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Abstract

Driving is a safety critical task that requires a high level of attention and workload from the driver.
Despite this, people often also perform secondary tasks such as eating or using a mobile phone, which
increase workload levels and divert cognitive and physical attention from the primary task of driving. If a
vehicle is aware that the driver is currently under high workload, the vehicle functionality can be changed in
order to minimize any further demand. Traditionally, workload measurements have been performed using
intrusive means such as physiological sensors. Another approach may be to use vehicle telemetry data as a
performance measure for workload. In this paper, we present the Warwick-JLR Driver Monitoring Dataset
(DMD) and analyse it to investigate the feasibility of using vehicle telemetry data for determining the driver
workload. We perform a statistical analysis of subjective ratings, physiological data, and vehicle telemetry
data collected during a track study. A data mining methodology is then presented to build predictive models
using this data, for the driver workload monitoring problem

Keywords: Driver monitoring, Data collection, EDA, ECG, CAN-bus

1 Introduction
Drivers have limited attentional resources that must be divided between the various driving tasks, including
perceiving the driving environment and controlling the vehicle speed and direction (Young & Regan, 2007).
These resources are often also allocated to tasks unrelated to driving, such as holding a conversation in the
vehicle, using a phone, or choosing a radio station (Stutts, Reinfurt, Staplin, & Rodgeman, 2001). The
attention of a driver may also change with the time of day, fatigue, and tiredness. In some cases, the demand
for attentional resources can become too high for the driver to handle, causing them to be inattentive, lowering
driver performance, and increasing the risk of a crash (Stutts et al., 2001; Regan, 2005; Regan, Hallett, &
Gordon, 2011). Understanding how drivers divide their attention to tasks, and when drivers are inattentive, is
therefore important to ensure driving safety and to aid the driver in managing their attentional resources.

The attention of a driver can be managed by either increasing their attentional resources, or by decreasing
their demand. For instance, the resources available are lowered for a driver that is tired or fatigued, which
can be increased by opening a window, cooling the interior of the vehicle, or encouraging the driver to take
a break (Dong, Hu, Uchimura, & Murayama, 2011). The demands of a driver can be reduced, through both
design and real time adaptation in the vehicle. Intuitive interfaces with lower complexities, for instance, are
less demanding to use than those that are more complicated (Regan et al., 2011). Further, if the vehicle is
able to determine the current inattention status of the driver, it may be possible to change the information
provided to them or withhold certain event updates entirely.
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The allocation of attentional resources can be considered as driver workload, which describes the impact
of tasks on drivers (Mehler, Reimer, & Coughlin, 2012; Dong et al., 2011). Workload is usually measured us-
ing subjective or physiological measures, or by analysing the performance or behaviour of the driver. Subjec-
tive measures require that drivers report their perceived workload demand, either while driving or afterwards.
Reporting while driving can itself increase the workload levels, and other biases can be introduced because
of the different perceptions and limited memories of drivers. To produce continuous measures of workload,
physiological parameters and driver performances can be used. Physiological measures include Heart Rate
(HR) and Skin Conductance (SC), which both increase during periods of increased workload (Mehler et al.,
2012). To gain reliable measurements, however, the equipment is often intrusive and impractical for everyday
driving. Other methods measure the driver’s head position or eye parameters using a driver facing camera,
but these are expensive and can be unreliable in poor light conditions (Reimer, Mehler, Wang, & Coughlin,
2012). A alternative approach, is to use telemetry data to estimate driver performance and behaviour (Mehler
et al., 2012).

In this paper, driver workload is investigated using subjective, physiological, and performance based
measures in the Warwick-JLR Driver Monitoring Dataset (DMD). Specifically, we induce increased workload
in the form of cognitive distraction using the N-back task in a study with thirteen participants. Differences are
observed in subjective responses, the HR, HR variance (HRV), Electrodermal Response frequency (EDR),
SC, and several driving parameters taken from the vehicle telemetry data. Predictive models are then built
using the telemetry data to output the workload status of the driver, given by the physiological measures. The
performance of these models is then used to assess the feasibility of using vehicle telemetry data as a means
of assessing driver workload.

The remainder of the paper is structured as follows. Driver workload monitoring is discussed in Section 2.
The study is outlined in Section 3, and statistical analysis of the data collected is presented in Section 4. A
data mining methodology is proposed in Section 5 for building predictive models for the driver distraction
problem. In Section 6 the results of applying this methodology to the data collected are presented. Finally,
Section 7 concludes this paper.

2 Driver workload monitoring
Drivers who are inattentive are more at risk of being involved in a crash than those who are not (Stutts
et al., 2001). A taxonomy of driver inattention is provided by Regan et al. (2011), who divides it into
diverted (performing tasks unrelated to driving), restricted (fatigued or unwell), misprioritized (prioritizing
unimportant driving tasks above critical tasks), neglected (lack of due care because of familiarity to the road
environment), and cursory (rushed or panicked driving). Dong et al. (2011) describes activities where the
required attentional resources of the driver are increased as distractions, and fatigue as when driver attention
is reduced generally. In this paper we consider distractions, and in particular their effects on workload when
attentional resources are diverted from the driving task.

Driver activities each require different amounts of attentional resources in varying combinations of visual,
auditory, physical or cognitive workload (Dong et al., 2011). For example, selecting a radio station induces a
combination of cognitive, to think of the station and its frequency, physical to select the station, and visual and
auditory feedback to determine whether or not the correct station is selected. In researching driver inattention,
secondary tasks are often used to increase the workload in a combination of these dimensions. The N-back
task (Mehler et al., 2012; Reimer et al., 2012), for example, primarily increases the cognitive workload,
but the task also requires auditory attention to listen to the stimuli. Other tasks, including the lane change
task (McCall, Wipf, Trivedi, & Rao, 2007), interacting with a laptop or tablet (Ersal, Fuller, Tsimhoni, Stein,
& Fathy, 2010), memory recall tasks (Hirayama, Sato, Mase, Miyajima, & Takeda, 2014) have also been
used to increase driver workload.
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Isolating and measuring the different kinds of workload is non-trivial, and studies often include a mixture
of subjective reports, physiological parameters, or driving performances (Cain, 2007). Subjective measures
are derived from questionnaires such as the NASA Task Load Index (TLX) (Hart & Staveland, 1988), and
ask drivers to report their estimated workload levels during periods of driving. The TLX asks participants
to rate on a scale of 0–20 their performance, effort, frustration, mental, physical and temporal demands. It
was developed originally for use in the aviation domain, but has since been applied in many studies including
those of driver workload. An alternative to the TLX that was developed specifically for the automotive
domain, is the Driver Activity Load Index (DALI) (Pauzie, 2008). In the DALI, driver experiences are
rated in dimensions relating to attentional effort, task interference, visual, auditory, temporal demands. With
subjective measures, drivers are often required to recall their experiences after a study has ended, meaning
that drivers may inaccurately report their experiences due to forgetfulness as well as their perceptions.

Physiological measures include HR, SC, eye blink parameters and pupilometry change during periods of
high workload (Mehler et al., 2012; Taylor et al., 2015; Li et al., 2014). They are typically captured from
sensors attached to the driver, or from driver-facing cameras. Traditionally physiological sensors such as
Electrocardiogram (ECG) and Electrodermal (EDA) electrodes are intrusive, and they are not suitable for
monitoring driver workload on a daily basis. Recently, however, sports watches and image processing have
provided less intrusive methods, although they may be inaccurate in some circumstances (Kranjec, Beguš,
Geršak, & Drnovšek, 2014; Parak & Korhonen, 2014). Driver-facing video and infra-red cameras can be
used to estimate the head position, gaze direction, blink rate and other eye parameters (Zhang, Owechko, &
Zhang, 2008; Dong et al., 2011). These have been found useful in several studies measuring workload and
fatigue, but are often unreliable in poor light conditions or when the driver wears glasses.

Many studies focus predominantly on physiological measures for workload, and consider relatively few
performance measures (Healey & Picard, 2005; Rodrigues, Vieira, Vinhoza, Barros, & Cunha, 2010; Reimer
et al., 2012; Mehler et al., 2012; Flores, Armingol, & de la Escalera, 2011; Jo, Lee, Park, Kim, & Kim, 2014).
This is likely due to the higher responsiveness of physiological measures to workload, and performance
measures extracted from vehicle telemetry data are often used only as secondary inputs (Wollmer et al.,
2011). Vehicle telemetry data includes measurements from all devices in the vehicle, and can be recorded via
the Controller Area Network (CAN)-bus. Common measures used for driver workload monitoring include
features extracted from the steering wheel, vehicle speed, and pedal positions (Wollmer et al., 2011; Mehler
et al., 2012). The mean or standard deviation (STD) is often extracted from signals over whole distraction or
normal driving periods, and are often minutes long. For example, Mehler et al. (2012), present a statistical
analysis of mean values of the heart rate, skin conductance level and vehicle speed, and STD of steering wheel
reversal rates and gaze dispersion. Although these results show that features of physiological and telemetric
signals share a relationship with inattention, they are of little use in a real-time detection system as distraction
states change in a matter of seconds. Other authors on the other hand, such as Torkkola, Massey, and Wood
(2004); Tango and Botta (2009); Wollmer et al. (2011), present methods that process inputs signals in smaller
windows and are more appropriate, but rely on image processing or physiological measures in addition to
vehicle telemetry.

3 Collection protocol
The DMD was collected using a Range Rover Sport with automatic transmission on a test track located at
Jaguar Land Rover’s principal engineering facility at Gaydon, Warwickshire, UK (pictured in Figure 1). The
driving environment is representative of a highway and is approximately 3.8 miles long with four lanes and
two main straights with two major corners at the end of each. In comparison to public roads it is quiet, as it is
used solely by automotive engineers for research and development purposes. During the trial each participant
was instructed to drive as if it were a highway, at speeds of around 70mph and changing to an outer lane to
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Figure 1: Map of the Gaydon emissions track used for the driver monitoring trials.

Stage Mean duration (s) STD

1 Habituation 1302 269
2 Baseline 280 99
3 0-back (introduction) 10 2
4 0-back 82 9
5 0-back (recovery) 256 59
6 1-back (introduction) 10 2
7 1-back 100 12
8 1-back (recovery) 300 81
9 2-back (introduction) 11 6
10 2-back 113 15
11 2-back (recovery) 294 127

Table 1: The protocol for the DMD study, employing three N-back tests of different difficulties, presented in
a random order to each participant.

overtake when necessary.
The protocol used for each trial is outlined in Table 1, and is similar to that used by Reimer et al. (2012)

and Mehler et al. (2012). Upon arrival at the test facility, the driver was first briefed on the study and
consent forms were signed. Three point ECG electrodes were then attached on the driver’s chest and EDA
electrodes to the underside of the index and middle fingers of their non-dominant hand. The ECG electrodes
are positioned closer together than may be usual, as this was found to reduce noise generated through shoulder
movement while driving and produce a cleaner signal. Gel electrodes with adhesive pads were used for both
the ECG and EDA sensors. The EDA electrodes were secured further using surgical tape, while still ensuring
the driver was comfortable and had full movement of their fingers.

The driver was then seated and instructed to make themselves comfortable in the driving position, by
adjusting the seat, steering wheel and mirrors. The electrodes were connected to a GTEC USB biosignal
amplifier (USBamp)1, which resided in the rear of the vehicle. The wires from the ECG electrodes came out
of the top of the participant’s shirt and over the seat, while the EDA wires were positioned to the side of the
non-dominant hand. The USBamp was then connected to a laptop, and data recording was commenced at

1http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features
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Stimulus 1 5 9 3 0 2 3 3 2 9 & &

0-back 1 5 9 3 0 2 3 3 2 9
1-back - 1 5 9 3 0 2 3 3 2 9
2-back - - 1 5 9 3 0 2 3 3 2 9

Table 2: Example of the N-back test with a block of 10 numbers. In place of “&” the word “and” is said by
the experimenter, requiring the participant to provide a response. Where there is a “-” no response is required
by the participant.

256Hz using MathWorks Simulink2.
As well as the physiological data, over 1000 signals were recorded from the vehicle’s CAN-bus at a

sample rate of 20Hz, using a data logging system located under the passenger seat. Many of these signals are
unlikely to be of relevance to driver workload, such as the window wiper speeds or air conditioning controls.
The full set of relevant signals is not known, however, so we recorded the full set during the study and propose
to use feature selection techniques to filter them afterwards (Kohavi & John, 1997; Guyon & Elisseeff, 2003;
Hermana, Zhanga, Wanga, Yec, & Chena, 2013).

To induce increased workload, a secondary distraction task in the form of an N-back test was used. The
N-back test requires that the participant repeats digits provided to them with delays of increasing difficulty.
Delays of 0, 1 and 2 were used, referred to as the 0-, 1- and 2-back tests respectively, which have been shown
to have increasing impacts on physiology and driving style (Mehler et al., 2012; Reimer et al., 2012). An
example block of 10 digits is shown in Table 2, with expected responses for the 0-, 1- and 2-back tests. In the
0-back test, the participant is required to repeat digits back directly, whereas digits are repeated with delays
in the 1- and 2-back tasks. Before starting the trial, the participant must show a minimum proficiency of 8
out of 10 correct responses for two consecutive blocks of each task.

When the driver was comfortable, data was being recorded successfully, and the driver had displayed the
minimum proficiency in the secondary tasks, the vehicle was driven onto the track and the trial protocol listed
in Table 1 was performed. A habituation period of driving under normal conditions was used (stage 1), to
familiarise the participant with the vehicle and track environment. Once the habituation period was completed
a baseline period of normal driving was recorded (stage 2). After this reference period, between stages 3–
11, the protocol alternates between N-back tests and recovery periods of normal driving. Each participant
underwent each of the 0-, 1- and 2-back tests once and in a random order. In each of the N-back test stages, 4
blocks of 10 digits were presented to the participants, with a pause of 2 seconds between digits and 5 seconds
between each block. Before each N-back task, a brief explanation and reminder of it was provided (stages 3,
6 and 9), taking around 10 seconds. After each N-back test there was a recovery period of normal driving,
with no secondary task. The protocol ended with a recovery period, after which the vehicle was taken off the
track and data recording was ended.

In each of the N-back tests, all of the digits were repeated regardless of the shift (in contrast to Mehler et
al. (2012)). This meant that the 1-back task was in effect one digit longer and the 2-back task was two digits
longer than the 0-back task, which is reflected in the mean durations shown in Table 1. Other variances in
durations were due both to safety concerns, recording quality or human variations. Some events on the road
such as low flying birds or overtaking vehicles, for example, led to a pause in the protocol or the extension of
a stage.

From both the ECG and EDA physiological data streams collected, two measures were extracted. The
ECG signal provides both HR, from the frequency of R-peaks (highlighted by the red dots in Figure 2),

2http://uk.mathworks.com/products/simulink/
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Figure 2: Five seconds of an ECG signal recorded during driving. The dots highlight the R-peaks, which can
be used to compute the HR and HRV.
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Figure 3: Fifteen seconds of an EDA signal recorded during driving. The dots highlight EDR, which increase
in frequency under workload. The SC is given by the absolute value of the signal.

and HRV from their variation computed using the Standard Deviation of Successive Difference (SDSD)
method (Mehler, Reimer, & Wang, 2011). Both the HR and HRV were computed over 15 seconds of data in a
sliding window. The SC was derived from the absolute value of the EDA signal, and the frequency of spikes
in the EDA signal (highlighted by the red dots in Figure 3), provides the EDR measure. The EDA sensor
readings for each participant were different, and the sensor required individual configuration to ensure the
signal was within a measurable range. The SC values derived from it cannot therefore be directly compared
across the different drivers in the trial, and was normalized between 0 and 1 for each participant based on the
measurements during the baseline period.

4 Statistical analysis
In this section, the dataset is analysed statistically for any significant findings. First, the task performance and
subjective ratings are inspected, followed by statistical analysis of the data streams recorded.

4.1 Task performance and subjective ratings
The error rates for the digit recall tasks are shown in Figure 4. The number of incorrect responses overall
was less than 2.45%, and the majority of participants made no errors. The number of errors increased in a
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Figure 4: Mean error rates (out of 40 recalled digits) of participants for each of the secondary tasks. Error
bars represent the standard error.
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Figure 5: Mean responses to NASA TLX questions. Error bars represent the standard error.

linear relationship with the task difficulty, with participants making the most errors for the 2-back test. In
some cases of the 2-back test the participant stopped responding for a block of numbers, and the remainder
of the block was counted as incorrect responses. In some other cases, that were also counted as errors, the
participant responded in the 2-back test as if it were the 1-back test.

After the trial, when the vehicle was stationary, the participants were asked to fill in four NASA-Task
Load Index (TLX) (Hart & Staveland, 1988) questionnaires – one for normal driving and for each of the
N-back tests. The mean responses to the TLX questionnaires are shown in Figure 5, which indicate that
the perceived levels of workload increased with the task difficulty. The largest changes were reported for
the mental demand and effort dimensions, which was to be expected because of the cognitive nature of the
secondary tasks used. The estimated performances decreased with the 1- and 2-back tasks, while it increased
on average for the 0-back test over normal driving.

4.2 Analysis of data streams
Results of statistical analyses of the physiological measures are shown in Table 3, comparing normal and
distracted conditions in two ways to detail properties of the dataset. First, a two-way t-test is used to compare
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Signal p N × D N × 0 N × 1 N × 2 0 × 1 0 × 2 1 × 2

HR 0.031 0.006 1.000 0.422 0.050 1.000 1.000 1.000
HRV 0.554 0.283 1.000 1.000 0.996 1.000 1.000 1.000
SC 0.000 0.000 1.000 0.003 0.005 0.452 0.537 1.000
EDR 0.034 0.004 0.605 0.265 0.122 1.000 1.000 1.000

Table 3: p-values from two way t-test and ANOVA for physiological data streams. In the heading N represents
periods of normal driving, 0, 1, and 2 represents periods of the 0-, 1- and 2-back tests respectfully, and D is
periods where any of the N-back tasks were being performed.

Signal F p N × D N × 0 N × 1 N × 2 0 × 1 0 × 2 1 × 2

ACCC STD 0.232 0.056 1.000 0.419 1.000 1.000 1.000 1.000
Brake on STD 0.239 0.057 1.000 0.436 1.000 1.000 1.000 1.000
Engine Speed raw 0.237 0.063 0.414 1.000 1.000 1.000 1.000 1.000
Engine Torque raw 0.053 0.016 0.067 1.000 0.672 1.000 1.000 1.000
Engine Coolant STD 0.190 0.036 0.362 1.000 1.000 1.000 1.000 1.000
Gear Selected raw 0.085 0.012 0.207 1.000 0.556 1.000 1.000 1.000
SWA Momentum STD 0.003 0.066 1.000 0.087 0.055 0.030 0.020 1.000
SWA STD 0.024 0.471 0.555 0.423 0.968 0.039 0.095 1.000
Suspension Height STD 0.091 0.213 0.089 1.000 1.000 0.527 0.228 1.000
Throttle Position raw 0.044 0.010 0.068 1.000 0.473 1.000 1.000 1.000
Yaw Rate STD 0.022 0.532 0.422 0.679 0.715 0.048 0.051 1.000
. . .

Table 4: p-values from two way t-test and ANOVA for selected signals of the vehicle telemetry. In the
heading N represents periods of normal driving, 0, 1, and 2 represents periods of the 0-, 1- and 2-back tests
respectfully, and D is periods where any of the N-back tasks were being performed.

the mean value of the measures over all subjects during normal driving periods (baseline or recovery) and
distracted periods (with secondary tasks). Second, an Analysis of Variance (ANOVA) is performed to deter-
mine if there was a significant difference in means during individual secondary task periods. In follow-up to
this a four way pairwise t-test, normalized by the Bonferroni correction, was performed. The authors accept
that conclusions made from this analysis are limited because it is a multiple comparisons procedure, but a
two-way ANOVA, including all recorded signals is impractical due to their number.

The two way t-test showed a significant difference in the HR, SC, and EDR with p < 0.01, and the
ANOVA produced a significant difference between at least one of the baseline or task periods (p < 0.05),
shown in Table 3. The change in HR during the 2-back task from the normal driving periods was significant
(p < 0.05), and the change in SC was significant for both the 1-back and 2-back tasks (p < 0.01). Figure 6
shows the mean values of the four physiological measures taken from the (a) ECG and (b) EDA signals,
computed over all participants for the baseline, task, and recovery periods. The results reflect the statistical
analysis and show that each of the HR, SC, and EDR frequency increased during the task periods, and
decreased to the baseline levels during the recovery periods. The HRV did not change during the different
trial periods, and had no significant difference in any of the statistical tests.

Table 4 shows the same t-tests and ANOVA for the representative signals of the vehicle telemetry data.
As well as the raw signal values, the STD was computed for each signal over a one second sliding window
(See Section 5 for details). This produces a feature of the signals where sample values are equal to the
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Figure 6: Mean values of (a) HR and HRV and (b) SC and EDR frequency over all subjects for the different
periods of the trial. Each recovery period is presented separately and error bars represent the standard error.
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Figure 7: Diagram showing the data mining process, starting with the problem definition.

STD of the twenty samples before and after the respective sample in the signal. Signals directly related to
the driving controls, such as the pedals and steering wheel were expected to have a strong relationship to
driver workload. The analysis confirms this, with the throttle position and STD of SWA momentum changing
significantly between the driving periods (p < 0.05 in both the two way t-test and ANOVA).

Signals with indirect relationships to the vehicle controls, such as suspension movements and yaw rate,
were expected to have weaker relationships to the driving conditions. These had larger p-values in general
than measures of the vehicle controls, but the engine speed and the gear selected by the automatic transmis-
sion, had relationships more similar to those of the vehicle controls. Other signals that have no obvious link
to the driver were of course expected to have large p-values, and for the majority this was the case. A small
number, including Adaptive Cruise Control Cancel (ACCC), engine coolant temperature, and others redacted
from Table 3, had small p-values for the two way t-test and can only be explained by chance.

5 Data Mining of the DMD
Data mining aims to discover patterns and build models from data, and has been successfully applied in
several disciplines from market research to weather and environment prediction (Witten, Frank, & Hall, 2011;
Aggarwal, 2013). Vehicle telemetry mining in the automotive domain has been applied in various domains,
including safety improvement, fault detection, and efficiency gains (Crossman, Guo, Murphey, & Cardillo,
2003; Murphey, Crossman, Chen, & Cardillo, 2003; Murphey et al., 2008; Kruse, Steinbrecher, & Moewes,
2010; X. Huang, Tan, & He, 2011). Here, we apply a data mining methodology to build predictive models
for driver workload. The methodology is based on the general data mining process described by John (1997),
and is outlined in Figure 7.

The data mining process commences with creating a database to describe a problem such a driver work-
load estimation. In this case, the problem definition is “to estimate driver workload from vehicle telemetry
data”. The data mining methodology then aims to produce models that are capable of predicting driver work-
load using inputs of vehicle telemetry data from the CAN-bus. In Section 3 the protocol for data collection
was outlined, by which data relating to driver workload estimation was collected. Next, the data is analysed to
ensure it was collected correctly and that it describes the driver workload problem, as presented in Section 4.

To frame driver workload estimation as a binary classification task, a labelling from each of the physio-
logical measures (HR, HRV, EDR and SC) was generated for each driver. The mean value of the measures
during the baseline period was taken to be representative of normal driving, and values close to this were
labelled as 0. Values more than one standard deviation (STD) for HR, HRV and EDR and 0.25 STDs for
SC (again computed over the baseline period) were labelled as 1, to signify periods where the physiology of
driver changed. A final labelling was applied using the timings of tasks taken from video streams (illustrated
in Figure 8), which was synchronized via the GPS times also present in the CAN-bus. When the driver was
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Figure 8: Screen shot of the video recorded during the trials, with driver and forward facing cameras, as well
as GPS details overlaid.

Type Feature

Statistical Min, Max, Mean, Standard deviation, Entropy, Fluctuation.
Structural Raw value, First, Second and Third derivatives, First 5 and Max 5 DFT coefficient magni-

tudes, Max 5 DFT coefficient frequencies, Convexity, Gradient direction, Integral, and Abso-
lute integral.

Table 5: List of features extracted from each signal from the DMD over sliding temporal windows of sizes
0.5s, 1s, 2.5s and 5s.

under a normal driving scenario with no secondary task the label was 0, and during tasks the label was 1.

5.1 Temporal feature extraction
In vehicle telemetry mining, it is advantageous to include trend information about signals (Antunes & Oliveira,
2001; Tango & Botta, 2009; Wollmer et al., 2011; Aggarwal, 2013). We refer to this process of incorporating
historical information into the current sample as temporal feature extraction, although in some literature it is
referred to as motif extraction (Aggarwal, 2013). A feature, f (·), such as the mean or STD is extracted from
a signal, S , at time t, with a window length of l,

f (st, st−1, . . . , st−l+1) = f (S t,l), (1)

where f (S t,l) is the temporal summary of S between times t and t − l + 1. If t < l, because it is at the
beginning of the recorded signal, t samples are used in extracting the feature. This is performed for all values
of t, ensuring that a signal with n samples produces a feature that contains n samples also to line up with the
target labels, Y .

From each signal in the vehicle telemetry we extract the features listed in Table 5 over various temporal
windows to produce a set of features to learn from. We believe that these features, extracted over these
window lengths, are diverse enough to capture important historical information from the signals to be used
in models. There are other features that could be extracted, or features can be extracted using automated and
supervised methods (Guo, Jack, & Nandi, 2005; Mierswa & Morik, 2005; Hamel & Eck, 2010).
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Signal list

Brake pressure, Throttle pos, Pedal pos, Clutch pos, SWA, SWA momen-
tum, Vehicle speed, Engine speed, Engine flywheel torq, Lateral accelera-
tion, Yaw rate, Indicator status, Follow speed, Automatic gear, Axle load
Front and Rear, Torq required Min and Max, Suspension height Front-
Right, Front-Left, Rear-Right and Rear-Left, Wheel direction Front-
Right, Front-Left, Rear-Right and Rear-Left, Wheel speed Front-Right,
Front-Left, Rear-Right and Rear-Left

Table 6: List of 30 signals chosen by hand for automatic selection and classification evaluations.

5.2 Feature selection
The DMD contains numerous features that are either irrelevant to the predictive task or redundant to others.
Both irrelevance and redundancy in a feature set have a negative effect on the performance and complexity of
models built on data (Kohavi & John, 1997; Guyon & Elisseeff, 2003; Hermana et al., 2013). The door lock
status is unlikely provide any insight into the workload level of the driver, for example, and engine speed is
highly redundant to the vehicle speed. For simplicity, the signals in the DMD were reduced by hand to the
30 listed in Table 6. This meant that there were 3480 features in total that could potentially be used to build
a model after the features were extracted.

We apply supervised feature selection to choose the features from this full set, and in particular we use
Symmetric Uncertainty (SU) (Witten et al., 2011) and minimal Redundancy Maximal Relevancy (mRMR)
selection (Peng, Long, & Ding, 2005; Hermana et al., 2013; Taylor et al., 2014). SU is a variant of Mutual
Information (MI), that is normalized by the mean entropy of the two variables to mitigate the bias MI has
towards features of high dimensionalities. MI is defined as,

MI(X,Y) =
∑

v1∈vals(X)

∑
v2∈vals(Y)

p(v1, v2) log2
p(v1, v2)

p(v1)p(v2)
, (2)

where vals(Y) is the set of values of Y , p(v1, v2) is the join probability distribution of X and Y , and p(v) is the
marginal probability distribution. Entropy of a variable, X, is

H(X) =
∑

v∈vals(X)

p(v) log2 p(v), (3)

and the SU between two variables is then,

S U(X,Y) = 2
MI(X,Y)

H(X) + H(Y)
, (4)

mRMR is a selection algorithm that iteratively selects features that are least redundant to already selected
features and most relevant to the labels in each step. The redundancy of a prospective feature is calculated
as the mean SU with already selected features, and the relevancy as the SU with the labels. The feature that
maximises the difference between the relevancy and redundancy is then chosen, and added to the selected
feature set. This is repeated until a given number of features is chosen from the set. In this paper, as in Taylor
et al. (2014), we first select one extracted feature from each signal, before combining them in a second stage
of selection. In the classification evaluations first fifteen selected features are used.

To apply information based approaches such as MI or SU to numeric or continuous data the probability
density functions of the variables must be estimated and integrated (Kwak & Choi, 2002; Sun, Wang, Zhang,
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& Zhao, 2010). In general this is non-trivial, so we discretize the features before selection so that the proba-
bilities can be computed easily (Fayyad & Irani, 1993; Hermana et al., 2013). Possibly the most commonly
used discretization method, and the one applied to data in this paper, is the Minimum Description Length
(MDL) method (Fayyad & Irani, 1993). MDL recursively splits the variable domain into multiple discrete
levels while maximizing the information gain of each cut point (Fayyad & Irani, 1993). Other methods can
be used to estimate entropies of continuous variables, such as Parzen windows, but these require the selection
of parameters that cannot be determined easily from the data (Hermana et al., 2013).

5.3 Evaluation
In an evaluation, a learning approach must be applied on training data to build a model that is then used to
make predictions for testing samples, which we refer to as a train-test cycle. A train-test cycle should be
performed several times with different training and testing samples to produce a more robust performance
estimate (Hand, Mannila, & Smyth, 2001; Witten et al., 2011; Japkowicz & Shah, 2011). Here, we split the
data into four sections by the tasks being performed by the drivers, one for the baseline period (of normal
driving), and one for each of the task difficulties (0-, 1, and 2-back tests) and their associated recovery periods.
Each train-test cycle is made up from a different combination of these sections, with data from the baseline
period always being in the training data. For example, the training data in one train-test cycle may contain
the data from the baseline period, as well as the data from the 0-back test and 0-back recovery periods of the
drivers. The testing data in this cycle is then made of the remainder of the data, from the 1- and 2-back tests
and the recovery periods following them.

To estimate the performance of model, the predictions it makes for testing samples are compared to
the labels (Japkowicz & Shah, 2011; Jensen & Cohen, 2000; Witten et al., 2011). The success rate, or
accuracy, describes the proportion of correct predictions the model made, but is not a reliable measure in
domains with class imbalance such as driver workload monitoring. The Area Under the Receiver Operator
Characteristic Curve (AUC) accounts for this issue by considering class distributions, and has been adopted
by many researchers in numerous domains (J. Huang & Ling, 2005; Japkowicz & Shah, 2011).

6 Classification results
An initial set of classification models were built using data from individual drivers to predict, each of the
labellings (Task, HR, HRV, EDR, and SC). In each case, three train-test cycles were used with training data
the baseline period and two tasks with their associated recovery periods. The testing data contained samples
from the third task and recovery periods. All predictions from the testing phase were combined to produce
overall AUC values for each evaluation, shown in Table 7. The AUC performances in almost all cases were
poor, and is possibly a result of over-fitting. Models over-fit when they learn patterns in the training data
that do not describe the underlying concepts, that are often considered as noise. Vehicle telemetry data may
contain too much noise to be useful for driver monitoring in general, and inputs from other data sources or
driver-specific models may be required. For some drivers and some labellings the AUC performances were
higher, indicating some measures of workload can be predicted from vehicle telemetry for some drivers.

These low performances could be a result of the vehicle telemetry data not in fact being related to driver
workload. To investigate this, models were built using training data made of the baseline period and the three
task and recovery periods, from different subset combinations of the drivers. The models were then used to
make predictions for samples in the training data, and AUC performances were computed. The mean AUC
performances for models built with data from between one and five, and all thirteen, drivers are shown in
Table 8. In general the AUC performances were much higher when the training and testing data were the
same, showing that there is some correlation between the vehicle telemetry data and driver workload. For
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Task HR HRV EDR SC

1 0.523 0.552 0.573 0.548 0.518
2 0.563 0.380 0.579 0.534 0.437
3 0.596 0.501 0.558 0.182 0.556
4 0.562 0.580 0.510 0.650 0.457
5 0.410 0.320 0.348 0.484 0.565
6 0.509 0.317 0.000 0.436 0.422
7 0.512 0.433 0.466 0.736 0.560
8 0.559 0.595 0.439 0.327 0.565
9 0.416 0.351 0.650 0.465 0.613
10 0.481 0.461 0.431 0.441 0.503
11 0.466 0.586 0.132 0.669 0.561
12 0.507 0.395 0.528 0.459 0.589
13 0.429 0.278 0.649 0.852 0.569

Table 7: AUC performances of models built with data from baseline period and two tasks and tested on the
other tasks.

Task HR HRV EDR SC

1 0.822 (0.007) 0.793 (0.012) 0.764 (0.064) 0.823 (0.021) 0.725 (0.015)
2 0.764 (0.003) 0.741 (0.005) 0.779 (0.006) 0.775 (0.007) 0.675 (0.004)
3 0.729 (0.001) 0.716 (0.002) 0.742 (0.002) 0.745 (0.003) 0.653 (0.001)
4 0.706 (0.001) 0.698 (0.001) 0.717 (0.001) 0.724 (0.002) 0.638 (0.001)
5 0.690 (0.001) 0.686 (0.001) 0.700 (0.001) 0.710 (0.001) 0.628 (0.000)
13 0.618 N/A 0.639 N/A 0.649 N/A 0.670 N/A 0.597 N/A

Table 8: AUC performances for models built and evaluated on all the data of different numbers of drivers.

each of the five labellings the AUC performance decreased as data from more drivers was included. This
again indicates that different drivers are affected differently by increased workload, and models for driver
workload monitoring should be driver specific.

7 Conclusions
In this paper we have further presented and analysed the DMD. The collection protocol was described
in detail and statistical analysis of the physiological measures and selected vehicle telemetry signals was
presented. The dataset produced, including the physiological and vehicle telemetry data is available via
www.dcs.warwick.ac.uk/dmd/ in a comma separated variable (csv) format. The vehicle telemetry
data is sampled at 20Hz, while the physiological data is sampled at 256Hz.

The statistical analyses showed that the physiological measures were affected significantly by increased
workload. These results replicated findings by Mehler et al. (2012) and Reimer et al. (2012), who also found a
linear increase in HR over the three N-back task difficulties. The changes in EDR and SC were less significant
between the three task difficulties, but the change from a normal driving situation were more significant. HRV
was not found to be a good indicator of workload for any of the task difficulties. Some signals in the vehicle
telemetry data showed similar changes to those of the physiological measures. In particular, signals relating
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to the SWA and throttle changed significantly during periods with secondary tasks. This is to be expected, as
these are the signals most closely related to the activity of driving.

In classification evaluations, the majority of AUC performances were low when the training and testing
datasets were taken from different task periods. This was likely as a result of model over-fitting, and models
trained and tested on the full datasets had higher performances. This over-fitting is possibly caused due to
the vehicle telemetry data not being a good indicator of driver workload. For instance, the data may not
properly describe the underlying concepts relating to driver workload, and the models fit to noise unrelated
to the problem.

Through this research we conclude that using vehicle telemetry may not be the most appropriate source of
information for real-time driver monitoring. Instead, visual based approaches may be used as non-intrusive
measures of workload and distraction. There are issues with these also, as gathering images in poor light
conditions leads to poor performance in their analysis. Further, eye gaze analysis and pupilometry is non-
trivial when drivers wear glasses.
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