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A reverse entropy power inequality for log-concave

random vectors

Keith Ball, Piotr Nayar∗ and Tomasz Tkocz

8/06/2016

Abstract

We prove that the exponent of the entropy of one dimensional projec-

tions of a log-concave random vector defines a 1/5-seminorm. We make two

conjectures concerning reverse entropy power inequalities in the log-concave

setting and discuss some examples.
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1 Introduction

One of the most significant and mathematically intriguing quantities studied in

information theory is the entropy. For a random variable X with density f its

entropy is defined as

S(X) = S(f) = −
∫
R
f ln f (1)

provided this integral exists (in the Lebesgue sense). Note that the entropy is

translation invariant and S(bX) = S(X) + ln |b| for any nonzero b. If f belongs to

Lp(R) for some p > 1, then by the concavity of the logarithm and Jensen’s inequality

S(f) > −∞. If EX2 < ∞, then comparison with the standard Gaussian density

and again Jensen’s inequality yields S(X) <∞. Particularly, the entropy of a log-

concave random variable is well defined and finite. Recall that a random vector in

Rn is called log-concave if it has a density of the form e−ψ with ψ : Rn → (−∞,+∞]

being a convex function.

∗Supported in part by the Institute for Mathematics and its Applications with funds provided

by the National Science Foundation; supported in part by NCN grant DEC-2012/05/B/ST1/00412

1



The entropy power inequality (EPI) says that

e
2
n
S(X+Y ) ≥ e

2
n
S(X) + e

2
n
S(Y ), (2)

for independent random vectors X and Y in Rn provided that all the entropies

exist. Stated first by Shannon in his seminal paper [24] and first rigorously proved

by Stam in [25] (see also [6]), it is often referred to as the Shannon-Stam inequality

and plays a crucial role in information theory and elsewhere (see the survey [18]).

Using the AM-GM inequality, the EPI can be linearised : for every λ ∈ [0, 1] and

independent random vectors X, Y we have

S(
√
λX +

√
1− λY ) ≥ λS(X) + (1− λ)S(Y ) (3)

provided that all the entropies exist. This formulation is in fact equivalent to (2) as

first observed by Lieb in [22], where he also shows how to derive (3) from Young’s

inequality with sharp constants. Several other proofs of (3) are available, including

versions for the Fisher information [13] and recent techniques of the minimum mean-

square error [27]. There are also refinements when one variable is Gaussian [15],

[17], [28].

If X and Y are independent and identically distributed random variables (or

vectors), inequality (3) says that the entropy of the normalised sum

Xλ =
√
λX +

√
1− λY (4)

is at least as big as the entropy of the summands X and Y , S(Xλ) ≥ S(X). It is

worth mentioning that this phenomenon has been quantified, first in [14], which has

deep consequences in probability (see the pioneering work [4] and its sequels [1, 2]

which establish the rate of convergence in the entropic central limit theorem and the

“second law of probability” of the entropy growth, as well as the independent work

[20], with somewhat different methods). In the context of log-concave vectors, Ball

and Nguyen in [5] establish dimension free lower bounds on S(X1/2) − S(X) and

discuss connections between the entropy and major conjectures in convex geometry;

for the latter see also [12].

In general, the EPI cannot be reversed. In [7], Proposition V.8, Bobkov and

Chistyakov find a random vector X with a finite entropy such that S(X + Y ) =∞
for every independent of X random vector Y with finite entropy. However, for log-

concave vectors and, more generally, convex measures, Bobkov and Madiman have

recently addressed the question of reversing the EPI (see [10, 11]). They show that

for any pair X, Y of independent log-concave random vectors in Rn, there are linear

volume preserving maps T1, T2 : Rn → Rn such that

e
2
n
S(T1(X)+T2(Y )) ≤ C(e

2
n
S(X) + e

2
n
S(Y )),
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where C is some universal constant.

For a random variable X with finite variance its relative entropy D(X) is defined

as the difference S(Z)−S(X), where Z is a Gaussian random variable with variance

Var(X). This quantity is nonnegative and provides a way to measure closeness to

Gaussians. Another reverse EPI has been lately discovered in the context of the

stability of Cramér’s theorem (see [9]). The authors bound from below the relative

entropy of the sum of independent regularised random variables in terms of the

relative entropies of the regularised summands. The regularisation is performed by

adding independent Gaussians and without it, such a lower bound does not hold in

general, as shown by the same authors in [8].

The goal of this note is to investigate further in the log-concave setting some

new forms of what could be called a reverse EPI. In the next section we present our

results. The last section is devoted to their proofs.

Acknowledgements

The authors would like to thank Assaf Naor for pointing out the Aoki-Rolewicz

theorem as well as for fruitful discussions without which Theorem 1 would not have

been discovered. They are also indebted to Mokshay Madiman for his help with

tracking down several references.

2 Main results and conjectures

Suppose X is a symmetric log-concave random vector in Rn. Then any projection

of X on a certain direction v ∈ Rn, that is the random variable 〈X, v〉 is also log-

concave. Here 〈·, ·〉 denotes the standard scalar product in Rn. If we know the

entropies of projections in, say two different directions, can we say anything about

the entropy of projections in related directions? We make the following conjecture.

Conjecture 1. Let X be a symmetric log-concave random vector in Rn. Then the

function

NX(v) =

eS(〈v,X〉) v 6= 0,

0 v = 0

defines a norm on Rn.

The homogeneity of NX is clear. To check the triangle inequality, we have to

answer really a two-dimensional question: is it true that for a symmetric log-concave

random vector (X, Y ) in R2 we have

eS(X+Y ) ≤ eS(X) + eS(Y )? (5)
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Indeed, this applied to the vector (〈u,X〉 , 〈v,X〉) which is also log-concave yields

NX(u+v) ≤ NX(u)+NX(v). Inequality (5) can be seen as a reverse EPI, cf. (2). It

is not too difficult to show that this inequality holds up to a multiplicative constant.

Proposition 1. Let (X, Y ) be a symmetric log-concave random vector on R2. Then

eS(X+Y ) ≤ e
(
eS(X) + eS(Y )

)
.

Proof. The argument relies on the well-known observation that for a log-concave

density f : R −→ [0,+∞) its maximum and entropy are related (see for example

[5] or [12]),

− ln ‖f‖∞ ≤ S(f) ≤ 1− ln ‖f‖∞. (6)

Suppose that w is an even log-concave density of (X, Y ). The densities of X, Y

and X + Y equal respectively

f(x) =

∫
w(x, t)dt, g(x) =

∫
w(t, x)dt, h(x) =

∫
w(x− t, t)dt. (7)

They are even and log-concave, hence attain their maximum at zero. By the result

of Ball (Busemann’s theorem for symmetric log-concave measures, see [3]), the

function ‖x‖w = (
∫
w(tx)dt)−1 is a norm on R2. Particularly,

1

‖h‖∞
=

1

h(0)
=

1∫
w(−t, t)dt

= ‖e2 − e1‖w ≤ ‖e1‖w + ‖e2‖w

=
1∫

w(t, 0)dt
+

1∫
w(0, t)dt

=
1

f(0)
+

1

g(0)
=

1

‖f‖∞
+

1

‖g‖∞
.

Using (6) twice we obtain

eS(X+Y ) ≤ e

‖h‖∞
≤ e ·

(
1

‖f‖∞
+

1

‖g‖∞

)
≤ e ·

(
eS(X) + eS(Y )

)
.

Recall that the classical result of Aoki and Rolewicz says that a C-quasi-norm

(1-homogeneous function satisfying the triangle inequality up to a multiplicative

constant C) is equivalent to some κ-semi-norm (κ-homogeneous function satisfying

the triangle inequality) for some κ depending only on C (to be precise, it is enough

to take κ = ln 2/ ln(2C)). See for instance Lemma 1.1 and Theorem 1.2 in [21].

In view of Proposition 1, for every symmetric log-concave random vector X in Rn

the function NX(v)κ = eκS(〈X,v〉) with κ = ln 2
1+ln 2

is equivalent to some nonnegative

κ-semi-norm. Therefore, it is natural to relax Conjecture 1 and ask whether there is

a positive universal constant κ such that the function Nκ
X itself satisfies the triangle

inequality for every symmetric log-concave random vector X in Rn. Our main result

answers this question positively.
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Theorem 1. There exists a universal constant κ > 0 such that for a symmetric

log-concave random vector X in Rn and two vectors u, v ∈ Rn we have

eκS(〈u+v,X〉) ≤ eκS(〈u,X〉) + eκS(〈v,X〉). (8)

Equivalently, for a symmetric log-concave random vector (X, Y ) in R2 we have

eκS(X+Y )) ≤ eκS(X) + eκS(Y ). (9)

In fact, we can take κ = 1/5.

Remark 1. If we take X and Y to be independent random variables uniformly

distributed on the intervals [−t/2, t/2] and [−1/2, 1/2] with t < 1, then (9) becomes

eκt/2 ≤ 1 + tκ. Letting t→ 0 shows that necessarily κ ≤ 1. We believe that this is

the extreme case and the optimal value of κ equals 1.

Remark 2. Inequality (9) with κ = 1 can be easily shown for log-concave random

vectors (X, Y ) in R2 for which one marginal has the same law as the other one

rescaled, say Y ∼ tX for some t > 0. Note that the symmetry of (X, Y ) is not

needed here. This fact in the essential case of t = 1 was first observed in [16]. We

recall the argument in the next section. Moreover, in that paper the converse was

shown as well: given a density f , the equality

max{S(X + Y ), X ∼ f, Y ∼ f} = S(2X)

holds if and only if f is log-concave, thus characterizing log-concavity. For some

bounds on S(X ± Y ) in higher dimensions see [23] and [11].

It will be much more convenient to prove Theorem 1 in an equivalent form,

obtained by linearising inequality (9).

Theorem 2. Let (X, Y ) be a symmetric log-concave vector in R2 and assume that

S(X) = S(Y ). Then for every θ ∈ [0, 1] we have

S(θX + (1− θ)Y ) ≤ S(X) +
1

κ
ln(θκ + (1− θ)κ), (10)

where κ > 0 is a universal constant. We can take κ = 1/5.

Remark 3. Proving Conjecture 1 is equivalent to showing the above theorem with

κ = 1.

Notice that in the above reverse EPI we estimate the entropy of linear com-

binations of summands whose joint distribution is log-concave. This is different

from what would be the straightforward reverse form of the EPI (3) for indepen-

dent summands with weights
√
λ and

√
1− λ preserving variance. Suppose that
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the summands X, Y are independent and identically distributed, say with finite

variance and recall (4). Then, as we mentioned in the introduction, the EPI says

that the function [0, 1] 3 λ→ S(Xλ) is minimal at λ = 0 and λ = 1. Following this

logic, reversing the EPI could amount to determining the λ for which the maximum

of this function occurs. Our next result shows that the somewhat natural guess of

λ = 1/2 is false in general.

Proposition 2. For each positive λ0 <
1

2(2+
√
2)

there is a symmetric continuous

random variable X of finite variance for which S(Xλ0) > S(X1/2).

Nevertheless, we believe that in the log-concave setting the function λ 7→ S(Xλ)

should behave nicely.

Conjecture 2. Let X and Y be independent copies of a log-concave random vari-

able. Then the function

λ 7→ S(
√
λX +

√
1− λY )

is concave on [0, 1].

3 Proofs

3.1 Theorems 1 and 2 are equivalent

To see that Theorem 2 implies Theorem 1 let us take a symmetric log-concave

random vector (X, Y ) in R2 and take θ such that S(X/θ) = S(Y/(1−θ)), that is, θ =

eS(X)/(eS(X) + eS(Y )) ∈ [0, 1]. Applying Theorem 2 with the vector (X/θ, Y/(1− θ))
and using the identity S(X/θ) = S(X)− ln θ = − ln(eS(X) + eS(Y )) gives

S(X + Y ) ≤ S(X/θ) +
1

κ
ln

(
eκS(X) + eκS(Y )

(eS(X) + eS(Y ))κ

)
=

1

κ
ln
(
eκS(X) + eκS(Y )

)
,

so (9) follows.

To see that Theorem 1 implies Theorem 2, take a log-concave vector (X, Y ) with

S(X) = S(Y ) and apply (9) to the vector (θX, (1− θ)Y ), which yields

S(θX + (1− θ)Y ) ≤ 1

κ
ln
(
θκeκS(X) + (1− θ)κeκS(Y )

)
= S(X) +

1

κ
ln (θκ + (1− θ)κ) .

3.2 Proof of Remark 2

Let w : R2 −→ [0,+∞) be the density of such a vector and let f, g, h be the densities

of X, Y,X + Y as in (7). The assumption means that f(x) = tg(tx). By convexity,

S(X + Y ) = inf

{
−
∫
h ln p, p is a probability density on R

}
.

6



Using Fubini’s theorem and changing variables yields

−
∫
h ln p = −

∫∫
w(x, y) ln p(x+ y) dxdy

= −θ(1− θ)
∫∫

w(θx, (1− θ)y) ln p(θx+ (1− θ)y) dxdy

for every θ ∈ (0, 1) and a probability density p. If p is log-concave we get

S(X + Y ) ≤− θ2(1− θ)
∫∫

w(θx, (1− θ)y) ln p(x) dxdy

− θ(1− θ)2
∫∫

w(θx, (1− θ)y) ln p(y) dxdy

=− θ2
∫
f(θx) ln p(x)dx− (1− θ)2

∫
g
(
(1− θ)y

)
ln p(y)dy.

Set

p(x) = θf(θx) = tθg(tθx)

with θ such that tθ = 1− θ. Then the last expression becomes

θS(X) + (1− θ)S(Y )− θ ln θ − (1− θ) ln(1− θ).

Since S(Y ) = S(X) + ln t = S(X) + ln 1−θ
θ

, we thus obtain

S(X + Y ) ≤ S(X)− ln θ = S(X) + ln(1 + t) = ln
(
eS(X) + eS(Y )

)
.

3.3 Proof of Theorem 2

The idea of our proof of Theorem 2 is very simple. For small θ we bound the

quantity S(θX + (1 − θ)Y ) by estimating its derivative. To bound it for large θ,

we shall crudely apply Proposition 1. The exact bound based on estimating the

derivative reads as follows.

Proposition 3. Let (X, Y ) be a symmetric log-concave random vector on R2. As-

sume that S(X) = S(Y ) and let 0 ≤ θ ≤ 1
2(1+e)

. Then

S(θX + (1− θ)Y ) ≤ S(X) + 60(1 + e)θ. (11)

The main ingredient of the proof of the above proposition is the following lemma.

We postpone its proof until the next subsection.

Lemma 1. Let w : R2 → R+ be an even log-concave function. Define f(x) =∫
w(x, y)dy and γ =

∫
w(0, y)dy

/∫
w(x, 0)dx. Then we have∫∫

−f ′(x)

f(x)
yw(x, y)dxdy ≤ 30γ

∫
w.
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Proof of Proposition 3. For θ = 0 both sides of inequality (11) are equal. It is

therefore enough to prove that d
dθ
S(θX + (1− θ)Y ) ≤ 60(1 + e) for 0 ≤ θ ≤ 1

2(1+e)
.

Let fθ be the density of Xθ = θX + (1 − θ)Y . Note that fθ = e−ϕθ , where ϕθ is

convex. Let dϕθ
dθ

= Φθ and dfθ
dθ

= Fθ. Then Φθ = −Fθ/fθ. Using the chain rule we

get

d

dθ
S(θX + (1− θ)Y ) = − d

dθ
E ln fθ =

d

dθ
Eϕθ(Xθ)

= EΦθ(Xθ) + Eϕ′θ(Xθ)(X − Y ).

Moreover,

EΦθ(Xθ) = −EFθ(Xθ)/fθ(Xθ) = −
∫
Fθ(x)dx

= − d

dθ

∫
fθ(x)dx = 0.

Let Zθ = (Xθ, X−Y ) and let wθ be the density of Zθ. Using Lemma 1 with w = wθ

gives

d

dθ
S(θX + (1− θ)Y ) = −E

(
f ′θ(Xθ)

fθ(Xθ)
(X − Y )

)
= −

∫
fθ(x)

fθ(x)
ywθ(x, y)dxdy ≤ 30γθ,

where γθ =
∫
wθ(0, y)dy/

∫
wθ(x, 0)dx. It suffices to show that γθ ≤ 2(1+e) for 0 ≤

θ ≤ 1
2(1+e)

. Let w be the density of (X, Y ). Then wθ(x, y) = w(x+ (1− θ)y, x− θy).

To finish the proof we again use the fact that ‖v‖w = (
∫
w(tv)dt)−1 is a norm. Note

that

γθ =

∫
wθ(0, y)dy∫
wθ(x, 0)dx

=

∫
w((1− θ)y,−θy)dy∫

w(x, x)dx
=

‖e1 + e2‖w
‖(1− θ)e1 − θe2‖w

.

Let f(x) =
∫
w(x, y)dy and g(x) =

∫
w(y, x)dy be the densities of real log-concave

random variables X and Y , respectively. Observe that by (6) we have

‖f‖−1∞ ≤ eS(X) ≤ e‖f‖−1∞ , ‖g‖−1∞ ≤ eS(Y ) ≤ e‖g‖−1∞ .

Since ‖f‖−1∞ = f(0)−1 = ‖e1‖w, ‖g‖−1∞ = g(0)−1 = ‖e2‖w and S(X) = S(Y ), this

gives e−1 ≤ ‖e1‖/‖e2‖ ≤ e. Thus, by the triangle inequality

γθ ≤
‖e1‖w + ‖e2‖w

(1− θ)‖e1‖w − θ‖e2‖w

≤ (1 + e)‖e1‖w
(1− θ)‖e1‖w − θe‖e1‖w

=
1 + e

1− θ(1 + e)

≤ 2(1 + e).
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Proof of Theorem 2. We can assume that θ ∈ [0, 1/2]. Using Proposition 1 with the

vector (θX, (1− θ)Y ) and the fact that S(X) = S(Y ) we get S(θX + (1− θ)Y ) ≤
S(X) + 1. Thus, from Proposition 3 we deduce that it is enough to find κ > 0 such

that

min{1, 60(1 + e)θ} ≤ κ−1 ln(θκ + (1− θ)κ), θ ∈ [0, 1/2]

(if 60(1 + e)θ < 1 then θ < 1
2(1+e)

and therefore Proposition 3 indeed can be used in

this case). By the concavity and monotonicity of the right hand side it is enough to

check this inequality at θ0 = (60(1 + e))−1, that is, we have to verify the inequality

eκ ≤ θκ0 + (1− θ0)κ. We check that this is true for κ = 1/5.

3.4 Proof of Lemma 1

We start off by establishing two simple and standard lemmas. The second one is a

limiting case of the so-called Grünbaum theorem, see [19] and [26].

Lemma 2. Let f : R → R+ be an even log-concave function. For β > 0 define aβ

by

aβ = sup{x > 0, f(x) ≥ e−βf(0)}.

Then we have

2e−βaβ ≤
1

f(0)

∫
f ≤ 2(1 + β−1e−β)aβ.

Proof. Since f is even and log-concave, it is maximal at zero and nonincreasing on

[0,∞). Consequently, the left hand inequality immediately follows from the defi-

nition of aβ. By comparing ln f with an appropriate linear function, log-concavity

also guarantees that f(x) ≤ f(0)e
−β x

aβ for |x| > aβ, hence∫
f ≤ 2aβf(0) + 2

∫ ∞
aβ

f(0)e
−β x

aβ dx = 2aβf(0) + 2f(0)
aβ
β
e−β

which gives the right hand inequality.

Lemma 3. Let X be a log-concave random variable. Let a satisfy P (X > a) ≤ e−1.

Then EX ≤ a.

Proof. Without loss of generality assume that X is a continuous random variable

and that P (X > a) = e−1. Moreover, the statement is translation invariant, so we

can assume that a = 0. Let e−ϕ be the density of X, where ϕ is convex. There

exists a function ψ of the form

ψ(x) =

ax+ b, x ≥ L

+∞, x < L

9



such that ψ(0) = ϕ(0) and e−ψ is the probability density of a random variable Y

with P (Y > a) = e−1. One can check, using convexity of ϕ, that EX ≤ EY . We

have 1 =
∫
e−ψ = 1

a
e−(b+aL) and e−1 =

∫∞
0
e−ψ = 1

a
e−b. It follows that aL = −1

and we have EX ≤ EY = 1
a

(
L+ 1

a

)
e−(b+aL) = 0.

We are ready to prove Lemma 1.

Proof of Lemma 1. Without loss of generality let us assume that w is strictly log-

concave and w(0) = 1. First we derive a pointwise estimate on w which will

enable us to obtain good pointwise bounds on the quantity
∫
yw(x, y)dy, relative

to f(x). To this end, set unique positive parameters a and b to be such that

w(a, 0) = e−1 = w(0, b). Consider l ∈ (0, a). We have

w(−l, 0) = w(l, 0) ≥ w(a, 0)l/aw(0, 0)1−l/a = e−l/a.

Fix x > 0 and let y > b
a
x+ b. Let l be such that the line passing through the points

(0, b) and (x, y) intersect the x-axis at (−l, 0), that is l = bx
y−b . Note that l ∈ (0, a).

Then

e−1 = w(0, b) ≥ w(x, y)b/yw(−l, 0)1−b/y ≥ w(x, y)b/ye−
l
a
(1−b/y)

=
[
w(x, y)e−

l
a
y
b
y−b
y

]b/y
,

hence

w(x, y) ≤ ex/a−y/b, for x > 0 and y >
b

a
x+ b.

Let X be a random variable with log-concave density y 7→ w(x, y)/f(x). Let us

take β = b+ b ln(max{f(0), b}) and

α =
b

a
x− b ln f(x) + β.

Since f is maximal at zero (as it is an even log-concave function), we check that

α ≥ b

a
x− b ln f(0) + β ≥ b

a
x+ b,

so we can use the pointwise estimate on w and get∫ ∞
α

w(x, y)dy ≤ ex/a
∫ ∞
α

e−y/bdy = bex/a−α/b =
b

max{f(0), b}
e−1f(x) ≤ e−1f(x).

This means that P (X > α) ≤ e−1, which in view of Lemma 3 yields

1

f(x)

∫
yw(x, y)dy = EX ≤ α =

b

a
x− b ln f(x) + β, for x > 0.

Having obtained this bound, we can easily estimate the quantity stated in the

lemma. By the symmetry of w we have∫∫
−f ′(x)

f(x)
yw(x, y)dxdy = 2

∫∫
x>0

−f ′(x)

f(x)
yw(x, y)dxdy.
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Since f decreases on [0,∞), the factor −f ′(x) is nonnegative for x > 0, thus we can

further write∫∫
−f ′(x)

f(x)
yw(x, y)dxdy ≤ 2

∫ ∞
0

−f ′(x)

(
b

a
x− b ln f(x) + β

)
dx

= 2f(0)(−b ln f(0) + β) + 2

∫ ∞
0

f(x)

(
b

a
− bf

′(x)

f(x)

)
dx

= 2f(0)b

(
1 + ln

max{f(0), b}
f(0)

)
+
b

a

∫
w + 2f(0)b.

Now we only need to put the finishing touches to this expression. By Lemma 2

applied to the functions x 7→ w(x, 0) and y 7→ w(0, y) we obtain

b

a
≤ e

2
2(1 + e−1)

∫
w(0, y)dy∫
w(x, 0)dx

= (e+ 1)γ

and b/f(0) ≤ e/2. Estimating the logarithm yields

1 + ln
max{f(0), b}

f(0)
≤ max{f(0), b}

f(0)
≤ e

2
.

Finally, by log-concavity,∫
w(x, y)dxdy ≥

∫ √
w(2x, 0)w(0, 2y)dxdy =

1

4

∫ √
w(x, 0)dx

∫ √
w(0, y)dy

and ∫
w(x, 0)dx ≤

√
w(0, 0)

∫ √
w(x, 0)dx =

∫ √
w(x, 0)dx.

Combining these two estimates we get

f(0) =

∫
w(0, y)dy ≤

∫ √
w(0, y)dy ≤

4
∫
w∫

w(x, 0)dx

and consequently,

f(0)b ≤ e

2
f(0)f(0) ≤ 2ef(0)

∫
w∫

w(x, 0)dx
= 2eγ

∫
w.

Finally, ∫∫
−f ′(x)

f(x)
yw(x, y)dxdy ≤ (2e2 + 5e+ 1)γ

∫
w

and the assertion follows.

3.5 Proof of Proposition 2

For a real number s and nonnegative numbers α ≤ β we define the following trape-

zoidal function

T sα,β(x) =



0 if x < s or x > s+ α + β,

x− s if s ≤ x ≤ s+ α,

α if s+ α ≤ x ≤ s+ β,

s+ α + β − x if s+ β ≤ x ≤ s+ α + β.
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The motivation is the following convolution identity: for real numbers a, a′ and

nonnegative numbers h, h′ such that h ≤ h′ we have

1[a,a+h] ? 1[a′,a′+h′] = T a+a
′

h,h′ . (12)

It is also easy to check that ∫
R
T sα,β = αβ. (13)

We shall need one more formula: for any real number s and nonnegative numbers

A,α, β with α ≤ β we have

I(A,α, β) =

∫
R
AT sα,β ln

(
AT sα,β

)
= Aαβ ln (Aα)− 1

2
Aα2. (14)

Fix 0 < a < b = a+ h. Let X be a random variable with the density

f(x) =
1

2h

(
1[−b,−a](x) + 1[a,b](x)

)
.

We shall compute the density fλ of Xλ. Denote u =
√
λ, v =

√
1− λ and without

loss of generality assume that λ ≤ 1/2. Clearly, fλ(x) = 1
u
f
( ·
u

)
? 1
v
f
( ·
v

)
(x), so by

(12) we have

fλ(x) =

(
1u[−b,−a] ? 1v[−b,−a] + 1u[a,b] ? 1v[−b,−a]

+ 1u[−b,−a] ? 1v[a,b] + 1u[a,b] ? 1v[a,b]

)
(x) · 1

(2h)2uv

=

(
T
−(u+v)b
uh,vh︸ ︷︷ ︸
T1

(x) + T ua−vbuh,vh︸ ︷︷ ︸
T2

(x) + T−ub+vauh,vh︸ ︷︷ ︸
T3

(x) + T
(u+v)a
uh,vh︸ ︷︷ ︸
T4

(x)

)
· 1

(2h)2uv
.

This symmetric density is superposition of 4 trapezoid functions T1, T2, T3, T4 which

are certain shifts of the same trapezoid function T0 = T 0
uh,vh. The shifts may overlap

depending on the value of λ. Now we shall consider two particular values of λ.

Case 1: λ = 1/2. Then u = v = 1/
√

2. Notice that T0 becomes a triangle looking

function and T2 = T3, so we obtain

f1/2(x) =
1

2h2

(
T−b

√
2

h/
√
2,h/
√
2

+ 2T
−h/
√
2

h/
√
2,h/
√
2

+ T a
√
2

h/
√
2,h/
√
2

)
(x).

If h/
√

2 < a
√

2 then the supports of the summands are disjoint and with the aid of

identity (14) we obtain

S(X1/2) = −2I

(
1

2h2
,
h√
2
,
h√
2

)
− I

(
1

h2
,
h√
2
,
h√
2

)
= ln(2h) +

1

2
.
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Case 2: small λ. Now we choose λ = λ0 so that the supports of T1 and T2 intersect

in such a way that the down-slope of T1 adds up to the up-slope of T2 giving a flat

piece. This happens when −b(u+ v) + vh = ua− bv, that is,√
1− λ0
λ0

=
v

u
=
a+ b

h
= 2

a

h
+ 1. (15)

The earlier condition a/h > 1/2 implies that λ0 < 1/5. With the above choice for

λ we have T1 + T2 = T
−b(u+v)
uh,2vh , hence by symmetry

fλ =

(
T
−b(u+v)
uh,2vh + T−ub+vauh,2vh

)
· 1

(2h)2uv
.

As long as −ub+ va > 0, the supports of these two trapezoid functions are disjoint.

Given our choice for λ, this is equivalent to v/u > b/a = 1 +h/a = 1 + 2/(v/u− 1),

or putting v/u =
√

1/λ0 − 1, to λ0 <
1

2(2+
√
2)

. Then also λ0 < 1/5 and we get

S(Xλ) = −2I

(
1

(2h)2uv
, uh, 2vh

)
= ln(4vh) +

u

4v

= ln(4h
√

1− λ0) +
1

4

√
λ0

1− λ0
.

We have

S(Xλ0)− S(X1/2) = ln 2− 1

2
+ ln

√
1− λ0 +

1

4

√
λ0

1− λ0
.

We check that the right hand side is positive for λ0 <
1

2(2+
√
2)

. Therefore, we have

shown that for each such λ0 there is a choice for the parameters a and h (given by

(15)), and hence a random variable X, for which S(Xλ0) > S(X1/2).
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