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OPTIMAL CONSUMPTION AND SALE STRATEGIES FOR A RISK AVERSE

AGENT

DAVID HOBSON AND YEQI ZHU

Abstrat. In this artile we onsider an optimal onsumption/optimal portfolio problem in

whih an agent with onstant relative risk aversion seeks to maximise expeted disounted utility

of onsumption over the in�nite horizon, in a model omprising a risk-free asset and a risky asset

in whih the risky asset an only be sold and not bought.

The problem is an extension of the Merton problem and a speial ase of the transation osts

model of Constantinides-Magill and Davis-Norman. Via various transforms we are able to make

onsiderable progress towards an analytial solution. The solution an be expressed via a �rst

rossing problem for an initial-value, �rst order ODE.

The fat that we have a relatively expliit solution means we are able to onsider the ompar-

ative statis of the problem. There are some surprising onlusions, suh as onsumption rates

are not monotone inreasing in the return of the asset, nor are the ertainty equivalent values of

the risky positions monotone in the risk aversion.

Key words: Optimal onsumption/investment problem, transation osts, sale strategy, re�et-

ing di�usion, loal time.

AMS subjet lassi�ations: 91G10, 93E20

1. Introdution

This artile is onerned with the optimal behaviour of an agent whose goal is to maximise the

expeted disounted utility of onsumption, and who �nanes onsumption from a ombination of

initial wealth and from the sale of an initial endowment of an in�nitely divisible seurity. Her ations

are to hoose an optimal onsumption strategy and an optimal holding or portfolio of a risky seurity,

under the restrition that the risky asset an only be sold, and purhases are not permitted. As

suh this problem is a extension of the Merton [21℄ optimal onsumption/optimal portfolio problem

and a speial ase of a onsumption/investment problem with proportional transation osts.

Merton [21℄ onsidered portfolio optimisation and onsumption in a ontinuous-time stohasti

model, with an investment opportunity set omprising a risk-free bond and a risky asset with on-

stant return and volatility. Merton hose to study these issues by �rst understanding the behaviour

of a single agent ating as a prie-taker. Under an assumption of onstant relative risk aversion

(CRRA) he obtained a losed form solution to the problem and the optimal strategy in his model

onsists of trading ontinuously in order to keep the fration of wealth invested in the risky seurity

equal to a onstant.

Merton's model was subsequently generalised to an inomplete �nanial market setting where

perfet hedging is no longer possible. Constantinides and Magill [4℄ (see also Constantinides [3℄)

introdued proportional transation osts to the model and onsidered an investor whose aim is to

maximise the expeted utility of onsumption over an in�nite horizon under power utility. They

onjetured the existene of a `no-transation' region, and that it is optimal to keep the proportion

of wealth invested in the risky asset within some interval. Subsequently Davis and Norman [5℄ gave
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a preise formulation. The Davis and Norman [5℄ analysis of the problem via stohasti ontrol is

a landmark in the study of transation ost problems. This analysis was extended using visosity

solutions by Shreve and Soner [23℄.

Reently there have been a series of papers onsidering the problem from the dual perspetive

using the the onept of shadow pries. Kallsen and Muhle-Karbe [16℄ onsider an agent with

logarithmi utility, and their results are extended to power utility by Herzegh and Prokaj [11℄.

Choi et al [2℄ give a deep analysis of the solution of the problem, inluding several singular ases,

and give a omplete analysis of the parameter ombinations for whih a solution exists.

In this artile we onsider a speial ase of the transation ost model in whih the transation

osts assoiated with purhases of the risky asset are in�nite. E�etively purhases are disallowed,

and we may think of an agent who is endowed with a quantity of an asset whih she may sell,

but whih she may not trade dynamially. There are at least two main reasons for onsidering this

speial ase. First, there are often situations whereby agents are endowed with units of assets whih

they may sell but may not repurhase, whether for legal reasons or beause of liquidity or trading

restritions. Seond, our situation may be thought of as an approximation of the large transation

ost regime.

The dual method via shadow pries has been exploited to great suess. Nonetheless, one of the

advantages of the primal method whih fousses on the value funtion (expressed via the solution

of a di�erential equation problem with free boundary) is that is possible to alulate the optimal

onsumption and investment strategy and the ertainty equivalent value of the holding of risky

asset diretly. For example, the optimal onsumption is given in terms of a derivative of the value

funtion. In general omparative statis are available more diretly from the primal approah.

In this paper we take the lassial, stohasti ontrol approah to the primal problem, plaing us

in the tradition of [5, 23℄ rather than the shadow prie literature [16, 11, 2℄. Our methods arguably

lead to simpler set of governing equations than those that arise from the shadow prie method (see

Setion 4.1 for a omparison). In the setting of the sale problem we study the omparative statis

of the problem. To the best of our knowledge this has not been attempted via the shadow-prie

approah, and would appear to be quite hallenging even under the urrent best formulation of this

method.

The next two setions desribe the main results, �rst informally, and then more preisely. Then,

in Setion 4, we give the heuristis behind the results, whih are proved in Setion 5 (and the

appendies). A �nal setion disusses the omparative statis in the model.

2. Related literature and main onlusions

2.1. Related literature. Davis and Norman [5℄ were the �rst to study the Merton model with

proportional transation osts in a mathematially preise formulation. They showed that under

optimal behaviour the no transation region is a wedge ontaining the Merton line and that the

optimal buying and selling strategies are loal times at boundaries hosen to keep the proess inside

the wedge. In the transation region, transations take plae at in�nite speed and exept for the

initial transation, all transations take plae at the boundaries. They obtained their results by

writing down the (non-linear, seond order) Hamilton-Jaobi-Bellman (HJB) equation with free

boundary onditions and then by a series of transformations reduing the problem to one of solving

a system of �rst order ordinary di�erential equations. Motivated by Davis and Norman's work,

Shreve and Soner [23℄ studied the same problem but with an approah via visosity solutions. They

reovered the results of Davis and Norman [5℄ without imposing all of the onditions of [5℄.

Kallsen and Muhle-Karbe [16℄ were the �rst to onsider using the shadow prie method. They

restrited attention to the ase of logarithmi utility and showed that the approah ould be used
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both to develop a andidate solution and to prove a veri�ation result. Further, they showed it was

possible to determine the shadow prie proess. Herzegh and Prokaj [11℄ extended the results to

a power-law investor. In the logarithmi ase the optimal onsumption plan is relatively simple,

so one of the ontributions of Herzegh and Prokaj was to develop a heuristi for solving for the

optimal onsumption, and thene the shadow prie in the power-law ase. At about the same

time, and independently, Choi et al [2℄ also undertook a detailed study of the problem for a power-

law investor. In their main result they determine preisely for whih parameter ombinations the

problem is well-posed, and they go on to give an expression for the shadow prie via the solution

of a di�erential equation.

In related work, Du�e and Sun [7℄, Liu [19℄ and Korn [20℄ study the problem when there are �xed

(as opposed to proportional) transation osts. Liu used the HJB approah, deriving an ordinary

di�erential equation to haraterise the value funtion and solving it numerially. He found that if

there is only a �xed transation ost, the optimal trading strategy is to trade to a ertain target

amount as soon as the fration of wealth in stok goes outside a ertain range. Korn [20℄ solved

a similar problem by an impulse ontrol and optimal stopping approah. He proved the Bellman

priniple and solved for the reward funtion by an iteration proedure under the assumption that

the value funtion is �nite.

Whilst �nanial assets an often be atively traded, in other ontexts dynami trading is not

possible. Svensson and Werner [24℄ were the �rst to onsider the problem of priing non-traded

assets in Merton's model. More generally, it is a standard assumption in the Real Options literature

(see Dixit and Pindyk [6℄) that the underlying asset is not liquidly traded. An agent an sell the

asset, but annot purhase any units. In the simplest ase the agent is endowed with a single unit

of an indivisible asset whih annot be traded and the problem redues to an optimal sale problem

for an asset. Evans et al [8℄, see also Henderson and Hobson [13℄, onsider an agent with power-law

utility who owns an indivisible, non-traded asset and wishes to hoose the optimal time to sell the

asset in order to maximise the expeted utility of terminal wealth in an inomplete market. Their

results show that the optimal riterion for the sale of the asset is to sell the �rst time the value

of the non-traded asset exeeds a ertain proportion of the agent's trading wealth and this ritial

threshold is governed by a transendental equation.

A seond appliation where our assumption that the agent annot atively trade is reasonable is

in the ontext of exeutive stok options. Legal restritions (see Carpenter [1℄) mean that exeutives

annot short sell stok on their own ompany. If exeutives are ompensated with a large tranhe

of options, then they might wish to hedge their position by selling stok and the restrition on short

sales beomes an impliit bar on any trading. Often, in the mathematial �nane literature (see

Grasselli and Henderson [10℄ and Leung and Sirar [18℄) the simple assumption is made that legal

restritions prevent the agent from any trading in the underlying asset.

2.2. Informal statement of the main onlusions. This paper onsiders an individual who is

endowed with ash and units of an in�nitely divisible asset, whih an be sold but not dynamially

traded, and who aims to maximise the expeted disounted utility of onsumption over an in�nite

horizon. (The ase of an indivisible asset is onsidered by Henderson and Hobson [14℄.) The

problem faing the individual is to hoose the optimal strategy for the liquidation of the endowed

asset portfolio, and an optimal onsumption proess hosen to keep ash wealth non-negative. The

prie proess of the endowed asset is assumed to follow an exponential Brownian motion and the

agent is assumed to have onstant relative risk aversion.

The onstraint that the asset an be sold but not bought is equivalent to an assumption of no

transation osts on sales, and an in�nite transation ost on purhases. (The assumption of no

transation ost on sales an easily be relaxed to a proportional transation ost on sales by working
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with a proess representing the post-transation-ost prie rather than the pre-ost prie.) In this

sense the problem we onsider an be interpreted as a speial ase of the Davis-Norman problem

for Merton's model with transation osts in whih the transation ost assoiated with buying the

endowed asset is in�nite.

Our main results are of three types. First we are able to ompletely lassify the di�erent types

of optimal strategies and the parameter ranges over whih they apply. Seond, we an simplify

the problem of solving for the value funtion, espeially when ompared with diret approahes for

solving the HJB equation via smooth �t. Third, we an perform omparative statis on quantities

of interest, and unover some surprising impliations of the model.

Some of our main results are as follows.

Result 1. If the endowed asset is depreiating over time then the investor should sell immediately.

Conversely, if the mean return is too strong and the oe�ient of relative risk aversion is less than

unity, then the problem is ill-posed, and provided the initial holding of the endowed asset is positive

the value funtion is in�nite.

Otherwise, there are two ases. For small and positive mean return there exists a �nite ritial

ratio and the optimal sale strategy for the endowed asset is to sell just enough to keep the ratio

of wealth held in the endowed asset to ash wealth below this ritial ratio. For larger returns

it is optimal to �rst onsume all ash wealth, and one this ash wealth is exhausted to �nane

onsumption through sales of the endowed asset.

Result 2. In the ase where the ritial ratio is �nite then it is given via the solution of a �rst

rossing problem for a �rst-order initial-value ordinary di�erential equation (ODE). Other quantities

of interest an be expressed in terms of the solution of this ODE. In the ase where the ritial ratio

is in�nite, the value funtion an again be expressed in terms of the solution of a �rst-order ODE.

Result 3. We give three sample onlusions from the omparative statis:

(1) The optimal onsumption proess is not monotone in the drift of the endowed asset. Al-

though we might expet that the higher the drift, the more the agent would onsume, some-

times the agent's onsumption is a dereasing funtion of the drift.

(2) The ertainty equivalent value of the holdings of the risky asset is not monotone in risk

aversion. For small quantities of endowed asset, the ertainty equivalent value is inreasing

in risk aversion, while for larger quantities, it is dereasing.

(3) The ost of illiquidity (see De�nition 26 below), representing the loss in welfare of the agent

when ompared with an otherwise idential agent who an buy and sell the risky asset with

zero transation osts, is a U-shaped funtion of the size of the endowment in the risky

asset.

We work with bond as numéraire (so that interest rate e�ets an be ignored) and then the

relevant parameters are the disount parameter and the relative risk aversion of the agent, and the

drift and volatility of the prie proess of the risky asset. In the non-degenerate parameter ases the

agent faes a on�it between the inentive to keep a large holding in the risky asset (sine it has a

positive return) and the inentive to sell in order to minimise risk exposure. From the homotheti

property we expet deisions to depend on the ratio between the value of the holdings of risky asset

and ash wealth.

The HJB equation for our problem is seond order, non-linear and subjet to value mathing and

smooth �t of the �rst and seond derivatives at an unknown free-boundary. One of our ontributions

is to show that the problem an be redued to a rossing problem for the solution of a �rst order

ODE. (Choi et al [2℄ and Herzegh and Prokaj [11℄ also redue the problem to a �rst order ODE, but

ours appears simpler in two ways. First, we have an initial value problem. This is a result of the fat
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that we do not allow sales. Seond, the ODE itself is simpler to analyse, beause the set of andidate

rossing points is expressed via a quadrati funtion (rather than an ellipse or hyperbola as in [2℄.)

This big simpli�ation (ompared with [5, 23℄) is useful both when onsidering analytial properties

of the solution, and when trying to onstrut a solution numerially. We lassify the parameter

ombinations whih lead to di�erent types of solutions and provide a thorough analysis of the

existene and �niteness of the ritial ratio, and the orresponding optimal strategies. In the ase

of a �nite and positive ritial ratio we show how the solution to the problem an be haraterised

by an autonomous one-dimensional di�usion proess with re�etion and its loal time.

The struture of the paper is as follows. First, we give a preise desription of the model and then

a statement of the main results. The HJB equation for the problem is seond order and non-linear,

but a hange of variable makes the equation homogeneous and then a hange of dependent variable

redues the order. Hene the form of the solution is governed by the solution of a �rst rossing

problem of an initial value problem for a �rst order ODE. Even though losed-form solutions of

this ODE are not available we an provide a omplete haraterisation of when the �rst rossing

problem has a solution, and given a solution of the �rst rossing problem we show how to onstrut

the (andidate) value funtion. There are two types of degenerate solution (in one ase it is always

optimal to liquidate all units of the risky asset immediately, and in the other the value funtion is

in�nite and the problem is ill-posed). In addition there are two di�erent types of non-degenerate

behaviour (in one ase the agent sells units of asset in order to keep the proportion of wealth held

in the risky asset below a ertain level, and in the other the agent exhausts all her ash reserves

before selling any units of the risky asset.) We give proofs of all the main results, although tehnial

details of the veri�ation arguments are sometimes relegated to the appendies.

One the analysis of the problem is omplete we are in a position to onsider the omparative

statis of the problem. We onsider the omparative statis of the ritial ratio, the value funtion,

the optimal onsumption, the ertainty equivalent value of the portfolio and the ost of illiquidity.

3. The model and main results

We work on a �ltered probability spae

(
Ω,F ,P, (Ft)t≥0

)
suh that the �ltration satis�es the

usual onditions and is generated by a standard Brownian motion B = (Bt)t≥0. The prie proess

Y = (Yt)t≥0 of the endowed asset is assumed to be given by

(3.1) Yt = y0 exp

[(
α−

η2

2

)
t+ ηBt

]
,

where α and η > 0 are the onstant mean return and volatility of the non-traded asset, and y0 is

the initial prie.

Let C = (Ct)t≥0 denote the onsumption rate of the individual and let Θ = (Θt)t≥0 denote the

number of units of the endowed asset held by the investor. The onsumption rate is required to be

progressively measurable and non-negative, and the portfolio proess Θ is progressively measurable,

right-ontinuous with left limits (RCLL), non-negative and non-inreasing to re�et the fat that

the non-traded asset is only allowed for sale. We assume the initial number of shares held by the

investor is θ0. Sine we allow for an initial transation at time 0 we may have Θ0 < θ0. We write

Θ0− = θ0. This is onsistent with our onvention that Θ is right-ontinuous.

We denote by X = (Xt)t≥0 the wealth proess of the individual, and suppose that the initial

wealth is x0 where x0 ≥ 0. Provided the only hanges to wealth our from either onsumption or

from the sale of the endowed asset, X evolves aording to

(3.2) dXt = −Ctdt− YtdΘt,
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subjet to X0− = x0, and X0 = x0 + y0(θ0 − Θ0). We say a onsumption/sale strategy pair is

admissible if the omponents satisfy the requirements listed above and if the resulting ash wealth

proess X is non-negative for all time. Let A (x0, y0, θ0) denote the set of admissible strategies for

initial setup (X0− = x0, Y0 = y0,Θ0− = θ0).

The objetive of the agent is to maximise over admissible strategies the disounted expeted

utility of onsumption over the in�nite horizon, where the disount fator is β and the utility

funtion of the agent is assumed to be CRRA with relative risk aversion R ∈ (0,∞) \ 1. In

partiular, the goal is to �nd

(3.3) sup
(C,Θ)∈A(x0,y0,θ0)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
.

Sine the set-up has a Markovian struture, we expet the value funtion, optimal onsumption

and optimal sale strategy to be funtions of the urrent wealth and endowment of the agent and

of the prie of the risky asset. Let V = V (x, y, θ, t) be the forward starting value funtion for the

problem so that

(3.4) V (x, y, θ, t) = sup
(C,Θ)∈A(x,y,θ,t)

E

[
ˆ ∞

t

e−βs
C1−R
s

1−R
ds

∣∣∣∣Xt− = x, Yt = y,Θt− = θ

]
.

Here the spae of forward starting, admissible strategies A(x, y, θ, t) is suh that C = (Cs)s≥t is a

non-negative progressively measurable proess, Θ = (Θs)s≥t is a right-ontinuous, dereasing and

progressively measurable proess and satis�es Θt− (∆Θ)t = θ, and X given by Xs = x−
´ s

t Cudu−
´

[t,s]
YudΘu is non-negative.

De�ne the ertainty equivalent value (see, for example, [12℄) p = p(x, y, θ, t) of the holdings of

the risky asset to be the solution to

(3.5) V (x+ p, y, 0, t) = V (x, y, θ, t).

In fat, by the salings of the problem it will turn out that p is independent of time (and heneforth

we write p = p(x, y, θ)), and depends on the prie y of the risky asset and the quantity θ of the

holdings in the risky asset, only through the produt yθ.

Our goal is to haraterise the value funtion, the optimal onsumption and sale strategies, and

the ertainty equivalent prie p.

The key to the form of the solution to the problem is ontained in the following proposition,

whih onerns the solution of an ODE on [0, 1) and whih is proved in Appendix A. There is a

one-to-one orrespondene between the four ases in the proposition and the four types of solution

to the optimal sale problem.

Let ǫ = α/β and δ2 = η2/β.

Proposition 1. For q ∈ [0, 1] de�ne m(q) = 1 − ǫ (1−R) q + δ2

2 R (1−R) q2 and ℓ(q) = 1 +(
δ2

2 − ǫ
)
(1−R)q − δ2

2 (1−R)2q2 = m (q) + q (1− q) δ
2

2 (1−R). Let n = n(q) solve

(3.6) n′(q) = O(q, n(q))

where

(3.7) O(q, n) =
(1−R)

R

n

(1− q)
−
δ2

2

(1−R)2

R

qn

ℓ (q)− n
=

(1 −R)

R

n

(1− q)

m(q)− n

ℓ(q)− n

subjet to n(0) = 1 and

n′(0)
1−R < ℓ′(0)

1−R = δ2

2 − ǫ. Suppose that if n hits zero, then 0 is absorbing for

n. See Figure 3.1.

For R < 1, let q∗ = inf{q > 0 : n(q) ≤ m(q)}. For R > 1, let q∗ = inf{q > 0 : n(q) ≥ m(q)}.

For j ∈ {ℓ,m, n} let qj = inf{q > 0 : j(q) = 0} ∧ 1.
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Figure 3.1. Stylised plot of m(q), n(q), ℓ(q) and q∗. Parameters are hosen to

satisfy the onditions in the seond ase of Proposition 1 so that q∗ ∈ (0, 1). The
left �gure is in the ase R < 1 and the right �gure R > 1.

(1) Suppose ǫ ≤ 0. Then q∗ = 0.

(2) Suppose 0 < ǫ < δ2R and if R < 1, suppose in addition that ǫ < δ2

2 R + 1
1−R . Then

0 < q∗ < 1.

(3) Suppose ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R . Then q

∗ = 1 = qℓ = qn = qm.

(4) Suppose R < 1 and ǫ > δ2

2 R + 1
1−R . Then qm < qn = qℓ < 1. If R < 1, ǫ = δ2

2 R + 1
1−R

and ǫ < δ2R then qm < qn = qℓ = 1. If R < 1, ǫ = δ2

2 R + 1
1−R and ǫ ≥ δ2R then

q∗ = 1 = qℓ = qn = qm.

Remark 2. Note that the ondition ǫ < δ2R is equivalent to (1 − R)m′(1) > 0. Further, if R < 1,

then the ondition ǫ < δ2

2 R+ 1
1−R is equivalent to m(1) > 0. Also, n has a turning point at q∗ < 1

if and only if n(q∗) = m(q∗). See Figure 3.1. In partiular, if m is monotone (and ǫ > 0) then

q∗ = 1. Then, if R < 1, 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R , we have qℓ = qn = 1.

Remark 3. It is easy to see that (1−R)n is dereasing in ǫ. In fat it an also be shown that over

parameter ranges where 0 < q∗ < 1 then q∗ is inreasing in ǫ.

Theorem 4 divides the parameter spae into the four distint regions. In partiular, it distin-

guishes the degenerate ases, and it gives neessary and su�ient onditions for the two di�erent

regimes in the non-degenerate ase.

Theorem 4. (1) Suppose ǫ ≤ 0. Then it is always optimal to sell the entire holding of the

endowed asset immediately, so that Θt = 0 for t ≥ 0. The value funtion for the problem

is V (x, y, θ, t) = (R/β)Re−βt(x + yθ)1−R/1 − R; and the ertainty equivalent value of the

holdings of the asset is p(x, y, θ) = yθ.

(2) Suppose 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R if R < 1. Then there exists a positive and �nite

ritial ratio z∗ and the optimal behaviour is to sell the smallest possible quantity of the

risky asset whih is su�ient to keep the ratio of wealth in the risky asset to ash wealth at

or below the ritial ratio. If θ > 0 then p(x, y, θ) > yθ.
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(3) Suppose ǫ ≥ δ2R and ǫ < δ2

2 R + 1
1−R if R < 1. Then the optimal onsumption and

sale strategy is �rst to onsume liquid (ash) wealth, and then when this liquid wealth is

exhausted, to �nane further onsumption from sales of the illiquid asset. If θ > 0 then

p(x, y, θ) > yθ.

(4) Suppose R < 1 and ǫ ≥ δ2

2 R+ 1
1−R . Then the problem is ill-posed, and provided θ is positive,

the value funtion V = V (x, y, θ, t) is in�nite. There is no unique optimal strategy, and the

ertainty equivalent value p is not de�ned.

Remark 5. In light of Proposition 1 there is one fewer ase for R > 1. The fourth ase in the theorem

does not happen for R > 1 sine the value funtion is always �nite, as in Merton's problem.

Similarly, when R < 1, if δ2 ≥ 2/(R(1−R)) then the third ase above does not happen. In that

ase, as ǫ inreases we move diretly from ǫ < δ2

2 R + 1
1−R and a �nite value funtion and z∗ to

ǫ ≥ δ2

2 R+ 1
1−R and an in�nite value funtion.

Remark 6. In their more general model with transation osts Choi et al [2℄ show that if R < 1

and ǫ ≥ δ2R
2 + 1

1−R then the problem is ill-posed, so the �nal part of the theorem is a orollary of

[2, Theorem 2.6℄

The seond and third ases above are non-degenerate and they are further haraterised in

Theorem 7 and Theorem 10. In Theorem 7 the solution is expressed in terms of a one-dimensional

autonomous re�eting stohasti proess J and its loal time at zero L, see (3.14).

For 0 ≤ q ≤ q∗ de�ne N(q) = n(q)−R(1− q)R−1
where n is the solution to (3.6). Assuming that

N is monotoni, let W be inverse to N . Let h∗ = N(q∗). Then W (h∗) = q∗, and h∗(1 − q∗)1−R =

m(q∗)−R.

Theorem 7. i) Suppose R < 1. Suppose 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R so that 0 < q∗ < 1.

Then N as de�ned above is inreasing, and W is well de�ned.

Let z∗ be given by

(3.8) z∗ = (1 − q∗)−1 − 1 =
q∗

1− q∗
∈ (0,∞).

On [1, h∗] let h be the solution of

(3.9) u∗ − u =

ˆ h∗

h

1

(1−R)fW (f)
df,

where u∗ = ln z∗. Let g be given by

(3.10) g (z) =





(
R
β

)R
m(q∗)−R (1 + z)1−R

(
R
β

)R
h (ln z)

z ∈ [z∗,∞);

z ∈ (0, z∗].

Then, the value funtion V is given by

(3.11) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

and we an extend this to x = 0 and θ = 0 by ontinuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
(3.12)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(q∗)−R(3.13)

Fix z0 = y0θ0/x0. Let (J, L) = (Jt, Lt)t≥0 be the unique pair suh that
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(a) J is positive,

(b) L is inreasing, ontinuous, L0 = 0, and dLt is arried by the set {t : Jt = 0},

() J solves

(3.14) Jt = (z∗ − z0)
+ −

ˆ t

0

Λ̃(Js)ds−

ˆ t

0

Γ̃(Js)dBs + Lt,

where Λ(z) = αz + z
(
g(z)− 1

1−Rzg
′(z)

)−1/R

, Γ(z) = ηz, Λ̃(j) = Λ(z∗ − j) and Γ̃(j) =

Γ(z∗ − j).

For suh a pair 0 ≤ Jt ≤ z∗.

If z0 ≤ z∗ then set Θ∗
0 = θ0 and X∗

0 = x0; else if z0 > z∗ then set

Θ∗
0 = θ0

z∗

(1 + z∗)

(1 + z0)

z0

and X∗
0 = x0+ y0(θ0−Θ0). This orresponds to the sale of a positive quantity θ0−Θ0 of units

of the endowed asset at time 0.

Then, the optimal holdings Θ∗
t of the endowed asset, the optimal onsumption proess C∗

t =

C(X∗
t , Yt,Θ

∗
t ), the resulting wealth proess and the ertainty equivalent value are given by

Θ∗
t = Θ∗

0 exp

{
−

1

z∗(1 + z∗)
Lt

}
;(3.15)

X∗
t =

YtΘ
∗
t

(z∗ − Jt)
;(3.16)

C(x, y, θ) = x

[
g

(
yθ

x

)
−

1

1− R

yθ

x
g′
(
yθ

x

)]− 1
R

;(3.17)

p(x, y, θ) = x



g
(
yθ
x

)

g(0)




1
1−R

− x.(3.18)

ii) Now suppose R > 1 and 0 < ǫ < δ2R so that 0 < q∗ < 1. Let all quantities be de�ned as before.

Then N is dereasing. On (h∗, 1) h is de�ned via

u∗ − u =

ˆ h

h∗

1

(R− 1)fW (f)
df.

The value funtion, the optimal holdings Θ∗
, the optimal onsumption proess C∗

, the resulting

wealth proess X∗
and the ertainty equivalent value p are the same as before.

Remark 8. Reall that n solves the �rst order di�erential equation (3.6), and q∗ ∈ (0, 1) is the

solution of a �rst rossing problem for n. One we have onstruted n and determined q∗, numeri-

ally if appropriate, expressions for all other quantities an be derived by solving a further integral

equation, whih an be re-expressed as a �rst order di�erential equation. This two-stage proedure

is signi�antly simpler than solving the HJB equation diretly, as this equation is seond order and

non-linear, and subjet to seond-order smooth �t at an unknown free boundary.

Remark 9. In the orresponding Merton problem for the unonstrained agent who may both buy

and sell the risky asset at zero transation ost, optimal behaviour for the agent is to hold a

�xed proportion qM = α/η2R = ǫ/δ2R of total wealth in the risky asset. This orresponds to

keeping Qt := YtΘt/(Xt + YtΘt) equal to the onstant qM or equivalently Zt = YtΘt/Xt equal to

zM := qM/(1−qM ) = ǫ/(δ2R−ǫ). In Lemma 27 below we show that if ǫ > 0 then q∗ > ǫ/δ2R = qM

so that optimal behaviour for the agent who annot buy units of the risky asset is to keep the ratio

of money invested in the risky asset to ash wealth in in interval [0, q∗] where qM ∈ (0, q∗).
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The following theorem haraterises the solution to the problem in the seond non-degenerate

ase (the third ase in Theorem 4). In this ase, the optimal strategy is to �rst hold the endowed

asset and �nane onsumption with initial wealth. When liquid wealth is exhausted, onsumption

is further �naned by the sale of endowed asset. Here, the ritial threshold z∗ = ∞.

Theorem 10. Suppose ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R .

Let n solve (3.6) on [0, 1]. Then for the given parameter ombinations we have q∗ = 1. As in

Theorem 7, let N(q) = n(q)−R(1− q)R−1
. Then N is monotoni.

Let W be inverse to N . For R < 1 de�ne γ : (1,∞) 7→ R by

(3.19) γ(v) =
ln v

1−R
+

R

1−R
lnm(1)−

1

1−R

ˆ ∞

v

(1−W (s))

sW (s)
ds.

If R > 1 de�ne γ : (0, 1) 7→ R by

(3.20) γ(v) = −
ln v

R− 1
−

R

R− 1
lnm(1)−

1

R− 1

ˆ v

0

(1−W (s))

sW (s)
ds.

Let h be inverse to γ and let g(z) = (R/β)Rh(ln z).

Then, the value funtion V is given by

(3.21) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

whih an be extended by ontinuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
,(3.22)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(1)−R.(3.23)

The optimal onsumption proess C∗
is given by C∗

t = C(X∗
t , Yt,Θ

∗
t ) where C(x, y, θ) is as in

(3.17) and the optimal holdings Θ∗
t of the endowed asset and the resulting wealth proess are given

by

(3.24) Θ∗
t =

{
θ0 t ≤ τ

θ0e
− β

R
m(1)(t−τ) t > τ

, X∗
t =

{
x0 −

´ t

0
C(X∗

s , Ys, θ0)ds t ≤ τ

0 t > τ
,

where τ = inf{t ≥ 0 : X∗
t = 0}. Finally the ertainty equivalent value is given by (3.18).

Remark 11. Note that limz↑∞
1
z (g(z) −

zg′(z)
1−R )−1/R = βm(1)/R and hene by ontinuity we may

set C(0, y, θ) = yθβm(1)/R. Then for t > τ we have that

C∗
t = C(0, Yt,Θ

∗
t ) =

β

R
m(1)YtΘ

∗
t .

4. Heuristis

The goal is to solve for the value funtion V = V (x, y, θ, t) as in (3.4). From the salings of the

problem we expet that we an write

V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)

where the key variable is the ratio z = yθ/x of wealth held in the risky asset to ash wealth. Note

that if θ = 0 then the problem is purely deterministi, the optimal strategy is to onsume a onstant

fration of wealth per unit time, and the value funtion is suh that g(0) = (R/β)R.

Further, we expet that the no-transation region will be a wedge 0 ≤ yθ ≤ z∗x and that for

Y0Θ0− > z∗X0− the optimal sale strategy inludes an immediate sale to bring the ratio of risky
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wealth to ash wealth below z∗. In partiular, if Y0 = y and if the initial portfolio (X0− = x,Θ0− =

θ) is suh that yθ > xz∗ then we sell φ = −(∆Θ)0 units of the risky asset where φ = θ− z∗

1+z∗
x+yθ
y0

so that (reall Θ is right ontinuous so that Θ0+ = Θ0)

yΘ0

X0
=
y(θ − φ)

x0 + y0φ
= z∗.

This should not hange the value funtion and we onlude: for yθ > xz∗

x1−Rg

(
yθ

x

)
= (x+ yφ)1−Rg(z∗) =

(x + yθ)1−R

(1 + z∗)1−R
g(z∗),

or equivalently g(z) = (Rβ )
RA(1 + z)1−R for z > z∗ where A = ( βR )

R g(z∗)
(1+z∗)1−R .

We expet that

ˆ t

0

e−βs
C1−R
s

1−R
ds+ V (Xt, Yt,Θt, t)

will be a supermartingale in general and a martingale under the optimal strategy. Applying It�'s

formula, and optimising over Ct and Θt we �nd the Hamilton-Jaobi-Bellman equation is a (seond

order, semi-linear) di�erential equation for g in the no-transation region:

(4.1) 0 =
R

1−R

(
g −

zg′(z)

1−R

)1−1/R

− β
g

1−R
+ µ

zg′(z)

1−R
+
η2

2

z2g′′

1−R
z ≤ z∗.

Finally, we expet that there will be value mathing and seond-order smooth �t at the free bound-

ary.

In analysing the problem our �rst goal is to solve (4.1). The equation in the no-transation region

an be simpli�ed by setting z = eu and h(u) = h(ez) = ( βR )
Rg(z). Then h(−∞) = 1, h′(−∞) = 0

and h solves a (seond-order, non-linear) autonomous equation (with no u-dependene):

0 =

(
h−

h′

1−R

)1−1/R

− h+

(
ǫ−

δ2

2

)
h′ +

δ2

2
h′′.

This equation an be simpli�ed by setting

dh
du = w(h) so that

d2h
du2 = h′′ = w′(h)w(h). After the

transformations we �nd that w solves (5.8) below. In partiular w solves a �rst-order equation,

with w(1) = 0.

Various further transformations do not redue the order of the problem, but rather simplify

the problem signi�antly in appearane, and improve our ability to interpret the solution. Set

W (h) = (1−R)hw(h), N =W−1
and �nally n(q) = N(q)−1/R(1− q)1−1/R

. Then (at least for the

range of problems we onsider) 0 ≤ W ≤ 1, so that N and n are de�ned on [0, 1] and n solves the

linear �rst order equation (3.6) subjet to n(0) = 1.

The advantage of swithing to n beomes apparent when we onsider the solution outside the

no-transation region. For z ≥ z∗, g(z) = (Rβ )
RA(1 + z)1−R for A to be determined. Then using

the same transformations we �nd that for h ≥ h∗ = A(1 + z∗)1−R we have h(u) = ( βR )
Rg(eu) =

A(1 + eu)1−R and

w(h) =
dh

du
= (1 −R)h

eu

1 + eu
= (1−R)h

(h/A)1/(1−R) − 1

(h/A)1/(1−R)
.

It follows that for h > h∗,W (h) = 1−(A/h)1/(1−R)
and for q > q̃∗ :=W (h∗), N(q) = A(1−q)−(1−R)

and n(q) = A−1/R
whih is a onstant.

Seond order smooth �t of g orresponds to �rst order smooth �t of w (andW , N and n). Hene

we are looking for a solution n and free boundary q∗ suh that n ∈ C1
and n′ = 0 at q = q̃∗.

However, the plaes in (q, n) spae where n′ = 0 are exatly the points on the urve (q,m(q)) where
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m is the quadrati funtion of q given in the statement of Proposition 1. Hene the free boundary

problem beomes a �rst rossing problem for n, and q̃∗ = q∗, the �rst rossing point by n of m.

Suppose 0 < R < 1. (The analysis for R > 1 is similar, but sometimes the inequalities and

monotoniities are reversed.) It is lear from the form of the di�erential equation for n that if

n(q̂) ∈ (0, ℓ(q̂)) for some q̂ ∈ (0, 1) then n(q) < ℓ(q) on [q̂, 1 ∧ qℓ), where qℓ is the �rst time that ℓ

hits zero. Further, n is dereasing at q if n(q) ∈ (m(q), ℓ(q)). By the above arguments A = n(q∗)−R

and by onstrution

q∗ =W (h∗) =
w(h∗)

(1−R)h∗
= 1−

(
A

h∗

)1/(1−R)

= 1−
1

(1 + z∗)
.

In partiular, we an read o� the limits of the no-transation region and the value funtion outside

the no-transation region diretly from the solution of the �rst rossing problem for n; z∗ = q∗

1−q∗

and g(z) = (Rβ )
Rn(q∗)−R(1 + z)1−R for z ≥ z∗. This simpli�es many of the omparative statis

for the problem signi�antly. Finally, given h∗ and q∗ we an solve for h and hene g and V via

w(h) = dh
du or equivalently (3.9).

4.1. Relationship with Choi et al. In a reent paper, Choi et al [2℄ onsider the �nite transation

ost version of the problem we disuss here. Their results an be speialized to our problem.

Conversely our approah as desribed above extends to the ase of transation osts; the main

hange is that instead of solving a �rst order equation for n started at n(0) = 1 we need to �nd a

solution for n whih starts and ends on the urve (q,m(q)). One unimportant distintion between

this paper and [2℄ is that we insist that X ≥ 0 whereas Choi et al work in the solveny region

whereby agents are allowed negative ash wealth, provided any borrownings an be overed by the

sale of the risky asset, net of any transation osts. In our ase the stronger requirement X ≥ 0 is

not unnatural, and does have the advantage of simplifying the analysis, in that some of the singular

ases disussed in [2℄ do not our. Instead we have the results in Theorem 10.

In their more ompliated problem with an extra parameter orresponding to the round-trip

transation ost, Choi et al [2℄ onentrate on deriving the form of the value funtion, and delimiting

the various parameter regimes under whih the solution takes di�erent forms. They �nd some very

interesting results onerning how the solution hanges within the di�erent regimes. In our simpler

problem when the risky asset an be sold but not bought, we prove a similar set of results. The

innovation in our paper is that we disuss in detail the omparative statis.

The solution approah in Choi et al is di�erent to that proposed here in that the approah is

via the dual problem and shadow pries. In ontrast our approah is lassial and is based on

onsideration of the HJB equation for the value funtion. In priniple, the two formulations should

be equivalent, and one is a re-parametrisation of the other, and one or other approah in a given

appliation may lead to a more diret solution or an easier veri�ation. But, our belief is that our

�nal problem, as expressed as a �rst rossing problem for the solution of a �rst order di�erential

equation is simpler, at least in appearane, than that in [2℄, and this remains the ase, both when

our approah is extended to �nite transation osts, and when their method is speialised to allow

sales but not purhases. (It may be the ase that the soure of this apparent simpli�ation is the

extra e�ort we expend after the order redution i.e. after hanging the dependent variable from u

to h. In partiular, the transformation from w to n leads to an equation whih is muh simpler to

interpret. Choi et al [2℄ make a similar order reduing transformation, but then proeed diretly

from the resulting equation.)
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Choi et al [2, Setion 5℄ redue the problem

1

to solving

s′(p) =
P (p, s)

Q(p, s)

where P is a polynomial in s and p whih is quadrati in both p and s and Q is a polynomial whih

is quadrati in p and linear in s. In Choi et al's method the andidate loations of the smooth-�t

points are the solutions to P (p, s) = 0 whih are points on an ellipse, or on a hyperbola. In ontrast,

in our formulation the andidate loations of the smooth �t points lie on the quadrati m. Further,

in our formulation, and as desribed above, the value funtion outside the no-transation region

and the loation of the free boundary an be inferred diretly from the solution of the �rst rossing

problem for n. Finally, we note that in a losing remark Choi et al [2, Remark 6.15℄ state that

they are unable to give a diret argument for the monotoniity of one of the important quantities

of interest. In our spei�ation, this monotoniity is easy to prove.

5. Proofs and verifiation arguments

For F = F (x, y, θ, t) ∈ C1,2,1,1
suh that Fx > 0 de�ne operators L and M by

LF = sup
c>0

{
e−βt

c1−R

1−R
− cFx

}
+ αyFy + Ft +

1

2
η2y2Fyy

=
R

1−R
e−

β
R
tF 1−1/R
x + αyFy + Ft +

1

2
η2y2Fyy,

MF = Fθ − yFx.

Remark 12. The state spae of (Xt, Yt,Θt, t) is [0,∞)× (0,∞) × [0,∞) × [0,∞), and we want to

de�ne L and M on this region inluding at the boundary. In pratie, all the funtions to whih

we apply the operators are of the form F (x, y, θ, t) = e−βtF (x, y, θ) for some funtion F whih is

independent of t in whih ase Ft = −βF , and this latter form is well de�ned at t = 0. Also, we

typially need MF only for θ > 0. Then, given F de�ned for x > 0 we an de�ne F at x = 0 by

ontinuity, and then MF |x=0 is also well de�ned. LF at θ = 0 an be de�ned similarly, by �rst

de�ning F at θ = 0 by ontinuity. In order to de�ne LF at x = 0 for θ > 0 we extend the domain

of F to x > −θy and then show that Fx and the other derivatives of F are ontinuous aross x = 0

with this extension.

5.1. The Veri�ation Lemma in the ase of a depreiating asset. Suppose ǫ ≤ 0. Our goal

is to show that the onlusions of Theorem 4(1) hold.

From Proposition 1 we know q∗ = 0. De�ne the andidate value funtion via

(5.1) G(x, y, θ, t) = e−βt
(
R

β

)R
(x + yθ)1−R

1−R
x ≥ 0, θ ≥ 0.

The andidate optimal strategy is to sell all units of the risky asset immediately. The domain of G

an be extended to −θy < x < 0 for θ > 0, using the same funtional form as in (5.1).

Prior to the proof of the theorem, we need the following lemma.

Lemma 13. Suppose ǫ ≤ 0. Consider the andidate value funtion onstruted in (5.1). Then on

(x ≥ 0, θ > 0) we have MG = 0, and on (x ≥ 0, θ ≥ 0) we have LG ≤ 0 with equality at θ = 0.

1

The methodologies of Kallsen and Muhle-Karbe [16℄, Herzegh and Prokaj [11℄ and Choi et al [2℄ all lead to a

di�erential equation whih must be solved. In [16, Equation (3.13)℄ this is expressed as a semi-linear seond order

equation f ′′ = LKM (f, f ′) where LKM is a polynomial of third order in f ′
with o-e�ients whih are ratios of linear

funtions of ef . In [11, Equation (55)℄ the problem is redued to a �rst order di�erential equation f ′ = LHP (x, f)
where LHP is ubi in f with o-e�ients whih are rational funtions of x.
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Proof. Given the form of the andidate value funtion in (5.1), we have

MG = e−βt
(
R

β

)R
y(x+ yθ)−R − e−βt

(
R

β

)R
y(x+ yθ)−R = 0.

On the other hand, writing z = yθ/x, provided x > 0

LG = β

(
R

β

)R
e−βt

(x+ yθ)1−R

1−R

[
ǫ(1−R)

z

1 + z
−

1

2
δ2R(1−R)

(
z

1 + z

)2
]
≤ 0,

with equality at z = 0. If x = 0 then LG = βG(1 −R)[ǫ− δ2R
2 ] < 0. �

Theorem 14. Suppose ǫ ≤ 0. Then the value funtion is

(5.2) V (x, y, θ, t) = e−βt
(
R

β

)R
(x + yθ)1−R

1−R
,

and the optimal holdings Θ∗
t of the endowed asset, the optimal onsumption proess C∗

t and the

resulting wealth proess are given by

(5.3) (△Θ∗)t=0 = −θ0, C∗
t =

β

R
(x0 + y0θ0)e

− β
R
t, X∗

t = (x0 + y0θ0)e
− β

R
t.

Proof. Note that andidate optimal strategy given in (5.3) is to sell the entire holding of the risky

asset at time zero (whih gives X∗
0 = x0 + y0θ0) and thereafter to �nane onsumption from liquid

wealth, whene the wealth proess (X∗
t )t≥0 is deterministi and evolves as dX∗

t = −C∗
t dt. This

gives X∗
t = (x0 + y0θ0)e

− β
R
t
. It follows that the andidate optimal strategy is admissible.

The value funtion under the strategy proposed in (5.3) is

E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0

e−βt
(
β

R

)1−R
(
e−

β
R
t(x0 + y0θ0)

)1−R

1−R
dt

=

(
R

β

)R
(x0 + y0θ0)

1−R

1−R
= G(x0, y0, θ0, 0).

Hene V ≥ G.

Now, onsider general admissible strategies. Suppose �rst that R < 1. De�ne the proess

M = (Mt)t≥0 by

(5.4) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .

Applying the generalised It�'s formula [9, Setion 4.7℄ toMt and suppressing the argument (Xs−, Ys,Θs−, s)

in derivatives of G, leads to

Mt −M0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0

(Gθ − YsGx)dΘs

+
∑

0≤s≤t
[G(Xs, Ys,Θs, s)−G(Xs−, Ys−,Θs−, s)−Gx(△X)s −Gθ(△Θ)s](5.5)

+

ˆ t

0

ηYsGydBs

= N1
t +N2

t +N3
t +N4

t .

(Note that in the sum we allow for a portfolio rebalaning at s = 0.)
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Lemma 13 implies that LG ≤ 0 and MG = 0, whih leads to N1
t ≤ 0 and N2

t = 0. Using the

fat that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s eah non-zero jump in

N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Given the form of the andidate value funtion in (5.1), it is easy to see that ψ(φ) = G(x+yφ, y, θ−

φ, s) is onstant in φ, whih gives ψ(χ) = ψ(0) and yGx = Gθ whene (∆N3) = 0. Then, sine

R < 1, we have 0 ≤Mt ≤M0 +N4
t , and the loal martingale N4

t is bounded from below and hene

a supermartingale. Taking expetations we �nd E(Mt) ≤M0 = G(x0, y0, θ0, 0), whih gives

(5.6) G(x0, y0, θ0, 0) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds+ EG(Xt, Yt,Θt, t) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds,

where the last inequality follows sine G(Xt, Yt,Θt, t) ≥ 0 for R ∈ (0, 1). Letting t → ∞ in (5.6)

leads to

G(x0, y0, θ0, 0) ≥ E

ˆ ∞

0

e−βt
Ct

1−R

1−R
dt,

and taking a supremum over admissible strategies leads to G ≥ V .

The ase R > 1 is onsidered in the Appendix C.

�

5.2. Proof in the ill-posed ase of Theorem 4. Reall we are in the ase where R < 1 and

ǫ ≥ δ2R/2 + 1/(1−R).

It is su�ient to give an example of an admissible strategy when θ > 0 for whih the expeted

utility of onsumption is in�nite. Note that V (x, y, 0, t) = e−βtx1−RRRβ−R/(1 − R) so that the

value funtion is not ontinuous at θ = 0.

Consider a onsumption and sale strategy pair ((C̃)t≥0, (Θ̃)t≥0), given by

(5.7)

Θ̃t = Θ̃t(φ) = e−φtθ0, C̃t = C̃t(φ) = φYtΘ̃t = φy0θ0 exp
{
β(ǫ − δ2/2− φ/β)t+ δ

√
βBt

}
,

where φ is some positive onstant.

Note �rst that that suh strategies are admissible sine the orresponding wealth proess satis�es

dX̃t = −φYtΘ̃tdt+ YtdΘ̃t = 0, and hene (X̃t)t≥0 = x0 > 0. In partiular, onsumption is �naned

by the sale of the endowed asset only.

The expeted disounted utility from onsumption G̃ = G̃(φ) orresponding to the onsumption

and sale proesses (C̃, Θ̃) is given by

G̃ = E

[
ˆ ∞

0

e−βt
C̃1−R
t

1−R
dt

]

=
(φy0θ0)

1−R

1−R
E

[
ˆ ∞

0

exp

{
β

[
(1−R)

(
ǫ−

δ2

2
−
φ

β

)
− 1

]
t+ (1−R)δ

√
βBt

}
dt

]

=
(φy0θ0)

1−R

1−R

ˆ ∞

0

exp

{
β(1 −R)

[(
ǫ−

δ2R

2
−

1

1−R

)
−
φ

β

]
t

}
dt

Suppose �rst that ǫ > δ2R/2+1/(1−R). Then for λ ∈ (0, 1) and φ = λβ(ǫ− δ2R/2−1/(1−R))

we have (
ǫ−

δ2R

2
−

1

1−R

)
−
φ

β
= (1− λ)

(
ǫ−

δ2R

2
−

1

1−R

)
> 0,

and G̃ is in�nite.
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Now suppose that ǫ = δ2R/2 + 1/(1−R). Then

G̃(φ) =
(φy0θ0)

1−R

(1−R)

1

φ(1 −R)
= φ−R

(y0θ0)
1−R

(1−R)2

and G̃(φ) ↑ ∞ as φ ↓ 0.

5.3. The Veri�ation Lemma in the �rst non-degenerate ase with �nite ritial exerise

ratio. Suppose 0 < ǫ < δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R . From Proposition 1 we know 0 < q∗ < 1.

Reall the de�nition N(q) = n(q)−R(1−q)R−1
and thatW is inverse to N . We have h∗ = N(q∗).

Proposition 15. (1) For R < 1, N is inreasing on [0, q∗]. W is inreasing and 0 < W (v) <

q∗ on (1, h∗). For R > 1, N is dereasing on [0, q∗]. W is dereasing and 0 < W (v) < q∗

on (h∗, 1).

(2) Let w(v) = v(1 −R)W (v). Then w solves

(5.8)

δ2

2
w(v)w′(v) − v +

(
ǫ−

δ2

2

)
w(v) +

(
v −

w(v)

1−R

)1−1/R

= 0.

(3) For R < 1 and 1 < v < h∗, and for R > 1 and h∗ < v < 1 we have w′(v) < 1−Rw(v)/((1−

R)v) with w′(h∗) = 1−Rw(h∗)/((1−R)h∗).

The proof of Proposition 15 is given in the appendix.

Now de�ne h on [1, h∗) by dh
du = w(h) = (1 − R)hW (h) subjet to h(u∗) = h∗. Then h solves

(3.9) and w′(h)w(h) = d2h
du2 . Let g(z) = (Rβ )

Rh(ln z). Then g solves (3.10).

Lemma 16. Let m(q∗)−R, z∗ and g be as given in Equations (3.8) and (3.10) of Theorem 7. Then,

g (z), g′ (z), g′′ (z) are ontinuous at z = z∗.

Proof. We have

g(z∗+) =

(
R

β

)R
h∗(1 − q∗)1−R (1 + z∗)1−R =

(
R

β

)R
h∗ =

(
R

β

)R
h(u∗) = g(z∗−).

For the �rst derivative we have for z > z∗,

zg′(z) = (1 −R)

(
zg(z)

1 + z

)

and then sine

z∗

1+z∗ = q∗, z∗g′(z∗) = (1 − R)
(
R
β

)R
h∗q∗. Meanwhile, for z < z∗, and noting that

dh
du = h(1 −R)W (h) = w(h),

zg′(z) =

(
R

β

)R
h′(u) =

(
R

β

)R
w(h)

so that z∗g′(z∗−) =
(
R
β

)R
w(h∗) and the result follows from the substitution w(h∗) = (1 −

R)h∗W (h∗) = (1−R)h∗q∗.

Finally, for z > z∗

(5.9) z2g′′(z) = −R(1−R)

(
R

β

)R
m(q∗)−R(1 + z)1−R

(
z

1 + z

)2

= −R(1−R)g(z)

(
z

1 + z

)2

and (z∗)2g′′(z∗+) = −R(1−R)g(z∗)(q∗)2. For z < z∗,

(5.10) z2g′′(z) =

(
R

β

)R
(h′′ − h′) =

(
R

β

)R
(w′(h)− 1)w(h)

and at z∗, (z∗)2g′′(z∗−) = −R(1−R)
(
R
β

)R
h∗(q∗)2 where we use Proposition 15 (3). �
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Proposition 17. Suppose g (z) solves (3.10). Then for R < 1, g is an inreasing onave funtion

suh that g(0) = (Rβ )
R
. Otherwise, for R > 1, g is a dereasing onvex funtion suh that g(0) =

(R/β)R and g(z) ≥ 0. Further, for all values of R we have that 0 ≥ Rg′(z)2 + (1 − R)g(z)g′′(z)

with equality for z ≥ z∗.

Proof. Consider �rst R < 1. Sine the statements are immediate in the region z ≥ z∗, and sine

there is seond order smooth �t at z∗ the result will follow if h(−∞) = 1, h is inreasing and, using

(5.10), w(h)w′(h) − w(h) ≤ 0. The last two properties follow from Proposition 15 sine w(h) ≥ 0

and w′(h) < 1.

To evaluate h(−∞) note that

u∗ − u =

ˆ h∗

h(u)

df

(1−R)fW (f)
=

ˆ q∗

W (h(u))

N ′(q)

(1−R)N(q)q
dq =

ˆ q∗

W (h(u))

δ2

2 (1−R)

ℓ(q)− n(q)
dq.

We have that ℓ(q)− n(q) is bounded away from zero when q is bounded away from zero. Further,

near q = 0 we have ℓ(q) − n(q) ∼ Cq for some positive onstant C = ℓ′(0) − n′(0+). Hene

W (h(−∞)) = 0 and h(−∞) = 1, sine W (1) = 0.

For R > 1, and z ≥ z∗, the statement holds immediately. For z ≤ z∗, Proposition 15 implies

that h is dereasing and w(h) ≤ 0, w′(h) < 1. Together with (5.10), we have g is a dereasing

onvex funtion and g(z) ≥ 0 given that h ∈ [0, 1].

For the �nal statement of the proposition, for z ≥ z∗ the result follows immediately, whereas for

z < z∗

(1−R)gg′′z2 +R(zg′)2 =

(
R

β

)2R [
(1−R)hw(h)[w′(h)− 1] +Rw(h)2

]
≤ 0

where the �nal inequality follows from Proposition 15(3), noting that (1−R)w(h) ≥ 0.

�

De�ne the andidate value funtion via

(5.11) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
x > 0, θ > 0;

and extend to x ≤ 0 and θ = 0 using the formulae

G(x, y, θ, t) = e−βt
(x+ yθ)1−R

1−R
m(q∗)−R − θy < x ≤ 0, θ > 0;(5.12)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
x ≥ 0, θ = 0.(5.13)

Lemma 18. Fix y and t. Then G = G(x, θ) is onave in x and θ on [0,∞)× [0,∞). In partiular,

if ψ(χ) = G(x− χyφ, y, θ + χφ, t), then ψ is onave in χ.

Proof. Consider �rst R < 1. In order to show the onavity of the andidate value funtion it is

su�ient to show that G(x, 0) is onave in x, G(0, θ) is onave in θ and that the Hessian matrix

given by

HG =

(
Gxx Gxθ
Gxθ Gθθ

)
.

has a positive determinant, and that one of the diagonal entries is non-positive. The onditions on

G(x, 0) and G(0, θ) are trivial to verify.
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Diret omputation leads to

Gxx (x, y, θ, y) = e−βtx−R−1

[
−Rg (z) +

2R

1−R
zg′ (z) +

1

1−R
z2g′′ (z)

]
,

Gxθ (x, y, θ, t) = −e−βtx−R−1 y

1−R
[Rg′ (z) + zg′′ (z)] ,

Gθθ (x, y, θ, t) = e−βtx−R−1 y2

1−R
g′′ (z) ,

and the determinant of the Hessian matrix is

(5.14) GxxGθθ − (Gxθ)
2
= −e−2βtx−2Rθ−2 R

(1−R)2

[
(1−R)g (z) z2g′′ (z) +R (zg′ (z))

2
]

whih is non-negative by Proposition 17. Further, sine g is onave we have that Gθθ ≤ 0.

In order to show the onavity of ψ in χ, it is equivalent to examine the sign of

d2ψ
dχ2 . But

d2ψ

dχ2
= φ2

[
y2Gxx +Gθθ − 2yGxθ

]
= φ2(y, 1) det(HG)(y, 1)

T ≤ 0.

For R > 1 the argument is similar, exept that Gθθ ≤ 0 is now implied by the onvexity of g. �

Lemma 19. Consider the andidate value funtion onstruted in (5.11).

(a) For θ > 0 and 0 ≤ x ≤ yθ/z∗, MG = 0 and LG ≤ 0.

(b) For θ > 0 and x ≥ yθ/z∗, MG ≥ 0. For θ ≥ 0 and x ≥ yθ/z∗, LG = 0.

Proof. (a) For z ≥ z∗, MG = 0 is immediate from the de�nition of G. For 0 < x ≤ yθ/z∗ LG we

have that G(x, y, θ, t) =
(
R
β

)R
m(q∗)−Re−βt x

1−R

1−R (1 + z)
1−R

and then

LG = βG

[
m(q∗)− 1 + ǫ (1−R)

z

1 + z
−

1

2
δ2R (1−R)

z2

(1 + z)2

]
,

= βG

[
m(q∗)−m

(
z

1 + z

)]
.

The required inequality follows from Part (5) of Lemma 27 in Appendix A and the fat that

m(q)/(1 − R) is inreasing on (q∗, 1). At x = 0 using both (5.11) and (5.12) we have LG|x=0+ =

LG|x=0−βG[m(q∗)−m(1)] < 0.

(b) In order to prove LG = 0 for θ > 0 we alulate

LG(x, y, θ, t) = e−βt
x1−R

1−R

[
R

(
g −

zg′(z)

1 −R

)1−1/R

− βg + αzg′(z) +
η2

2
z2g′′(z)

]

= βe−βt
x1−R

1−R

[
h1−1/R

(
1−

w(h)

(1−R)h

)
− h+

(
ǫ−

δ2

2

)
w(h) +

δ2

2
w′(h)w(h)

]

and the result follows from Proposition 15. For θ = 0, LG = 0 is a simple alulation.

Now onsider MG. We have

(5.15) MG = e−βtx−Ry

[
(1 + z)

1−R
g′ (z)− g (z)

]
.

Hene for R < 1, it is su�ient to show that ψ(z) ≥ 0 on (0, z∗] where

ψ (z) =
1 + z

1−R
−
g (z)

g′ (z)
.
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By value mathing and smooth �t g(z∗) = m(q∗)−R (1 + z∗)1−R and z∗g′(z∗) = m(q∗)−R(1 −

R) (1 + z∗)−R. Hene ψ(z∗) = 0 and it is su�ient to show that ψ is dereasing. But

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)

g′ (z)2

=
R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)
2

≤ 0(5.16)

where the last inequality follows from Proposition 15. Similarly, for R > 1, provided that g is

dereasing by Proposition 17, it is su�ient to show that ψ is inreasing. But Proposition 15 gives

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)

g′ (z)2
=

R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)2
≥ 0.

�

Proposition 20. Let X∗
, Θ∗

and C∗
be as de�ned in Theorem 7. Then they orrespond to an

admissible wealth proess. Moreover Z∗
t = YtΘ

∗/X∗
t satis�es 0 ≤ Z∗

t ≤ z∗.

Proof. Note that if y0θ0/x0 > z∗ then the optimal strategy inludes a sale of the endowed asset

at time zero, and the e�et of the sale is to move to new state variables (X∗
0 , y0,Θ

∗
0, 0) with the

property that Z∗
0 = y0Θ

∗
0/X

∗
0 = z∗.

Reall the de�nitions of Λ̃ and Γ̃ and set Σ(z) = z(1 + z) and Σ̃(j) = Σ(z∗ − j).

Consider the equation

(5.17) Ĵt = Ĵ0 −

ˆ t

0

Λ̃
(
Ĵs

)
ds−

ˆ t

0

Γ̃
(
Ĵs

)
dBs + L̂t

with initial ondition Ĵ0 = (z∗ − z0)
+
. This equation is assoiated with a stohasti di�erential

equation with re�etion (Revuz and Yor [22, p385℄) and has a unique solution (J, L) for whih (J, L)

is adapted, J ≥ 0, L0 = 0 and L only inreases when J is zero.

Note that Λ̃(z∗) = Λ(0) = 0 = Γ(0) = Γ̃(z∗) and hene J is bounded above by z∗.

Reall that Θ∗
t = Θ∗

0 exp(−Lt/Σ̃(0)). Then Θ∗
t is adapted, ontinuous and hene progressively

measurable (Karatzas and Shreve [17, p5℄). Θ∗
t is also dereasing and dΘ∗

t = −Θ∗
tdLt/Σ̃(0) =

−Θ∗
tdLt/Σ̃(Jt) sine L only grows when J = 0.

Then let Z∗
t = z∗ − Jt, X

∗
t = Θ∗

tYt/Z
∗
t and C∗

t = X∗
t (g(Z

∗
t )−Z∗

t g
′(Z∗

t )/(1−R))−1/R
. Then X∗

and C∗
are positive and progressively measurable. It remains to show that X is the wealth proess

arising from the onsumption and sale strategy (C∗,Θ∗). But, from (5.17) and using, for example

Λ̃(Jt) = Λ(Z∗
t ),

dZ∗
t = Λ (Z∗

t ) dt+ Γ (Z∗
t ) dBt +Σ(Z∗

t )
dΘ∗

t

Θ∗
t

.

and then

dX∗
t =

Θ∗
tYt
Z∗
t

[
dΘ∗

t

Θ∗
t

+
dYt
Yt

−
dZ∗

t

Z∗
t

+

(
dZ∗

t

Z∗
t

)2

−
dYt
Yt

dZ∗
t

Z∗
t

]

= X∗
t

[(
η −

Γ(Z∗
t )

Z∗
t

)
dBt +

(
α−

Λ(Z∗
t )

Z∗
t

+
Γ(Z∗

t )
2

(Z∗
t )

2
− η

Γ(Z∗
t )

Z∗
t

)
dt

]
+

(
Yt
Z∗
t

−
Yt
Z∗
t

Σ(Z∗
t )

Z∗
t

)
dΘ∗

t

= −C∗
t dt− YtdΘ

∗
t

as required, where we use the de�nitions of Λ, Γ and Σ for the �nal equality. �

Proof of Theorem 7. First we show that there is a strategy suh that the andidate value funtion

is attained, and hene that V ≥ G.
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Observe �rst that if y0θ0/x0 > z∗ then

θ0 −Θ∗
0 = θ0

(
1−

z∗

1 + z∗
1 + z0
z0

)

and

X∗
0 = x0 + y0(θ0 −Θ∗

0) = x0
(1 + z0)

(1 + z∗)

Then, sine g(z∗)/g(z0) = (1 + z∗)1−R/(1 + z0)
1−R

for z0 > z∗,

G(X∗
0 , y0,Θ

∗
0, 0) =

(X∗
0 )

1−R

1−R
g(z∗) =

x1−R0

1−R
g(z0) = G(x0, y0, θ0, 0).

For a general admissible strategy de�ne the proess M = (Mt)t≥0 by

(5.18) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .

WriteM∗
for the orresponding proess under the proposed optimal strategy. ThenM∗

0 = G(X∗
0 , y0,Θ

∗
0, 0) =

G(x0, y0, θ0, 0) so there is no jump of M∗
at t = 0. Further, although the optimal strategy may

inlude the sale of a positive quantity of the risky asset at time zero, it follows from Proposition 20

that thereafter the proess Θ∗
is ontinuous and suh that Z∗

t = YtΘ
∗
t/X

∗
t ≤ z∗.

From the form of the andidate value funtion and the de�nition of g given in (3.10), we know

that G is C1,2,1,1
. Then applying It�'s formula to Mt, using the ontinuity of X∗

and Θ∗
for t > 0,

and writing G· as shorthand for G·(X∗
s , Ys,Θ

∗
s, s) we have

M∗
t −M0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ

(0,t]

(Gθ − YsGx) dΘ
∗
s(5.19)

+

ˆ t

0

ηYsGydBs

=: N1
t +N2

t +N3
t

Sine Z∗
t ≤ z∗, and sine C∗

t = e−βs/RG−1/R
x and LG = 0 for z ≤ z∗ we have N1

t = 0. Further,

dΘs 6= 0 if and only if Z∗
t = z∗ and then MG = 0, so that N2

t = 0.

To omplete the proof of the theorem we need the following lemma whih is proved in Appendix B.

Lemma 21. (1) N3
given by N3

t =
´ t

0 ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs is a martingale.

(2) limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0.

Returning to the proof of the theorem, and taking expetations on both sides of (5.19), we have

E [M∗
t ] =M0, whih leads to

G (x0, y0, θ0, 0) = E

(
ˆ t

0

e−βs
(C∗

s )
∗1−R

1−R
ds

)
+ E [G (X∗

t , y,Θ
∗
t , t)] .

Using the seond part of Lemma 21 and applying the monotone onvergene theorem, we have

G (x0, y0, θ0, 0) = E

(
ˆ ∞

0

e−βs
C∗1−R
s

1−R
ds

)

and hene V ≥ G.

Now we onsider general admissible strategies. Applying the generalised It�'s formula [9, Setion

4.7℄ toMt leads to the same expression as in (5.5). Lemma 19 implies that under general admissible
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strategies, N1
t ≤ 0, N2

t ≤ 0. Consider the jump term,

(5.20) N3
t =

∑

0≤s≤t
[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(∆X)s −Gθ(∆Θ)s]

Using the fat that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s eah non-zero

jump in N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

But, by Lemma 18, G(x + yχ, y, θ − χ, s) is onave in χ and hene (∆N3) ≤ 0.

For R < 1 the rest of the proof is exatly as in Theorem 14. The ase of R > 1 is overed in

Appendix C.

�

5.4. The Veri�ation Lemma in the seond non-degenerate ase with no �nite ritial

exerise ratio. Throughout this setion we suppose that ǫ ≥ δ2R and that if R < 1 then 0 < ǫ <
δ2

2 R+ 1
1−R . It follows that q

∗ = 1 and z∗ = ∞, and that n(1) = m(1) > 0.

Reall the de�nition of n in (3.6) and the subsequent de�nitions ofN byN(q) = n(q)−R(1−q)R−1

and W = N−1
. Suppose R < 1 and de�ne γ as in (3.19) by

γ(v) =
1

1−R
ln v +

R

1−R
lnm(1)−

1

1−R

ˆ ∞

v

1−W (s)

sW (s)
ds.

In the ase R > 1 de�ne γ via (3.20) so that

γ(v) = −
1

R− 1
ln v −

R

R− 1
lnm(1)−

1

R− 1

ˆ v

0

1−W (s)

sW (s)
ds.

For all R de�ne also γ̃ by

γ̃(v) =
ln v

1−R
− γ(v).

Let h be inverse to γ and set g(z) = (R/β)Rh(ln z).

Lemma 22. (1) Suppose R < 1. Then γ : (1,∞) 7→ (−∞,∞) is well de�ned, inreasing,

ontinuous and onto. Furthermore,

lim
v↑∞

γ̃(v) =
−R

1−R
lnm(1) and lim

v↑∞
(1−W (v))eγ(v) = 1.

Suppose R > 1. Then γ : (0, 1) 7→ (−∞,∞) is well de�ned, dereasing, ontinuous and

onto. Furthermore,

lim
v↓0

γ̃(v) =
R

R− 1
lnm(1) and lim

v↓0
(1−W (v))eγ(v) = 1.

(2) h solves h′ = (1−R)hW (h), and h(−∞) = 1.

Proof. Suppose R < 1, the proof for R > 1 being similar. First we want to show that

ˆ ∞ 1−W (s)

sW (s)
ds <∞, and

ˆ

1+

1−W (s)

sW (s)
ds = ∞,

whih, given lims↑∞W (s) = 1 and lims↓1W (s) = 0 is equivalent to

ˆ ∞ 1−W (s)

s
ds <∞;

ˆ

1+

1

W (s)
ds = ∞.

But (1 − q)N(q)1/(1−R) q↑1
−→ n(1)−R/(1−R)

and so (1 −W (s)) ∼ n(1)−R/(1−R)s−1/(1−R)
for large

s and the �rst integral is �nite. Conversely, sine N ′(0+) = κ for some κ ∈ (0,∞) we have
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W ′(1+) = κ−1
and W (s) ∼ (s − 1)κ−1

for s near 1. Sine 1/(s − 1) is not integrable near 1, the

seond integral explodes.

It follows that γ is onto; the fat that γ is inreasing follows on di�erentiation. Indeed γ′(v) =

1/((1−R)vW (v)) and hene h′ = (1− R)hW (h). Also h(−∞) := limu↓−∞ h(u) = 1.

The �rst limit result for γ̃ follows immediately from the de�nition. For the seond,

lim
v↑∞

eγ(v)(1−W (v)) = lim
v↑∞

e−γ̃(v)v1/(1−R)(1−W (v)) = lim
v↑∞

e−γ̃(v) lim
q↑1

N(q)1/(1−R)(1 − q)

= m(1)R/(1−R) lim
q↑1

n(q)−R/(1−R) = 1.

�

De�ne the andidate value funtion via

(5.21) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

and extend the de�nition to θ = 0 and −θy < x ≤ 0 by

G(x, y, θ, t) = e−βt
(x + yθ)1−R

1−R

(
R

β

)R
m(1)−R − θy < x ≤ 0, θ > 0;(5.22)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
x ≥ 0, θ = 0.(5.23)

Here ontinuity of G at x = 0 follows from the identity

(5.24) lim
z↑∞

zR−1g(z) = lim
u↑∞

e−(1−R)uh(u) = lim
v
e−(1−R)γ(v)v = lim

v
e−(1−R)γ̃(v) = m(1)−R.

Lemma 23. Fix y and t. Then G = G(x, θ) is onave in x and θ on [0,∞)× [0,∞). In partiular,

if ψ(χ) = G(x− χy, y, θ + χ, t), then ψ is onave in χ.

Proof. The proof follows similarly to the proof of Lemma 18, and makes use of the fat dh/du =

(1−R)hW (h) proved in Lemma 22. �

Lemma 24. Consider the andidate funtion onstruted in (5.21)�(5.23). Then for x > 0, θ > 0,

LG = 0, and MG ≥ 0. Further, MG = 0 at (x = 0, θ > 0) and LG = 0 at x = 0 and at θ = 0.

Proof. The majority of the lemma follows exatly as in Lemma 19.

For MG|x=0, note that Gθ|x=0 = yG(1 − R)/(x + yθ)|x=0 = (1 − R)G/θ. Then, yGx|x=0− =

yG(1−R)/(x+ yθ)|x=0− = (1−R)G/θ, whereas for x > 0,

yGx =
y(1−R)G

x
−
g′

g

y2θ

x2
G =

(1−R)G

θ

[
z −

z2g′(z)

(1−R)g(z)

]
,

and then for �xed (y, θ)

lim
x↓0

[
z −

z2g′(z)

(1−R)g(z)

]
= lim

u↑∞
eu

(
1−

h′(u)

(1−R)h(u)

)
= lim

v
eγ(v) (1−W (v)) = 1.

�

Proof of Theorem 10. For an admissible strategy (C,Θ) = (Ct,Θt)t≥0 de�ne the proessM(C,Θ) =

(Mt)t≥0 via

(5.25) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt, 0, t) .

where G is as given in (5.21)�(5.23).

Case 1: θ0 = 0 and x0 > 0: we show V = G. For these initial values the agent does not own

any units of asset for sale and onsumption an only be �naned from liquid (ash) wealth. Then
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(Θt)t≥0 = 0, dXt = −Ctdt and the problem is non-stohasti. The andidate optimal onsumption

funtion is C(x, y, 0) = βx/R and the assoiated onsumption proess is C∗
t = β

Rx0e
− β

R
t
with

resulting wealth proess X∗
t = x0e

− β
R
t
.

Then the value funtion is

E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0

e−βt
(
β

R

)1−R
(
e−

β
R
tx0

)1−R

1−R
dt

=

(
R

β

)R
x1−R0

1−R
= G(x0, y0, 0, 0),

where the last equality follows from (5.23). Hene, we have V ≥ G.

Now onsider general admissible strategies. LetM0
be given byM0

t =Mt(Ct, 0). Applying It�'s

formula to M0
, we get

M0
t −M0

0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0

ηYsGydBs

= N1
t +N3

t .

Lemma 24 implies that LG = 0 and hene N1
t = 0.

Suppose R < 1. Then we have 0 ≤ M0
t ≤ M0

0 + N3
t , and the loal martingale N3

t is now

bounded from below and hene a supermartingale. Taking expetations we onlude E(M0
t ) ≤

M0
0 = G(x0, y0, 0, 0), and hene

(5.26) G(x0, y0, 0, 0) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds+ EG(Xt, Yt, 0, t) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds,

Letting t→ ∞, (5.26) we onlude

G(x0, y0, 0, 0) ≥ E

ˆ ∞

0

e−βt
Ct

1−R

1−R
dt.

and taking a supremum over admissible strategies we have G ≥ V , and hene G = V .

For R > 1, a modi�ation of the proof of Theorem 14 applies here also and G = V .

Case 2: x0 = 0 and θ0 > 0: we show V ≥ G. Under the andidate optimal strategy de�ned

in Theorem 10 the onsumption and sale proesses evolve aording to Ctdt = −YtdΘt, meaning

that the investor �nanes onsumption only from the sales of the endowed asset and wealth stays

onstant and identially zero. In this ase, the proposed strategies in (3.24) beome

Θ∗
t = θ0e

− β
R
φt, C∗

t =
β

R
φYtΘ

∗
t =

β

R
φy0θ0 exp

{
β(ǫ − δ2/2− φ/R)t+ δ

√
βBt

}
.

where temporarily we write φ = m(1) = δ2R(1−R)/2− ǫ(1−R) + 1 > 0.
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The orresponding value funtion is

G∗ = E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]

=

(
β

R

)1−R
(φy0θ0)

1−R

1−R
E

[
ˆ ∞

0

e−βte(1−R)β(ǫ− δ2

2 − φ
R
)t+δ

√
β(1−R)Btdt

]

=

(
β

R

)1−R
(φy0θ0)

1−R

1−R

ˆ ∞

0

e{(ǫ(1−R)− δ2

2 R(1−R)−1)− (1−R)
R

φ}βtdt

=

(
R

β

)1−R
(φy0θ0)

1−R

1−R

ˆ ∞

0

e−(βφ/R)tdt =

(
R

β

)R
(y0θ0)

1−R

1−R
φ−R = G(0, y0, θ0, 0).

Then, under the andidate optimal strategy,

G(0, y0, θ0, 0) = E

[
ˆ ∞

0

e−βt
(C∗

t )
1−R

1−R
dt

]
,

and we have G(0, y0, θ0, 0) ≤ V (0, y0, θ0, 0).

Case 3: x0 > 0 and θ0 > 0: we show V ≥ G. Let M∗ = M(C∗,Θ∗) for the andidate optimal

strategies in Theorem 10.

From the form of the andidate value funtion we know that G is C1,2,1,1
. Then applying It�'s

formula to M∗
, we have

M∗
t −M∗

0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ

(0,t]

(Gθ − YsGx) dΘs(5.27)

+

ˆ t

0

ηYsGydBs

=: N1
t +N2

t +N3
t .

Sine C∗
s = G

−1/R
x eβs/R is optimal and, by Lemma 24, LG = 0, we have N1

t = 0. Further, under

the proposed strategies in (3.24), dΘt 6= 0 if and only if Xt = 0. Then, by Lemma 24, MG|x=0 = 0

and N2
t = 0.

The following Lemma is proved in the appendix.

Lemma 25. (1) N3
given by N3

t =
´ t

0 ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs is a martingale.

(2) limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0

The onlusion that V ≥ G now follows exatly as in the proof of Theorem 7 but using Lemma 25

in plae of Lemma 21.

Case 4: x0 ≥ 0 and θ0 > 0: V ≤ G. To omplete the proof of the theorem, it remains to show

for θ0 > 0 and general admissible strategies, we have V (x0, y0, θ0, 0) ≤ G(x0, y0, θ0, 0). Reall the

de�nition of M in (5.25).

Applying the generalised It�'s formula [9, Setion 4.7℄ to Mt leads to the expression in (5.5) and

Mt −M0 = N1
t +N2

t +N3
t +N4

t .

Lemma 24 implies that under general admissible strategies, N1
t ≤ 0, and N2

t ≤ 0 with equality at

x = 0. Consider the jump term,

(5.28) N3
t =

∑

0≤s≤t
[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(∆X)s −Gθ(∆Θ)s]
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Using the fat that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s eah non-zero

jump in N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Note that by Lemma 23, G(x+ yχ, y, θ − χ, s) is onave in χ and hene (∆N3) ≤ 0.

For the ase R < 1 the remainder of the proof follows as in the proof of Theorem 14. The ase

R > 1 for general admissible strategies is overed in Appendix C.

�

6. Comparative statis

In this setion, we provide omparative statis desribing how the outputs of the model depend

on market parameters. This setion onsists of �ve parts, analysis of the optimal threshold z∗, the

value funtion g, the optimal onsumption C(x, y, θ), the utility indi�erene prie p(x, y, θ), and

the ost of illiquidity p∗(x, y, θ), and are based on our numerial results. The ost of illiquidity,

de�ned in (6.3) below represents the loss in ash terms faed by our agent when ompared with an

otherwise idential agent with the same initial portfolio who is able to adjust her portfolio of the

risky asset in either diretion at zero ost.

The equations desribing the funtion n and the �rst rossing of m are simple to implement in

MATLAB, and then it also proved straightforward to alulate h or γ and thene the value funtion

in the non-degenerate ases. Figures 6.1 and 6.2 are generi plots of the various funtions used in

the onstrution of the value funtion. The parameter values are suh that we are in the seond

non-degenerate ase (ǫ ≥ δ2R and ǫ < δ2R
2 + 1

1−R if R < 1), but the �gures would be similar for

the �rst non-degenerate ase (0 < ǫ < δ2R and ǫ < δ2R
2 + 1

1−R if R < 1). The two �gures over the

ases R < 1 and R > 1 respetively. For R < 1, as plotted in Figure 6.1, m and n are monotone

dereasing and W is inreasing on [1,∞) with limv→1W (v) = 0 and limv→∞W (v) = 1. Further,

we have γ(v) is inreasing on [1,∞) and g is onave and inreasing. For R > 1, as plotted in

Figure 6.2, m and n are monotone inreasing and W is dereasing on (0, 1] with limv→0W (v) = 1

and limv→1W (v) = 0. Finally, we have γ(v) is dereasing on (0, 1] and g is onvex dereasing and

onvergent to zero as z tends to in�nity.

Figures 6.3 and 6.4 show that z∗ inreases as mean return ǫ inreases and dereases as volatility

δ inreases or risk aversion R inreases. As ǫ inreases, the non-traded asset Y beomes more

valuable and it is optimal for the investor to wait longer to sell Y for a higher return. For ǫ = 0,

when the endowed asset has zero return but with additional risk, the optimal strategy is to sell

immediately to remove the risk. Similarly, as δ inreases, the level of z∗ dereases as holding Y

involves additional risk. Hene, it is optimal for the investor to sell units of Y sooner in order to

mitigate this risk. As the risk aversion of the investor inreases, she is less tolerant to the risk of

the endowed asset and hene more inlined to sell Y earlier. As R → 0, (provided ǫ > 0) we have

z∗ → ∞, whih implies the optimal strategy is never to sell the asset. In the limit the investor is not

onerned about the risk of holding the risky asset. Conversely, as R→ ∞, we have z∗ → 0. In this

ase, the investor annot tolerate any risks and it is therefore optimal to sell the asset immediately

to arrive at a safe position.

The value funtion as expressed via g in non-degenerate ases is plotted in Figures 6.5 and 6.6

under di�erent drifts and risk aversions. These �gures show that g is inreasing in drift while g

has no monotoniity in risk aversion. (A similar plot shows that g is dereasing in volatility.) As

the non-traded asset beomes more valuable, the investor an hoose optimal sale and onsumption

strategies whih lead to a larger value funtion. (Further, as the asset beomes more risky, the

additional risk makes the value funtion smaller.) Meanwhile, as ǫ inreases, z∗ in Figure 6.5 is
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Figure 6.1. Transformations from m,n, ℓ toW (v) to γ(v) to h(u) and g(z) in the

seond non-degenerate senario in the ase R < 1. Parameters are ǫ = 1 δ = 1,
β = 0.1 and R = 0.5. For these parameters m is monotoni dereasing.
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Figure 6.2. Transformations from m,n, ℓ toW (v) to γ(v) to h(u) and g(z) in the

seond non-degenerate senario in the ase R > 1. Parameters are ǫ = 3 δ = 1,
β = 0.1 and R = 2.

dereasing (and as δ inreases, z∗ is inreasing). These results are onsistent with the results in

desribed in the previous paragraph. At z = z∗, smooth �t onditions are satis�ed. Observe

also that for di�erent values of drift, we nonetheless have that g starts at the same point. This

orresponds to the value funtion when θ0 = 0 whereby onsumption is only �naned by initial

wealth and the problem is deterministi. In this ase, we have g(0) = (R/β)R.

Optimal onsumption C(x, y, θ) is onsidered in Figures 6.7�6.9. Figure 6.7 plots the optimal

onsumption C(1, 1, θ) as a funtion of endowed units θ and shows that the optimal onsumption
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Figure 6.4. z∗ dereases as R inreases or as ǫ dereases. Here δ = 3 and β = 0.1.

inreases in θ: as the size of the holdings of the non-traded asset Y inreases, the agent feels riher

and hene onsumes at a faster rate. For θ = 0, the optimal onsumption C(x, y, 0) = xg(0)−
1
R =

β
Rx is stritly positive and is �naned from ash wealth. Figure 6.7 also suggests that the optimal

onsumption C(1, 1, θ) dereases in risk aversion. Given the set of parameters the ritial risk

aversion (i.e. the boundary between the two non-degenerate ases) is at R = ǫ/δ2 = 0.75. For the

bottom two lines in Figure 6.7 with R > 0.75, we have ǫ < δ2R and this falls into the �rst non-

degenerate ase with �nite z∗. For R ≤ 0.75, we have ǫ ≥ δ2R, whih is the seond non-degenerate

ase with in�nite z∗. As we see, there is no disontinuity in onsumption with respet to risk
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Figure 6.5. g(z) with di�erent ǫ in the �rst and seond non-degenerate senarios.

Dotted line: z ≥ z∗, solid line: z ≤ z∗ and dots represent z∗. ǫ varies from top

to bottom as 2, 1.5, 1, 0.5, with �xed parameters δ = 2, β = 0.1 and R = 0.5.
The top line is the value funtion g in the seond non-degenerate senario given

ǫ = δ2R = 2 and z∗ is in�nite.
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Figure 6.6. g(z) with di�erent risk aversion R in the �rst and seond non-

degenerate senarios. In the left graph, R takes values in 0.7, 0.8 and 0.9. The

rest of the parameters are ǫ = 3, δ = 2, β = 0.1. The ritial risk aversion is

R = ǫ/δ2 = 0.75. The dots represent �nite z∗ and the solid line is the value fun-

tion g in the seond non-degenerate senario with in�nite z∗. In the right graph,

R takes values in 1.3, 1.4 and 1.5 and the rest of the parameters are ǫ = 6, δ = 2
and β = 0.1.

aversion at either R = 0.75 or R = 1. The optimal onsumptions for di�erent risk aversions di�er

primarily in the levels, and the dominant fator is the optimal onsumption for θ = 0. As argued

above C(x, y, 0) = βx/R is dereasing in R.
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Figure 6.7. Optimal onsumption C(1, 1, θ) as R varies. R takes values in 0.6,

0.75, 0.9, 1.05 with parameters ǫ = 3, δ = 2, β = 0.1 and θ ∈ [0, 1]. The ritial risk
aversion is R = ǫ/δ2 = 0.75. The top two lines orrespond to the optimal onsump-

tion in the seond non-degenerate senario where z∗ is in�nite under the ondition
that ǫ ≥ δ2R. The bottom two lines orrespond to the �rst non-degenerate ase

with �nite z∗.

Figure 6.8 plots both onsumption as a funtion of wealth C(x, 1, 1) and the ratio of onsumption

to wealth C(x, 1, 1)/x as a funtion of x with di�erent risk aversions. Note that this an only be

shown for x > yθ/z∗ = 1/z∗ sine if x < 1/z∗ the agent makes an immediate sale of units of

risky asset. The ritial value of the risk aversion is R = ǫ/δ2 = 0.75. For R > 0.75, we have

z∗ < ∞ and x∗ = 1/z∗ > 0 while for R ≤ 0.75, z∗ = ∞ and x∗ = 1/z∗ = 0. The results show

that the optimal rate of onsumption is an inreasing funtion of wealth but that onsumption per

unit wealth is a dereasing funtion of wealth. (In the standard Merton problem, onsumption

is proportional to wealth.) As the agent beomes riher, she onsumes more, but the fration of

wealth that she onsumes beomes smaller. The explanation is that her endowed wealth is being

held onstant. By saling we have that if both x and θ are inreased by the same fator, then

onsumption would also rise by the same fator, but here x is inreasing, but θ (and y) are held

onstant, and hene onsumption inreases more slowly than wealth. In the limit x → ∞ we have

limx→∞ C(x, 1, 1) = ∞ and limx→∞ C(x, y, θ)/x = g(0)−
1
R = β/R.

Figure 6.9 plots the optimal onsumption C(1, 1, θ) as a funtion of θ and ǫ. Here we �nd a �rst

surprising result: we might expet the optimal onsumption C(x, y, θ) to be inreasing in the drift,

but this is not the ase for large θ. For an explanation of this phenomena, reall that the optimal

exerise ratio z∗ is inreasing in the drift. As the drift inreases, the asset has a more promising

return on average whih makes the agent feel riher and onsume at a higher rate. However, a larger

drift also implies a larger z∗, indiating that the agent should postpone the sale of the risky asset.

Hene, a larger drift involves more risk, and in order to mitigate this risk, the agent onsumes less in

the short term. Hene, the optimal onsumption dereases in the drift for large θ. We �nd similar

results if we onsider C(1, 1, θ) as a funtion of δ. Optimal onsumption is not neessarily dereasing

in volatility and onsumption an be inreasing in volatility for large values of θ. Analogously, if we

plot C(x, 1, 1) we �nd that onsumption is a dereasing (inreasing) funtion of return ǫ if wealth

x is small (large).
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Figure 6.8. Optimal onsumption C(x, 1, 1) and C(x, 1, 1)/x as R varies. R takes

values in 0.6, 0.75, 0.9 and 1.05 with parameters ǫ = 3, δ = 2, y0 = 1 and θ0 = 1.
The dots represent x∗ = 1/z∗ and the ritial risk aversion is R = ǫ/δ2 = 0.75.
In both graphs, the top two lines orrespond to the optimal onsumptions in the

seond non-degenerate ase with x∗ = 0. The bottom two lines are the optimal

onsumptions in the �rst non-degenerate ase with �nite z∗, or equivalently, x∗ > 0.
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Figure 6.9. Optimal onsumption C(1, 1, θ) as ǫ varies. ǫ takes values in 0.5, 1,

1.5 and 2 with parameters δ = 2, β = 0.1, R = 0.5, x0 = 1 and y0 = 1. The ritial
mean return is ǫ = δ2R = 2. When ǫ = 2 we are in the seond non-degenerate

ase.

Figures 6.10�6.13 plot the utility indi�erene prie or ertainty equivalene value p(x, y, θ).

Reall that in the seond and third ases of Theorem 4 the ertainty equivalent value of the non-

traded asset is given by

p(x, y, θ) = x



g
(
yθ
x

)

g(0)




1
1−R

− x
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Figure 6.10. Indi�erene prie p(x, 1, 1) as ǫ varies. ǫ varies from top to bottom

as 2.5, 2.1, 1.5, 1 with �xed parameters δ = 2, β = 0.1, R = 0.5, θ0 = 1 and y0 = 1.
The dots represent x∗ = 1/z∗ and the ritial mean return is ǫ = δ2R = 2.

Figures 6.10 and 6.11 onsider the indi�erene prie as a funtion of wealth. Dots in �gures represent

the optimal exerise ratio z∗ = yθ/x. In eah of the �gures we hoose a range of parameter values

suh that sometimes we are in the �rst non-degenerate ase, and sometimes in the seond non-

degenerate ase. In Figure 6.10, for ǫ < 2, we have z∗ < ∞ and x∗ = 1/z∗ > 0, and for ǫ ≥ 2,

we have z∗ = ∞ and x∗ = 0. We an see p(x, 1, 1) is onave and inreasing in x. It follows from

Theorem 7 that g(z) = (R/β)Rm(q∗)−R(1 + z)1−R for z ≥ z∗. Further, under the ondition that

0 < ǫ < δ2R and ǫ < δ2

2 R+ 1
1−R , whih ensures a �nite exerise ratio,

lim
x→0

p(x, y, θ) = lim
x→0

x







g
(
yθ
x

)

g(0)




1
1−R

− 1





= lim
x→0

{
m(q∗)

R
R−1 (x+ yθ)− x

}
= m(q∗)

R
R−1 yθ > yθ.

In that ase, for x = 0, where no initial wealth is available to �nane onsumption, it is optimal for

the investor to sell some units of the endowed asset Y immediately so as to keep the ratio of the

wealth invested in the endowed asset to liquid wealth below z∗, i.e. from the initial portfolio (x = 0,

θ = Θ0−) the agent moves to (x = X0+, θ = Θ0+), where Θ0+ = z∗

1+z∗Θ0− and X0+ = 1
1+z∗ yΘ0−.

The monotoniity of p(x, 1, 1) in ǫ and δ is also illustrated in Figures 6.10 and 6.11: a higher mean

return adds value to the asset, while the inreasing volatility makes Y more risky and redues value.

Also observe that for the drift larger than the ritial value, the hange in drift does not move the

dot (representing the ritial ratio) while for the drift smaller than the ritial value, the dot moves

rightwards as drift inreases. To the left of the dot, the agent should sell the endowed asset initially,

while to the right of the dot, the agent should wait. As drift inreases, the agent should wait longer

for a higher return when selling the asset.

Figure 6.12 onsiders the indi�erene prie p(1, 1, θ) and unit indi�erene prie p(1, 1, θ)/θ as a

funtion of θ. We see that p(1, 1, θ) is inreasing in θ and for θ = 0, p(1, 1, 0) = 0, re�eting the fat

that a null holding is worth nothing. We also have the unit prie p(1, 1, θ)/θ is dereasing in the

units of asset θ. For small holdings, the marginal prie limθ→0 p(1, 1, θ)/θ is in�nite. As θ → ∞,

the �gures imply that the unit prie p(1, 1, θ)/θ tends to some onstant larger than the unit prie
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Figure 6.11. Indi�erene prie p(x, 1, 1). δ varies from top to bottom as 2.1, 2.4,

2.8 and 3.2 with �xed parameters ǫ = 3, β = 0.1, R = 0.5, θ0 = 1 and y0 = 1.
The dots represent x∗ = 1/z∗ and the ritial volatility is δ =

√
ǫ/R = 2.45. The

top two lines orrespond to the indi�erene pries in the seond non-degenerate

ase with x∗ = 0. The bottom two lines are indi�erene pries in the �rst non-

degenerate ase with x∗ > 0.

y of Y :

lim
θ→∞

p(x, y, θ)

θ
= lim

θ→∞

x

[
g( yθ

x )
g(0)

] 1
1−R

− x

θ
= lim
θ→∞

m(q∗)
R

R−1 (x+ yθ)− x

θ
= m(q∗)

R
R−1 y > y,

where the seond equality follows sine for z ≥ z∗, we have g(z) = (R/β)Rm(q∗)−R(1 + z)1−R.

Figure 6.12 also illustrates the monotoniity of p in the drift parameter ǫ and we have p(1, 1, θ)

and p(1, 1, θ)/θ both inrease in the drift. Similarly, it an be shown that p(1, 1, θ) and p(1, 1, θ)/θ

are both dereasing in δ, re�eting the inreased riskiness of positions as volatility inreases.

Figure 6.13 plots the indi�erene prie as a funtion of ash wealth for di�erent risk aversions.

Naively we might expet the prie to be monotone dereasing in risk aversion - a more risk averse

agent will assign a lower value to a risky asset. However, the results show that this not the ase, and

for large wealths the utility indi�erene prie is inreasing in R. (If we �x wealth x and onsider

the ertainty equivalent value as a funtion of quantity θ then we �nd a similar reversal, and the

ertainty equivalent value is inreasing in R for small θ.)

An explanation of this phenomena is as follows. Consider an agent with positive ash wealth

and zero endowment of the risky asset. This agent onsumes at rate βx/R; in partiular, as the

parameter R inreases, the agent onsumes more slowly. The introdution of a small endowment

will not hange this result, and in general, an inrease in the parameter R postpones the time at

whih the ritial ratio reahes z∗. (Although z∗ depends on R also, this is a seondary e�et.)

Sine the endowed asset is appreiating, on average, by the time the agent hooses to start selling

the asset, it will be worth more. The total e�et is to make the indi�erene prie inreasing in R.

Similarly, the indi�erene prie p(1, 1, θ) and the unit indi�erene prie p(1, 1, θ)/θ as funtions of

θ are not neessarily monotone in risk aversion.
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Figure 6.12. Indi�erene prie p(1, 1, θ) and unit prie p(1, 1, θ)/θ. ǫ varies from
top to bottom as 2, 1.5, 1, 0.5 with �xed parameters δ = 2, β = 0.1, R = 0.5,
x0 = 1 and y0 = 1. The dots represent θ∗ = z∗ and the ritial mean return is

ǫ = δ2R = 2. The top line orresponds to the indi�erene prie in the seond

non-degenerate ase with in�nite z∗.
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Figure 6.13. Indi�erene prie p(x, 1, 1). R takes values in 0.5, 0.75, 0.9 and

1.2 with �xed parameters ǫ = 3, δ = 2, β = 0.1, y0 = 1 and θ0 = 1. The dots

represent x∗ = 1/z∗ and the ritial risk aversion is R = ǫ/δ2 = 0.75. The top

two lines for x ∈ [0, 1] orrespond to the indi�erene pries in the seond non-

degenerate ase with x∗ = 0. The bottom two lines are indi�erene pries in the

�rst non-degenerate ase with x∗ > 0.

Finally, we onsider the impat of the illiquidity assumption. We do this by onsidering the

value funtion of our agent who annot buy the endowed asset and omparing it with the value

funtion of an otherwise idential agent, but who an both buy and sell the endowed asset with

zero transation osts. Suppose parameters are suh that we are in the seond ase of Theorem 4.
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In the illiquid market, where Y is only allowed for sale, Theorem 7 proves the value funtion is

(6.1) VI(x, y, θ, 0) =
x1−R

1−R
g

(
yθ

x

)
= sup

(C,Θ)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
,

where the newly introdued subsript I stands for the value funtion in the illiquid market, in whih

the asset an only be sold.

In a liquid market suh that Y an be dynamially traded, wealth evolves as dXt = −Ctdt +

ΠtdYt/Yt. Here (Π)t≥0 represents the portfolio proess. We suppose the agent is endowed with Θ0

units of Y initially and is onstrained to keep X positive. This is Merton's model and we know the

optimal strategy is to keep a onstant fration of wealth in the risky asset. The initial endowment

therefore only hanges initial wealth and the value funtion is

(6.2) VL(x, y, θ, 0) = sup
(C,Π)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
=

(x+ yθ)1−R

1− R

[
β

R
−
α2(1−R)

2σ2R2

]−R
,

where the subsript L stands for the value funtion in the liquid market.

Now we onsider the ost of illiquidity.

De�nition 26. The ost of illiquidity, denoted p∗ = p∗(x, y, θ) is the solution to

(6.3) VL(x− p∗, y, θ, t) = VI(x, y, θ, t).

and represents the amount of ash wealth the agent who an only sell the risky asset would be

prepared to forgo, in order to be able to trade the risky asset with zero transation osts.

Equating (6.1) and (6.2), we an solve for p∗ to obtain

(6.4) p∗(x, y, θ) = x

[
1 +

yθ

x
− g

(
yθ

x

) 1
1−R

(
β

R
−
α2(1−R)

2σ2R2

) R
1−R

]
.

Consider (6.4) when θ = 0, where the investor is not endowed any units of Y initially, we have

p∗(x, y, 0) = x

[
1−

(
β

R
−
α2(1−R)

2σ2R2

) R
1−R

g(0)
1

1−R

]
= x

[
1−

(
1−

ǫ2(1 −R)

2δ2R

) R
1−R

]
> 0.

Suppose R < 1, 0 < ǫ < δ2

2 R+ 1
1−R and ǫ < δ2R, so that z∗ is �nite. Figure 6.14 plots p∗(1, 1, θ)

for θ ∈ [0, 10]. Notie that p∗ dereases initially, has a stritly positive minimum near 0.95 and

then inreases, before beoming linear beyond θ = z∗. Clearly, whatever the initial endowment of

the agent, she has a smaller set of admissible strategies than an agent who an trade dynamially,

and the ost of liquidity is stritly positive. For small initial endowments the agent would like to

inrease the size of her portfolio of the risky asset, and the smaller her initial endowment the more

she would like to purhase at time zero. Hene the ost of illiquidity is dereasing in θ for small

θ. However, for large θ, the agent would like to make an initial transation (to redue the ratio

of wealth held in the risky asset to ash wealth to below z∗), and indeed sine she is free to do

so, her optimal strategy involves suh a transation at time zero. Hene for large wealth the ost

of liquidity is proportional to (x + yθ), and hene is inreasing in θ. For this reason, the ost of

illiquidity is a U-shaped funtion of θ.

Appendix A. Properties of n

Reall the de�nitions of m and ℓ and the di�erential equation (3.6) for n, and also the de�nitions

of qℓ, qm, qn and q∗. De�ne q̃ = inf{q > 0 : (1−R)n(q) ≥ (1−R)ℓ(q)} ∧ 1. Note that m (0) = 1 =

ℓ (0) and m (1) = 1− ǫ(1−R) + δ2R (1−R) /2 = ℓ (1). The onave funtion ℓ is positive on (0, 1)

if ℓ(1) = 1− ǫ(1−R) + δ2R (1−R) /2 ≥ 0.
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Figure 6.14. Cost of illiquidity p∗(1, 1, θ) as θ varies. Parameters are ǫ = 1, δ = 2
and R = 0.5. Here, we �x x0 = y0 = 1 and θ ∈ [0, 1]. For the orresponding Merton

problem with dynami trading in Y we have that it is optimal to invest a onstant

fration zM = ǫ
δ2R−ǫ in the risky asset. Reall Remark 9 and observe that zM ≤ z∗.

Lemma 27. (1) De�ne Φ via

Φ(χ) = χ2 − (1 −R)

(
δ2

2
− ǫ+

1

R

)
χ− ǫ

(1−R)2

R
.

Then for R ∈ (0, 1), n′(0) is the smaller root of Φ(χ) = 0 and for R ∈ (1,∞), n′(0) is the

larger root.

(2) For q ∈ (0, qn ∧ q̃), n′(q) > 0 if and only if n(q) < m(q), similarly n′(q) = 0 if and only if

n(q) = m(q).

(3) If ℓ(1) ≥ 0 then q̃ = qn = qℓ = 1.

(4) If ℓ(1) < 0 then q̃ = qn = qℓ < q∗.

(5) If 0 ≤ q∗ < 1 then q∗ > ǫ/δ2R and (1−R)m is inreasing on (q∗, 1).

Proof. (1) From the expression (3.6) and l'H�pital's rule, n′(0) = χ solves

χ =
1−R

R
−
δ2

2

(1−R)2

R

1

(1−R)( δ
2

2 − ǫ)− χ
,

or equivalently Φ(χ) = 0. Further ℓ′(0) = (1 −R)
(
δ2

2 − ǫ
)
and

Φ

(
(1−R)

(
δ2

2
− ǫ

))
= −

δ2

2

(1−R)2

R
< 0.

For R < 1, we have n′(0) < ℓ′(0) by hypothesis, so that n′(0) is the smaller root of Φ. For R > 1,

we have n′(0) > ℓ′(0) by hypothesis and n′(0) is the larger root of Φ.

(2) This follows immediately from the expression for n′(q).

(3) Suppose R < 1. Sine n′(0) < ℓ′(0) we have q̃ > 0. Notie that if 0 < n(q) < ℓ(q) and

ℓ(q) − n(q) is su�iently small, then n′(q) < ℓ′(q). Hene q̃ ≥ qn. Further, if n (q) < ℓ (q) − φ for

some φ > 0 on some interval

[
q, q

]
⊂ (0, 1), then n′ (q) /n (q) is bounded below by a onstant on

that interval and provided n
(
q
)
> 0 it follows that n (q) > 0 also. Hene, if ℓ is positive on [0, 1)
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then so is n and qn = 1. For R > 1, we have n′(0) > ℓ′(0) and the result follows via a similar

argument.

(4) Suppose R < 1. The same argument as above gives that q̃ = qn = qℓ and now these quantities

are less than one. Clearly qm < qℓ, and m is dereasing on (0, qm). We annot have q∗ ≤ qm for

then n′(q∗) − m′(q∗) > 0 and n(q∗) − m(q∗) = 0 ontraditing the minimality of q∗, nor an we

have qm < q∗ ≤ qℓ for on this region m < 0 ≤ n.

(5) We an only have q∗ < 1 if m(1) > 0 and (1 − R)m′(1) > 0. For R < 1 we must have

n′(q∗) = 0 < m′(q∗). But m has a minimum at ǫ/δ2R, so q∗ > ǫ/δ2R. For R > 1, we must have

n′(q∗) = 0 > m′(q∗). But m has a maximum at ǫ/δ2R, so q∗ > ǫ/δ2R.

�

Proof of Proposition 1. (1) Note that Φ(m′(0)) = (1 − R)2δ2ǫ/2. Then, if ǫ < 0 we have n′(0) <

m′(0) for R < 1 and q∗ = 0. Otherwise, for R > 1, we have n′(0) > m′(0) and q∗ = 0. If ǫ = 0 then

n′(0) = m′(0) and more are is needed.

Consider R < 1. Sine ǫ ≤ 0, m is inreasing. Suppose n (q̂) > m (q̂) for some q̂ in [0, 1] . Let

q = sup {q < q̂ : n (q) = m (q)}. Then on

(
q, q̂

)
we have n′ (q) < 0 < m′ (q) and m (q̂) − n (q̂) =

m
(
q
)
− n

(
q
)
+
´ q̂

q
[m′ (y)− n′ (y)]dy > 0, a ontradition.

For R > 1, the only di�erene is that m is dereasing given ǫ ≤ 0 and n′(0) > m′(0).

(2) Consider �rst R < 1 and suppose that 0 < ǫ < min{δ2R, δ
2

2 R + 1
1−R}. Then m′ (1) > 0

and m(1) > 0. Sine ǫ > 0 we have n′ (0) > m′ (0) and n −m is positive at least initially. Write

n (q) = m (q) + δ2 (1−R) qb (q) /2. Then n (q) ≤ ℓ (q) implies b (q) ≤ 1− q.

Suppose b (q) > 0 for all q ∈ (0, 1). Then n (q) ≥ m (q) and n′ (q) < 0 so that n (q) ≥ n (1) =

m (1) and

m (1) = m (q)− (1− q) (1−R)
(
ǫ− δ2R

)
− (1− q)

2
δ2R (1−R) /2

> m (q) + φ (1− q) δ2 (1−R) q/2,

for q > ǫ/δ2R and φ < (δ2R− ǫ)min{ 2
δ2 ,

R
ǫ }. For suh q, b (q) > φ (1− q). Hene

n′ (q)

n (q)
= −

1−R

R

b (q)

(1− q) (1− q − b (q))
≤ −

1−R

R

φ

(1− q) (1− φ)

and we must have n′ (1−) = −∞ ontraditing the fat that n (q) ≤ ℓ (q). It follows that we must

have b (q) = 0 for some q ∈ (0, 1). At this point n rossesm. Note that this rossing point is unique:

at any rossing point m′ (q) > 0 = n′ (q), so that all rossings of 0 in (0, 1) by n−m are from above

to below.

For R > 1, we have m′(1) < 0 and m(1) > 0. Sine ǫ > 0, we have n′(0) < m′(0) and n −m

is negative initially. Let n(q) = m(q) + δ2(1 − R)qb(q)/2. Then n(q) ≥ ℓ(q) implies b(q) ≤ 1 − q.

Suppose b(q) > 0 for all q ∈ (0, 1), then it leads to the same ontradition for R < 1. It follows that

b(q) = 0 for some q ∈ (0, 1), where n rosses m. At any rossing point m′(q) < 0 = n′(q), so that n

rosses m from below.

(3) ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R + 1
1−R .

Consider �rst R < 1. Sine ǫ > 0 we have that n′ (0) > m′ (0) and n > m in a neighbourhood to

the right of zero. Further, m is dereasing and there are no solutions of n = m sine at any solution

we must have that 0 = n′ < m′ < 0.

For R > 1, we have m is inreasing and n′(0) < m′(0). There are no solutions of n = m in that

at any solution we should have 0 = n′ > m′ > 0.

(4) R < 1 and ǫ ≥ δ2

2 R+ 1
1−R

Then m (1) ≤ 0. Sine m is dereasing at least until it hits zero, and sine n′ = 0 at a rossing

point we annot have that n rosses m before it hits zero. �
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Proof of Proposition 15. (1) N solves

N ′ (q) =
1
2δ

2 (1−R)
2
qN (q)

ℓ (q)−N (q)
−1/R

(1− q)
1−1/R

and N is stritly inreasing for R < 1. Otherwise, it is dereasing for R > 1. W solves

(A.1) W ′ (v) =
ℓ (W (v))− v−1/R (1−W (v))1−1/R

1
2δ

2 (1−R)
2
vW (v)

(2) Follows from (3.9) and (A.1).

(3) Consider �rst R < 1. On (0, q∗) we have n(q) > m(q) and then ℓ(q)− n(q) < ℓ(q)−m(q) =

q(1− q)δ2(1−R)/2. Then v−1/R(1−W (v))1−1/R = n(W (v)) and

v(1−R)W ′(v) =
ℓ(W (v))− n(W (v))

δ2

2 (1−R)W (v)
< 1−W (v)

It follows that w′(v) = (1−R)W (v) + v(1−R)W ′(v) < 1−RW (v). At q∗, n(q∗) = m(q∗) and the

inequality beomes an equality throughout.

For R > 1, we have n(q) < m(q) on (0, q∗) and ℓ(q)− n(q) > ℓ(q)−m(q) = q(1− q)δ2(1−R)/2.

Then again v(1 −R)W ′(v) < 1−W (v) and w′(v) < 1−RW (v) with equality at h∗.

Note that sine W is non-negative, 1−RW (h) ≤ 1. �

Appendix B. The martingale property of the value funtion

Proof of Lemma 21. First we want to show the the loal martingale

N3
t =

ˆ t

0

ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs

is a martingale. This will follow if, for example,

(B.1) E

ˆ t

0

(YsGy(X
∗
s , Ys,Θ

∗
s, s))

2 ds <∞

for eah t > 0. From the form of the value funtion (5.11), we have

(B.2) yGy(x, y, θ, s) = e−βt
x1−R

1−R
zg′ (z) = G (x, y, θ, t)

zg′ (z)

g (z)
≤ (1 −R)G (x, y, θ, t)

where we use that

zg′(z)
g(z) = w(h)

h = (1−R)W (h) and 0 ≤W (h) ≤ 1.

De�ne a proess (Dt)t≥0 by Dt = lnG (X∗
t , Yt,Θ

∗
t , t). Then D solves

Dt −D0 =

ˆ t

0

1

G

(
Gt − C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy

)
ds

+

ˆ t

0

1

G
(Gθ − YsGx) dΘs +

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

= −

ˆ t

0

e−
β
R
s

1−R

1

G
G

R−1
R

x ds+

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds.

It follows that the andidate value funtion along the optimal trajetory has the representation

(B.3) G (X∗
t , Yt,Θ

∗
t , t) = G (X∗

0 , y0,Θ
∗
0, 0) exp

{
−

ˆ t

0

e−
1
R
βs

1−R

1

G
G

R−1
R

x ds

}
Ht

where H = (Ht)t≥0 is the exponential martingale

Ht = E

(
ηYsGy
G

◦B

)

t

:= exp

{
ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

}
.
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Note that (B.2) implies

1
GηyGy ≤ η(1 − R), so that H is indeed a martingale, and not merely a

loal martingale.

From (B.2) and (B.3), we have

(yGy)
2

= G (X0, y0,Θ0, 0)
2

(
zg′ (z)

g (z)

)2

× exp

{
−2

ˆ t

0

e−
1
R
βs

(1−R)

1

G
G

R−1
R

x ds

}
H2
t

≤ G (X0, y0,Θ0, 0)
2
(1−R)2H2

t .

But

H2
t = E

(
2

G
ηYsGy ◦B

)

t

exp

{
ˆ t

0

1

G2
η2Y 2

s G
2
yds

}
≤ E

(
2

G
ηYsGy ◦B

)

t

e(1−R)2η2t.

Hene E[H2
t ] ≤ e(1−R)2η2t

and it follows that (B.1) holds for every t, and hene that the loal

martingale N3
t =
´ t

0 ηyGydBs is a martingale under the optimal strategy.

(ii) Consider

´ t

0
e−

1
R

βs

1−R
1
GG

R−1
R

x ds. To date we have merely argued that this funtion is inreasing

in t. Now we want to argue that it grows to in�nity at least linearly. By (5.11), we have

e−
1
R
βt

1−R

1

G
G

R−1
R

x =

[
g (z)− 1

1−Rzg
′ (z)

]R−1
R

g (z)
=

[
h− 1

1−Rw (h)
]R−1

R

h

= (1−W (h))1−1/Rh−1/R = n(W (h)) ≥ min{1, n(W (h∗))} > 0.

Hene from (B.3) there exists a onstant k > 0 suh that

0 ≤ (1 −R)G(X∗
t , Yt,Θ

∗
t , t) ≤ (1 −R)G(x0, y0, θ0, 0)e

−ktHt → 0

and then G→ 0 in L1
, as required. �

Proof of Lemma 25. This follows exatly as in the proof of Lemma 21.

�

Appendix C. Extension to R > 1

Veri�ation Lemmas for the ase R > 1. It remains to extend the proofs of the veri�ation lemmas

to the ase R > 1. In partiular we need to show that the andidate value funtion is an upper

bound on the value funtion. The main idea is taken from Davis and Norman [5℄.

Suppose G (x, y, θ, t) is the andidate value funtion. Consider for ε > 0,

(C.1) Ṽε(x, y, θ, t) = Ṽ (x, y, θ, t) = G (x+ ε, y, θ, t)

and M̃t = M̃t(C,Θ) given by

M̃t =

ˆ t

0

e−βs
C1−R
s

1−R
ds+ Ṽ (Xt, Yt,Θt, t) ,
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Then,

M̃t − M̃0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsṼx + αYsṼy +

1

2
η2Y 2

s Ṽyy + Ṽt

]
ds

+

ˆ t

0

(
Ṽθ − YsṼx

)
dΘs

+
∑

0≤s≤t

[
Ṽ (Xs, Ys,Θs, s)− Ṽ (Xs−, Ys−,Θs−, s−)− Ṽx(△X)s − Ṽθ(△Θ)s

]

+

ˆ t

0

ηYsṼydBs

= Ñ1
t + Ñ2

t + Ñ3
t + Ñ4

t .

Lemma 13 (in the ase ǫ ≤ 0 and otherwise Lemma 19 or Lemma 24) implies Ñ1
t ≤ 0 and Ñ2

t ≤ 0.

The onavity of Ṽ (x+yχ, y, θ−χ, s) in χ (either diretly if ǫ ≤ 0, or using Lemma 18 or Lemma 23)

implies (∆Ñ3) ≤ 0.

Now de�ne stopping times τn = inf
{
t ≥ 0 :

´ t

0
η2Y 2

s Ṽ
2
y ds ≥ n

}
. It follows from (B.2) that yṼy

is bounded and hene τn ↑ ∞. Then the loal martingale (Ñ4
t∧τn)t≥0 is a martingale and taking

expetations we have E

(
M̃t∧τn

)
≤ M̃0, and hene

E

(
ˆ t∧τn

0

e−βs
C1−R
s

1−R
ds+ Ṽ (Xt∧τn , Yt∧τn ,Θt∧τn , t ∧ τn)

)
≤ Ṽ (x0, y0, θ0, 0) .

In the ase ǫ ≤ 0, (5.1) and (C.1) imply

Ṽ (x, y, θ, t) = e−βt
(x+ ε)

1−R

1−R

(
1 +

yθ

x+ ε

)1−R(
R

β

)R
≥ e−βt

(x+ ε)
1−R

1−R

(
R

β

)R
≥

ε1−R

1−R

(
R

β

)R
.

Thus Ṽ is bounded, lim
n→∞

EṼ (Xt∧τn , Yt∧τn ,Θt∧τn, t ∧ τn) = E

[
Ṽ (Xt, Yt, θt, t)

]
, and

Ṽ (x0, y0, θ0, 0) ≥ E

(
ˆ t

0

e−βs
C1−R
s

1−R
ds

)
+ E

[
Ṽ (Xt, Yt,Θt, t)

]
.

Similarly,

Ṽ (x, y, θ, t) ≥ e−βt
ε1−R

1−R

(
R

β

)R

and hene E

[
Ṽ (Xt, Yt,Θt, t)

]
→ 0. Then letting t → ∞ and applying the monotone onvergene

theorem, we have

Ṽε (x0, y0, θ0, 0) = Ṽ (x0, y0, θ0, 0) ≥ E

(
ˆ ∞

0

e−βs
C1−R
s

1−R
ds

)

Finally let ε→ 0. Then V ≤ limε↓0 Ṽ = G. Hene, we have V ≤ G.

The two non-degenerate ases are very similar, exept that now from (5.11) and (C.1),

Ṽ (x, y, θ, t) = e−βt
(x+ ε)

1−R

1−R
g

(
yθ

x+ ε

)
≥ e−βt

ε1−R

1−R

(
R

β

)R
.

where we use that for R > 1, g is dereasing with g (0) = (Rβ )
R > 0. Hene Ṽ is bounded, and the

argument proeeds as before.

�
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