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Abstract

Molecular Communications (MC) is a promising paradigm to achieve message exchange between nano-machines. Due
to the specific characteristics of MC systems, the channel noise and memory significantly influence the MC system per-
formance. Aiming to mitigate the impact of these two factors, an adaptive decoding algorithm is proposed by optimising
the symbol determination threshold. In this paper, this novel decoding scheme is deployed onto a concentration-based
MC system with the transmitter emission process considered. To evaluate the performance, an information theoretical
approach is developed to derive the Bit Error Rate (BER) and the channel capacity. Simulations are also carried out
to verify the accuracy of these formulations, to compare the performance difference against other decoding schemes,
and to illustrate the performance deviation caused by different designing of relevant parameters. Furthermore, the per-
formance of MC systems with the distance unknown is also analysed. Comparisons between distance-pre-known and

distance-unknown systems are provided.
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1. Introduction

Molecular communications (MC) is an increasingly at-
tractive idea, aiming to enable the networking of nano-
machines. Molecules, encoded by the transmitter nano-
machine (TN), propagate to the receiver nano-machine
(RN) to accomplish the exchange of information. Such
information can be expressed by either the number of cer-
tain molecules or the molecular concentration. In the first
case, in [1, 2, 3, 4], researchers focused on the movement
of individual molecules. There exists a certain probabil-
ity for diffusing molecules to be captured by the RN, and
the capture probability is utilised to describe the propaga-
tion mechanism. The RN is an active absorber, which can
catch and remove the received molecules from the envi-
ronment. By counting the number of captured molecules,
the RN determines the information symbols. In the sec-
ond case shown in [5, 6, 7, 8], attention has been paid
to the molecular concentration. After being released from
the TN, molecules will form a certain concentration dis-
tribution in the environment. The RN is assumed as a
passive observer, which can sense the surrounding concen-
tration to decode the message symbols without affecting
the molecular distribution. No matter which way is cho-
sen to express the information, the system performance is
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significantly impacted by the channel noise and memory.
In order to alleviate the influence of these two factors, the
decoding threshold of the RN should be optimised by con-
sidering previously transmitted symbols. Thus, an adap-
tive algorithm will be of great benefit to enhance the MC
system performance by reducing the Bit Error Rate (BER)
and improving the channel capacity.

By utilising amplitude modulation schemes, the decod-
ing strategy of the RN is to compare the received molecular
signal to a pre-designed threshold to determine whether ‘1’
or ‘0’ was transmitted. According to the adaptivity of the
threshold, research analysing the MC system performance
can be sorted into two classifications. In the first category,
the threshold stays constant throughout the communica-
tion process. The MC system property with a fixed thresh-
old was characterised in [1], and expanded in [2, 9] by
taking the channel memory into consideration. Addition-
ally, in [5, 10, 11, 12, 13, 14, 15], research that focused on
modulation schemes and/or noise modelling, also provided
theoretical approaches to evaluate the performance of MC
systems with fixed thresholds. In these studies, messages
were conveyed by the number of absorbed molecules, and
the TN emission process was neglected by assuming that
molecules were released simultaneously. As to the work
considering the emission procedure [6, 16, 17], information
was expressed by the molecular concentration. However,
in these research, only simulations are carried out, rather
than deriving mathematical expressions to study the MC
system. In the second category, the decoding threshold
varies depending on previously received symbols. In [4],
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the value of the threshold is designed to maximise a poste-
riori probability, but the system model should be refined
by considering the emission effect. Other research such
as [18, 19] has taken the emission process into account,
and the threshold changes with regards to the previously
decoded bits. However, the threshold should be further op-
timised to mitigate the influence of the channel memory
and noise. Moreover, the impact of the channel memory
still requires further investigation.

In this paper, the following contributions are presented.
First, a new decoding algorithm is proposed by optimis-
ing the threshold with the aid of previously determined
symbols. The optimal threshold is derived by a mathe-
matical approach to minimise the BER of the MC system.
Accordingly, expressions of the BER and capacity are ob-
tained. Meanwhile, the impact of the TN emission over
time is considered and the influence of the channel noise
and memory are also clarified. Second, the impact of the
ISI is further investigated even though it has been allevi-
ated. For theoretical deviations, ISI length is treated as
an arbitrary value to maximise the generality. For simu-
lations it is set to a length of 20 such that results are of
as a high precision as is reasonably practical. Third, this
is the first paper to consider the distance estimation when
analysing the MC channel. Before the communication is
established, the RN measures the distance between the TN
and itself, so that the RN can determine the sampling time
and judging conditions correspondingly. The accuracy of
the distance estimation will significantly affect the system
performance.

The remainder of this paper is organised as follows. In
Section 2 the communication model is introduced as well
as the system structure. The new decoding algorithm and
channel performance are presented in Section 3. Numerical
results are provided in Section 4. Finally in Section 5, the
paper is concluded.

2. The Concentration-Based Molecular Communi-
cations Model

As is illustrated in Fig. 1, the concentration-based MC
system consists of two nano-machines, one of which, rep-
resented as Nano-machine A (NA), is viewed as the source
nano-machine and the other, represented as Nano-machine
B (NB), is viewed as the target nano-machine. In the first
stage, before the communications between NA and NB
are established, the NA emits a pulse of certain molecules
(denoted as Molecule_1) to enable the NB to estimate the
distance. Accordingly, the NB can adjust the sampling
time and set the judging condition to determine whether
‘1’ or ‘0’ is transmitted. There exist several distance esti-
mation schemes, such as those shown in [18, 20, 21]. In this
paper, the scheme employing the peak concentration time
to estimate the distance, proposed in [18], is selected for
two reasons. Firstly, this scheme is implemented based on
the same propagation model as the one utilised in this pa-
per, which will be introduced later. Secondly, this scheme
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Figure 1: The structure and block diagram of the MC system.

provides a sufficiently accurate estimation, and is easy to
implement due to its simplicity.

In the second stage of the communication process, the
NA encodes information symbols into the concentration
of another kind of molecule (denoted Molecule2). Two
kinds of molecules are utilised so that the distribution
of ‘estimation’ molecules will not affect that of ‘message’
molecules. To transmit bit ‘1’, the NA releases a certain
amount of Molecule_2; to transmit bit ‘0’, the NA stays
quiet. The NB determines incoming messages by sensing
the concentration around itself to a pre-designed threshold.
In contrast to existing research, the design of the thresh-
old is optimised by considering previous decoded symbols,
which will be introduced later. Similar to the work in
[6, 7, 8, 18, 22, 23], the concentration at the NB can be
considered as the concentration at the centre of the sensing
sphere.

The molecule concentration in a 3D environment is ob-
tained by solving Fick’s laws of diffusion, which can be re-
garded as the impulse response for the 3D diffusive channel
8, 22):

1 d?
h(d,t) = (miD)2 exp (_4tD>’ (1)

where d is the distance between the NA and NB (in pm),
t is time (in ps), and D is the diffusion coefficient (in
pm?ps~h).

The emission process, rather than being simplified as an
impulse, is modelled as a rectangular pulse given by:

t—T,/2

s(t)_a-rect< T >,0§t§Tp, (2)

where « is the emission rate (in number/ps), T, is the
emission pulse duration (in ps) , 7}, is the emission pulse
period (in ps), and T, < T,. If m denotes the number
of molecules released per pulse, it can be deduced that
m = « X T,. Therefore, the theoretical concentration at
the NB, u(d,t), formed by newly emitted molecules, can
be obtained by the convolution operation u(d,t) = s(t) *



h(d,t) [16], that is:

@ - dDerfc(@) t<T,
u(d, t) = J
D erfc(@) — erfc(m) , t>1T;

(3)

The NB is designed to sample the concentration at the

time when theoretical concentration, u(d,t) , reaches the

peak value. By deriving the equation w = 0, the

relationship between the distance and the sampling time
To can be obtained as [18]:

6D
T,

T

@2 = .(TO—TE).TO.ln(TOOTe) (4)
Thus, by solving (4), the sampling time can be determined.

However, molecules will not vanish within one period Tj,.
The remaining molecules will have an influence on the con-
centration distribution of newly emitted molecules, which
causes Inter-Symbol Interference (ISI). The existence time
of newly emitted molecules is denoted as (I + 1) x T}, af-
ter which the concentration referring to (3) is considered
as negligible; I is called the ISI length. If this is infinite,
the ISI brought in by the first pulse emission will affect all
the following molecules signals; if it is finite, the channel is
called a Memory Limited Channel (MLC) [24]. Thus, con-
sidering the ISI, the noiseless concentration at the NB can
be regarded as the sum of the current signal concentration
and previous ones, that is:

I
ul(d,t) = Zu(d,t =To+ixTp)ap—;, = z:uiak,i7
i=0 i=0

(5)
where k represents the k" symbol from the beginning of
transmission, the set {ax—;,i = 0,1,...,I} is the binary
messages sequence, the element aj_; represents the binary
value of each symbol, and {u; = u(d,Tp + i x Tp),i =
0,1,2,...,I}. During the diffusion process, an additive
signal-dependent noise, n(t), will also affect the concen-
tration at the NB. The noise, n(t), is normally distributed
with the expression given as [6, 8, 18, 19, 23]:

n(t) ~ N(0,0%), (6)

I
where 02 = Zoul(t) = 25> ouwia—;. Conse-
quently, referring to Fig. 1, the concentration at the NB

can be derived as:

I

= Z uiak,i—i-n(t = T‘(])

i=0
(7)
As defined in [6], the signal power and noise power of
the MC system are respectively obtained by:

r(d,t = Ty) = u! (d, t)+n(t = Tp)

Wy = u%? (8)
W, = Eln(t)?], (9)

where E[-] represents the expectation value. Given (6),
the value of E[n(t)?] can be derived as:
3u(t) 3
2 21 _ _
Eln(t] = Elo?) = E [Mg] - M?,E[u(m
47rR3 ZW’“ ] e Z“ (10)

where p is the probability of symbol ‘1’ transmitted.
Given (8) to (10), the Signal-to-Noise-Ratio (SNR) at
the NB for this MC system can be calculated as[6]:

Wy, ug
SNR = W~ &

4w R3

_ ArR3ud
= . .
3P o Wi

(11)

I .
i=0 Wi

3. Channel Analysis

The NB is designed to determine the message bits by
comparing the received concentration to a pre-designed
threshold 1. Thus, given r(d,t = Tp) representing the
sensed concentration, the judgement condition L can be
expressed as:

L=r(d,t=1T)—n. (12)

The design of 1 has taken the influence of both previ-
ous symbols and the noise into consideration, which is a
method to mitigate the influence of the channel memory
and noise. The method for 1 optimisation will be intro-
duced later in this paper. When L > 0, ‘1’ is decided;
otherwise, ‘0’ is decided. Considering r(d,t = Tp) in (7),
the threshold 7 can be designed with an expression given
as [25]:

I
n= Zuldk_l + T (13)

i=1
where 0 < 7 < wg, and the set {ar—_;,i = 1,2,...,1} is
previously decoded bits within the ISI length I. If er-

rors are assumed to occur independently, then previously
decoded bits will not affect the decoding of the current
symbol. Thus, in this case, it is assumed that a;_; = ag—;
for i = 1,2,...,I. By substituting (7) and (13) into (12),
L can be derived as:

L=n(t="Ty)+ agug — 7. (14)

3.1. Bit Error Rate analysis

Error occurs only in two scenarios; when ‘0’ is transmit-
ted but ‘1’ is received (named as ap=0 but dr=1), or when
‘1’ is transmitted but ‘0’ is received (named as ap=1 but
4r=0). Due to the existence of the ISI, different permu-
tations of the values of {ay_;,i = 1,2,...,1} will result in
different error patterns. Each error pattern will correspond
to a certain permutation of values of {ax—;,i =1,2,...,I}.
With the ISI length equal to I, there will be 27 error pat-
terns. In this work, ‘j° denotes the error pattern index,



where j = 1,2, ..., 2L. For the error pattern ‘j
of ‘1’s within the previous symbols {ax_;,i = 1,2, ...,
denoted as p, and the number of ‘0’s is (I — g).
(1) ar=0, but a,=1:

With a = 0, to obtain the condition L > 0 in (14), it
is required that:

’ the number

I}is

n(t="Ty) > 7. (15)

Given (6), the probability for the error pattern ‘;j” with ‘0¢
transmitted can be derived by calculating the probability
of n(t = Tp) > T, that is:

’1}2

1 1
I=ej / ———exp(— = )dv
i o 70; p( 2‘78]')

=p¥(l—p)® (1 - ‘P(;OJ))

= p%(1— p)I_Qj(I)<;T;—->7 (16)

Peoj =p%(1—-p)

I
where 0g; = \/ﬁ D ieq Gh—ili.
(2) ar=1, but a;=0:

With ar = 1, to obtain the condition L < 0 in (14), it
is required that:

n(t =Ty) < T — up. (17)

Given (6), the probability for the error pattern ‘j’ with
‘1¢ transmitted can be obtained as:

(%
P = —p)le — )
14 =P / \/ﬂm] P50,

s (1 0T

_ /T —u
:ng(lfp)l QJ‘I)(?.()) (18)
J

where 01; = \/ﬁ(zilzl Q—iU; + Ug).
(3) Bit Error Rate:
The BER can be derived as:

P, = (1 _p)PeO +pPey
2! 2!
—p)Y_ Puj+pY_ Py, (19)
=1 =1

I I
where P,y = Z?:1 P.yj;, and Py = Z?:l P.;;. Table 1 is
an example showing the probabilities of each error pattern
for I = 2.

(4) Optimise 7 to minimise the error rate for each error
pattern:

Aiming to achieve the minimum BER, it is required that
the error rate of each pattern ‘5’ should be minimised by
carefully selecting the value of 7 in (16) and (18). Thus,

for a certain error pattern ‘j°, j = 1,2,3,...,2, the sum of
error rates for either ‘1’ or ‘0’ transmitted can be expressed
as:

P.j =p- Peij + (1 — p)Peo,

:p@j(l_p)I—Qj [p.é(TU—fbo) e _p)@(;)].
J " 20)

Hence, the equation % = 0 needs to be solved:

OP,;
or

S ] RESE WY UL S

e GF 25| EUNCD

Considering 0 < 7 < g, by solving (21), the optimal value
of 7, represented as 7,, can be obtained as:

UO]) ln ((1p;;);1j )

(22)

2 g 2 — (2
_aojuo—l—aojalj\/uo 2(oi; —

To = 2 2
Ulj — O'Oj

By substituting (22) into (16), (18), and (19), the min-
imised BER can be derived. Particularly, if 7 = %, the
threshold is the same as the one utilised in [18, 19].

3.2. Capacity analysis
The binary input vector of the system is denoted by
X ={X;, Xo,..., Xk}, and the corresponding binary out-
put vector is denoted by Y = {Y1,Ys,...,Yr}. Thus, the
capacity for the memory channel can be calculated from
[11]:
k

Capacity = hm maxz —I(X;;Ys), (23)

k—oco p

where Z(X;;Y;) is the mutual information defined as [11]:

(X Y:) = H(Y;) — H(Yi|X;)
= H[(l _p)<1 - PeO) +pPel]
- pH(l - Pel) - (1 _p)H(l - PeO)? (24)
where H(&) = —€logy & — (1 —¢&) log,(1—&). If the channel

is a memory unlimited channel with an infinite ISI length
I, the capacity can be calculated by substituting (16), (18),
(19) and (24) into (23).

For an MLC with finite ISI length I, after the " sym-
bol (i > I 4+ 1), the newly emitted molecular signal will
be affected by the same amount (equal to I) of previous
signals. Referring to (16)-(19), it can be deduced that the
average error probability stays constant after the i sym-
bol (i > I +1). Thus, with p fixed and values of P,y and
P, being constant, it can be proven from (24) that:

k). (25)

I(Xl,Y;) = I(X[+1;Y[+1),Vi S {I+ 1,I+2,..



Table 1: Error patterns and the probabilities for ISI length I = 2.

Index IST Variance Probability of each error pattern
. Peo; P
j an_o an_1 o_gj U%j e0j R elj )
(ar=0 but ar=1) | (ar=1 but a,=0)
1 0 0 0 oy 0 (1-p)*- B(=40)
2 0 1 sy | 2o | p(1—p) - @(5L) | p(1-p) - (TE)
3 1 0 oz | Betio) | op(l-p) - @(57) | p(1-p) - R(TE0)
c 2 i -7 T—
R D AR CORERC

Thus, for the MLC, the capacity calculation can be sim-
plified as:

k
1
Capacity = lim max > EI(XZ»; vi)}
—> 00 P
i=1
li ilz(x Y;) + Zk: 1I(X Y;)
= lim max - is Xi - js g
koo o |k J=T+1 k ’
L1
= g {Z R YD}

k—1
+ lim max {kI(X1+1; Y1+1)}

k—oo p

=0+ max {T(X141;Y141)}

= max {Z(Xr41; Yr41)}- (26)

By substituting (16), (18), (19) and (24) into (26), the
capacity for MLC can be obtained.

3.3. Utilising the distance estimation scheme

If the distance is unknown, it is required that the dis-
tance estimation process should be implemented. The NA
emits a pulse of molecules, and the NB keeps sensing the
concentration around itself to find the peak time of the
concentration, based on which, the distance between the
NA and NB can be determined. Hence, the peak time can
be considered as the sampling time for the NB, denoted as
To. Considering (4), the distance is determined, denoted
as d. Thus, during the communications stage, the sampled
concentration r(t) can be derived as:

I
r(d,t =Tp) =Y ap_su(dit = To +iT,) + n(t = Tp)

=0

I
= Z ap—iud +n(t =Tp), (27)
i=0

and the expression for 7 can be expressed as:

I
n = Z ap_su(d,t =Ty +4Tp) + 7'

i=1
I ~
~ d /
= E ap_iu; + 7,
i=1

Similarly, it is also assumed that ax_; = ax_; for i =
1,2,...,I. By substituting (27) and (28) into (12), L can
be derived as:

(28)

I
L= Zak_i(uf —ud) + apud +n(t =Tp) — 7/,
i=1
= apul +n(t =Ty) — 7 + B. (29)
d d

where f = Zle ag—; (ul
easier to follow.

Similar to the derivation in Section 3.1, the probability
for the error pattern j can be obtained as:

P == (1-e(MT ) )

— u?) is substituted to make it

afj
Pl = -p e (10T e
0j
where

I
ol = \ M?;zg(; ag—iuf + uf), (32)

d 3¢
Ooj = m(; ag—iuf). (33)

Correspondingly, the optimal value of 7/, represented as
7/, can be derived as:

_(Ugj)2u0 + Ugjaiij\/u% - 2((Uiij)2 - (Ugj)2) -In (

Ty = -

d
0Qn.
p 04

)

(1—17)‘7?]‘

(Uiij)z —( (C)ij)2
(34)



Thus, the BER for MC systems with the distance esti-
mation scheme utilised can be computed as:

P! = (1-p)PY +pP2

2! 2!
:(1_P)ZPSOJ'+PZP§U’ (35)
j=1 j=1

4. Numerical Results

In this section, numerical results for both MATLAB sim-
ulations and theoretical derivations are presented. Dur-
ing the simulations, the NA emits molecules periodically.
Such molecules spread out and form a concentration dis-
tribution in the environment. The NB samples the con-
centration around itself at time Ty (or TU) in each period,
based on which, the NB determines whether ‘1’s or ‘0’s are
transmitted. The times of simulation trials are based on
the theoretically derived results, and are designed to be
sufficient to reach the required accuracy. For example, if
the theoretical BER is 10™%, then 10® successive bits are
utilised to carry out the corresponding simulations. All
results are presented with a common set of parameters as-
signed in Table 2. These values agree with the research
in [2, 6, 7, 18, 19]. Further denotation is that the optimal
threshold proposed in this paper is represented as ‘OT’,
and the decoding algorithm proposed in [19] is represented
as ‘MSE’.

It should be noticed that when the ISI length I in-
creases, not only the computation of the BER and capacity
increases exponentially, but also simulations will become
more complex to perform. Particularly, if I is infinite,
it is impossible to obtain the required results. Thus, the
channel considered herein is an MLC with a finite I. The
value of I used in this paper has been greatly increased
compared with all existing work, and we believe it is suffi-
ciently large for the MC system analysis. If further results
for larger I are required, readers could compute the BER
and capacity based on (16) to (35).

4.1. The concentration affected by the emission duration

Fig. 2 shows the change in concentration around the
NB with respect to time. It can be noticed that the emis-
sion duration 7, is influential to the concentration distri-
bution. Firstly, the rising T, will lead to the decrease in
the peak concentration ug. The increase of T, means the
NA emits molecules more slowly, and these molecules start
to propagate to the infinite border immediately upon be-
ing released. By the time the NA finishes the emission,
a certain number of molecules have diffused widely in the
environment. Thus, the peak concentration around the
NB would be correspondingly smaller.

Secondly, the rising T, will result in the increasing con-
centration tails after one pulse period, namely (u;,i =
1,2,...,I). It has been explained that a smaller ug will be
obtained by enlarging T.. In other words, the concentra-
tion gradient is gentler, and therefore after the peak time,

25} foooa AT — T =0 (Impulse)
i =100 ps

.
i 4 RN — =T =1000 ys

- = =T,=2000 ps
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Figure 2: The change of concentration with time for different T, at
d = 3pm.
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Figure 3: BER Vs. m for different T, with I = 20 and d = 3pm.

molecules will diffuse to the infinite border in a lower rate,
which means the attenuation of the concentration will be
correspondingly slower. As a consequence, the concentra-
tion tails will be enlarged.

Referring to (11), either the decrease of the peak con-
centration (ug) or the increase of the tail (u;,i =1,2,...,1)
will lead to a smaller SNR. Then, it can be deduced that
the MC system with a large T, will exhibit a worse per-
formance, which agrees with the curves shown in Figs. 3
to 5.

4.2. Channel performance analysis for OT decoding algo-
rithm

Results for the performance analysis are presented in
Figs. 3 to 5. It can be seen that the BER and capacity
are mainly influenced by three factors, namely, the number
of molecules emitted per pulse (m), the emission duration
(T.), and the ISI length (I). According to (3)-(11), the
change of these three parameters affects the SNR of the
channel, which will have a corresponding impact on the
channel performance in terms of the BER and capacity.



Table 2: Simulation parameters

1. The radium of the NB R 0.5 pm

2. The distance between NA and NB d 2 ~ 4pm

3. The diffusion coefficient D | 10 3um? ps !
4. The emission duration T. | 100 ~ 2000ps
5. The pulse period T, 5000 ps

6. | The number of transmitted molecules | m 10° ~ 10°

——/= 2, Theo.
—e— /=10, Theo.
—8— /=15, Theo
—&— =20, Theo.
—+— /=25, Theo
=% == 2, Simu.
- @ -/=10, Simu.
-8 =/=15,Simu.
=@ =7=20, Simu.
=4 =/=25, Simu.
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Figure 4: BER Vs. m for different I with T, = 1000 ps and d = 3 pm.
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To be specific, in Figs. 3 to 5, increasing m will help
the system to suffer less from errors and achieve a higher
capacity. The reason is that with more molecules emit-
ted per pulse, the system will have a stronger resistance
against the noise and ISI. Referring to (3)-(11), amplify-
ing m leads to a larger SNR, which guarantees a better
performance.

The change in T, will also affect the BER and capacity
of the system. In Figs. 3 and 5, decreasing T, leads to
a smaller BER and higher capacity. As is explained in
Section 4.1, the reduction of T, brings about a larger SNR.
Thus, if the NA emits molecules as fast as possible, the
channel performance can be enhanced.

Another factor that influences the system is the ISI
length. Even though the influence of the ISI has been mit-
igated by using the decoding method described by (12) to
(14), it can be deduced from (6) that the remaining concen-
trations of previous bits will contribute to the noise effect.
Consequently, the IST will still affect the channel perfor-
mance. If the ISI can be further alleviated, a smaller BER
and higher capacity will be obtained. This shows agree-
ment with the results in Figs. 4 and 5 that decreasing
I also results in a larger SNR because molecules vanish
more quickly so that less influence will be brought onto
the upcoming signals. Moreover, as is also clearly shown
here, there is no significant difference in performance be-
tween I = 15,20,and 25. Thus, considering the fact that
with I rising, the complexity of both the computation of
BER and capacity and MATLAB simulations increases ex-
ponentially, I = 20 is sufficiently large for system perfor-
mance analysis.

It should also be noticed that the simulated BER is
slightly higher than the theoretical BER even if the de-
viation is almost negligible. The main reason of the differ-
ence herein is that the assumption that errors occur inde-
pendently for theoretical derivation does not hold during
simulations. In other words, when decoding the bit ay, for
theoretical derivation, it is assumed that a_; = ap_; for
1 =1,2,...,I; while for simulations, one wrongly decoded
bit will affect the decoding of next several symbols. Errors
therefore occur in succession, which is called Error Propa-
gation. Additionally, during simulations, there is a chance
that the concentration may rise to a high value and takes
time to recover to a normal level, which also affects the de-
coding of next several symbols. This also causes the Error
Propagation, leading to a higher BER for simulations.

An important but not intuitive feature shown through-
out Figs. 3 to 5 is that no matter how parameters are
selected, the performance almost remains the same if the
system SNR remains constant. An example is shown in
Fig. 6 where the BER for MC systems with different pa-
rameters is presented. As is illustrated there, although
the assignment of parameters varies, the difference in the
error probabilities of MC systems with the same SNR is
so small that it can be neglected. Therefore, the SNR,
defined in (11), can be considered as a reasonable metric
to evaluate the diffusive concentration-based MC system
performance.
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4.8. Channel performance comparisons between OT and
MSFE decoding algorithms

In Fig. 7, the performance enhancement by using OT
rather than MSE is presented. For MSE, the parameter 7
of the threshold 7 is set to be 7 = ¢, while for OT, the
value of 7 is optimised according to different error patterns.
By coordinating 7, the BER for each error pattern has
been minimised. Consequently, the concentration-based
MC system tends to enjoy a lower error rate and a better
maximum reliable transmission rate. However, this perfor-
mance improvement is brought in at the cost of a higher
requirement on the complexity of the NB. As expressed
n (22), the optimal value of 7 keeps changing through the
communications process, and requires the NB to determine
the corresponding optimal 7, within the time less than a
pulse period T}, which may exceed the capability of nano-
machines. Hence, when choosing the decoding algorithms,
not only should the system performance be taken into ac-
count, but also the complexity of nano-machines needs to
be considered.
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4.4. Channel performance analysis with the distance un-
known

The performance evaluation with the distance estima-
tion scheme implemented is presented in Figs. 8 and 9.
As is clearly shown, with the distance d getting larger, the
system tends to suffer from a higher BER and correspond-
ingly lower capacity. When d increases, it can be deduced
from (3) that fewer molecules will arrive at the NB. In
this case, any slight change of the concentration will sig-
nificantly affect the decoding process of the NB, which can
be also explained as the system has a smaller SNR accord-
ing to (3) through (11). Thus, the system will have a weak
resistance against the influence of the noise and ISI.

Another important feature is that, with d rising, the dis-
tance estimation accuracy goes down, leading to a larger
difference in the BER between the system with distance
pre-known (d = d) and the system with distance to mea-
sure. It can therefore be deduced that by improving the



estimation accuracy, there will be less error occurrence in
the system. An obvious method to enhance the system
performance is to increase the SNR of the system. With a
larger SNR, not only can the estimation be more accurate,
but also the system will suffer less from the impact of the
channel noise and memory. It can be deduced from Section
4.2 that three options can be applied to increase the SNR,
i.e., increasing m, decreasing 7., and further mitigating
the influence of the ISI.

5. Conclusions

In this paper, a new decoding algorithm with an opti-
mised threshold is proposed for a concentration-based MC
system, which has been refined by taking the TN emission
process into consideration. Based on this model, an infor-
mation theoretical approach has been proposed to evaluate
the system performance in terms of the BER and channel
capacity. Simulations have also been carried out to ver-
ify the accuracy of these analytical formulations, and the
cause of the deviation between the theoretically derived
and simulated results has been explained. Numerical re-
sults illuminate that the BER and capacity are highly de-
pendent on the number of molecules emitted per pulse
(m), the emission duration (T¢), the ISI length (I) and
the distance between the NA and NB (d). System per-
formance for OT and MSE decoding techniques is com-
pared to show the superiority of this new decoding al-
gorithm. Moreover, this is the first investigation on the
performance of MC systems with the distance unknown
for nano-machines. Comparisons between distance-pre-
known systems and distance-unknown systems have been
made, and results reveal that the performance can be en-
hanced by three methods, releasing more molecules, re-
leasing molecules faster, and mitigating the influence of
the ISI and the noise.
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