
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/79999

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://wrap.warwick.ac.uk/80000
mailto:wrap@warwick.ac.uk

ARTIFICIAL INTELLIGENCE TECHNIQUES
FOR ASSEMBLY PROCESS PLANNING

By: Yen Ping Cheung

A thesis submitted for the Degree of Doctor of Philosophy

Depanment of Engineering,

University of WalWick

December 1991

List of Abbreviations

List of Figures and Tables

Acknowledgements

Summary

T ABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

Page

1.1 Objectives .. 2

1.2 Motivations for the use of AI techniques in Process Planning 3

1.2.1 Change in Customer Taste•..............................• 3

1.2.2 The Role of the Mod.ern Engineer•...................................... 4

1.2.3 The Nature of Process Planning .. 5

1.2.4 Shortage of Process Planners .. 6

1.2.5 Problems Associated With Experience ... 6

1.3 Relationship Between AI Planning And Process Planning 7

1.4 Outline Of Thesis ... 8

CHAPTER 2. PROCESS PLANNING ; TECHNIOUES & SYSTEMS

2.1 What Is Process Planning .. 9

2.2 The Role of The Computer In Process Planning 11

2.3 Approaches of Computer Aided Process Planning 12

2.3.1 The Variant Approach .. 12

2.3.1.1 The Preparatory Stage ... 13

2.3.1.2 The Production Stage .. 16

2.3.2 The Generative Approach ... 17

2.4 Product Description .. 21

2.4.1 Coding and Classification .. 22

2.4.2 Interpreting CAD Data. ..• 23
2.4.3 Adding Feature To Design .. 26

2.4.4 Question/Answer Approach ... 26

Page

CHAPTER 2. PROCESS PLANNING TECHNIQUES & SYSTEMS

2.5 Conclusions .. 27

CHAPTER 3. AI AND TIlE PLANNING PROBLEM

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.4
3.2.4.1
3.3
3.4
3.5
3.6
3.7
3.8

The Beginning•...............•......•........................•..... 31

AI Planning ... 34

Importance of Planning .. 35

What's in a Plan .. 36

Plan Representation .•........................•...........................•..... 39

State Space Plans•... 39
Representation Of State Space Data Structure•..............•....... 39

Action Ordering Plans ... 42

Plan Generation ... 42

Sea.rch Mechanisms•..•...........................•.........•...... 42

Green' s Formulation•.........•....•....••..... 46

Kowalski's System ... 51

STRIPS .. 53

NOAH•................................... 56

TW'EAK•..••.•••.•.•..•...••............................... 61

Conclusion ... 66

CHAPTER 4. AI TECHNIQUES FQR ASSEMBLY PLANNING

4.1

4.2

4.2.1

4.3

4.3.1
4.3.2
4.3.3
4.3.4

4.4

Introduction .. 68
Assembly ... 68

Assembly Sequencing and AI Planning•......•.......................... 71

Representing Knowledge ... 75

Prod uction Rules .. 76

Semantic Networks and Frames .. 78
Non-Monontonic Reasoning ..•.........• 83

Predicate Logic and Prolog•......•...•........................•. 86
Processing Knowledge ... 88

Page

CHAPTER 4. AI TECHNIQUES FOR ASSEMBLY PLANNING

4.5 Programming Techniques .. 90

4.5.1 Assembly Planning in Prolog ... 93

4.6 Conclusion .. I ••••••• I ••••••••• " I ••••• I ••• I ••• I ••••• " I. I •• I ••• I •• I ••• I ••• " I. I., , ••• 95

CHAPTERS. AN AUTOMATIC ASSEMBLY PLANNER

5.1

5.2

5.3

5.3.1

5.4

5.4.1

5.4.2

5.4.2.1

5.4.2.2

5.4.2.3

5.4.2.4

5.4.3

5.5
5.6
5.7

5.8

In trod uction ... 97
Results of Field Trips ..•... 97

Initial Tests .. 98

The Test Planner ~ .. 99

Approach Of The Automatic Assembly Planner 107

Initialisation: Input of Goal States :~~ 1l0

Sequencing .. -..................... 112

Eliminate Redundant Goal States And Conflict Check 115

Generation Of Star List ... 124

Ordering Of The Goal States .. 127

Insertion of Star Goals to Main Goal List 139

P od . A' L' 145 r uClng ction 1st

Finding The Pre and Post Conditions 150

Miscellaneous Clauses .. 156
Ball Point Pen Assembly ... 157

Summary .•.••..•..•....•..•..••••.•.•••.•••.•.•.•..•...•...•....•....•..•.•....• 159

CHAPTER 6. DISCUSSION

6.1

6.2
6.3
6.4

Introduction ... 161

The AI Planning Situation•................................ 161

The wgical Approach ...•..• 165
The CAPP Situation.. 167

Page

CHAYfER6. DISCUSSION

6.5 Philosophical Issues ... 169

6.6 Findings From the Development Of AAP oo 170

6.6.1 Assembly Constraints ... 170

6.6.2 Input Description .. 171

6.6.3 Assembly Space Conflict ... 172
6.6.4 !..,evel Of Detail 172
6.6.5 Additional Reaction Face ... 173

6.6.6 Assembly Database .. 174
6.6.7 Problem Size ... 174

6.6.8 Improving The Sorting Procedure ... 175

6.6.9 Optimization Of The AAP Output ... 176

6.6.10 Other Hardware Platforms ... I •• I ••• , •• I ••••••• I •• I. I •• '" I. I ••••••••••• I ••• '" '" 177
6.7 ussons And Future Systems ... 178

CHAYfER 7

References
Bibliography

CONCLUSION ... I •••• I ••••••••••••• I ••••••• " ••••• I •• I ••• I ••••••• I. 184

Appendix i Fundamentals of Theorem Proving and Prolog

Appendix ii A List of Some Process Planning Systems
Appendix iii Derivation of Formula in Sorting
Appendix iv Test Program For Connecting-rod Sub-Assembly
Appendix v Sample runs for Test Planner
Appendix vi Program listing For MP

Appendix vii Test Runs For MP

MP

AI

CAD

CAM

CAM-I

CAPP

CFL

GPS

IGES

MTC

PFA

TMS

LIST OF ABBREVIATIONS

Automatic Assembly Planner

Anificial Intelligence

Computer Aided Design

Computer Aided Manufacture

Computer Aided Manufacturing International

Computer Aided Process Planning

Clausal Form Logic

General Problem Solver

International Graphics Exchange Specification

Modal Truth Criterion

Production Flow Analysis

Truth Maintenance System

LIST OF FIGURES AND TABLES

Page

Figure 2.1 An Operation Plan•....•...•........................•... 14
Figure 2.2 A Simple Matrix With Four Clusters 15
Figure 2.3 Dra.wing Entity Record••••.•••.•••.•••••.................••..•.....•• 24

Figure 3.1 Sussman' s Anomaly ..•............... 37
Figure 3.2 An Example Of A Tree•.................. 43
Figure 3.3•...•.. 47
Figure 3.4 A Refutation Graph For Figure 3.3 .. 50
Figure 3.5 An Example To Illustrate ABSTRIPS 55
Figure 3.6 An Example To Illustrate NOAH ... 57
Figure 3.7 uvels 1 & 2 Of Example•..•.•••.............•....•.•.•...•.. 57
Figure 3.8 uvel 3 Before Criticism ... 58
Figure 3.9 uvel 3 - After Criticism ... 59
Figure 3.10 uvel 4 - Before Criticism•.•... 59
Figure 3.11 uvel 4 - After Criticism By Resolving Conflicts 60
Figure 3.12 Final Plan ... 60
Figure 3.13 The TWEAK Planner ... 62
Figure 3.14 Stacking Three Blocks Onto One Block 64
Figure 3.1S An Incorrect Ordering•....................................... 65

Table 1. Some AI Planners .. 66

Figure 4.1 Hierarchy Of Assembly Process Planning 70
Figure 4.2 An Example Of a Precedence Network 73
Figure 4.3 A Simple Semantic Net .. 78
Figure 4.4 A Semantic Net To Illustrate Inheritance 79
Figure 4.5 A Network Fragment ... 80
Figure 4.6 An Example Of A Specific Frame .. 81

Figure 5.1 The Piston-Connecting Rod Sub-Assembly 100
Figure 5.2 An Initial State Of Piston-Connecting Rod Sub-Assembly 101
Figure 5.3 Actual Initial State Of Piston-Connecting Rod Sub-Assembly 104
Figure 5.4 Overview of AAP ... 108
Figure 5.5 Redundant Goal Case ..•..........•........................•.................. 115
Figure 5.6 Conflicting Goals Case ... 115

Page

Figure 5.7 Difference Between AAP and TWEAK 119
Figure 5.8 Primary Shaft Sub-Assembly .. 120
Figure 5.9 Goal State of Primary Shaft Sub-Assembly 121
Figure 5.10 Initial State ... 123
Figure 5.11 C Clobbers Q ... 123
Figure 5.12 A Final Plan .. 124
Figure 5.13 Possible Outcomes For Goals, A & B 126
Figure 5.14 A Sequence ... 133
Figure 5.15 A Diagram Ofa Simple Assembly .. 151
Figure 5.16 Post-Conditions For a Simple Clear State 154
Figure 5.17 Initial State Of a Ball Point Pen Assembly 157
Figure 5.18 A Possible Goal State For The Ball Point Pen Assembly 157

Figure 6.1 Types of Goal Relationships ... 175
Figure 6.2 Interactions of An Assembly Process Planning System 178

I would like to express my deepest gratitude to the following people who
have contributed towards this thesis:

Dr. A.L.Dowd, my project supervisor for accepting me as her research
student, her suppon, advice and guidance throughout the course of this
research,·

Professor S.K. Bhattacharyya and Mr. John Fieldenfor accepting as a
research student at the Depanment of Engineering,'

SERC for providing me with a studentship to pursue this research,·

Dr. Chris Rinde for teaching me AI and the many refreshing and interesting
conversations on the subject,'

Staff at the gearbox Process Planning Depanment, Rover, Longbridge for
providing me with some useful practical information,·

My husband, Vincent and my son, James who have both been very supponive
of this research,'

AIAI of Edinburgh University for providing the Edinburgh Pro log and Mr.
Alan Rulme for setting up the Prolog environment on the Engineering
Depanment SUNs.

SUMMARY

Due to current trends in adopting flexible manufacturing philosophies, there
has been a growing interest in applying Artificial Intelligence (AI) techniques to
implement these manufacturing strategies. This is because conventional
computational methods alone are not sufficient to meet these requirements for more
flexibility. This research examines the possibility of applying AI techniques to
process planning and also addresses the various problems when implementing such
techniques.

In this project AI planning techniques were reviewed and some of these
techniques were adopted and later extended to develop an assembly planner to
illustrate the feasibility of applying AI techniques to process planning. The focus
was on assembly process planning because little work in this area has been reported.
Logical decisions like the sequencing of tasks which is a part of the process
planning function can be viewed as an AI planning problem.

The prototype Automatic Assembly Planner (AAP) was implemented using
Edinburgh Prolog on a SUN workstation. Even though expected assembly
sequences were obtained, the major problem facing this approach and perhaps AI
applications in general is that of extracting relevant design data for the process
planning function as illustrated by the planner. It is also believed that if process
planning can be regarded as making logical decisions with the knowledge of
company specific data then perhaps AAP has also provided some possible answers
as to how human process planners perform their tasks. The same kind of reasoning
for deciding the sequence of operations could also be employed for planning
different products based on a different set of company data.

AAP has illustrated the potentialities of applying AI techniques to process
planning. The complexity of assembly can be tackled by breaking assemblies into
sub-goals. The Modal Truth Criterion (MTC) was applied and tested in a real
situation. A system for representing the logic of assembly was devised. A
redundant goals elimination feature was also added in addition to the MTC in the
AAP. Even though the ideal is a generative planner, in practice variant planners are
still valid and perhaps closer to manual assembly process planning.

Chapter 1. Introduction Page 1

CHAPfER 1. INTRODUCTION

The needs of manufacturing industry have changed considerably in

recent years due to keen competition at home and abroad. To address these

changing needs, computers are increasingly used. This has led to the so

called islands of automation within a manufacturing system where each

island is an individual department or function in an organisation. There is

now a recognised need to link these islands together to form a fully

integrated system.

Where conventional computational methods have been fully exploited

and exhausted, Artificial Intelligence (AI) techniques could be applied to

form this vital link between the individual functions of a manufacturing

system. One of the main areas of manufacturing, where computational and

artificial intelligence techniques could be applied to improve efficiency is

process planning.

The process planning task is a combination of both skilled and

repetitive/tedious work. It involves generating operation/process sheets on

how to manufacture/assemble a component/product given the specifications

of the tools to be used and sometimes the length of the times of the jobs.

These instruction sheets provide information to operators on how a task is to

be performed.

Chapter 1. Introduction Page 2

There are two main types of process planning - process planning for

machining processes and process planning for assembly. The former type is

normally a well defined task where each machining process has its own

characteristics, e.g. the speed and feed rate of the process. Most of this

information can be found in handbooks or is normally a company's standard

information. Thus this is an area of manufacturing where much automation

or computerisation has taken place as evident in computer numerical

controlled machines. The latter type is not so well defined and is often

manually operated. There is also less documentation and also perhaps less

understanding on the assembly process. As a result, it is an area of

manufacturing where computerisation has been rather difficult to implement.

1.1 Objectives

The objective of this research is to investigate AI techniques

that may be applicable to process planning. In order to achieve this the

following are needed:

i) investigate what AI planning techniques are appropriate to assembly

process planning as there are a large number of process planning

systems for machining [1];

ii) implement an assembly planner using AI planning techniques;

iii) identify limitations of AI techniques, if any, to real applications.

Chapter 1. Introduction

1.2 Motivations for the use of AI techniques in Process

Planninl:

1.2.1 Chanl:e in customer tastes

Page 3

Today product life cycles have been reduced drastically and in some

cases, product life cycles may be even shorter than the development lead

time1• In order to remain competitive the lead time must be reduced to

facilitate the production of new models and to cope quickly and efficiently

with additions and modifications. Therefore the whole process from design

through to process planning and manufacture must be speeded up. Since the

process planning task is the vital link between design and manufacture,

computational methods and perhaps AI techniques could be employed to

speed up this stage of the production.

Not only have changes in people's requirements made automation of

process planning a difficult task but also changes in products and the

processes have contributed to this fact. A more flexible approach such as

using AI techniques could perhaps be employed to tackle these changes.

1 Time to de.ign and getting into production by conventional meanl.

Chapter 1. Introduction Page 4

1.2.2 The Role of the Modern Engineer

The somewhat traditional definition of the engineer2 as defined in the

Chambers concise dictionary bears evidence to the reluctance of the

engineering community in applying AI techniques. This definition reflects

the traditional nature of the engineering world and the traditional view that

we may have of engineering as a whole, i.e. one of solving problems that

are of a highly deterministic nature such as design of electrical networks.

However in addition to these traditional tasks, the modem engineer

today has to make decisions e.g. planning or making company decisions at

management levels that are of a non-deterministic nature in order to keep up

with the keen competition and changing tastes of the consumers.

Manufacturing engineers in particular have to take decisions on the types of

manufacturing processes and the tools to be used. The decisions made at

this stage of the manufacturing process can be classified as the manufacturing

strategy. Once the strategy has been decided, detailed tactics such as the

types of finishings necessary to achieve the specified tolerances and surface

finishes, the inspection processes required at each stage can then be made.

Even at this latter stage, further decisions or estimates for those phases that

do not directly involve a manufacturing process, e.g. transfer of work from

one machine or one area to another have to be made. It can be seen that the

2 'one who design. or makea ,or pull to practical use, engine. or machinery of any type., including electrical,

designs or construcll public works, such as roads, railways, sewers, bridge., etc.

Chapter 1. Introduction PageS

above tasks involve much planning and estimation as well as clerical and low

level technical work.

Therefore, new aids such as planning and estimation tools should be

available to enhance the engineer's work. Few (process) planning tools exist

and those that do are analysis tools rather than synthesis tools. They often

require existing plans to aid in plan formation of new products. A more

flexible planner that is easily adapted to fit different scenarios is required.

The planner described in Chapter 5 illustrates how flexibility may be

incorporated by using AI planning techniques.

1.2.3 The Nature of Process Planninl:

Another reason for the slow development of process planning aids is

that manual planning relies very much on intuition and is normally done in

an unstructured manner. It relies a lot on the engineering judgement and

experience of the planner. Therefore little attention has been paid to

analysing the methods (which are normally unstructured and heavily

dependent on the individual planner's personal jUdgement) by which the

plans are or should be formed. This is also why the mechanisms used in

process planning have not been published and/or formally taught to novices

as these are often acquired through experience. When experienced planners

leave their companies, their skills can be lost by the companies concerned.

This has become a recognised fact and one of the solutions to retaining their

expertise in an organisation is by designing AI systems.

Chapter 1. Introduction Page 6

1.2.4 Shorta~e of Process Planners

Due to the nature of the process planning activity as described above,

it is therefore not surprising that there is now a severe shortage of

experienced and skilled planners. This is because manual planning requires

continual re-education about company standards and policies which takes a

long time to learn. Even though academic institutions are trying to shorten

the period of training to four or five years, there is still a shortage of

experienced process planners today [2].

1.2.5 Problems Associated With Experience

It should also be noted that decisions made by relying solely on

experience are only approximate decisions and may therefore vary amongst

different process planners. This could lead to inconsistencies and

recommendations that may be more costly than necessary. Also the

experience of process planners may not be directly applicable to new

processes and designs. Therefore in situations where planning is often

required for new designs, relying solely on the experience of process

planners may sometimes not provide the best solution [3].

Therefore with the above reasons this project aims to investigate the

possibilities of the application of AI techniques to process planning as an

alternative to relying solely on the experience of process planners, i.e.

manual systems.

Chapter 1. Introduction Page 7

1.3 Relationship between AI plannin.: and Process Plannin.:

AI techniques are best at solving problems that are of a non­

deterministic3 nature such as process planning. Planning has been a classic

research topic in AI for more than two decades. A plan in AI terminology

can be defined as a linear or partially ordered sequence of actions to achieve

a desired goal. A possible plan for making a cup of tea could be:

fill a kettle with water

bring the water to boil

put some tea into a cup

pour the water into the cup.

It is believed that whether one is devising a plan for making a cup of

tea or a plan to manufacture a product as in process planning, the same kind

of reasoning must be employed, i.e. that of achieving an ordering of

operations from a set' of given operations and constraints. In manufacturing,

the operations would be manufacturing processes.

It is also believed that there are similarities in process planning across

different domains, e.g. process planning for the machining of components

and process planning for the construction of buildings. The former activity

3 Cale. where there are many pOIsibilitea to a aolution, an example i. in medical diagno.i. where .ymptom. could

lead to multiple di_gnoli •.

4 A let i. a collection of physical objccts or mathematical concepts.

Chapter 1. Introduction Page 8

requires the sequencing of the machining operations for manufacturing those

components while the latter involves the sequencing of construction activities

for building parts of faciliities [4]. The common feature between these two

applications is the logical decisions made in the sequencing of tasks. Thus

while the work described in this project originated from the sub-assemblies of

the gearbox, some of the work may in principle be applicable to the general

problem of process planning.

1.4 Qutline Qf Thesis

Initially, visits were made to the process planning departments of

Rover car plants at Cowley and Longbridge to obtain an insight into process

planning. The process planning problem in general was analysed and an

investigation with regard to relevant AI techniques and how these techniques

may be applied to aid the process planning problem was carried out.

Chapter 2 describes the process planning task and the approaches that have

been used to automate this task as well as some examples of existing process

planning systems. Chapter 3 covers AI planning and Chapter 4 describes AI

techniques that may be applicable to process planning. A planner based on

AI planning techniques was then developed to illustrate the feasibility of

applying AI techniques to real world problems such as process planning in

the manufacturing domain. Its development is described in Chapter 5.

Discussion on the research is found in Chapter 6 and the conclusions are in

Chapter 7.

Chapter 2. Process Planning:Techniques and Systems Page 9

CHAYfER2. PROCESS PLANNING:TECHNIQUES &
SYSTEMS

2.1 What Is Process Plannin2

The Society of Manufacturing Engineers define process planning as:

'the systematic determination of the methods by which a product is to be

manufactured economically and competitively' [5].

Generally, this involves a series of steps which can roughly be

broken down into :

i) Interpretation of the design data which can be in the form of blue

prints in the traditional way or on a CAD system.

. ii) Determination of the types of operations or processes; requirements

of the products such as batch size, raw material properties,

dimensional tolerances; tools for making the products, fixtures plus

any other special requirements.

iii) Determination of the operation sequence.

iv) Calculation of the individual and overall times of the operations.

v) Production of the operation sheets (or process sheets).

Operation sheets (also known as process plans or route sheets)

contain the detailed instructions to make the product, e.g. series of

operations, machines and tools required to make the product, etc. These

detailed steps dictate the final quality, cost and rate of production.

Chapter 2. Process Planning:Techniques and Systems Page 10

Therefore process planning is of utmost importance to a manufacturing

system and must be completed before detailed costings or further decisions

can be made. Once the plan has been drafted all the available information is

then passed to the shop floor and production control department where a

coherent schedule of the work taking into account the man/machine

resources and existing workload can be made. If it is not possible, then the

manufacturing engineer may have to revise the strategy to suit the existing

situation.

All the above phases of work demand a combination of skilled

engineering ~sks as well as much clerical and low level technical tasks, i.e.

work of both deterministic and non-deterministic nature. To summarise, the

engineer or process planner is faced with a considerable amount of decision

making, data references and calculations during these phases of work. Very

often the nature of this work is tedious, time consuming and error prone.

The errors made could be due to the engineer having to make frequent cross

references to data on machine capabilities, process data, company standards,

etc.

The above description provides an overview of the traditional process

planning task in general (Le. both machining and assembly). As can be

seen, process planning is a task that requires both a significant amount of

time and experience. It is evident that computers can be used to perform

those tedious calculations and data storage that they are so good at. In

particular the reasoning involved in the determination of the sequence of

operations (see ii. above) is similar to the reasoning in AI planning. The

Chapter 2. Process Planning:Techniques and Systems Page 11

following section describes the involvement of computers in process

planning.

2.2 The Role of The Computer in Process PlanninK

In manufacturing great strides have been made in the development of

computer applications in design (as seen in the many Computer Aided

Design (CAD) Systems available today) and manufacture (Computer Aided

Manufacturing Systems) which was not parallelled by process planning.

This situation has also made process planning a bottle neck in the

manufacturing process when companies attempt to adopt flexible automation

in order to keep up with competition. Until recently this was probably due

to the limitations of the hardware and software. Thus the use of computers

in process planning was not broadly addressed until the beginning of the

1970's. The first system, CAPP (Computer Aided Process Planning)

developed by CAM-I (Computer Aided Manufacturing International) was

first presented in 1976 at the 1976 NC conference [6]. After that many

similar systems were developed to address this need of integration of design

with manufacture. In 1991 it was indicated that 20% of the manufacturing

industries would utilise an integrated system of Material Requirement

Planning and CAPP and that 50% of the process plans used to produce parts

or assemblies would be computer generated [5], Despite the comprehensive

list of CAPP systems as shown in Appendix ii, it is currently unclear as to

whether these forecasts were or could be realised. As seen from Appendix

ii, there has been much research in the area of process planning for

machining but little work has been reported in the area of assembly.

Chapter 2. Process Planning:Techniques and Systems Page 12

2.3 Approaches of Computer Aided Process Plannin&:

Early attempts at automating process planning consisted primarily of

developing computer-assisted systems for report generation, storage and

retrieval of existing plans. Currently there are two main approaches to

computer aided process planning; variant and generative.

2.3.1 The Variant Approach

This approach is comparable with the manual approach where a

process plan for a new part is created by retrieving previous process plans

for a similar part and then making the necessary changes to the plan if

necessary to cater for the new design. However in comparison with the

manual approach, this approach is superior in that the information processing

capabilities are increased. Consequently, the time required to search

through existing plans is greatly reduced if standard procedures and company

standards have also been incorporated.

Variant systems store completed plans as well as manufacturing

information from which process plans can be obtained. They use library

retrieval procedures to find standard plans for similar parts. It is also

estimated that when used effectively, these systems can save up to 40% of a

process planner's time [7]. The CAPP system mentioned in Section 2.2 is

an example of a typical variant type system. In this particular system,

Chapter 2. Process Planning:Techniques and Systems Page 13

previously prepared plans are stored in a database. Whenever a new design

is planned, a process plan for a similar design is retrieved and subsequently

modified by the process planner to satisfy the requirements of the new

design. The Group Technology technique is used to code and classify parts

into families. A process plan that is used by a family of components is

called a standard plan. These standard plans are stored permanently in the

database with a family number as its key. The logic of variant systems is

based on the grouping of parts into families. Common manufacturing

methods can then be identified for each of these families. A family is

represented by a family matrix which includes all the possible members. In

general, variant systems have two operational stages:

preparatory stage;

production stage. [8]

2.3.1.1 The Preparatory Staae

Existing components are coded and classified and the grouped into

families and a family matrix is also constructed. Process plans already

prepared for these existing components are also summarised. Standard plans

are then stored in a database indexed by family matrices.

Even though there is no set definition for families, family formation

is usually based on manufacturing features. For process planning purposes,

all those requiring the same process plans belong to the same family. From

a user's point of view, a family could be formed from components having

exactly the same process sequence. This means that very little or no

Chapter 2. Process Planning:Techniques and Systems Page 14

modification of the standard plans is necessary. In this case, the family size

may be very small. On the other hand, if there are many variations in a

family, e.g. grouping all parts requiring a common machine into a family,

then much plan modifications would be required.

There are two main types of code for coding the parts, i.e. design

code and operation code. The design code is equivalent to the design

features of parts. The operation code represents a series of operations that

are required. Figure 2.1 shows an example of an operation plan.

operation code

01 join

02 press

operation plan

glue

check reaction face, press

parts together

Figure 2.1 An Operation Plan

The coding of part families can be done manually or by using a

computerised approach such as Production Flow Analysis (PFA). PFA was

first introduced by J.L. Burbridge to solve the family formation problem for

manufacturing cell design. [9,10]. In the PFA technique a large matrix is

constructed where each row represents an operation code and each column

represents a component. The matrix can be defined as Mij where i

represents operation codes and j represents components. So, Mij = 1 if

component j has operation code i, otherwise Mij = O. The objective is to

bring together components that require a similar set of operation codes into

Chapter 2. Process Planning:Techniques and Systems Page 15

clusters. Thus parts that are grouped into a cluster, belong to the same

family.

component code

01 1 1 1 1 1 1 1

Ol 1 1 1 1 1 1 1

03 1 1 t lit 1 1

.04
operation

1 1 code 05
06 1 1 1

IY1 1 1 1 1 1 1

08 1 1 1 1 1

09 1 1 1 1 1 1

10 11 1 1 1 1 1

Fi~re 2.2 A Simple Matrix With Four Clusters

A family of matrix file can be set up based on the clusters. From

the above figure there are four clusters and therefore there are four possible

families. Each of these families can be given a name and standard plans

associated with the particular families concerned can be developed and

attached to the families concerned. Associated plans can then be retrieved

given say, the family name. Commercial database management systems can

be used to set up this structure.

Chapter 2. Process Planning:Techniques and Systems Page 16

2.3.1.2 The Production Sta&e

New components are planned at this stage. A new component is

first coded and the code is input to the part family search procedure to find

the family to which the component belongs. The family number is then

used to retrieve a standard plan.

The search procedure is simply a matching of the family matrix with

a given code. If a match can be found then the part belongs to the family

and the standard plan for the family can be used for that part. The human

planner then modifies the plan as necessary to satisfy any new design

requirements. New information can also be added to the system but must be

managed properly in order to keep the family matrix intact and the database

consistent.

CAM-I's CAPP system is a variant system developed by McDonnell

Douglas Automation company. It is a database management system written

in FORTRAN. The coding scheme for part classification and output format

is added by the user. It has a (maximum) 36-digit alphanumeric code.

Recent work on computer aided process planning systems has been

focussed on incorporating the experience of process planners in order to

eliminate the human process planner from the entire planning function.

This approach is known generally as the generative approach.

Chapter 2. Process Planning:Techniques and Systems Page 17

2.3.2 The Generative Approach

In this approach, process plans are synthesized in order to create a

process plan for a new component automatically. Plans are derived from the

manufacturing data base without human intervention. The input to these

systems would be design data. The advantages of such systems over the

variant approach are as follow:

i) consistent plans can be generated quickly;

ii) new plans can be made easily;

Hi) has potentialities for linking up to other manufacturing

facilities such as CAM, manufacturing management, etc.

The key requirement in developing these systems is to encapsulate the

logic of process planning into these systems. To provide the 'missing link'

between CAD and CAM, the relevant design data must also be clearly and

precisely defined for the process planning system. Ideally, a generative

system is a turnkey system with all the necessary decision logic. Since the

system contains all the information needed for process planning, no

preparatory stage is required. However the current definition of generative

systems has been relaxed to give a less complete system since the difficult

technicalities of the problem have been realised. Thus systems with some

kind of built-in decision logic are often called generative systems. There are

basically two approaches to developing generative systems, forward and

backward process planning. In the former, the approach is that given the

initial knowledge of the design and the type of processes, an attempt is made

to find a plan for that design. In the latter, using the final product (Le.

Chapter 2. Process Planning:Techniques and Systems Page 18

either the machined component or the final assembly) an attempt is made to

obtain the sequence of operations to satisfy the initial requirements.

The decision logic is the heart of these generative systems. A

common approach is to write manufacturing process capabilities in the form

of IF-mEN expressions by taking information from handbooks and/or

interviewinglO process planners. Decision tables or decision trees have been

used to represent manufacturing knowledge.

In drawing up the decision table, a question is asked at each junction

or a decision is made at each junction. An action block is included for each

true condition and for a false condition, another branch or process can be

directed to the end of the logic block. In computing terms, this is rather

like developing a flow-chart for a computer program.

e.g. if al then do nl

else if a2 then do

else stop.

nl

procedure nl

if

10 !hi. could involve performing knowledge Icquisition .. recommended for expert .ystem. design. See Chapter
4 fOl' more detail. on knowledge Icquilition.

Chapter 2. Process Planning:Techniques and Systems Page 19

Decision tables have long been a popular method of presenting

complex engineering data. They can be implemented using general

programming languages such as FORTRAN, COBOL, PASCAL, etc. This

is rather like writing a computer program except that in this case the

application is in process planning. In this approach, the logic of the

application is embedded in the flow of the program. Therefore whenever

any changes in the decisions occur the whole program has to be reviewed

again [11].

Another approach is to use AI techniques since the subject attracted

much interest and curiosity due to the applications of AI seen mainly in the

form of so-called expert systemsll . Most of these systems have implemented

manufacturing knowledge in the form of IF condition mEN action

statements based on machining processes which is similar to the decision

trees approach. Examples of AI process planning systems can be found in

[12,13,14,15].

Probably the first AI based process planning system to be reported in

the literature, GARI is an example of a rule-based system. It consists of a

knowledge base of approximately fifty production rules12 for machining

components. By assigning weights to different pieces of advice, it attempts

to find the best answer. The plan generation technique is through successive

refinements where it assumes that all machines are available initially. At

each iteration new assertions are produced which may then imply a partial

11 A piece of computer program that i. said to be able to derive conclusions and new information based on
existing information - something like decision making.
12 See Chapter 4 for more on production rule ••

Chapter 2. Process Planning:Techniques and Systems Page 20

ordering. It stops when it has exhausted the list of active rules by the

current set of assertions. EXCAP is another production rule based process

planning system for the selection of cutting sequences for prismatic parts.

TOM, an acronym for Technostructure of Machining is a rule-based system

for generating machining (hoZe) sequences. Hi-Mapp is another AI process

planner for machining which is based on manufacturing knowledge that is

stored about machining processes.

Most CAPP systems e.g. [12,13,14] (whether variant or generative)

do not make use of AI planning techniques such as those mentioned in

Chapter 3. Ad hoc additions of manufacturing knowledge in the form of

if-then rules is a common feature of expert systems for process planning. A

more organised approach to this is sought. Therefore, this research had

concentrated on applying the fundamental AI planning concepts to assembly

process planning.

A semi-generative approach has also been suggested when researchers

failed to develop a truly generative system [IS]. This approach combines

both the generative and variant approaches. It contains a degree of decision

logic to enable a plan to be synthesized but it is then manually modified

before being utilised. Semi-generative systems are attractive from the

system developer's point of view as their competitiveness over variant

systems is increased and are thus more marketable than variant systems.

However the ultimate aim is still to solve the planning problem using the

generative approach.

Chapter 2. Process Planning:Techniques and Systems Page 21

It can be seen from the large number of computer aided process

planning systems available today that the manufacturing logic required for

process planning is highly variable. Despite being a highly variable task, the

nature of the logic of the sequencing of operations remains fairly static

irrespective of the type of application. Hence the application of AI planning

research to address this problem is possible.

2.4 Product Description

In the early days, the designer and manufacturer were the same

person. As machines and methods of production (working practices) become

more sophisticated the separation between these two roles became greater

and greater. Today the designer is mainly responsible for designing a new

product and the manufacturing phase is further divided into various stages,

Le. planning on how to make the product and then actually making it.

The design phase can be divided into two main phases:

conceptual phase (when an idea is conceived);

geometrical phase (where ideas are transformed into a design).

Due to the separation of the design and manufacturing tasks, the

engineering drawing became the principal form of communication between

designers and manufacturers. Today advances in computer graphics made it

possible to replace drawings of parts with the electronic form using tools

such as CAD. In a manual system, the process planner would study the

Chapter 2. Process Planning:Techniques and Systems Page 22

engineering drawing, interpret it and then provide the manufacturer with a

set of instructions on how to fabricate the design. This is still very much

the case where automation of process planning has been attempted, Le.

interpretation of designs is still very much a manual process before relevant

data can be input to the process planning system. However in order to

achieve full integration of the manufacturing system (Le. CAD and CAM),

this interpretation process has to be automated as well. The input format to

the process planning system affects the ease of use as well as the capability

of the system. A tedious input format would defeat the purpose of

automation while inaccurate and insufficient data would reduce the

competence of the system. Since this part of the automation process is a

vital path to integration, the following sections examine the types of input

format available and the types of problems associated with each of them.

2.4.1 CodinK and Classification

A popular approach of variant systems is to make use of a coding and

classification system to categorise parts into families. In other words parts

with similar characteristics both from a design and manufacturing point of

view are grouped together into families. In order to classify parts into

families, a method for classification is necessary. There are two main

methods of coding: hierarchical and chain. In the former one, it is usually a

numerical code and the meaning of a code is dependent on its previous

number, e.g. if the first digit represents a shaft then the second one defines a

type of shaft and so on. In the chain type, each digit represents a distinct bit

of information independent of its previous digit. Each digit represents a

Chapter 2. Process Planning:Techniques and Systems Page 23

small building block of the complete part, e.g. one digit may represent the

type of part and another may represent the dimensions. Examples of coding

and classification systems are MICLASS [16] and OPITZ [17].

This approach is not efficient in situations where there is much

variety amongst products with very few members per part family (as much

time would be spent on creating new families and new process plans). Users

of such a system would have to be familiar with the coding scheme. Thus

the benefits of coding systems cannot be achieved in generative systems

which aim to synthesize plans rather than relying on the information

provided by coding systems.

As the code and classification concept originates from machining

(assignment of codes to parts and part programs - part program for one

member of a part family can be used for other members of the family), this

method of part description may not be feasible for assembly process planning

which do not require the generation of a part program.

2.4.2 Interpretin& CAD data

Another attempt at obtaining product description information is by

interpreting CAD data directly as a front-end to process planning systems

[18]. As there is no single universal CAD package, the danger of this

approach is that the techniques involved may only be applicable to the

Chapter 2. Process Planning:Techniques and Systems Page 24

specific CAD package that was used. This means that different translators

may be needed for each CAD package. As can be seen from the technique

described below, the translation process itself can be a tedious process.

The devised algorithm for translating 2-D CAD data by Wang [18]

consists of defining nine fields in a record to represent each drawing entity,

i.e.

I line/arc I (x,y) I (x,y) I (x,y) I radius

start end centre

Filrure 2.3 Drawine Entity Record

All line and curve entities are extracted from the CAD data file.

These entities are then grouped, i.e. all solid lines into one group and all

hidden lines in another. The external contour is then recognised by

searching through all the solid lines. The lines and arcs (based on the x­

coordinates) are then sorted. The basic idea is to connect the line segments

so that the ending point of the nth segment is connected to the starting point

of the (n + l)th segment. For example, the rule for recognising a straight

cylindrical type of surface for a pair of adjacent points, n, n + 1 is:

ifxn < xn+l and Yn = Yn+l

where (xn, xn + 1> are x-coordinates of points n, n + 1

(Yn, Yn + t> are y-coordinates of points n,n + 1 respectively.

Chapter 2. Process Planning:Techniques and Systems Page 25

However this method was based on a 2-D wire frame model and

would not work for 3-D models. Also wire frames can sometimes provide

ambiguous interpretations (e.g. which is solid and which is not). For

accuracy, interpretation of a 3-D model is preferred. This would require

even more tedious algorithms which may only be feasible for the CAD

system on which they were developed. At a gross level, this means that

new algorithms would have to be devised for the (many) different CAD

systems available. This defeats the aim of flexibility.

In addition to recognising the surface feature, the relationships

between mating pairs of features are also essential in the case of assembly

process planning. These kinds of algorithms, in particular the one described

above would not be sufficient. Alternatively, CAD data could be converted

into a neutral format, e.g. IGES (Initial Graphics Exchange Specification,

1980, NBS USA). With IGES each CAD system requires a pair of IGES

pre-processor and IGES post-processor. It was suggested that vendors of

CAD systems provide these IGES translators. However the knowledge that

is extracted directly from IGES can only provide the topological and

geometrical information. Functional and feature information are also needed

for the process planning stage. It has also been reported that because

different CAD systems may be running on different types of computers, the

process of reading the data from the tape of another CAD system may not be

as straight forward as anticipated due to the incompatibility of the tape

format among different computers [19]. Another disadvantage is that

revisions of IGES may not be able to keep up with the advancement of

different CAD systems. Hence further discouraging the conversion of CAD

data into the IGES format for feature description.

Chapter 2. Process Planning:Techniques and Systems Page 26

2.4.3 AddinK Feature to DesiKn

Another possible approach is to specify explicitly the features of the

parts during the design stage. Thus enabling the encoding of feature based

information with the design. This requires the direct design of parts using

features (instead of the conventional method of using lines, arcs, etc.). Such

features (in the ready form) are then stored in the system's library which

could be used for process planning. This kind of system may however

require a lot of human interaction such as verification of results. Presently

similar CAD systems using a knowledge-based approach are available in the

market but their credibility would require further investigation.

These so-called intelligent CAD systems provide a design language

for the designers to create new designs. The data generated from these new

designs can then be used and/or manipulated in a manufacturing

environment.

2.4.4 Questionl Answer Approach

The simplest alternative is to describe in words the design to the

process planning system. In this approach, the aim is to obtain the

relationships between parts from answers to a series of questions about the

mating of part pairs. This could be very cumbersome and tedious from the

user's point of view as it depends on the number and the structure of the

questions that are asked by the system. Related work in this area can be

found in [20,21,22,23].

Chapter 2. Process Planning:Techniques and Systems Page 27

2.5 Conclusion

The process planning task can be sub-divided into two main parts,

Le. the decision on the types of manufacturing processes to be used and the

ordering (or sequencing) of those manufacturing processes. As different

manufacturing systems vary in their decisions on the types of manufacturing

processes to be used, no one single process planning system can satisfy all of

the different manufacturing needs. Hence, in order to achieve the first sub­

task of the process planning activity, manufacturing databases pertaining to

the individual needs of manufacturing systems have to be created. As

suggested in Section 2.3.2 that common knowledge can be found in

handbooks such as [24] for machining (unfortunately very little has been

written on assembly), but company specific data (such as that on special

processes that originate from the company and is possibly a trade secret) has

also to be obtained from the company itself. System developers adopting the

expert systems approach have suggested various methods of eliciting the

relevant knowledge from the process planners. As knowledge elicitation is

another major subject by itself and is also appropriate to the generative

approach, further comments on the subject are included in Chapter 4.

When using the variant approach, standard plans must be changed

when major factory renovation takes place. Also, this approach is of little

use if there are many families and very few similarities between components.

This is because a lot of time would be spent on adding new families and

standard plans thus increasing the time spent in the preparatory stage even

further. In this case, the generative approach would be more suitable. The

Chapter 2. Process Planning:Techniques and Systems Page 28

variant approach is more useful if the manufacturing system makes similar or

identical components for perhaps different types of assemblies.

The generative approach is recommended when there exist many

variations among the types of products made which makes it difficult to code

and classify them into a relatively small number of families. However for a

moderate number of component families and moderately sized manufacturing

systems, the variant approach may well be the most economic automated

planning system alternative at the moment as variant systems are better

understood than generative systems. Therefore, variant systems are cheaper,

easier and faster to develop. On the other hand, if the situation is such that a

high degree of flexibility is needed (such as frequent changes in designs) and

integration of a CAD system further upstream with a CAM system is

desired, then the generative approach is the ultimate solution. As

mentioned in Section 2.3.2, very few truly generative systems are available

today, so companies adopting this approach should be prepared to spend

much time and effort on a technology that at the moment is still developing.

Ideally the front-end of the process planning system should be

independent of any representation or specific system. However this vital

part of the manufacturing system is still a bottle neck to fully integrated

systems at the moment. Incorporation of feature information at an early

stage seems to be an attractive approach as such information is already

available at that stage partly as specifications of the design and also partly as

knowledge held by the designers themselves. This means that designers

would have to adopt a different design philosophy, i.e. including engineering

Chapter 2. Process Planning:Techniques and Systems Page 29

features (such as grooves and slots) as well as topological and geometrical

data. On the other hand, option of interpreting CAD data could also involve

much tedious programming which may have to be changed whenever the

CAD system is upgraded or replaced. The controversy of which is the better

approach, i.e. directly interpreting CAD data and describing features

through independent means (like question and answer type or incorporation

of feature information with design) still remains. However the final result of

both approaches must be that the method to obtain the information should be

simple and easily applied to other situations and at the same time

information must not be over-specified.

Sometimes the simplest approach is the best and also the cheapest.

The possible extension of the question and answer approach is to deduce a

minimum number of questions that can be asked in order to obtain answers

to the relationships between mating pairs. This could be classified as a kind

of knowledge acquisition exercise and would involve much time spent with a

willing process planner at the company concerned. In order to avoid

disrupting the normal routine of the company, a plausible arrangement could

be to co-ordinate the work of the person eliciting the knowledge with a

process planner who is about to retire and whose time and effort is devoted

solely to this project. This is because past experience has suggested that no

matter how cooperative the expert may be, he/she is bound to be called away

on another more urgent matter.

At the moment, there are not many options available for interfacing

design to process planning. If the process planning system is a variant type

then a coding and classification system is probably the best option but it will

Chapter 2. Process Planning:Techniques and Systems Page 30

have to be adapted for assembly purposes. As for generative systems, there

is no standard input format and the form of input usually depends on the

approach used by the individual process planning system. A question and

answer (as in expert systems) type of interface is the most commonly used at

the moment. It is believed that in the long term, future design systems

should invariably contain some elements of manufacturing data which could

be of use further downstream, e.g. process planning.

This research suggests that there is a similarity between the reasoning

used in determining the sequence of operations in process planning and AI

planning. AI planning techniques could therefore be used as a basis for

process planning systems (Le. solving the second part of the process

planning task). The next chapter describes the study of AI and aspects of AI

planning that are relevant to process planning.

Chapter 3. AI And The Planning Problem Page 31

CHAPfER3. AI AND TIlE PLANNING PROBLEM

Machines that characterised the Industrial Revolution in the 1700s

were machines that helped extend and multiply people's physical

capabilities. Today, people are confronted by a different category of

machines that are said to extend and multiply human mental capabilities, Le

thinking machines. Whilst the former type of machines met much in the

way of opposition (such as the Luddite Movement founded in Nottingham in

1811 which perceived these machines as a diabolical danger to the workers

of the textile industry), the announcement and creation of the latter types of

machines were met with mixed feelings. While humans accept that

machines could perform physically better (since birds can fly and humans

cannot), it is more difficult to accept machines that equal or even better

human mental capacities. The study of these machines which is closely

associated with the way the human mind (or brain) works is therefore the

prime concern of Artificial Intelligence or AI.

The study of AI has been the subject of philosophers, physicists,

mathematicians, computer scientists, etc and has its roots as early as the days

of Plato (427-347 B.C.). He recognised the similarity between certain

aspects of human thinking and the apparently determined cause-effect

behaviour of machines. He believed in a corpuscular physics based on fixed

and determined rules of cause and effect. Thus if human decision making is

Chapter 3. AI And The Planning Problem Page 32

based on such interactions of basic particles then the decisions too must be

pre-determined.

In more recent times, Ludwig Wittgenstein (1921) described human

thought as comprising certain elementary facts in his first major work,

Tractatus Logico-Philosophicus. In his model there are propositions about

relations between these elementary facts and also certain allowable

transformations on these propositions to yield composite propositions. In

simple terms, we cannot think what we cannot say; we cannot say, or ought

not say what is meaningless in the language that we are speaking. He has

made two major points that have a direct bearing on the intellectual roots of

AI, i.e. he made a direct link between human thoughts and a formal process

that can be described as computation. This was re-stated two decades later

in the Church-Turing thesis at the famous Dartmouth conference in 1956. It

asserted that if a problem presented to a Turing machine is not solvable by

that Turing machine, then it is also not solvable by human thought. This

formed the basis of the AI movement and until today the measure of the

intelligence of a machine is still the Turing test. An interrogator can ask

questions of either the person or the computer but does not know which of

them is which. The aim is to determine which of them is the person and

which is the machine. If the machine succeeds in fooling the interrogator to

believe that it is the person, then it can be concluded that the machine can

think. Some people believe that no machine will ever pass the test due to

the complexity of the human mind!.

'Kurzwcil predicted in hi. book, 'Tho alc ofintelligcnl machine.' that a computer will pa .. thc Turinl tell
bctwccn 2020-2070.

Chapter 3. AI And The Planning Problem Page 33

There are many definitions to the term AI and it is still very much a

topic of debate today. The definition of anijicial is easily taken care of by

machine but it is intelligence which is difficult to define. This can be

illustrated by the fact that so long as a problem remains unsolved and retains

its mystique then it is said to require intelligence to solve. However once it

is solved and one knows how it works then it does not seem to be any

different from any other piece of computer program (therefore it does not

require intelligence). Amongst all the definitions of AI, perhaps the most

valid definition is: the study of computer problems that have not yet been

solved, by Minsky since the 196Os. This is certainly the case in AI

planning.

From a practical point of view, AI can be defined as:

The study of how to make computers do things which, at the

moment, people are better [25]

Therefore as a branch of Science, it is concerned with developing

concepts and vocabulary to aid the understanding of intelligent behaviour in

people. In terms of engineering, it is the task of engineering a technology of

thought, Le. it is concerned with the concept, theory and practice of building

intelligent machines (e.g. expert systems, vision systems, etc).

One of the hard and fast results to come out of the first twenty years

of AI research is that intelligence requires knowledge. Thus the main

difference between conventional computing and AI programming is that in

Chapter 3. AI And The Planning Problem Page 34

the former the knowledge to solve a problem is implicit in the algorithm

whereas in the latter knowledge is explicitly defined (as proposed by Plato

and Wittgenstein). Since it is explicitly defined, an AI program is said to be

more flexible than conventional programs in that new and relevant

knowledge can be added to the original programs for new applications. In

the case of conventional programs a completely new program would have to

be written for different applications.

3.2 AI Plannin&

Much of AI planning research has concentrated on domain

independent planners, i.e. developing plan representation and plan

generation techniques that are expected to work on a reasonably large variety

of problems. In general, the study of AI planning involves the computation

of a sequence of operations to perform a specific task before it is actually

carried out. For example, the recipe for baking a sponge cake is a plan.

Thus a plan consists of a sequence of operations or instructions to perform a

task.

Historically, the role of AI planning is based around the automatic

generation of plans of actions to be executed by autonomous robots in real­

time environments such as nuclear plants or battle fields. These applications

reflect the extensive funding by the US military. However the complex

sensors that are needed to provide the planners with necessary knowledge of

their environments do not actually exist at the moment. Consequently most

Chapter 3. AI And The Planning Problem Page 3S

AI planners were applied and tested on simple robot manipulation domains

such as the Blocks World.

In the Blocks World there is a set of labelled blocks (usually A, B, C,

etc), a table with infinite space on which the blocks rest and a robot which

performs simple block manipulations. The only move allowed is either to

stack a block onto the top of another block or move a block to the table.

The constraint in the system is that a block can only be moved if it and its

destination is said to be clear. Also the top of each block has only enough

room for one other block and the robot can only handle one block at a time.

Examples using blocks described in subsequent sections will be based on the

Blocks World.

3.2.1 Importance of Planninl

It is the capability of humans to plan ahead (thus preventing

destructive or fatal consequences) that make humans more superior to other

beings on earth. The ability to plan is therefore considered to be an

intelligent aspect of human behaviour. AI planning research has been

linked closely with early attempts at producing general problem solvers such

as the GPS (General Problem Solver) [26] as planning can be envisaged as

solving a problem prior to its execution. The technique of means-end

analysis was first used in the GPS. The fundamental concept of means-end

analysis is to detect the differences between the current state and the goal

state. Once this has been detected, an operator is then used to reduce this

difference with the hope of bringing the problem state closer to its solution.

Chapter 3. AI And The Planning Problem Page 36

This technique is said to simulate human problem solving behaviour [27].

Therefore, besides developing planners for military purposes, it is also the

intention of AI planning to shed some light into how the human mind works

which at the moment is still a mysterious domain.

As mentioned, everyday life planning is an essential aspect of

intelligent human behaviour. Apart from preventing fatal consequences, the

planning function is also at the heart of a manufacturing system. It is

essential for making the system work in the first place. Through ingenious

planning, the system is able to manufacture at a competitive cost and thus

ensure a place in today's keen market.

3.2.2 What's in a Plan

A plan can be one of the possible solutions to a problem. Planning is

easy and straight forward if tasks or goals can be decomposed into disjoint

(or non-conflicting) sub-goals. So these sub-goals can be achieved in any

order or in parallel. Problems occur when there are conflicts between sub­

goals. Consider, a simple planning problem consisting of two sub-goals say,

Gl and G2. It might be possible to solve it by doing Gl first and then G2.

However when doing G2, Gl gets undone. The same situation might also

exist by doing G2 first and then G 1. A classic example where one sub-goal

gets undone by another is best illustrated by Sussman's Anomaly in the

following section.

Chapter 3. AI And The Planning Problem Page 37

In Sussman's example, there are three blocks, a, band c as shown in

Figure 3.1. The goal consists of two sub-goals, i.e. stack b onto c and

stack a onto b. In the initial situation, c is on top of a which is on the table

while b is on the table with no other blocks on top. A computer planning

program would consider each sub-goal in turn. In order to achieve the first

sub-goal, i.e. stack b onto c, this could be done by directly stacking b onto

c. But a is underneath both b and c, therefore the first sub-goal cannot be

done first. If the second sub-goal is considered first, then a must have no

blocks on top. Thus, c is un stacked and put onto the table. Once the top of

a is cleared then it can be put onto b to achieve the sub-goal. But, the goal

requires c to be below blocks b and a. Therefore, it is also not possible to

start with the second sub-goal.

•
c b

a I b I c

start loal

Fi&Ure 3.1 Sussman's Anomaly

Planning is difficult when constraints exist which is often the case in

the real world. This aspect of the planning problem, conjunctive planning as

opposed to disjunctive planning where there are no interactions between sub­

goals, has been the centre of much AI research for the past two decades.

Chapter 3. AI And The Planning Problem Page 38

Unlike most AI problems, conjunctive planning cannot be solved by just

using well known AI methodologies such as divide-and-conquer as illustrated

in the example above. In order to tackle this type of problem, the planning

problem must be considered as a whole rather than as independent sub­

problems or perhaps, to solve G, a bit of Gl has to be done first followed by

doing a bit of G2, then finishing Gl and finally finishing G2. However

some problems (if they cannot be broken down into sub-problems) may be

too large to be solved in practice [28]. To date very little, if any, of this

work has shown any impact on real world problems. Instead the work tends

to be limited to research laboratories and is based on the Blocks World

examples. As research in AI planning has been going on for more than two

decades, there is now a rich and growing armory of AI planning systems.

The existence of the large number of AI planners today is evidence of the

competitive spirit in this field. However little effort has been made to apply

these planners to real world problems which were considered as

unchallenging and uninteresting.

Due to the large number of AI planners in existence today, any work

involving AI planning must begin with a study of some significant AI

planners and their characteristics. This is because much can be learnt from

these planners and also lessons drawn from them. A formalism for the

planning problem is essential for representing it in a computer. This will be

described in the next section.

Chapter 3. AI And The Planning Problem Page 39

3.2.3 Plan Representation

There are basically two main types of plan representation techniques:

state space plans and action ordering plans.

3.2.3.1 State Space Plans

A problem is often characterised by state descriptions. The

situation/condition of the problem at each stage of its solution is defined by a

state data structure. A state is a snapshot of the problem at a given point in

time. Operators are used to transform the problem from one state into

another. At different times, the problem is said to be in different states.

There are three types of states in a state space representation scheme,

i.e. initial state, goal state and intermediate state. The initial state is the

state at the start of the problem and the goal state is the problem in its final

state, i.e. the state of the solution to the problem. The intermediate state is

any the state that exists between the initial state and the goal state.

3.2.3.2 Representation Qf State Space Data Structure

Logical systems can be used to represent the state space data

structure. Plato and Aristotle provided the basic approach for computer­

based reasoning, i.e. that of devising a way of representing knowledge in

Chapter 3. AI And The Planning Problem Page 40

symbols and then doing reasoning about that knowledge by manipulating

those symbols in various ways. Predicate Calculus is a form of symbolic

logic that allows us to express logical concepts (meaning of sentences or

utterances) and then manipulate them using various rules to obtain new

knowledge from old (Le. making inferences). This is normally used by

logicians, mathematicians and philosophers. Thus the meaning of sentences

is a proposition which consists of terms, of which there are two types,

predicates and arguments. Predicates are relation names and usually

correspond to verbs in sentences and arguments are the objects that are

related and usually correspond to nouns. For example, the sentence, Block a

is on top of Block b can be represented as:

Here the relation is on and the two objects are: block a and block b. - -
This also suggests that it is true that block_a is on top of block_b, i.e. it has

the value of true. Predicate Calculus logic has either the value of true or

false. Where the reasoning is certain, i.e. statements are either true or false,

the systems involved are called deductive systems. In contrast to deductive

systems, reasoning in inductive systems is less than certain, where given that

the values of initial statements are true, the conclusions reached are only

more or less plausible. In deductive reasoning, given that one is sure of the

initial data, one can be equally sure of any results reached by reasoning (i.e.

conclusions). The reasoning that is carried out is called a proof or

Chapter 3. AI And The Planning Problem Page 41

deduction. AI planners are thus deductive systems rather than inductive2

systems which involve the assignment of probabilities to reasoning steps.

It is also possible to combine individual statements to form compound

propositions by the use of logical connectives. These include' and (1\), or

(V), not (,), implies (-- » and equivalent (~). To further extend the

system to represent the notion of some and all, two quantifiers, universal (V)

and existential (3) are used. \t is called the universal quantifier because it

talks about everything in the universe and .3 is the existential quantifier

because it talks about the existence of some objects.

Due to the complexity of Predicate Calculus, it can be very difficult

to represent in a computer. The programming language, Prolog, used in

modelling the Automatic Assembly Planner (AAP) described in Chapter 5 is

based on a simpler version of logic called Clausal Form Logic (CFL).

Prolog consists internally of a program that carries out deductions using

symbols such as objects and relations to manipulate its set of data (database).

Fundamentals of CFL is covered in Appendix i as it is the basis of the

language used to implement AAP.

Thus by using a form of logic, the meaning of the state data

structures could be represented in a computer. Similarly, the state space

representation can also be represented in a computer as a directed graph

2 Inductive ayltellll are important where much uncertainty existJ aa in medical diagoo.ia ay.lema and ay.lellll to
aid IIIIllIgcrial decisiona.

Chapter 3. AI And The Planning Problem Page 42

where the nodes in a graph describe the states and the arcs describe the

application of operators which will transform one state into another.

3.2.3.3 Action Orderina Plans

Another form of common plan representation technique is the action­

ordering plan representation in which the planner attempts to produce a

sequential list of actions which are limited by constraints. The actions are

written down in a list and are executed in the order in which they have

occurred on the action list. NOAH described in section 3.6 is an example of

an action-ordering planner.

3.2.4 Plan Generation

The most common approach to the formulation of plans is to search

the space in which the problem is represented. The search procedure is

probably all the reasoning that is required of the planning system.

3.2.4.1 Search Mechanisms

There are two main strategies for searching the space, depth­

first and breadth first. In the former, the deepest node in the search space is

Chapter 3. AI And The Planning Problem Page 43

always selected for expansion. In the latter strategy, the search proceeds by

examining all possibilities of a node by going across the search space before

proceeding down into the next level.

b

/\
e r

/\1
p

d e g j k s

FilWre 3.2 An Example of a Tree

From Figure 3.2, the order in which the nodes are visited in a depth­

first manner is {a,b,c,d,e ,v}. The ordering of nodes visited in a breadth-

first manner is {a,b,h,o,c,f,i,l,p,r,u,d,e,g,j,k,m,n,q,s,t,v}. In principle,

both methods are exhaustive in searching for a plan. Sometimes these two

extreme search strategies may be infeasible because there may be practical

limits on the amount of time and storage available to expand the search

space. Therefore variations of these techniques have been suggested. Some

of these common variations are depth-first search with backtracking, Means­

End-Analysis, Least Commitment Strategy, Dependency-Directed,

Opportunistic Search, Meta-Ievel search.

Chapter 3. AI And The Planning Problem Page 44

The depth-first search with backtracking is a simple method of

considering alternative solutions. The state of the solution at each point

where there are alternatives is saved together with the alternative choices. If

a failure occurs, the saved state at the last decision point is restored and the

next alternative taken (if there are none, backtracking continues over the

previous decisions). The programming language Prolog uses this strategy.

In the least commitment strategy, the central idea is to leave partial

solutions incompletely specified until the last possible moment. When as

much information as possible becomes available, then the ordering is

completed such that no conflicts arise (this is also used in the NOAH

planner).

Assumptions, alternatives or dependencies can also be added to the

set of data and then treated like any other piece of data. Whenever a conflict

exists, only the dependent parts are undone leaving unrelated parts intact.

This approach is called dependency-directed backtracking.

The focus of the opportunistic search is identified on the basis of the

most constrained operation that can be performed, i.e. take the path with the

most constraints. The requirements for the solution can be summarized as

constraints on the possible solutions. The planner then suspends its

operation until further information becomes available where a more definite

choice can be made. These planners usually operate with a blackboard

through which various components can communicate via constraint

information.

Chapter 3. AI And The Planning Problem Page 4S

In meta-Ievel planning, a separate search is made to decide which of

the operators is best applied at any point before detailed decisions are made,

Le additional reasoning about the various techniques available for generating

the plan.

The search mechanisms described above have evolved over the past

two decades and are characteristic of planners developed over that period.

The search can be difficult due to the large number of interactions between

different states or partial plans. These interactions can lead to a surprising

amount of complexity as shown by Gupta and Nau [29] that the problem of

finding an optimal plan in the simple Blocks World domain is NP-hard3•

Also the establishment of the existence of a pre-condition in a partially

ordered plan can require exponential computation [30]. Thus planning

problems are considered hard and are still a topic of AI research.

If the planner searches through an action-ordering plan then it can

add and remove operators at various points in the plan as illustrated by

NOAH in Section 3.6. In the state space representation, modification of the

plan is only possible at the end of the plan. Here operators are added to the

plan by trying out another operator application and operators are removed

when backtracking occurs. Thus the kind of reasoning or search involved

depends on the representation technique used. In the following sections,

3 In Computer Science, lhe economy of an algorilhm i. mellured in terml of lhe complexity mealUre. of time
and memory lPace. E.g. the bubblelOrt algorilhnm i ... id to be a quadntic time algorilhm. UnrealOnable
algorilhma are .. id to require IUper-polynomial or exponential time. There are a cia .. of problema called NP­
complete where their lower bound. are conceivable but have exponential upper bound.. An eXlmple i. lhe

Towen of Hanoi problem. The number of .ingle ring move. produced by the algorilhm i. IN - 1. So lhe
number of move. for a three ring caae i. 7 while for a 64 ring problem, it would talte more than half. million
yean if the lPeed i. a million ring. per accond.

Chapter 3. AI And The Planning Problem Page 46

some significant AI planners and their techniques which are relevant to AAP

are described.

3.3 Green's Formulation

Green [31] first formulated the planning problem using Predicate

Calculus and applied a resolution4 theorem prover to generate plans. His

formalism involved a set of assertion SS that describe the initial state and

another set that described the effects of various actions on the states. A

situation or state variable was included in each predicate in order to keep

track of which facts were true in which state.

The system then attempted to prove that there exists a state in which

the required goals are true. The essence of his method is rather like afill in

the blank resolution where a correct plan is derived as a side effect of

proving the existence of a correct plan. In addition, it is also necessary to

state that certain relations are unaffected by the actions (assertions for each

relation that is not affected by an action must be included, otherwise the

resolution proof fails). These assertions describe what stays the same during

an action and are called frame axioms. This technique is often referred to as

the Situation Calculus. The following example illustrates how it works.

4 The rolOlution principle i. described in Appendix i •

5 An uaertion i. I ltltement thlt i. held to be true, i.e. when IOmeone believe. it, when IOmeone claima it to be
true or when it i. I rlct in I knowledge blac.

Chapter 3. AI And The Planning Problem

d e d e

initial state: goal state:

Figure 3.3

From the above figure, the formulas for the initial state are:

The goal state is:

on (b,c,sO)
on (c,d,sO)
on(a,e,sO)
c1ear(b,sO)
c1ear(a,sO)

on (c,d,sl)
on(a,e,sl)
on(b,a,sl)
c1ear(c,sl)
c1ear(b,sl)

The fact that block a is in position e can be written as:

on(a,e,sO)

Page 47

Chapter 3. AI And The Planning Problem Page 48

where sO is the state in which a is on e is true. In this case sO is the initial

state and sl is the goal state. The action of moving a block from one place

to another can be expressed as: move(x,y,z) where x is moved from position

y to position z. After executing an action in one state, the result is a new

state and can be expressed as: do(action,state), i.e. map a state into the one

resulting from an action. It is also necessary to indicate that two blocks are

different in order to prevent the situations like e.g. on(a,a) from occuring.

Hence difJ(b,a) can be used to suggest that b is different from a. Thus the

rule in this problem is:

clear(x,s) &: clear(z,s) &: on(x,y,s) &: difJ(x,z)
= > on(x,z,do(move(x,y,Z),s)) &:

clear(x,do(move(x,y,z),s)) &:
clear(y, do (move (x,y,z),s)). (Rule 1)

Rule 1 can be read as:

if x and Z are clear and if x is on y in state S and if x and z are

different, then x and y will be clear and x will be on Z in the state resulting

from performing the action of move(x,y,z) in the state s. The difJpredicate

does not need a state variable because its truth value is independent of state.

The refutation graph for this example is given in Figure 3.4.

The main drawback of this approach is the need to write down

formulas for each relation that is not affected by an action. These formulas

are called frame axioms. A frame axiom for the above example is:

on(p,q,s) &: difJ(P,x) = > on(p,q,do(move(x,y,z),s)).

Chapter 3. AI And The Planning Problem Page 49

This is to suggest that blocks that are not moved stay in the same position.

In the above example, the frame axiom was not used in the resolution

procedure but if another sub-goal is added say, on (c,b) , it would be

necessary to prove that b stayed on a while putting con b. Typically the

number of frame axioms required is proportional to the product of the

number of relations and the number of operations in the problem. Thus as

the problem gets more complicated the number of frame axioms required can

be phenomenal and for the sake of manageability one would like to limit the

number of frame axioms. The system described in the next section is an

attempt to reduce the frame problem.

Chapter 3. AI And The Planning Problem Page SO

Convert Rule 1 into clausal form:

.on(c,d,sl) ., clear(x,s)

-, on(a,e,s 1) ., c1ear(z,s)

Negate goal: -,on~) -y on(x,y,s)

-,clear(c,sl) -,diff(x,z)

'c1ear..ft(sn on(X'Z,d~eX'Y ,z),s»
1 Clear(X,d~e(X'Y'z),S)

z=a
x =b clear(y ,do(move(x,y ,z),s»

'l=do(move(b,y,a)'T:-----

clear(b,s)., clear(a,s)...,on(b,y,s)
-, diff(b ,a) y=c

clear(y ,do~,y ,a) ,s» s=sO,
= > si = do(move(b,c ,a) ,sO

pon(c,d,do(move(b,y,a),s»

pon(a,e,do(move(b,y,a),s» ~ ". trclear(c,do~4(b,y ,a),s»
~ ---- Match with initial states :

""'\~(b,s) ~(a,s)~c,s) clear(b ,sO) ,c1ear(a ,sO) ,
.,diff(b,a) on(b,c,sO), &

on(c,d,do(move(b,c,a),s» s -= sO

on(a,e,do(move(b,c,a),s» ~ ~

~ I diff(b,a) , on(c,d,do(move(b,c,a),sO» on(a,e,do(move(b,c,a),sO»

l Evalute diff predicate]
~

on(c,d,do(move(b,c,a),sO» on(a,e,do(move(b,c,a),sO»

[Match with initial states: on(c,d,sO) and
on(a,e,sO). J

[N~
Fipre 3.4 A Refutation Graph For FilWre 3.3

Chapter 3. AI And The Planning Problem Page 51

3.4 Kowalski's System

Kowalski (1979) offered a different formulation using Predicate

Calculus which simplifies the statement of frame axioms [32]. He used a

predicate, holds to indicate that a given condition holds in a given state. For

example, holds(on(a,c),s)) is the same as Green's on(a,c,s)). This means

that the number of frame axioms needed is equal to the number of operators.

So the initial state for Example 3.3 is:

poss(sO)

holds (on (b,c),sO)

holds (on (c, d) ,sO)

holds (on (a, e) ,sO)

holds (clear(b) ,sO)

holds (clear(a),s))

poss(sO) means that state sO is possible, i.e. one that can be reached.

Effects of the actions (post-conditions) are also specified as follow:

holds (clear(x) ,do (trans (x,y,z) ,s))
holds (clear(y) ,do (trans (x,y,z),s)).
holds (on (x,z) ,do (trans (x,y,z) ,s))

Chapter 3. AI And The Planning Problem Page S2

Another predicate, pact is used to represent the fact that it is possible

to perform a given action in a given state, i.e. the pre-conditions of the

action match that state description. So, pact(a,s) means that it is possible to

perform a given action, a in a state, s. A rule for the action, move is:

(holds(clear(x),s) cl holds(c1ear(z),s) cl holds(on(x,y),s) cl diJ!(x,z))

= > pact(move(x,y,z),s).

It is also necessary to define the pre-conditions, i.e. if a given state

is possible and if the pre-conditions of an action are satisfied in that state

then the state produced by performing that action is also possible.

So,

poss(s) cl pact(u,s) = > poss(do(u,s))

Here, only one frame axiom is needed for each action. Hence for the

example in the previous section, the frame axiom is :

(holds(u,s) cl diJ!(u,clear(z)) cl diJ!(u,on(x,y))) = >

holds (u, do (trans(x,y, z), s)).

The above formula simply says that if all the terms are different then

clear(z) and on(x,y) will still hold in all the states produced by performing

the action, trans(x,y,z). Even though this formalism has reduced the number

of frame axioms, there is still a need to define frame axioms.

Chapter 3. AI And The Planning Problem Page S3

3.5 STRIPS

One of the most significant AI planner to date, STRIPS [33]

removed the need for frame axioms. It is adapted from GPS to apply to

planning problems. It uses a simple stack based implementation. The

system consists of a single stack that contains goals and the operators that

have been proposed to satisfy those goals and a database that describes the

current situation (of a problem) and a set of pre-conditions, an add-list

(containing states that are true after performing the associated action) and a

delete-list (containing states that are no more true after performing the

action) for each operator.

In this representation, the frame axioms are implicit (in the add and

delete lists), so there is no need to define them explicitly as in the previous

two planners. Consider the same example in Section 3.3,

The goal is:

on(b, a),table (a), table (c), clear(c), clear(b).

Take the first sub-goal, i.e. on(b,a) and place it on the stack. So the

content of the stack is: on(b,a). initially. Other conditions are defined as

follows:

Pre-conditions of stack: clear(a), clear(b)

Chapter 3. AI And The Planning Problem

Add-list:

Delete list:

on (b,a),clear(c)

clear(a), on(b,c).

Page S4

The pre-conditions are true in the initial state, so the action on the

stack is possible. The database is then updated according to the add and

delete lists, i.e.:

on(b,a),table(a),table(c), clear(c), clear(b).

This matches the goal state. Hence the plan is to stack b onto a.

However this approach still could not solve Sussman' s Anomaly.

Irrespective of which sub-goal is placed onto the stack first, the goal cannot

be reached. This is due to the undoing of goals which hampers the progress

in generating a plan. At this point, it becomes obvious that a mechanism for

backtracking is needed for conjunctive planning. Therefore as it is, STRIPS

can lead to redundant actions in a plan or worse re-introducing and trying to

satisfy the same goal over and over again such as in the case of Sussman' s

example. Extension of STRIPS such as ABSTRIPS [34] were then developed

to tackle this problem.

ABSTRIPS is an attempt to make STRIPS into a hierarchical planner.

Criticality values are assigned to pre-conditions and those that are the easiest

to achieve are given the lowest value while those that are 'most difficult' to

achieve (such as a major goal predicate) are given the highest value. Pre-

Chapter 3. AI And The Planning Problem Page SS

conditions with the highest critica1ity values are considered first, i.e. put

onto the stack first during the first level of the planning algorithm.

Predicates with the second highest critica1ity values are considered next and

so on until the goal is achieved. Consider the example given in Figure 3.5 .

•

I
c

I
c

• b b

initial state goal state

Fi&Ure 3.5 An Example to Illustrate ABSTRIPS

From Figure 3.5, the goal is: on (c,b), on(a,c). Since goal

predicates have the highest criticality values then on(c,b) is considered first

followed by on(a,c). (If on (a, c) were to be considered first, the planner

would have to backtrack, so for the sake of simplicity the correct sub-goal

has been chosen}. This is the first level solution. At the second level, the

pre-conditions of on(c,b) i.e. clear (b) and clear(c) are considered. These

are also true in the state description so the goal, on(c,b) can be achieved.

The pre-conditions of on (a, c) are also considered and they are also true.

Thus the ordering is {on(c,b), on(a,c)}.

Chapter 3. AI And The Planning Problem Page 56

STRIPS is significant because it provided a simple formalism for

representing the planning problem without the need to explicitly define any

frame axioms. Also the simple stack based implementation could be easily

modelled on a computer. The planner described in the next section viewed

the planning problem rather differently from STRIPS.

3.6 NOAH

This is said to be the first action ordering plan representation system

(systems described previously were state space planners). Sarcedoti (1977)

introduced the idea of the procedural net in his planner called NOAH (Nets

Of Action Hierarchies)[35]. A procedural net is simply a connected network

of nodes. These nodes represent actions (any operation that changes the

state of the world) at varying levels of detail, organised into a hierarchy of

partially ordered time sequences. It assumes that goals can be achieved in

parallel until information to the contrary becomes available.

There are four different types of nodes: goal, phantom goal, split

and join. In the net, nodes are annotated with '+' and '-', where '-' means

that the associated action deletes some pre-conditions of the node labelled

, + '. NOAH first builds a procedural net and each node is expanded in turn

to produce a new and more detailed plan. The plan is then criticised by a set

of critics to perform any necessary reordering of the nodes in the net. The

following example is used to illustrate how NOAH works.

Chapter 3. AI And The Planning Problem

a

I
a

I
b

b c I c

initial state goal state

Figure 3.6 An Example to Illustrate NOAH

Description of initial state:

on(a,b), clear(a), clear(c)

Description of goal state:

on(a,b), on(b,c), clear(a).

Levell: on(a,b) and on(b,c)

Level 2 :

on(b,c)

Fiwre 3.7 Levels 1 & 2 of Example

Page 57

At Level 1, the partial plan is the goal, on(a,b) & on(b,c). This

level is then expanded and the goal is split into two sub-goals as seen in

Chapter 3. AI And The Planning Problem Page 58

Level 2 on Figure 3.7 above. The sub-goal, on(a,b) is shown as a phantom

goal because it is already true in the initial state. Thus the sub-goal, on(b,c)

is expanded next at Level 3 as shown in Figure 3.8.

Fieure 3.8 I&vel 3 Before Criticism

At Level 3, it was found that a conflict exists between the sub-goals,

on(a,b) and on(b,c). This is indicated by the I + I and I_I signs in Figure

3.8. Sub-goal on(b,c) is expanded as illustrated in Figure 3.8. The critics

in the system will change the phantom goal of on(a,b) into a real goal as

shown in Figure 3.9.

Chapter 3. AI And The Planning Problem Page 59

Fi&Ure 3.9 Level 3 - After Criticism

At level 4, on(a,b) is expanded before criticism. This is shown in Figure

3.10.

Fi&Ure 3.10 Level 4 - Before Criticism

A critic notices that clear(b) is asserted by one node (indicated by '+ ') and

then deleted by another (indicated by '-'). Therefore, the partial plan has to

Chapter 3. AI And The Planning Problem Page 60

be reordered again. Figure 3.11 shows the partial plan after criticism at

Level 4.

Figure 3.11 Level 4 - After Criticism By Resolvine Conflicts

A redundant goal, clear(b) can be eliminated from the plan and hence

the final ordering is as shown in Figure 3.12.

Fimre 3.12 Final Plan

Chapter 3. AI And The Planning Problem Page 61

In summary, the planning algorithm of NOAH consists of inputting

the procedural net and then expanding the (partial) plan to obtain an

ordering. Critics are used during the expansion when conflicts occur. The

power of NOAH lies in its formalism (which allows it to be represented in a

computer) and the set of critics. Since the critics employed were put

together in a rather ad hoc manner for tackling certain specific examples of

the Blocks World, NOAH may not be able to cover all cases of planning

problems. Another limitation with this approach is that no provisions were

made for backtracking if the detailed expansion of a plan indicates that the

higher level plan would not succeed. In the next planner described in the

following section, an attempt was made to formalise the planning problem so

that it could be as near to a domain independent planner as possible.

3.7 TWEAK

Chapman [36] provided a formalism for AI planning in his planner,

TWEAK which has been considered as a tidying up of the work on AI

planning. In it he considers a vigorous mathematical reconstruction of

previous action-ordering planners, his so-called Modal Truth Criterion

(MTC) states the necessary and sufficient conditions for a condition to be

true at a point in a partially ordered plan. It essentially says that a

proposition p is necessarily true in a point in a plan if and only if two

conditions hold:

i) there is a point necessarily before the required point where p is

necessarily asserted and;

Chapter 3. AI And The Planning Problem Page 62

ii) for every operator that could possibly come between the point of

assertion and point of requirement, if the intervening operator

possibly deletes a condition which might turn out to be p, then there

must be another operator which restores the truth of p whenever the

intervening operator deletes it.

In simplified terms, the MTC is a statement of the conditions under

which an operator's pre-conditions will be true. Figure 3.13 is used to

illustrate the meaning of the MTC.

start
fmish

Fiwre 3.13 The TWEAK Planner

From Figure 3.13, operator C is said to contribute to condition P and

C has P on its add-list. Operator S requires condition P to be true, i.e. S

has P as one of its pre-conditions. Operator D has P as a pre-condition and

deletes it. The deletion is indicated by the double line in the above figure.

In the figure, objects to the left are ordered before objects to the right, so the

start operator comes before everything else and finish is after everything

else. Similarly, operator C comes before S, and D might possibly come

Chapter 3. AI And The Planning Problem Page 63

after C and is before S. There may also be some operator after start and

before C and D and after S and D but before finish. Thus in considering

the truth of S, two points must be established:

i) P which is the pre-condition of S has to be achieved first, i.e. a

contributor is needed for the condition that is necessary before S in

the plan. If none exists, then one is created by adding an appropriate

operator and install it into the net. If there is one, but not yet

ordered before S, then the required operator is added into the net.

ii) any operators that possibly delete condition P have to be prevented

from doing so; P is deleted if there is an operator, D in the plan that

comes after C and before S. If no such deleters exist then the truth at

P is guaranteed. Otherwise, order it outside the range over which P

is expected to hold. Suppose D is a deleter of P, then it may be

harmless if it is ordered before C or after S.

Basically, the mechanism of TWEAK states that in order to maintain

the truth of a condition S, check and make sure that its pre-conditions (or

contributors) are also true. In summary, TWEAK consists of the following

actions which will make P necessarily true in S where P is a pre-condition

and S is a goal:

i) establish a plan in which P occurs before S;

ii) adding a step before S in which P is asserted if necessary;

iii) re-order a step after S, if it is known to prevent P and hence S;

Chapter 3. AI And The Planning Problem Page 64

iv) if there is a step that will delete the pre-condition of P, add another

step, W which will re-establish the truth of P and S.

These steps will be further elaborated in Chapter 5. Even though the

heuristics in TWEAK are not new (e.g. similar to NOAH), it has provided a

global representation to the planning problem. However this formalism

cannot represent disjunction in a partially ordered plan, e.g. problems in the

Blocks World where blocks can support more than one block.

d only has spau (or two blocks

Finre 3.14 Stackin& Three Blocks Onto One Block

The MTC does not detect the fact that all the three stacking actions cannot

occur and will produce a plan as shown in Figure 3.15.

Chapter 3. AI And The Planning Problem Page 65

FilWre 3.15 An Incorrect Orderina

Apart from this, the MTC cannot represent conditional actions, i.e.

actions that perform a test and then do something that depends on the test's

outcome (e.g. switching a light on if it is off and vice versa). Apart from

these two limitations of TWEAK, the formalism provided a global view and

a foundation to the planning problem. Hence in spite of its weaknesses, its

rigorous representation is used with some modifications in the

implementation of AAP.

Other planners which also deserve a mention are summarised in the

Table 1.

Chapter 3. AI And The Planning Problem Page 66

Hacker [37]
Search through a space of partial plans and plan
representation is action-ordering. Has a gallery of
critics to catch and correct known plans. Assumes that
sub-goals are independent and thus can be achieved in
an arbitrary order (so cannot solve Sussman's example).

Interplan [38]
Designed to detect sub-goal interactions and to correct
them by analysis. Records links between actions and
their effects on other sub-goals in a plan in a table
called the ticklist. This ticklist could suggest the
minimum set of reorderings required if an interaction
was detected during the plan generation process.

Nonlin [39]
Initially designed to correct certain problems found in
NOAH. Can search the space of alternative plans for a
solution.

MOLGEN [40]
A hierarchical planner using the least commitment
strategy. Used for planning gene-cloning experiments
in molecular genetics.

Table 1. Some AI Planners

3.8 Conclusion

The difficulties of the planning problem and the enormity of the

problem of understanding human intelligence is evident in the fact that, after

more than two decades of AI planning research a completely working

domain-independent planner for real world planning problems is still as

elusive as ever. Research in this area has concentrated on producing a

planner that will be better than its predecessor. This has narrowed the focus

of the research a great deal, the pattern of which is usually based on a

previous planner which mayor may not be coherent. On the other hand,

this competitive spirit has led to a better understanding of the planning

Chapter 3. AI And The Planning Problem Page 67

problem. It is now generally accepted that planning is difficult and is not

easy to solve piecemeal or otherwise.

However it is believed that now the time is ripe to reflect on the work

of AI planning and attempt to draw some benefits and lessons from it. This

belief is reflected by the invasion into the engineering community of AI

products in the form of expert systems. This could be due to two main

reasons. Firstly, engineers are seeking alternative methods to solve their

problems when conventional means fail. Adoption of the flexible

manufacturing philosophy also requires more flexible approaches (such as AI

techniques). Secondly, some in the AI community are impatient to test their

findings in the real world. This is because if AI fails to deliver solutions (or

even partial solutions) in the near future, interests in this area will surely

dwindle as in the case of Machine Translation6•

6 Research in thi' area first .tartcd in 1949 in the UK, followed by mauive investmenta in the US. However
when it failed to produce any promi.ng relUlta, in 1966 ALPAC (Automatic Language Procelling AdvilOry
Committee) in the US produ<:e d a negative repon for machine translation. Conaequently, funding. and reseam
in thi. area WII IUbatantially redu<:ed. It WII only recently that the IUbject of Machine Tran.lation hll attracted
renewed interest.

Chapter 4. AI Techniques For Assembly Planning Page 68

CHAPfER4. AI TECHNIQUES FOR ASSEMBLY
PLANNING

4.1 Introduction

A review of AI techniques which are available and a discussion on

those that are relevant to assembly process planning is described in this

chapter. A general discussion on assembly and the methods that are used to

solve the assembly planning problems are also given. This chapter includes

an examination of the methods in which knowledge can be represented and

manipulated.

4.2 Assembly

Even though the assembly process is usually carried out manually and

typically accounts for 40 - 60% of the total production time, development of

computer aids is considerably quicker in the area of component manufacture

rather than in assembly [41]. This is because apart from being mainly a

manual task, there are no set procedures or rules that govern how a product

should be assembled. Thus making it rather difficult to automate. Hence in

this project, the assembly planner was developed with manual assembly in

mind1•

The method of assembly is normally determined at the design stage

but it is not uncommon for the method to be changed further downstream,

l1be procell planning department visited during the course ofthil research dealt with manuallllOmbly.

Chapter 4. AI Techniques For Assembly Planning Page 69

e.g. by assembly workers on the shopfloor. However the main function of

assembly is to join all the individual parts or components together so that

they perform the function that is specified by the designers. As any form of

work that is performed on the parts that are going through the production

chain costs money, ideally products should be designed in such a way as to

avoid assembly. However this is only possible in very simple products

because most assemblies must have a certain degree of mobility to achieve

their desired functions. When different functions are necessary for

individual parts, different material characteristics may be required. Hence

assembly of these individual parts is inevitable. Also some parts are easier

to produce by division into sub-parts. In addition there may be some

particular functional conditions such as increased requirements of

accessibility, demounting, cleansing and inspection that dictates the necessity

for assembly.

The assembly process is usually divided into sub-assemblies. A sub­

assembly is where one (or more) component(s) is (are) assembled with

another component or base component (a component onto which others are

assembled). The main reason for dividing the assembly process into sub­

assemblies is because it is easier to construct the finished product from the

individual sub-assemblies. For example, in the car industry, the assembly

of the car is normally divided into various functional parts like the gearbox,

engine, suspension, steering, etc. Each of these parts are also broken down

into smaller sub-assemblies if possible, e.g. the sub-assembly of the piston­

connecting rod is part of the assembly of the gearbox. This is also similar

to the work done in AI planning where a goal is also broken down into sub-

Chapter 4. AI Techniques For Assembly Planning Page 70

goals before actual planning occurs. Figure 4.1 illustrates the hierarchy of

assembly process planning.

Top level Assembly
Proeess Planning

Derme Sub-Assemblies
Assembly Proeess Planning
(or sub-assemblifS

Fi&Ure 4.1 Hierarchy of Assembly Process Plannin&

The assembly process planning stage usually consists of the

following:

i) determination of the assembly parts and sub-assemblies;

ii) determination of the sequence of assembly operations;

iii) allocation of the work to respective ass.embly stations;

iv) calculation/estimation of the times and costs involved [42].

The estimation of times and costs would require substantial company

related data. As for the determination of the major assembly parts and sub­

assemblies, it is pre-deterrnined by the function of design. Thus leaving the

minor sub-assemblies for process planning by the process planner. This

project had concentrated on the sequencing of assembly operations and

Chapter 4. AI Techniques For Assembly Planning Page 71

illustrated how AI planning techniques can be used to solve this part of the

assembly process planning problem with a planner.

4.2 1 Assembly SequencinK and AI PlanninK

In manual assembly, the operations usually involve a pair of

components at anyone time, Le only two and no more parts are joined at a

given time. This pair of components can be regarded as a mating pair, Le.

mating features on the respective components. Prior to the availability of

AI methodologies, attempts at automating assembly sequence planning have

been made using an algorithmic approach. If there are n mating pairs then

the number of possible assembly sequences is n!. So, for say 5 mating

pairs, the number of possible assembly sequences is 120. Thus, the number

of valid assembly sequences can be very large even for a small number of

components. Clearly it is not desirable to generate all the possible sequences

and is also not the way in which a human works.

An example of such an algorithmic approach as suggested by Fazio

and Whitney [43] is to obtain a set of rules for generating assembly

sequences from a series of questions about the mating of part pairs and

multiple parts which are directed to engineers. Due to the number of

questions that are required in order to obtain a complete picture of the

assembly, it can be very tedious to answer all the questions. Whenever

minor changes occur, they can also drastically modify the available choices

Chapter 4. AI Techniques For Assembly Planning Page 72

of assembly sequences. Hence requiring the user to repeat the question and

answer session.

A semi-automatic approach along the lines of the above method is

adopted by Rover for scheduling or allocating work on the assembly line

taking into account changeable variables like manning levels and volume of

cars to be produced2• Previously industrial engineers work out feasible work

schedules for different work stations manually3. It was done by drawing a

precedence network as shown in Figure 4.2. Nodes in the network

represents the work or job to be done at one particular station on the

assembly line. The numbers on the network refer to the work or job number

(which may be a group of related operations) and smaller numbers have a

higher priority than the jobs with bigger numbers. This process of producing

the graph manually is found to be very tedious and problem is enhanced

when frequent changes have to be made. The semi-automated system

enables the industrial engineer to set up on a computer screen, the

precedence network, the various nodes (Le. operations) and where they are

in relation to others. Thus instead of drawing it on paper the engineer is

able to draw on the screen using a mouse.

2 To adapt to customer demand., production fluctuate. in the total number of a particular model and the diffcrent
apeciticationa offered within a model range. Hence the variationa and change. i. tremendou ••

3 The order in which a car i. built con.iltl of two levels of preccdence, i.e. opcrationa betwccn membera of the
'IImc' group. of operationa (e.g. a.acmbly of gearbox) and opcrations between JTOUP' (e.g. electrical .yatcm to
cngine). The proceu planning dcpartment generate. the build method (Le detail aaacmbly acquence. within
JTOUp.) and thcn at the line balancing area, the achedule of work a .. igruncnll i. produced.

Chapter 4. AI Techniques For Assembly Planning

33

10

20

12

Figure 4.2 An Example of a Precedence Network

Page 73

Once the engineer has completed drawing the network the system

generates a job list in the required order. Whenever changes have to be

made to the network, it can be easily retrieved and amended by the engineer

and a new job list can be obtained. The manual drawing of the graph (once

the relationships have been established) took e.g. three hours in two hundred

and fifty operations application whereas the semi-automatic approach was

able to reduce this time tremendously, Le almost instantaneous response

after amendments were made to the graph [44].

In an extension to the question and answer approach by Fazio et al,

Sanderson et al [45] presented an approach to automate the assembly

sequencing problem using relational AND/OR graphs. These graphs are

used to represent all the assembly sequences from which a set of all possible

sequences are derived. Ordering constraints are further employed to derive a

set of possible or feasible sequences.

Chapter 4. AI Techniques For Assembly Planning Page 74

The above approach also assumes the fact that all parts are separate in

the initial state. However in practice, this is not always true as seen in the

piston-connecting rod sub-assembly (see Chapter 5) where the gudgeon pin

is in the piston in the initial state.

However the above mentioned approaches defeat the aim of

integrating design with manufacture where the ultimate aim is to achieve it

with minimal or no human intervention. The alternative to an algorithmic

approach is to apply AI techniques. In engineering terms, an AI approach is

rather like the expert systems approach where relevant rules are acquired

from experts (process planners in this case) using so called knowledge

acquisition techniques.

Acquiring knowledge which is a vital ingredient of AI systems is

recognised to be the hardest and often a painful part of the process of

designing AI systems [46]. The main methods of knowledge acquisition are

by reading relevant books and interviewing experts. Psychologists have

identified various interviewing techniques. These range from actually

talking to the experts to observing them at work. One of the methods that

has been suggested is the repertory grid method where a set of objects in the

domain is collected and the expert is asked for the similarities and

differences between these objects [47]. From the answers, a set of rules are

then derived. The main difficulty of using such a technique is the

formulation of appropriate questions that will enable the system developer to

gain enough knowledge to derive the relevant rules for the system. The

clinical origins of these techniques is another obstacle to the success of these

Chapter 4. AI Techniques For Assembly Planning Page 75

techniques as process planners may feel uneasy about the approach. Hence

these methods which have been suggested by the psychologists are very

difficult to use in practice.

It has been suggested that since acquiring the knowledge is seen as a

bottle-neck to developing expert systems then the experts should develop the

systems themselves. The argument against such cases is that the experts lack

the experience in applying the best (knowledge representation and

manipulation) techniques and approach for the development of expert

systems. Therefore the efficiency and performance of the resultant system

is far from desirable.

It is recommended that in order to produce working systems,

involvement of experts is vital. They should be part of the team (consisting

of programmers and decision-makers) that is involved in such projects. In

this way, they would be willing and are available to provide the knowledge.

Once the knowledge which is a vital ingredient of AI systems is obtained, it

is important to be able to represent it in the best possible way.

4.3 Representina Knowledae

The philosophy of AI planning systems (or AI systems in general) is

centred around the manipulation of knowledge. Therefore when attempting

to build AI systems, it is essential to know how and in what form knowledge

Chapter 4. AI Techniques For Assembly Planning Page 76

can be stored. In contrast to conventional computational methods where the

knowledge of a problem is implicit in the algorithm (e.g. a program which

manipulates data from a record will not work if the record structure

changes), AI systems manipulate knowledge that is explicitly stated in a

specially designated area normally known as a knowledge base. Examples

of some common representation techniques are: production rules, semantic

networks, frames, objects, scripts and predicate logic.

4.3.1 Production Rules

Production rules can be used to represent knowledge and they are a

popular method of knowledge representation. They were first used by

Newell and Simon for modelling human cognition [48]. The basic idea is

that the database consists of rules called productions in the following format

if A then B

where A is the premise (condition or antecedent) of the rule,

B is the consequence or conclusion.

An example of a production rule is:

if (table is clear) then

(put the block labelled A onto the table).

Chapter 4. AI Techniques For Assembly Planning Page 77

Sometimes the rule can be written as: A -> B (' - > 'is read as imp/ies)4.

Due to the structure of production rules, they are considered to be a

natural way in which people express certain types of knowledge, e.g.

statements about what to do in predetermined situations. The ability to add

or delete individual production rules independently and thus allowing the

system to be built in a modular way is also an advantage of this

representation technique. However as the number of production rules

increases, there is a large number of interactions between rules which may

cause problems like inefficiencies (slowing down the response times) and

difficulties in tracing the flow of the system. While production rules are

naturally good for representing situation-action type of knowledge, they are

however poor at expressing algorithmic knowledge. This is due to the

isolation of production rules (they do not call one another) and the uniform

size of the productions (i.e. no subroutines where one production may be

composed of several sub-productions). In such cases, other programming

languages offering the use of function calls and subroutines may be a better

choice. Production rules are often used in AI programs to represent a body

of knowledge about how people do a specific real world task like in medical

diagnosis or mineral explorations. Planning knowledge can be thought of as

a type of situation-action knowledge e.g. if the top block A is clear then put

block B on top of block A. Therefore the assembly planner in this project is

based on production rules.

4 It .110 relCmble •• ProloB rule .. iIIultrated in Se~tion 4.5.1.

5 The MYCIN .ystem whi~h i. uaed in aiding tho di.goo.i. and aele~tion of therapy for patienll with bateremia or
meningitis i. a famous eXllmplo of • produ~tion rule 'yltom.
The PROSPECTOR program ha. boon ulCd to help locate depo.ita of aeveral mineral',like copper and uranium.

Chapter 4. AI Techniques For Assembly Planning Page 78

4.3.2 Semantic Networks and Frames

Semantic networks were originally developed to support the work of

natural language processing. This formalism consists of nodes and arcs

which link these nodes. The nodes represent objects or concepts about a

problem and the arcs represent the relations between them. A simple

example of a semantic net is illustrated in Figure 4.3.

isa
bearl ·IL...-_be_ar_i_ng_--,

Figure 4.3 A Simple Semantic Net

The simple fact that bear2 is a bearing is represented by the semantic

net in the above figure. In semantic networks, knowledge is ordered in a

tree-like structure usually with a top level node representing all objects.

Chapter 4. AI Techniques For Assembly Planning

Fi&Ure 4.4

~y~.
I press I ~

A Semantic Net to lllustrate

Inheritance.

Page 79

From Figure 4.4, the is a and instance relations can be used to

represent property inheritance which allows the building of specific models

from generic ones. In the above figure, bear2 is a specific instance of

bearings and bearings is_a kind of component. Semantic nets were used by

Jamie Carbonell in his tutoring program, SCHOLAR which answered

questions about the geographical information stored in the net [49].

In contrast to logic (see section on Predicate Logic), there is no fixed

notion of what a given representational structure in a semantic net means.

The reasoning in semantic nets is governed by the procedures that

manipulate the network. A reasoning mechanism that is used most widely is

based on matching network structures. A query in the semantic network

system is matched against the network database to see if such an object

exists. For example, from Figure 4.5, if the question, What are the

Chapter 4. AI Techniques For Assembly Planning Page 80

assembly operations? is asked, a network fragment (or sub-net) resembling

the figure below can be formed:

Assembly
operations

X? Y?

Figure 4.5 A Network Fragment

The matching mechanism is able to infer that press and screw are

instances of assembly operations by matching the network fragment against

the network database.

The concept of frames originally proposed by Minsky (1975) was

developed from the early work on semantic nets. Frames are like an

aggregate of network structures. They are based on the idea that new data

can be inferred from previous experience. There are basically two main

types of frames: generic and specific frames. Generic frames represent

knowledge about a general concept and can be thought of as providing a

prototype for information about actual objects. It consists of a type name

and one or more default properties (or slots). Like semantic nets, a specific

frame represents knowledge about a specific object, i.e. an instance of a

generic frame. The specific frame may also inherit some properties (default

Chapter 4. AI Techniques For Assembly Planning Page 81

values) from the generic frames. Figure 4.6 below shows an example of a

specific frame, Le the frame for bearing2. The generic frame for this could

be the bearing frame which holds general information for bearings.

Bearing2 Frame

specialisation of: Bearing
Inner diameter: 4.8cm
outer diameter: 6.8cm
weight: 2SOgms
action: press
tools : manual

Fiwre 4.6 An Example or A Specific Frame

The generic frame is also able to suggest default values for a specific

frame, if there is no contradictory evidence. It is also possible to attach

procedures to the generic model (e.g. a tedious procedure for calculating the

time of an operation) which allows these procedures to be used for specific

frames. An extension of this procedural attachment is the idea of an object

oriented programming system (OOPS). The OOPS is based on the concept

that each item of data (or object) should contain within itself methods to

specify how it can be processed. It also contains generic objects which

dictates how specific objects should behave since it is inefficient for every

object to contain all the procedures.

Scripts are frame-like structures which were developed for

representing sequences of events [50]. They provide a formalism for

representing people's everyday knowledge about stereotyped activities such

as going to a restaurant or driving a car. Thus when confronted with a

Chapter 4. AI Techniques For Assembly Planning Page 82

similar situation, the defaults in a generic script are used. This approach is

used by Carbonell et al for translating stories [51]. The program called

SAM (Script Applier Mechanism) attempts to understand short stories using

a script to guide the interpretation of occurrences in the story. Once the

appropriate script is found, the slots are filled with the appropriate

information from the story. Based on this information, the system is then

able to make inferences about similar events.

It is possible to stretch semantic nets or frame representation schemes

too far, i.e. using nodes and links to represent objects and relations in the

world. In such cases, the huge amount of computational effort required to

process such large networks could become unmanageable. Furthermore,

beliefs and ideas which are quite different from facts may also need to be

represented. Semantic nets or frames may not be able to represent such

objects. However the main problem with semantic nets or frames comes

from the inheritance factor which is what made it so attractive a

representation technique in the first place. It fails in cases where there are

no strict inheritance of properties. This is best illustrated by the classic

example below:

All birds canfly

except penguins, ostriches, dead birds,

The other problem with semantic nets is that of multiple inheritance.

For example, a group of engineering components, such as turbine blades

may inherit properties from the engine in which they are installed and

Chapter 4. AI Techniques For Assembly Planning Page 83

another set of properties from the materials from which they are made.

There are no problems if the properties are distinct but there is potential for

inconsistencies of the knowledge if an object inherits the same property from

more than one source. This leads onto the next section which describes how

the above classic example may be solved.

4.3.3 Non-Monotonic ReasoninK

In order to recognise special cases like the example in the previous

section, it is sometimes necessary to change the truth value of a proposition

from say true to false as more information becomes available. This kind of

reasoning is known as non-monotonic reasoning as opposed to monotonic

reasoning where propositions are added but not changed. As can be seen,

human reasoning is clearly non-monotonic. It is often the case that plans

may have to be revised whenever situations change, e.g. re-order the

sequence in a process plan in the light of new constraints. The two most

popular formalisms for this kind of reasoning are circumscription and

default reasoning [52]. Circumscription assumes that no objects exist

except those that are mentioned previously. Thus the statement that all

birds can fly would represent the class of all birds that can fly excluding

those that cannot. In default reasoning, guesses are made in the absence of

contradictory evidences. Hence until some animals (such as penguins) can

be found to contradict the statement that all birds can fly, it will be assumed

that the statement is correct. The STRIPS representation also made use of

default reasoning by assuming that the actions that are performed will not

Chapter 4. AI Techniques For Assembly Planning Page 84

change any of the system's beliefs about the world states except those that

are explicitly listed in the description, i.e. add and delete lists.

The Truth Maintenance System (TMS) by Doyle [53] is one of the

fIrst systems that support non-monotonic reasoning. In his system, those

propositions that are currently true are marked as in and those that are not

currently true are marked as out. Thus as new information or knowledge

become available, a proposition that is in may be changed to out and then at

a later date changed back to in should information becomes available again

to support its truth. The system has to restore consistency whenever a

contradiction occurs. A form of backtracking, dependency directed

backtracking is used to maintain these markers. Instead of backtracking in

a chronological manner, dependency directed backtracking records

dependencies as the search progresses to allow a guided search using these

dependencies.

Doyle's system is a justification based reason maintenance system. A

belief is held to be valid if it is supported by a set of valid reasons for that

belief. A datum is represented by the TMS as a node which is assigned a

support status of being either in or out. Every conclusion derived along

with the antecedents to that conclusion are stored as justifications. For

example, given a rule: A- > B and the fact B, in order to conclude A, both

the rule and fact are needed. Hence these are both recorded in the system.

Given a new fact, if the antecedents of a rule are satisfIed then the

consequent is accepted. A node for that consequent would be created and its

Chapter 4. AI Techniques For Assembly Planning Page 85

justification recorded in the in list. A node is said to be in if at least one of

its justification is currently valid. Otherwise it would be out if it has no

valid justifications. A variation of this is an assumption based TMS. In

this system the underlying assumptions made for the facts are also stored in

addition to the justifications. For example, given the rules, B < -- A and

A <-- C, the assumption of C is sufficient to conclude B. Hence C is

recorded as an assumption to conclude the truth of B [54].

The blackboard approach first developed in the HEARSAY-II speech

recognition system is also used to model non-monotonic reasoning [55].

The blackboard system consists of a set of independent modules known as

knowledge sources. Each of these knowledge sources contain specific

knowledge about a SUb-portion of the system and the blackboard is a shared

data structure which all the knowledge sources have access to. In this way,

the blackboard is rather like a manager overseeing the activities of a

complete system and could maintain consistency of the knowledge by

marking the data like Doyle's Truth Maintenance System. Since the

knowledge sources are kept as separate modules, different inferencing

mechanisms can be used for each of these modules. This is useful in cases

where the characteristics of these modules are very different and may

therefore require different inferencing mechanisms. Due to its inherent

modular structure, the blackboard approach is said to be suitable for

implementing large AI systems.

Chapter 4. AI Techniques For Assembly Planning Page 86

4.3.4 Predicate LoKic And ProlOK

As mentioned in Chapter 3, logic can be used to represent the

meaning of sentences or knowledge. It is one of the first representation

scheme used in AI work. The derivation of new facts from old facts can be

mechanised using an automated version of theorem proving (see Appendix

i). Hence theoretically, the deductions made here are guaranteed to be

correct. This is what other representation schemes (such as semantic nets

and frames) are not able to do.

Propositionallogic is a form of formal logic. A typical proposition

is Yen is lames's mother. It is possible to assign the truth value true to this

proposition6 • Hence propositions are those things that can be either true

or false. However individual propositions like these are not very

interesting. Thus sentence connectives such as and, or, etc are used to join

propositions together. If A and B are two propositions (or formulas) then

the following definitions apply:

A and B is true, if A, B are both true.

A or B is true if at least one of A and B are true.

A implies B is true unless A is true and B is false.

not A is false if A is true and vice versa

6 The notion of 'lnIth' il fundamentallO logic Iyltetnl. TCrmllUch .. Jame,', mOlher and Jame,"food are not
propo.itiona bccaulC it i. not po.aible lO a •• ign lnIth valucl lO them,

Chapter 4. AI Techniques For Assembly Planning Page 87

Thus given the formulas and their truth values, it is possible to make

inferences and draw conclusions. For example, given:

AorB

and not A

then: B is true.

Further refinements of this system to allow more expressions to be

represented is necessary, i.e. represent not only objects and relationships

between objects but also generalise these relationships over classes of

objects. This feature is found in Predicate Calculus which is an extension

of Propositional Calculus. In addition to the use of connectives, it allows

the representation of specific objects or individuals. An example of a

predicate is happy and happy(james) is a predicate with one argument.

Predicates can have more than one arguments. For example,

mother(yenJames) is a predicate with two arguments. The notion of

quantifiers are also used to refer to facts that are true of all or some of the

members of the group. These are variables and quantifiers. A variable7 is

used to represent individuals that will vary with time. As mentioned in

Chapter 3, there are two types of quantifiers namely, the universal quantifier

(V) to represent all the members and the existential quantifier (3) to

represent some of the members of the group. Quantifiers are a means of

talking about sets of individuals and what is true of them. As with

propositional logic, it is possible to make inferences except that Predicate

Calculus provides a more expressive way of saying things. In order to

7 Thi. i. like. variable in computer prognllll.

Chapter 4. AI Techniques For Assembly Planning Page 88

allow all these to be represented and manipulated in a computer, the

programming language, Prolog was developed.

The main drawback of such an automated system is that the

manipulations (e.g. the procedures in resolution (Appendix i» can become

clumsy when there are large number of facts in the system. This leads to a

combinatorial explosion in the possibilities of which rules to apply to which

facts at each step of the proof. It seems more knowledge is needed to

determine which facts are relevant in what situations in order to guide the

proof. In Prolog, the selection of which rules to apply first is determined

in a depth-first manner, i.e. rules that are ordered first will befired first. In

a way this prior knowledge is incorporated by the programmer when he/she

orders the rules in the system. The sequence of the selection of rules can

be altered by using the cut (written as !) facility which will be described

later.

4.4 Processinl: Knowledl:e

There are two main strategies to processing knowledge, either deduce

a solution from a set of initial data or prove that the goals are true. These

approaches are called forward chaining and backward chaining respectivelyB.

In backward chaining, the goal is usually broken down into sub­

goals which makes it easier to prove (Le. if all the sub-goals have been

B How thelO eould be done in automated theorem proving 'Yltema are deaeribed in Appendix i.

Chapter 4. AI Techniques For Assembly Planning Page 89

proven then the goal is proved). This approach is best for solving problems

which aim to pick the best choice from many enumerated possibilities, e.g.

identification and diagnostic systems. As for forward chaining, it is usually

used when it is not possible to enumerate all of the possible answers before

hand. Some examples are configuration problems like circuit board design

and offiee space layout. The following example is used to demonstrate how

these two strategies work.

Example:

rule I : if john holds a studentship then he is a full-time student.

rule2: if john is a full-time student & he is a post-graduate student then his

maximum demonstration load is 10 hours per week.

facti: john holds a studentship.

fact2: john is a post graduate student.

Goal : john has a maximum of 10 hours of demonstration per week.

In backward chaining, the goal matches with the right hand side of

rule2, so conditions of rule2 must be satisfied. Iohn is a post graduate

student, so it matches with fact2. Thus only the sub-goal, john is a full-time

student remains. In the next cycle, this sub-goal matches with rulel which is

then reduced to - john holds a studentship. This matches with facti and so

the original goal that john has a maximum of 10 hours of demonstration per

week is indeed true.

In forward chaining, starting from facti and faet2, rulel can be fired

Chapter 4. AI Techniques For Assembly Planning Page 90

because factl matches its left hand side. Another fact, john is a full time

student is then added to the set of facts. Rule2 can now fire because its left

hand side matches the fact: john is a full time student and fact2. Thus john

has a maximum of 10 hours of demonstration per week is proved.

The graph that is generated in a forward search can be very large as

the number of possibilities increases. The backward chaining approach is a

more directed approach and would be a more suitable reasoning mechanism

for assembly planning problems.

4.5 Pro2rammin2 Techniques

Besides using a computer language, planning knowledge can also be

modelled using an expert system shell. The former approach is used when

more flexibility and control is needed, i.e. the designer of the system can

make changes more easily and thus has more control over factors like the

output display, input format, internal representation format and manipulation

techniques. However using a computer language means that the

development time is longer and sometimes more expensive than the latter

approach (because the programmer must have knowledge of the

programming language). There is a wide range of computer languages to

choose from, some are better in certain aspects9 than others. Prolog and

Lisp are the two most popular languages for AI applications. Originating

9 BccaulIO they havo evolved from thOIO aapeCIa.

Chapter 4. AI Techniques For Assembly Planning Page 91

from France around 1970, Prolog is popular amongst the European AI

communitylO. Written by McCarthy, LISP is the most popular AI language

in the USA 11. AI languages consist of functions for manipulating symbols

which are central to modelling AI representation techniques outlined earlier.

While it is recommended that one of these so-called AI languages be used to

develop AI applications, it is also possible to develop AI based programs

using more conventional languages like Pascal or C, except that in these

cases the development time may be longer because the programmer may

have to write more lines of code. An example of a process planner that is

said to incorporate AI techniques which is written in PASCAL is TOM [56].

Sometimes the performance of systems developed in AI languages is not as

desirable as systems written in conventional programming languages. This

is however changing with the introduction of say, LISP machines which are

dedicated machines for AI applications. Nevertheless these machines present

problems of hardware compatibility.

Today shells have become a popular tool to produce prototype expert

systems. The designer has a wide range of expert system shells available in

the market to choose from, e.g. KES, CRYSTAL, GOLDWORKS12.

These tools usually provide the programmer with a knowledge representation

structure as well as a means of manipulating the knowledge. Hence the

programmer only needs to add in the domain specific knowledge that is

relevant to his/her particular application. As mentioned, they are very

10 Prolog w .. invented by A1an Colmenuer and hil auociatel al a relult of reaearch in logi.: prognmming.
II LISP il all about repreaenting and manipulation of information in liltl. Prolog il a relOlulion theorem prover.
12 KES providel three main infcreDl:e mcchanilma, each of which are marketed .. a aepantO entity. CRYSTAL
il a production Nle bued Iy.tem with menu type uaer interface. GOLDWORKS il a hybird environment
providing a mixture of repreaentation achemel: fnmel, production Nlea, OOP. All thele lIIe111 are aVlilable on
peraonal computen.

Chapter 4. AI Techniques For Assembly Planning Page 92

useful for developing impressive prototypes in a short period of time.

However the programmer would be limited to the knowledge representation

technique and manipulation technique built into the shell. Shells also have

the reputation of being only good at solving problems that they are originally

designed for. For example, the production rule system of the KES shell is

ideally suited to diagnostic applications. Hence examples from the medical

or biomedical domain have been used to demonstrate its power.

The next option is to provide a toolkit where there is a combination

of representation and manipulation techniques for the programmer to choose

from 13 • These toolkits usually cost a lot more (since they provide more

features) and sometimes require sophisticated and dedicated machines to run

on. Examples of some tool kits are ART and KEE.

It was decided to use Prolog in this project because:

i) other earlier AI planners used predicate logic which is the basis of

Prolog;

ii) production rules are an integral part of the planning process and these

are easily implemented in Prolog;

Hi) backward chaining is an inherent feature of Prolog;

iv) Prolog is widely implemented on different hardware platforms;

v) prior experience of Prolog.

13 Thi. i. partly addreued by the availablity of Ihell. like GOLDWORKS. A. IIlIIchine. become more
aophiaticated. the pOllibility of providing more feature. in Ihell. have become a reality and aometime. a
necce.ity. Hence the divi.ion between toolkita .nd abeU. i. not 10 clear any more.

Chapter 4. AI Techniques For Assembly Planning Page 93

Some of the basic features of Prolog can be found in Appendix L

4.5.1 Assembly Plannin~ In PrQIQ~

A Prolog program can be regarded as a set of clauses (Le. the

knowledge base) and the Prolog interpreter as a theorem proving program

which performs deductions on request from that set of clauses (see Appendix

i). Since Prolog is restricted to accept only positive Horn Clauses,

somehow one negative Horn clause has to be added for the proof to be

possible. This is because resolving two positive clauses would produce a

new positive clause and one consequent. However in refutation, it is needed

to proof the empty clause and the consequent cannot be got rid of unless it is

resolved with one consequent-free (negative) clause. Having two

consequent-free clauses is of no use. Once one has been used, all the

resolution products from then on will be negative clauses and positive

clauses are needed to resolve these with. So the second negative clause is

never used. Similarly for three, four, etc. This is the reason why Prolog

restricts its database to positive Horn clauses. To allow resolution to work,

one negative Horn clause is temporarily added. Hence from the user's point

of view, this clause is the query, i.e. like a statement of what (s)he wants to

proof [57].

In the assembly planner, this query is in the form of a description of

the goal state of the problem. The planner then attempts to perform the

resolution proof (Le. that the negation of the goal state leads to an empty

Chapter 4. AI Techniques For Assembly Planning Page 94

clause) using the Prolog interpreter. If the proof succeeds then the goal state

(or the query) is true, and as a result of the proof certain variables become

instantiated and the plan to achieve the proven goal state is produced as a

result.

For example, in the description of the goal state, the assembly of a

mating pair can be represented as follows:

assemble (Al,A2,A3,A4).

where (AI,A2) & (A3,A4) is a mating pair,

AI, A3 refer to the part names,

A2 & A4 refer to the features on the Al & A3 respectively.

So in particular, the fact that the cap of a ball point pen is covering

the bottom end of the pen can be represented as follows:

assemble (cap,hole,pen, bottom_end}.

where (cap,hole), (pen, bottom_end) is a mating pair.

Similarly, the features on the parts may not be at the assembled state

and the predicate, clear can be used to represent the opposite state to

assemble. Hence,

clear(pen,bottom_end).

means that the bottom end of the pen is clear, i.e. not covered.

Chapter 4. AI Techniques For Assembly Planning Page 95

4.6 Conclusion

Assembly sequencing is a complicated activity that could be solved

by decomposing the problem in order to reduce its complexity. This can be

done by problem reduction where the problem is decomposed into smaller

manageable sub-problems as in the sub-assemblies of the gear box of a car.

The problem of finding a possible sequence of assembly actions can be an

imposing one because as the number of parts and features increase, the

number of possible mating combinations is increased enormously. An

alternative to the algorithmic approach is to use AI planning techniques.

In order to apply AI planning techniques to assembly process

planning, an appropriate knowledge representation scheme as well as

knowledge processing strategy are essential. As most of AI planning

research is based on a logical approach using state space representation, a

good starting point is to follow this method initially. The main advantage of

expressing programs in logic is that they can be defined in machine­

independent human oriented terms. This means that they are easier to

construct, i.e. converting from problem definition and thus easier to

understand. The AAP described in the next chapter is implemented in this

way, i.e. working from the definitions to obtain the code. Hence these

programs are also easier to improve and are therefore more adaptable to

other purposes.

Even though planning knowledge may be more akin to the formalism

offered by production rules, semantic nets and the other representation

Chapter 4. AI Techniques For Assembly Planning Page 96

techniques mentioned above are also attractive representation schemes in

their own right. These representation schemes have evolved as a result of

the need to tackle certain specific problems, e.g. scripts for natural language

understanding. Semantic nets and frames are very useful in situations if the

inheritance factor is an important feature of such applications. Today it is

usual practice to make use of a hybrid representation scheme which includes

a mixture of these representation schemes (which have their own individual

merits for certain types of situations).

At the same time, increased capacities in terms of memory and

processing speed, of AI toolkits enable say, the blackboard architecture to

be adopted when developing a manufacturing system. In the context of

manufacturing, with the trend towards integration the concept of the

blackboard approach is attractive to develop a fully integrated system. With

lessons learnt from the problem of the situation of the islands of

automation, the various functions within a manufacturing system can neither

be built nor exist in isolation any more. The complete system has to be

conceived and implemented as a whole, rather like the planning problem.

Finally, for the reasons mentioned above, predicate logic, backward

chaining and hence Prolog was used for the development of AAP in this

project.

Chapter S. An Automatic Assembly Planner Page 97

CHAPfER5. AN AUTOMATIC ASSEMBLY PLANNER

5.1 Introduction

As mentioned in Chapter 2, since the process planning task is a

subject that is not well written about, the starting point of the project

therefore involved making field trips to the process planning department of

ROVER in order to obtain some information on the process planning task.

After the initial meeting, a number of similar meetings were set up

subsequently with the main objective of acquiring the relevant knowledge in

order to implement a process planning system.

5.2 Results of Field Trips

The process planning department in the company visited is divided

into various sections with each one being responsible for a particular

component (e.g. gearbox, suspension, etc) of the car. The average size of

each section is around three to four members of staff. The initial stages of

process planning consist of making rough process plans to obtain estimates

on the costs of production. Rough costings are then made against each

operation and part listed in the rough process plan. The costings have to be

approved before actual production commences. The main activities of the

process planning staff concerned are usually involved with producing

Chapter S. An Automatic Assembly Planner Page 98

drawings and process plans on the sub-assemblies concerned.

Implementation of a complete process planning system is a long term

exercise and requires full commitment from the company concerned in order

to relieve an expert (or more experts) for the project.

As a starting point, a little planner was developed utilising the

techniques of some of the AI planners described in Chapter 3. After

gaining some exposure to the work of process planners, it was decided to

investigate further a formalism for the basis of process planning. The

planner had to be based on more general concepts in order to avoid the

narrow path taken by previous researchers who had concentrated on planning

for very specific parts in a set environment. Description of the Automatic

Assembly Planner (AAP) can be found in the following sections. An initial

planner was later extended and revised to cope with some assembly examples

with an emphasis on improving the sequencing process.

5.3 Initial Tests

As mentioned in Chapter 3, the two main types of plan representation

techniques are state space and action ordering plans. AAP was originally

based on the state space representation and then modified to include aspects

of action ordering plan techniques. The main reasons for choosing Prolog

to model the planner have been discussed in the previous chapter. The

objective of the planner is to state the order of operations that must be

Chapter S. An Automatic Assembly Planner Page 99

undertaken in order to achieve a particular assembly configuration. No

attempt has been made at this stage to incorporate the time, costs and other

constraints associated with process planning.

5.3.1 The Test Planner

Using the notion of state descriptions as described in STRIPS, a

simple strategy for a planning program is to pick a single goal to work on.

If it is already true in the initial state then proceed with the next goal

otherwise make that goal true by choosing an action that will make it true.

It may be necessary to recursively try and make it true (e.g. achieve its pre­

conditions first if it is not already true in the intial state). When this goal

has been satisfied then the next goal is tried until all the goals in the goal

state description are true.

This simple strategy is summarised as follows:

i) check if the goal state already exists. If yes then the goal is achieved

and nothing else needs to be done otherwise attempt to achieve that

state.

ii) achieving the state:

check if there is anything obstructing or preventing the achievement

of this state. If none then attempt to achieve that state otherwise

unblock or remove obstac1e(s) in order to achieve state.

Chapter S. An Automatic Assembly Planner Page 100

iii) Repeat for all the goal states in the problem.

iv) Print the actions (produced as a result of achieving the above goal

states)

An example of the sub-assembly of the piston-connecting rod which is a sub­

assembly of the gearbox is chosen to demonstrate the test planner. This is

illustrated in Figure 5.1.

piston

/
connecting rod

Finre 5.1 The Piston-Connectin.: Rod Sub-Assembly

Figure 5.1 also represents the configuration of the goal state of this

sub-assembly, i.e. the connecting rod is inside the piston and the gudgeon

pin is used to secure the connecting rod to the piston. An initial state of this

configuration where the various part are separate is illustrated in Figure 5.2.

Chapter S. An Automatic Assembly Planner Page 101

piston
r-----,/

bl
/ bl

\

connecting-rod bl

crS
gudgeon pin

Fieure So2 An Initial State of Piston-Connectine

Rod Sub-Assembly

As mentioned in Chapter 4, the mating parts and their features have

to be considered for assembly purposes. Working from the above example,

the relevant features are named as indicated in Figure 5.2. Thus a1 of

piston mates with a2 of connecting rod and b1 of connecting rod mates with

b2 of the gudgeon pin. The next stage in the analysis of the problem

involves identifying relevant predicates and actions for representing the

configurations. The predicate, inside was used to denote the fact that the

gudgeon pin is inside the piston and the action to achieve this is, pushin.

The opposite of pushin is therefore pushout. The description of the initial

state has to be stored as facts that are true at the start of the planning

process. A database called world is used to contain the descriptions of the

Chapter S. An Automatic Assembly Planner Page 102

initial state. Hence the world database should contain the following facts at

the initial state:

clear(al,piston, in).
clear(a2,rod,out).
clear(bl,rod,in).
clear(b2,pin,out).

in and out in the above facts were used to indicate whether a feature is

internal or external to the part respectively. The next stage of the exercise

involved defining the relevant pre-conditions and post-conditions. An

example of a pre-condition defined in Prolog is as follows:

result(pushout(V, W,X, Y):-
seto!(inside(V, W,X, Y), world(inside(V, W,X, Y)),Xl),
Xl = [inside (V, W,X, Y)},
assertz(action(pushout(W, Y))).

This can be interpreted as: the result of pushout part W from Y

succeeds if feature V of W is inside feature X of Y. The seto! predicate is

used to find the information in world that matches this description. If it

succeeds then the pushout action is asserted in the action database which

keeps a record of the actions. The assertz1 system predicate means to add

to the end of the corresponding database. The opposite to this, i.e.

removing a fact from the database is the retract system predicate. Other pre­

conditions can also be defined in this manner.

1 I8ICN i. a ay.tem predicate that will add facta to the beginning of the databalC and I8ICI1Z will add facta to the
end of the databalC. Similarly for retract.

Chapter S. An Automatic Assembly Planner Page 103

It should be noted that the retract predicate may only mark

that particular predicate for removal rather than physically removing it. The

actual removal would only occur when the top level goal is solved. For

good programming practice, these predicates that will modify the initial

state of the Prolog clauses and hence the possibility of modifying the

intended meaning of the original program should be avoided, if possible.

As seen later in the revised planner, system predicates of Edinburgh Prolog

such as record and recorded were used instead to set up an internal database

for manipulating data.

Similarly a post-condition of the planner can be defined in Prolog as

follows:

staJe(inside(V, W,X, Y):­
result(pushin(V, W,X, Y)),
retract (world(clear(V, W,out))),
retract(world(clear(X, Y,in))),
asserta(world(inside(V, W,X, Y))).

This can be read as: to achieve the state of inside (V, W,X,Y), it is the

result of pushin(V, W,X, Y). The rest of the sub-goals are used to update the

world database after execution of the action, pushin. On the other hand, the

result predicate describes the pre-conditions of the action, pushin and has to

succeed before the respective databases can be updated accordingly, i.e. the

state clear(X, Y,in) will not be true after achieving the pushin action and the

Chapter S. An Automatic Assembly Planner Page 104

fact that feature V of W will be inside X of Y will be inserted into the

database, world. The goal state description can be defined in Prolog as :

inside(a2,rod,al,piston),
inside(b2,pin,bl,piston).

This means that the connecting rod is inside the piston and the mating pairs

are {(a1,a2),(b1,b2)}, i.e. feature a1 of the piston mates with feature a2 of

connecting rod and feature b 1 of piston mates with feature b2 of the gudgeon

pin and so on . The pin is inside the piston with mating features as (b 1 , b2).

The action list associated with the configurations as illustrated in Figure 5.1

and 5.2 is given below:

action (pushin(rod,piston)).
action (pushin (pin,piston)).

The above action list means that the rod should be pushed into the piston,

followed by the pin being pushed into the piston. However in the actual

environment, the initial state is as shown in Figure 5.3. The assembly

worker has to remove the pin from the piston before actually assembling the

connecting rod.

Chapter 5. An Automatic Assembly Planner Page 105

bl

al

connecting rod

Fi&Ure 5.3 Actual Initial state of Piston Connectin& Rod Sub-

assembly

In this case, the actual action list is therefore:

action (pushout(pin ,piston)).

action (push in (rod, piston)).

action (pushin (pin ,piston)).

A complete listing of this test planner can be found in Appendix iv.

This simple planner only works correctly if the sub-goals are already ordered

otherwise the action list could be wrong as shown in run-time example 2 of

Appendix v. In most real cases, the sub-goals are not ordered and so

planning involves considerable trial and error and sometimes undoing

progress (as shown in Sussman's example) that has been achieved. Thus

extra planning knowledge such as the ability of finding out what other sub-

Chapter S. An Automatic Assembly Planner Page 106

goals there are and also checking if they conflict with the present

assumptions before attempting to achieve any given state is needed. This

type of planning knowledge is often regarded in the literature as non-linear

planning knowledge. Thus some kind of ordering procedures are required

before the basic concept (Le. that of achieving states) of the planner can be

applied. In order to examine the planning process globally and not locally as

in the simple strategy described earlier, action ordering planning knowledge

has to be added to the planner.

In addition, the representation of the states (Le. goal and initial) can

also be a problem. The determination of what predicates and how many

arguments to best represent the state descriptions are essential. Based on the

part-feature pair description, a state description with four arguments would

have been adequate. However an addition of two more arguments is made

to indicate an extra pair, Le. the part-reaction face pair as reaction faces are

often used in manual assembly and which reaction face to use is indicated as

early as the design stage. Hence extra information on which reaction face to

use and where it is, Le. the name of the part where the reaction face is has

to be added as well. If the assembly does not require reaction faces then

these two arguments will be written as nil,nil.

At the same time, the identification of individual mating surfaces was

found to be too detailed and clumsy as the number of parts (in a sub­

assembly) increases so more general state descriptions were developed.

Hence instead of using predicates like, inside, a more general state

Chapter S. An Automatic Assembly Planner Page 107

descriptor, i.e. assemble was used. The opposite state of assemble is clear.

The representations for the state descriptions are

clear(Part,Feature) and

assemble(Partl,Fealurel,Part2,F ealure2 ,Reaction Jace ,Reaction_object).

Historically much effort has concentrated on limiting the undoing of

goals as illustrated by Sussman' s example. A variety of planning heuristics

are scattered in a number of AI planners which were used to alleviate this

problem. The decision facing the author was which planning heuristics to

use and therefore which AI planners to adopt. TWEAK was used because

most of the other AI planners were complicated and ill-defined. Since it also

claims to be a complete and correct planner2, it therefore stands a better

chance at solving general planning problems. Hence if it can solve general

planning problems, it should be capable of solving assembly planning

problems as well.

5.4 Approach Qf The Automatic Assembly Planner

AAP consists of both the state space and action ordering

representations. The first part is like an action ordering planner because it

attempts to re-order the sub-goals (which are the input to the planner) into

2 Thi. means that if it produce. a plan for a problem, the plan willlOlve the problem .nd if the planner fail. to
produce a plan then there i. no plan that willlOlve the problem.

Chapter 5. An Automatic Assembly Planner Page 108

a list of sequential (or ordered) sub-goals. Once this has been achieved the

basic idea of achieving states described above can then be applied to produce

an action list. Incidentally this action list is produced as a result of the

proof that the goal state is true (from the resolution principle). An overview

of the Automatic Assembly Planner (AAP) is given in Figure 5.4.

Fieure 5.4 Overview of AAP

The root (or topmost goal) of the planner is go and consists of three

sub-goals, i.e erase_aICrecords, Jrontend and initial. erase all records is

for housekeeping purposes in order to reset the planner to the starting state.

It erases all records that may have been set up previously by the planner.

Initial is used to set up the initial states of the sub-assemblies, i.e. state

descriptions based on Figure 5.3 will be recorded in the internal database,

world. That means the key to this database is world. Frontend invokes the

actual planner itself. It consists of two main sub-goals, input ~oals and

goals. The '0' in sub-goals of input~oals is used to indicate that it is an

Chapter S. An Automatic Assembly Planner Page 109

option. Input...,goals is used to read in the goal state description. There are

four options here, i.e.

i) input a goal state description;

ii) ok to indicate end of goal state description;

iii) list_all to obtain a listing of the records in the world database.

iv) stop to terminate the planner.

Once this has been achieved, the next stage is to invoke the planner

by calling goals. Goals is further divided into two main parts, i.e. the

planner itself which is used to order sub-goals and do is used to produce the

action list as described in the test planner previously.

The planner can be divided into three main parts which are:

i) appending to the world database the goal state descriptions and these

are input by the user into the newgoal database;

ii) sequencing of the goal states to generate a currentgoal database;

iii) actions to be taken in order to generate an action list and updating

of the world database at the same time.

Chapter S. An Automatic Assembly Planner Page 110

5.4.1 Initialisation: Input of Goal States

The clause initial at the beginning of the planner is to record the

initial states of the components to be assembled into a world list. The

initialisation of the input goals is currently embedded in the program. For

practical use, this would be replaced by either extraction of data from

another system or interactive input. At the current state of development of

the planner, any changes required in the initial configurations would have to

be made by modifying the actual initial clause itself.

This part of the planner is mainly procedural and involves the

instantiation of the initial states. The input of the goal states is defined in

Prolog as follows:

input....8oais(Goais,Option):­
read(G),
((G == stop,
Option = stop),'
((G = = list,
list_all (world),
Option = list, I),'
((G == ok,
Option = ok,
findall{Y,recorded(newgoal,Y,.J,Goals)),·
((recorded(newgoal, G,.J,·
recordz(newgoal,G,.J),
inpUl....EOals(Goals, Option))))).

Chapter S. An Automatic Assembly Planner Page 111

The clause inputJoals(Goals,Option) together with the built-in

predicate read (G) allows each goal state to be typed in from the keyboardJ •

The format of a goal state is defined as follows:

assemble(Objectl ,F acel , Object2,F ace2 ,Reaction_object ,Reaction Jace}.

where Object1,FaceI and Object2,Face2 indicate the two mating

components and their mating surfaces and Reaction_object,ReactionJace

means between which component and surface the reaction force is to act. As

mentioned earlier, if this specification is not required in a goal state, it is

input as nil, nil.

For example, assemble (bear2, whole, shaft Jace2,shaftJace3). means

assemble bear2 to the feature face2 of a shaft with reaction face at face3 of

the shaft, and assemble (pin, whole,piston, t_hole, nil, nil). means assemble the

pin to t_hole of the piston (see Figures 5.8 and 5.9, Pages 121 & 122).

Each input goal state is checked immediately against the newgoallist

to check if it is a double entry using the built-in predicate

recorded(newgoal,G,...J. If it is not, then it is recorded onto the list using

J Standard implementation. of Prolog do not provide much in the way of asaiatance to the Prolog programmer
to design sophisticated user interface.. Some of the later implementationl do provide tools for user interface
delign, e.g. the Prolog that runa in the Windowl 3 environment marketed by Logic Programming Auociatel, UK.

Chapter S. An Automatic Assembly Planner Page 112

the built-in predicate recordz(newgoal,G,.J. recordz will record a goal to

the end of the list. By using a recursive approach, i.e. calling the clause

inputJoa1s(Goals,OptionJ again, the program will automatically prompt for

input of the next goal state.

Finally, the three control options are provided by looking for three

specific words from the input. If the input is ok, it will instantiate the

variable Option as ok which indicates that the process of inputting goal states

is complete and the planning can proceed onto the next stage, i.e. stage 2 of

the planner by calling goal(GoalsJ. If the input is stop the program will be

aborted. If the input is list, it will call the predicate list_all(worldJ to

display all the initial states that have been recorded so far in the world

database.

5.4.2 SeguencinK

As established in Chapter 3, the main ingredient in planning systems

is the maintenance of the truth of certain conditions at the relevant positions

when ordering goals4• The task of sequencing is therefore to maintain the

truth of all the sub-goals at each appropriate point in the planner. Hence

"ni. i. known a. the MTe in TWEAK

Chapter S. An Automatic Assembly Planner Page 113

based on the truth criteria, the task of sequencing (Le. reordering of the sub­

goals) consists of four main parts which are summarised as follows:

i) Elimination of any redundant goal states and checking for conflicting

goals.

ii) Generation of a star list which is defined to be a list of pre­

conditions that are not present in the initial state but may be

necessary for achieving the goal states.

iii) Ordering of the goal states.

iv) Inserting the necessary goal states from the star list to the existing

ordered goal states.

The top level goal of the sequencer is defined in Prolog as follows:

goal(V):-

redund _ critic(V, Conj),
((var(Conj) ,
findall (X, recorded (newgoal ,X, J, U),
addition(U), , .,
sorting,
((var(conjlict),
jindall(Y,recorded(currentgoal'Y,J,fZJ),
jindall(S,recorded(star,S'J' W),
insert _star(W,Z),
jindall (1', recorded (currentgoal, T, J ,[C]),
ni,
write('The Ordered Goal is: '),

Chapter S. An Automatic Assembly Planner

ni,
write (C), nl,nl,

.),'
(ni,
write(,Conflicting goals cannot be achieved '),
nl,nl)).

Page 114

The variable, V is instantiated5 to a list containing all the goal states

in the newgoal list before any sequencing occurs. After eliminating

redundant goal states (if any) by the predicate redund_critic, the updated

new goal list is passed into the variable, U by using the findall predicate.

Generation of a star list is done by the predicate, addition. Then the

predicate, sorting sorts out the appropriate order of the goal states from the

newgoallist. The variable, Z is instantiated to the currentgoallist whereas

W is instantiated as the star list by the corresponding findall predicates.

The final part of the sequencer is done by the predicate insen _star which

inserts any necessary goal states from the star list to the cu"entgoal list.

Finally the variable, C is instantiated as the ordered goal list which is written

onto the screen before being passed onto the next stage of the planner which

derives the appropriate action list.

5.imilar to initialiaation in conventional programming language •• Recall the difference. between thelC, i.e.
dellnlctive aaaignmenta in conventional programming languagea i. not relevant in logic programming.

Chapter S. An Automatic Assembly Planner Page 115

5.4.2.1 Elimination Qf Redundant Goal States And

Conflict Check

Definition:

A redundant goal state is defined as a goal state which happens to be

one of the post-conditions of another goal state. A conflicting pair of sub­

goals exists if one of the sub-goals is deleted by another sub-goal and vice

versa, i.e. only either one of these sub-goals is achievable but not both.

Figures 5.5 and 5.6 are used to illustrate the redundant goal and

conflicting goals situations respectively. In Figure 5.5, there are two goals,

A and B to be ordered. B is a redundant goal if it is a member of the list

containing the post-conditions of A. A conflicting pair of goals, A and B is

said to exist if they clobber6 one another as illustrated in Figure 5.6 where

the A clobbers the pre-conditions of B and vice versa. Another conflicting

goals situation also arises when a goal, A that is achieved in the final state is

deleted by another goal, B which may be a redundant goal of another goal,

say C. If this case is not detected, B may be eliminated from the input list

by the redundant goals check (since it is a redundant goal) and in practice it

means that no plans exist for such cases. Hence a redundancy as well as a

conflict check must be carried out at the same time in order to avoid such

goals being passed onto the next stage of the planner.

6 Thi' tenn i. borrowed from TWEAK.

Chapter S. An Automatic Assembly Planner Page 116

Fi&Ure S.S Redundant Goal Case

and

Fi&Ure 5.6 Conflictin2 Goals Case

The above mentioned checks are made by the redund _critic predicate which

is written in Prolog as follows:

redund_critic([Vll V2J,Conj):­
erase (newgoal, VJ),
findall (X, recorded (newgoal ,X,.J, V),
test(VJ, V, Conf,Redund),
((var(Conj),

redund _ critic (V2 , Conj)),·
I).

redund_critic(ll, Conj):-!.

Chapter 5. An Automatic Assembly Planner Page 117

The approach employed to perform the redundant check is to examine

each sub goal from the newgoal list (which contains the list of goals for

sequencing) in turn and check whether it is a post-condition of the other goal

states. If so then it is a redundant goal and hence will not be recorded back

to the newgoallist. Otherwise it will be put back into newgoallist. This is

done by using the test predicate.

How redund _critic works:

By using the built-in predicates erase andfindall, the head of the list

is taken out from newgoal list. This is to allow comparison to be made

between Vl and the rest of the sub-goals, n. Vl is then tested with V

which contains the goal list (minus the head) for the above mentioned

redundant and conflict goals situations. If Vl and V is found to be a pair of

conflicting goals then this check is terminated (with success) by the cut and

then returns to the top level goal of the sequencing procedure where an

appropriate message is displayed and the planner is halted. Otherwise, the

redund_critic check is continued with the tail of the goal list, i.e. n.
Eventually the whole list is exhausted and the goal, redund_critic succeeds

when the empty list is reached. This is satisfied by the call to the second

redund _critic clause.

Chapter 5. An Automatic Assembly Planner Page 118

follow:

The test clauses used in redund_critic are defined in Prolog as

test(vl,ll,JRedund):­
var(Redund) ,
recordz(newgoal, VI,.J,
! .

test(v'll, J redundant):-!.

test(Vl ,[V21 V3}, Conflict, Redund):­
cond(Vl, V -pre, V -post),
cond(V2, W -pre, W -post),
conjlict_check(Vl, V -pre, V -post, W -pre, W -post,Conjlict),
((var(Conflict) ,

I).

((lnelnber(VI,W-post),
test (VI , V3,Conjlict,redundanr)

),.

(test(VI, V3, Conjlict,Redund)
))),.

The first test clause succeeds when the second term, Le. the list to be

compared with is empty. This indicates that the test check is complete and

hence the goal, Vi is recorded back onto the newgoal list if it is not a

redundant goal (which is indicated by the uninstantiated variable, Redund).

The second clause is also for when the test is completed but this time there is

a redundant goal and hence the goal is not recorded back onto newgoal list.

The last test clause means that if the Conf variable becomes instantiated by

the conjlict _check predicate then the cut is used to end this test. Otherwise

a test is made for redundant goals using the Inelnber predicate. If the

member clause succeeds then, the variable gets instantiated to redund and

test continues with the remaining of the second list, Le V3. This is to ensure

that any underlying conflicts with V3 can be detected. Test is also

Chapter 5. An Automatic Assembly Planner Page 119

continued if the member clause fails, Le. no redundant goal is found and

hence the variable, Redund remains uninstantiated.

The conflict_check clause is written as:

conflict _ check(Vl, Pre1, Pre2, Postl, Post2, Conflict):­
intersect (Prel ,Pre2, W),

filter(W, Wl),
(((Wl = = [J),.

subset(Wl,Postl),·
subset(Wl,Post2)

),
(not(member(Vl ,Pre2)),·

member(Vl,Post2)
),
11· ./1

Conflict = conflict).

In the above clause, filter is used to remove any clear(nil,nil) states

from the list which are generated if there are no reaction faces in that

particular sub-assembly. An alternative to this could be to exclude these

two arguments from the assembly description altogether. Despite increased

programming effort, the nil,nil arguments were included to achieve a

uniform format for the assembly state descriptions .

TWEAK, being a theoretical planner will attempt to achieve all

goals. However in practice, it is necessary to detect conflicting goals before

hand in order to prevent the planner from attempting to achieve impossible

goals. Further, the theoretical implications of TWEAK would have sorted

Chapter S. An Automatic Assembly Planner Page 120

out the redundant sub-goals eventually but from a practical point of view,

this check is needed so that when comparing the final action list against the

ordered goal list, a direct translation would be possible. This can be

illustrated by an example where there are say, five sub-goals, a,b,c,d and e

that have been input to the planner and e happens to be a redundant goal,

i.e. a post-condition of say, d. Figure 5.7 illustrates the difference between

ordered list and action list that would be produced by AAP and TWEAK.

ordered goals with
redundant check

a

• b

+
c

+
d

. t action(l)

" action(2)
action lis

action(3)
action(4)

AAP

ordered goals without
redundant check

a

+
b

+
c

+
d

t
e

I ljCtion list
action(l)~
action(2)
action(3)
action(4)

TWEAK

F1&Ure 5.7 Difference Between AAP and TWEAK

If redundant sub-goals were not eliminated from the input list, they

would also be ordered by the planner. In the above figure, sub-goal, e is a

redundant goal so it is eliminated by AAP. This means that it would be

easier to interpret the action list when comparing it against the ordered list in

Chapter S. An Automatic Assembly Planner Page 121

contrast with the ordered list on the right. From the output on the right hand

side, it seems as though an action had been omitted. In addition, with the

redundant check, it may be possible to reduce over specification of sub-goal

states for an assembly.

Figure 5.8 shows an example of the primary shaft sub-assmebly,

which is another sub-assembly of the gear-box.

reaction face for
bear2

r---

1---

bead bear2

Finre 5.8 Primary Shaft Sub-Assembly

In this particular sub-assembly, when pressing the bearings onto the

primary shaft, the respective reaction faces as indicated in Figure 5.8 are

used. This imposes a constraint in that bear2 has to be pressed onto the

Chapter 5. An Automatic Assembly Planner Page 122

primary shaft first before bear3 can be assembled. The goal state IS

illustrated in Figure 5.9 and it can be written as:

assemble (bear2 , whole ,shaft J'ace2 ,shaft jace3),

assemble (bear3, whole, shaftJ'ace3, shaftjacel).

primary shaft

bead bead

Fieure 5.9 Goal State of Primary Shaft Sub-Assembly

As seen from the above figure, face1 of the shaft is still clear after

bear3 has been assembled. Hence clear(shaftJacel) is a redundant goal in

this example. An example of a conflict situation is if the goal state is input

as follows:

assemble (bear2, whole ,shaft Jace2 ,shaft Jace3) and

assembZe(bear3, whole,shaftJace3,shaftjace2).

Chapter 5. An Automatic Assembly Planner Page 123

This is because if bear2 were to be assembled onto face2 first then bear3

cannot be assembled because the reaction face it requires, i.e. face2 is not

clear. Similarly, if bear3 were to be assembled first then the reaction face

for bear2, i.e. face3 will also not be clear for bear2 to be assembled.

Therefore in this case, the variable, Conflict would be instantiated, an error

message will be displayed and AAP would terminate. An example of a

situation where a goal is a redundant goal and at the same time is in conflict

with another goal in the list is given below:

assemble (bear2, whole ,shaft face2 ,shaft face3),

assemble (bear3, whole ,shaft face3 ,shaft face2).

clear(shaft face3).

clear(shaftj'ace3) is a redundant goal of the assembly of bear2 but is in

conflict with the assembly of bear3. Hence the above goal list is a

conflicting goals type of situation.

After the successful completion of redumt critic check, all the goal

states which have been accumulated in newgoal are then used in the next

stage of the sequencer, i.e. the addition goal.

Chapter 5. An Automatic Assembly Planner Page 124

5.4.2.2 Generation Qf Star List

nermition:

When a pre-condition, P, of a goal state, S, does not exist in the

initial world state and there is no other goal states in the input list that will

assert P before S, P will be defined as a star goal and has to be inserted

before S, i.e. an action step may have to be taken to establish P for the goal,

S, to be true. In addition, when there is a goal, C , before S which will

clobber the pre-conditions of P, then P is inserted before C. This can be

represented by the following figures.

world: DOt [!]

Fieure 5.10 Initial State

In the above figure, both C and P contributes to the truth of S where

P is not true in the world state. P is then added as a member of star list.

Figure 5.11 indicates that C clobbers (represented by the' 11 ') Q which

happens to be the pre-condition of P. Thus the final order of these goals is

as shown in Figure 5.12.

Chapter S. An Automatic Assembly Planner Page 125

world: not [!]
~

•

~

Fi2Ure 5.11 C Clobbers 0

Fi2Ure 5.12 A Final Plan

All the star goals are then accumulated in a list called the star list

which will be re-ordered with the rest of the sub-goals later on in the

planner7• Addition of these temporary sub-goals may be necessary in

certain cases as illustrated by the TWEAK planner using Sussman I s

example[58].

This step is achieved by the following Prolog code:

addition([]):- !.

addition ([VI I V2J):­
cond(Vl,Prel,~,
checkexist(Prel) ,
addition(V2).

7 Thi. i •• imilar 10 the idea of promoting a IUb-goal in TWEAK.

Chapter S. An Automatic Assembly Planner

checkexist(ll):-!.

checkexist([pll P2J):­
findall(P,recorded(world,P,.J, W),
(member(Pl, W),·
(findall(Q,recorded(star,Q,.J,X),
(member(P 1 ,X),·
recordz (star, PI ,.J))),

checkexist(P2).

Page 126

The first addition clause succeeds when the list containing the goals

is empty. In the second addition clause, the head of the list, VI is checked

rust followed by the remaining goals in the tail of the list, V2. The pre­

conditions of VI is obtained by calling the cond goal (see section 5.5 for

explanations on cond). Once this has been achieved, checkexist is called to

rmd if the pre-conditions are true in the world database. If they are not true

then they are recorded as a star goal into the star database provided that they

have not been previously recorded. Again the individual goals in the pre­

conditions list are examined by taking out the head, i.e. PI followed by the

remaining elements in the tail, P2. This goal should also succeed when all

the elements in P2 have been examined and hence the first checkexist clause.

In the piston-connecting rod sub-assembly, the pin is inserted into

t _hole of the piston in the initial state. This will be detected by the addition

clause which will insert the following goals as temporary goals into the star

list:

clear(pin, whole).
clear(piston,t _hole).

Chapter S. An Automatic Assembly Planner Page 127

The feature, t_hole has to be cleared for the assembly of the

connecting rod, so clear(piston,t_hole) is inserted as a star goal. In order to

clear t_hole of the piston, the pin must not be there. Hence the whole of

the pin must also be cleared. These temporary goals will be examined by

the insen_star clauses for insertion into the main goal list (which are the

permanent goals, i.e. must be true after achieving the assembly states). In

the planner, certain conditions may arise where star goals are created but

may not be necessarily inserted into the main goal list as seen in the piston

connecting rod sub-assembly. This will be elaborated in 5.4.2.4.

5.4.2.3 Qrderin&: Qf The Goal States

The ordering of the goals is done using a simple sorting procedure.

Figure 5.13 shows the possible sequencing outcomes for two goals, A and B.

Fi&Ure 5.13 Possible Outcomes For Goals. A & B

Chapter 5. An Automatic Assembly Planner Page 128

From Figure 5.13 it can be seen that there are two possible

achievable outcomes when ordering the goal states. The first one is when A

and B do not interfere with each other and can be achieved in either order,

i.e. 1 in Figure 5.13. In this case the sorted goal list is of the format,

par(A,B} to represent the fact that goal A and goal B can be executed in

parallel. The second outcome is when one goal state must be achieved

before the other goal state. The format for this type of goals is seq(A,B}

which means that the sequence of operation is to execute A followed by B

[59].

For cases with more than two goals, nesting may occur. For

example, for 3 goals A, B, e, the outcome may for example look like:

par(seq(A,B},C}. In this case, goal C is parallel to the compound goal

seq(A,B) in which goal A must be achieved before goal B.

The soning procedure is to determine the ordering of the goal states

to be achieved and link them accordingly to form a currentgoallist in the

format as described above, e.g. seq(A,B}, etc. This procedure is written in

Prolog as follows:

sorting:­
findall(N,recorded(newgoal,N,.J,P},
P \== [l,
erase_all (top!ist),
order _critic((P},
jindall(L,recorded(top!ist,L,.J,HL),
length (HL,Length) ,
jindall(Cl ,recorded(currentgoal,Cl ,.J, C),

Chapter 5. An Automatic Assembly Planner

((C \= = [J,
linking(HL,C),

sorting:-!.

erase _list(checklist,HL),
findall (IL, recorded (temp_checklist, TL,.J, TLl),
record _list (checklist, ILl),
erase _list (temp_checklist, ILl),
record _list (temp_checklist ,HL)),.
((Length = l,

[IlLl] = H,
HL2 = .. [seq,HLl],
recordz(currentgoal,HL2,.J),·
(HLl = .. [parIHL],

recordz (currentgoal, HLl ,.J))),
record_list (temp _checklist,HL),
erase _list (newgoal ,HL),
soning.

Page 129

In the sorting procedure, toplist is a buffer area to store the goal

states which can be achieved first to allow the linking procedure to link these

goals to the currentgoallist accordingly. In each pass toplist will be reset to

an empty list before the procedure order_critic is called. The task of the

order critic clauses is to fill the toplist in each pass. Since the currentgoal

list is empty to start with, there are only two possible cases to record the

goals from toplist into currentgoal. The first one is if toplist contains only

one goal, say goal a. In this case, Currentgoal will become seq(a).

Obviously, any goals in the toplist in the next pass must be done after a.

Hence the goal must be a sequential one. If toplist contains more than one

goal, say a and c. Currentgoal will then become par(a,c) because goals a

and c can be done in parallel. For subsequent passes the goal states in

toplist will be linked to the goals of currentgoallist by calling the procedure

linking. Eventually, the complete currentgoallist will be built up.

Chapter S. An Automatic Assembly Planner

a) Order Critic

The Prolog code for the order_critic clauses are shown below:

order _ critic ([}):-! .

order _ critic ((NIl N2]):-
erase (newgoal,Nl),
jindall(N,recorded(newgoal,N,.J,P},
ordenest(Nl,P,Flag_of_Nl},
((var(Flag_of_Nl),

recordz(toplist,Nl,.J},·
I),

recordz(newgoal,NI ,.J,
order _critic (N2).

ordettest(.J[},J:-!.

ordettest(N,[NII N2], F/ag_ of_N):­
cond(N,Pre N,Post N}, - -
cond(Nl ,Pre_NI ,Post_NI},
intersect(Pre N,Pre NI, W), - -
jilter(W, WI},
((WJ == [J,

ordenest(N,N2 , Flag_of_ N)};
(subset(WI,Post_NI),

Flag_ of_ N = tail},'
ordenest(N,N2 , Flag_ of_N)).

The definition for order _critic is as follows:

Page 130

For two goals, A and B in which A is to be achieved before B.

When A is compared with B, A can be achieved first and is hence recorded

into the toplist. When B is compared with A, B cannot be achieved first and

hence is omitted from the toplist.

Chapter 5. An Automatic Assembly Planner Page 131

The first order _critic clause succeeds when the newgoallist becomes

empty, Le indicating the end of this test. Using the same technique as the

previous clauses (Le. redund_critic, etc) if the list is not empty, the goal to

be compared with the rest of the goals from the newgoallist is erased before

a variable list, P is instantiated to the newgoal list (this is to avoid

comparing the goal with itself). Order _test is then called which will indicate

whether the goal can be achieved first. If so the variable, Flag_ 0/_ NI will

remain uninstantiated and that goal is recorded onto the toplist. It is then put

back to newgoal before calling the procedure Order_critic recursively to

check the rest of the members in the list, Le. N2.

As in previous clauses, the first ordenest clause is used to detect the

end of the check, Le. when the list to be compared with is empty. In this

case the test succeeds with a cut. When the list is not empty, the pre and

post conditions of the goal, N and the first member of the list, NI to be

compared with are found using the cond predicate. If the intersection

between the pre-conditions of N and the pre-conditions of NI is not empty

then the members contained in this intersection set are investigated to

determine whether they are a subset of the post-conditions of NI. If this is

the case, then N is not a member of toplist. In the program tail is used to

indicate if it is not a toplist member, in other words Flag_ 0/_ N gets

instantiated to tail. The other case covers the situation where the

intersection set is empty, suggesting that N and NI do not clobber one

another and ordenest is continued with tail, i.e. remaining elements of N2.

Chapter S. An Automatic Assembly Planner Page 132

Once the toplist has been set up for subsequent passes, the linking

procedure is called to synthesize the ordered goal list into the required

format. Again before linking is called the members of the both toplist and

currentgoal are obtained and placed in HL and C respectively.

bl. Linkine

The Linking clauses are as follows:

linking([HLll HU},[C}):­
C= .. [FI.J,
link(HL1, C,Newargs ,Linked),
Linked = = true,
New _c= .. fFl NewargsJ,
recordz (checklist, HL1),
linking (HL2, [New _cJ).

linking(O,[C}):-
erase_all (currentgoal),
recordz(currentgoal,C,.J,
1.

Linking is used to link goals in toplist to goals in the currentgoallist

so that the correct ordered goal format can be synthesized. A variable,

Linked is instantiated to true if the goals are linked. The variable, Newargs

will contain the resulting goals which, when joined with the functor F,

becomes the new currentgoal, if link is successful. Both variables, Linked

and Newargs are determined by the link procedure. There are four cases of

currentgoal formats that the link procedure has to consider, i.e.

case 1: seq(A rgl)

Chapter S. An Automatic Assembly Planner

case 2: par(Argl)
case3: seq(Argl,)
case4: par(Argl,)

where Argl can either be a single or compound goal.

The Prolog code written for case 1 is as follows:

link(HLl, C, Newargs,Linked):­
C= .. [F,Argl},
F==seq,
((check_single...Roal(Argl),

((findall (Arg I, recorded (checklist ,Arg 1,..J ,[]),
sequence_testl (HLl,Argl),

Newargs = [Argl,HLl},
Linked = true,

') . . ,
Linked = false)),'
(link(HLl,Argl,Newargl,Linked),
Argl = .. [FIIJ,
Newarg2 = .. [Fll Newarg I},
Newargs = [Newarg2])).

Page 133

In the first instance, the currentgoal, C is decomposed into its functor

(Le. seq) followed by the rest of the goals. The built in predicate, = .. is

used for examining structures, e.g. if C is seq(a) then Argl will be a. The

check_single...Roal clause is used to detect compound goals. If it succeeds

then Argl is a single goal. Checklist is a buffer for storing goals that have

already been linked in the first pass. This is to avoid comparing HLl with

goals from the same toplist as these goals must be parallel in the first place.

If checklist does not contain Argl then the link procedure proceeds with

Sequence_testl. This is done to check if HLl must be linked to Argl.

Sequence _testl succeeds if the intersection between the pre and post

conditions of HLl and Argl is not empty and that this set is a subset of the

Chapter 5. An Automatic Assembly Planner Page 134

post conditions of Argl. This suggests that Argl is before HLl as illustrated

in Figure 5.14 where the goal a has contributed to the success of

sequence_testl. In this example, since it started with seq(Argl), then the

outcome of linking HLl to Argl must be seq(A rgl ,HLl) and Newargs will

be instantiated to [Argl,HLl].

Figure 5.14 A Sequence

If sequence _testl succeeds then the Linked variable will be

instantiated to true otherwise it will be marked as false. If Argl is a

compound goal then the link procedure is called again to attempt to link HLl

to Argl to form Newargl.

The code for Case 2 is as follows:

Case 2;
Unk(HLl, C, Newargs,Linked):­

C= .. {F,Argl],
F==par,
((check_single~oal(Argl),

Chapter S. An Automatic Assembly Planner

((findall(Argl, recorded(checklist,Argl,.),{]),
sequence _testl (HLl,Argl),
Newarg2 = .. [seq ,Arg l,HLl J,
Newargs = [Newarg2J,
Linked = true),·

Linked = false));
(link(HLl,Argl.Newargl,Linked),
Argl= .. [FlIJ,
Newarg2= .. [FlINewarglJ.
Newargs = [Newarg2J)).

Page 135

Case 2 succeeds if the currentgoal, C is of the format: par(Argl). It

is similar to the first case, except that in this case F is par. The outcome is

par(seq(Argl,HLl)) and the format for Newargs is seq(Argl,HLl) in this

case. If Argl is a compound goal, it is dealt with similarly as in case 1.

For Case 3, currentgoal contains a sequence of goals with F being

instantiated to seq, i.e. with C being of the form: seq([Argll ArgsJ) where

Args is the tail of the goal list. Hence if HLl is successfully linked to Argl

where Argl is a single goal, it implies that Args must be either a single or a

compound goal. Hence there are two ways in which the currentgoal may be

formatted :

i) where Args is a single goal, a. In this case the format of the goal is

of the form: seq(Argl,par(a,HLl));

ii) where Args is a compound goal, par(a,b). In this case the format of

the goal is of the form: seq(Argl,par(a,b,HLl)). This is because if

HLl is after Argl then it must be in parallel with what comes after

Argl and is hence inserted into the parallel list of goals.

Chapter 5. An Automatic Assembly Planner Page 136

If Argl is a compound goal, it is dealt with similarly as in case 1 and

case 2. Finally, if it fails to link HLI to Argl, it will attempt to link HLI to

the tail, Args by calling link again.

The Prolog code for case 3 is as follows:

Case 3;
link(HLl,C,Newargs,linked):­

C= .. [FI[Arg1IArgs}},
F==seq,
((check_single..,goal(A rg1) ,
((findall(A rg1 ,recorded(checklist,Argl ,~,ll),
sequence_testl (HLI ,Argl),
Args = Llll},
((check_single..,goal(Args),

Newarg2 = .. (par,Args ,HL1 J),'
(Args= .. {parl Temparg2},
append (femparg2 ,HLI ,Newtemparg2),
Newarg2 = .. (par I Newtemparg2J)) ,

Newargs={Argl,Newarg2},
Linked = true);
(Cl = .. {FIArgs),
link(HLI, Cl ,Newargl ,Linked),

Newargs={ArglINewargl}))),'
(link(HLI ,Argl ,Newarg I ,Linked),
(Linked = true,

Newargs = {NewargIIArgsJ),'
(Cl = .. {FIArgs},
link(HLI ,Cl ,Newarg2,Linked),

Newargs = {Arg1INewarg2J))).

In the fourth case, C is of the format: par([Arg1IArgsJ) where Args

is the tail of the goal list. If HLI is successfully linked to Argl, where Argl

is a single goal, the format for the currentgoal is of the form:

par(seq(Argl,HLl),Args). For the situations when Argl is a compound

Chapter 5. An Automatic Assembly Planner Page 137

goal or when it fails to link HLI to Argl, it is also dealt with in the same

way as in case 3 described above.

The Prolog code for Case 4 is as follows:

Case 4;
link(HLl,C,Newargs,Linked):-

C= .. [FI[ArgIIArgsJ],
F==par,
((check_sing/e-.8oa/(Arg1),
((findall(Arg1 ,recorded(checklist,Arg1 ,.J,[J),
sequence _test1 (HLI ,Arg1),
Newarg1 = .. [seq,Arg1 ,HLI],
Newargs = [Newarg 11 ArgsJ,
Linked = true),·
(Cl = .. [FIArgsj,
link(HLI, Cl , Newarg 1 ,Linked),
Newargs=[Argll Newarg1J)}),·
(link(HLl ,Argl , Newargl ,Linked),
(Linked = true,
Newargs = [NewarglIArgsJ),·
(Cl = .. [FIArgsj,
link(HLI ,Cl ,Newarg2,Linked),
Newargs = [ArglINewarg2J))).

In the linking procedure, once the link procedure succeeds, HLl is

placed into the checklist database and the linking procedure is then repeated

with the tail of the toplist, i.e. HL2 to the updated current goal, New_c.

Again the end of this procedure occurs when toplist is empty, i.e. no more

goals to be linked to the currentgoallist. The final result, C which contains

the ordered goal list is then recorded back into the currentgoal database, as

done by the second linking clause.

Chapter S. An Automatic Assembly Planner Page 138

So far the soning procedure is described for when the currentgoallist

is not empty. If it is empty, (this means that there is nothing to link) and

also when the toplist consists of only one goal then in this case it will be

recorded into currentgoallist as seq(goal). Otherwise if there is more than

one goal in toplist then the currentgoal format is par(goal, ...). The toplist

goal(s) that the procedure has worked with so far is recorded into

temp_checklist to keep a record of the toplist goals that have already been

examined. At the same time the top list goals are also deleted from the

newgoal list in preparation for the next pass where the soning procedure is

called again. Eventually, the soning procedure is terminated (or succeeds)

when the newgoal list (Le. P) is empty. This is succeeded by the second

soning clause with the cut.

To illustrate the sorting procedure, suppose there are 4 goals,

C,A,B,D in newgoal list with the final ordered goal being

par(seq (A,B),seq (C,D)). The following steps will summarise how it works:

i) The findall predicate will instantiate P to [C,A,B,D].

ii) erase_all toplist will reset toplist to [].

iii) Call order_critic([C,A,B,D] and produce a toplist = [A,C].

iv) Currentgoal = par(A,C) because currentgoal is empty to start with

and since more than one goal in toplist then they must be parallel

goals.

v) Record A,C into temp_checklist.

Chapter S. An Automatic Assembly Planner Page 139

vi) Erase A,C from newgoallist. So newgoallist is now [B,D]~

vii) Call sorting again, with P=[B,D] and toplist =0.

viii) After order_critic, toplist becomes [B,D].

ix) Call linking which links [B,D] to par(A,C).

x) Finally, resulting currentgoal is par(seq(A,B),seq(C,D».

After the successful completion of the sorting procedure the next task

remaining of the sequencing stage is to insert the goals in star list (if any) to

the main goal list, if necessary. This is done by the insert_star clause as

described in the following section.

5.4.2.4 Insertion of Star Goals to l\lain Goal List

Dermition:

Any sub-goal in the star list is inserted before a goal in the main

goal list if in achieving that goal it will cancel the star sub-goal, unless the

star sub-goal is one of the pre-conditions of that goal.

The clauses for performing this are given below:

insel1 star([], C):­
erase_all(currentgoal),
recordz(currentgoal,C,.J,
!.

Chapter S. An Automatic Assembly Planner

inserl_star({Sll S2],C):-
C= .. {FI.J,
reorder(SI,C,Newargs,J,
Current Joals = .. IFI NewargsJ,
insert _star(S2, Current Joals).

Page 140

The first insert_star clause succeeds when the star list is empty, Le

no goals to insert. In this case, the original currentgoal list is removed and

the updated currentgoallist (which could be the same as the old one, i.e.

when there is no star list in the first instance) is recorded back. In the

second clause, the star list is divided into head and tail, (Le. SI and S2

respectively) in order to insert one star goal at a time to the currentgoal, C.

The functor, F of currentgoal is identified. By calling reorder, a star goal,

SI is examined with currentgoal, C to form an argument called Newargs.

By joining it back to the original functor, F the currentgoal is updated.

Insert_star is then called recursively with the tail of the star goals, S2 and

the updated currentgoals until the star list is exhausted. Then the first

insert _star clause will succeed by recording the updated currentgoal into the

currentgoal database. The reorder clauses are used to insert the star goals

into their appropriate places in the currentgoal, C. This is done by

comparing SI with each goal in C in turn. Similar to the sorting procedure,

there are four different formats of the currentgoallist as shown below:

Case la.

Case lb.

Case 2a.

Case 2b.

seq(a)or par(a)

seq(par(a,b)) or par(seq (a, b)).

seq(a,b,,,.) or Jiar(a,b, ...)

seq(par(a,b),,,.) or par(seq(a,b), ...),

Chapter S. An Automatic Assembly Planner Page 141

Case la. is for single goals or the last or remaining goal in the

currentgoal list. e.g. seq(assemble(rod. whole.piston.axiaChole.nil.nil).

The reorder clause for this is given below:

Case la.
reorder(S, C, N ewargs, linked):­

C= .. [FIArglI0}.
check_singleJoal(Argl).
cond(Argl.Pre_argl • .J.
((member(S.Pre_argl).
Newargs=[Argl}.
Linked = true.
, I • . /.

(sequence _test2 (Pre _ arg 1. S).
((F == seq.

Newargs = [S.ArglJJ.·
(F == par,

Newargs = [seq(S.Argl)J)).
Linked = true.
fI· ./.

(Newargs = [Argl},!)).

The first two sub-goals of reorder will succeed when C contains only

one single goal, Argl (e.g. C = par(a) or seq(a». A check is then made to

see if the star goal, S is a pre-condition of Argl. If it is, no insertion before

Arg 1 is necessary. This is because when an action is to be planned against

the goal, ArgJ, all its pre-conditions will be examined and subsequently

promoted if anyone of them is not yet true. Otherwise, the star goal, S

will be compared with Argl to see if ArgJ will clobber S. If this is the case

then the star goal, S has to be inserted before Argl. The format will be

either seq(S,Argl) or par(seq(S,ArgJ)) depending on whether it starts with

seq(Argl) or par(Argl).

Chapter S. An Automatic Assembly Planner

The clause for Case Ib is given below:

Case Ibi

reorder(S, C, Newargs, Unked):­
C= .. [J[ArgllllJ],
Argl= .. [Fll.J,
reorder(S.Argl , Newargl ,Linked},
Newarg2= .. [Fll Newargl],
Newargs = [Newarg2].

Page 142

In case lb, Argl is a compound goal. Hence star goal, S cannot be

checked directly against Argl using sequence_test2. Instead the functor of

Argl (Fl) is identified, and reorder is called with S and Argl. The

argument, Newargl that is returned will be joined back to Fl before it is

returned as Newargs.

The clause for the next case, case 2a is:

reorder(S, C,Newargs,Unked):­
C= .. [FI[ArglIArgsJ],
check_singleJoal(Argl),
cond(Arg 1 J Pre _ argl,J,
((member(S,Pre_argl),

C= .. [JNewargs],
Linked = true,
!
),.

(sequence_test2(Pre_argl,S),
((F == seq,

C= .. [JNewargl],
append ([seq (S,Argl)],A rgs, Newargs))),

Linked = true,

Chapter S. An Automatic Assembly Planner

'} . . ,
(Cl = .. [FIArgsj,

reorder(S, Cl , Newargl ,Linked),
append([A rglj, Newargl , Newargs},

/}}.

Page 143

In case 2a, currentgoal, C contains more than one argument and the

head of the list, Arg 1 is a single goal. In this case, star goal, S can be

checked with Argl directly as in case la. If S is one of the pre-conditions of

Argl, Newargs is kept the same as [ArgllArgsj and the variable, Linked is

instantiated. If S passes sequence_test2 procedure, it is linked to Argl as

seq(S,Argl} to which the tail, Args is appended to form Newargs. If neither

of these cases succeeds, star goal, S is to be checked against the tail, Args.

This is done by joining the functor, F to Args to form Cl so that Argl is

omitted before reorder is called again. The returned argument, Newargl is

appended to Argl to form Newargs as in the previous case.

The clause for 2b is given below :

Case 2b:

reorder(S, C,Newargs,Iinked):­
C= .. [FI[ArglIArgsJ],
Argl= .. [FIIJ,
((reorder(S,Argl ,Newargl ,Linked),

Newarg2= .. [FIINewarglj,
append([Newarg2j,Args,Newargs},

not(var(Linked}},
'} . . ,
(Cl = .. [FIArgsj,
reorder(S, Cl , Newarg 1 ,Linked),
append([Argl],Newargl,Newargs),

Chapter S. An Automatic Assembly Planner Page 144

f)).

Case 2b is similar to case 2a except that the head of the argument,

Argl is a compound goal. Like case lb, the functor of Argl is identified as

Fl and reorder is called with the star goal, S and Argl. The returned

argument, Newargl is then joined back to the functor, Fl and the tail, Args

is appended to form Newargs. In order find out whether S is successfully

linked to Argl, the variable Linked is checked. If Linked is not instantiated

(which indicates that S is not linked to Argl), S has to be checked against the

tail, Args as in case 2a.

When the insen _star goal succeeds, the final version of the

cu"entgoal is retrieved from the currentgoal database and is written onto the

screen. For example, if the input to the planner is:

assemble (bear2, whole, shaftJace2, shaftJace3).
assemble (bear3, whole,shaftJace3,shaftJacel).

The output of the sequencer will be:

The Ordered Goal list is:

seq(assemble (bear2 , whole ,shaft Jace2 ,shaft Jace3) ,
assemble (bearJ, whole ,shaft Jace3 ,shaft Jacel).

Chapter 5. An Automatic Assembly Planner Page 145

This information, i.e. the ordered goal list is then passed onto the next stage

of the planner which produces an action list corresponding to the ordered

goal list.

5.4.3 Producinl: the Action List

Once the goals in the input list have been ordered, the remaining task

is quite straight forward. This is done by the do predicate. Based on the

original idea of the test planner the clauses for producing the action list is as

follow:

do([Y]):-
Y = .. [F,Arg],
(F == seq,'
F == par),
((check_sing/e-Eoa/(Argl),

state (Argl));
do ([A rgl])).

do([Y]):-
Y= .. [FI[ArglIArgsJ],
(F==seq,'
F=-par),
Cl = .. [F,Argl},
do ([Cl]),
Cs= .. [FIArgs],
do ([Cs]).

An assumption made in do is that once the goals have been ordered

then the action list produced will be according to the way in which the goals

have been ordered irrespective of whether the goals are seq or par goals.

Chapter S. An Automatic Assembly Planner Page 146

The argument for this is that if there is a seq goal then the ordering of the

action list is as it is on the currentgoal list and so the action list is correct.

However if it is a par goal (which indicates that the sub-goals can be done in

parallel without affecting one another), except that the output format of the

action is that the one that comes first in the ordered goal list will be done

first. Since the plan is originally concerned with manual assembly and the .

manual assembly worker is only able to handle one task at a time so this

interpretation is correct.

Hence in the first do clause, seq and par are extracted from the

currentgoal, Y in order to obtain the original assembly goal states. These

are then passed onto state which works in the same way as the state

arguments of the test planner. The approach in the second do clause is to

decompose the currentgoallist into head and tail until one goal state can be

dealt with at a time. Hence in the second do clause when Y is passed in as a

list, it is divided into a head, a tail and the functor, F. F is then attached

back to the head, Argl , Le seq(Argl) or par(Argl). When the do procedure

is called recursively, this goal list with only one single argument is passed

into the first do clause. In the first do clause, it will check if the argument is

a single goal (Le. consisting of one goal state only). If so, it will attempt to

achieve that single goal state. If it is a compound goal, it will call the do

procedure again which will further break down the compound goal until it

can be dealt with. In the second do clause, after Cl is achieved, F is

attached back to the tail, Args as Cs and the do procedure is called again.

Chapter S. An Automatic Assembly Planner Page 147

As mentioned earlier, two assembly states have been defined, i.e.

assemble and clear where the associated actions are press and remove

respectively. This definition is only a very rough one and in real situations

further specific assembly states such as screw may have to be defined as

well. However for the purpose of demonstrating the planner, the suggested

assembly states and actions are found to be adequate. The clauses for the

assemble state are given below:

state(assemble(ObjI,FaceI,Obj2,Face2,Rxnobj,Rxn/ace»:­
jindall(W,recorded(world, w,.J, WI),
member(assemble(Obj I ,F acel ,Obj2 ,Face2 ,Rxnobj ,Rxn/ace), WI).

state(assemble(ObjI, FaceI, Obj2, Face2,Rxnobj, Rxn/ace»:­
result(press(Obj I ,F acel ,Obj2 ,Face2 ,Rxnobj ,Rxn/ace)).

Recall that the state clauses are also known as the post-conditions in

the test planner. The first assemble state succeeds if there exists such a state

already in the current state as indicated in the world database. If the first

state clause fails then the second state clause is used in which the press

action is suggested if it succeeds.

Similarly, there are two cases for the clear state (which is the

opposite state of assemble) and they are as follow:

Case 1;

state(clear(Obj,Face»:­
findall(W,recorded(world, w,.J, WI),

Chapter S. An Automatic Assembly Planner Page 148

member(clear(Obj,Face), WI).

Case 2;

state(clear(Obj,Face»:­
result(remove(Obj,F ace ,_,.J).

The first state clause for clear is true when it already exists in the

current world state and hence no actions need to be done to achieve this

state. In case 2, the clear state is achieved by simply taking the remove

action.

There are two result clauses, one for the press action and the other

one for the remove action. They are written in Prolog as follow:

resull(press(Objl,Facel,Obj2,Face2,Rxnobj,Rxn/ace»:­
cond(assemble(Obj I ,Face1 , Obj2,F ace2 ,Rxnobj ,Rxn/ace) , Pre, Post) ,
PreI = .. [parl Pre},
do([Prel}),
maintain_world "'pre(Pre ,Post),
mainlain_world"'post(Post),
recordz(action ,press(Obj 1 ,FaceI ,Obj2 ,Face2 ,Rxnobj ,Rxnface) ,J.

Ttsull(remove(Ob), Face, Ob)l, Facel):­
cond(c1ear(Obj,Face),Pre,Posl),
Pre] = .. [parl Pre},
do([Prel}),
(member(assemble(Obj,Face,Objl ,FaceI ,_,.J,Pre),·
member(assemble(ObjI ,FaceI ,Obj,Face,_,.J,Pre)),

maintain_world "'pre(Pre ,Post),
maintain_world "'pOSI(Post),
recordz(action,remove(Obj,Face,Objl,Facel),.J.

Chapter 5. An Automatic Assembly Planner Page 149

For the assemble goal state that requires a pressing action, as in the

first result clause, the required pre-conditions and the resulting post­

conditions are instantiated. The required pre-conditions are then checked if

they already exist in the world state or achieved to be true by calling,

do ([PrelJ). Once the call to the pre-conditions succeeds, the press action

can be taken which is recorded onto the action database. At the same time,

the world state is maintained due to the pressing action by calling

maintain_worldyre and maintain_worldyost. Similarly, for a clear goal

state with a corresponding remove action as in the second result clause

above.

In order to update the relevant changes in the world database the

following is used:

maintain_worldyre([J,.J:-I.

maintain_world yre([Prell Pre2j,Post):­
(member(Prel,Post);

((Prel = .. [assemble I Argsj,
Args = [Obj,Face,Objl,Facel,_,J,

((recorded(world,assemble(Obj,Face,Objl , Facel ,_,.J,Ref),
erase (Ref));

(recorded(world,assemble(Objl,Facel,Obj,Face,_,.J,Ref),
erase (Ref)))),'

(recorded(world,Prel,Ref),
erase)))),
maintain_worldyre (Pre2, Post).

maintain_worldyost([PostII Post2j):­
findall(W,recorded(world, W,.), WI),
member(Postl, WI),
maintain_world JJost(Post2).

Chapter S. An Automatic Assembly Planner

maintain_worldyost([Postil Post2]):­
recordz(world,Posti ,.J,
maintain_world yost(Post2}.

maintain_worldyost([J):-!.

Page 150

maintain_world yre is used to erase any states that are deleted as a

result of achieving a goal state. The criterion is that any pre-conditions in

the world state that is not true in the post-conditions, i.e. when the call to

member(Prel,Post) fails, is erased. The first check is if the pre-condition is

an assemble state and the second is for the same assemble state but with the ..
second part-feature pair, i.e. Obji,Facei as the first part-feature pair in the

clause. This is because the assemble state may have been written with

Objl,Facei as the first part-feature pair in the world database. The third

case is if the pre-condition is not an assemble state, e.g. a clear state.

Similarly, maintain_worldyost is used to add to the world states the post­

conditions as a result of achieving a goal state. Before a post-condition is

added, a check is made first to see if it already exists in the world database.

5.5 Findina The Pre and Post Conditions

As can be seen from the description of the planner so far, it relies

heavily on the examination and manipulation of lists such as the input lists,

pre-conditions and post-conditions. A major part of the planner is dependent

on finding the preconditions and post-conditions of the relevant goal states in

Chapter S. An Automatic Assembly Planner Page ISI

order to perform the tests such as redund_critic, conflict_check, etc in the

planner. The derivation of the pre and post conditions of the goals states

are performed by the cond clauses. There are three cond clauses for the

assemble state and they are as follow:

cond(assemb/e(ObjJ,Facel,Obj2,Face2,Rxnobj,Rxnjace),x, Y):-
jindall(cross(Cr I, Cr2, Cr3, Cr4) ,recorded(world ,cross(Cr I, Cr2, Cr 3, Cr4) ,...J, Cross),
jindall(common(Col,Co2,Co3,Co4,Co5),

recorded(world,common(Col,Co2,Co3,Co4,Co5),J,Common),
(member(cross(Objl ,Facel ,Face,C_area),Cross),

((member(common(Obj I ,Face,_,_,C _area), Common),
Xl =clear(nil.nil),
fl =clear(nil.nil)).-
(Xl =clear(Objl.Face),
fl =clear(Objl ,Face)))),-

(member(cross(Obj2,Face2,Face,C_area),Cross),
((member(common(Obj2,Face,_,_,C_area).Common),

Xl = clear(nil. nil) ,
fl =clear(nil,nil)),-
(Xl =clear(Obj2.Face),
fl =clear(Obj2,Face))))),

X2=[XI ,clear(Objl.Facel),clear(Obj2,Face2),clear(Rxnobj,RxnfaceJ],
jilter(X2,X).
Y2={YI ,assemble(Objl ,Facel ,Obj2,Face2,Rxnobj,Rxnface),

clear(Rxnobj ,RxnfaceJj,
ftlter(Y2,f),
/-

cond(assemb/e(ObjJ, Facel, Obj2, Face2, Rxnobj, Rxnjace), X, 1'):­
jindall(at(AI ,A2,A3),recorded(world,at(AI ,A2,A3),J,AT),
(((member(at(Objl,Facel.Facell),AT),

Xl = clear(Objl.Facell),
fl = clear(Objl,Facell)),-
(Xl = clear(nil,nil),
fl = clear(nil,nil))),

((member(at(Obj2,Face2,FaceI2),AT),
X2 = clear(Obj2.FaceI2),
Y2 = clear(Obj2,FaceI2)),­
(X2 = clear(nil,nil),
Y2 = clear(nil,nil))),

(member(at(Rxnobj,Rxnface,FaceI3),AT),
X3 == clear(Rxnobj,Face13),
f3 - clear(Rxnobj,FaceI3)),-
(X3 = clear(nil.nil),
f3 - clear(nil,nil))),

X4 - [Xl ,X2,X3,clear(Objl ,Facel),clear(Obj2,Face2),clear(Rxnobj,RxnfaceJj,
jilter(X4 .X),

Chapter 5. An Automatic Assembly Planner

f4 = [yI ,1'2,f3,assemble(ObjI ,FaceI ,Obj2,Face2,Rxnobj,RxnJace),
clear(Rxnobj ,RxnJace)],

jilter(Y4, f)), !.

cond(assemble(Objl ,LocI, Obj2,Loc2, Rxnobj, Rxn/ace), X, Y):-
Xl =[clear(Obj I ,LocI) ,clear(Obj2 ,Loc2) ,clear(Rxnobj , RxnJace}},
jilter(Xl ,X).

Page 152

fI =(assemble(ObjI,LocI , Obj2,Loc2,Rxnobj,RxnJace),clear(Rxnobj,RxnJace)),
jilter(YI, f). !.

• b • b

initial state goal state

Figure 5.15 A Diaeram of a Simple Assembly

In order to illustrate the principle of obtaining the pre and post

conditions, Figure 5.15 is used. In the above Figure, the goal state is

described as: assemble(aj1 ,bj2,aj3) where the required pre-conditions are

clear(ajl), clear(bj2) and clear(aj3). The post-conditions are

assemble(ajl ,bj2,aJ3) and clear(aJ3}. For such an assembly state, the

relevant pre and post conditions are obtained from the third cond clause

given above.

When a feature FaceI, of an object, ObjJ to be assembled crosses

with another feature, Face of the same object, an additional pre-condition of

clearing the second feature may be required in order to make the crossing

Chapter 5. An Automatic Assembly Planner Page 153

area clear. It depends on whether another object which is assembled to the

second feature of the first object provides a common area with the crossing

area. If so, there is no need to clear the second feature because the crossing

area will not be blocked. Otherwise, clear(Objl,Face) is added onto the

pre-condition list, and it will be added onto the post-condition list since the

assemble action does not delete clear(Objl,Face). Such cases are defined in

the first cond clause.

The third case is when a feature, fl is at another feature,12 (e.g. the

bottom opening of a pen barrel is at the bottom end). The required

additional feature will be clear(objectJ2) in order to allow feature, fl to be

assembled. Note that 12 is still clear after feature, fl is assembled and is

added to the list of post-conditions. This case is defined in the second cond

clause.

Similarly the cond clauses for the clear state can be written as:

cond(ciear(Obj,Face),X,1'):-
jindall(assemble(AI ,A2,AJ ,A4,A5 ,A 6),

recorded(world,assemble(AI,A2,A3,A4,A5,A6),..),Assemble),
member(assemble(Obj,Face,Objl ,Facel ,Rxnobj,Rxnjace),Assemble),

jindall(cross(Crl,Cr2,CrJ,Cr4),
recorded(world,cross(Crl,Cr2,Cr3,Cr4),..),Cross),

jindall(common(Col,Co2,CoJ,Co4,Co5),
recorded(world, common (Col, Co2, Co3,Co4, Co5),..),Common),

((member(cross(Obj,Face,Face3,C_area),Cross),
((member(common(Obj,Face3,_,_,C_area),Common),
Xl =clear(nil,nil),YI =clear(nil,nil)),'
(Xl =clear(Obj,Face3),YI =clear(Obj,Face3)))),'

(member(cross(Objl,Facel,Face3,C_area),Cross),
((member(common(Objl,FaceJ,_,_, C_area), Common),
Xl = clear(nil,nil),YI =clear(nil,nil)),'
(Xl =clear(Objl,Face3), YI =clear(Objl ,Face3))))),

X2=[XI,assemble(Obj,Face,Objl,Facel,Rxnobj,Rxnjace)],
jilrer(X2,X),

Y2=[yI,clear(Obj,Face),clear(Objl,Facel)],

Chapter 5. An Automatic Assembly Planner

jilter(Y2, f),
!.

cond(cuar(Obj,Face),X,1'):-
jindall(assemble(Al.A,2.A,3.A,4,A.5.A,6),

recorded(world,assemble(Al.A,2.A,3.A,4,A.5 .A,6),.J .Assemble),
((member(assemble(Obj ,Face ,Obj I ,FaceI ,Rxnobj ,RxnJace).A,ssemble),

Xl = assemble(Obj,Face,Objl ,Facel ,Rxnobj,RxnJace),
fI =clear(Obj,Face),Y2=clear(Objl ,Facel)),'

(Xl = assemble(Obj,Face,Objl ,FaceI ,Rxnobj,RxnJace),
fI =clear(Obj,Face),Y2=clear(Objl ,FaceI))),

jindall(at(AtI.A,t2.A,t3),
recorded(world,at(Atl.A,t2,At3),.J.A,t),

((member(at(Obj,Face,Face2).A,t),
X2=clear(Obj,Face2),f3=clear(Obj,Face2)),'
(member(assemble(Obj,Face,ObjI ,Facel ,Rxnobj,RxnJace),Assemble),
member(at(ObjI ,FaceI ,Face2),At),
X2=clear(ObjI ,Face2),f3=clear(ObjI ,Face2))),

X=[XI,X2],
Y2=[YI,Y2,f3],
!.

cond(ciear(Obj,Face),X,1'):-
jindall(assemble(Al.A,2,A3.A,4,A.5.A,6),

recorded(world,assemble(Al.A,2.A,3,A4,A.5.A,6),.J,Assemble),
((member(assemble(Obj,Face,ObjI ,Facel ,Rxnobj,RxnJace),Assemble),

X=[assemble(Obj,Face,ObjI ,FaceI ,Rxnobj,RxnJaceJ),
f=[clear(Obj,Face),clear(ObjI,FaceI)]);

(X=[assemble(Obj,Face,ObjI ,FaceI ,Rxnobj,RxnJace)],
f=[clear(Obj,Face),clear(ObjI,FaceI)])),

!.

a a

Page 154

b

Initial ltate goal state POlt-condltions

Figure 5,16 Post-Conditions For a Simple Clear State

Chapter 5. An Automatic Assembly Planner Page 155

As illustrated in Figure 5.16, for a simple clear state, clear(aJI) ,

the pre-condition is assemble(ajl ,bJ2,_,.J and the post-conditions are

clear(aJI) and clear(bJ2). This is defined in the third clear cond clause. In

a case when the feature to be cleared crosses with another feature of the

same object, it is necessary to check if any object which is assembled to the

second feature has a common feature to the crossing area. If not, then the

second feature must also be clear in the pre-condition, and will be clear in

the post-condition. Such a case is defined in the first clear cond clause. In

the last case the feature to be cleared is at or within another feature, then

the second feature must also be clear in the pre-condition, and will be clear

in the post-condition. This case is defined in the second clear cond clause.

When do succeeds, an appropriate action list will be produced and

displayed on to the screen. Along with the action list, a view of the world

database is also printed. Hence for the primary shaft example, the action list

is:

press{bear2,whole,shaftjace2,shaftjace3}.
press {bear3, whole, shaftjace3, shaftjacel}.

A complete listing of the planner is in Appendix vi. Some runtime

examples of the planner can be found in Appendix vii.

Chapter S. An Automatic Assembly Planner Page 156

5.6 Miscellaneous Clauses

In addition to the clauses described so far, a number of other clauses

are also used in the planner. Their roles are summarised below and their

actual clauses can be found in Appendix vi in the listing of the planner.

i) The standard member clauses are used to check if an element is a

member of a list. However for an assemble goal state the

description, assemble(ObjI,FaceI,Obj2,Face2,_,.J is in context

equivalent to assemble(Obj2,Face2,ObjI , FaceI ,_,.J. Similarly for

the cross and common predicates. Hence an additional member

clause is used in the planner to check such cases.

ii) The subset clauses are are defined according to the standard

definition of subset, e.g. [a,b] is a subset of [a,b,c,d] and [a,e] is

not.

iii) The intersection clauses are defined according to the standard

definition of intersection, e.g. [a,b] is an intersection set of [a,b,c,d]

and [a,b,c].

iv) Erase _list is written to erase a list of elements from its database given

the key to the database, e.g. world, action, etc. Erase is used to

erase one member of a given list.

v) The record _list clauses are used to record a list of elements to the

appropriate database.

Chapter S. An Automatic Assembly Planner Page 157

vi) The pp, ppx clauses are used to print each element on a new line onto

the screen.

vii) The insert clauses are used to insert a goal into the currentgoal

database.

viii) The append clauses are used to append two lists, e,g, appending

[a,b] to [c,d] will give [a,b,c,d].

5.7 Ball Point Pen Assembly

In addition to the examples previously mentioned, the assembly of

the ball point pen was also used. The parts of the ball point pen are as

shown in Figure 5.17 below and it can be assumed that it is also the initial

state of this assembly. The final state is where refill is inside the pen

barrel, the stopper is at the top end of the pen barrel and the cap is at the

bottom end of the pen barrel as illustrated in Figure 5.18. The correct

sequence of this assembly is that the refill must be inserted into the pen

barrel before the cap. The assembly of the cap and stopper are independent

actions and hence are parallel goals.

Chapter 5. An Automatic Assembly Planner

,cC--- ---~
~--- ----_1

<1 I ' '" t
refiU

~ __ '-_-_ -_ -_-_-_-.-7""7

cap

Page 158

stopper

Fiarure 5.17 Initial State of Ball Point Pen Assembly

rerm

cap stopper

Figure 5.18 A Possible Goal State For The Ball Point Pen
Assembly

The initial state descriptions are given below:

clear(cap,hole),
clear(refill,body),
clear(stopper,projection) ,
clear(pen_barrel,hole),
clear (pen_barrel, top_opening),
clear (pen _barrel ,bottom_opening),
clear(pen_barrel,bottom_end),

Chapter 5. An Automatic Assembly Planner Page 159

clear(pen_barrel,bottom_opening,bottom_end}.

The goal states are:

assemble (refill, body ,pen _ ba"el,hole ,pen _ba"el,bottom _opening).
assemble (stopper,projection,pen_ba"el, top_opening, nil, ni I).
assemble (cap,hole,pen_ba"el, bottom_end, nil, nil}.

The ordered goal list is:

par(seq(assemble(rejill,body ,pen _barrel, hole ,pen_barrel ,bottom_opening),
assemble(cap ,hole ,pen _ barrel, bottom _ end,nil,nil)),
assemble(stopper ,projection,pen _barrel,lop _opening ,nil,nil).

As can be seen, the description of both the assemble and clear states

is simple. Hence the flexibility in using words to name a component and its

features make it fairly easy to adapt it to the description of the goals from

an assembly drawing and the initial states from the individual part drawings

[60]. However for an integrated system, this information should ideally be

available automatically from design data as discussed in Chapter 2.

5.8 Summary

In considering geometric constraints, AAP had applied the

fundamental principles of AI planning logic to derive an ordered sequence of

operations. The strategy of the planner consists of defining the pre and post

conditions, initial and goal states and then maintaining the truth of the

assembly states by using planning heuristics. TWEAK's planning heuristics

Chapter S. An Automatic Assembly Planner Page 160

were used in addition to some practical considerations such as the redundant

and conflicting goals check. The input goals are sorted prior to actual

planning in order to avoid undoing of goals. Further discussion on AAP is

included in the following chapter.

Chapter 6. Discussion Page 161

CHAPTER 6. DISCUSSION

6.1 Introduction

As can be seen from AI planning literature, a vast amount of work

has been done in this area. Therefore, it is not the intention of this research

to produce yet another planner because most of the heuristics for the

planning problem would seem to have already been suggested. The main

objective of this project was to examine both the current AI planning and

process planning situations and see what benefits process planning can obtain

from AI planning. It also involves a study on the feasibility of applying AI

techniques to process planning and assembly process planning in particular.

As a result of applying some AI planning knowledge to some simple

assembly examples, it is believed that AI planning techniques can be applied

to assembly process planning and in particular when addressing planning

problems, (whether for manufacturing or everyday life) they must be solved

or viewed as a whole. This chapter provides a discussion on the findings

and some recommendations to direct further and/or similar work in this area.

6.2 The AI Plannin& Situation

Much of planning research has been theoretical, designed for a

particular specification (or application) and are not intended for use outside

the research laboratory. This often means that an AI planner may not work

in areas other than the application that it was originally designed for. In

some cases when studied and tested by people other than the authors

Chapter 6. Discussion Page 162

themselves, even some of the examples (used to model those particular

planners) can even fail to work. The reasons for this could be due to lack

of understanding of the methods used by the original author and also the ad

hoc way in which heuristics were employed to solve specific examples [61].

When considering the application of AI planning techniques to real

planning problems, the following general points should be considered:

i) size of the problem, Le whether it is manageable using a

computational approach;

ii) whether the specifications of the particular AI planner matches that of

the application in mind 1 and the practical limitations of the planner;

iii) the quality or accuracy of the results;

iv) the ease of formalising the plans and this includes the format of the

both the required input and output (e.g. the state descriptions);

v) implementation issues such as which programming language to use,

the memory requirements of the problem and the hardware

environment.

vi) linkage to other systems if necessary, e.g. linkage to design and

manufacture of a manufacturing system.

The main reason for basing AAP on TWEAK was because it was

fairly well described in the literature compared with other AI planners.

Some practical problems that one may encounter when attempting to use AI

1 If the AI planner i. baeed on ,enoric definition. and proven 10 be correct and complete mathematically then thi,
problem can at leaat be reduced, which i. why the need for I aound theoretical bali. for pl,nnilll.

Chapter 6. Discussion Page 163

planning techniques is that heuristics of planners used may not be sufficient

for other examples. Apart from TWEAK, most of the AI planners to date

were an improvement on their predecessors, i.e. ad hoc collections of

heuristics and rules for applying these heuristics. Since there was no formal

representation to the planning problem as such, an augmented AI planner

usually consisted of an additional rule that was implemented to solve an

example that its predecessor could not solve as seen in STRIPS and

ABSTRIPS. Thus a good starting point is to adopt more generic techniques.

AAP is able to produce expected sequences with the given examples.

Despite the fact that it is only based on geometric constraints, it has

demonstrated a possible way of representing manual assembly problems in

an AI planning domain using generic techniques, i.e deriving a possible plan

from logic rather than using a look-up table such as used in the variant

approach to computer aided process planning. The implication is that an AI

planner with a set of general rules and facts is also adaptable to other areas

of assembly planning, e.g. assembly of domestic appliances, toys, etc.

Certainly the next generation of AI planning work should concentrate

on formalising the planning problem2 and applying as well as testing them

using more realistic cases instead of Blocks World examples. For assembly

process planning applications, this could be done by using more realistic

constraints such as those in the manual assembly environment, say for

example reaction faces which are needed for assembly must be clear as

2 .. in TWEAK which il one of the tint mathematical approach used in AI planni", formalilJ1ll.

Chapter 6. Discussion Page 164

implemented in AAP. The current trend of AI planning research is in the

area of plan execution and re-planning, if necessary [62]. The examples

used are again based on Blocks World examples. The challenge facing the

AI community is to convince people outside the AI community the validity

of these techniques and their viability in real situations such as the

manufacturing environment.

Like most AI projects, the development of AI systems for industrial

or commercial use is a long term investment. This is perhaps the reason

why many companies are reluctant to investigate and invest in long term AI

projects. This has resulted in a number of expert systems that are

developed for very specific purposes and in some cases behaving as an

expensive substitute to a look-up table. What is lacking is some general

guide-lines and techniques for developing AI systems that will benefit from

the results of AI research so far in order to achieve the aim of producing

truly integrated systems in the manufacturing sector. In the UK, the

Department of Trade and Industry is sponsoring large projects which will be

able to provide some answers to companies that cannot afford such long term

investments [63].

Finally, an undeniable fact that has emerged from AI planning

research is that the planning problem has to be considered as a whole. This

includes planning problems in all aspects of life, albeit for manufacturing or

for events of everyday life. The size of the problem can be reduced if it can

be broken down into un-related parts as in the sub-assemblies of assembly.

Chapter 6. Discussion Page 165

6.3 The LOKical Approach

As mentioned in Chapter 4, an advantage of using the logic approach

is that the coding is more compact and is directly convertible from the

specifications. This is not entirely true as seen in the Prolog language as

some conversion, i.e. to the format of the Prolog syntax, is essential.

Ideally, as little coding as possible should be necessary given the user's

specifications but to date the logical approach is the nearest. The theory of

logical systems (Le. fifth generation programs) provides the basis for

producing less errors when compared with programs written in lower level

programming languages as less translations and hence less chances for

errors. In safety critical systems such as computer systems that are used on

the Airbus, it is suggested that a logic approach should be taken in order to

reduce the chances of error.

The main drawback of the logical approach is that symbolic

manipulations can become clumsy when there are large number of facts in

the system. This leads to a combinatorial explosion in the possibilities of

which rules to apply to which facts at each step of the proof. Even though

in Prolog the selection of which rules to apply first can be set (by the

ordering of rules) and changed (using the cut facility) by the programmer, it

can still be very difficult to debug when the program does not behave in an

expected manner3. Despite having the reputation of being a relatively easy

language to program, it is also very easy to write Prolog code without

actually knowing how or what it means. People who are used to

3 Tho UIO of parenthelil can mako a great differenc:e to the program'l behaviour.

Chapter 6. Discussion Page 166

programming in procedural languages often fall into the trap of treating it

like a procedurallanguage4• In such cases, programmers may be stuck with

attempting to debug the programs. For example, in the implementation of

AAP, when there are a number of alternatives to a rule, these alternatives

have to be prioritised so that those with a higher priority are ordered first.

When the cut facility is used in these alternatives, it may be difficult to

predict where the search will terminate and the intended meaning of the

program may change with the use of cuts. However like programming in

general, some practice will help to alleviate misinterpretations of this type of

program. Therefore some training in the logical programming approach

may be necessary for people who are used to the conventional programming

method.

Finally, even though the problem faced by AI planners is said to be

difficult, it can be reduced when applied to real situations, like in assembly

planning. Historically, the aim of AI planning is to produce a general

purpose planner rather like the development of the general purpose

computer. However specific planners for specific tasks as demonstrated by

the actual working practice of planning for sub-assemblies may be a

possibility for reducing the enormity of AI planning research.

4 Even though Prolog il allo conlidered .. a procedural IInguage, the meaning behind it (i.e. the relOlution
principle) ia quite ditTerent from other conventionallanguagcl.

Chapter 6. Discussion Page 167

6.4 The CAPP Situation

Even though CAPP has been in existence since the first CAPP system

presented by CAM-J in 1976, there have still not been many improvements

in the area of integrating design with manufacture through process planning

which is still considered to be the bottle-neck to integration. This could be

due to the lack of knowledge on techniques for automating process planning

on the part of the process planners themselves and lack of knowledge on the

process planning task by system developers. Most of the process planning

systems that are developed are in the area of machining because from the

system designer's point of view there is more information regarding the

process which are obtainable from handbooks and standard data. Thus

leading to the development of variant type systems. Like AI planning,

despite an improvement on the speed at which information can now be

processed with the aid of sophisticated computers, the CAPP situation is also

lacking in providing guide-lines and methodologies. Even tho'ugh there is a

large number of reported CAPP systems, most are very specific and are

targeted for the manufacture of specific components. Future CAPP systems

should take advantage of the results which could be obtained by looking for

a common feature of all CAPP systems that is applicable to process planning

in general. As suggested earlier the core logic of planning should be

applicable to manual assembly in general. Furthermore automated assembly

process planning should be able to reduce development lead times by

enabling engineers to estimate costs for different plans which can be

obtained by e.g. changing initial states configurations.

Chapter 6. Discussion Page 168

The assembly planner in this project is only concerned with the

ordering of goal states/operations to achieve an overall assembly state from

an initial state as described by a user. Other related work in assembly

planning is concerned with robotic assembly path planning based on

geometric modelling of mating features, where the shapes and sizes of

mating features are analysed to compute feasible robotic paths in order to

orientate the appropriate parts during assembly [64,65,66].

Since variant type process planning systems are more established

commercially than generative type, companies that cannot afford the long

term investments required for generative process planning might be better

off with a variant type system. In some cases, variant type systems are

more or less like text editors and this feature can also be tedious to userss.

Therefore it is not uncommon for some companies to abandon these systems

after a while. Lack of confidence in automated process planning systems

could also be due to process planning systems being released to early

(probably at the development stage) to the market. Thus when errors occur,

users are discouraged from using them and often revert back to the manual

systems. Purchasing a one off CAPP system may not solve the integration

problem, therefore some companies are now making long term investments

by working on the principle of a complete manufacturing system. This

could be the only solution to integration, i.e. designing a system for all

functions within manufacturing which is based on a common principle. A

possible approach to the link between design and process planning is to have

a feature-based modelling system instead of the conventional CAD systems.

This is to enable feature information such as say, this is a blind-hole to be

5 TcdiuI compared la manual ayatem, beeauN UNn may have la learn la UN lbe ayatem .. well a. opento a
eomputor which may not be part of thier daily work.

Chapter 6. Discussion Page 169

incorporated in the design (or modelling) system. Hence the process

planning approach could be a generative approach based on the feature

information from the modelling systems, using both general and specific

planning knowledge6•

6.5 Philosophical Issues

From the view point of cognitive science, an interesting question that

one may ask is whether human process planners do actually work like the

variant approach, Le. accumulate a set of standard plans and when

presented with a new problem, produce a new solution by modifying plans
\

for a similar problem. If indeed this is how they work, then the variant

approach is perhaps more human-like and can be considered as an AI

approach according to the definition of AI. This is contrary to the believe

that the generative approach is similar to AI process planning research. In

addition psychological evidence exists to indicate that people rely on a

bank of knowledge accumulated from previous experience to interpret new

situations [67]. This is rather similar to the variant type of approach.

However from a philosophical view point, there are some who believe that

the human mind is more intelligent than (and subsequently the mystique

surrounding the whole issue of intelligence) simply relying on a huge look­

up table for future references 7•

6 Somo companicl in the UK aro now taking thil veiw with a plan Itrotching a number yean, beyond 1992.
7 A contndiction to this beliefil demonltntcd by Scarle'l ChinclC Room whcro equally good tnnalationa (from
Engliah to ChinelC and vice vena) were obtained from an opentor with no knowledge of the languagclcoRl:erncd
who wal limply making refereRl:el from a huge look-up table.

Chapter 6. Discussion Page 170

6.6 Findings From The Development Qf MP

6.6.1 Assembly Constraints

For the sake of simplicity, the type of assembly operation specified in

the planner is press and remove. The first is used to suggest the assembling

of two components rather than the literal meaning of the word press, while

the remove operation is the reverse operation of press. These operations

relate to the topology of the components and therefore can be termed

geometric constraints. However realistically there are other constraints such

as the type of operation to be used e.g. screwing, glueing and welding and

also the type of tools to use, e.g. screw driver or hammer. Extra rules

would need to be developed and a substantial amount of company specific

data would be necessary in order to include these constraints. This is

because different types of products require different types of assembly

operations and hence different types of tooling.

Currently, AAP only knows about manual assembly that requires

reaction faces. In order to accommodate other constraints, the format of the

state descriptions using six arguments may have to be modified.

Chapter 6. Discussion Page 171

6.6.2 Input Description

In AAP, the input data is the goal state in the predicate format, Le.

assemble(.....) or clear(..). It is also necessary to remember that there are

six arguments in the assemble predicate and two in the clear predicate. In

addition the data in the initial state must be consistent with the goal state.

This means that any spelling mistakes in the input would cause the AAP to

fail. For real situations this is not acceptable. Therefore other varieties of

examples are necessary in order to determine a better input description of the

goal states. The input description should ideally be related to the data

format from the design department, to allow a direct transfer of information

between the process planning department and the design department. This

fact has now been recognised and as suggested in Chapter 2, featured-based

design packages are now beginning to emerge in the market. These feature­

based CAD systems are at the moment expensive and sometimes the

proprietors concerned may not be willing to provide source code information

on these systems. Also these systems are at an early development stage and

may not be entirely perfect even though they have been released into the

market. Alternatively, another possible area of related research is to

consider the design of feature based CAD systems using the Prolog language

to allow it to be linked to the assembly planner easily if there were no

feature-based CAD systems available.

Chapter 6. Discussion Page 172

6.6.3 Assembly Space Conflict

The kind of situations illustrated in Figure 3.14 of Chapter 3 where a

planner is attempting to assemble a component onto another part or feature

which does not have enough space due to a prior assembly, do not occur in

the AAP because the mating pairs are specified in the first place. In AAP,

the problem of more than one part being assembled to a designated feature

which can only accommodate one particular part is not relevant. Hence if

the definitions and constraints are specified in this way, such cases can be

eliminated.

6.6.4 Level Qf Detail

A problem with the logical approach is in the representation

technique e.g. how to represent the state descriptions precisely to the level of

required detail. It can get very complicated and tedious if too much detail

is included but if it is under specified then this could lead to

misinterpretations and insufficient knowledge about the constraints of the

assembly. Another consideration is that AAP does not have an actual

picture of the assembly as do humans and so specific pictorial descriptions

may not be appropriate in this case. Therefore a more general description

using the assemble and clear predicates were adopted in preference to the

inside and outside predicate of the test planner. The assemble predicate first

suggests there are two mating components with two corresponding mating

surfaces, i.e.

Chapter 6. Discussion Page 173

assemble (Componentl , Facel , Component2,Face2).

For example, cases like on(a,b) and inside (a, b) can be described as:

assemble (a, bottomJace, b, topJace) and assemble (a, out_wall, b, in_wall)

respectively which are still easily pictured by a user and at the same time is

viewed in the same way by AAP. The assemble predicate also includes pre­

specified constraints like a specified reaction face of one component to be

used if any, e.g. assemble(aJacel,bJace2,aJace3) where face3 is the

reaction face of component a. For the clear predicate, it is sufficient to

describe the feature of the component that has to be cleared. If there are any

inter-relationships between any two features of the same component like two

holes intersecting with one another then this can be described separately as a

fact, e.g. like the cross predicate in AAP.

6.6.5 Additional Reaction Face

If two reaction faces are required for the assembly, i.e. one reaction

face on each of the two components during assembly, then the assemble

predicate as defined in AAP could be increased to accommodate eight

arguments. In this case, most situations should have been covered. In the

definition of the COM clauses, if both the at and cross situations exist at the

same time in an assembly then the COM clauses will have to be modified

accordingly in order to work in such cases.

Chapter 6. Discussion Page 174

6.6.6 Assembly Database

At the current stage of development, AAP is by no means ready for

industrial use. In order to apply it to a practical situation, the next stage of

development could involve developing a comprehensive database of sub­

assemblies. This requires the involvement of a company that would be

willing to provide such realistic data. In addition, it may be necessary to

add more special relationships between features as seen in the cross predicate

depending on the nature of the company's business.

6.6.7 Problem Size

In order to implement the above mentioned extentions to AAP, it

would vastly increase its complexity and size. Due to historical reasons, the

practice of analysing the complexity of Prolog programs is not as developed

as for programs written in more conventional programming languages. As a

rough measure, in analysing the time complexity of the sorting clause in the

planner where n is the number of goal states, the number of comparisons

required is said to be of the order of:

n > 2 z.. (n-i + 1)(n-i) = n2-2ni +i2+n-i

1< i < n

Chapter 6. Discussion Page 175

(See Appendix Hi for the derivation of this formula) Hence for an

assembly with a large number of sub-goals, the time will be significantly

increased. However as mentioned in Chapter 4, it is usual practice to break

down the assembly of a complete design into sub-assemblies according to the

functional properties of the design. This means that the number of sub-goals

in a sub-assembly should be manageable in practice. Hence if planning

commences at the sub-assembly level, the time complexity of the problem

should be reduced. For example, when the piston-connecting rod and

primary shaft sub-assemblies are treated as a single problem containing a

total of 4 sub-goal states, the time scale will be a factor of 20. When the

two sub-assemblies are treated separately, the time scale is 4. This is a

great reduction in the time.

6.6.8 Improvin2 The SortinK Procedure

In particular, the soning procedure in the planner had only

considered the linking of one to one and one to many relationships between

goals, e.g. b comes after a and (h,e) comes after a types of situations. The

linking procedure will have to be modified accordingly to work for cases

that have a many to one relationship, i.e. d comes after both (b,e) type of

situations as illustrated in Figure 6.1.

Chapter 6. Discussion Page 176

• ~ b ~ c

1·1

.-C:- d

many· I

I· many

Fiwre 6.1 Types of Goal Relationships

6,6,9 Optimization Of The AAP Output

The AAP currently provides an output in the form of a list which

may contain parallel or sequential goals or a mixture of both. The sequential

goals must be done in the order that they are stated but the parallel goals can

be done in any order. Since AAP finds the first solution, it would not

necessarily be the only solution or even an optimal solution. The solution

achieved is dependent on the ordering of the input data. In Appendix vii,

Page a60, it can be seen that when the input is as follows:

assemble (bear2 , whole ,shaft lace2 ,shaft lace3).
assemble (bear3, whole,shaftlace3,shaftlaceJ).
assemble (pin, whole,piston,t_hole, nil, nil).
assemhle(rod, whole,piston,axiathoie,nil,nil).

The output actions are to assemble the bearings followed by the assembly of

the piston-connecting rod, i.e.

press (bear2, whole ,shaft lace2 ,shaft lace3).
press (bear3, whole,shaftlace3,shaftlacel).

Chapter 6. Discussion

remove (piston, t _hole ,pin, whole).
press (rod, whole ,piston, axial_ hole ,nil,nil).
press (pin, whole,piston,t_hole,nil,nil).

Page 177

In the second case (see Pagea61) the data remains the same but with a

different ordering, the output is:

remove (piston, t_hole,pin, whole).
press (rod, whole,piston,axial_hoie,nil,nil).
press (pin, whole,piston,t _ hole,nil,nil).
press (bear2, whole ,shaft Jace2 ,shaft Jace3).
press (bearJ,whole,shaftJace3,shaftJacel).

The outputs are correct in both cases but no recommendations are made as to

which is a better solution. In order to determine an optimal ordering of

parallel operations, further information such as tooling and time of

operations are needed.

6.6.10 Other Hardware Platforms

Even though AAP was implemented on a SUN workstation, there is

now an availability of powerful microcomputers which are able to run

Prolog applications. However until recently most versions of Prolog on

microcomputers8 do not have most of the facilities that are available on

bigger machines. The speed of operations on these bigger machines are also

much faster than microcomputers. Therefore most Prolog applications are

8 e.,. Turbo Prolog on mM microcomputcn.

Chapter 6. Discussion Page 178

based on much faster machines as in the case of AAP. This situation is now

changing with the availability of powerful microcomputers and vendors are

also providing better and more complete implementations of Prolog for

microcomputers. Hence it should be possible to run the AAP in a micro­

computer environment as companies are more likely to be able to afford

microcomputers than sophisticated work stations. This is to enable

companies that cannot afford to invest in long term research work to benefit

from the findings of research in this area.

6.7 Lessons And Future Systems

It is without doubt that the ideal for reducing production costs is to

have a truly integrated computer system. This means that process planning

must not only be linked to design but also to manufacture further

downstream, i.e. actual scheduling of tasks for the shop floor in particular.

The problem of integration with design has already been mentioned in the

previous chapter. As scheduling assumes the process plans to be fixed, any

changes in the sequencing of operations will affect scheduling as well. In a

dynamic situation, it may not be possible to adhere to the recommendations

of process planning, e.g. unavailability of specified tooling, and alternative

measures have to be sought. These alternative solutions should not

compromise the quality. Therefore, in an ideal integrated system, links are

necessary both ways from process planning, the former so that process

planning is able to accommodate changes and requests from design and the

latter is necessary in order to pass on these changes as well as acting on the

Chapter 6. Discussion Page 179

dynamic situation on the shop floor. It may be argued that since quality is

not compromised due to alternative solutions being sought further

downstream, then the process planning function need not be such a flexible

one. However the view that is taken downstream may be a parochial one

compared with that of process planning. Hence changes if any, should be

fed back both ways as illustrated in Figure 6.2.

-.. I. ~I Pla.....j ·t----4 .. ~1 !Moh"''' ...

Fiwre 6.2 Interactions of An Assembly Process

Plannin& System

Based on AI planning techniques, it is possible to link the process

planning system to downstream activities as the new sequences can be

derived from the logic of planning. Therefore, less programming effort is

needed to cater for the changes when compared with the conventional

programming approach. For example, AAP could be expanded by adding

more constraints, such as the tooling constraints that are based on the

dynamic situation on the shop floor and new sequences of operations can be

generated. This kind of situation also enables information to be conveyed to

process planners and managers for evaluation which may prompt further

managerial action.

Chapter 6. Discussion Page 180

In considering the interface to design, it is not desirable to design

interfaces to a particular CAD system as it would only be useful to that

particular system. This problem was partly addressed by IGES which

provided the means to convert data into a neutral format first in order to

allow it to be transferred to other systems. Initially, it seems to be an

attractive idea but the impracticalities of the concept, e.g. incompatibility of

tape format between different systems, soon become apparent after a number

of trials. Also the problem of extracting the necessary data for downstream

applications such as process planning still remains unsolved. Various

attempts were then made to interpret CAD data which is not only time

consuming but also runs into the danger of being too specific for general

use. Taking a closer look at the design, it has been suggested that since it

was derived from a concept with functionalities attached to it, it would be

beneficial if such properties were stated explicitly in the first place rather

than having to derive them from the design at a later stage. Hence the

current trends of CAD systems is towards functional based CAD systems

where the manufacturing properties are stated together with the geometric

features. It is not enough just to provide geometric features in CAD systems

but rather the engineering features as well. This makes the validity of

designing interfaces to geometric-based CAD systems questionable.

Hence if feature-based information is available from the design then

the interface from design to process planning would be made slightly easier,

e.g. extract the goal state and final state in manufacturing terms from the

design. It is believed that there are no short cuts to the interface design

because some degree of interpretation is still required, e.g. converting the

Chapter 6. Discussion Page 181

manufacturing data into the format that is required by the (process planning)

system further downstream. This task is made easier if the manufacturing

system is built upon a common philosophy.

The key issues of future systems are interaction and integration.

Interaction between different users of the system is necessary to allow a

sharing of expertise amongst users within a department as well as crossing

over into different functional boundaries (such as design and process

planning department). Communication which is an essential element of

such interactions has to be established and this could be achieved in the form

of distributed knowledge based systems, possibly maintained by a blackboard

architecture [68]. Integration provides the link up of these functionalities in

a system in order to obtain answers efficiently. So far only the technical

(Le. software methodologies and hardware platforms) problems of

integration has been mentioned but the management aspects of integration

are equally important. This requires involvement of top management as well

as involvement of people, i.e. users as well as manager.

Even though the motivation of this project is concerned with using AI

techniques, one must also remember that AI need not be the only solution.

Using AI techniques does not mean the exclusive use of AI tools as

demonstrated by the ESCAPE system used by the FORD Motor company

in America for collecting information and requests (e.g. requests for

refunds) from dealers. An expert system module was embedded in a

COBOL program (which was the original system) to alleviate the problems

Chapter 6. Discussion Page 182

of frequent changes needed in the COBOL program [68]. Hence instead of

rejecting AI techniques or embracing them exclusively, sometimes it may be

worthwhile to consider a combination of both AI (or expert system)

technology in conjunction with existing conventional methods.

Today the Fifth Generation Programme is technically over but in

practice the computing industry is still. dominated by procedural and

conventional methodologies. However AI techniques in a reduced form can

be seen in the shape of expert systems which have sprung up very rapidly

over the last decade or so. This has sparked off much interest in AI from

other non AI fields. Despite failing to produce a computer system (perhaps

even in the next decade or so) that can behave (Le. perceive, reason,

understand, communicate, etc) like humans, AI techniques or its products

will definitely play a part in people's everyday life9 in one form or another.

Perhaps future systems in general might have a planner as the heart of the

system (rather like humans) which is able to solve problems in general.

Specific problems requiring specific rules and facts could then be added to

this system which is rather similar to a shell. Once the system is aware of

new situations or applications, it is then able to learn and behave

appropriately and this could be an incremental process. As the Fifth

Generation Programme fades into history, there is now talk of the Sixth

Generation Programme where the emphasis is on parallel processing and

neural networks. The former would enable more powerful processing

capabilities while the latter would provide an insight into advanced pattern

recognition technology. A feasibility study is going on at the moment and

9 For example, the JapanolO (known to be keen on applying AI techniquel) have produced In intelligent rice
cooker.

Chapter 6. Discussion Page 183

if encouraging the program will commence in April 1992. This time the

parties involved will consist of both Japanese and US/EC companies and

universities. Thus enabling international cooperation [69]. The Sixth

Generation Programme will be able to carry on the aims and objectives of

the Fifth generation programme, i.e. the search for an artificially intelligent

artifact.

Chapter 7. Conclusions Page 184

CHAPfER 7. CONCLUSIONS

AI planning techniques which have been developed in a Blocks

World environment are relevant to the assembly process planning problem

and AAP has demonstrated the feasibility of applying the fundamental

planning heuristics of AI planning to assembly planning.

In real assembly situations the size of the problem is great. However

it can be decomposed into sub-assemblies like the sub-goals in AI planning

and can therefore be treated independently. Hence reducing the size of the

problem.

The format of the input to AAP is important as it affects the ease of

use of the planner. The alternative forms of input to AAP are either feature

based descriptions or geometric CAD data but there are considerable

difficulties in both areas.

The way in which the input is ordered closely affects the final output

of the parallel goals. In order to optimise these parallel goals, further

domain specific information is needed.

Chapter 7. Conclusions Page 185

Further constraints such as those relating to operation and tooling are

required for the operation of the AAP. In addition, access to a company

database of assembly data would be essential.

Even though theoretically a generative planner is the ideal, there are

nevertheless valid practical reasons why variant planners are used and will

continue to be used.

REFERENCES

[1] 1. Kennedy et al, Manufacturing Intelligence Market Surveys and

Applications, Department of Trade and Industry, MIT Division,

1989.

[2] K. Dell, An introduction to computer-Aided Process Planning, CIM

Review, Fall 1987, pp 7-23.

[3] K. Srihari & T. 1. Greene, Computer-Aided Process Planning, A

CAD/CAM Inteface, elM Review, Summer, 1988, pp 47 - 54

[4] Zozaya-Gorostiza, C Hendrickson, D R Rehak, Knowledge-based

process planning for construction and manufacturing, Academic

Press, 1989, pp 4 - 6.

[5] L. Alting, H.C. Zhang , Computer Aided Process Planning,' the

state of art survey, Int. 1 Prod. Res., 1989, Vol27, No. 4 pp 553 -

585.

[6] C.H. Link, CAPP, CA] automated process planning system,

Proceedings of the 1976 NC Conference, 1976, CAM-I, leo.

Arlington, Texas, USA.

[7] T.C. Chang, R.A. Wysk, An introduction to automated process

planning systems, Prentice-Hall, 1985, pp 18 -22.

[8] J.L. Burbridge ,Production Flow Analysis, The Production

Engineer, April/May 1971.

[9] J.L. Burbridge, The Introduction of Group Technology, Wiley, New

York, 1975.

[10] T.C. Chang, R.A. Wysk, An Introduction to automated process

planning systems, Prentice Hall, 1985, pp 124 - 132.

[11] Y. Descotte , J.C. Latombe , GAR!: A problem solver that plans how

to machine mechanical pans, UCAI 7, Vancouver, August 1981 pp

766 -772.

[12] B.I. Davies 1986, Expen systems in process planning, 7the

International conference on the Computer as a design tool, London,

UK 2-5 September.

[13] K. Matsushima , et al, 1982, The integration of CAD and CAM by

application of anificial intelligence techniques, Annals of the CIRP,

31(1).

[14] H.R. Berenji, B. Khoshnevis, Use of AI in Automated Process

Planning, Computers in Mechanical Engineering, Sept 1986, pp 47-

55.

[15] Li L., Bedworth D.D., A semi-generative approach to CAPP using

Group Technology, Computers in Industrial Engineering, Vol. 14,

No. 2, pp 127-137, 1988.

[16] A. Houtzeei, A chain structured part classification system,

(MICLASS) and group technology, Proceedings of the 14th Annual

meeting & Technical conference of the NC Society, March 13-16 ,

1977, Pennsylvania, pp 383-401.

[17] A. Opitz, A classification system to describe work pieces, ed.

MacConnell W.R., Pergamon Press, ELmsford, New York 1970.

[18] Wang Hsu-Pin, Intelligent Reasoning for Process Planning,

Department of Industrial & Management Systems, Dec 1986, Ph. D.

thesis.

[19] D.F. Theilen, J.F. Jones, IGES - Data Exchange Between Dissimilar

CAD/CAM systems, Autofact (4) 1982, pp 20-33.

[20] A.C. Sanderson, L.S. Homem de Mello, Zhang H., Assembly

Sequence Planning, AI Magazine, Spring 1990, pp 62-81.

[21] L.S. Haynes, G.H. Morris, A formal approach to specifying

assembly operations, Int. Journal of Machine Tools Manufacture,

Vo128, No. 3, 1988, pp 281-298.

[22] Rocheleau D.N., Lee K.W., System for Interactive Assembly

Modelling, Computer-Aided Design, Vol. 19, no. 2, March 1987, pp

65-72.

[23] Fazio T.L., Whitney D.E., Simplified Generation of All Mechanical

Assembly Sequences, IEEE Journal of Robotics and Automation, Vol

RA-3, No. 6, December 1987, pp 640-708.

[24] METCUT, Research Associates, Inc., Machining Data Handbook,

Machinability Data Centre, Cincinnati, Ohio, 1980.

[25] E. Rich: Artificial Intelligence, McGraw-Hill, 1983, pp 1.

[26] A. Newell, H.A. Simon: GPS, A program that simulates human

thought, Computers and Thought, (eds Feigenbaum, E A; Feldman

J.) New York, McGraw-Hi1l1963.

[27] E. Rich: Artificial Intelligence, McGraw-Hill, 1983, pp 99 - 102.

[28] L. Siklossy, After 24 years in AI:Some Lessons, Lecture notes in AI,

edited by J. Siekmann, AI in Higher Education, CEPES-UNESCO

International Symposium Prague, CSFR, October 1989 Proceedings,

SPringer-Verlag, pp 159-167.

[29] N. Gupta, D. Nau, Optimal's Blocks World Solutions are NP-hard,

Technical Report, Computer Science Dept., University of Maryland,

USA.

[30] D. Chapman, Planning jor Conjunctive Goals, Artificial Intelligence,

1987, 32, pp 333-377.

[31] C.C. Green, Theorem Proving by resolution as a basis jor question­

answering systems, Machine intelligence, Vo14 (eds B. Meltzer, D.

Michie), New York, Elsevier Pub. Co 1969.

[32] R. Kowalski, Logicjor problem solving, North-Holland, 1979 .

[33] R.E. Fikes, N.]. Nilsson:S11UPS: A new approach to the application

of theorem proving to problem solving, AI, Vo12, 1971, pp 189-208

[34] E.D. Sacerdoti, Planning in a Hierarchy of Abstraction Spaces,

Artificial Intelligence, Vo15, pp115-135, 1974.

[35] Sacerdoti E. D., A structure for plans and behaviour, Elsevier, New

York, 1977.

[36] D. Chapman, Planning for conjunctive Goals, Artificial Intelligence,

vol 32, 1987, pp 333 - 377.

[37] G.A. Sussman: A computational model of skill acquisition, MIT AI

Lab Memo, AI-TR 297, Cambridge, Mass.

[38] A. Tate:/nteracting Plans and their use, Proc of UCAI, 1975, pp

215-218, Tbilisi, USSR.

[39] A. Tate, Project Planning using a hierarchical non-linear planner,

Dept of AI, Report 25, 1976, University of Edinburgh.

[40] M.I. Stefik: Planning with constraints, Artificial Intelligence, Vol

16, 1981, pp 111-140.

[41] G. Boothroyd & P. Dewhurst, Design For Assembly, A Designer's

Handbook, Department of Mechanical Engineering, Massachusetts,

1983.

[42] G. Spur, F.L. Krause, W. Grotte., Planning of Assembly

Sequences, Lecture notes in Computer Science: Methods & Tools for

Computer Integrated Manufacturing, Springer-Verlag, 1984, pp 106 -

111.

[43] T. L. Fazio & D. Whitney, Simplified generation of all mechanical

assembly sequences, IEEE Journal of Robotics and Automation, Vol

RA-3, no. 6, Dec 1987, pp 640 - 708.

[44] M. Allchurch, Computer-Aided Line Balancing, M. Sc. dissertation,

University of Warwick, 1991, pp 42 - 76.

[45] A.C. Sanderson, L.S. Homem de Mello, H. Zhang, Assembly

Sequence Planning, AI Magazine, Spring 1990, pp 62-81.

[46] M. Welbank, A review of knowledge acquisition techniques for expert

systems, Published by MarUesham Consultancy Services, British

Telecom Research Laboratories, Ipswich, December 1983.

[47] A. M. Burton, N. R. Shadbolt, A. P. Hedgecock, G. Rugg, Aformal

evaluation of knowledge elicitation techniques for expert systems,

Research and Development in Expert systems IV, edited by S.

Moralee; Cambridge University Press, 1987.

[48] A. Newell, H.A. Simon, Human Problem Solving, Englewood

Cliffs, N.J., Prentice-Hall, 1972.

[49] J.R. Carbonell ,AI in CAI: An Al approach to computer-assisted

instruction, IEEE Transaction on Man-Machnie systems, 1970, pp

190-202.

[50] R.C. Schank , R.P. Abelson R P, Scripts, Plans, Goals and

Understanding, Hillsdale, N.J., Lawrence Erlbaum, 1977.

[51] J.G. Carbonell, R.E. Culling ford ,A.V. Gershman , Steps towards

knowledge-based machine translation, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vo13, no. 4, 1981, pp 376-392.

[52] P .R. Cohen , E.A. Feigenbaum , The Handbook of Artificial

Intelligence, Volume Ill, Pitman Books Ltd, 1983, pp 114-119.

[53] J. Doyle, A Truth Maintenance System, AI No. 12, 1979, pp 231 -

272.

[54] M.L. Ginsberg, Readings in Non-monotonic reasoning, Morgan

Kaufman Pub, Los Altos, California, 1987.

[55] L. D. Erman , F. Hayes-Roth, V. R. Lesser & D. R. Reddy, The

Hearsay-lI Speech Understanding System: Integrating Knowledge to

Resolve Uncertainty, Computing Surveys, Voll2, No 2, June 1980.

[56] K. Matsushima, N. Okada, T. Sata, The Integration of CID and

CAM by application of Artificial Intelligence, Annals of the CIRP,

Vo131, No. 1, 1982.

[57] T. Richards , Clausal Form Logic, An Introduction to the logic of

computer reasoning, Addison Wesley, pp 273 - 283, 1989.

[58] D. Chapman, Planning for Conjunctive Goals, Artificial

Intelligence, 32 1987, pp 333-377.

[59] A.L. Dowd, Y. P. Cheung, An Intelligent Planner For Assembly

Process Planning, INCOM 1989, 6th Symposium on Information

Control Problems in Manufacturing Technology, Madrid, 26-29 sep

1989, Preprints of Volume 1, pp 19-23.

[60] Y. P. Cheung, A.L. Dowd, An Anijicial Intelligence Planner for

Assembly Process Planning, Presented at 6th International

Conference on CAD/CAM Robotics & Factories of the Future,

London 19-22 August 1991, International Society For Productivity

Enhancement.

[61] N.A. Kartam D.E. Wilkins, Towards a Foundation For Evaluating

Al Planners, AI EDAM, 1990, 4(1), pp 1 - 13.

[62] L. Morgenstem, Replanning, In proceedings of defense Advanced

Research Projects Agency Knowledge-based Planning Workshop,

1987.

[63] J. Lamb, Computer Weekly News, October 17, 1991, pp 3.

[64] A.C. Sanderson, L.S. Homem de Mello, H. Zhang, Assembly

Sequence Planning, AI Magazine,Spring 1990, pp 62 - 81.

[65) L. S. Haynes, G.H. morris, A Fonnal Approach to specifying

assembly operations, Int. Journal of Machine Tools Manufacture,

Vol. 28, No. 3, 1988, pp 281-298.

[66) R. J. Popplestone, Y. Liu, R. Weiss, A Group Theoretic Approach

to Assembly Planning, AI Magazine, Spring 1990, pp 82 - 97.

[67) F.C. Bartlett, Remembering: A Study in Experimental and social

psychology, Cambridge University Press, 1932, Reprinted in 1977.

[68) D. Bobrow, Dimensions of Interaction, AI Magazine, Fall 1991, pp

64-78.

[69] Newsletter of AISB (Society for the Study of Artificial Intelligence &

Simulation of Behaviour), Summer 1991, No. 7, Page 3.

BiblioKraphy

Andreasen M., Lund T., Swift K.G., Kahler S., Design for Assembly,

Bedford, IFS, 1988.

Barr A., Feigenbaum E.A., The Handbook of Artificial Intelligence, Volume

1, W Kaufmann, 1981.

Barr A., Feigenbaum E.A., The Handbook of Artificial Intelligence, Volume

3, W Kaufmann, 1983.

Bolter I.D., Turing's man, Penguin Books, 1984.

Bratko I., Prolog programming for Artificial Intelligence, Addison Wesley,

1986.

Chang T.C., Wysk R.A., An introduction to automated process planning

systems, Prentice-Hall, 1985, pp 18 -22.

Cohn A.G., Thomas J.R., Artificial Intelligence and its applications, John

Wiley, 1986.

Clocksin W.F., Mellish C.S., Programming in Prolog, Springer-Vedag,
1984.

Davis R., Lenat D.B., Knowledge-based systems in Artificial Intelligence,

McGraw-Hill, 1982.

Fisher E., Moodie C.L., Martin-Vega L.A., Proceedings of Manufacturing

International 1990, Volume 1, Intelligent Manufacturing Structure, Control

and Integration, The American Society of Mechanical Engineers, 1990.

Forsyth R. Expert Systems, Principles & Case Studies, Chapman & Hall,

1984.

Dougherty E.R., Giardina C.R., Mathematical Methods for Artificial

Intelligence and autonomous systems, Prentice-Hall, 1988.

Genesereth M.R., Nilsson N.l., Logical Foundations of Artificial

Intelligence, Morgam Kaufmann, 1987.

Gill K.S., Artificial Intelligence For Society, lohn Wiley & sons, 1986.

Ginsberg M.L., Reinfrank M., de Kleer l., Lecture Notes in AI, Non­

monotonic Reasoning, Proceedings of 2nd International Workshop Grassau,

FRG, Springer-Verlag 1989.

Goos G., Hartmanis l., Lecture Notes in Computer Science, Fundamentals

of Artificial Intelligence, An advanced course, Springer-Verlag, 1986.

Grady P.O., Process Planning & Design For Manufacture, International

Journal of CIM, Volume 4(2), Taylor & Francis, 1991

Groover M.P., Automation, Production Systems and Computer-Aided

Manufacturing, Prentice Hall, 1980.

Ham I, Hitomi K., Yoshida T., Group Technology, Kluwer Nijhoff

Publishing, 1985.

Harel D., The Science of Computing, Exploring the nature and power of

algorithms, Addison-Wesley, 1989.

Hawley R., AI programming environments, Ellis Horwood Ltd, 1987.

Hayes-Roth F., Waterman D.A., Building Expen Systems, Volume 1,

Addison Wesley, 1983.

Jackson P., Introduction to Expen Systems, Addison Wesley, 1986.

Kennedy J. , et al, Manufacturing Intelligence Market Surveys and

Applications, Department of Trade and Industry, MIT Division, 1989.

Kidd A.L. Knowledge Acquisition for expen systems, A practical handbook,

Plenum Press, New york, 1987.

R. Kowalski, Logicfor problem solving, North-Holland, 1979.

Kurzweil R., The Age of Intelligent Machines, The MIT Press, 1990.

Matsushima K., et al, 1982, The integration of CAD and CAM by

application of anijicial intelligence techniques, Annals of the CIRP, 31 (1).

Meritt D., Building Expen Systems in Pr%g, Springer-Verlag, 1989.

Myer N.L., Group Technology at work, Society of Manufacturing

Engineers, Dearbom, Michigan, 1984.

Nilsson N.I., Principles of AnijicialIntelligence, Tioga Publishing, 1980.

Nilsson N.I., Problem solving methods in Artificial Intelligence, Computer

Science Series, McGraw Hill, 1971.

O'shea T. Eisenstadt M., Anificial Intelligence, Tools, Techniques and

ApplicatiOns, Harper & Row Publishers, 1984.

Penrose R., The Emperor's New Mind, concerning computers, minds and the

laws of physics , Vintage, 1990.

Pollock I.L., How to build a person, A Prolegomenon, MIT Press 1989.

Ramani S., Chandrasekar R., Anjaneyulu K.S.R., Lecutre Notes in Anijicial

Intelligence, Know/edge Based Computer Systems, Springer-Verlag 1990.

Rich E., Anijicia/Intelligence, McGraw Hill, 1983.

Richard T., Clausal Form Logic, An Introduction to the logic of computer

reasoning, International Computer Science Series, Addison-Wesley, 1989.

Sacerdoti E. D., A structure for plans and behaviour, Elsevier, New York,

1977.

Schank R.C., Colby K.M., Computer Models of thought and language, W

H Freeman & Co., 1973.

Seikmann J. (ed), Lecture Notes in Anijicial Intelligence, Anijicial

Intelligence in Higher Education, Proceedings of CEPES-UNESCO

International symposium, Prague, CSFR, October 1989" Springer-Verlag,

1987.

Simons G.L., Towards 5th Generation Computers, NCC Publishing Co,

1983.

Sterling L., Shapiro E., The An of Prolog, Advanced Programming

Techniques, The MIT Press, 1987.

Sussman G.A., A computer model of skill acquisition, Elsevier 1975.

Tulkoff J., CAPP, Computer Aided Process Planning, Manufacturing update

series, Pub. Computer and automated systems, Association of SME,

Dearborn, Michigan, 1985.

Waterman D.A., A guide to expen systems, Addison-Wesley, 1986.

Wilensky R., Planning, Understanding. A computational approach to human

reasoning, Addison Wesley, 1983.

Winstanley G., Anijicial Intelligence in Engineering, John wiley & sons,

1991.

Zozaya-Gorostiza, C Hendrickson, D R Rehak, Knowledge-based process

planningfor construction and manUfacturing, Academic Press, 1989.

Appendix i. Fundamentals of Theorem Proving and Prolog Page al

APPENDIX I. FUNDAMENT ALS OF THEOREM
PROVING AND PROLOG

In order to understand how the resolution principle works, some

definition and fundamentals of logic are given below. It works on a

simpler version of Predicate Calculus known as Clausal Form Logic (CFL).

CFL is a simpler version of Predicate Calculus which allows logical

manipulations to be performed more easily on the computer.

1.1 Introduction to Clausal Form Lo&ic

Instead of logical formulas/sentences, CFL consists of literals and

clauses. A literal is an atom (or fact) that is negated or unnegated, e.g.

happy(james) is a literal (meaning James is happy).

A clause is a set of literals.

Definition;

If pJ , ... ,pm and qI , ,qn are atoms (m,n > = 0) then {pI, ... ,pm} = >

{qJ 'OO. ,qn} is a clause.

where the atoms, pI, ... pm are known as the antecedents of the clause and

qJ , ... ,qn are the consequents of the clause. This is rather like a conditional

represented by an if-then statement.

Appendix i. Fundamentals of Theorem Proving and Prolog

So, a clause is a conditional when it says:

if its antecedents are all true
then so is its consequent atom.

e.g. clean (james) = > happy(james).
(if james is clean then james is happy)

1.2 Truth Values

Page a2

The truth value of any clause (Le. whether it is true or false) as a

whole can be computed simply as a function of the truth values given to its

atomic components. Conventionally, '1' is used to represent true and '0' to

represent false.

1.2.1 Definition of truth for clauses

From the definition of a clause, it is true unless:

i) all its antecedents are true and

ii) all its consequents are false.

What this means is a clause is true:

i) if antecedent (PI) is true then so is the consequent.

ii) if several antecedents ({pI, .. ,pmj) are all true then so is the

consequent.

Appendix i. Fundamentals of Theorem Proving and Pro log Page a3

The fundamental concept underlying this definition is that:

i) no statement is both true and false and

ii) every statement is either true or false

1.3 The Empty Antecedent Set

{ } = > {q} ----- (1)

Suppose, we have a clause with no antecedents and q is the only

consequent then (1) is true if q is true and false if q is false. This is the

unconditional statement that q is true, Le.

{} => q

1 1

o 0

It is customary to write the truth values of atoms beneath the atoms

concerned and the truth value written beneath I = > I is the truth value of the

whole clause. Similarly, a clause with no antecedents but several

consequents is the unconditional statement that one or more of these

consequents is true, i.e.

{ } = > {ql, ,qn} ------- (2)

means that one or more of ql, ,qn is true.

Appendix i. Fundamentals of Theorem Proving and Prolog Page a4

Incidentally, this is equivalent to asserting the disjunction of the

consequents.

Example 1.3

The statement, vincent loves james can be represented by the clause:

{} = > loves(vincent,james) (from (2»

1.4 The Empty Consequent Set

{P} = > {} ----- (3)

For general case:

{pJ, ,pm} = > {} ----- (4)

If one or more of pJ , ... ,pm is false then clause (4) is true. If all of

pJ, ... ,pm are true then the clause is false, i.e. not all of pJ, ... ,pm are true.

This is equivalent to: pJ, ... ,pm = > false, i.e. denying the conjunction of

antecedents.

Example 1.4

i) lames is not naughty can be written as:

naughty(james) = > {}

In general, "not p" where p is an atomic statement is represented as:

"p=>{}".

Appendix i. Fundamentals of Theorem Proving and Prolog Page as

ii) If lames is clean but not wet then he is happy can be written as:

clean(james),not_wet(james) = > happy(james).

but not_wet(james)is not a part of a clause in CFL. (Recall that CFL can

contain only atomic formulae and the implication sign from definition.) So

to convert to CFL we get:

clean(james) = > wet(james);happy(james)

This is the same as saying that: if james is clean then he is either wet

or happy. To add 'not-pt to one side of a clause, add lp' to the other side

instead. This is known as the Rule of Negation by Transfer.

1.4.1 Symmetry of Rule of Ne2ation by Transfer

e.g. If James is happy then he is not wet is represented as:

happy(james),wet(james) = > {}

from: happyGames) = > not_wetGames).

Appendix i. Fundamentals of Theorem Proving and Prolog Page a6

1.5 The Empty Clause

The empty clause is represented by I = > I. The truth value of 1= > I

is false. This is because:

i) there are no false antecedents (from 1.2.1) and similarly,

ii) there are no true consequents (from 1.2.1).

Hence by definition" = >" is false, i.e. {T} = > {F} is false.

1.6 Variables

In order to expand the clauses to represent different individuals at

different times, variables can be used. e.g. = > loves (Xjames). is the

unconditional statement that for any object X, X loves james, i.e. everyone

loves james.

1.6.1 Substitution For Variables

An instance of a clause is obtained by the uniform substitution of one

or more variables in the clause by a term. If each variable is uniformly

substituted by a constant term, then the result is called a ground instance.

e.g. son(X, vincent),father(Y ,X) = > parent(vincent,X).

Appendix i. Fundamentals 0/ Theorem Proving and Prolog

Substitute X=james, Y=vincent we get:

sonGames, vincent), father(vincent,jarnes)

= > parent(vincent,james).

1.7 Proof Theory for eFL

Resolution uses two types of rules (for deduction):

i) Substitution Rule;

ii) Cut Rule.

1.7.1 The Substitution Rule

Page a7

Any uniform substitution instance of a clause may be deduced from

that clause, e.g.

parent(x,y,z) = > mother(x,z);mother(y,z)

This means that if x and y are the parents of z, then x or y is the mother of

z.

Deduction;

parent(x,y,z) = > mother(x,z);mother(y ,z) --- (1)

x=yen, parent(yen,y,z) = > mother(yen,z);mother(y,z)

Appendix i. Fundamentals 0/ Theorem Proving and Prolog

y=vincent, parent(yen,vincent,z)

= > mother(yen,z);mother(vincent,z)

z =james, parent(yen, vincent,james)

= > mother(yen,james);mother(vincent,james)

Pagea8

This rule is not limited to the substitution of variables by constants; it

is also possible to use the rule to substitute for other variables as well.

1.7.2 The Cut Rule

Definition;

If

then

P1P => Q1 and

P2 => PQ2

P1P2 => Q1Q2

where P1,P2,Q1,Q2 are sets of atomic formulae and P is an atomic

formula, Le. cut out an atom P occuring on opposite sides of two clauses

and merge the resultant clauses into a new one.

Appendix i. Fundamentals of Theorem Proving and Prolog Pagea9

1.7.3 Usina the Substitution Rule and Cut Rule Toaether

Example;

Assertions: Anybody who is somebody's father is male. --- (1)

vincent is the father of lames. --- (2)

Derive: vincent is male --- (3)

From (1) father(X, Y) = > male(X) --- (4)

From (2) = > father(vincent,james) --- (5)

Deduction:

From (4) & using substitution rule: {X = vincent}, {Y = james},

father(vincent,james) = > male(vincent) --- (6)

From (5),

= > father(vincent,james) --- (7)

From (6) & (7) & using the cut rule,

= > male(vincent).

Therefore, vincent is male.

The proof for the above example can be displayed as a tree as shown in

Figure aLl.

Appendix i. Fundamentals of Theorem Proving and Prolog Page alO

father(x,y) = >
male (x)

(SUbSti~ rule)

father(vincent,james) = >
male(vincent)

\
(Cut Rule)

x = vincent
y = james

father(vincent,james)

I = > male(vincent)

Fiwre aLl Proof Tree for e.g. 1.7.3

Appendix i. Fundamentals of Theorem Proving and Prolog Page all

The method of the deduction in the above example is also known as

forward chaining. The proof proceeds by working forwards from the

premisses until the conclusion is reached. The refutation method also known

as backward chaining proceeds by denying the conclusion (or goal) and then

apply resolution backwards from that denial until some contradiction with

the premisses is reached.

So using the same example, we negate the conclusion first and the

proof tree as shown in Figure a1.2. We end up with the empty clause,

which is logically false. Hence by applying the rules of resolution we have

deduced something that is false. This means that, in any interpretation1 that

we choose, one or more of our original premisses must have been false. But

we cannot reject the premisses that we begin with because we are trying to

show that if they are true, then so is the conclusion. Hence our assumption,

the denial of the conclusion must be wrong and so the conclusion must be

true.

1.7.4 Advantaaes of Refutation

Even though the forward chaining approach seems more straight

forward, the refutation method is the widely adopted approach to automated

reasoning. The main reason for this is that backward chaining is much more

focussed than forward chaining and involves less backtracking out of

unprofitable or unpromising partial proofs.

1 An interpretation is a particular specification (or instance) of the objects in a world (or problem).

Appendix i. Fundamentals of Theorem Proving and Prolog Page al2

male(vincent) = >

father(x,y) = > male(x)

Substitution rule, x = vincent &

Cut rule

father(vincent,y) = >

from (7),
= > father(vincent,james)

y = james & cut rule

Filmre a1.2 Refutation Graph for e.g. 1.7.3

Appendix i. Fundamentals of Theorem Proving and Prolog Page al3

1.8 ProloK

Prolog is said to be a cut-down (a reduced version of Predicate

Calculus) logic machine designed to perform logical deductions using the

resolution principle. Clauses that are entered into the database in Prolog

have exactly one consequent, and zero or more antecedents. Clauses with

one consequent are called positive Horn clauses and those with no

consequents are called negative Horn clauses.

Example:

b & d & c = > a v b can be written as two separate clauses:

b&d&c=>a

b&d&c=>b

where & means and, v means or.

These can be written in Prolog as:

a:- b & d & e.

b:- b & d & e.

(From the standard notation of Prolog: conclusion :- conditions.)

The standard notation for conjunctions in Prolog is the comma and

for disjunction it is the semi-colon. For example,

goal:- sub -Boal (a).
sub -Boal (b).
sub-B0al(c).

Appendix i. Fundamentals 0/ Theorem Proving and Prolog Page a14

The above example means that to achieve goal, subJoal(a) and subJoal(b)

and sunJoal(c) must be achieved. Similarly for the example below:

goal:- (sub Joal(a);
sub-goal (b).'
sub Joal(c)).

This means that to achieve goal, either one of sub I Joal(a) ,

subJoal(b) or subJoal(c) has to be true. Any words that are written in

upper case are treated as variables2 by Prolog. Goals and constants begin

with a lower case letter. Unlike conventional programming languages, once

instantiated (initialise in conventional programming languages), variables in

Prolog cannot be changed.

The most useful data structure is lists and the elements in a list are

enclosed by [and} respectively. An example of a list is:

[clear(pin. whole).clear(rod. whole}.

Notice that the elements are separated by commas. It can also be written as:

[clear(pin. whole) I clear(rod. whole}.

The first element in the list is called the head while the remaining elements

(recursively the rest of the list) in the list is called the tail. The symbol, I

2 The underscore, _, is used in Prolog as an annonymous variable, if it is not used elsewhere in the
clause. This is to save having to think of different names.

Appendix i. Fundamentals of Theorem Proving and Prolog Page a15

is used to separate the head from the tail. In the above list, there is only one

tail in the list, i.e. clear(rod, whole).

Each prolog rule or fact is terminated by a period. The order of rules

determines the order in which solutions are found. . Changing the order of

rules in a program would cause a different order of traversal of the search

tree and a different order of finding solutions. This is because Prolog works

in a depth-first manner. Consider the example below which is used to find

whether an element is a member of a list:

member (X, fX I Xli]).

member(X,fYl YsJ):-member(X, Ys).

As it is, the program will search the list until the desired element is

found. If the order of these clauses are reversed then the program will

always search to the end of the list. Incidentally, the order of solutions will

also be affected. For example, if the query is: member(X, [a,b,c]. In the

above program, the solutions will be:

X=a,X=b,X=c.

In the reversed version, the solutions will be: X=c,X=b,X=a.

If the search of a goal in a program contains an infinite branch then

the program will not terminate. Non termination arises with recursive rules

Appendix i. Fundamentals of Theorem Proving and Prolog Page a16

(which are often a feature of Prolog programs). An example of non

termination is given below:

Clauses:

married(A,B):-married{B,A).

married(john,mary).

TraceJ:

married(john,mary)

married (mary john)

married (john,mary)

The order of goals in a Prolog program determines the search tree.

Unlike rule order, goal order affects the amount of searching that a program

does in solving a query by determining which search tree is traversed. So,

changing the goal order will change the search tree. For example,

Clause i.

Clause ii.

son(X,Y):-

male (X),

father{Y,X).

son(X,Y):­

father{Y,X) ,

male (X).

3 Trace is a debugging facility of standard Prolog implementations which showl the programmer what
it is doing at each call to the program.

Appendix i. Fundamentals of Theorem Proving and Prolog

Facts: father(ken,andrew).

father(ken,mary J.

father(ken, lucy J.

male (andrew).

female (mary).

female (lucy).

father(vincentJames). male (james).

Page a17

Suppose the query is: son(p ,ken), Le. find who is the son of ken. With

clause L, the search tree is given in Figure a1.3.

true

Filrnre a1.3 A Search Tree OC Clause i.

The search tree for the clause iL is given in Figure al.4.

Appendix i. Fundamentals of Theorem Proving and Prolog Page a18

Figure al.4 A Search Tree Of Clause ii.

Besides being a declarative language (defining rules and facts

explicitly), Prolog is also considered to be procedural because of the its

behaviour when ordering clauses and goals. This means that the execution

of Prolog rules proceeds in a sequential manner according to the manner in

which they have been ordered. Those that come first will be satisfied first.

It works in a depth-first manner with backtracking when a sub-goal fails. A

way in which the sequential order could be changed is by using the cut

facility.

Cut is a system predicate for reducing the search space of Prolog

programs by dynamically pruning the search tree. It can also be used

purposely to prune paths that contain contain solutions in order to achieve a

weak form of negation. The following clauses are used to represent a

limited form of negation called negation as failure.

Appendix i. Fundamentals of Theorem Proving and Prolog

not(X):-X,! Jail.

not(X).

Page a19

Having said earlier that changing the rule order only changes the

order of solutions, in the above definition for negation, the rule order is

essential for the intended meaning of negation. The cut-fail combination is

used to allow early failure, Le. to say that the search will not proceed.

Cuts must therefore be used with caution otherwise the intended meaning of

clauses with be affected. Further details of Prolog can be found in [2,3].

References

[1] Richards T., Clausal Form Logic, An Introduction to the logic of

computer reasoning, Addison Wesley, 1989 pp 273 - 283.

[2] L. Sterling, E. Shapiro, The Art of Prolog Advanced Programming

Techniques, MIT Press, 1987.

[3] W.F. Clocksin, C.S. Mellish, Programming in Prolog, Springer­

Verlag, 1986.

Appendix ii. A List of Some Process Planning Systems Pagea20

APPENDIX 11. A LIST OF SOME PROCESS PLANNING
SYSTEMS

SYSTEM APPROACH AfPLICATION

APPAS [1] Generative Machining:
milling ,drilling

AUTAP [2] Generative Machining:
rotational

AUTOCAP [3] Variant Machining:
~rismatic parts

CADCAM (extension Generative Machining:
of APPAS) [4] hole making
CAP [5] Variant Machining:

sheet
CAPP [6] Variant Machining: general
CAPP-I [7] Variant Machining: rotational
CIMS/PRO [5] Generative Machining: prismatic

parts
COPICS [8] Variant Machinin~: ~eneral
CUTPLAN [9] Variant Machining: rotational,

prismatic
EXCAP [10] Generative Machining: rotational
EXCAPP [11] Generative Machining: rotational
GARI [12] Generative Machining:

Keneral
GENPLAN [9] Semi-generative Machining: general
GT-CAPP [13] Variant MachininA: Aeneral
INTELLI -CAPP [9] Generative Machining:~eneral

KAPPS [14] Generative Machining: rotational,
~rismatic

MIPLAN [15] Variant Machining: rotational,
~smatic

MITURN [16] Variant Rotational
Multi-CAPP 11 [17] Variant MachininA: Aeneral
OMS [18} Variant Machinin~: general
OPEX [19] Generative MachininA: rotational
TIPPS [5] Generative Machining: milling,

dri1lin~
TOM [20] Generative Machining_: rotational

Appendix ii. A Ust of Some Process Planning Systems Page a2l

Note:

This is not a complete list of reported process planning systems. Further

references can be found in [21]

References

[1] R.A. Wysk, An automated process planning and selection program:

APPAS, Ph.D. thesis, Purdue University, West Lafayette, Indiana,

USA, 1977.

[2] W. Eversheim, B. Rolz, Computer aided programming of NC­

machine tools by using the system AUTAP-NC, Annals of the CIRP,

31(1), 1982.

[3] A.J. Wright, et al., Integrated knowledge based systems for process

planning components, 19th CIRP International Seminar on

Manufacturing Systems, Penn. State, USA, 1-2 June 1987.

[4] T.C. Chang, R.A. Wysk, Integrating CAD and CAM through

automated process planning, International Journal of Production

Research, 1984, pp 877-894.

[5] T.C. Chang, R.A. Wysk, An Introduction to Automated Process

Planning Systems, Prentice-Rall, 1985.

[6] C.R. Link , CA PP, CAM-I automated process planning system,

Proceedings of the 1976 Ne Conference, CAM-I. Ico. Arlington,

Texas, USA.

Appendix ii. A Ust of Some Process Planning Systems Page a22

[7] W. Iiang, H. Xu, Capp systems and applications in China, 19th

CIRP International Seminar on Manufacturing Systems, Penn. State,

USA, 1-2 June 1987.

[8] W. Eversheim, I. Schulz, CIRP technical reports, Survey of

computer-aided process planning systems, Annals of the CIRP,

35(2), 1986.

[9] J. Tulkoff, Process Planning: An historical review and future

prospects, 19th CIRP International Seminar on Manufacturing

Systems, Penn. State, USA, 1-2 June 1987.

[10] B.I. Davies, et al. The integration of process planning with

CADCAM including the use of expert systems, Proceedings of the

international Conference on CAPE, Edinburgh, UK, April 1986.

[11] P. Du, I. Liu I., The use of expert system in computer-aided process

planning, Proceedings of the 7th PROLAMAT Conference, Dresden,

GDR, 14-17 Iune 1988.

[12] Y. Descotte, J.C. Latombe, GARI: A problem solver that plans how

to machine mechanical parrs, IJCAI 7, Vancouver, August 1981 pp

766 -772.

[13] A.H. Strohmeier, Implementing computer-aided process planning,

Rockwell International case study, CIM Review, Fall 1987.

[14] K. Iwata, Y. Fukuda, Represenatation of know-how and its

application of machining reference sUrface in computer-aided process

planning, Annals of the CIRP, 35(10), 1986.

Appendix ii. A List of Some Process Planning Systems Page a23

[15] A. Houtzeel, The M/CLASS system, Proceedings of CAM-I's

Executive Seminar Coding, Classification and Group Technology for

automated planning, CAM-I, Arlington, Texas, USA, 1976.

[16] J. Koloc, Mitum, A computer-aided production planning system for

numerically controlled lathes, Proceedings of the second international

conference on product development and manufacturing technology,

University of Strathclyde, UK, April 1971.

[17] OIR Product News, Multi-II Group Technology System, 1987.

[18] M. Haas, T.C. Chang, A survey on the usage of computer aided

process planning systems in industry, Purdue University, USA,

January 1987.

[19] Gams M., et al. OPEX-an expert system for CAPP. The 6th

International Workshop on Expert Systems and their applications,

Avignon, France 28-30 April 1986.

[20] K. Matsushim. , et al., The integration of CAD and CAM by

application of anificial intelligence techniques, Annals of the CIRP,

31(1) 1982.

[21] Leo AIting, H.C. Zhang, Computer Aided Process Planning: the

state-of the-an survey, International Journal of Production Research,

Vo127, No. 4. 1989, pp 553-585.

Appendix iii. Derivation of Fonnula in Sorling Pagea24

APPENDIX Ill. DERIVATION OF SORTING FORMULA

When n = 2, i.e. 2 subgoals to be compared (2 sub-goals in goal list):

the 1st sub-goal is compared with the 2nd sub-goal once,

and the 2nd sub-goal is also compared with the 1st sub-goal once.

therefore total comparisons = 2.

Similarly, for n = 3, i.e. 3 sub-goals to be compared :

the 1st sub-goal is compared with the 2nd, then 3rd sub-goal once each

time, i.e. number of comparisons = 2

the 2nd sub-goal is compared with the 3rd, then the 1st once each time, i.e.

number of comparisons = 2,

Similarly for the 3rd sub-goal where number of comparisons = 2.

In the worst case, only one sub-goal is put into the toplist in this pass.

In the next pass there will be 2 goals, i.e. n = 2 and the number of

comparisons in the second pass = 2.

Hence the total maximum number of comparisons -

with number of passes = 2.

For n =4,

(2+2+2) + 2

3*2 +2 = 8

In 1st pass, number of comparisons = (3+3+3+3) = 4*3

In 2nd pass, with n = 3 = > (2+2+2)

In 3rd pass, with n = 2 = > 2

with (4-1) passes.

Hence for n subgoals,

number of passes = n-l,

Appe ndix iii. Derivation of Fonnula in Sorting Page a25

1st pass = > n*(n-l)

2nd pass = > (n-l)*(n-2)

..........
(n-l) pass = > 2

Therefore the maximum number of comparisons = n*(n-l)+(n-l)(n-2) + ..

.... + (n-i + 1)(n-i) + ... +2

where n > = 2 and 1 < = i < n.

n >=2

L (n-i + 1)(n-i)

i=1 to n-l

Appendix iv. Test Program For Connecting-Rod Sub-Assembly Page a26

APPENDIX IV. TEST PROGRAM FOR CONNECTING-ROD
SUB-ASSEMBLY

now:-
abolish (world, I),
abolish (action, I),
asserta(world(cross(al ,bl ,piston))),
asserta (world(cross (b1 ,al ,piston))),
asserta (world (clear(al ,piston, in))),
asserta(world(clear(a2,rod,out))),
asserta (world(clear(b1 ,rod,in))),
asserta(world(common (bI ,piston, rod))),
asserta (world(common (bI ,rod,piston))),
asserta (world(inside (b2,pin, bI ,piston))).

goal(V):-
now,
do (V),
listing (action).

do ([X I Y]):-
(setof(X, world(X) , YI),'
state (X)),

dorY).

do (n):-l.

1* ---------------------- *1
I*Post-conditions *1
1* ----------------------- *1
state (inside (V, W,X, Y)):-

result (pushin(V, W,X,Y)),
retract(world(clear(V, W,out))),
retract(world(clear(X, Y,in))),
asserta(world(inside(V, W,X, l?)).

state(clear(X, Y,in)):-
result(pushout(V, W,X,Y)),
retract(world(inside(V, W,X,Y))),
retract(world(clear(X,Y,in))),
asserta(world(clear(V, W,out))).

state (clear(X, Y,out)):­
result(pushout(X,Y, V, W)),
retract(world(inside(X,Y, V, W))) ,
retract(world(clear(X,Y,out))),

Appendix iv. Test Program For Connecting-Rod Sub-Assembly

asserta(world(clear(V, W,in))).

/* ----------------------- * /
/* Pre-conditions * /
/* ----------------------- * /
result (pushin(V, W,X, Y)):-

((setof(clear(X, Y,in), world(clear(X, Y,in)), Wl),
Wl = [clear(X, Y,inJ];

result (pushout (V, W,X, Y)):-
setof(inside (V, W,X, Y), world (inside (V, W,X, Y)) ,Xl),
Xl = [inside (V, W,X,YJ],
setof(common(S, W, Y), world(common(S, W, Y)),Sl),
SI = [common(S, W, Y)],
state (clear(S, W,out)),
assertz(action(pushout(W, Y))).

result (pushout (V, W,X, Y)):-
setof(inside(V, W,X, Y), world(inside(V, W,X, Y)),Xl),
Xl = [inside (V, W,X, Y)],
assertz(action(pushout(W, Y))).

Page a27

Appendix v. Sample Runs for Test Planner

APPENDIX V. SAMPLE RUNS FOR TEST
PROGRAM

phoenix % prolog

Edinburgh Prolog, version 1.5 (1st June 1987)
AI Applications Institute, University of Edinburgh

I ?- [pin2}.
Warning: singleton variable Y1 in procedure doll
Warning: singleton variable Z in procedure resultll
Warning: singleton variable P in procedure checkcrossl3

pin2 consulted: 3784 bytes 3.15 seconds

yes

Page a28

I ?- goal([inside(a2,rod,a1 ,piston), inside (b2,pin, b1 ,piston)]).

action (pushout(pin,piston)).

action (pushin (rod,piston)).

action (pushin (pin,piston)).

yes
I ?- goal ([inside (b2,pin, b1 ,piston), inside (a2, rod,al ,piston))).

action (pushout(pin,piston)).

action (pushin(rod,piston)).

yes

Appendix vi. Program Listing For AAP Page a29

APPENDIX VI. PROGRAM LISTING FOR AAP

1*-- *1
1* AN AUTOMATIC ASSEMBLY PLANNER *1
1*-- *1

1*-- *1
1* Goal state of primary shaft: *1
1* assemble (bear2, whole,shaftlace2,shaftlace3), *1
1* assemble (bear3, whole, shaftlace3, shaftlacel). *1
1* */
/* Goal state of con-rod: */
1* assemble (pin, whole,piston, t_hole, nil, nil) */
1* assemble (rod, whole,piston,axiathole, nil, nil) */
~ ~
1* Goal states of ball point pen :- */
I*assemble(rejill, body,pen_barrel,hole,pen_barrel, bottom_open ing)*/
/*assemble(stopper,projection,pen _ barrel, top _opening ,nil, nil). * /
I*assemble (cap,hole,pen_barrel, bottom_end, nil, nil}. */
1*-- */

I*initial:-

*/

recorda (world, clear(cap,hole),.),
recorda (world, clear(rejill, body),.),
recorda (world,clear(stopper,projection),.),
recorda (world, clear(pen_barrel,hole),.J,
recorda (world, clear (pen_barrel, top _opening),.),
recorda (world,clear(pen_barrel,bottom_opening),.J,
recorda (world, clear(pen_barrel, bottom_end),.),
recorda (world, at (pen_barrel, bottom_opening, bottom_end),.J,
recorda (world,clear(nil, nil),.J.

initial:-
recorda (world, clear(bear2, whole),.),
recorda (world,clear(bear3 , whole),.),
recorda (world, clear(shaftjace2),.),
recorda (world, clear(shaft lace3),.J,
recorda (world, clear(shaftlacel),.),
recorda (world,clear(rod, whole),.),
recorda (world, clear(piston, axiathole) • .),
recorda (world, assemble (pin,whole,piston, t_hole, nil, nil),.),
recorda (world, cross (piston, t_hole, axiathole, ta_area),.).
recorda (world, common (piston,axiathole, rod, se_hole, ta_area) ,.),

Appendix vi. Program Listing For MP

recorda (world, clear(nil, nil},.J,
recorda(world,clear(cap,hole),.J,
recorda(world,clear(refill,body),.J,
recorda (world, clear(stopper,projection) • ...J,
recorda (world. clear(Pen_barrel.hole),.J.
recorda(world.clear(pen_barrel.top_opening),...J.
recorda (world. clear (pen _ barrel. bottom _opening) • ...J.

Page a30

recorda (world. clear(pen_barrel. bottom_end),...J,
recorda(world,at(pen_barrel.bottom_opening.bottom_end) • ...J.

erase _ all_records:-
erase_all (newgoal).
erase_all(currentgoal).
erase_all(world).
erase all(star),

erase all(action).

/* --- * /
/* Eliminate Redundant Subgoal */
/* -- * /
/* --* /
/* redund_critic: check each subgoal in tum by 'test'. */
/* eventually new goal * /
/* contains no redundant subgoal. */

/*---*/

redund_critic([Vll V2J,Conf):-
erase (newgoal. VI),

flndall (X. recorded (newgoal,X,.J. V),
test(Vl, V,Conf,J,
((var(Conf),

redund_critic(V2,Conf)).·
I).

redund_critic([J,J:-!.

Appendix vi. Program listing For AAP

1*---*1
I*test:use to test if a subgoal is pan o/post-conditions*1
1*0/ other *1
I*subgoals. If so, there is no need to insert this *1
I*subgoal into goal list. *1
I*Else insert to end 0/ goallist *1
1*---*1
test(VI,ll, ,Redund):-

I.

var(Redund),
recordz(newgoal, VI,.J,

testC,f],_,redundant):-I.
test(VI ,[V21 V3},Conjlict,Redund):­

cond(VI,V-pre,V-pos~,

cond(V2, W -pre, W -post),

Page a3l

conjlict_check(V1, V -pre, W -pre, V -post, W -post,Conjlict),
((var(Conjlict),

(

((1ne1nber(VI,~-posV,
Redund = redundant,
test(VI, V3, Conjlict,redundant)

),.

test(V1, V3, Conjlict,Redund)
)));
I).

1*-- *1
1* addition:checks ifprecondition o/subsequent subgoals already *1
1* true in world state * /
1* put into star list ifnot true i.e. put a star in */
1* front o/that subgoal as indicator */
1*-- */
addition (ll):-!.

addition(rvll V2J):-cond(V1 ,Prel ,.J,
checkexist(Pre 1),
addition(V2).

checkexist([J):-!.

checkexist ([P 11 P2]):-
flndall (P, recorded (world, P,.J, W),
(member(P1, W);

(flndall(Q,recorded(star,Q,.J,X),

Appendix vi. Program Listing For AAP

(member(P 1 ,X),'
recordz(star, PI ,.J))) ,

checkexist(P2).

/* -- * /
/* Resolve conflicts critic * /

/*--------------------------------------- *'

'*--*'
,*sorong: if Conflict is uninstantiated, then no *' '* invalid goals so can proceed with this *'
'*test. Boundary case when currentgoal *'
'*is [J, then can assen(z) HL (because *'
'*length o/HL is 1) *'
'*otherwise > 1 goal in toplist i.e, /I *'
I*goals so assen(z) par, goal then end. *'
1*---*'

sorong:-

. , sonmg:-..

jindall(N,recorded(newgoal,N,.J,P),
P \== ll,
erase_all(toplist),
order_critic(P),
jindall(L,recorded(toplist,L,.J,HL),
length (HL,Length) ,
jindall(Cl,recorded(currentgoal,Cl,.J, C),
((C \== ll,
linking (HL, C),
erase list (checklist,HL) ,
jindall (IL, recorded (temp_checklist, TL,.J, TLl),
record _list(checklist, TLl),
erase_list(temp_checklist,TLl)),'
((Length = I,
[HLl}=HL,
HL2= .. [seq,HLl),
recordz(currentgoal,HL2,.J),'
(HLl = .. [parl HL),
recordz(currentgoal,HLl,.J))),
record_list (temp_checklist, HL) ,
erase _list(newgoal,HL),
soning.

Page 032

Appendix vi. Program listing For AAP

erase (Key , Term):­
recorded(Key, Term, Rej),
erase (Rej).

1*--- *1
1* findall:finds all the data stored */
I*in the named database. * /
/*--- */
findall (l'erm, Generator,..):-

assena(found(mark)) ,
call (Generator),
assena(found(ferm)),
fail.

findallC,_,Answer):-
collect Jound ([J,Anso/ar), , .,
Answer = Anso/ar.

collect Jound(Ans ,Answer):­
getnext(X), , .,
collect Jound ([XI Ans J,Answer).

collect Jound (Ans ,Ans).

getnext(ferm):-
retract (found (Term)),
I .,
Term \ = = mark.

record_listC,[]):-!·

record_list(Key,[Tll12]):­
recordz (Key, Tl ,.J,
record_list (Key, 12).

erase_listL,[J):-!·

erase_list(Key,[Tl I 12]):­
recorded(Key, Tl,Rej),
erase (Rej),
erase _list(Key, 12).

Page a33

Appendix vi. Program Listing For AAP

list_all(Key):­
jindall(X,recorded(Key,X,..J,Answer),
ni,
write('A view of database: '),
write (Key),
ni,
ni,
pp ([Answerj,3).

/*--"'/
/* prints a list with each element per line "'/
/*--"'/

pp([H1 Tj,l):-, .,
J is 1+3,
pp (H,J),
ppx(l',J),
nl.

pp(X,I):-
tab (I),
write (X),
write(,. '),
nl.

ppx([J,..).

ppx([H1 Tj,I):­
pp (H, I),
ppx(!"I).

/* --- '" /
/* link toplist to cu"entgoallist '" /

/*---"'/
linking([HLll HL2j,[C]):-

C= .. [FIJ,
link(HLl, C,Newargs ,Linked),
Linked = = true,
New_c = .. [FINewargsj,
recordz(checklist,HLl,..J,
linking(HL2,[New c]).

linking ([J,[C]):­
erase_all(cu"entgoal),

Page a34

Appendix vi. Program listing For AAP

recordz(currentgoal,C,.J,
I.

1*----------------------- *1
1* case J : seq(a) *1
1*----------------------- *1
Unk(HLl, C,Newargs , Linked):-

C= .. [F,Argl], 1* f(argl) *1
F = = seq, l*seq(Argl)*1
((check_singleJoal(Argl), 1* seq(a) *1

((findall(Argl ,recorded(checklist,Argl ,.J,[J),
sequence_testl (HLl ,Argl),

Newargs = [Argl,HLl], 1* seq(a,b) *1
Linked = true,
I) • . ,

Linked = false));

Page a35

(link(HLl ,Argl , Newargl ,Linked), I*Argl is compound goal*1
ArgJ = .. [FJI.J,
Newarg2= .. [FlINewargl],

Newargs = [Newarg2J)).

1* ---------------------- *1
I*case 2 : par(a) *1
1* ---------------------- *1
link(HLJ, C,Newargs ,Linked):­

C= .. [F,Argl],
F= par, 1* par(ArgJ) *1
((check_singleJoal(Argl), .

((findall(ArgJ ,recorded(checklist,Argl ,.J,[J),
sequence _testl (HLl ,Arg 1),

Newarg2= .. [seq,Argl,HLl],
Newargs = [Newarg2],

Linked = true),·
Linked = false));

(link(HLl ,Argl , Newargl ,Linked),
ArgJ = .. [FJI.J,
Newarg2= .. [FJINewargl],

Newargs = [Newarg2])).

1*-------------------------------- *1
I*case 3 : seq(A rgl ,) *1
1* -------------------------------- *1
link(HLl, C,Newargs ,Linked):­

C= .. [FI[ArglIArgsll,
F==seq,

Appendix vi. Program listing For AAP

((check_singleJoal(Argl),
((findall(Argl , recorded (checklist,Argl ,.J,[J),

sequence _testl (HLl ,Arg 1),
Args=Llll},
((check_singleJoal(Args),

Newarg2 = .. [par,Args ,HLl J),'
(Args= .. [parl Temparg2),

append (Iemparg2,HLl , Newtemparg2) ,
Newarg2 = .. [par I Newtemparg2J)),
Newargs=[Argl,Newarg2],

Linked = true),'
(Cl = .. [FIArgs),
link(HLl ,Cl , Newargl ,Linked),
Newargs=[ArglINewarglJ))),'
(link(HLI ,Argl,Newargl ,Linked),
(Linked = true,
Newargs = [NewarglIArgsJ),'
(Cl = .. [FIArgs],
link(HLI, Cl,Newarg2,Linked),
Newargs = [Argll Newarg2J))).

'*--- *'
'*case 4 : par(Argl,) *' '* --- *'
link(HLI, C,Newargs ,Linked):-

c= .. [FI[ArgIIArgsll,
F==par,
((check_singleJoal(Argl),

((findall(A rgl ,recorded(checkUst,Argl ,.J,[J),
sequence_test 1 (HLl ,Arg 1),

Newargl = .. [seq,Argl ,HL1],
Newargs=[NewarglIArgs},
Linked = true),'
(Cl = .. [FIArgs),
Unk(HLI, CI,Newargl ,Linked),
Newargs=[ArglINewargl}))),·

(link(HLl ,Argl , Newargl ,Linked),
(Linked = true,
Newargs=[NewarglIArgsJ),'
(Cl = .. [FIArgs),
link(HL1,CI,Newarg2,Linked),
Newargs = [Argll Newarg2]))).

Page a36

Appendix vi. Program Usting For AAP

/*---*/
/* check_singleJoa/(Arg): */
/* 3 cases: Arg = inside(...), etc,' */
/* par(.),' */
/* seq(.... ..). */
/* --- * /
check_singleJoal(A):- A= .. [FI.J,

F\==seq,
F\=-par.

/* ---------------------- * /
/*not predicate */
/* ----------------------- * /
not(P):- P, , .,

fail.

not(j.

sequence Jestl (HL,Arg):­
cond(HL,Pre _hI,.J,
cond(Arg,Pre_arg,Post_arg),
intersect(Pre _hI ,Pre _ arg ,1),
filter(I,Il),
((11\= =[J,

subset(Il ,Post_arg),!
);
(!/ail)).

sequence _test2 (Pre _ Arg 1, S):­
(cond(S, Pre_S, Post_S),
intersect(Pre_ArgI,Pre_S,I},
filter(I,Il),
((lII==[J,
subset(Il ,Post_S),
!

);
(, .,
fail)
)).

order _critic ([J):-!.

Page a37

Appendix vi. Program listing For AAP

order critic ([NI \ N2J):-
erase(newgoal,NI),
jindall(N,recorded(newgoal,N,.J,P),
ordenest(NI,P,Flag_of_NI),

((var(Flag_of_NI),
recordz(toplist,NI,.J),·
I),

recordz(newgoal,NI,.J,
order critic (N2).

ordenestC,ll,.J:-l.

ordertest(N,[NI\ N2],Flag_ol_N):­
cond(N,Pre_N,.J,
cond(NI,Pre NI,Post NI), - -
intersect(Pre N,Pre NI, W), - -
jilter(W, WI),
((Wl==ll,

ordertest(N,N2 , Flag_ of_ N)),.
(subset(WI,Post_NI),
Flag_of_N = tail),'

ordenest(N,N2 , Flag_ 01_ N)).

1*-------------------- *1
I*to check conflicting goals "'I

1"'-------------------------------- "'I
conjlict_check(V1 ,Prel ,Pre2,Postl ,Post2,Conflict):-

intersect (Prel ,Pre2, W),
jilter(W, WI),
(((WI = = [J,'

subset(WI,Postl);
subset(WI,Post2)

),
(not (member(VI ,Pre2)),'

member(VI,Post2)
),
I),'
Conflict = conjlict).

1*--- *1
I*to jilter the state clear(nil,nil) before comparison. *1
1"'--- *1
jilter(O,O):-I.

Page a38

Appendix vi. Program Listing For AAP

filter([Wh I Wt], W):-
(H'1l= =clear(nil,nil),
filter(Wt, W)),·
(jilter(Wt,New_wt),
((New wtl==[],

W=[WhINew_wt]),·
W=[Wh])).

1*--- *1
I*to find the intersection of two sets *1
1*--- *1

intersect ([X I R], Y,[XI Z]):-member(X, Y),
I . ,
intersect(R, Y,Z).

intersect(L I R], Y,Z):-intersect(R, Y,Z).

intersect([J, ,I]).

1* -- *1
I*to check if X is a memeber of a list. *1
1* -- *1

member (X, [X I J):-!.

member (X, [Xl I J):­
((X=assemble(Objl,Facel,Obj2,Face2,_,..J,

Xl =assemble(Obj2,Face2,Objl , Facel ,_,..J),.
(X=cross(Objl,Facel,Face2,C_area),

Page a39

Xl = cross (Objl , Face2,FaceJ , C _area)),·
(X=common(ObjJ,Facel,Obj2,Face2,C_area),
Xl =common(Obj2,Face2,Objl,FaceJ ,C_area))),

!.

member(X,L I Y]):-member(X, Y).

1*---*1
I*to check if a list is a subset of the other list. *1
1*---*1
subset([J,..J:-!.

subset([A IX], Y):-member(A, Y) ,subset (X, Y).

Appendix vi. Program listing For MP

append(ll, Ys, Ys}:-!.

append(fXIXs},Ys,fXIZsJ):­
append(Xs,Ys,Zs).

/*---*/
/*Order the sub-goals in goal list and star list */
/*---*/

insert _star(ll, C):-
erase all(currentgoal).
recordz(currentgoal. C, J,
!.

insert_star([SII S2}.C):­
C= .. [FI.J,
reorder(SI, C.Newargs.J.
Current ...8oals = .. [FI Newargs},
insert_star(S2,CurrentJoals).

/*-------- "'/
/*Case la */
/*------- */
reorder(S, C,Newargs , Linked}:­

C= .. [FI[Argllll}},
check_singleJoal(Argl},
cond(Argl ,Pre_argl ,J,
((member(S,Pre_argl),
Newargs=[Argl},
Linked = true,
!),.

(sequence_test2(Pre_argl,S),
((F == seq,

Newargs = [S,ArglJ),·
(F == par,

Newargs = [seq(S,Argl)])),
Linked = true,
!

),.
(Newargs = [ArglJ,

!
)).

Page a40

Appendix vi. Program listing For AAP

1* ------------- *1
I*Case lb ·1
1* ------------ ·1
reorder(S,C,Newargs,Linked):­

C= .. {J{Argllll]J,
Argl = .. {Fl L),
reorder(S,Argl , Newargl ,Linked),
Newarg2= .. {Fll Newargl],
Newargs = (Newarg2].

1*----------------------- ·1
1* reorder - case 2a ·1
1* --------------------- ·1

reorder(S, C,Newargs , Linked):­
C= .. {FI{ArglIArgs]J,
check_sing/eJoa/(Argl),
cond (Arg 1 ,Pre _arg J ,J,
((member(S,Pre_argl),

C= .. [J Newargs],
Linked = true,
!

),.
(sequence _test2 (Pre _ arg 1 ,S),

((F == seq,
C= .. [JNewargl],
append([S],Newargl,Newargs)),'
(F == par,
append([seq(S,ArgJ)J,Args,Newargs))},

Linked = true,
!

},'
(Cl = .. [FI Args],

reorder(S, Cl , Newargl ,Linked),
append([Argl],Newargl,Newargs},

}}.

1* ---------------------- *1
1* reorder - case 2b ·1
1·----------------------- *1

reorder(S, C,Newargs ,Linked):­
C= .. [FI[ArglIArgsJ],

Page a41

Appendix vi. Program listing For AAP

Arg1 = .. [F1IJ,
((reorder(S,Arg1,Newarg1,Linked),

Newarg2= .. [F1INewarg1j,
append ([Newarg2j,A rgs. Newargs),
not(var(Linked)),
!

),.
(Cl = .. [FIArgsj,

reorder(S,C1 , Newarg1 ,Linked),
append([Arg1j,Newarg1,Newargs),
!

)).

insen(W1 ,Zl ,[Z21 Z3]):-

addgoal(ll):-l.

erase_all (currentgoal),
((Z1\==Z2,

recordz(currentgoal,Z2,.J,
insen(W1,Z1.Z3)),·

(recordz(currentgoal, W1,.J,
addgoal([Z21 Z3]))).

addgoal([Z2I Z3j):­
recordz(currentgoal.Z2,.J,

addgoal(Z3).

/* - ------------------------------------* /
/*1he pre- and post-conditions of the three states */

/*--*/
cond(assemble(Obj1,Face1,Obj2,Face2,Rxnobj,Rxnface),X,y):-

Page a42

jindall(cross(Cr 1. Cr2, Cr3, Cr4),recorded(world,cross(Cr I, Cr2, Cr3. Cr4),.J,
Cross),

jindall(common(Co1,Co2,Co3,Co4,Co5).recorded(world.common(Col,Co2,
Co3, Co4, Co5),.J, Common),

((member(cross(Objl,Face1.Face, C_area). Cross).
((member(common(Obj 1 , Face,_,_. C _area), Common),

Appendix vi. Program Listing For AAP

Xl = clear(nil, nil),
YI =clear(nil,nil)),·
(Xl =clear(Objl ,Face),
YI =clear(Objl ,Face)))),·

(member(cross(Obj2,Face2,Face,C_area),Cross),
((member(common(Obj2,Face,_,_,C_area),Common),

Xl = clear(nil, nil),
YI =clear(nil,nil)),·
(Xl =clear(Obj2,Face),
YI =clear(Obj2,Face))))),

Page a43

X2=[XI ,clear(Objl , Facel),clear(Obj2,Face2),clear(Rxnobj,RxnjaceJ],
filter(X2 ,X),

Y2 =[YI, assemble (Objl,Facel, Obj2,Face2,Rxnobj,Rxnjace),clear(Rxn obj,Rx
njaceJ],

filter(Y2, Y),
1.

cond(assemb/e(Objl , Facel ,Obj2,Face2,Rxnobj,Rxnjace},X, Y}:­
findall (at (A I ,A2,A3},recorded(world,at(AI ,A2,A3},.J,AT},
(((member(at(Objl , Facel ,Facell),AT},

Xl = clear(Objl,Facell),
Yl = clear(Objl,Facell)),·
(Xl = clear(nil,nil),
Yl = clear(nil,nil))),

((member(at(Obj2,Face2,FaceI2),AT),
X2 = clear(Obj2,FaceI2),
Y2 = clear(Obj2,Facel2));
(X2 = clear(nil,nil),
Y2 = clear(nil,nil))},

((member(at (Rxnobj, Rxnface, Face13},A T},
X3 = clear(Rxnobj,Face13},
Y3 = clear(Rxnobj,FaceI3)),·

(X3 = clear(nil,nil),
Y3 = clear(nil,nil))),

X4 =
[Xl ,X2,X3 ,clear(Obj I , Facel) ,clear(Obj2 , Face2) ,clear(Rxnobj,RxnjaceJ],

filter(X4,X),
Y4 =

[y1,Y2,Y3,assemble(Objl,Facel,Obj2,Face2,Rxnobj,Rxnjace),clear(Rxnobj,
RxnjaceJ],

filter(Y4, Y)), t.

Appendix vi. Program listing For AAP Pagea44

cond (assemble (Obj 1 ,Loel , Obj2 ,Loc2,Rxnobj,Rxnjace) ,X, Y):-
Xl = [clear(Obj 1 ,Loel) ,clear(Obj2 ,Loc2) , clear(Rxnobj,Rxn[ace)),
ftlter(Xl ,X),

Yl = [assemble (Obj 1 ,Locl , Obj2 ,Loc2 ,Rxnobj ,Rxnjace) , clear(Rxnobj,Rxnjace
)],

ftlter(Yl, Y), !.

cond(clear(Obj,Face),X, l):-

ftndall(assemble(Al,A2,A3,A4,A5,A6),recorded(world,assemble(Al ,A2,A3,A
4,AS ,A6),.J ,Assemble),

member(assemble(Obj,Face,Objl , Facel ,Rxnobj,Rxn[ace),Assemble),

ftndall(cross(Crl,Cr2,Cr3,Cr4),recorded(world,cross(Crl,Cr2,Cr3,Cr4),.J,
Cross),

ftndall(common(Col,Co2,Co3,Co4,Co5),recorded(world,common(Col, Co2,
Co3, Co4, Co5) ,.J, Common),

((member(cross(Obj,Face,Face3,C_area),Cross),
((member(common(Obj,Face3,_,_,C_area),Common),

Xl =clear(nil,nil),
Yl =clear(nil,nil)),'
(Xl = clear(Obj,Face3) ,
Yl =clear(Obj,Face3)))),'

(member(cross(Objl,Facel,Face3,C_area),Cross),
((member(common(Objl,Face3,_,_, C_area) , Common),

Xl = clear(nil, nil),
Yl =clear(nil,nil)),'
(Xl =clear(Objl ,Face3),
Yl =clear(Objl , Face3))))) ,

X2 =[Xl ,assemble (Obj,Face, Objl,Facel,Rxnobj,Rxnjace)J,
ftlter(X2 ,X),
Y2 = [Yl ,clear(Obj,Face),clear(Obj 1 ,Facel)),
ftlter(Y2, Y),
I.

cond(clear(Obj,Face),X, l):-

ftndall(assemble(Al,A2,A3,A4,A5,A6),recorded(world,assemble(Al,A2,A3,A
4 ,AS ,A6),.J ,Assemble),

Appendix vi. Program Listing For AAP Page a45

((member(assemble(Obj,Face, Obj I , Face I , Rxnobj,Rxnface),Assemble}

Xl = assemble(Obj,Face,Objl , Facel , Rxnobj, Rxnface},
Yl = c1ear(Obj, Face},
Y2=c1ear(Obj I , Facel}},·

(Xl =assemble(Obj,Face,Objl , Facel , Rxnobj, Rxnface),
YI = c1ear(Obj, Face},
Y2=c1ear(Objl,Facel}}},
jindall(at(Atl ,At2,At3},recorded(world,at(Atl ,At2,At3},.J,At},
((member(at(Obj,Face,Face2},At),
X2=clear(Obj,Face2},
Y3 =clear(Obj,Face2}},·
(member(assemble(Obj,Face,ObjI , FaceI ,Rxnobj,Rxnface),Assemble},

member(at(Obj,Face,Face2},At),
X2=c1ear(Objl,Face2},
Y3 =c1ear(Obj I , Face2}}},
X=[XI,X2},
Y=[YI,Y2,Y3],

1.

cond(c1ear(Obj,Face},X,Y}:-
jindall (assemble(AI ,A2,A3 ,A4,A5 ,A6), recorded (world, assemble (A I ,A

2,A3,A4,A5,A6),.J,Assemble},
((member(assemble(Obj,Face,Objl , Facel ,Rxnobj,Rxnface),Assemble}

X=[assemble(Obj,Face,Objl , Face I , Rxnobj, Rxnface}},
Y=[c1ear(Obj,Face},c1ear(Objl,Facel}J),·
(X=[assemble(Obj,Face,Objl , Face I , Rxnobj,Rxnface)J,
Y=[c1ear(Obj,Face),clear(ObjI,Facel)]}},

1.

/* --- * /
/* planner: rearrange the goal list. */
/* do : take actions to achieve each subgoal */
/*listing: list the adtons */
/* --* /
go:-

erase _alCrecords,
initial,
frontend.

Jrontend:-
write ('Yes, yen '},

Appendix vi. Program listing For AAP

ni,
write('Starting the planner '),
ni,
write('Type in the goal state(s} '},
ni,
input Joals (Goals, Option),
((Option = stop, I);
(Option = list,
Jrontend),·
(Option = ok,
goal(Goals),

go)).

inputJoals(Goals,Option):­
read(G},
((G == stop,

Option = stop),·
((G = = list,

list_all(world),
Option = list, 1),.
((G == ok,

goal (V):-

Option = ok,
jindall(Y,recorded (newgoal, Y,J, Goals)),·
((recorded(newgoal,G,J,·

recordz(newgoal,G,J),
input Joals(Goals, Option))))).

erase_all (checklist),
erase_all (temp_checklist),
erase_all(toplist),
redund critic(V, Conj),
((var(Conj),
jindall(X,recorded(newgoai,X,J, U),
addition (U), , . ,
sorting,
jindall(Y,recorded(currentgoal, Y,J,[ZJ),
jindall(S,recorded(star,S,...}, W},
insert _ star(W,Z},
jindall(1',recorded(currentgoal,T,...},[C]),
ni,
write('The Ordered Goal is: '},
ni,

Page a46

Appendix vi. Program listing For AAP

write (C),
nZ,
nZ,
do ([C}),
list_all (world),
list_all (action)),'

(nZ,
write('Conflicting goaZs cannot be achieved ... '),
nZ,
nl)).

/* ---* /
/* do : check if subgoaZ state aZready achieved, */
/*eZse achieve the subgoaZ. */
/*state : achieve state of a subgoaZ */
/*--*/

do ([Y]):-
Y = .. [F,Argl},
(F = = seq,'
F == par),
((check_singZeJoaZ(Argl),
state (Argl)),'
do ([Argl})).

do ([YJ):-
Y= .. [FI[ArglIArgsll,
(F==seq;
F==par),
Cl = .. [F,Argl},
do ([Cl}),
Cs= .. [FIArgs},
do ([Cs}).

/*---*/
/* casel : state already exists in current situation. * /

/*--*/
state (assembZe (Obj 1 , Facel , Obj2,Face2,Rxnobj,Rxnjace)):-

findall(W,recorded(world, W,.J, Wl),

Page a47

member(assembZe(Objl , Facel ,Obj2,Face2,Rxnobj,Rxnj'ace), Wl).

Appendix vi. Program Listing For AAP

1*----------------------------------*1
1* case2 : take press action to assemble. *1
1* -- M M MU ----------------------------*1
state (assemble (Objl , Facel , Obj2,Face2,Rxnobj,RxnJace)):­

result (press (Obj 1 , Face 1 , Obj2,Face2,Rxnobj,Rxnj'ace)).

1*- ------------------------*/
l*casel: state already exists in current situation. * /
1*- ------------------*1
state (clear(Obj,Face)):­

ftndall(W,recorded(world, W,.J, WI),
member(clear(Obj,Face), WI).

1* ----- ----------------------------- * /
l*case2 : take remove action to clear. * /
1*---------------------------------*1
state (clear(Obj,Face)):­

result(remove (Obj, Face,_,J).

/* - ------------------------------* /
I*press : check ifpreconditions acheieved, else */
1* achieve preconditions. */
/* assert action to action list. * /
/* aintain world state interactively. */
/* OM ----------------------------_ * /
result(press(Objl,Facel,Obj2,Face2,Rxnobj,Rxnj'ace)):-

Pagea48

cond (assemble (Obj 1 , FaceI , Obj2 , Face2 , Rxnobj,RxnJace) , Pre, Post) ,
Prel = .. [parl Pre},

do ([Prel}),
maintain_worldyre(Pre,Post),
maintain_world yost(Post),
recordz (action,press (Obj 1 , Facel , Obj2 , Face2 , Rxnobj,Rxnj'ace) ,.J.

1* - ------------------------------* /
1* remove: check if either one case is true. *1
1* assert action to action list. *1
1* if none of the case, then cut. * /
1* maintain world state interactively. */
1* - ---------------------- * /
result(remove(Obj,Face,Objl,FaceI)):­

cond(clear(Obj,Face),Pre,Post),
PreI = .. [par I PreJ,
do([Prel}),

maintain_world yre(Pre, Post),

Appendix vi. Program listing For AAP

Pre = [assemble (Obj, Face, Obj I , Facel '_''''))'
maintain_lVorUi-post(Pos~,

recordz(action,remove(Obj,Face,Objl,Facel),.J.

/*---*/
/* maintain_lVorUi-pre & maintain_lVorUi-post : */
/* to maintain the current lVorUi state after an * /
/* action has been taken. * /
/*---*/
maintain_lVorld-pre([],.J:-!.

maintain_lVorld-pre([Prell Pre2),Post):­
(member(Pre 1, Post),·

(
(
Prel = .. [assemble I Args),

Pagea49

Args = [Obj,Face,Objl,Facel,_,J,
recorded(lVorld,assemble(Obj,Face,Objl , Facel ,_,...),Ref),

)

erase(Rej)
),.

(

),.

(

)

Prel = .. [assemble I Argsj,
Args = [Obj,Face,Objl,Facel,_,J,
recorded (lVorUi, assemble (Obj I , Facel , Obj,Face '_'''') ,Ref),

erase(Rej)

recorded (lVorld, Pre I ,Ref),
erase(Ref)

),
maintain_lVorld-pre(Pre2,Post).

/*maintain_lVorUi-pre([],.J. */

maintain_lVorUi-pre([Prell Pre2j,Post):­
(member(Prel,Post),·

(jindall(W,recorded(world, W,.J, WI),
member(Prel, WI),

erase(world,Prel))
),
maintain_world-pre (Pre2, Post).

Appendix vi. Program listing For AAP

maintain_ worldyost([Postll Post2J):­
findall(W,recorded(world, W,.J, Wl),
member(Postl, Wl),
maintain_world yost(Post2).

maintain_ worldyost([Postll Post2J):­
recordz(world,Postl,.J,
maintain_world yost(Post2).

Page a50

AIlllendix vii. rest Runs For AAP

APPENDIX VII. TEST RUNS FOR AAP

tem% eagle
eagle % cd planner
/home/eng4/esOI7/planner
eagle % prolog

Edinburgh Prolog, version 1.5 (1st June 1987)
AI Applications Institute, University of Edinburgh

I ?- laap].

aap consulted.' 25296 bytes 11.30 seconds

yes
I ?- go.
Yes, Yen .. !!.
Starting the planner ..•..
Type in the goal state(s).!!!!
I.' assemble (bear2, whole,shaftlace2,shaftlace3).
I.' assemble (bear3,whole,shaftlace3,shaftlacel).
I.' ok.

The Ordered Goal is.'
seq

(assemble (bear2, whole ,shaft Jace2 ,shaft lace3),
assemble (bear3 , whole • shaft lace3 ,shaft lacel))

A view of database: world

at(pen_barrel, bottom_opening, bot1om_end).
clear(pen_barrel.bot1om_end).
clear(pen _barrel,bot1om _opening).
clear(pen_barrel.top_opening).
clear(pen_barrel.hole).
clear(stopper.projection).
clear(refill.body).
clear(cap,hole}.
clear(nil,nil).
common (piston. t_hole, rod. se_hole. ta_area}.
cross (piston,t_hole, axiathole, ta_area).
assemble (pin. whole.piston. t_hole. nil. nil).

Parea51

dlz d' .. pen IX VU. Test Runs For MP

clear(piston,axiaC hole).
clear(rod, whole).
clear(shaftlacel).
assemble (bear2, whole ,shaft lace2 ,shaft lace3).
assemble (bearJ, whole ,shaft lace3 , shaft lace l).

A view of database: action

press (bear2, whole ,shaft lace2 ,shaft lace3).
press (bearJ,whole, shaft!ace3,shaft!acel).

Yes, yen ..•.•
Staning the planner
Type in the goal state(s) ..•..
1 : assemble (bear 3, whole ,shaft lace3 ,shaft !ace}).
I: assemble (bear3, whole,shaft!ace3,shaftlaceJ).
I: ok.

The Ordered Goal is:
seq(assemble(bearJ, whole,shaft!ace3,shaftlaceJ))

A view of database: world

at(pen_barrel,bottom_opening,bottom_end).
clear(pen_barrel,bottom_end).
clear (pen _ barrel, bottom _opening).
clear (pen_barrel, top _opening).
clear(pen_barrel,hole).
clear(stopper,projection).
clear(refill,body).
clear(cap,hole).
clear(nil,nil).
common (piston,t_hole, rod, se_hole, ta_area).
cross (piston, t_hole, axiaChole, ta_area).
assemble (pin, whole,piston, t_hole, nil, nil).
clear(piston, axiaC hole).
clear(rod, whole).
clear(shaft lacel).
clear(shaft lace2).
clear(bear2, whole).
assemble (bearJ, whole, shaft!ace3, shaftlacel).

Paua52

A1lJ!endix vii, Test Runs For MP

A view of database,' action

press (bear3, whole ,shaft lace3 ,shaft lace 1),

Yes, yen ,
Staning the planner
Type in the goal state (s)
\,' assemble (bear3, whole,shaftlace3,shaftlacel}.
\.' assemble (bear2 , whole ,shaft lace2 ,shaft lace3).
I.' ok.

The Ordered Goal is.'
seq

(assemble (bear2, whole ,shaft lace2 ,shaft lace3),
assemble (bear3, whole,shaftlace3,shaftlacel))

A view of database.' world

at(pen_ba"el, bottom_opening, bottom_end),
clear(pen_ba"el,bottom_end).
clear (pen_barrel, bottom_opening),
clear(pen_barrel,top_opening).
clear(pen_ba"el,hole),
clear(stopper,projection),
clear(rejill,body),
clear(cap, hole) ,
clear(nil,nil),
common (piston,t_hole, rod, se_hole, ta_area),
cross (piston,t _hole ,axiaC hole, ta_area),
assemble (pin, whole,piston, t_hole, nil, nil),
clear(piston,axiaC hole),
clear(rod, whole),
clear(shaft lacel),
assemble (bear2, whole ,shaft lace2 ,shaft lace3).
assemble (bearJ, whole ,shaft lace3 ,shaft lacel).

A view of database.' action

press (bear2, whole ,shaft lace2 ,shaft lace3) ,
press (bear3 , whole ,shaft lace3 ,shaft lacel),

Pare a53

A d'" open IX vu. Test Runs For AAP

Yes, Yen
Starting the planner
Type in the goal state(s)
I: stop.

yes
1 ?- go.
Yes, yen
Starting the planner
Type in the goal state (s)
I: assemble (pin, whole,piston,t_hole, nil, nil).
I: assemble (rod, whole,piston, axiaChole,nil, nil).
I: ok.

The Ordered Goal is:
seq

(assemble (rod, whole ,piston,axiaC hole ,ni/,nil),
assemble (pin, whole,piston, t_hole, nil, nil))

A view of database: world

at (pen_barrel, bottom_opening, bottom_end).
clear(pen_barrel,bottom_end).
clear(pen_barrel,bottom_opening).
clear(pen_barrel,top _opening).
clear (pen_barrel, hole).
clear(stopper,projection).
clear(reftll,body).
clear(cap,hoie).
clear(nil,nil).
common (piston,t_hole, rod, se_hole, ta_area).
cross (piston,t _hole ,axiaC hole ,ta_area).
clear(shaftlacel).
clea r (shaft lace3).
clear(shaft lace2).
clear(bear3, whole).
clear(bear2, whole).
assemble (rod, whole,piston, axiaChole, nil, nil).
assemble (pin, whole,piston,t hole, nil, nil).

Pa"a54

t\lwendix vii. Test Runs For AAP

A view of database.' action

remove (piston. t_hole.pin.whole).
press (rod.whole.piston. axiaChole.nil. nil).
press (pin. whole.piston. t_hole. nil. nil).

Yes. Yen
Starting the planner .. •..
Type in the goal state(s)
I.' stop.

Yes. Yen .. ".
Starting the planner
Type in the goal state (s)
I.' assemble (rod. whole.piston. axiaChole. nil. nil).
I: assemble (pin. whole.piston.t_hole.nil.nil).
I.' ok.

The Ordered Goal is:

seq
(assemble (rod. whole .piston. axiaC hole ,nil,nil),
assemble (pin, whole.piston. t_hole. nil, nil))

A view of database: world

at (pen_barrel. bottom_opening, bottom_end).
clear(pen _ barrel. bottom _end).
clear (pen_barrel, bottom_opening).
clear(pen_barrel.top_opening).
clear(pen_barrel.hole).
clear(stopper,projection).
clear(refill,body).
clear(cap,hole).
clear(nil,nil).
common(piston.t_hole,rod,se_hole,la_area).
cross(piston.t hole, axial hole,ta area). - - -
clear(shaft jace}).
clear(shaft jace3).

Palea55

dJz d' .. '11en IX VU. Test Runs For AAP

clear(shajt Jace2}.
clear(bear3, whole}.
clear(bear2, whole}.
assemble (rod, whole,piston, axiaChole, nil, nil}.
assemble (pin, whole,piston,t _hole , nil, nil).

A view of database: action

remove (piston, t _ hole,pin, whole).
press (rod,whole,piston, axiaChole, nil, nil}.
press (pin, whole,piston, t_hole, nil, nil).

Yes, yen
Staning the planner ..•.•
Type in the goal state(s}

Paua56

I,' assemble (refill, body,pen_barrel, hole,pen_barrel, bottom_opening}.
I: assemble(stopper,projection,pen_barrel,top _opening,nil,nil).
I: assemble (cap, hole,pen_barrel, bottom_end, nil, nil}.
I.' ok.

The Ordered Goal is.'
par(seq

(assemble (refill, body,pen_barrel,hole,pen_barrel,bottom_openin g),
assemble (cap, hole,pen_barrel, bottom_end, nil, nil)},
assemble (stopper,projection,pen _barrel, top _opening , nil, nil)}

A view of database: world

at (pen_barrel, bottom_opening, bottom_end).
clear (pen _barrel ,bottom_opening).
clear(nil,nU).
common (piston,t_hole,rod,se_hole,ta_area).
cross (piston,t _hole ,axiaC hole ,ta_area).
assemble (pin, whole,piston, t_hole,nil, nil}.
clear(pisfon,axiaChole).
clear(rod, whole).
clear(shaft lacel}.
clear(shajt lace3}.
clear(shaftJace2}.
clear(bear3, whole}.
clear(bear2, whole}.

Awendix vii. Test Runs For AAP Pa"a57

assemble (rejill,body,pen_barrel,hole,pen_barrel,bottom_openi ng).
assemble (cap,hole,pen_barrel, bottom_end, nil, nil).
assemble (stopper,projection,pen _barrel ,top_opening, nil, nil).

A view of database: action

press (rejill, body,pen_barrel, hole,pen_barrel, bottom_opening).
press (cap,hole,pen_barrel, bottom_end, nil, nil).
press (stopper,projection,pen _barrel ,top_opening, nil, nil).

Yes, yen
Staning the planner
Type in the goal state(s)
I: stop.

yes
I ?- go.
Yes, Yen
Staning the planner .•...
Type in the goal state(s)
I.' assemble (cap, hole,pen_barrel, bottom_end, nil, nil).
I: assemble(stopper,projection,pen_barrel,top _opening, nil, nil).
I : assemble (rejill,body,pen_barrel,hole,pen_barrel, bottom_openi ng).
I.' ok.

The Ordered Goal is:
par

(assemble (stopper,projection ,pen_barrel, top_opening, nil, nil),
seq(assemble(rejill,body,pen_barrel,hole,pen_barrel,bottom_opening)

assemble (cap, hole,pen_barrel, bottom_end, nil, nil)))

A view of database: world

at(pen_barrel,bottom_opening,bottom_end).
clear (pen_barrel, bottom_opening).
clear(nil,nil).
common (piston,t _hole, rod, se _hole ,ta_area).
cross (piston,t_hole, axial_hole, ta_area).
assemble (pin, whole ,piston,t hole,nil,nil).
clear(piston,axiat hole).

AI!Dendix vii. Test Runs For AAP Page a58

clear(rod, whole).
clear(shaftjacel).
clear(shaft jace3).
clear(shaft jace2).
clear(bear3, whole).
clear(bear2, whole).
assemble(stopper,projection,pen_barrel,top_opening,nil,nil).
assemble (rejill,body,pen_barrel,hole,pen_barrel, bottom_opening) .
assemble (cap,hole,pen_barrel, bottom_end,nil,nil).

A view of database: action

press (stopper,projection,pen _barrel ,top_opening ,nil, nil).
press (rejill, body,pen_barrel, hole,pen_barrel, bottom_opening).
press (cap,hole,pen_barrel, bottom_end, nil, nil).

Yes, yen
Staning the planner •.•.•
Type in the goal stare(s)
I: stop.

yes
1 ?- go.
Yes, yen
Staning the planner•
Type in the goal stare (s)
I: assemble(stopper,projection,pen_barrel,top _opening , nil, nil).
I: assemble (cap, hole,pen_barrel, bottom_end, nil, nil).
I: assemble (refill, body,pen_barrel, hole,pen_barrel, bottom_opening).
I: ok.

yes
1 ?- go.
Yes, yen•
Staning the planner ..••.
Type in the goal stare(s)
1 : assemble (stopper,projection,pen _barrel ,top_opening ,nil, nil).
I: assemble (cap, hole,pen_barrel, bottom_end, nil, nil).
I: assemble(rejill,body,pen_barrel,hole,pen_barrel,bottom_opening).
I: ok.

Awendix vii. Test Runs For AAP

The Ordered Goal is:
par

Pare a59

(assemble (stopper,projection,pen _ barrel,top _opening ,nil, nil),
seq(assemble(refill,body,pen_barrel,hole,pen_barrel,bottom_opening}

assemble (cap, hole,pen_barrel, bottom_end, nil, nil}}}

A view of database: world

at(pen_barrel, bottom_opening, bottom_end}.
clear (pen_barrel, bottom_opening}.
clear(nil,nil}.
common (piston,t_hole, rod, se_hole , ta_area}.
cross (piston, t_hole, axiaChole, ta_area}.
assemble (pin, whole,piston,t _hole ,nil,nil}.
clear (piston , axiae hole}.
clear(rod, whole).
clear(shaftJacel}.
clear(shaft Jace3}.
clear(sha!t Jace2}.
clear(bear3, whole).
clear(bear2, whole).
assemble (stopper,projection,pen _barrel ,top_opening, nil, nil).
assemble (rejill,body,pen_barrel,hole,pen_barrel,bottom_openin g).
assemble(cap,hole,pen_barrel,bottom_end,nil,nil}.

A view of database: action

press (stopper,projection,pen_ barrel,top _opening ,nil,nil).
press (refill, body ,pen _barrel, hole ,pen_barrel, bottom_opening).
press (cap,hole,pen_barrel,bottom_end,nil,nil).

Yes, yen
Staning the planner•
Type in the goal state(s)
I: stop.

yes
I ?- go.
Yes, yen

Aogendix vii. Test Runs For AAP

Starting the planner ..•.•
Type in the goal state (s)
I.' assemble (bear2, whole,shaftlace2,shaftlace3).
I .' assemble (bear3 , whole ,shaft lace3 ,shaft lace]).
I.' assemble (pin, whole,piston,t_hole,nil,nil}.
I.' assemble (rod, whole,piston,axiathole,nil,nil).
I.' ok.

The Ordered Goal is:
par(seq

(assemble (bear2, whole ,shaft laee2 ,shaft lace3) ,
assemble (bearJ, whole ,shaft laee3 ,shaft lacel)) ,
seq(assemble(rod, whole,piston, axiathole, nil, nil),
assemble (pin, whole,piston,t_hole,nil,nil)))

A view of database.' world

at(pen_barrel,bottom_opening, bottom_end).
clear(pen_barrel,bottom_end).
clear(pen_barrel, bottom_opening).
clear (pen_barrel, top_opening).
clear(pen _ barrel,hole).
clear(stopper,projeetion).
clear(rejill,body).
clear(eap, hole).
clear(nil,nil).
common (piston,t_hole, rod,se_hole, ta_area).
cross (piston, t_hole, axiathole,ta_area).
clea r (shaft lacel).
assemble (bear2, whole, shaftlace2, shaftlaee3).
assemble (bearJ , whole ,shaft lace3 ,shaftlacel).
assemble (rod, whole,piston, axiathole,nil, nil).
assemble (pin, whole,piston,t _hole ,nil, nil).

A view of database.' action

press (bear2, whole ,shaft J'aee2 ,shaft J'ace3).
press (bear3, whole, shaftJ'aee3, shaftJ'acel).
remove (piston, t_hole,pin, whole).

Page a60

Appendix vii. Test Runs For MP

press (rod, whole,piston,axiaC hole, nil, nil}.
press (pin, whole,piston,t _ hole,nil,nil}.

Yes, yen
Starting the planner
Type in the goal state(s}
I: stop.

yes
1 ?- go.
Yes, yen
Starting the planner•
Type in the goal state (s)
I: assemble (rod, whole,piston,axiaChole,nil,nil}.
I: assemble(pin, whole,piston,t_hole,nil,nil}.
I: assemble (bear3, whole,shaftJace3,shaftJaceJJ.
I: assemble (bear2, whole,shaftJace2,shaftJace3}.
I: ok.

The Ordered Goal is:
par(seq

seq

(assemble (rod,whole,piston, axiaChole, nil,nil},
assemble (pin, whole,piston,t _ hole, nU, nU}},

(assemble (bear2, whole ,shaft Jace2 ,shaft Jace3),
assemble (bear3, whole ,shaft lace3 ,shaft jace 1)))

A view of database: world

at(pen_barrel,bottom_opening,bottom_end}.
clear(pen_barrel,bottom_end}.
clear (pen _ barrel, bottom _opening}.
clear (pen_barrel, top _opening}.
clear(pen barrel, hole}.
clear(stopper,projection}.
clear(refill,body}.
clear(cap,hole}.
clear(nil,nilJ.
common (piston,t_hole, rod, se_hole , ta_area}.
cross (piston, t_hole, axiaChole,ta_area).

Page a61

AJwendix vii. Test Runs For AAP

c1ear(shaft lacel}.
assemble (rod,whole,piston, axiaChole, nil, nil}.
assemble (pin, whole,piston, t_hole, nil, nil).
assemble (bear2, whole, shaftlace2, shaftlace3}.
assemble (bear3 , whole ,shaftlace3 ,shaft lacel}.

A view of database: action

remove (piston, t_hole,pin, whole}.
press (rod, whole,piston,axiaChole,nil,nil).
press (pin, whole,piston,t _hole , nil, nil).
press (bear2, whole, shaftlace2,shaftlace3).
press (bead , whole, shaft lace3 ,shaft lacel}.

Yes, yen
Starting the planner .•.•.
Type in the goal state(s}
I: stop.

yes
1 ?- go.
Yes, yen
Starting the planner ..•..
Type in the goal state(s)•
I: assemble (bear2, whole,shaftlace2,shaftlace3}.
I: assemble (pin, whole,piston, t_hole, nil, nil}
I: .
I: assemble (bear3, whole,shaftlace3,shaftlacel).
I: assemble (rod, whole,piston,axiaC hole,nil,nil).
I: ok.

The Ordered Goal is.'
par(seq

(assemble (bear2, whole ,shaft lace2 ,shaft lace3),
assemble (bead, whole ,shaft lace3 ,shaft lacel)},

seq(assemble(rod, whole,piston, axial_hole, nil, nil},
assemble (pin, whole,piston,t _ hole, nil, nil)))

Pqge q62

Appendix vii. Test Runs For AAP

A view of database.' world

at(pen_barrel, bottom_opening, bottom_end).
clear (pen_barrel, bottom_end).
clear (pen _barrel ,bottom_opening).
clear(pen _barrel ,top_opening).
clear(pen_barrel,hole).
clear(stopper,projection).
clear(refill,body).
clear(cap,hole).
clear(nil,nil).
common (piston,t_hole, rod, se_hole, ta_area).
cross(piston,t_hole,axiathole,ta_area).
clear(shaft Jacel).
assemble (bear2, whole, shaftJace2, shaftJace3).
assemble (bear3, whole,shaftJace3,shaftJacel).
assemble (rod, whole,piston, axial_hole, nil, nil}.
assemble (pin, whole ,piston,t _hole , nil, nil).

A view of database: action

press (bear2, whole ,shaft Jace2,shaft Jace3).
press (bear3, whole, shaftJace3, shaftJacel).
remove(piston,t_ hole,pin, whole).
press (rod, whole ,piston, axial_ hole, nil, nil).
press (pin, whole,piston,t _ hole, nil, nil).

Yes, Yen"".
Staning the planner•
Type in the goal state(s)"".
I.' stop.

yes
I ?- go.
Yes, Yen.""
Staning the planner ..•..
Type in the goal state (s). ""
I.' assemble (rod, whole,piston,axiathole, nil, nil).

Paua63

I.' assemble (refill, body,pen_barrel, hole,pen_barrel, bottom_open ing).
I.' assemble (pin, whole,piston,t_hole,nil,nil).
I .' assemble (stopper,projection,pen _barrel ,top_opening, nil, ni I).
I: assemble(cap,hole,pen_barrel,bottom_end,nil,nil).

A d··· llllen IX vu.

I: ok.

rest Runs For AAP

1he Ordered Goal is:
par(seq

(assemble (rod, whole,piston,axiaChole,nil,nil),
assemble (pin, whole,piston,t_hole,nil,nil)),

Page a64

seq (assemble (rejill, body,pen_barrel,hole,pen_barrel, bottom_open ing)

assemble (cap, hole,pen_barrel, bottom_end, nil, nil)),
assemble (stopper,projection,pen _barrel ,top_opening, ni/,nil))

A view of database: world

al(pen_barrel,botlom_opening,botlom_end).
clear (pen_barrel, bottom_opening).
clear(nil,nil).
common (piston, t _hole, rod,se _hole ,ta_area).
cross (piston, t _hole , axial_ hole ,ta_area).
clear(shaftJacel).
clear(shaft Jace3).
clear(shaft Jace2).
clear(bear3, whole).
clear(bear2, whole).
assemble (rod, whole,piston,axiaC hole ,nil, nil).
assemble (pin, whole,piston, t_hole,nil, nil).
assemble (rejill, body,pen_barrel,hole,pen_barrel, bottom_opening) .
assemble (cap, hole,pen_barrel, bottom_end, nil, nil).
assemble (stopper,projection,pen _ barrel, top _opening ,nil, nil).

A view of database: action

remove (piston,t _ hole,pin, whole).
press (rod, whole,piston,axiaChole,nil,nil).
press (pin, whole ,piston,t _hole , nil, nil).
press(rejill,body,pen_barrel,hole,pen_barrel,bottom_opening).
press (cap, hole,pen_barrel, bottom_end, nil, nil).
press (stopper,projection,pen _barrel, top_opening, nil, nil).

AllJ!endix vii. Test Runs For AAP

Yes, yen
Starting the planner
Type in the goal state(s)
I.' stop.

yes
I ?- go.
Yes, yen
Starting the planner ..•..
Type in the goal state (s)
I.' assemble (cap, hole,pen_barrel, bottom_end, nil, nil).
I.' assemble(stopper,projection,pen_barrel,top _opening, nil, nil).
I.' assemble (bear3, whole,shaftJ'ace3,shaftJ'acel).

Paua65

I: assemble (rejill, body,pen_barrel,hole,pen_barrel, bottom_opening).
I.' assemble (bear2, whole, shaftJ'ace2, shaftJ'ace3).
I.' ok.

The Ordered Goal is.'
parr

assemble (stopper,projection,pen_barrel,top_opening, nil, nil),
seq (assemble (rejill, body,pen_barrel, hole,pen_barrel, bottom_ opening),

assemble (cap,hole,pen_barrel, bottom_end, nil, nil)),
seq (assemble (bear2, whole, shaftJ'ace2, shaftJ'ace3),

assemble (bear3, whole,shaftJ'ace3,shaftJacel)))

A view of database.' world

at(pen_barrel,bottom_opening,bottom_end).
clear(pen_barrel,bottom_opening).
clear(nil,nil).
common (piston, t_hole, rod, se_hole, ta_area).
cross(piston,t _hole ,axiaC hole ,ta_area).
assemble (pin, whole,piston,t_hole,nil,nil}.
clear(piston,axiaC hole).
clear(rod, whole).
clear(shaft J'acel).
assemble (stopper,projection,pen_barrel, top_opening, nil, nil).
assemble (rejill, body,pen_barrel,hole,pen_barrel,bottom_opening).
assemble (cap,hole,pen_barrel, bottom_end, nil, nil).
assemble (bear2, whole,shaftJ'ace2,shaftJ'ace3).
assemble (bear3 , whole ,shaft J'ace3 ,shaft .lace}).

Appendix vii. Test Runs For MP Paua66

A view of database.' action

press(stopper,projection,pen_barrel,top_opening,nil,nil).
press (rejill,body,pen_barrel,hole,pen_barrel, bottom_opening).
press (cap, hole,pen_barrel,bottom_enil, nil, nil).
press (bear2, whole ,shaft jace2 ,shaft jace3).
press (bear3, whole,shaftjace3,shaftjacel).

Yes, Yen .. ".
Staning the planner•
Type in the goal state(s)." ..
I: stop.

yes

	WRAP_Theses_Cheung_1991.pdf

