to Px on Bt(W (M)) for any

t ∈ [0, T ) and that the Radon-Nikodym derivative is given by

dPx,y;T |Bt(W (M))

dPx
=
pMT−t(Xt, y)

pMT (x, y)
.

In particular, if Px,y;T exists as a probability measure on the space of continuous

paths starting at x and terminating at y at time T then under Px,y;T and for

0 < t1 < · · · < tk < T the joint density function of Xt1 , . . . , Xtk , denoted by

pMt1,...,tk(x, x1, . . . , xk, y), is given by

pMt1,...,tk(x, x1, . . . , xk, y) =
pMt1 (x, x1)pMt2−t1(x1, x2) · · · pMT−tk(xk, y)

pMT (x, y)
. (6.2)
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To prove the existence of Px,y;T we will assume that there exist constants c, σ2 > 0

such that

pMt (w, z) ≤ ct−
m
2 exp

[
−d

2(w, z)

σ2t

]
(6.3)

for all w, z ∈M and t ∈ (0, T ] and a constant β ≥ 0 such that

θw(ξ) ≤ exp
[
β(1 + ‖ξ‖2)

]
(6.4)

for all w ∈ M and ξ ∈ TwM . By Proposition 1.4.9 and Theorem 5.3.12, such

bounds exist if the Ricci curvature is bounded below by a constant with volM lower

regular. Alternatively, by Proposition 1.4.9 and comments made in Subsection 5.3.4,

such bounds also exist if the Ricci curvature is bounded with M having positive

injectivity radius, in which case the constants c and σ2 can be chosen so that σ2 is

arbitrarily close to 2. For the case in which M is compact, a simple version of the

following lemma was proved by Driver [1994].

Lemma 6.1.2. Assume (6.3) and (6.4), suppose 0 ≤ s < t ≤ T and without

loss of generality assume β > 0. Then for all γ ∈ (0, 1) there exists a constant

C(m, c, σ2, β, γ, T ) > 0 such that for all p > 0 we have

Ex,y;T [dp(Xs, Xt)] ≤
C(m, c, σ2, β, γ, T )

pMT (x, y)

Γ
(m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

(6.5)

so long as t− s < γ(σ2β)−1.

Proof. First assume 0 < s < t < 2T/3. Then, by (5.29), for w ∈ M and p > 0 we

have

∫
M
pMt−s(w, z)d

p(w, z) d volM (z)

≤ c(t− s)−
m
2

∫
M

exp

[
− d2(w, z)

σ2(t− s)

]
dp(w, z) d volM (z)

≤ ceβ(t− s)−
m
2

∫
TwM

‖ξ‖p exp

[(
β − 1

σ2(t− s)

)
‖ξ‖2

]
dv

= ceβ
mπ

m
2 (t− s)−

m
2

Γ
(
m
2 + 1

) ∫ ∞
0

rp+m−1 exp

[(
β − 1

σ2(t− s)

)
r2

]
dr
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= ceβ
π
m
2 Γ
(m+p

2

)
(t− s)−

m
2

Γ
(
m
2

) (
1− βσ2(t− s)
σ2(t− s)

)− (m+p)
2

≤ ceβ
Γ
(m+p

2

)
Γ
(
m
2

) (
σ2π

1− γ

)m
2
(
σ2(t− s)

1− γ

) p
2

.

Thus there exists a constant C0(m, c, σ2, β, γ) > 0 such that

∫
M
pMt−s(w, z)d

p(w, z)d volM (z) ≤ C0(m, c, σ2, β, γ)
Γ
(m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

for all p > 0, w ∈M and s, t satisfying t− s < γ(σ2β)−1. For such s, t we see that

Ex,y;T [dp(Xs, Xt)]

=

∫
M

∫
M

pMs (x,w)pMt−s(w, z)d
p(w, z)pMT−t(z, y)

pMT (x, y)
d volM (w)d volM (z)

≤ (T/3)−m/2
C1(m, c, σ2, β, γ)

pMT (x, y)

Γ
(m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

.

The same result is obtained for T/3 < s < t < T while the cases s = 0 or t = T can

be treated similarly.

Now suppose that N is a compactly embedded submanifold, as in Subsection 6.1.2.

If F is a bounded Bt(W (M))-measurable function on W (M) for some t ∈ [0, T )

then it follows from Theorem 6.1.1 that

Ex [F (X)|XT ∈ N ] =

∫
N p

M
T (x, y)Ex,y;T [F (X)] d volN (y)

pMT (x,N)
. (6.6)

This implies, by Lemma 6.1.2, that for all p ≥ 2 there exists ε, Cε > 0 such that

Ex;N,T [dp(Xs, Xt)] ≤ Cε(t− s)
p
2

for all 0 ≤ s < t ≤ T with t− s < ε. It follows by Kolmogorov’s continuity theorem,

by covering the interval [0, T ] with finitely many closed intervals each of length less
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that ε, that there exists a probability measure Px;N,T on the bridge space

Lx;N,T (M) := {ω ∈W (M) : X0(ω) = x, XT (ω) ∈ N}

which satisfies Px;N,T {A} = Px{A|XT ∈ N} for A ∈ B(W (M)). The finite-

dimensional distributions of this measure can be easily deduced from equations (6.2)

and (6.6) and the asymptotic behaviour of the density of Xt under Px;N,T as t ↑ T

follows from Theorem 5.3.8. In particular, if L(XT ) denotes the law of the random

variable XT under the measure Px;N,T then

L(XT ) =
pMT (x, ·)
pMT (x,N)

volN . (6.7)

Example 6.1.3. If M = Rm with N given by the unit (m− 1)-sphere, embedded in

Rm in the usual way, and x = 0 then the terminal law L(XT ) is given by the uniform

measure on N .

Example 6.1.4. If M = Rm with N given by an n-dimensional subspace and x = 0

then the terminal law L(XT ) is given by the heat kernel measure on N . Although in

this example N is non-compact, one can check that the above results also apply to

this and similar examples.

6.1.4 Concentration Inequality

Using Lemma 6.1.2 we deduce a concentration inequality for tubular neighbourhoods.

Theorem 6.1.5. Assuming (6.3) and (6.4), for all γ ∈ (0, 1) there exists ε > 0 such

that

lim
r↑∞

1

r2
logPx;N,T {Xt 6∈ Br(N)} ≤ − 1− γ

σ2(T − t)
(6.8)

for all t ∈ (T − ε, T ].

Proof. Without loss of generality, assume β > 0. Since the distance function rN

minimizes over points belonging to N , it follows from (6.6) and Lemma 6.1.2 that
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for all γ ∈ (0, 1) there exists C(m, c, σ2, β, γ,N, T ) > 0 such that

Ex;N,T [rpN (Xt)] ≤
C(m, c, σ2, β, γ,N, T )

pMT (x,N)

Γ
(m+p

2

)
Γ
(
m
2

) (
σ2(T − t)

1− γ

) p
2

for all 0 ≤ t ≤ T with T − t < γ(σ2β)−1. For such t, choosing θ > 0, applying this

bound to the case where p is an even integer and summing yields

Ex;N,T
[
e
θ
2
r2N (Xt)

]
≤ C(m, c, σ2, β, γ, x,N, T )

(
1− θσ2(T − t)

2(1− γ)

)−m
2

so long as t > T − 2(1 − γ)(θσ2)−1. Under these conditions on t, it follows from

Markov’s inequality that for all r > 0 there is the estimate

Px;N,T {Xt 6∈ Br(N)} ≤ C(m, δ, γ, cR, x,N, T )

(
1− θσ2(T − t)

2(1− γ)

)−m
2

e−
θr2

2 .

Fixing δ ∈ [0, 1) and choosing θ = 2δ(1− γ)(σ2(T − t))−1 yields

lim
r↑∞

1

r2
logPx;N,T {Xt 6∈ Br(N)} ≤ − δ(1− γ)

σ2(T − t)

from which the result follows since δ can be chosen arbitrarily close to 1.

If in addition to the assumptions of Theorem 6.1.5 we suppose that the Ricci

curvature is bounded below by a constant then the asymptotic estimate (3.39), which

as we commented earlier follows from Theorem 8.62 of Stroock [2000], implies that

the concentration inequality (6.8) actually holds with σ2 = 2 and γ = 0.

6.1.5 Semimartingale Property

It follows from formula (6.6) and Girsanov’s theorem that under the measure Px;N,T

the coordinate process onW (M) is a diffusion process on the half-open time interval

[0, T ) starting at x with time-dependent infinitesimal generator

1

2
4+∇ log pMT−t(·, N) (6.9)
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for t ∈ [0, T ). To show that the coordinate process is a semimartingale under this

measure on the closed time interval [0, T ] requires a suitable estimate on the log-

arithmic derivative of the integrated heat kernel. We will deduce such an estimate

using curvature assumptions to access Bismut’s formula and the lower bounds of the

previous chapter. This motivates the final two sections, although the next section

contains numerous remarks which are of independent interest.

6.2 Derivative Formulae

6.2.1 Bismut’s Formula

A formula for the derivative of the heat semigroup was proved by Bismut [1984]. A

simple proof was given in Li [1992], generalizing Bismut’s formula to non-compact

manifolds, further developed in Elworthy and Li [1994] and Elworthy and Li [1996].

Other authors then derived similar formulae using methods based on local mar-

tingales, including Thalmaier [1997], Arnaudon and Thalmaier [1999], Driver and

Thalmaier [2001] and Arnaudon, Plank and Thalmaier [2003]. The formula can be

stated as follows, as in Thalmaier [1997].

Suppose that M is a complete and connected Riemannian manifold of dimension

m with Ricci curvature bounded below. Denote by X(x) a Brownian motion on

M starting at x ∈ M and by U a horizontal lift of with antidevelopment B. If we

denote by {Qs : s ≥ 0} the solution the ordinary differential equation


Q̇s = −1

2 RicUs Qs

Q0 = U−1
0

(6.10)

with RicUs := U−1
s Ric] Us then for any bounded measurable function f : M → R

there is the formula

d(Ptf)x(v) = E
[
f(Xt(x))

1

t

∫ t

0
〈Qsv, dBs〉

]
(6.11)
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for all t > 0 and v ∈ TxM .

6.2.2 Derivative Formulae in a Polar Setting

Li [2013] uses a Bismut-Elworthy-Li type formula to deduce formulae for the deriv-

ative of the heat kernel by extending the method of Elworthy and Truman [1982].

We will now generalize this approach to prove a formula for the derivative of the

integrated heat kernel, also in a polar setting.

In particular, we will suppose that N is a compactly embedded submanifold of

M of dimension n ∈ {0, . . . ,m − 1} and suppose that expN : TN⊥ → M is a

diffeomorphism. For the case in which N is a point this is to say that the point is a

pole for M . If we define a smooth function VN : M → R by

VN :=
1

2
Θ

1
2
N4Θ

− 1
2

N

and suppose that VN is bounded, then by Theorem 5.1.10 and a limiting argument

we see that for T > 0 and x ∈M we have

pMT (x,N) = qT (x,N)Θ
− 1

2
N (x)E

[
exp

[∫ T

0
VN (Ŷs(x))ds

]]
(6.12)

where Ŷ (x) is a semiclassical bridge between x and N in time T (defined as in

Subsection 4.1.1 with b = 0). Rather than differentiating (6.12) directly, like Aida

[2004] did for the one point case, we will use a different approach. We will denote

by Û a horizontal lift of Ŷ (x), by B the Brownian motion given by the martingale

part of its antidevelopment and by {Q̂s : s ∈ [0, T )} the process which solves


˙̂Qs = −1

2 RicÛs Q̂s

Q̂0 = Û−1
0 .

(6.13)

In these terms we have the following theorem.

Theorem 6.2.1. Suppose that VN and ∇ log ΘN are bounded. Then for T > 0,
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x ∈M and v ∈ TxM we have

dpMT (·, N)x(v) = qT (x,N)Θ
− 1

2

N (x)E

[
exp

[∫ T

0

VN (Ŷs(x)) ds

]
1

T

∫ T

0

〈Q̂sv, dB̂s〉

]
(6.14)

where B̂ satisfies

dB̂s = dBs + Û−1
s ∇ log qT−s(Ŷs(x), N) ds+ Û−1

s ∇ log Θ
− 1

2
N (Ŷs(x)) ds

for s ∈ [0, T ).

Proof. Suppose that D is a regular domain containing N and for t ∈ (0, T ) apply

formula (6.11) to the function f(·) = 1D(·)qT−t(·, N)Θ
− 1

2
N (·). By applying Girsanov’s

theorem and Itô’s formula this yields

d(Pt(1D(·)qT−t(·, N)Θ
− 1

2
N (·)))x(v)

= qT (x,N)Θ
− 1

2
N (x)E

[
1D(Ŷt(x)) exp

[∫ t

0
VN (Ŷs(x))ds

]
1

t

∫ t

0
〈Q̂sv, dB̂s〉

] (6.15)

for all t ∈ (0, T ). Since the closure of D and N are both compact with ΘN |N = 1 it

follows that

lim
t↑T

d(Pt(1D(·)qT−t(·, N)Θ
− 1

2
N (·)))x(v)

= lim
t↑T

d

(∫
D
pMt (·, y)qT−t(y,N)Θ

− 1
2

N (y)d volM (y)

)
x

(v)

= lim
t↑T

∫
D
dpMt (·, y)x(v)qT−t(y,N)Θ

− 1
2

N (y)d volM (y)

=

∫
N
dpMT (·, y)x(v)d volN (y)

= dpMT (·, N)x(v)

(6.16)

where the third equality is justified by the argument used in the proof of Theorem

5.2.1. The result then follows from (6.15) and (6.16) since the boundedness and

curvature assumptions allow for the remaining limit to be passed through the ex-

pectation on the right-hand side of (6.15).

Elworthy and Li [1994] proved a formula for the Hessian of the heat semigroup, so
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a formula for the Hessian of the heat kernel can also be obtained, using a similar

method under additional assumptions, the investigation of which is a topic for future

research.

Corollary 6.2.2. Under the conditions of Theorem 6.2.1 we have

d log pMT (·, N)x(v) =
E
[
exp

[∫ T
0 VN (Ŷs(x))ds

]
1
T

∫ T
0 〈Q̂sv, dB̂s〉

]
E
[
exp

[∫ T
0 VN (Ŷs(x))ds

]] . (6.17)

Proof. The corollary follows directly from Theorem 6.2.1 and Ndumu’s formula

(6.12).

6.2.3 A Conjecture on Asymptotics

The asymptotic expansion of Ndumu [2011] implies, essentially by Varadhan’s rela-

tion, that

lim
t↓0

∣∣ log pMt (·, N)− log qt(·, N)− log Θ
− 1

2
N

∣∣ = 0

uniformly on compact subsets of M \ Cut(N). Furthermore, if D is a regular do-

main whose closure is contained in M \Cut(N) then the assumptions of Subsection

6.2.2, which were that the Ricci curvature be bounded below with VN and ∇ log ΘN

bounded, hold in D. These observations together with Corollary 6.2.2 lead the au-

thor to make the following conjecture.

Conjecture 6.2.3. Suppose that M is a complete and connected Riemannian mani-

fold of dimension m and that N is a closed embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}. Then

lim
t↓0

∥∥∇ log pMt (·, N)−∇ log qt(·, N)−∇ log Θ
− 1

2
N

∥∥ = 0

uniformly on compact subsets of M \ Cut(N).

The author has proved the conjecture under additional assumptions. For now, we

will simply provide a couple of examples where the conjecture can be proved dir-

ectly. For instance, it is straightforward to check that the conjecture holds for the
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situation considered in Example 5.1.11. The following example requires a little more

calculation.

Example 6.2.4. If S1 denotes the unit circle in R2 then for t > 0 and x ∈ R2 it

follows from formula (5.12) for the case r = 1 that

∇ log pR
2

t (x,S1) =
1

t

(
BesselI(1, r0(x)/t)

BesselI(0, r0(x)/t)
− r0(x)

)
∂

∂r0
(x)

where r0 denotes the distance to the origin (i.e. the radial part of standard polar

coordinates). We also have

∇ log qt(x,S1) =
(1− r0(x))

t

∂

∂r0
(x)

and therefore

∇ log pR
2

t (x,S1)−∇ log qt(x, S1) =
1

t

(
BesselI(1, r0(x)/t)

BesselI(0, r0(x)/t)
− 1

)
∂

∂r0
(x).

From this we deduce that if x 6= 0 (note that the origin is the cut locus of S1) then

lim
t↓0

(
∇ log pR

2

t (x,S1)−∇ log qt(x,S1)
)

= − 1

2r0(x)

∂

∂r0
(x).

On the other hand, by formula (1.18) we have

∇ log ΘS1(x) =
1

r0(x)

∂

∂r0
(x)

which agrees with the conjecture. Note that 1/r0(x) is the curvature of the level set

of rS1 to which x belongs, which is the circle of radius r0(x).

6.3 Derivative Estimates

6.3.1 Gradient Estimate

In the polar setting one can use Corollary 6.2.2 to obtain estimates on the logarithmic

derivative of pMT (·, N). For a more general result, we will use Bismut’s formula and
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the method of Stroock [1996]. This approach requires the following lemma, proved

with Jensen’s inequality.

Lemma 6.3.1. Suppose (Ω,F ,P) is a probability space and φ a non-negative meas-

urable function on Ω with E [φ] = 1. If φ is a measurable function on Ω such that

φψ is integrable, then E [φψ] ≤ E [φ log φ] + logE[eψ].

Proof. See [Stroock, 2000, Lemma 6.45].

Theorem 6.3.2. Suppose that M is a complete and connected Riemannian manifold

of dimension m and that N is a compactly embedded submanifold of M of dimension

n ∈ {0, . . . ,m−1}. Suppose that the Ricci curvature is bounded below and that volM

is lower regular (see Definition 5.3.11). Furthermore, if n ∈ {1, . . . ,m − 2} then

additionally assume that there exist constants C1, C2 ≥ 0 such that the sectional

curvatures of planes containing the radial direction are bounded below by −(C1 +

C2rN )2. Then for all T > 0 there exists C > 0 such that

‖∇ log pMt (·, N)x‖2 ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
(6.18)

for all x ∈M and t ∈ (0, T ].

Proof. Using the notation of Subsection 6.2.1, for a bounded and positive measurable

function f and γ ∈ R set

φ :=
f(Xt(x))

Ptf(x)
, ψ := γ

∫ t

0
〈Qsv, dBs〉.

By Lemma 6.3.1 and formula (6.11) it follows that

γt
d(Ptf)x(v)

Ptf(x)
≤ ht(x; f) + logE

[
exp

[
γ

∫ t

0
〈Qsv, dBs〉

]]

where

ht(x; f) := E
[
f(Xt(x))

Ptf(x)
log

f(Xt(x))

Ptf(x)

]
. (6.19)
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Standard estimates for Brownian integrals imply

logE
[
exp

[
γ

∫ t

0
〈Qsv, dBs〉

]]
≤ γ2

2

∫ t

0
e−Rsds‖v‖2

where R denotes the minimum of the Ricci curvature onM , so after minimizing over

γ we deduce ∣∣∣∣d(Ptf)x(v)

Ptf(x)

∣∣∣∣ ≤ 1

t

(
2ht(x; f)

∫ t

0
e−Rsds

) 1
2

‖v‖.

Now choose f = pMt (·, N). Then Ptf(z) = pM2t (z,N), by Tonelli’s theorem, and for

all z ∈M it follows that

ht(x; pMt (·, N)) ≤ sup
z∈M

log

(
pMt (z,N)

pM2t (x,N)

)
. (6.20)

The assumptions of the theorem imply, by Theorem 5.3.2, that there exists a constant

c1 ≥ 0, depending only on T,R,C1, C2,m and n, such that

pM2t (x,N) ≥ (2t)−
(m−n)

2 exp

[
−
r2
N (x)

4t
− c1(1 + r2

N (x))

]
(6.21)

for all x ∈ M and t ∈ (0, T ]. The assumptions also imply, by Theorem 5.3.12 and

the Chapman-Kolmogorov equation, that there exist c2 > 0 such that

pMt (z,N) ≤ c2t
−m

2 (6.22)

for all t ∈ (0, T ] and z ∈M . Substituting the estimates (6.21) and (6.22) in to (6.20)

yields the theorem.

It follows that the gradient estimate (6.18) holds automatically if M is compact.

More generally, the lower regularity of volM can be discarded simply by assuming

the on-diagonal bound (5.24) instead.

Corollary 6.3.3. Under the assumptions of Theorem 6.3.2, the coordinate process

on the bridge space Lx;N,T is a semimartingale with respect to the measure Px;N,T .

Proof. It suffices to control the singularity in the drift close to the terminal time.
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Since the distance function rN minimizes over points belonging to N , it follows from

(6.6) and Lemma 6.1.2 that there exists ε, Cε > 0 such that

Ex;N,T [r2
N (Xt)] ≤ Cε(T − t)

for all t ∈ (T − ε, T ]. Therefore, by Theorem 6.3.2, there exists C > 0 such that

Ex;N,T

[∫ T

T−ε
‖∇ log pMT−t(Xt, N)‖dt

]
≤
∫ T

T−ε
Ex;N,T

[
‖∇ log pMT−t(Xt, N)‖2

] 1
2 dt

≤
√
C

∫ T

T−ε

(
1

T − t
+

n

T − t
log

1

T − t
+

Ex;N,T
[
r2
N (Xt)

]
(T − t)2

) 1
2

dt

≤
√
C

∫ T

T−ε

(
1

T − t
+

n

T − t
log

1

T − t
+

Cε
T − t

) 1
2

dt

< ∞

and the result follows.

6.3.2 Hessian Estimate

For the case in which M is compact we have the following corollary of Theorem

6.3.2.

Corollary 6.3.4. Suppose that M is a compact and connected Riemannian manifold

of dimension m and that N is a closed embedded submanifold of M of dimension

n ∈ {0, . . . ,m− 1}. Then for all T > 0 there exists C > 0 such that

‖Hess log pMt (·, N)x‖ ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
(6.23)

for all x ∈M and t ∈ (0, T ].

Proof. Stroock [1996] proved that for any continuous positive function f there exists

C > 0 such that

t
‖Hess(Ptf)x‖

Ptf(x)
≤ C (1 + ht(x; f))
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for all x ∈ M and t ∈ (0, T ] where ht(x; f) is defined by (6.19). Choosing f =

pMt (·, N), using the lower bound (6.21) and the on-diagonal upper bound (6.22)

yields the corollary, by Theorem 6.3.2 and the fact that

Hess logPtf =
HessPtf

Ptf
− d logPtf ⊗ d logPtf

for all t > 0.
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Appendix A

Hausdorff Measure and Dimension

A.1 Hausdorff Measure

Suppose that S is a subset of a separable metric space (E, d) and denote by diam(S)

the diameter of S, defined by

diam(S) := sup{d(x, y) : x, y ∈ S}

with diam(∅) := 0. For any subsets S1, S2 ⊆ E denote by dist(S1, S2) the distance

between S1 and S2, defined by

dist(S1, S2) := inf{d(x, y) : x ∈ S1, y ∈ S2}.

For k ≥ 0 fixed denote by ωk the volume of the unit ball in k-dimensional Euclidean

space and for δ > 0 define a set function Hkδ by

Hkδ (S) :=
ωk
2k

inf

{ ∞∑
j=1

(diam(Sj))
k : S ⊆

∞⋃
j=1

Sj , diam(Sj) < δ

}

for S ⊆ E. Note that Hkδ (S) is monotone decreasing in δ so the limit limδ↓0Hkδ (S)

either exists or is infinite. Thus we can define

Hk+(S) := lim
δ↓0
Hkδ (S)
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and see thatHk+ has the following properties, for any collection {Sj}∞j=1 with Sj ⊆ E:

1. Hk+(∅) = 0;

2. Hk+
(⋃∞

j=1 Sj

)
≤
∑∞

j=1Hk+(Sj);

3. if S1 ⊆ S2 ⊆ E then Hk+(S1) ≤ Hk+(S2);

4. if dist(S1, S2) > 0 then Hk+(S1 ∪ S2) = Hk+(S1) +Hk+(S2).

Thus Hk+ is a metric outer measure and so, by general theory, it is a measure when

restricted to the σ-algebra of Carathéodory-measurable sets, a σ-algebra which con-

tains all of the Borel sets B(E). This measure, called the k-dimensional Hausdorff

measure, is denoted by HkE . Note that we have defined this measure in such a way

that ifM is a Riemannian manifold of dimension m then for any B ∈ B(M) we have

HmM (B) = volM (B). Similarly, if N is a smooth n-dimensional submanifold of M

then for any B ∈ B(N) we have HnM (B) = volN (B).

A.2 Hausdorff Dimension

For S ∈ B(E) the Hausdorff dimension of S is given by

dimH S := inf{k : Hk
E(S) = 0} = sup{k : HkE(S) =∞}.

There are many examples of fractals whose Hausdorff dimension strictly exceeds

their topological dimension. If S is a subset of E with finite Hausdorff dimension k

then HkE(S) > 0 while if S is a subset of E with Hk+1
E (S) = 0 then dimH S ≤ k.

These and other basic facts can be found in Hurewicz and Wallman [1941].
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Appendix B

Discontinuous Drift

B.1 Away from the Origin

The Fermi bridge defined in Subsection 4.2.1 consists of a Brownian motion with

drift that is discontinuous on the cut locus and which, roughly speaking, points

away from the cut locus. In this appendix we consider a couple of similar one-

dimensional processes. First, suppose that X is a standard Brownian motion on R

starting at the origin and defined on the filtered probability space (Ω,F , {Ft}t≥0,P).

In terms of the function sgn, which was defined by equation (2.5) in Chapter 2, let

Zt := exp

[∫ t

0
sgn(Xs)dXs −

1

2

∫ t

0
| sgn(Xs)|2ds

]

for t ≥ 0. Then Z is a martingale so if for each T > 0 we define a new measure P̂T

by dP̂T = ZT dP then, by Girsanov’s theorem, the triple (X,B), (Ω,F , P̂T ), {Ft}t≥0

with

Bt := Xt −
∫ t

0
sgn(Xs) ds

is a weak solution to the stochastic differential equation


dXt = dBt + sgn(Xt)dt

X0 = 0

(B.1)
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for 0 ≤ t ≤ T , which is unique in the sense of probability law, and the Tanaka

formula implies

P̂T {Xt ∈ A} = EP
[
1A(Xt) exp

[
− t

2
+ |Xt| − L0

t (X)

]]

for all 0 ≤ t ≤ T . According to [Karatzas and Shreve, 1991, p.420] there is the joint

density formula

P{Xt ∈ da, L0
t (X) ∈ db} =

b+ |a|√
2πt3

exp

[
−(b+ |a|)2

2t

]
da db

for a ∈ R and b > 0. It follows that

P̂T {Xt ∈ A} =

∫
A
p̂t(a) da

where

p̂t(a) :=
1√
2πt

exp

[
−(|a| − t)2

2t

]
− e2|a|

2
erfc

[
t+ |a|√

2t

]
where erfc denotes the complementary error function. The density for time t = 1 is

illustrated below in Figure 5. Note that the densities p̂t(a) are smooth in t, continuous

in a and smooth in a away from the origin (since erfc is an analytic function) despite

the discontinuity at the origin of the drift in equation (B.1). One therefore expects

the densities of the Fermi bridge, for times strictly less than the terminal one, to be

smooth in time, continuous in space and smooth away from the cut locus.

B.2 Towards the Origin

If we had instead considered weak solutions to the stochastic differential equation


dXt = dBt − sgn(Xt)dt

X0 = 0

(B.2)
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then the same approach as above reveals a formula for the densities of such solutions

which are illustrated below in Figure 6 for the time t = 1.

-10 -5 5 10

0.05

0.10

0.15

0.20

Figure 5: The graph of the density p̂1. The drift pushes mass away from the origin.
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Figure 6: The graph of the density of a solution to equation (B.2) at time t = 1. The drift

now pushes mass towards the origin.
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Appendix C

Limits and Integrals

C.1 Supplementary Estimates

As in Subsection 4.2.2, suppose that D is a regular domain in M and that X̂(x) is

a Fermi bridge between x and N in time T defined upto the minimum of T and its

explosion time, whose first exit time from D is denoted by τ̂D.

Theorem C.1.1. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then for positive even integers p we have

E[1{t<τ̂D}r
p
N (X̂t(x))] ≤

(
2t(T − t)eλt

T

) p
2

Γ
(p

2
+ 1
)
L
ν
2
−1

p
2

(
−
r2
N (x)

2

(
T − t
T t

))

for all t ∈ [0, T ).

Proof. Define the function f̂x,2p : [0, T )→ R by

f̂x,2p(t) := E[1{t<τ̂D}r
2p
N (X̂t(x))]

for t ∈ [0, T ). By Itô’s formula, formula (4.2) and inequality (3.22) we deduce the

differential inequality


f ′x,2p(t) ≤ p(ν + 2(p− 1))fx,2(p−1)(t) + p

(
λ− 2

T−t

)
fx,2p(t)

fx,2p(0) = r2p
N (x)
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and thus by Gronwall’s inequality we have

fx,2p(t) ≤
(
r2pN (x) + p(ν + 2(p− 1))

∫ t

0

fx,2(p−1)(s)e
−

∫ s
0
p(λ− 2

T−u )duds

)
e
∫ t
0
p(λ− 2

T−u )du

=

(
r2pN (x) + p(ν + 2(p− 1))

∫ t

0

fx,2(p−1)(s)e
−pλs

(
T

T − s

)2p

ds

)
epλt

(
T − t
T

)2p

.

By induction, with Theorem 4.2.1 serving as the base case, it follows that

fx,2p(t) ≤
(

2t(T − t)eλt

T

)p p∑
j=0

(
p

j

)(
r2
N (x)

2

(
T − t
T t

))j Γ
(
ν
2 + p

)
Γ
(
ν
2 + j

)
by the fact that e(p−1)λs−pλs = e−λs ≤ 1. The result follows from this by formula

(3.20).

In the caseM = Rm withN a subspace and b = 0, with ν = m−n and λ = 0, one can

set D = M and the inequality provided by Theorem C.1.1 holds as an equality. In

particular, it follows by Proposition 4.1.2 that versions of this and certain subsequent

results also hold for the semiclassical bridge of Section 4.1.

Corollary C.1.2. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then for positive odd integers p we have

E[1{t<τ̂D}r
p
N (X̂t(x))] ≤

(
2t(T − t)eλt

T

) p
2
(

Γ

(
p+ 1

2
+ 1

)
L
ν
2−1
p+1
2

(
−r

2
N (x)

2

(
T − t
T t

))) p
p+1

for all t ∈ [0, T ).

Note that by the summation formula (3.33), Theorem C.1.1 implies the exponential

estimate

E
[
1{t<τ̂D}e

θ
2
r2N (X̂t(x))

]
≤
(

1− θt(T − t)eλt

T

)− ν
2

exp

[
θr2
N (x)(T − t)2eλt

2T (T − t(T − t)θeλt)

]

for all θ ≥ 0 and t ∈ [0, T ) such that T − θt(T − t)eλt > 0 (a condition which

for θ ≥ 0 fixed is always satisfied for t sufficiently close to either 0 or T ). Under

the assumptions of Subsection 4.2.3, this implies by Markov’s inequality that for all
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δ ∈ [0, 1) there is the concentration inequality

QT−{X̂t(x) /∈ Br(N)} ≤ (1− δ)−
ν
2 exp

[
δr2
N (x)(T − t)
2Tt(1− δ)

− δr2T

2t(T − t)eλt

]

and therefore the asymptotic estimate

lim
r→∞

1

r2
logQT−{X̂t(x) /∈ Br(N)} ≤ − T

2t(T − t)eλt

for all t ∈ (0, T ). For the semiclassical bridge this relation holds with λ = 0 as an

equality.

The next theorem is proved using Theorem C.1.1 and Corollary C.1.2 and implies

sup
t∈[0,T )

E
[
1{t<τ̂D} exp

[
θ

∫ t

0
‖∇ log qT−s(X̂s(x), N)‖ds

]]
<∞ (C.1)

for each θ ≥ 0. To put this in context, note that if we replaced X̂(x) by a Brownian

motion with drift b conditioned to arrive at a point y at time T and replaced q by the

transition density pM,b of a Brownian motion with drift b, evaluated at y rather than

integrated over N , then the left-hand side of (C.1) would be the object estimated

by Lyons and Zheng [1990] and by Qian [1994]. The latter estimate was used by

Qian and Zheng [2004] to establish a formula for kernels of the form pM,b+c in terms

of pM,b and an integral involving c over the paths of a conditioned diffusion. The

following theorem can similarly be used to verify uniform integrability and obtain

kernel estimates, as we will see in the next section, albeit in a rather special setting.

Theorem C.1.3. Let ν ≥ 2 and λ ≥ 0 be any constants such that inequality (3.7)
holds on D \ Cut(N). Then we have

E

[
1{t<τ̂D} exp

[
θ

∫ t

0

rN (X̂s(x))

T − s ds

]]
≤ 1 +

(
1 + R̂(T, θ, x)−

1
2

)(
1F1

(
ν

2
,
1

2
, R̂(T, θ, x)

)
− 1

)

for all θ ≥ 0 and t ∈ [0, T ), where R̂(T, θ, x) = 48θ2
(
2T + r2

N (x)
)
eλT .
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Proof. First note by Tonelli’s theorem and Hölder’s inequality that

E

[
1{t<τ̂D} exp

[
θ

∫ t

0

rN (X̂s(x))

T − s
ds

]]

≤ 1 + E

 ∞∑
p=1

θp

p!

(∫ t

0

1{s<τ̂D}rN (X̂s(x))

T − s
ds

)p
= 1 + E

 ∞∑
p=1

θp

p!

p∏
j=1

∫ t

0

1{sj<τ̂D}rN (X̂sj (x))

T − sj
dsj


= 1 +

∞∑
p=1

θp

p!

∫ t

0
· · ·
∫ t

0

E[
∏p
j=1 1{sj<τ̂D}rN (X̂sj (x))]∏p

j=1(T − sj)
ds1 · · · dsp

≤ 1 +

∞∑
p=1

θp

p!

∫ t

0
· · ·
∫ t

0

∏p
j=1 E[1{sj<τ̂D}r

p
N (X̂sj (x))]

1
p∏p

j=1(T − sj)
ds1 · · · dsp

= 1 +

∞∑
p=1

θp

p!

p∏
j=1

∫ t

0

E[1{sj<τ̂D}r
p
N (X̂sj (x))]

1
p

T − sj
dsj

= 1 +
∞∑
p=1

θp

p!

∫ t

0

E[1{s<τ̂D}r
p
N (X̂s(x))]

1
p

T − s
ds

p

.

Now, by Theorem C.1.1 and Corollary C.1.2 we see that

∞∑
p=1

θp

p!

(∫ t

0

E[1{s<τ̂D}r
p
N (X̂s(x))]

1
p

T − s
ds

)p

≤
∞∑
p=1,
p even

θp

p!

∫ t

0

((
2seλs

T (T − s)

) p
2

Γ
(p

2
+ 1
)
L
ν
2−1
p
2

(
−r

2
N (x)

2

(
T − s
Ts

))) 1
p

ds

p

+

∞∑
p=1,
p odd

θp

p!

∫ t

0

( 2seλs

T (T − s)

) p+1
2

Γ

(
p+ 1

2
+ 1

)
L
ν
2−1
p+1
2

(
−r

2
N (x)

2

(
T − s
Ts

)) 1
p+1

ds


p

=

∞∑
p=1

θ2p

(2p)!

∫ t

0

((
2seλs

T (T − s)

)p
p!L

ν
2−1
p

(
−r

2
N (x)

2

(
T − s
Ts

))) 1
2p

ds

2p

+

∞∑
p=1

θ2p−1

(2p− 1)!

∫ t

0

((
2seλs

T (T − s)

)p
p!L

ν
2−1
p

(
−r

2
N (x)

2

(
T − s
Ts

))) 1
2p

ds

2p−1

.

By formula (3.20) and Lemma 3.2.8 we see that for s ∈ [0, t) and p = 1, 2, . . . we
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have

(
2seλs

T (T − s)

)p
p!L

ν
2
−1

p

(
−
r2
N (x)

2

(
T − s
Ts

))
=

(
2eλs

T − s

)p p∑
j=0

(
p

j

)
Γ
(
ν
2 + p

)
Γ
(
ν
2 + j

) (r2
N (x)

2T

)j (
T − s
T

)j ( s
T

)p−j
≤
(

2eλT

T − s

)p p∑
j=0

(
p

j

)
Γ
(
ν
2 + p

)
Γ
(
ν
2 + j

) (r2
N (x)

2T

)j
=

(
2eλT

T − s

)p
p!L

ν
2
−1

p

(
−
r2
N (x)

2T

)
≤
(

24eλT

T − s

(
1 +

r2
N (x)

2T

))p
Γ
(
ν
2 + p

)
Γ
(
ν
2

)
and therefore

∞∑
p=1

θp

p!

∫ t

0

E[1{s<τ̂D}r
p
N (X̂s(x))]

1
p

T − s
ds

p

≤
∞∑
p=1

(
24θ2eλT

(
1 +

r2N (x)
2T

))p
(2p)!

Γ
(
ν
2 + p

)
Γ
(
ν
2

) (∫ t

0
(T − s)−

1
2ds

)2p

+
∞∑
p=1

(
24θ2eλT

(
1 +

r2N (x)
2T

)) 2p−1
2

(2p− 1)!

(
Γ
(
ν
2 + p

)
Γ
(
ν
2

) ) 2p−1
2p (∫ t

0
(T − s)−

1
2ds

)2p−1

≤
∞∑
p=1

(
48θ2eλT

(
2T + r2

N (x)
))p

(2p)!

Γ
(
ν
2 + p

)
Γ
(
ν
2

)
+

∞∑
p=1

(
48θ2eλT

(
2T + r2

N (x)
)) 2p−1

2

(2p− 1)!

(
Γ
(
ν
2 + p

)
Γ
(
ν
2

) ) 2p−1
2p

≤
(

1 +
(

48θ2eλT
(
2T + r2

N (x)
))− 1

2

) ∞∑
p=1

(
192θ2eλT

(
2T + r2

N (x)
))p

2p!

Γ
(
ν
2 + p

)
Γ
(
ν
2

)
where for the final inequality we used the fact that Γ

(
ν
2 + p

)
≥ Γ

(
ν
2

)
since ν ≥ 2.

The result now follows by the relation (3.32), as in the proof of Theorem 3.2.9.

Uniform square-integrability implies uniform integrability, so the previous theorem

implies the following corollary.
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Corollary C.1.4. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (3.7)

holds on D \ Cut(N). Then for each θ ≥ 0 the random variables

{
1{t<τ̂D} exp

[
θ

∫ t

0

rN (X̂s(x))

T − s
ds

]
: t ∈ [0, T )

}

are uniformly integrable.

C.2 Uniform Integrability

Recall that Theorem 5.2.2 stated that if {Di}∞i=1 is an exhaustion of M by regular

domains then

pMT (x,N) = qT (x,N) lim
i↑∞

lim
t↑T

E

[
1{t<τ̂Di} exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
(C.2)

where A and L are defined by (5.14). The reader might, for aesthetic reasons or

otherwise, wish to pass these two limits through the expectation. If one can pass

the inner limit through the expectation then the outer limit can be dealt with by

the monotone convergence theorem. There are various circumstances in which it is

easy to justify passing the inner limit through the expectation. For example, if N is

totally geodesic (or minimal if n = m − 1) and if the sectional curvature of planes

containing the radial direction is non-negative (or if n ∈ {0,m − 1} and the Ricci

curvature in the radial direction is non-negative) then

∂

∂rN
log Θ

− 1
2

N ≥ 0

and one can apply the monotone convergence theorem. Conversely, if N is totally

geodesic (or minimal if n = m−1) and if the sectional curvature of planes containing

the radial direction is non-positive (or if n ∈ {0,m − 1} and the Ricci curvature in

the radial direction is non-positive) then

∂

∂rN
log Θ

− 1
2

N ≤ 0
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and one can apply the dominated convergence theorem, if in addition the cut locus

of N is polar for X̂(x). In particular, if N is a point then we can justify passing

both limits through the expectation for any of the simply connected space forms.

In general, however, one must first verify the uniform integrability of the random

variables {
1{t<τ̂Di}

exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]
: t ∈ [0, T )

}
. (C.3)

Let us explain a general strategy for verifying this property, using Corollary C.1.4,

and how it can be applied to a special case.

Firstly, since Č(N) is polar for Brownian motion withM \Č(N) open and connected,

it follows from the theorems of [Chavel, 1984, Chapter IX] that for all x 6∈ Č(N),

y ∈ N and T > 0 we have

p
M\Č(N)
T (x, y) = pMT (x, y).

Furthermore, since Č(N) has volM -measure zero it follows that pM is the unique

continuous extension of pM\Č(N) to (0,∞)×M ×M . So let us choose an exhaustion

{Di}∞i=1 of M \ Č(N) by regular domains. Since the part of the cut locus contained

in M \ Č(N) is exactly C̊(N), which consists of points which can be connected to N

by precisely two length-minimizing geodesic segments, both of which are non-focal,

this sequence of domains has the property that for each i ∈ N there exists a constant

Ki ≥ 0 such that
∂

∂rN
log Θ

− 1
2

N ≤ Ki

on Di. For the case in which Cut(N) is polar with x 6∈ Č(N) this implies, by

Corollary C.1.4, the uniform integrability of the random variables (C.3). For the

general case it thus suffices, by the Cauchy-Schwarz inequality, to verify the uniform

square-integrability of the random variables{
1{t<τ̂Di}

exp

[∫ t

0

rN (X̂s(x))

T − s
dLs

]
: t ∈ [0, T )

}
. (C.4)
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If the uniform square-integrability of these random variables can be verified then

both limits in formula (C.2) can be passed through the expectation, so long as

x 6∈ Č(N). While this problem is open, it might be helpful to observe that our

choice of Di implies that Cut(N) ∩ Di is given by the union of only finitely many

smooth (m− 1)-dimensional submanifolds and that the density (D+ −D−) rN (n) is

bounded on Cut(N) ∩Di.

A related problem is to deduce upper bounds for the integrated heat kernel directly

from formula (C.2). If Cut(N) is polar and there exist constants α, β, γ ≥ 0 such

that

−2γ ≤ ∂

∂rN
log ΘN ≤ α+ βrN

on M then Theorems 5.2.2 and C.1.3 imply the upper bound

pMT (x,N) ≤ qT (x,N)

(
1 +

(
1 + R̂(T, γ, x)−

1
2

)(
1F1

(
ν

2
,

1

2
, R̂(T, γ, x)

)
− 1

))
(C.5)

for all x ∈M and T > 0, where λ = α/2 + β and ν = m− n+ 1 + α/2 with

R̂(T, γ, x) = 48γ2(2T + r2
N (x))eλT .

Note that the limit as T ↓ 0 of the largest term in parentheses on the right-hand

side of (C.5) is strictly greater than 1 unless rN (x) = 0, which is to be expected by

comparing Theorems 5.1.4 and 5.2.2.

This may not be the best approach to upper bounds, so we should look for an

alternative. Avoiding Girsanov’s theorem altogether by applying Jensen’s inequal-

ity directly to Pt(qT−t(·, N))(x) doesn’t quite work, but there might be a way to

use the concentration inequalities of Subsection 3.2.8 instead. For the time being,

the approach to upper bounds described in Subsection 5.3.4 seems to be the most

satisfactory.
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Appendix D

Large Time Behaviour

D.1 A Spectral Gap Inequality

Suppose that M is stochastically complete and that there exist constants C1,Λ ≥ 0

such that at least one of the three conditions (C1), (C2) or (C3) of Theorem 1.4.5

is satisfied with C2 = 0. Fix x ∈M and T > 0, let ν = m−n and µ = nΛ+(m−1)C1

and suppose that u : [0, T ]→ [0,∞) solves the ordinary differential equation


u′(t) = ν + µ

√
u(t)− 2

T−tu(t)

u(0) = r2
N (x)

(D.1)

for t ∈ [0, T ). It follows from a nonlinear version of Gronwall’s inequality and

Jensen’s inequality that the first radial moment of a Fermi bridge between x and N

in time T is bounded above by
√
u. Using this observation and inequality (1.28), an

approach similar to the one used for the proof of Proposition 5.3.1 yields the implicit

lower bound

pMT (x,N) ≥ qT (x,N) exp

[
−µ

2

∫ T

0

√
u(s)

T − s
ds

]
(D.2)

for all x ∈ M and T > 0. Unfortunately, we are not aware of an explicit formula

for the solution to equation (D.1), except in the pathological case ν = 0 when the

equation becomes a Bernoulli differential equation. We expect that inequality (D.2)

improves the large time behaviour of the lower bounds proved in Subsection 5.3.1
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when C2 = 0. To see this, note first that (D.2) implies

lim
T→∞

1

T
log pMT (x,N) ≥ lim

T→∞
− µ

2T

∫ T

0

√
u(s)

T − s
ds

for any x ∈M . It was proved by Li [1986] that if λ1(M) denotes the bottom of the

spectrum of −4 then

lim
T→∞

1

T
log pMT (x, y) = −λ1(M)

2

for any x, y ∈M so if Ric ≥ −(m− 1)C2
1 we have a spectral gap inequality

λ1(M) ≤ lim
T→∞

(m− 1)C2
1

T

∫ T

0

√
uT (s)

T − s
ds.

For the hyperbolic space Hm
κ with κ < 0 it is known, as in [Chavel, 1984, p.46], that

λ1(Hm
κ ) = −(m− 1)2κ

4

while numerical approximation suggests that

lim
T→∞

−(m− 1)κ

T

∫ T

0

√
uT (s)

T − s
ds =

(m− 1)2κ2

2
.

Thus we should expect the large time behaviour of the lower bound (D.2) to be

generally quite favourable. The extra factor of −2κ appearing in the hyperbolic

example can probably be attributed to the use of Jensen’s inequality, which an

alternative approach, such as a Laplace-type method, might be able to eliminate.
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