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Abstract

Exposing latent knowledge in geospatial trajectories has the potential to provide a better under-
standing of the movements of individuals and groups. Motivated by such a desire, this work presents
the context tree, a new hierarchical data structure that summarises the context behind user actions
in a single model. We propose a method for context tree construction that augments geospatial
trajectories with land usage data to identify such contexts. Through evaluation of the construction
method and analysis of the properties of generated context trees, we demonstrate the foundation
for understanding and modelling behaviour afforded. Summarising user contexts into a single data
structure gives easy access to information that would otherwise remain latent, providing the basis for
better understanding and predicting the actions and behaviours of individuals and groups. Finally,
we also present a method for pruning context trees, for use in applications where it is desirable to
reduce the size of the tree while retaining useful information.

1 Introduction

Exposing the latent knowledge present in geospatial trajectories has become an increasingly important
research topic in recent years, due in part to the pervasiveness of location-aware hardware and the
resulting availability of trajectory data. Motivated by a desire to understand the movement patterns of
users, this paper presents a new data structure, the context tree, that summarises the context behind user
actions in a single hierarchical model. Additionally, the paper proposes a method for generating context
trees from geospatial trajectories and land usage information, and provides concrete implementations for
each stage of the method, namely augmentation, filtering, and clustering. A context tree itself is formed
of clusters at multiple scales that describe the contexts in which the user was immersed, affording easy
access to information that would have previously remained hidden, forming the basis for understanding
and predicting the actions and behaviours of individuals and groups.

Existing work in understanding people through the context of activities has considered various at-
tributes as defining context, including an individual’s location, the current time and weather, and other
individuals who are nearby [Dey and Abowd, 1999; Schilit et al., 1994], typically using data collected
from smartphones [Bao et al., 2011; Cao et al., 2010; Huai et al., 2014]. While existing approaches
provide a basis for context-aware applications, they are limited by the data that can be collected directly
from the user. Augmenting geospatial trajectories with land usage information enables the identification
of contexts that consider the type and properties of the location of an activity.

In this paper we present the following contributions: (i) the context tree data structure that hier-
archically represents user contexts at multiple scales, (ii) a method for constructing context trees from
geospatial trajectories and land usage information, (iii) a set of concrete techniques to achieve each stage
in the construction method, namely augmentation, filtering and clustering, (iv) evaluation of context
trees constructed from real-world data, and an analysis of the properties that make them amenable for
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use in understanding individuals, and (v) a method of pruning context trees, to reduce their size while
retaining useful information.

The remainder of this paper is structured as follows. Section 2 discusses relevant related work in
location extraction and activity and context identification. In Section 3 we propose the context tree,
a new data structure, and present an overview of the method employed for constructing context trees.
Concrete implementations of the stages of this method are given in Sections 4 and 5. We present an
evaluation of context trees in Section 6, and discuss pruning the generated trees in Section 7. Finally,
we conclude the paper with a discussion of future work and applications in Section 8.

2 Related Work

Geospatial trajectories, usually collected from GPS logging devices, have been used as a basis for knowl-
edge acquisition in many areas, including for location extraction [Andrienko et al., 2011; Ashbrook and
Starner, 2002, 2003; Bamis and Savvides, 2011; Montoliu and Gatica-Perez, 2010; Thomason et al.,
2015a, 2016]. Periods of low mobility are extracted from the trajectories and clustered using techniques
such as DBSCAN [Ester et al., 1996] and k-means [MacQueen, 1967], identifying areas in which the time
was spent. These techniques identify areas of arbitrary shape, but are incapable of identifying places
where non-stationary activities took place. Augmenting identified areas with additional information,
Yan et al. [2013] propose a technique for the derivation and modelling of semantic trajectories. However,
the additional data sources are not leveraged for identifying locations, only for providing labelling after
locations have been identified.

Once identified, significant locations have formed the basis for many applications, including location
prediction using Markov models [Ashbrook and Starner, 2002, 2003], neural networks [Thomason et al.,
2015c], periodicity-based approaches [Wang and Prabhala, 2012], and blockmodels [Fukano et al., 2013].
Using multilayer perceptrons for location prediction, Thomason et al. [2015b] evaluate extracted loca-
tions and predictions to perform automatic parameter selection for location extraction and prediction.
Research has also considered predicting when a user will next visit a specific location using Bayesian
inference [Gao et al., 2012], how long a user will stay at a given location [Liu et al., 2013], as well as
developing techniques to apply labels in a semi-supervised manner to extracted locations to provide addi-
tional meaning [Krumm and Rouhana, 2013]. Prediction has also occurred without the need for location
extraction, in the form of destination prediction, achieved by identifying similar historical trajectories to
a current one through clustering approaches [Chen et al., 2010; Monreale et al., 2009; Nakahara and Mu-
rakami, 2012], Bayesian inference [Krumm and Horvitz, 2006] and hidden Markov models [Alvarez-Garcia
et al., 2010]. Similarly, predicting journey duration has been explored using neural networks [Chen et al.,
2009], along with predicting when two people will next meet [Yu et al., 2015], and providing recommen-
dations to users new to a city based on the locations visited by others [Bao et al., 2015; Zheng and Xie,
2010].

While trajectories have also been used to identify non-stationary activities, in the form of transport
mode identification through change-point detection and classification-based approaches [Liao et al., 2007;
Patterson et al., 2003; Zheng et al., 2008a,b], many related techniques operate on different sources of
data. Activity detection has been achieved from video data by Kim et al. [2010], who use Markov
models to identify the activities being performed. Unfortunately, ensuring the constant availability of
video data on an individual is infeasible. Research has therefore considered identifying the activity being
performed from low-level sensor data (e.g. accelerometers and heart-rate) generated by devices carried
by individuals, using classifiers and related techniques to label periods of data from a set of possible
activities [Choudhury et al., 2008; Lee and Mase, 2002; Lester et al., 2005; Morris and Trivedi, 2011;
Pirttikangas et al., 2006; Ravi et al., 2005].

Context, situation, and intention awareness have also been considered, where a context aims to
identify times when a user was performing the same task, without necessarily knowing what the task is.
Literature in this domain has explored using entropy-based clustering to identify contexts [Bao et al.,
2011], and sequence-based approaches that consider the transitions between contexts [Lemlouma and
Layaida, 2004]. Utilising contexts, research has also focused on developing architectures and applications
that adapt devices based on the current context [Anagnostopoulos et al., 2006; Lemlouma and Layaida,
2004]. Situation and intention awareness is more focused on developing tools and techniques to aid a
person in conducting a particular task to achieve some goal [Howard and Cambria, 2013; Vinciarelli
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et al., 2015], with specific examples in defence [Howard, 2002] and aviation [Endsley, 1995, 2000]. As
with location extraction, however, existing techniques focus only on collected data, and do not attempt
to augment this with other data available after collection. Such augmentation could offer greater insight
into the entities a person was interacting with, enabling a better understanding of the actions they were
performing.

Focusing on only trajectories, literature has also considered the identification of repeating patterns,
both from geospatial trajectories [Cao et al., 2005, 2007; Eagle and Pentland, 2009; Giannotti et al., 2007;
Gudmundsson et al., 2004], and general object movement trajectories [Li et al., 2010; Yang et al., 2003],
where repeating patterns are expected to consist of activities that the user repeatedly conducts. Such
patterns have also been considered as routines, where the aim is to extract features of a given day for
classification (e.g. “left work at 5PM”) [Farrahi and Gatica-Perez, 2008, 2010]. Patterns, and extracted
location transitions, have formed the basis of user similarity identification [Xiao et al., 2012], and travel
companion identification [Tang et al., 2012]. Once expected patterns for a given user or group have been
extracted, anomalous actions become possible to identify. Anomaly detection has been performed on
geospatial trajectories, where isolation-based outlier detection has identified anomalous subtrajectories
from vehicle tracking data [Chen et al., 2011; Zhang et al., 2011]. Similarly, statistical approaches have
been shown to be useful in identifying trajectories that differ from an expected pattern [Laxhammar and
Falkman, 2011, 2014; Rosen and Medvedev, 2012].

Raw geospatial trajectories have been used as the basis for many different tasks and applications.
While assuming the availability of additional data at time of collection is often infeasible, augmenting
trajectories after collection is possible and can enrich the knowledge afforded. Applications that consider
such augmented trajectories include using map data to fill in missing periods of a trajectory [Zheng et al.,
2012], and using map searches augmented with trajectories from the same user to enhance destination
prediction [Wu et al., 2015]. While existing work by Yan et al. [2013] has considered the augmentation of
trajectories to understand the semantics behind trajectory segments, they do not attempt to utilise the
semantics to influence the partitioning of trajectories or identify contexts. Understanding the semantics
behind trajectories from the beginning has the potential to better understand what a person was doing
and their interactions, and thus provide a foundation for identifying similar contexts.

2.1 Geospatial Datasets

Although it is increasingly becoming easier to collect geospatial data due to the proliferation of location-
aware devices such as smartphones, the availability of public geospatial datasets still presents a challenge
for researchers. Privacy concerns are the main obstacle to making such data publicly available, and
consequently there are only a limited number of public datasets, each having certain drawbacks. To
overcome these issues, many researchers have collected data themselves for use in their work [Ashbrook
and Starner, 2003; Si la-Nowicka et al., 2015; Thomason et al., 2015a]. However, using such private
datasets decreases the reproducibility of work and thus the use of public data is preferred. Such publicly
available datasets include MIT’s Reality Mining dataset [Eagle and Sandy Pentland, 2005], which uses
cell towers to estimate the locations of devices belonging to 100 students. More recently, GPS-enabled
devices have been used for data collection to produce Microsoft’s GeoLife Trajectories [Zheng et al.,
2008a, 2009, 2010], Nokia’s Mobile Data Challenge (MDC) dataset [Kiukkonen et al., 2010; Laurila
et al., 2012], and the Yonsei dataset [Chon et al., 2011]. While all of these datasets are available for
research purposes, they have their own caveats. The Yonsei dataset contains only 2 months worth of
data, while the GeoLife and MDC datasets contain vast amounts of data collected over several years from
hundreds of users. The GeoLife dataset is focused on when participants were moving, and therefore does
not provide continuous data. The MDC dataset, on the other hand, aims to provide continuous data
collected from smartphones, although for privacy reasons the areas surrounding the known residences
of participants have their accuracies significantly reduced in the data. Despite this, and due to its
continuous collection methodology, the MDC dataset is still one of the most accurate and representative
datasets available, containing real-world data collected from the smartphones carried by nearly 200 users
over a span of 2 years. The MDC dataset also includes accuracy values, indicating how much confidence
can be placed in the recorded coordinates, information which is not provided with GeoLife.
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Figure 1: An abstract representation of a context tree, in which the similarity of nodes increases with depth.

2.2 Investigative Techniques

For many techniques relating to extracting knowledge from data, collecting a concrete ground truth
is infeasible. Significant location extraction, for example, can extract locations at various scales and
so no single ground truth can exist. Existing literature addresses this by exploring the properties of
the outputs from such techniques and comparing these properties to expected results. For instance,
Guidotti et al. [2015] create synthetic trajectories with known properties and devise metrics to compare
extracted locations with desirable properties. Thomason et al. [2015a] compare properties of the identified
locations against acceptable ranges of values, determined from knowledge of the input data, as well as
demonstrating the applicability of the technique through examples. For travel-mode classification, Si la-
Nowicka et al. [2015] compare against a small set of manually labelled subtrajectories. In this paper,
to cope with the limited availability of user-provided ground truth, we present an evaluation that both
compares the output of the proposed approach to a limited ground truth and characterises the outputs
of the algorithm through a set of metrics. While a ground truth may not exist in all domains, an
understanding of the performance and applicability of the proposed approach can be achieved through
characterising the outputs and manually generating or labelling subsets of the data to create a partial
ground truth.

3 Proposed Structure: The Context Tree

This paper proposes and evaluates the context tree hierarchical data structure, that summarises the
contexts that a user has been immersed within at multiple scales. Each leaf node of the tree represents
a real-world feature or element that the user has likely interacted with, be it a specific building, area,
or individual feature (e.g. a bench in a park). These individual elements are joined together through
context nodes that represent a context at a specific scale, where time spent within a context means that
the user likely had similar aims or goals, and are identified by exploring time the user spends interacting
with elements with similar properties, or elements that are interacted with in a similar manner. As
it summarises time in this way, the context tree can become the basis for understanding people from
augmented geospatial data. The context tree structure is depicted in Figure 1.

Generating a context tree requires both a geospatial trajectory and a dataset of land usage features,
along with a multi-stage process for augmentation, filtering and clustering this data into a useful struc-
ture. The remainder of this paper presents the proposed method for generating context trees, provides
an evaluation of context trees, and presents a method of pruning context trees to reduce their size while
maintaining information. The method for augmenting geospatial trajectories with land usage informa-
tion, to summarise contexts into a context tree, consists of the following five stages, as depicted in
Figure 2.
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Figure 2: Overview of the context tree generation framework. A trajectory is augmented with land usage data, and this
augmented data is then hierarchically clustered into a context tree. Subsequently the context tree can optionally be pruned.
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1. Inputs
The raw geospatial trajectory and land usage data enters the system.

2. Augmentation
Land usage elements likely to have been interacted with are identified by extracting all potential
elements and filtering them to remove noise.

3. Clustering
Filtered land usage elements, and their interactions, become the basis for contextual clustering.
Clustering is achieved with a hierarchical agglomerative algorithm.

4. Representation
Once clustered, the elements form a context tree data structure that can be used as the basis for
further understanding the behaviours of individuals and groups.

5. Pruning
Some applications may be limited by the amount of data they can store, or processing they can
perform, and so it may be necessary to prune a context tree to reduce its size while maintaining as
much useful information as possible. Pruning is achieved through analysing the nodes of a context
tree with respect to a defined set of metrics.

In the following sections we describe the stages of augmentation (Section 4), clustering (Section 5),
representation (Section 5), and pruning (Section 7) in more detail.

4 Trajectory Augmentation

In order to better understand users through their past actions, and assuming only geospatial data is
available at the point of data collection, this section describes the process of trajectory augmentation
that combines raw trajectories with land usage data. A trajectory is a temporally ordered sequence of
data points that locate an individual or entity:

T = (p1, p2, p3, ..., pn)

where pi = {ti, li, ai} is an individual trajectory point, consisting of time (ti), location (li, e.g. a <
lat, lng > pair) and accuracy (ai, typically measured in metres).

In addition to such trajectories, land usage data can also be used for identifying locations and entities
that are meaningful to the user. Land usage data is assumed to be sets of entities with associated
information. An entity, in this case, directly maps to a single real-world object, feature, or area, such as
an individual postbox, field, or building. It can also refer to a collection of such entities that form a larger
designation, such as a university campus or residential housing area. Each of these elements is expected
to be associated with a set of geographical coordinate pairs that represent its shape and location, in
addition to a set of tags in the form of ‘key:value’ pairs that describe properties of the element, including
its type and usage (e.g. a house may be tagged as ‘building:residential’).

4.1 Element Extraction

The process for extracting relevant land usage elements is illustrated in Figure 3. A raw geospatial
trajectory (Step 1) is overlaid on a land usage dataset (Step 2), at which point the accuracy recorded by
the location measuring device (e.g. GPS, measured in metres) is used (Step 3), such that all elements
that are partially or wholly within the radius are stored alongside the original trajectory point (Step 4).
This procedure is completed automatically by iterating through each trajectory point and querying the
land usage dataset for any element that intersects or covers any part of the accuracy radius.

4.2 Filtering

As the element extraction process (Section 4.1) augments trajectories with all land usage elements
that fall within the accuracy radius of a trajectory point, it is prone to including a significant number
of elements with which the user was not interacting. To cope with these noise elements a filtering
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Figure 3: Trajectory augmentation procedure.

Figure 4: Example of filtering augmented trajectories to remove noise, and subsequent summarising through clustering of
contiguous time periods.

procedure can be used. Our proposed filter is a generalised version of a weighted average filter, a
technique typically used to smooth noisy signals, modified to operate over sets of land usage elements
and depicted in Figure 4. The filter maintains a buffer of elements and selects from this buffer based on
an assigned weight in a three-step process:

1. A buffer of points, and associated land usage data, is selected.

2. The land usage elements in the buffer are weighted and scored.

3. Elements are selected, based on their score, for inclusion in the output.

4.2.1 Buffer Selection

Due to the nature of geospatial data collection systems, a continuous and evenly timesliced trajectory
cannot be assumed, and so selecting a buffer based on a fixed number of points would be inappropriate.
Instead, we use a fixed temporal width for the buffer and consider all points that fall within this pe-
riod. A buffer therefore consists of a point under consideration, and the points falling within δ seconds
immediately before or after this point. The pseudocode for maintaining such a buffer is presented in
Algorithm 1.
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ALGORITHM 1 Buffer Management

1: points ← (p1, p2, ...) // input set
2: δ ← 300 // input parameter specifying buffer width
3: buffer ← [ points.shift ]
4: output ← [ ]
5: index ← null
6:

7: // Build the initial buffer
8: while points.length > 0 do
9: // If index has not been set, then we are in the first half

10: if index == null && TimeBetween(buffer [0], points[0]) > δ then
11: // If the next point is greater than δ seconds from the first, then the first half is full
12: index ← buffer.length − 1
13: // If index has been set, then we are in the second half
14: else if index ! = null && TimeBetween(buffer [index], points[0]) > δ then
15: break // Exit the loop as adding the next point would exceed δ
16: else
17: buffer.append(points.shift)
18: end if
19: end while
20:

21: // Process the current buffer, increment index and maintain the new buffer
22: while points.length > 0 do
23: output.append(Filter(buffer, index )) // Perform the actual filtering
24: index ← index + 1
25:

26: // If the point for consideration is not in the buffer, then add it now
27: if index == buffer.length then
28: buffer.append(points.shift)
29: end if
30:

31: // Remove any point from the first part that is not within δ seconds of buffer [index]
32: while TimeBetween(buffer [0], buffer [index ]) > δ do
33: buffer.shift
34: index ← index - 1
35: end while
36:

37: // Add points until doing so would exceed δ seconds from buffer[index]
38: while points.length > 0 && TimeBetween(buffer [index], points[0]) <= δ do
39: buffer.append(points.shift)
40: end while
41: end while
42:

43: return output

4.2.2 Scoring

Scores are then applied to each land usage element in the buffer, weighted by the number of points
the element is associated with, the accuracy of these points and the temporal distance from the point
under consideration. Since we are dealing with sets, rather than the filter simply averaging values over
the buffer, the process is modified by assigning weighted scores to each set element and then selecting
elements according to a threshold. Combining these factors into a score, we have:

Score(e) =
∑
p∈Pe

(
1

ap
×
(

1− dist(p, pc)

δ

))
× |Pe| (1)

where Pe is the set of all points that are associated with element e, ap is the accuracy value of point
p (in metres, such that low values indicate that there is likely to be less noise), pc is the point under
consideration, δ is the width of the buffer (i.e. the maximum number of seconds from pc to consider) and
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dist(p1, p2) is the number of seconds between points p1 and p2 (temporal distance). Equation 1 gives a
higher score to elements associated with a large number of high accuracy points (where high accuracy is
recorded as a small value). Scores are then normalised relative to the maximum:

NormalisedScore(e) =
Score(e)

argmaxScore(Score(e) : ∀e ∈ buffer)
(2)

4.2.3 Selection

With each element in the buffer assigned a score, selection can occur either by using a fixed threshold to
discard low-scoring elements, or by keeping all elements but limiting their effect through soft-thresholding.
Soft-thresholding is a technique commonly applied in signal processing, where a kernel is applied to the
calculated scores, forcing higher scores closer to 1 and lower scores closer to 0. While soft-thresholding
removes the need to apply a fixed threshold, for this work we are only concerned with whether or not
an element is included in the output set and thus we employ a threshold, t, where any element with
a NormalisedScore of greater than t becomes part of the output set, and the remaining elements are
discarded.

4.3 Data Summarisation

Once filtered, augmented trajectories contain a record of where an individual was at a given time, along
with the real-world features they were likely interacting with. These interactions are summarised into
continuous spans of time by considering each land usage element encountered. If the same land usage
entity is associated with two consecutive points, it can be assumed that it is also associated with the
period of time between these points, if such a period of time is sufficiently small. An example summary
is shown in Figure 4 (right).

If the time between consecutive points is large, it cannot be known whether the user ceased interacting
with an element and resumed again before data collection next occurred, and so a limit on the time
between consecutive points is specified as tmax. If the time between two consecutive points associated
with the same element is greater than tmax, then the interactions are split, a technique also used in
location extraction applications [Montoliu and Gatica-Perez, 2010; Thomason et al., 2016]. This results
in a summary list of land usage elements along with a set of times, during which the individual can be
assumed to have been interacting with the element in question.

5 Contextual Clustering

The identification of similar contexts is performed through clustering that considers both the properties
of the elements and the properties of user interactions to determine similarity. Rather than aiming to
identify a single level of clusters, which would limit the utility and applicability of the clusters to a
single scale, the goal here is to build a hierarchical model, constructed by progressively merging land
usage elements that represent similar contexts in a context tree, a depiction of which is shown earlier in
Figure 1.

5.1 Building Clusters

Initially, each land usage element is distinct and is treated as a singleton cluster (i.e. a cluster with
exactly one element). At each round of clustering, several of these clusters are merged to represent a
context and a new higher level in the hierarchy, with pointers between the levels considered as parent
and child relationships. That is, if two clusters at one level become merged into another cluster at the
next level, the original clusters are considered as children of the new cluster. This section describes how
clusters are merged with respect to their properties.

As discussed in Section 4, land usage elements are assumed to have a set of tags in the form of
‘key:value’ pairs that describe properties of the real-world entity to which the element relates, in addition
to geographical coordinate sets that describe the geographical properties of the real-world entity. Once
augmented and summarised, these elements are also associated with a set of times. When clusters are
merged to create a context tree, the following procedures are used:
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Figure 5: Cluster merging example.

Times
The times for the merged cluster are taken to be the union of the sets of times from all child
clusters, where overlapping time ranges are themselves combined into one. For example, if one
cluster had the set of times {10:00-10:05, 11:00-12:00} and another had {10:04-10:20, 11:10-11:15,
12:05-12:09}, then the merged times would be {10:00-10:20, 11:00-12:00, 12:05-12:09}.

Tags
Similarly, each element has associated tags. The tags of the merged cluster are defined as the union
of tags from the child clusters, where if two tags share a key but not a value, both values are stored.

Geographical Coordinate Sets
Each element contains a set of coordinates that define the geographical shape of the entity to which
they relate. Merging such elements should keep each of these sets discrete, unless they intersect, in
which case the coordinates belonging to both shapes are combined and replaced with their convex
hull.

The merging of Times assumes a periodicity of 24 hours, which while reasonable for many people (i.e.
those who follow a daily routine), it may not be appropriate for everyone. As such, automatic time
series learning could be utilised to better learn meaningful movement patterns of the individual. While
exploring such techniques is beyond the scope of this paper, there are many existing approaches that
may be effective for the task [Ahmad et al., 2004]. An example merging of two elements according to
these rules is shown in Figure 5, where it is assumed that there is no geographical overlap between the
two elements (i.e. the coordinate sets cannot be merged).

5.2 Contextual Distance Metrics

Clustering elements together requires a distance metric to measure element similarity. While identifying
contexts from certain types of data is a task considered before, and discussed in Section 2, no metrics
currently exist that have been tailored to the identification of contexts from augmented geospatial tra-
jectories. This section presents metrics that encapsulate the goals behind context extraction for this
specific problem, with an emphasis on properties of the interactions and properties of the real-world
features being interacted with. Having defined how elements are merged into clusters and, consequently,
how two clusters are merged (Section 5.1), we can now consider the similarity between two clusters.

5.2.1 Semantic Similarity

Clusters have tags that describe properties of the real-world entities contained in the cluster, forming an
ideal basis for understanding what the user might have been doing. Under the assumption that clusters

10



with similar tags are likely to have properties in common, we use the semantic similarity between cluster
tags as the basis for a distance metric. For this, we adopt the similarity measure proposed by Wu and
Palmer [1994], and extended by Resnik [1999] for calculating distance between word taxonomies through
WordNet [Miller, 1995]. The calculated scores are between 0 and 1 (inclusive), where a score of 1 means
that the words are interchangeable. The semantic similarity between two sets of tags, t1 and t2, is
therefore calculated as:

TagSim(t1, t2) =

∑
t∈t1

argmaxSim(Sim(t, t21), Sim(t, t22), ..., Sim(t, t2i))

|t1|
(3)

As tag similarity is not commutative, cluster similarity is calculated as:

SemanticSimilarity(c1, c2) =

argmaxTagSim(TagSim(c1.tags, c2.tags), TagSim(c2.tags, c1.tags)) (4)

5.2.2 Feature Similarity

The context of an activity or period of time is dependent not only on the location in which time is spent,
but on additional factors. With this in mind, we propose a second similarity measure, FeatureSimilarity,
that compares the interaction features of two clusters, specifically:

• Average interaction duration

• Most common time of day interaction begins

• Count of the number of times the element is interacted with

• Total area covered by elements (in m2)

The value from each feature is then discretised by placing values within bins (e.g. time of day could be
recorded in 4 hour increments), and converted into a single string that describes the feature and value
(e.g. ‘timeofday 12’ would indicate that the most common time of day that interaction begins is between
12PM–4PM). This procedure generates a set of features, f1 and f2, for clusters c1 and c2, from which a
similarity score is defined using the Jaccard index [Rajaraman and Ullman, 2011]:

FeatureSimilarity(f1, f2) =
|f1 ∩ f2|
|f1 ∪ f2|

(5)

5.2.3 Geographical Distance

For some applications it is possible that the similarity between clusters depends upon their geographical
proximity, where two clusters that are close together may have common purposes. If this property is
known to be true in the data, or given the goal of clustering, then the proximity of clusters can be
considered as the minimum geographical distance between elements of a cluster, calculated using the
Haversine formula [Robusto, 1957]:

GeographicalDistance(c1, c2) = argmindistance(distance(x1 ∈ c1, y1 ∈ c2), . . .) (6)

5.2.4 Hybrid Contextual Distance

Using one of the previously discussed metrics in isolation would not accurately capture the context
of the individual, as context depends on more than just any one factor. Instead, we combine the
SemanticSimilarity and FeatureSimilarity scores into Hybrid Contextual Distance (HCD), a measure of
the contextual similarity between two clusters:

HCD(c1, c2) =

1− (λ× SemanticSimilarity(c1, c2) + (1− λ)× FeatureSimilarity(c1, c2)) (7)

where λ is a user-specified weighting parameter that allows emphasis to be placed either on the semantic
or feature similarity between clusters. We choose to ignore the geographical proximity of elements
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ALGORITHM 2 Agglomerative Hierarchical Clustering Algorithm

1: clusters ← elements // The input set of elements, each treated as its own cluster
2: while clusters.length > 1 do
3:

4: // Create an n× n matrix of distances between clusters
5: distanceMatrix ← [ [d11, ...], [d21, ...], ...]
6:

7: // Find all pairs of clusters with the smallest distance between them
8: // If multiple pairs overlap (i.e. share a cluster), then group them together
9: closestGroups ← ClosestGroups(distanceMatrix )

10:

11: // Merge each extracted group into a single cluster
12: for group ∈ closestGroups do
13: newCluster ← Merge(group)
14:

15: // Set the old clusters as children of the new and remove the old clusters from clusters
16: for cluster ∈ group do
17: newCluster.children.append(cluster)
18: clusters.delete(cluster)
19: end for
20:

21: // Add the merged cluster to clusters
22: clusters.append(newCluster)
23: end for
24:

25: end while
26:

27: // By this point, clusters contains a single root cluster for the hierarchy
28: return clusters.first

because contexts should be separate from their geographical location (e.g. visiting two cafes in different
cities is likely to be indicative of the same context). If, however, additional domain knowledge is available
that ties geographical locations together with additional meaning (e.g. it is known that all buildings in
a given area perform a similar function), then geographical distance could be added to the HCD metric.
HCD can be used as a basis for clustering elements, and thus determining which elements have similar
contexts, aiding in our understanding of the individual to which the data belongs.

5.3 Hierarchical Clustering

With a distance metric in place, clustering can be performed using standard techniques. While tradi-
tional clustering is limited in that it extracts clusters at a single scale, which may not be appropriate for
a given task, hierarchical clustering identifies clusters at multiple scales. We use a greedy hierarchical
agglomerative clustering algorithm, presented in Algorithm 2, that extracts clusters of increasing simi-
larity up to a single root node, creating a context tree. While the hierarchical agglomerative clustering
algorithm is fairly standard in itself, its application to the generation of context trees is novel. The algo-
rithm deviates slightly from existing hierarchical clustering approaches in that it is capable of extracting
multiple clusters together in a single step if they have the same distance.

6 Evaluation and Results

In this work it is not practical to obtain a concrete ground truth to act as a point of comparison for
evaluation because the correctness of an extracted set of clusters depends on the task for which the
clusters will be used. In light of this, we opt to evaluate the proposed techniques with an approach
similar to those followed in existing literature where a single ground truth does not exist, as discussed in
Section 2.2. This is achieved by exploring the properties of the generated context trees and comparing
them against expected results while providing small, representative, examples that demonstrate the
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( Step 1)
l a t l n g : 52 .3834499 , −1.56026223
timestamp: 2013−11−08 14:09:51.000000000 Z
accuracy: 65 .0

( Step 2)
l a t l n g : 52 .3834499 , −1.56026223
timestamp: 2013−11−08 14:09:51.000000000 Z
accuracy: 65 .0
data: [ n 312873295 , n 552101208 , n 695942926 , n 1014585845 , n 1014585853 ,

w 92341980 , w 92342116 , w 145179860 , w 145179863 , w 145179883 ,
w 273005393 , w 303748830 , w 329376738 , w 329376739 , r 2437023 , . . . ]

( Step 3)
l a t l n g : 52 .3834499 , −1.56026223
timestamp: 2013−11−08 14:09:51.000000000 Z
accuracy: 65 .0
data: [ w 145179860 , r 2437023 ]

( Step 4)
w 145179860:

tags :
bu i l d i ng : u n i v e r s i t y
b u i l d i n g l e v e l s : 3

members: [ n 1586185863 , n 1586185883 , n 727382425 , n 1586185856 , . . . ]
t imes :

- begin: 2013−11−08 13:13:05.000000000
end: 2013−11−08 17:16:47.000000000

l a t l n g s :
- 52 .3837765 , −1.5601465
- 52 .3838285 , −1.5600527
- . . .

r 2437023:
tags : . . .

Figure 6: Examples of the data at each stage of the augmentation and filtering processes.

utility afforded by these procedures.
This section evaluates the proposed context tree data structure, along with the generation method

proposed in Sections 4 and 5. Although there are many use-cases for context trees, including as a basis
for anomaly detection, location prediction and city planning, we focus on understanding the high-level
behaviours of an individual throughout a 24 hour period as a representative example.

Figure 6 shows sample data at each stage of the augmentation and filtering process. Raw trajectory
data, in the form of an ordered array of points (Step 1) enters the system. Each point has timestamp,
longitude, latitude and accuracy values. Step 2 augments the trajectory with identifiers for all land usage
elements that the user could have been interacting with at that time (as described in Section 4). This is
achieved by extracting all land usage elements within the radius of the accuracy of the point and storing
the identifier of each element. Step 3 shows the augmented trajectory once filtered (as described in
Section 4.2), which reduces the number of elements associated with each point, with the goal of limiting
them to the elements likely being interacted with. Finally, summarisation occurs, clustering together
contiguous time periods that belong to the same element (as described in Section 4.3), shown in Step 4.

Once a summarised dataset has been created, a context tree can be generated using the metrics and
algorithm presented in Section 5. Generating a context tree from 24 hours of data produces a fairly large
tree, an extract of which is shown in Figure 7. A more in-depth analysis of the clustering procedure is
presented in Section 6.5.
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Figure 7: An extract of a tree generated using real data. The element used in the previous data examples is located in the
bottom right of the image, clustered with other university buildings.

6.1 Data

Evaluating this work requires both geospatial trajectories and land usage information. The trajectories
used are taken from the Nokia Mobile Data Challenge (MDC) Dataset [Kiukkonen et al., 2010; Laurila
et al., 2012], as discussed in Section 2.1. From this dataset, we select the real-world data from 40 users
with the largest number of trajectory points for this evaluation. While this dataset contains a vast
amount of information, we only consider the timestamp, latitude, longitude and accuracy of each data
point (consistent with the discussion in Section 4). In addition to this, and for comparative purposes,
we also select 5 users from the GeoLife dataset [Zheng et al., 2008a, 2009, 2010] for evaluation. While
the MDC dataset aims to provide continuous coordinates for the users, the GeoLife data instead only
captures periods of times when the users were moving. It has the additional drawback of not including
accuracy values, which are required for this work. As the data was collected using GPS-enabled devices,
we opt to assume a constant accuracy of 10m for each coordinate, in line with the expected performance
of GPS [Cao et al., 2009]. The trends presented in this section are consistent across both the MDC and
GeoLife data, and so most of the GeoLife results are omitted for brevity, however an example can be
found in Section 6.5.

A major drawback of using research datasets is that licences often prevent the publication of details
that can be used to identify people or specific locations visited. Additionally, it is not possible to contact
the users about whom data was collected to perform a user study. To get around these issues, we also
collect a small dataset of our own. Aiming to match the methodology of the MDC data, trajectories
were collected from the smartphones of 3 members of the Department of Computer Science, University
of Warwick for a period of 3 days. These trajectories are used for illustration, instead of the MDC
data, in Section 6.4 where the presented results contain the names of specific locations visited, and
communication with the users was required.

Land usage information comes from OpenStreetMap (OSM)1, a community-maintained map that

1https://openstreetmap.org/
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Figure 9: Effect of parameters on average number of elements per point post-filtering for an example user.

contains information pertaining to real-world entities, including their geographical coordinates and a set
of tags that describe the entity. These entities include features such as individual items (e.g. a payphone
or postbox), through to buildings and general land-usage designations (e.g. ‘farmland’). The data is
extremely detailed and accurate, spanning the entire world in a consistent manner, and thus forms an
ideal basis for this work. The required elements are extracted from OSM through the Overpass API2.

6.2 Filtering

The first stage in context tree generation is augmenting and filtering land usage elements. This section
evaluates and characterises the performance of the filter on real-world data, by first exploring how element
weights are distributed and then showing how this impacts the land usage elements that are filtered.

Filtering takes two parameters: δ and t. The parameter δ specifies the width of the buffer, in seconds,
and t specifies a threshold where elements with a calculated weight of greater than t form the output set.
Holding δ = 1200, Figure 8 shows the distribution of weights for all elements in the filtering process (i.e.
the values of NormalisedScore from Equation 2) for all 11,575 trajectory points belonging to a sample
MDC user. The effects of t (with δ = 1200) and δ (with t = 0.8) on the average number of elements
per point post-filtering can be seen in Figures 9a and 9b, respectively. These results are consistent with
expectations, as increasing t sets a higher threshold for elements to be included in the output set, and
thus results in fewer elements. Increasing δ results in a greater time span considered by the filtering
process, and so more elements are considered as transient, and are thus removed. Each of these figures
is generated from 7 months of data from a single sample user, and while the exact numbers vary when
using data from different users, the trends remain consistent across users from both datasets.

The accuracy of the trajectory points determines the radius of land usage data to consider. The effect
of accuracy on the number of extracted elements, both pre- and post-filtering, is shown in Figure 10 for
each of the 40 MDC users. The figure demonstrates that a larger accuracy typically results in a larger
number of elements per point, and that filtering reduces this number.

2https://wiki.openstreetmap.org/wiki/Overpass_API — By default, the Overpass API is only capable of extracting
elements that a coordinate pair is contained within if the element has been assigned a name. The API has therefore been
modified to consider all enclosing elements in these cases.
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Figure 10: Effect of accuracy on number of elements, pre- and post-filtering, for different users’ data.
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Figure 11: Effect of filtering on tag key similarity, both pre- and post-filtering.

6.2.1 Filtering Characterisation

To better understand the filtering process, we explore properties of the filtered data, specifically focusing
on how the elements and their semantics change. The aim of filtering is to remove noise and focus the
data on elements that the user was likely interacting with at a given time. It is reasonable therefore to
assume that the elements post-filtering should have more similarity than those before, with less variation
caused by the inclusion of random elements. To explore this hypothesis, Figure 11 shows the average
tag key similarity (i.e. only the key part of the ‘key:value’ pair that makes up an element’s tags, which
corresponds to broad type, e.g. ‘building’) both pre- and post-filtering for a given user over 1000 points of
their data. This demonstrates that in the majority of cases, tag key similarity is increased, and variance
significantly reduced, after filtering has occurred, indicating that the elements present post-filtering are
more similar and that unrelated noise elements have been correctly removed. The semantic similarity of
these tags is calculated using the method proposed in Section 5.2.1.

6.3 Summarising Data

Once the data has been filtered, it is summarised into continuous periods of time. Only one parameter,
tmax, is required, specifying the maximum amount of time (in seconds) between consecutive points for
them to be considered contiguous. Using the parameters δ = 1200 and t = 0.8, Figure 12a shows how
tmax affects the number of such periods extracted, and Figure 12b shows how tmax affects the average
length of such periods.

Figures 12a and 12b show that increasing tmax causes fewer, but longer, time periods to be extracted.
In the remainder of this paper, we use tmax = 1200 (i.e. 20 minutes) as it provides enough time for a user
to have ceased interacting with an element and to have later recommenced interaction, without causing
too many interactions to be needlessly split.
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Figure 12: Effect of tmax on the summarising procedure.

6.4 User-informed Evaluation

While there is no ground truth available for this type of problem, we can evaluate the procedure by
considering desirable properties of the output for a specific application and manually compare the ex-
pected and actual results for small subsets of data. A major problem here is that when conducting
such evaluations over publicly available research datasets, such as the MDC or GeoLife datasets used
in this paper, or alternatives such as Yonsei, there is no mechanism for contacting users to have them
verify assumptions. To overcome this problem, we opt to use data collected ourselves for this part of the
evaluation, as it affords us the ability to discuss with users exactly what activities they were conducting
on a given day. Details of the data collected can be found in Section 6.1.

This section presents analyses on small amounts of manually labelled real-world data with the goal of
using the constructed context trees to provide meaning to high-level behaviours, with the overall aim of
identifying such behaviours from the tree. The data analysed spans 24 hours from the three users of the
Warwick dataset, where annotations were added manually as accurately as possible, and in consultation
with the users. The augmentation and filtering procedures were run over this data and, for each labelled
time period, the 3 most common element tags were identified. This is shown in Figures 13-15. The aim
here is not to label the time periods with the exact activity being performed, but rather to demonstrate
that a meaningful relationship exists between the tags extracted and the true activity.

In Figure 13, general labels are applied to the activities being performed, and a meaningful correlation
between the tags extracted by the procedure and these labels is evident. Specific examples include the
action of driving being labelled with the ‘highway’ key, and taking the train with ‘railway’. Although
the tags are not always perfect, they are indicative. For instance, when the individual was at home no
residential building was identified, but an indication of the type of location was given by the tags ‘lit:yes’
and ‘highway’. In the region where this data was collected, roads with street lighting typically signify
residential areas. A similar relationship is shown in Figures 14 and 15, with labels applied hierarchically
and at lower granularities. While not every item is labelled exactly, we believe this is a result of the
data collection method. We used a data collection rate of one point per minute, meaning that several
labelled activities consist of only 1 or 2 trajectory points, leaving little information for the procedure
to utilise. Similarly, the land usage dataset contains a vast amount of information, but can be limited
in parts. An example of this is that the pub which was visited at 17:25 (Figure 14) is inside a larger
building. The procedure is only capable of identifying that the building was occupied by the user, but
there is no information pertaining to which element inside the building was being interacted with, and
so the only available information is ‘building:yes’.

To quantitatively explore how well the procedure worked over these examples, each tag extracted is
scored based on the relevancy to the label using three classifications: high, medium, low/none. These
scores are manually assigned and shown in Table 1, where a high tag indicates that the label is very
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Figure 13: Manually labelled data (in bold) compared against extracted element labels.

well correlated to the activity (e.g. ‘building:residential’ to the activity ‘Home’), medium indicates that
there is some link (e.g. ‘surface:asphalt’ to ‘Driving on a main road’), and low/none being given to tags
with little or no relationship to the activity (e.g. ‘highway:bus stop’ to ‘Attending lecture’). Figure 16a
shows the proportion of tags assigned to each of these weightings, demonstrating that the procedure
identified tags with high or medium relevancy 69.7% of the time. We also consider the highest-ranked
tag assigned to each labelled time period and the proportion of time periods represented by each tag
score is shown in Figure 16b. From these results, it is clear that while in the three examples, only 32.8%
of tags were awarded a high relevancy score, 60.0% of labels have at least one tag with such a score, and
88.9% contain at least one tag with a score of high or medium. This indicates that while not all of the 3
tags per label were useful, in nearly all cases, at least one of them was.

While this evaluation is limited in that it only considers 3 days worth of data from 3 different users, it
provides an indication that the techniques discussed previously are extracting useful and correct elements.
This is demonstrated by showing that there is a strong relationship between the tags identified by the
system and the labels manually assigned to data as a partial ground truth. A complete ground truth is
not possible in this domain, since the desirable properties of context trees will vary significantly based
on their intended use, however we believe that this exploration goes some way to demonstrating the
accuracy of the technique.
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Table 1: Summary of tags and frequency count for each type of interactions scored based on the relevancy of each tag
(High, Medium and Low/None).

Label Tag S # Tag S #
Home landuse:residential H 2 barrier:kissing gate L 1

highway:residential H 2 oneway:no L 1
building:residential H 1 maxspeed:30 L 1
building:garage M 1 highway:primary L 1
lit:yes M 1 left county:nor... L 1

Walking (res.) landuse:residential H 1
Walking (shops) amenity:parking M 1
Walking (road) sidewalk:both H 2 highway:bus stop M 1

highway:secondary H 1 bicycle:yes M 1
oneway:yes M 2 ref:lmngtns L 1
lit:yes M 2 public transport:pay... L 1
boundary:public... L 1

Walking (park) leisure:park H 1 waterway:river M 1
foot:yes H 1 barrier:gate M 1
barrier:kissing gate M 1

Driving (res.) landuse:residential H 2
Driving (road) highway:tertiary H 6 maxspeed:60 M 3

highway:primary H 2 maxspeed:30 M 2
highway:secondary H 1 maxspeed:20 M 2
oneway:yes M 4 amenity:university L 2
highway:bus stop M 3 type:multipolygon L 1
surface:asphalt M 3

Parking (uni) amenity:university M 1 type:multipolygon L 1
Work (office) building:university H 2 highway:footway L 1

building levels:4 M 2 highway:service L 1
Walking (uni) amenity:university H 4 landuse:grass M 1

highway:crossing H 2 type:multipolygon L 4
Eating (rest.) level:0 M 1 area:yes L 1

level:1 M 1 lit:yes L 1
building:yes M 1 surface:asphalt L 1

Eating (pub) building:yes M 1 area:yes L 1
level:0 M 1

Work (library) amenity:library H 2 type:multipolygon L 2
amenity:university M 2

Work (lecture) surface:asphalt L 2 highway:bus stop L 1
type:multipolygon L 1 oneway:yes L 1
lit:yes L 1

Visiting friend amenity:university M 1 type:multipolygon L 1
building:yes M 1

Petrol station operator:tesco H 1 amenity:fuel H 1
opening hours:24/7 H 1

Union (uni) amenity:university M 1 type:multipolygon L 1
Bar building:yes M 2 oneway:yes L 2

surface:asphalt L 2
Train electrified:rail H 2 railway:rail H 1

gauge:1435 H 2 frequency:0 L 1
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Figure 14: Manually labelled data (in bold) compared against extracted element labels.
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Figure 15: Manually labelled data (in bold) compared against extracted element labels.
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Figure 16: Proportion of relevant tags.
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Figure 18: Example context tree: geographic clustering.

6.5 Context Trees

When constructing context trees from summarised data (Section 5), the only required parameter is λ,
which specifies the weighting to be given to semantic similarity as part of the Hybrid Contextual Distance
distance metric (Equation 7). A weighting of 1 will construct a tree based only on the semantic similarity
between node tags, and a weighting of 0 will construct a tree based only on the similarity of features,
with any value in between using a combination of the two. The relationship between λ and the number
of nodes in a context tree is shown in Figure 17 (generated using 24 hours of a single users’ data, filtered
with parameters δ = 1200, t = 0.8, and tmax = 1200). While the number of nodes does not vary
drastically with λ, the meaning behind the clusters does.

Since our work on understanding context from trajectories augmented with land usage information is
novel, there are no existing baseline methods or ground truth datasets to compare against. Instead, we
take the closest method to a baseline that exists and compare the results against this. Figures 18 and 19
show the results of clustering context trees using näıve distance metrics that consider only geographic
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Figure 19: Example context tree: temporal clustering.

Figure 20: Example context tree: semantic clustering (λ = 1).

distance between elements (Figure 18) and temporal distance between interactions (Figure 19). While
these figures only show one small example, the results are representative of using such metrics in that
the elements clustered together have no clear contextual relationship. This is in contrast to the context
trees generated from the same data using the Hybrid Contextual Distance metric, along with different
values of λ, as shown in Figures 20–22.

In all of these examples, the element identifier has been manually replaced with a descriptive key-
word to represent the element. Semantic clustering (Figure 20) creates distinctive groups for buildings,
footpaths and public amenities, as the elements in these groups are similar, while feature-based cluster-
ing (Figure 21) creates groups that are less easily identifiable and relate to properties of the elements
(e.g. the footpaths are not grouped because they were not encountered in the same journey, but rather
were used at different times of the day). Finally, hybrid clustering (Figure 22) shows properties of both
semantic and feature-based clustering where both the description of the element and properties of the
interaction with the element are considered to create clusters. Selecting an appropriate value of λ is
application-specific.

These context trees provide only small examples of the differences between trees generated with näıve
distance metrics (Figures 18 and 19) and those generated with the HCD metric (Figures 20–22). In order
to quantify such differences, and given knowledge of the data and how it was collected, we opt to make
several assumptions of expected properties of generated context trees and explore the extent to which
these expectations are violated with each distance metric. While this is of course a subjective evaluation,
and the utility will vary based on the specific application the context tree is put to, it goes some way to
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Figure 21: Example context tree: feature-based clustering (λ = 0).

providing an indicator of the utility of this approach in lieu of a ground truth. The assumptions made
are:

1. Buildings should be grouped together unless they have very different uses (e.g. residential buildings
should not be in the same group as office buildings).

2. Roads should be grouped together, with elements relating to roads grouped at a higher level (e.g.
junctions).

3. Public amenities should be grouped together unless the interactions have very different properties.

These assumptions focus on the semantics of elements, but the features also need to be considered
when exploring possible reasons for clusters being split. For instance, if a person visited many houses as
part of their job, it would be reasonable to assume that these houses should be semantically close to the
residence of the individual in the context tree, but not at exactly the same level. The usefulness of such
assumptions will depend on the application, but it is possible to see that when aiming to characterise
how a person has spent their time, it is beneficial to identify the times spent at residential buildings
separately to those spent at work. On the small example context trees shown in this section, geographic
and temporal clustering (Figures 18 and 19) violate all 3 assumptions. Semantic clustering (Figure 20)
best adheres to these assumptions, with the houses grouped at the same level and the building under
construction close by in the next level up. Similarly, the footpaths are together with the cycle barrier,
a related element, and highway one level up. Feature-based clustering (Figure 21) has fewer valid
assumptions than semantic clustering, as it only considers the interactions with the elements and not the
elements themselves. Although the houses are together in a single cluster, they are also joined with the
car park and footpath. Finally, hybrid clustering (Figure 22) is very similar to semantic clustering with
the exception that the highway is no longer situated close to the footpaths, but is further up the context
tree by itself. This still leaves 2 of the assumptions strictly adhered to, with 1 very close. A change that
can be explained by the consideration of interaction features, where the highway has a different profile
of interaction than the footpath and cycle barrier elements. Again, these are small examples, however
the trends present have been observed to be consistent across larger context trees.

With a better understanding of filtering, summarising and clustering, we turn our attention to ex-
ploring how data influences the properties of the generated context tree. Focusing on 21 days of data
from a single user, Figure 23 shows repetition in data by using the first day as a set of training data and
calculating the coverage (i.e. the proportion of test data present in the training data) for each following
day, shown by the blue Fixed line. Additionally, the red Retrained line shows the coverage when using all
previous days (i.e. 0 to n−1, where n is the current day) as the training set. The total number of nodes,
number of leaf nodes, and total count of time periods for a context tree generated using the same data
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Figure 22: Example context tree: hybrid clustering (λ = 0.6).

(where day n shows a summary for a tree built using all data from days 0 to n) are shown in Figure 24a.
Please note that no data was recorded during day 5 for this sample user in the MDC dataset.

Figure 23 begins with a low coverage for both Fixed and Retrained lines, indicating that few elements
encountered in day 1 were present in the training set (day 0). However, while the Fixed score remains low
for days 2–4, the Retrained score approaches 100%. In this instance, this is indicative of the user visiting
elements that they did not encounter in the initial training day (day 0), but that they did encounter
during subsequent days, as the Retrained line includes all previous days as training data. The figure
shows similar results for the remaining test days, where during day 9 the user visited only locations
visited during day 0 and during days 9, 11 and 16–20 the user encountered no new elements as the
score for Retrained is at 100%. Figure 24a shows how these properties relate to the size of context trees
generated. The number of leaf nodes is the number of unique elements and the number of time periods
is a count of the total number of (non-unique) elements encountered. That is, if the user encountered
the same element 3 times, or 3 different elements, both would count as 3 time periods. At day 1 the
number of time periods is roughly the same as the number of leaf nodes, indicating that all elements were
encountered approximately once. As time goes by, more elements are encountered, but a large number of
existing elements are revisited, demonstrated by the disproportionate rise in the number of time periods.
This indicates that over a short period, where the user likely remained within a single region, the size
of the tree does not increase significantly as additional data is added. However, considering trees over
larger time periods will not have the same property as the user will likely visit new regions with entirely
new leaf nodes. Figure 24b shows a similar graph as Figure 24a, however it was generated using data
from a user of the GeoLife dataset instead of the MDC dataset. As is evidenced by the figures, the
procedure extracts similar trends in users from each dataset.

This section has characterised the outputs and properties of the context tree generation procedure
presented in Section 3. While the concept of a ground truth for this work is not applicable, and existing
approaches for comparison are lacking, through the provision of multiple small examples and a discussion
of general trends we have demonstrated the applicability of the approach presented in this paper to the
task of identifying similar contexts and storing such information in a hierarchical data structure.
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Figure 23: Land usage coverage with an initial training period of 24 hours (indicated by the dotted line).
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Figure 24: Training data against number of tree nodes.

7 Context Tree Pruning

Storing context trees in their entirety maintains the maximum amount of information, however there
are applications where reducing the size of a tree may be desirable. Memory-constrained devices, for
example, may be better able to make use of a reduced size context tree as this would require lower
storage requirements, and also enable quicker search due to the reduced number of nodes. Furthermore,
reducing the size of context trees may have application-specific benefits, such as preventing overfitting
when learning prediction models. In both of these cases, it is desirable to prune the tree to reduce
the amount of data stored while maintaining as much information as possible. This section presents
a method for such pruning, that although requires additional processing to select nodes eligible to be
removed, results in smaller context trees that require less memory to store and fewer operations to search.
A representation of a pruned context tree can be seen in Figure 25.

7.1 Pruning Criteria

Pruning is performed depth-first, evaluating each cluster to determine whether the additional overhead
of storing the node is outweighed by the utility it affords. Each cluster is considered using the null
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Figure 25: An example of a pruned context tree (with removed nodes crossed through).

hypothesis, and the hypothesis rejected when the utility of storing the cluster is above a threshold. Any
cluster for which we are unable to reject the hypothesis is pruned, and its parent is marked as eligible for
pruning. As metrics do not already exist for this task, we adapt existing metrics used in related domains
for the purpose of context tree pruning.

7.1.1 Storage Cost

Clusters are scored according to two metrics: their storage cost and their utility. To determine the cost
of storing a cluster, it is important to understand how clusters are built up in a context tree (described
in Section 5.1). When merging two clusters together to form a parent cluster, the aspects that belong
to each cluster are considered in turn; specifically the tags, times and coordinate sets. Sets of tags are
combined from the child clusters by taking their union, while times and coordinate sets are merged in such
a way that overlapping components are combined into single elements, and thus through the combining
of child clusters into a parent cluster, information has been removed. The cost of storing an additional
node is therefore the cost of storing the individual components (e.g. time range) that are present in a
child, but not present in the same form in its parent. Assuming uniform cost for each component:

Cost(C|P ) =

ξ + |Ctimes \ Ptimes|+ |Ccoordsets \ Pcoordsets|+ | ∪s∈Ccoordsets
s \ ∪s∈Pcoordsets

s| (8)

Where ξ > 0 is a small, manually selected, penalty that represents the overhead of storing each cluster,
Ctimes is the set of time ranges that are associated with cluster C and Ccoordsets is the set of coordinate
sets associated with cluster C. Remembering that the coordinate sets belonging to a cluster themselves
contain sets of points (i.e. Ccoordsets = {{p1:1, p1:2, p1:3, ...}, {p2:1, p2:2, p2:3, ...}, ...}), ∪s∈Ccoordsets

s is taken
to be the set of all points associated with any coordinate set that belongs to cluster C. Having ξ as
non-zero represents that there is always a (small) cost associated with each cluster. Equation 8 will
need tuning based on the specific application to better represent the true cost of storing a node, but it
provides a basic foundation.

7.1.2 Cluster Utility

Determining the utility of a cluster is difficult and is dependent on the specific use of the context tree.
For this reason, any application of the approach will need to consider the goal of pruning and use this to
inform the measurement of the utility afforded by a specific cluster. We adopt a general approach that
can be tailored to specific needs by providing a measure of the information lost if the parent of a cluster
were used to represent the child, similar in idea to the Kullback-Leibler divergence used to measure the
difference between probability distributions. As parents contain a superset of the children, we consider
the utility of a child cluster (C) given its parent (P ) to be the proportion of information present in the
parent that is not covered by the child, where the measure of information must consider the attributes
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Figure 26: Effect of θ on number of nodes in a sample context tree (λ = 0.5, ξ = 1).

(i.e. tags, times, and coordinate sets) present in each cluster:

Information(C ) =
∑

t∈Ctimes
duration(t) +

∑
s∈Ccoordsets

area(s) + |Ctags| (9)

Providing even weighting to the different elements for the measure of utility:

Utility(C|P ) = 1−

(
1

3

∑
t∈Ctimes

duration(t)∑
t∈Ptimes

duration(t)
+

1

3

∑
s∈Ccoordsets

area(s)∑
s∈Pcoordsets

area(s)
+

1

3

|Ctags|
|Ptags|

)
(10)

Specifically, this metric considers the proportion of time, area and tags covered by the child with respect
to the parent, and holds true to the aims of such a metric to produce a score of 0 if the parent and
child contain identical information and a score approaching 1 if the child only represents a fraction of
the parent.

7.1.3 Cost-Benefit Score

The cost-benefit score of a cluster is taken to be the utility of the cluster divided by the storage cost:

CostBenefitScore(C|P ) =
Utility(C|P )

Cost(C|P )
(11)

While utility is normalised between 0 and 1 as it represents the proportion of the parent that is not
covered by the child, cost only has a minimum bound of ξ (Section 7.1.1), where ξ > 0. Depending
upon the application, it may be desirable to also normalise cost relative to the current context tree.
Using this metric on nodes depth-first, pruning should occur for any cluster C with parent P and
CostBenefitScore(C|P ) < θ, where θ is the pruning threshold and C has no unpruned children.

7.2 Pruning Evaluation

Pruning requires a pre-built context tree and two parameters, namely θ and ξ, where θ provides a
threshold for pruning, and ξ is a penalty associated with every node when calculating its storage cost.

Figure 26 shows the effect of varying θ when pruning a context tree generated from the same data
and parameters as those used in Figure 17, with λ = 0.5 and ξ = 1. From this figure it is possible to see
that the number of nodes in a context tree can be drastically reduced while maintaining the majority
of the information. Selecting θ = 0.6, the resultant pruned context tree contains approximately 20% of
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Figure 27: Effect of ξ on number of nodes in a sample context tree (λ = 0.5, theta = 0.2).

the nodes present in the unpruned tree, but maintains almost 70% of the useful information. While the
process to prune the context tree adds in additional complexity, the resultant tree is considerably more
compact and thus applications that require storing or searching the tree will have significantly lower
overhead.

Using the same data again, but this time holding θ = 0.2, Figure 27 shows the effect of changing ξ
on the number of unpruned nodes, average HCD and information. Increasing either θ or ξ reduces the
number of nodes left after pruning (Figures 26a and 27a), as increasing θ specifies a higher threshold
required to maintain a node, and increasing ξ assigns a higher cost to each node, making it less likely
to exceed the threshold. The results also demonstrate that as more nodes are pruned from the context
tree, the average distance of the remaining nodes becomes smaller (i.e. they become more similar,
Figures 26b and 27b). Finally, Figures 26c and 27c demonstrate that although pruning does reduce the
total information in the tree, it does so gradually until the number of unpruned nodes approaches 0,
under the definition of information presented in Equation 9. This helps to demonstrate the effectiveness
of pruning as the number of nodes in the tree can be drastically reduced, but the amount of information
remains high.

Figure 28 shows how pruning affects trees generated from real-world data (using the same data and
clustering as in Figure 22). With the lowest value of θ (θ = 0.25 shown in Figure 28b), only two leaf
nodes have been pruned: one of the footpaths and one of the buildings. Increasing θ (θ = 0.35 shown in
Figure 28c) causes more leaf nodes to be pruned, and a further increase (θ = 0.45 shown in Figure 28d)
has the effect of pruning entire sub-trees, resulting in a much smaller and more compact tree. Although
containing less information, such pruned trees provide benefits in resource-constrained applications where
storing and processing an entire tree may be infeasible.

8 Conclusion

This work has presented the context tree hierarchical data structure that summarises user contexts at
multiple scales. In addition to this, we proposed a method for constructing context trees from geospatial
trajectories and land usage datasets. The context tree is a novel data structure that provides rapid
access to summary information about a user’s interactions with their environment, and thus provides a
foundation for further analysis, understanding and modelling of the behaviours of individuals and groups.
Furthermore, this work has presented an analysis of both context trees and the associated generation
procedure, using real-world data and a partial ground truth, alongside a proposed method of pruning
context trees to reduce their size, thus requiring less processing and memory for further applications.
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(a) Unpruned tree (b) θ = 0.25

(c) θ = 0.35 (d) θ = 0.45

Figure 28: Context tree pruning for different values of θ, with ξ = 1.5.
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The data employed for evaluation came from the publicly available MDC [Kiukkonen et al., 2010; Laurila
et al., 2012] and GeoLife [Zheng et al., 2008a, 2009, 2010] datasets, consisting of GPS trajectories from
real individuals, in addition to data collected ourselves.

Constructing context trees begins with processing of land usage data in a manner that considers both
the extraction of relevant land usage information and filtering to remove noise, in addition to providing
a novel technique for clustering related land usage elements to expose contexts by considering both
properties of the real-world entities that the user interacted with, and properties of the interaction itself
(e.g. the time and duration). These processes are combined with an agglomerative hierarchical clustering
technique to generate the context tree.

By summarising contexts into a single data structure, it becomes easier to detect changes in routine
through anomaly identification, identify similarities and differences between users to spot those with
commonalities such as similar jobs or habits, and predict users’ future actions. These areas are proving
to be increasingly important to the provision of tailored and useful services both on individual and societal
scales. Future work will expand existing techniques applied to locations and contexts by increasing their
applicability to context trees. For example, expanding location prediction to operate over contexts such
as those identified through contextual clustering would provide the ability to predict not only where
a user is likely to be going, but also properties of the interaction, such as when and for how long.
Furthermore, predictions need not relate to specific locations or entities, but rather to contexts and thus
it would become possible to predict that a user will go to, for example, a building with certain properties
without the need to identify exactly which building will be the target.
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Fotheringham. 2015. Analysis of Human Mobility Patterns from GPS Trajectories and Contex-
tual Information. International Journal of Geographical Information Science, pages 1–26. doi:
10.1080/13658816.2015.1100731.

Lu-An Tang, Yu Zheng, Jing Yuan, Jiawei Han, Alice Leung, Chih-Chieh Hung, and Wen-Chih Peng.
2012. On Discovery of Traveling Companions from Streaming Trajectories. In Proceedings of the 28th
IEEE International Conference on Data Engineering, pages 186–197, Washington DC. doi: 10.1109/
ICDE.2012.33.

Alasdair Thomason, Nathan Griffiths, and Matthew Leeke. 2015a. Extracting Meaningful User Locations
from Temporally Annotated Geospatial Data. In Internet of Things: IoT Infrastructures, volume 151
of LNICST, pages 84–90. Springer. doi: 10.1007/978-3-319-19743-2 13.

Alasdair Thomason, Nathan Griffiths, and Victor Sanchez. 2015b. Parameter Optimisation for Location
Extraction and Prediction Applications. In Proceedings of the 2015 IEEE International Conference on
Pervasive Intelligence and Computing, pages 2173–2180, Liverpool. doi: 10.1109/CIT/IUCC/DASC/
PICOM.2015.322.

Alasdair Thomason, Matthew Leeke, and Nathan Griffiths. 2015c. Understanding the Impact of Data
Sparsity and Duration for Location Prediction Applications. In Internet of Things: IoT Infrastructures,
volume 151 of LNICST, pages 192–197. Springer. doi: 10.1007/978-3-319-19743-2 29.

Alasdair Thomason, Nathan Griffiths, and Victor Sanchez. 2016. Identifying Locations from Geospatial
Trajectories. Journal of Computer and System Sciences, 82:566–581. doi: 10.1016/j.jcss.2015.10.005.

Alessandro Vinciarelli, Anna Esposito, Elisabeth André, Francesca Bonin, Mohamed Chetouani, Jef-
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