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Abstract

Synaptic transmission in cortex depends on both the history of synaptic activity and the location of indi-

vidual anatomical contacts within the dendritic tree. This thesis analyses key aspects of the roles of both

these factors and, in particular, extends many of the results for deterministic synaptic transmission to a

more naturalistic stochastic framework.

Firstly, I consider how correlations in neurotransmitter vesicle occupancy arising from synchronous activity

in a presynaptic population interact with the number of independent release sites, a parameter recently

shown to be modified during long-term plasticity. I study a model of multiple-release-site short-term plas-

ticity and derive exact results for the postsynaptic voltage variance. Using approximate results for the

postsynaptic firing rate in the limits of low and high correlations, I demonstrate that short-term depression

leads to a maximum response for an intermediate number of presynaptic release sites, and that this in turn

leads to a tuning-curve response peaked at an optimal presynaptic synchrony set by the number of neu-

rotransmitter release sites per presynaptic neuron. As the nervous system operates under constraints of

efficient metabolism it is likely that this phenomenon provides an activity-dependent constraint on network

architecture.

Secondly, I consider how synapses exhibiting short-term plasticity transmit spike trains when spike times

are autocorrelated. I derive exact results for vesicle occupancy and postsynaptic voltage variance in the

case that spiking is a renewal process, with uncorrelated interspike intervals (ISIs). The vesicle occupancy

predictions are tested experimentally and shown to be in good agreement with the theory. I demonstrate

that neurotransmitter is released at a higher rate when the presynaptic spike train is more regular, but

that positively autocorrelated spike trains are better drivers of the postsynaptic voltage when the vesicle

release probability is low. I provide accurate approximations to the postsynaptic firing rate, allowing future

studies of neuronal circuits and networks with dynamic synapses to incorporate physiologically relevant

spiking statistics.

Thirdly, I develop a Bayesian inference method for synaptic parameters. This expands on recent Bayesian

approaches in that the likelihood function is exact for both the quantal and dynamic synaptic parameters.

This means that it can be used to directly estimate parameters for common synaptic models with few

release sites. I apply the method to simulated and real data; demonstrating a substantial improvement

over analysis techniques that are based around the mean and variance.

Finally, I consider a spatially extended neuron model where the dendrites taper away from the soma. I

derive an accurate asymptotic solution for the voltage profile in a dendritic cable of arbitrary radius profile

and use this to determine the profile that optimally transfers voltages to the soma. I find a precise quadratic

form that matches results from non-parametric numerical optimisation. The equation predicts diameter

profiles from reconstructed cells, suggesting that dendritic diameters optimise passive transfer of synaptic

currents.
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Chapter 1

Introduction

1.1 Introduction

T
he neocortex is the largest part of the human brain and is involved in higher

functions such as sensory perception, generation of motor commands, spatial

reasoning, conscious thought, and language. The complexity that enables

it to perform these roles arises largely from the diversity of the hundreds of

trillions of connections between a hundred billion excitatory neurons (Fig. 1.1). These

connections, or synapses, adapt to activity on timescales ranging from milliseconds to

days. In addition, they are located on a spatially extended dendritic tree and are often

hundreds of microns from the postsynaptic cell body, introducing potential for synaptic

signals to decay before they reach the body of the cell.

This thesis examines how the properties of chemical synapses govern transmission of

signals across the cortex. The study follows two complementary routes, analysing both

the temporal dynamics and spatial distribution of synaptic connections. The key factors

considered are short-term synaptic plasticity, activity-dependent changes in synaptic

efficacy, and current transfer, the location-dependent flow of synaptic currents to the

body of the cell.

1.1.1 Basic neuronal physiology

Neurons store and process information by holding a voltage across their cell membranes.

This is achieved through maintaining a high concentration of Na+ sodium and Ca2+

calcium ions outside the cell, balanced to some extent by a higher concentration of K+

potassium inside (Fig. 1.2a). Cl− chloride ions are also important and are more concen-

trated outside the cell. Structurally, the membrane consists of a lipid bilayer, which is

1
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A B

C

D

Figure 1.1: Cortical neurons, chemical synapses, and distributed inputs. (A) Four layer-V
pyramidal neurons filled with fluorescent dye. This class of neuron is a major subject of
this thesis. (B) A schematic of a chemical synapse. Presynaptic action potentials arrive in
the bouton (top), released neurotransmitter diffuses across the synaptic cleft and binds to
receptors on the postsynaptic density of a dendritic spine (bottom), causing a local change
in conductance which allows a synaptic current to flow. (C) An electron microscope image
of a synapse. Neurotransmitter vesicles are visible in the presynaptic terminal (right). (D)
Predicted synaptic inputs onto a reconstruction of a layer-V pyramidal neuron. Panels from:
A R Harbord, University of Warwick, B G Johnson, Science, C NeuralNoises, and D (Hill
et al. 2012).

relatively impermeable to charged particles, containing embedded proteins which allow

ions to pass through either passively under a voltage, actively against a voltage or pas-

sively only once a certain voltage has been exceeded. The lipid bilayer of the membrane

therefore stores charge, acting as a capacitor, with ion channels acting as resistors in

parallel for different ionic species (Fig. 1.2a).

The Na+ −K+ pump actively transports Na+ out of the cell, against the electrochem-

ical gradient, and K+ into the cell; constructing the ionic imbalance that causes the

transmembrane voltage. A higher concentration of K+ channels means that the effec-

tive permeability of the membrane is higher for K+ ions than for Na+, allowing them

to diffuse across under the electrochemical gradient. Perturbations to the resting po-

tential across a membrane decay with a timescale τl. A typical resting value for the

membrane potential of a cortical Layer V cell is −70mV and τl is around 10ms. If the

voltage is above rest the cell is said to be depolarised and if the voltage is below it is

hyperpolarised.

Neurons are excitable. A sufficient deviation in the membrane voltage (≈ 10mV in
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Layer V pyramidal cells) causes voltage-gated Na+ channels to open and a fast influx of

positive ions increases the membrane voltage by around 100mV, before slower-opening

voltage-gated K+ channels return the cell to rest (Fig. 1.2b). This is referred to as an

action potential, or spike, and the cell is said to have spiked, or fired (Hodgkin et al.

1952). The whole process takes less than a few milliseconds. The action potential is the

most important feature of a neuron and allows individual cells to integrate inputs before

giving rise to an ‘all-or-nothing’ event which is transmitted to other cells. The decay

of voltage fluctuations from the resting potential mean that inputs must be temporally

close to be successfully combined into a deviation sufficient to cause a spike. Neurons are

assumed to transmit signals through either the overall rate at which they spike, or with

the precise timing of their action potentials (de Charms and Merzenich 1996; Averbeck

et al. 2006); a succession of action potentials is referred to as a spike train. The times

between spikes in a train are called interspike intervals (ISIs). The importance of spiking

sometimes allows neurons to be abstracted as a decaying membrane voltage equipped

with a mechanism to record a spike and reset the voltage when a threshold is reached.

This is the influential leaky integrate-and-fire (LIF) model (Lapicque 1907; Brunel and

van Rossum 2007) that is used throughout the first two chapters of the thesis.

Neurons are typically spatially extended, making connections far from the cell body, or

soma. The processes branching from the cell body are collectively referred to as neurites

and are grouped into two broad classes: dendrites and axons. Dendrites typically receive

connections from other cells and axons typically make them (Fig. 1.2c). These are broad

categories and the existence has been noted, alongside the ‘classical’ axo-dendritic and

axo-somatic contacts, of dendro-dendritic (Rall et al. 1966), axo-axonal (Atwood and

Morin 1970) and dendro-axonal (Gobell 1976) connections. Connections are referred to

as synapses (Sherrington 1906).

Action potentials are initiated in the soma or segments of axon immediately adjacent to

it and propagate largely by active means. Axons in the peripheral nervous system can

extend up to 1m (from the base of the spinal column to the foot), but in the brain are

mostly a few hundred microns in length. Longer sections are often myelinated: wrapped

in an additional lipid sheath to insulate the neurite, reducing energy loss and delay

when transmitting spikes. Dendrites are also often capable of initiating active processes

when the local voltage reaches a certain threshold (Llinás 1988). These features help

to propagate distant synaptic signals to the soma and allow regions of the dendrite

to separately process synaptic inputs, making a single neuron capable of performing

substantial computations (London and Häusser 2005). Regions of neurite far from the

soma are referred to as distal and those close to the soma are referred to as proximal.
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Synapses are typically grouped into excitatory, which increase the likelihood of the post-

synaptic cell generating an action potential, and inhibitory which reduce this likelihood.

Excitatory synapses achieve this through opening ion channels that allow depolarising

current to flow into the cell, whereas inhibitory synapses either hyperpolarise the cell or

increase the permeability of the membrane, allowing excitatory currents to decay faster

and reducing the ‘window’ within which excitatory events can be integrated. The sec-

ond type of inhibition is referred to as ‘shunting’. This description is again simplified

slightly as an effect known as post-inhibitory rebound (Sherrington 1913; Granit 1956)

can cause cells to fire after receiving a barrage of inhibition due to delayed compensation

by depolarising currents.

1.1.2 Brain architecture and cortical structure

Different regions of the brain have different roles and so contain very different classes of

neurons. This thesis is mostly concerned with the neocortex, but many of the results

also apply to other brain regions. An overview of brain architecture helps to relate the

local functionality discussed here with the broader computational role of the brain.

The central nervous system generally receives sensory signals as inputs and generates

motor signals as outputs. The basic functionality necessary to maintain life is found in

the brain stem, which regulates cardiac rhythms and breathing. The brain stem forms

part of the hindbrain alongside the cerebellum, or ‘little brain’, which is associated with

balance and motor coordination (Fig. 1.3a). A unique feature of the cerebellum is

that the output to other brain regions is made up entirely of inhibitory synapses. The

midbrain acts as a relay for sensory information arriving from the peripheral nervous

system via the pons in the brainstem and is also associated with emotion and control of

hormones. Two midbrain regions of note here are the hippocampus, which is associated

with navigation and memory formation, and the thalamus, which synapses onto the

cerebral cortex.

The outer layer of the cerebral cortex is the evolutionarily youngest part of the cortex,

and is referred to as the neocortex. It is this region that is associated with higher cog-

nitive functions such as processing sensory information, generating motor commands,

storing of memories, and reasoning. Different spatial regions have different functions,

for example processing visual input or generating motor output, and slightly different

structures, but the neocortex has remarkably well-conserved features across its consider-

able area (Silberberg et al. 2002). The mammalian neocortex, henceforth shortened to

cortex, contains six layers (Fig. 1.3b), distinguishable both visually and by types of cell
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Figure 1.2: Basic neuronal physiology. (A) Schematic of neuronal membrane and equiva-
lent circuit. K+ is more concentrated within the cell and Na+ is more concentrated outside,
creating a potential difference across the membrane. The lipid bilayer acts as a capacitor,
storing charge, and the ion-specific transmembrane channels act as resistors. (B) Schematic
of an action potential. Stimulus below the threshold fails to initiate an ‘all-or-nothing’ ac-
tion potential. Once the threshold is crossed, Na+ channels open, allowing a fast influx of
current. This is counteracted by the slower opening of K+ channels that allow current to
leave the cell. After an action potential, the neuron is temporarily unable to initiate another
due to the effect of the K+ and undergoes a refractory afterhyperpolarisation (AHP). Panel
adapted from www.innovateus.net. (C) Spatially extended neuron, showing axon, dendrite,
and soma. Panel adapted form C Boeree, Shippensburg University

found there (Fig. 1.3c). The basic structure and function of these layers are discussed

below:

Layer I. The uppermost layer, Layer I, contains very few cell bodies. Dendrites from

neurons with soma in deeper cortical regions branch extensively in this region, where

they receive excitatory and inhibitory synapses. Often the excitatory synapses are from

cells with soma in a different layer to that of the postsynaptic cell, allowing interlaminar

communication, or are from different cortical regions or the thalamus (Rubio-Garrido et

al. 2009). These synapses can be considered long-range.
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Layer II/III. Layers II and III are often considered together as they differ strongly only

in the cortical areas processing visual input. Excitatory neurons in this layer receive

excitatory synapses from Layer IV and synapse both intralaminarly and onto cells with

bodies in Layer V (Feldmeyer et al. 2002).

Layer IV. Layer IV is the major target of long-range connections from both different

cortical areas and the thalamus. It is notably absent in the region of cortex associ-

ated with generating motor commands. The neurons here make excitatory interlaminar

connections to Layer II/III.

Layer V. Layer V is the cortical layer most considered in this thesis. Layer V provides

the major outputs to other areas of cortex and brain. The cell class most discussed

here, the thick-tufted Layer-V neuron, is found mostly in the lower portion of this layer,

where they receive long-range excitatory input from the thalamus, via Layers IV and

II/III, and inhibitory input from interneurons with soma in Layer V. They also form

well-structured local networks with other Layer V pyramidal cells (Song et al. 2005;

Perin et al. 2011), with synapses located mostly within Layer V (Markram et al. 1997).

Layer VI. The deepest cortical layer is commonly referred to as the polymorphic layer

as the cells found here are more heterogeneous than in other layers (Fig. 1.3c). The

functions of these cells are less easily categorised than those in other layers, but an

important output is to the thalamus, providing cortico-thalamic feedback to the strong

thalamo-cotical inputs (Crandall et al. 2015).

Alongside this vertical layered structure, the cortex is organised horizontally around

columns that span all six layers (Mountcastle et al. 1957). Connections are more

probable between neurons sharing a column and inputs to and outputs from a column

tend to be shared. The region of cortex that processes sensory inputs that are not visual

or auditory is called the somatosensory cortex. In a part of this region in the rodent

brain, cortical columns correspond precisely with individual whiskers: a single whisker

induces activity in a single column (Woosley and van der Loos 1970).

The final subdivision of the cortex is the microcircuit. Neocortical microcircuits are

defined by stereotyped intracolumnar, interlaminar connectivity (Douglas et al. 1989).

They are conserved across brain regions and species and are well-studied as a potential

canonical and fundamental unit of computation (Lübke and Feldmeyer 2007).
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A B

C

Figure 1.3: Brain architecture and cortical structure. (A) Schematic of the human brain,
with areas discussed in the text labelled. Panel from D McDaniel, Arizona State University.
(B) Schematic of the neocortex, showing key excitatory and inhibitory connections between
and within cortical layers. Panel from M Richardson, University of Warwick. (C) Diversity
of excitatory cell classes by layer. Thick-tufted Layer V pyramidal cells are third from the
right. Panel from (Oberlaender et al. 2012).

1.2 Synaptic transmission

Neurons are generally insulated from one another (Waldeyer 1891; Cajal 1899); changes

in voltage cannot propagate between cells without synaptic intermediaries. The more

evolutionarily and structurally primitive method of sharing voltage between cells is an

electrical synapse or gap junction: a partially uninsulated section of membrane between

two neurons. This allows a flow of current between the two cells and provides a fast

and simple method of transmitting information. In the mammalian cortex, however, the

vast majority of synapses are chemical and rely on an intermediary neurotransmitter to

communicate. The structure and functional roles of this form of synaptic transmission

are discussed below, followed by an introduction to rate- and timing-based neuronal

codes.

1.2.1 Structure of a chemical synapse

A synapse is defined as the connection between a presynaptic neuron and a postsynaptic

neuron (Sherrington 1906). This connection generally consists of a number of anatomical

contacts that together allow signal transmission. Some synapses are mixed, with contacts
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that function via neurotransmitter and others via direct electrical coupling (Hamzei-

Sichani et al. 2012), but most consist entirely of neurotransmitter-mediated contacts.

A chemical synaptic contact is made up of a presynaptic terminal, a synaptic cleft, and

a postsynaptic density (Fig. 1.4).

Within the presynaptic terminal, the neurotransmitter is contained within a lipid bilayer

membrane, forming a structure known as a vesicle around 40nm in diameter (Südhof

2004). The presynaptic terminal has a number of active, or release, sites on the mem-

brane where neurotransmitter vesicles can dock (Schikorski and Stevens 2001). When

the presynaptic cell spikes, voltage-gated calcium channels in the presynaptic terminal

open and allow an influx of Ca2+. The Ca2+ has the potential to trigger a release of

neurotransmitter from vesicles docked at release sites (Fatt and Katz 1954; Katona and

Freund 1969; Neher and Sakaba 2008; Nakamura et al. 2015). The probability that a

single docked vesicle will release neurotransmitter on arrival of an action potential is

typically quite low, often less than half. Synapses are thus ‘reliably unreliable’ (Goda

and Südhof 1997; Ribrault et al. 2011).

The synaptic cleft is on the order of 20nm wide and neurotransmitter molecules pass

across it by diffusion. On reaching the postsynaptic density, the neurotransmitter

molecules bind to transmitter-gated ion channels, causing them to open and thus al-

ter the conductance of the postsynaptic cell. Transmitter molecules do not remain in

the cleft for long, they are either broken down by enzymes, taken up by non-neuronal

glial cells, or recycled into vesicles in the presynaptic cell for re-use. Vesicles filled with

recycled or newly synthesised neurotransmitter are trafficked to empty release sites. Re-

cent experimental techniques allowing manipulation of individual vesicles have greatly

enhanced understanding of the details of this process (Trigo et al. 2012; Park et al.

2012).

At the postsynaptic cell, open transmitter-gated ion channels can have a variety of ef-

fects. Excitatory neurotransmitters typically open sodium and potassium channels caus-

ing an influx of Na+ anions that depolarise the postsynaptic cell causing an excitatory

postsynaptic potential (EPSP). The fast opening and slow closing of transmitter-gated

ion channels means that the EPSP takes the form of a difference of exponentials (Eccles

et al. 1941; Richardson and Silberberg 2008). Inhibitory neurotransmitters typically

target K+ or Cl− channels, allowing K+ to diffuse down its concentration gradient out

of the cell or Cl− to flow down its concentration gradient into the cell; both have a hy-

perpolarising effect. As neurotransmitters increase the conductance of the membrane,

they allow excitatory currents to decay more quickly by reducing the effective membrane

time constant τl. This reduces the time window over which temporally separated exci-

tatory inputs can be integrated and leads to a form of inhibition referred to as silent, or
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‘shunting’, inhibition (Eccles 1964). An important feature of excitatory synapses is that

due to the equilibrium potential of Na+ being much higher than the resting potential of

the cell, the voltages induced by excitatory neurotransmitters from different vesicles can

be well-approximated by a linear sum (Burke 1967; Bekkers 2003). This approximation

is used throughout the thesis.

The fact that neurotransmitter is released from vesicles means that EPSPs are ‘built up

statistically of small all-or-none units which are identical in size with the spontaneous

‘miniature” postsynaptic potentials (del Castillo and Katz 1954). Synaptic transmission

is therefore quantal (Boyd and Martin 1956; Liley 1956), and the EPSP induced by a

single quanta of neurotransmitter is referred to as a ‘mini’ EPSP, following del Castillo

and Katz.

Neurotransmitters were first identified by Otto Loewi in 1921. In cortex, the most

prevalent excitatory and inhibitory neurotransmitters are glutamate and γ-aminobutyric

acid (GABA) respectively. Synapses that use glutamate are referred to as glutamater-

gic and those that use GABA are referred to as GABAergic. Glutamate receptors

for transmitter-gated ion channels in the postsynaptic density include the α-amino-3-

hydroxy-5-methyl-4-isoxazoleproponic acid receptor (AMPAR) and N-methyl-D-aspartate

receptor (NMDAR). Both are implicated in long term changes to the strength of

synapses, discussed below. In addition to the fast action of ion-channel-linked (ionotropic)

receptors, other, metabotropic, neurotransmitter receptors indirectly influence neuronal

function through second-messenger signalling: triggering the release of ‘second’ messen-

ger molecules from intracellular stores. An important class is the metabotropic glu-

tamate receptors (mGluRs), which have slower and longer-lasting actions than those

triggered by AMPARs and NMDARs (Nakanishi 1994). mGluRs have a variety of ef-

fects, causing excitation or inhibition or modulating the efficacy of synapses onwards

from the postsynaptic cell (Pin and Duvoisin 1995). Neurotransmitters are generally

abundant and easy to synthesise: glutamate, for example, is an amino acid and GABA

is directly synthesised from it. This helps to mitigate the high metabolic costs of synaptic

transmission (Harris et al. 2012).

It is important to note that the number of anatomical contacts forming a synapse is

in general not equal to the number of active sites from which neurotransmitter can be

released. This ‘single-vesicle’ hypothesis was widely held (Kuno 1971; Korn et al. 1981;

Redman 1990), particularly in cortex (Silver 2003), but more recent work has found that

the distribution of cortical postsynaptic responses observed (Song et al. 2005; Lefort et

al. 2009) is best explained by a number of release sites that can be substantially higher

than the number of anatomical contacts (Loebel et al. 2009; Regehr 2012).
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Figure 1.4: Structure of a chemical synapse. The presynaptic terminal (top) contains a
number of active sites to which vesicles containing neurotransmitter can dock. On arrival of
an action potential, neurotransmitter is probabilistically released and diffuses to receptors in
the postsynaptic density (bottom). The site from which neurotransmitter has been released
is inactive until a full vesicle is trafficked to the site. Panel from Wikipedia.

1.2.2 Function of a chemical synapse

Chemical synapses have a number of functional advantages over electrical synapses, de-

spite growing evidence of interactions between the two modes of synaptic transmission

(Pereda 2014) and the fact that electrical synapses have their own complexity (Landis-

man and Connors 2005). Chemical synapses transmit neuronal codes based either on

a firing-rate or precise spike-timing (de Charms and Merzenich 1996) and are able to

reverse the sign of transmission through use of inhibitory neurotransmitters; they also

have an important gating role in only feeding a signal forward after the presynaptic cell

has integrated its own synaptic inputs.

Chemical synapses are plastic: their strength alters through time. These changes occur

on both short and long timescales and are a major subject of Chapters 2, 3, and 4.

Synaptic plasticity is discussed in depth below.

Finally, chemical synapses are stochastic: an action potential is unlikely to induce release

of neurotransmitter from all docked vesicles and will sometimes induce release from

none (Kuno and Weakly 1972; Goda and Südhof 1997; White et al. 2000; Faisal et

al. 2008; Ribrault et al. 2011). This feature of synaptic function is surprising and has

been well studied. From an information-theoretic point of view, synaptic unreliability

enhances the information content of some codes (Zador 1998) and reduces the metabolic

requirements of many others (Levy and Baxter 2002; Goldman 2004). The substantial

‘noise’ introduced by variability in synaptic transmission will also have a potentially

critical effect on the firing-rate dynamics of a large-scale neuronal network (Salinas and

Sejnowski 2000; Kuhn 2004; de la Rocha and Parga 2005). At an individual synapse,

transmission will show a great deal of trial-to-trial variability and the models in Chapters

2, 3, and 4 specifically account for this.

For the rest of this thesis, the term ‘synapse’ without qualification will refer to a chemical

synapse.
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Figure 1.5: Short-term synaptic plasticity. Simulated EPSPs showing effects of vesicle
depletion depression (left) and facilitation (right). (A), (B) The average responses over
50 trials, showing the typical effects of depression and facilitation. (C), (D) Individual
postsynaptic responses, displaying considerable trial-to-trial variability.

1.3 Synaptic plasticity

Chapters 2, 3, and 4 of this thesis study the effects of short-term synaptic plasticity.

The current section first introduces the basic ideas behind this phenomenon, before

examining longer-term changes in synaptic strength which are an important part of

the work introduced in Chapter 2. The next subsection discusses patterns of spiking

activity seen in vivo, which are considered alongside short-term plasticity in Chapters 2

and 3. The penultimate subsection introduces the idea of neuromodulators, which alter

neuronal and synaptic function over wider areas, one of which is studied in Chapter

4. The final subsection here briefly describes paired whole-cell patch-clamping, the

experimental technique used to gather data about synaptic function.

1.3.1 Short-term synaptic plasticity

Changes in synaptic efficacy due to the immediate history of a synapse are referred to as

short-term synaptic plasticity (Zucker and Regehr 2002). The most commonly seen and

studied forms are vesicle depletion depression and facilitation (Fig. 1.5). Vesicle deple-

tion depression occurs after an action potential has induced release from docked vesicles

at presynaptic active zones, leaving those zones without the ability to release neurotrans-

mitter until a new vesicle has been trafficked to the site, a process that typically takes a

few hundred milliseconds (Eccles et al. 1941; Liley 1956; Vere-Jones 1966; Südhof 2004;

Neher and Sakaba 2008). Facilitation arises when Ca2+ builds up in the presynaptic
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terminal during persistent activity (Dudel and Kuffler 1961; Katona and Freund 1969).

This residual calcium increases the probability that neurotransmitter will be released by

subsequent action potentials and can increase the size of the second EPSP in a closely-

spaced pair to five times the size of the first (Zucker and Regehr 2002). Together the two

processes gives the synapse a ‘memory’ that lasts around ten to a hundred times longer

than voltage fluctuations in the postsynaptic membrane (Mongillo et al. 2008), and have

a variety of postulated computational roles (Abbott and Regehr 2004), including: gain

control (Abbott 1997; Rothman et al. 2009), increasing information transmission (Zador

1998; Kilpatrick 2013; Scott et al. 2012), sensory adaptation (Furukawa et al. 1982;

Hallermann and Silver 2013), and filtering inputs (Fortune and Rose 2001; Lindner et

al. 2009; Rosenbaum et al. 2012; Nagel et al. 2015). The results presented in Chapters

2, 3, and 4 do not rely on a specific interpretation of the function of vesicle depletion

depression, focussing mainly on the implications for firing rates in the postsynaptic cell

and recovering information about synaptic parameters from experiments.

Different regions of cortex and different developmental states imply different ratios of

depression and facilitation. Depression is more prevalent in cortical areas associated

with sensory input (Thomson 1997) and in thalamocortical synapses (Boudreau and

Ferster 2005), whereas facilitation becomes more prevalent in non-sensory cortical areas

(Mongillo et al. 2008). Age is also an important factor, with a shift from predominately

depressing to facilitating synapses throughout development in rodent models (Reyes

and Sakmann 1999), although some regions of mature human cortex have been observed

to exclusively depress (Testa-Silva et al. 2014). The parameter that most determines

the ratio between depression and facilitation is the probability that an individual docked

vesicle will release neurotransmitter on arrival of an isolated spike, p. A low p is likely to

lead to facilitation dominating as a relatively low proportion of vesicles are released after

the first spike and increases in release probability will have more of an impact. There

is also a dependence on the spike-train that is being transmitted and some neurons

are believed to route spike-trains with different statistics to different targets through

different synaptic responses, with very high frequency spike trains causing depression

and lower frequency trains inducing facilitation (Middleton et al. 2011; Nagel et al.

2015; Crandall et al. 2015).

The most influential models of short-term depression and facilitation are those of Abbott

(1997) and Tsodyks and Markram (1997). These phenomenological models have enabled

understanding of the dynamics of large networks of cells, revealing emergent behaviours

that do not arise in models of static synapses (Tsodyks et al. 1998; Cortes et al. 2013).

These models consider synaptic ‘resources’, which are deterministically depleted by a

presynaptic action potential and recover at a fixed rate in the absence of stimulus. They

are therefore a very good fit to the average behaviour of a synapse, but neglect the
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stochasticity in both probabilistic vesicle release and variable vesicle recovery times,

as well as the quantal nature of transmission (Fig. 1.5c and d). Models taking full

account of this stochasticity have been applied where effects of trial-to-trial variability are

particularly important (Fuhrmann et al. 2002; de la Rocha and Parga 2005; Rosenbaum

et al. 2012); Chapters 2, 3, and 4 of this thesis apply a stochastic quantal model.

Whilst vesicle depletion depression and facilitation are the most commonly observed

forms of short-term plasticity, the diversity and complexity of synapses (O’Rourke et al.

2012) mean that many other forms have also been described. Facilitation due to residual

calcium decays on timescales with orders of hundreds of milliseconds, but less substantial

increases in postsynaptic responses have been observed with timescales that are much

longer. Augmentation has timescales of seconds to tens of seconds and post-tetanic

potentiation has timescales of minutes; both can be explained by long-lived changes to

the efficacy of the ion pumps at presynaptic terminals during stimulus, which alter the

amount of Ca2+ that can enter during a subsequent spike (Regehr 1997; Zhong et al.

2001), and by effects on enzyme concentration (Fioravante and Regehr 2011). These

processes occur on slightly longer timescales than those modelled in this thesis.

A more relevant alternative form of plasticity is release-independent depression (RID)

(Dobrunz et al. 1997; Thomson and Bannister 1999), where the reduction in size of

a second EPSP is uncorrelated with the size of the first. The mechanism for this is

not entirely clear, but is believed to be a stimulus-dependent reduction in the rate at

which Ca2+ can enter the terminal (Catterall and Few 2008; Regehr 2012) and is best

modelled by a decrease in the release probability for successive spikes (Fuhrmann 2004).

RID initially decays on timescales around 500ms, but is highly-correlated with frequency-

dependent recovery (FDR), a reduction in the decay timescale during sustained activity.

Both mechanisms are incorporated in the models fitted to synaptic datasets in Chapter

4.

Another feature that can reduce the impact of depression is a stimulation-dependent

increase in the rate at which fresh vesicles are trafficked to empty release sites. The

mechanism behind this is unclear but is believed to relate to the build-up of calcium in

the presynaptic terminal (Wang and Kaczmarek 1998). The recovery of vesicles under

intense stimulus follows a double exponential, suggesting two distinct processes, with

a slow timescale that is invariant to stimulus and a fast timescale that is stimulus-

dependent (Hosoi et al. 2007). This is believed to be an important factor in maintaining

synaptic transmission at high-frequencies (Fioravante and Regehr 2011; Hallermann and

Silver 2013).

Synaptic depression is sometimes also attributed to saturation and desensitisation of the

receptors in the postsynaptic density (Kiskin et al. 1986; Otis et al. 1996) alongside
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vesicle depletion. The two effects are indistinguishable under the phenomenological

models of Abbott (1997) and Tsodyks and Markram (1997), but would have an impact

on the interpretation of quantal models of release. Experiments to distinguish between

these pre- and postsynaptic modes of depression have shown that neuronal mechanisms

can specifically counteract receptor desensitisation (DiGregorio et al. 2007; Heine et al.

2008), that desensitisation is relatively unimportant for presynaptic firing rates on the

order of 10Hz, and that vesicle depletion accounts for the majority of observed depression

(Wong et al. 2003; Foster and Regehr 2004).

1.3.2 Long-term synaptic plasticity

Long-term changes in synaptic strength are the physiological correlate of memory for-

mation (Hebb 1949). The factors that induce this are varied and beyond the scope of

this thesis (Abbott and Nelson 2000; Markram et al. 2011), but the mechanism behind

changing weights at excitatory glutamatergic synapses is important for Chapter 2. The

glutamate receptors AMPAR and NMDAR can, under certain conditions, activate ini-

tially blocked channels in the postsynaptic density, increasing synaptic strength quickly,

and induce changes in genetic transcription that strengthen the synapse over longer

timescales (Kandel 2001; Bayazitov et al. 2007). These post-synaptic changes can be

matched presynaptically by an increase in the number of vesicle release sites so that the

average ‘mini’ EPSP amplitude is unchanged, but the total synaptic strength increases

over a timescale of hours (Loebel et al. 2013).

Long-term depression has a similar mechanism, where the ‘mini’ amplitude is unchanged

but the total strength decreases due to matched reductions in presynaptic release sites

and postsynaptic receptors. As the long-term plasticity that gives rise to memories can

provide positive-feedback, where synapses between co-active neurons strengthen repeat-

edly (Hebb 1949), a form of homeostatic plasticity is observed to balance ‘runaway’

connection strengths by weakening others (Turrigiano and Nelson 2004). This homeo-

static plasticity is another consideration in Chapter 2.

1.3.3 Spike-train statistics

When dealing with stochastic quantal models of synaptic function it is often mathemat-

ically convenient to make the assumption that presynaptic spike times are uncorrelated

(Fig. 1.6a) (Fuhrmann et al. 2002; Rosenbaum et al. 2012). This is not necessarily the

case and analysis of in vivo spiking reveals correlations both between neurons (Aertsen

et al. 1989; Schneidman et al. 2006) and autocorrelations within a single spike train

(Fellous et al. 2003; Reyes 1999; Buzsaki and Draguhn 2004; Shinomoto et al. 2009).



Chapter 1. Introduction 15

N
e

u
ro

n

N
e

u
ro

n
N

e
u

ro
n

N
e

u
ro

n

200ms

200ms

200ms

200ms

A B

C D

Uncorrelated Crosscorrelated (synchronous)

Positively autocorrelated (bursty) Negatively autocorrelated (periodic)

Figure 1.6: Correlations between neurons and within spike trains. Raster plots displaying
the spike times of one hundred neurons under different types of correlation. (A) Indepen-
dent neurons with Poisson spike trains. (B) Crosscorrelated (synchronous) neurons with
individually Poisson spike trains. (C) Independent neurons, each firing as a positively
autocorrelated spike (bursty) train. (D) Independent neurons, each with a negatively auto-
correlated (periodic) spike train.

The results in Chapter 2 involve correlated spiking between presynaptic neurons, and

those in Chapter 3 consider spike trains that are autocorrelated.

Correlations between spike trains (Fig. 1.6b) have relevance for encoding sensory infor-

mation (von der Malsburg 1981; de Charms and Merzenich 1996; Averbeck et al. 2006),

motor control (Baker et al. 2001; Capaday et al. 2013) and decision making (Cohen

and Newsome 2008; Cain and Shea-Brown 2013). Recent work suggests that modula-

tion of correlations can be more significant for neuronal coding than alterations in the

presynaptic firing rate (Seriès et al. 2004; Mitchell et al. 2009; Cohen and Kohn 2011).

Correlations within spike trains (Fig. 1.6 c and d) are an important part of neuronal

codes (Ramcharan et al. 2000; Sherman 2001) and have substantial effects on how well

spike trains propagate (Cateau and Reyes 2006; Lindner 2006; Reich and Rosenbaum

2013; Pipa et al. 2013; Dummer et al. 2014). Further effects are discussed in detail in

Chapters 2 and 3.
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1.3.4 Neuromodulators and retrograde transmission

In addition to the very local effects of neurotransmitters, neuronal and synaptic prop-

erties are also affected on a larger scale by neuromodulators (see Marder 2012, for a

review). These are typically released during activity and can have profound effects on

the effective connectivity and function of neuronal networks. Recent work by Kerr et

al. (2013) has implicated the neuromodulator adenosine (Boison 2006) in the develop-

mental shift in glutamatergic synaptic properties from depressing to facilitating (Reyes

and Sakmann 1999; Chen and Buonomano 2012); the analysis introduced in Chapter 4

is applied to the effects of adenosine on synaptic function.

Synapses are also modulated locally by retrograde signalling; where the postsynaptic

cell releases a transmitter that alters synaptic efficacy. This allows the postsynaptic

cell to control afferent signals from selected presynaptic neurons. Endocannabinoids

are retrograde transmitters that temporally reduce the amount of conventional neuro-

transmitter released by the presynaptic cell (Katz 2012) and so can alter the dominant

short-term plasticity displayed presynaptically from depression to facilitation (Brenowitz

and Regehr 2005).

1.3.5 Paired whole-cell patch-clamp recording

Data on synaptic properties is gathered through paired-cell patch clamping. This pro-

cedure is described exactly in the Methods sections of Chapters 3 and 4, but a brief

overview here may clarify some points about synaptic datasets. Glass electrodes are

placed against the membrane of two cells and suction is applied until the membranes

break and the electrodes can record from the interior of the cells; the process is known

as whole-cell patch clamping (Neher 1991; Sakmann 1991). Current is injected into one

cell to induce it to fire and the voltage of the other cell is monitored to detect an EPSP.

In particular, this method does not distinguish between synaptic currents induced at

individual anatomical contacts.

Paired whole-cell recording has advantages over experimental protocols using extracel-

lular stimulating electrodes and intracellular recording electrodes as it is possible to

precisely stimulate a single presynaptic cell whilst recording its voltage. Precise stim-

ulation means that EPSPs are certain to come from a single synapse and presynaptic

voltage recording allows failed action potential initiation to be distinguished from failed

neurotransmitter release. Experiments are done in vitro on slices of tissue typically

taken from young animals.
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Tissue slices are ‘quiet’, they have very little background spiking activity compared to

a living brain. This must be considered when extrapolating from in vitro slice data to

in vivo living systems; in particular it means that stimulated activity in slice causes

additional initial depression and facilitation compared to the same activity in vivo. In

practice theoretical studies account for this easily by considering steady-state behaviour

or explicit transitions in the activity levels (Tsodyks and Markram 1997). Inference

of dynamic synaptic properties is also more straightforward in a quiet slice due to the

larger initial changes in EPSP amplitude on stimulation onset (Eccles et al. 1941;

Bekkers 1994).

1.4 Neurons

So far this chapter has discussed the broad structure and basic behaviour of neurons

without much emphasis on the specifics of different cell classes. An understanding of

the functionality discussed in this thesis does require consideration of the properties

of the different cell classes discussed. The broadest categorisation of cells comes from

the effect of the synapses they form: excitatory neurons form excitatory synapses and

inhibitory neurons form inhibitory synapses. Beyond this, the brain region in which the

cells are found and their location within this region, alongside morphological, genetic,

and electrophysiological properties are used to define neuron classes (Wang et al. 2001;

Oberlaender et al. 2012).

The major class of neuron discussed in this paper, and that for which experimental

evidence is gathered in Chapters 3 and 4, is the thick-tufted pyramidal cell from Layer

V of the cerebral cortex. The first subsection below describes the properties of this

cell class in some detail and the second outlines unique properties of other cell classes

discussed in Chapter 5.

1.4.1 Thick-tufted Layer V pyramidal cell

Layer V pyramidal cells are a major output cell of the cortex and are heavily implicated

in complex computation (Markram et al. 1997; London and Häusser 2005; Spruston

2008; Ramaswamy and Markram 2015). These cells have soma lying in Layer V of the

cerebral cortex, typically in the lower half, often referred to as Layer Vb (Fig. 1.7). They

have a large dendrite that heads vertically up through the cortical layers to Layer I, where

it branches extensively. This main dendrite is referred to as the apical dendrite, and the

branches are referred to as tuft dendrites. The apical and tuft dendrites are over 1000µm

long. There are also around 4 or 5 basal dendrites, which leave the soma within the



Chapter 1. Introduction 18

Figure 1.7: Thick-tufted Layer V pyramidal cell. Scale bar 100µm. Morphology taken
from (Hay et al. 2011), with all dendritic radii increased by 0.5µm for ease of visualisation.

plane of Layer V and are shorter, typically spanning around 300µm. The soma is around

25µm in diameter (all measurements from Markram et al., 1997). A single axon leaves

the soma and branches extensively, occasionally reaching up to higher layers within a

cortical column, targeting basal dendrites of other pyramidal cells, and projecting down

out of the cortex as a major output pathway. The characteristic pyramidal shape is

found throughout the nervous systems of mammals, birds, fish, and reptiles suggesting

a highly conserved computational role (Spruston 2008).

Layer V pyramidal cells receive synapses across their dendritic trees, with fairly stereo-

typed presynaptic locations. Excitatory synapses on the tuft dendrites tend to be long-

range, from different cortical areas or the thalamus (Rubio-Garrido et al. 2009; Meyer et

al. 2010). The basal dendrites are targets of short-range glutamergic synaptic connec-

tions from other Layer V cells within a cortical column and can be considered short-range

(Markram et al. 1997; Hay et al. 2011). There is evidence that anatomical contacts

on basal dendrites further from the postsynaptic soma are stronger to equalise their

voltage effects at the soma (Markram et al. 1997). Each cell receives on the order of
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5000 synapses onto its basal dendrites (O’Kusky and Colonnier 1982; Spruston 2008).

Pyramidal cells also receive a complex pattern of inhibition from a variety of inhibitory

cells within the cortical microcircuit that are not discussed in detail here, but have rich

and varied effects on the excitability of the pyramidal cell (London and Häusser 2005;

Silberberg and Markram 2007; Fino and Yuste 2011; Hill et al. 2012; Gidon and Segev

2012).

Layer V pyramidal cells have active dendrites. The most striking aspect of this is a

concentration of voltage-gated calcium channels near the top of the apical dendrites,

which instigate calcium spikes that propagate to the soma when the voltage in the

calcium channel region exceeds a threshold (Williams and Stuart 2002; London and

Häusser 2005; Hay et al. 2011). This helps transmit long-range signals to the soma. A

hyperpolarisation-activated depolarising current denoted Ih is also present, with the Ih

cation channels decreasing in density towards the soma. The relatively slow timescale

of these channels means that EPSPs recorded at the soma are succeeded by a ‘sag-

rebound’ in voltage (Berger et al. 2001; Silberberg and Markram 2007). A third active

process is the NMDA spike, which has only been observed in the thinner basal and

tuft dendrites and requires direct glutamatergic synaptic input (Schiller et al. 2000;

Antic et al. 2010). Action potentials initiated in the soma can backpropagate into the

dendrites (Stuart and Sakmann 1994), a function that appears to play a crucial role in

long-term synaptic plasticity (Spruston 2008). Together with ion channels in the soma,

these active processes play a part in spike-frequency adaptation (Fuhrmann et al. 2002).

Adaptation is a modulation of a cell’s response to persistent stimulation (Wang 1998;

Benda et al 2005; Peron and Gabbiani 2009). A key feature of adaptation currents

is in the creation of correlations between interspike intervals (Schwalger et al. 2010;

Schwalger and Lindner 2013), generating non-renewal spike trains which are discussed

in Chapter 3.

1.4.2 Other neurons

Whilst the mathematical results in Chapters 2, 3, and 4 are general and can be applied

to any synaptic contacts, both the experimental verification and main interpretations

are centred around Layer V pyramidal cells. In Chapter 5, a morphological constraint is

derived and experimental validation requires an analysis of the geometries of a number

of other cell classes. Their structure and proposed functions are outlined below.

Purkinje cell. Purkinje cells (1.8a) are the major output neuron of the cerebellum. Like

the cortex the cerebellum has a layered structure, but with an even greater degree of

homogeniety. Purkinje cell bodies lie within the Purkinje cell layer and the extensively
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branched dendrites receive excitatory synaptic inputs from two main sources. Climbing

fibres from the medulla in the brainstem make strong excitatory synapses on proximal

regions of dendrite. Each Purkinje cell receives climbing fibre input from a single presy-

naptic cell, and the activation of this synapse induces a complex spike, where a large

initial action potential is succeeded by a burst of action potentials with lower ampli-

tudes. Purkinje cells can also fire simple spikes, which are individual action potentials.

Parallel fibres from cerebellar granule cells make a very large number, in the region of

200, 000, of weak glutamatergic synapses to the distal regions of the dendrite, and can

induce simple spikes. The dendrites of Purkinje cells allow for many active processes

(Roth and Häusser 2001).

The site of action potential initiation is relatively far down the axon compared to the ma-

jority of neurons (Stuart and Häusser 1994). The output of Purkinje cells is inhibitory,

and axon collaterals branch off from the main tract to specifically target proximal re-

gions of neighbouring Purkinje cells with GABAergic synapses. Purkinje cells have a

notably different genetic profile to many other neurons (Kirsch et al. 2012).

Dentate gyrus granule cell. The dentate gyrus lies within the hippocampus. Granule

cells (1.8b) have small bodies (∼ 10µm in diameter) and their conical arrangement of

dendrites receives input from Layer II of the cortical region associated with memory

formation and navigation (Schmidt-Hieber et al. 2007). Their activity is relatively

sparse and strongly associated with spatial exploration. They are one of the few neuronal

classes known to undergo adult neurogenesis (Cameron and Mckay 2001).

Blowfly lobula plate HS and VS neurons. The structure of invertebrate brains is very

different to that of mammals, but the constraints in Chapter 5 are also shown to apply to

neurons from the fly central nervous system. The lobula plate of the blowfly calliphora

vicina lies within the region of the brain that receives visual inputs and consists of around

a dozen giant neurons; three of which, the HS cells (1.8c), process horizontal motion, and

nine to eleven of which, the VS cells (1.8d), process vertical motion (Hausen et al. 1980;

Scott et al. 2002). These cells are large and have a membrane conductance a factor of ten

higher than many mammalian neurons. The layout of these cells is highly-stereotyped

and the dendritic morphology is not experience-dependent, suggesting that the cells

are genetically relatively hard-coded (Karmeier et al. 2001). The lobula plate has an

important computational role, receiving inputs from a large number of presynaptic cells

that retain a direct spatial mapping from the retina and producing the outputs necessary

to control flight (Borst et al. 2010).
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A B
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Figure 1.8: Other neuronal morphologies. (A) Purkinje cell (Roth and Häusser 2001).
(B) Dentate gyrus granule cell (Schmidt-Hieber et al. 2007). (C), (D) Blowfly lobula
plate HS (C) and VS (D) neurons (Cuntz et al. 2010). All scale bars 100µm and all radii
increased by 0.5µm for ease of visualisation.

1.5 Optimality in dendritic structure

The results presented in Chapter 5 involve studying a spatially extended neuron model,

in contrast to the point neurons in Chapters 2, 3, and 4 that allow analytical results even

when the input is stochastic and temporally complex (Brunel and Hakim 1999; Gerstner

2000; Fourcaud-Trocmé et al 2003). Spatially extended models attempt to account for

the full morphological properties of real cells and are an important consideration in

understanding synaptic function. The results in Chapter 5 consider dendritic optimality:

how well dendrites are adapted for the task of propagating synaptic currents passively to

the soma. To put this in context, I will introduce the ideas behind a spatially extended

neuron model, and discuss the idea that synapses at different locations have equal effects,
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an idea known as ‘dendritic democracy’ (Jaffe and Carnevale 1999; Magee and Cook

2000; Häusser 2001).

1.5.1 Spatially extended neuron models

The results of Wilfrid Rall in describing the properties of voltage in dendritic trees

(Rall 1959; Rall 1969; Rall and Rinzel 1973) were critical in illustrating the function

of extended dendrites. Previous work had neglected the importance of dendritic trees,

overestimating the attenuation of voltage with distance (Eccles 1957). Rall was able to

demonstrate that physiological values of dendritic radius and passive electrical proper-

ties meant that dendritic trees would have a substantial effect on somatic voltage (Rall

1959); thereby introducing neuronal cable theory, the study of voltage and current in

leaky neurites. The governing cable equation is derived in the supplementary material

to Chapter 5 for a cable with arbitrary radius profile; the classical form is for constant

radius. The lengthscale of a cable depends on its radius and passive properties and is

referred to as electrotonic length. A further innovation of Rall was to allow a branch-

ing dendritic tree to be modelled as a single cylinder under certain conditions. These

conditions are rarely met in real neurons (Whitehead and Rosenberg 1993) (but see

Desmond and Levy, 1984), but the ‘equivalent cable’ allowed an intuitive mathematical

understanding of complex dendritic structures (Segev et al. 1995).

Further analytical approaches to the problem of resolving voltages in branched dendrites

applied various transforms to allow efficient computation (Butz and Cowan 1974; Koch

and Poggio 1985; Abbott et al. 1991; Zador et al. 1995), but arguably lacked the

intuitive value of an equivalent cable interpretation (Whitehead and Rosenberg 1993).

The equivalent cable idea was therefore extended to relax many of the original constraints

(Schierwagen 1989; Poznanski 1991; Jaffe and Carnevale 1999; Lindsay et al. 2003),

and solutions were found for many types of non-cylindrical or passively non-uniform

dendritic cable (Goldstein and Rall 1974; Holmes and Rall 1992; London et al. 1999).

These solutions did, however, lack complete generality, leaving room for the asymptotic

solution to arbitrary taper introduced in Chapter 5.

The active processes in many dendrites, combined with the branching complexity, has

led to widespread adoption of numerical methods for resolving voltages in realistic mor-

phologies (Hines and Carnevale 1997), but analytical studies of passive properties do still

have the potential to generate important new insights into dendritic function (Timofeeva

et al. 2008; Gidon and Segev 2012).
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1.5.2 Synaptic equalisation and ‘dendritic democracy’

The main result of Chapter 5 is a derivation of the optimal dendritic radius profile to

transmit synaptic currents to the soma. This profile is optimal from the perspective

of energy conservation (Cuntz et al. 2007), but due to the distance-dependent attenua-

tion in a passive tree, is also the profile that best equalises somatic EPSPs from different

anatomical synaptic contacts. The concept that synaptic weights from different anatomi-

cal contacts and the passive properties of certain neurons are adapted to equalise somatic

currents in this way is referred to as ‘dendritic democracy’ (Jaffe and Carnevale 1999;

Magee and Cook 2000; Häusser 2001; Timofeeva et al. 2008). Dendritic architecture and

the strengths of synaptic contacts in some neurons (particularly hippocampal pyramidal

neurons) appear to scale in a way that allows contacts at different distances to have an

approximately equal impact at the soma (Rumsey and Abbott 2006).

1.6 Thesis Structure

The Chapters of this thesis are either published (Chapter 2), submitted (Chapter 5), or

in preparation (Chapters 3 and 4). Each chapter is therefore written as a self-contained

manuscript, with the addition of an initial overview that outlines my contribution as

first author on each.

Chapter 2 examines the relationship between correlations in a presynaptic population

and the individual weights of synapses, which are determined by long-term plasticity.

In the paper I derive exact analytical forms for a number of key quantities, confirming

previous numerical (de la Rocha and Parga 2005) and approximate (Rosenbaum et al.

2012) results, and use these to estimate the postsynaptic firing rate, demonstrating an

optimal balance between presynaptic correlation and synaptic strength.

Chapter 3 considers how well spike trains with arbitrary statistics propagate across

depressing synapses. I derive exact analytical results for key quantities when the spike

train is a renewal process, with uncorrelated ISIs but (generally) correlated spike times. I

demonstrate that synapses release neurotransmitter at a higher rate when the spike train

is more regular, confirming previous numerical results (Reich and Rosenbaum 2013), but

that when release probability p is low, positively autocorrelated spike trains are better

drivers of the postsynaptic cell. The first of these results is confirmed experimentally

by a collaborator. I finally demonstrate that it is possible to accurately estimate the

postsynaptic firing rate for renewal spike trains with depressing synapses, allowing future

incorporation of dynamic synapses in analytic studies of neuronal networks where spiking

has temporal structure.



Chapter 1. Introduction 24

Chapter 4 introduces a novel method of Bayesian inference for synaptic datasets. This

extends recent two applications of Bayesian inference in this context (Bhumbra and

Beato 2013; Costa et al. 2013) by modelling both correlated quantal aspects and short-

term plasticity of a synapse. The accuracy of the method is demonstrated on synthetic

data, where the full posterior distribution allows identification of regions of parameter

space where estimation is particularly difficult. The procedure is applied to data gath-

ered by a collaborator in control and under high extracellular adenosine concentration,

confirming previous studies on the effect of adenosine on synaptic dynamics (Kerr et al.

2013).

Chapter 5 considers spatially extended neuron models. I derive an asymptotic approx-

imation to the voltage in a dendritic cable with arbitrary radius profile and demonstrate

its accuracy. The first-order approximation is used to derive an analytical form for the

radius profile that maximises the proximal effects of synaptic currents and this is shown

to match the effects of non-parametric numerical optimisation (Cuntz et al. 2007), as

well as predict the radii of a variety of cell classes. This chapter is structured slightly

differently, with an overview, the main manuscript without sub-headings, and extensive

supplementary information detailing the derivations behind the key results.

Chapter 6 is the Discussion, summarising the thesis and highlighting the original con-

tributions and context of my work.



Chapter 2

Long-term plasticity determines

the postsynaptic response to

correlated afferents with

multivesicular short-term

synaptic depression

2.1 Overview

T
his chapter is motivated by the recent finding that a major mechanism of

long-term plasticity is a change in the number of vesicle release sites n,

matched by corresponding adjustments in the postsynaptic density such that

the ‘mini’ amplitude a is unaltered (Loebel et al. 2013). The correlations

in neurotransmitter release between active sites on a single presynaptic neuron will

therefore change in a manner modulated by the more transient correlations between

release from different neurons arising from synchrony in the network (Averbeck et al.

2006). I investigate the interaction between these two forms of correlation (between

release sites and between neurons) with a stochastic quantal model of synaptic function

(Fuhrmann et al. 2002); exact results are derived for the auto- and crosscorrelations

in vesicle release. This allows the subthreshold mean and variance of the postsynaptic

voltage to be exactly determined, confirming previous numerical (de la Rocha and Parga

2005) and approximate (Rosenbaum et al. 2012) results. The postsynaptic firing rate

is estimated in situations of low and high release correlation, revealing a non-monotonic

relationship with an intermediate maximum response. This suggests that there is an

25
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optimal balance between levels of synchrony and individual synaptic weights across

a neuronal network. The optimal balance is shown to be robust to variation in the

temporal coherence between neuronal correlations and appears to arise under general

forms of long-term homeostatic plasticity.

The main paper is followed by a brief discussion of interesting issues raised since publi-

cation.

2.1.1 Author contributions

Conceived the study: MJER and ADB. Derived and solved equations: ADB and MJER.

Wrote code for simulations: ADB. Prepared figures: ADB. Wrote the paper: ADB and

MJER.

The first draft was written entirely by ADB. The abstract was then substantially rewrit-

ten by MJER. All equations used in the final results were initially derived by ADB.

Equations 3-6, which shorten and simplify the different calculations for auto- and cross-

correlations were introduced by MJER.
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Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the
active sites for neurotransmitter release. The number of independent release sites per
presynaptic neuron, a synaptic parameter recently shown to be modified during long-term
plasticity, will modulate these correlations and therefore have a significant effect on the
firing rate of the postsynaptic neuron. To understand how correlations from synaptic
dynamics and from presynaptic synchrony shape the postsynaptic response, we study
a model of multiple release site short-term plasticity and derive exact results for the
crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as
the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing
rate in the limits of low and high correlations, we demonstrate that short-term depression
leads to a maximum response for an intermediate number of presynaptic release sites,
and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony
set by the number of neurotransmitter release sites per presynaptic neuron. These effects
arise because, above a certain level of correlation, activity in the presynaptic population
is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the
nervous system operates under constraints of efficient metabolism it is likely that this
phenomenon provides an activity-dependent constraint on network architecture.

Keywords: long-term plasticity, short-term plasticity, synaptic depression, correlations and synchrony, voltage
fluctuations

1. INTRODUCTION
Synapses play a key role in transmitting and processing infor-
mation throughout the nervous system and long-term shifts in
synaptic efficacy are believed to underpin learning and memory
(Hebb, 2002; Markram et al., 2011). Synapses function through
release of neurotransmitters that then bind to receptors on the
postsynaptic cell and transiently alter the membrane conduc-
tance. Neurotransmitters in the presynaptic terminal are stored
and transported in vesicles (Fox, 1988; Hu et al., 2008). A num-
ber of vesicles are positioned at active sites where they have a
certain probability of being released when the presynaptic cell
spikes. Empty release sites are restocked after a variable period,
with an overall rate of a few Hz (Südhof, 2004). Both the number
of contacts per presynaptic cell and the activity in the presynaptic
network can generate correlations in the release of neurotrans-
mitter at synapses onto a single neuron; we demonstrate that
postsynaptic activity is governed by a balance between these two
sources of correlation.

The usage of vesicles due to presynaptic firing and stochas-
tic replenishment means that the number of vesicles available
for release is a highly dynamic quantity that is dependent on
the history of afferent activity. In the immature cortex, the rel-
atively high release probability and limited availability of vesicles
causes a progressive reduction in synaptic efficacy during a period

of sustained neuronal activity (Reyes and Sakmann, 1999; Chen
and Buonomano, 2012). This short-term reduction in synaptic
strength is known as vesicle depletion depression: an unstocked
active site cannot induce a postsynaptic response to any inci-
dent action potential (Abbot, 1997; Tsodyks and Markram, 1997;
Zucker and Regehr, 2002). The phenomenon is believed to play
a role in gain control (Abbot, 1997; Abbott and Regehr, 2004;
Rothman et al., 2009), information transmission (Zador, 1998;
Kilpatrick, 2012; Scott et al., 2012), and adaptation to sensory
stimuli (Furukawa et al., 1982; Hallermann and Silver, 2012).
The synaptic plasticity models introduced by Abbot (1997) and
Tsodyks et al. (1998) capture short-term depression accurately;
they match empirical data and allow a richness of network behav-
ior (Tsodyks et al., 1998) to emerge beyond that predicted by static
synapses. Such models consider the mean efficacy of the synapse,
averaged across several presentations of the same presynaptic
stimulus; the predicted postsynaptic response therefore varies
continuously. Several recent studies have considered a quantal
model of synaptic function incorporating short-term depres-
sion, with probabilistic vesicle release and replacement to reflect
trial-to-trial variability (Fuhrmann et al., 2002; de la Rocha and
Parga, 2005; Rosenbaum et al., 2012). The impact of stochas-
tic vesicle dynamics is particularly marked when mean synaptic
drive is insufficient to bring the postsynaptic neuron to threshold
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and spiking activity is governed by fluctuations in the system
(Gerstein and Mandelbrot, 1964; Kuhn, 2004). To induce post-
synaptic firing in such a system it is necessary for the variable
synaptic drive to exhibit coincidences; this occurs most regularly
when that drive is correlated.

Correlations in neurotransmitter release between different
sites can arise from two sources: from multiple contacts onto a
postsynaptic neuron from the same presynaptic cell and from syn-
chronous activity across the presynaptic population. The number
of sites between a pair of neurons is fixed over short timescales,
unlike the number of vesicles ready to release from the sites, but
can vary widely over longer periods (Loebel et al., 2013) following
potentiation or depression. Connections between neurons poten-
tiate and depress in the long term chiefly through changes in this
synaptic parameter—the number of independent release sites can
be seen as a fundamental unit of memory. Synchronous firing in
the presynaptic population emerges from the connectivity of neu-
ronal networks (Aertsen et al., 1989) and has relevance for encod-
ing sensory information (von der Malsburg, 1981; deCharms and
Merzenich, 1996; Averbeck et al., 2006), motor control (Baker
et al., 2001; Capaday, 2013) and decision making (Cohen and
Newsome, 2008; Cain and Shea-Brown, 2013). Recent work sug-
gests that modulation of correlations can be more significant for
neuronal coding than alterations in the presynaptic firing rate
(Seriès et al., 2004; Mitchell et al., 2009; Cohen and Kohn, 2011).
Population synchronization is a transient phenomenon relative to
the structural changes underlying long-term plasticity.

A detailed stochastic model of neurotransmitter dynamics at
the presynaptic terminal is required to analyze the effects of presy-
naptic synchrony, particularly when long-term plasticity varies
the structure of synapses through altering the number of release
sites. It can be noted that multiple contacts between cells and
transient correlations within a presynaptic population are likely
to introduce considerable redundancy in the usage of vesicles:
correlated events may lead to EPSPs many times larger than that
required to reach threshold. However, evidence points to the ner-
vous system operating under constraints of efficient metabolism
(Levy and Baxter, 2002; Taschenberger et al., 2002; Savtchenko
et al., 2012) suggesting such wastage would not commonly arise
in vivo. It is therefore of interest to examine the effect on the post-
synaptic cell of the interaction of partially synchronized afferent
drive with multiple contacts per presynaptic cell. To this end, we
analyze a model of a postsynaptic cell receiving input from a pop-
ulation of release sites distributed between different numbers of
presynaptic neurons and with different levels of synchrony.

Following the basic model definitions, we first derive exact
forms for the crosscorrelations of vesicle occupancies and release
at multiple contacts from the same and different presynaptic cells.
These correlations were previously derived by Rosenbaum et al.
(2012) using a diffusion and additive-noise approximation, and
our results show that this earlier method gave exact results for
these quantities. We then go on to calculate the exact voltage mean
and variance and, through comparison with the typical EPSP
amplitude, argue that synaptic noise can become significantly
non-Gaussian. We then derive two approximate limiting forms
for the firing rate for low and high correlations and demonstrate
that the postsynaptic response is optimal at intermediate levels of

afferent correlations. We finally show that this effect is robust for
neurons in which there is some level of synaptic homeostasis or
soft limit on the total number of release sites.

2. METHODS
We consider a population of N presynaptic neurons synapsing
onto a single postsynaptic neuron. A presynaptic neuron makes
synapses with n vesicle occupancy sites from each of which neu-
rotransmitter may be independently released with a probability
p on the arrival of a presynaptic action potential, occurring at a
constant Poissonian rate Ra. In between presynaptic action poten-
tials, empty release sites are restocked independently at a constant
Poissonain rate Rr . Initially, we consider that the total number of
release sites onto the postsynaptic cell is fixed at M = nN (exam-
ple configurations are provided in Figures 1A–C). The number
of independent release sites n was recently shown (Loebel et al.,
2013) to be the synaptic parameter most closely correlated with
the structural changes arising from long-term plasticity and so
we will consider the effects of varying n (while initially keeping M
constant) on the postsynaptic response. The binary variable x will
be used to signify vesicle release-site occupancy: x = 1 if present
or x = 0 if absent. The evolution of vesicle occupancy is given by
the stochastic differential equation

dx

dt
= (1 − x)

∑

m

δ(t − tm) −
∑

k

!k(x)δ(t − tk) (1)

where m counts the restock events occurring at a rate Rr and k
counts the presynaptic action potentials occurring at a rate Ra.
The binary random variable !k(x) signifies whether a release was
successful at the kth action potential: if x = 1 then !k(x) = 1 with
probability p to model a successful release of neurotransmitter,
and is 0 otherwise to model a failed release from a stocked site;
if x = 0 then no release is possible and !k(x) = 0. The δs are

FIGURE 1 | We consider a population of N presynaptic neurons each
featuring n independent release sites onto a single postsynaptic cell.
(A) The stochastic dynamics are illustrated from left to right: if a vesicle is
present it is released (with probability p) when an action potential arrives
(Poissonian rate Ra); an empty release site; and restock of an empty
release site (Poissonian rate Rr ). (B,C) examples with M = nN = 9 with
(B) n = 1, N = 9 and (C) n = 3, N = 3 contacts and presynaptic neurons,
respectively. (D) Example spike trains for M = N = 6 correlated presynaptic
neurons that feature S = 3 synchronous spikes.
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Dirac delta functions and whenever a delta function multiplies a
dynamic variable it is assumed that the value of the variable used
is that immediately before the delta event occurs. In other words,
the equations are non-anticipating and should be interpreted in
an Itō sense (Gardiner, 2010).

2.1. CORRELATIONS FROM STRUCTURE
When a presynaptic neuron spikes, available vesicles at each of
the n sites release their contents independently with probability
p, and so the total number of release events is binomially dis-
tributed. Note that because these sites receive the same incoming
action potentials correlations will arise despite the independent
conditional release and restock events at each site. Globally, we
first hold the total number of release sites, given by M = nN,
constant so that the postsynaptic neuron receives a fixed overall
excitatory drive. In this study we set M = 5000, which is of-the-
order-of estimates by O’Kusky and Colonnier (1982), Megías et al.
(2001), and Spruston (2008). This has the effect of maintaining
the overall level of excitatory drive to the postsynaptic cell and in
biological terms can be seen as a constraint of metabolic efficiency
across the presynaptic population: as some contacts potentiate,
others die out. The effects of relaxing this condition are discussed
later. Recent analysis of long-term plasticity data has shown that
changes in EPSP amplitude are captured by models in which
the number of independent release sites n increases or decreases.
Depending on the protocol, n can potentiate or depress by a fac-
tor of 5 or more (Loebel et al., 2013); a typical range for n is 5–50.
However, contacts with a binomial n as low as 1 or as high as
100 sites have also been observed. Though the upper bound is
unbiological, for completeness we vary n between 1 and 5000 in
simulations.

2.2. CORRELATIONS FROM PRESYNAPTIC SYNCHRONY
The population of neurons driving a common target often
displays substantial synchrony in spiking activity (Salinas and
Sejnowski, 2000; Averbeck et al., 2006; Cohen and Kohn, 2011)
(see Figure 1D). Here we model correlations in the presynap-
tic population by using a variation of the Multiple Interaction
Process (MIP) introduced in Kuhn et al. (2003). We implement
the process by considering a master spike train with a constant
Poissonian rate NRa/S. For each spike in the master train we pick
S of the presynaptic neurons at random and assign a synchronous
spike in their trains. If S = 1 this would imply no correlations
in the presynaptic population and S = N would be a fully syn-
chronous presynaptic population. Note that the spiking of each
presynaptic neuron is Poissonian at rate Ra as required and also
that, given that one presynaptic neuron spikes, the probability
that a particular other presynaptic neuron has a spike at the
same time is c = (S − 1)/(N − 1). In reality, shared spikes will
not be entirely synchronous and so in later simulations (specifi-
cally, those leading to Figures 6, 7) we add independent, normally
distributed jitter to the spike times with mean 0 and standard
deviation τj following de la Rocha and Parga (2005) and Cohen
and Kohn (2011). Note that in Figures 5, 6A,B, 7 the curves are
truncated for increasing n because, for fixed S and fixed M = nN,
it is invalid to have S greater than N. This is also the case for
Figures 6B,C with increasing S.

2.3. POSTSYNAPTIC VOLTAGE
We treat the postsynaptic neuron as a leaky integrate-and-fire
model with each neurotransmitter release event causing the volt-
age to jump by an amount a. The membrane voltage V has a
resting value E and a spike threshold Vth. After a spike, V is reset
to E and held there for a time τr to model the refractory period. If
N presynaptic neurons each have n neurotransmitter release sites
then the postsynaptic voltage is governed by

τ
dV

dt
= E − V + aτ

N∑

i = 1

n∑

j = 1

∑

k

!
ij
k (xij)δ(t − ti

k) (2)

where τ is the membrane time constant, xij is the occupancy vari-
able for the ith presynaptic neuron’s release site number j and k
labels the order of incoming action potentials to release site with
occupancy xij. Note that the spike times ti

k are identical for all
release sites with the same presynaptic neuron i and that some
of the spike times will be common to release sites with distinct
presynaptic neurons, depending on the level of synchrony given
by the correlated MIP process parameterized by S. The values of
other parameters used in simulations (unless otherwise stated)
are given in (Table 1).

3. RESULTS
We first derive exact forms for the crosscorrelations of vesicle-
occupancy and of neurotransmitter-release time series. The latter
can then be used to calculate the exact membrane voltage vari-
ance. Two approximations of the postsynaptic firing rate then
lead us to the main result of the paper: that long-term synap-
tic plasticity—through its alternation of the synaptic parameter
n—sets the optimal postsynaptic response to a presynaptic popu-
lation with correlated firing. Throughout this section the notation
〈φ〉 denotes the steady-state expectation of the fluctuating quan-
tity φ.

For the calculation of the crosscorrelations of objects separated
by a time T, it is useful to consider how the steady-state expec-
tation of the product of the occupancy x with some quantity ψ
evaluated at an earlier time evolves with the separation time:

d

dT
〈x(T)ψ(0)〉 = 〈(1 − x(T))ψ(0)〉 Rr − 〈x(T)ψ(0)〉 pRa (3)

where the first term on the right-hand side is the rate that an
empty site is filled and the second term is the rate that a full
site releases its contents. This equation can be rearranged into the
form

τx
d

dT
〈x(T)ψ(0)〉 = 〈x〉 〈ψ〉 − 〈x(T)ψ(0)〉 (4)

where the time constant τx and steady-state occupancy 〈x〉 are

τx = 1

Rr + pRa
and 〈x〉 = Rr

Rr + pRa
. (5)

That the second quantity must be the steady-state occupancy 〈x〉
can be inferred by noting that in the limit T → ∞ the expectation
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Table 1 | Typical parameters used for the figures.

Parameter Interpretation Value

V Postsynaptic membrane
voltage

Varies

S Number of presynaptic cells
that fire together

Varies

n Number of release sites per
presynaptic neuron

Varies

N Number of presynaptic
neurons

Varies

M Total number of vesicle
release sites (nN)

5000

Rr Rate at which empty vesicles
are replaced at release sites

2 Hz

Ra Rate of presynaptic spiking 2 Hz

p Probability of spike arrival
inducing neurotransmitter
release at a site with a
vesicle present

0.66

τj Jitter standard deviation
timescale

2 ms

E Resting membrane voltage −70 mV

Vth Threshold at which action
potentials are initiated

−55 mV

τr Refractory period of a neuron
after a spike

2 ms

τ Membrane time constant 10 ms

a EPSP amplitude induced by
neurotransmitter released
from a single vesicle

0.2 mV

〈x(T)ψ(0)〉 in Equation (3) loses its T dependence and factorises
into the product 〈x〉 〈ψ〉. Note that the exponential solution to
the differential Equation (4) implies that all crosscorrelations that
include the occupancy x take a simple exponential form

Crosscorr(x,ψ) = (〈xψ〉 − 〈x〉 〈ψ〉)e−t/τx (6)

where 〈xψ〉 is the expectation evaluated in the limit T → 0.

3.1. VESICLE OCCUPANCY CROSSCORRELATIONS
The autocorrelation of release-site occupancy can be calculated
by making use of the fact that for the binary variable x we have
x2 = x and so

〈
x2

〉
= 〈x〉. Putting ψ = x in equation (6) gives

Autocorr(x) = 〈x〉 (1 − 〈x〉)e−|T|/τx = pRaRr

(Rr + pRa)2 e−|T|/τx (7)

where the extension of the exponential to negative times comes
from a symmetry argument. For the crosscorrelation between dif-
ferent release sites, with occupancy variables x and x′, we need to
distinguish between cases where the release sites either share the
same presynaptic neuron or have different presynaptic neurons
when deriving

〈
xx′〉. However, the derivation can be written in

the same form by introducing a quantity γ that is the proportion
of shared spikes: γ = 1 for release sites with the same presynap-
tic neuron or γ = c = (S − 1)/(N − 1) for different presynaptic
neurons. A steady-state equation for the zero-time expectation〈
xx′〉 can be found by considering the state where both sites are

occupied and balancing the total rates into and out of this state

〈
x(1 − x′)

〉
Rr +

〈
(1 − x)x′〉 Rr =

〈
xx′〉 (2Rap − γRap2). (8)

The terms on the left-hand side represent the total rate into the
double occupancy state, whereas the terms on the right-hand side
multiplying the expectation are the combined rates of individual
vesicle release minus the coincidence term to prevent overcount-
ing of events. We now combine terms to obtain the required
expectation

〈
xx′〉

γ
= 2Rr 〈x〉

2Rr + Rap(2 − γp)
(9)

where the γ subscript will be used later to distinguish the different
cases. It can be inserted into Equation (6) with ψ = x′ to give

Crosscorr(x, x′) = γp2RaR2
r e−|T|/τx

(2Rr + pRa(2 − pγ))(Rr + pRa)2 . (10)

Example plots of Equation (7), and Equation (10) for cases with
γ = 1 and γ = c are given in Figures 2A,C,E. It is interesting to
note that our exact results are identical to those previously cal-
culated in Rosenbaum et al. (2012) using a combined diffusion
and additive-noise approximation, validating their method up to
second-order statistics.

3.2. NEUROTRANSMITTER RELEASE CROSSCORRELATIONS
Though synchrony in the presynaptic population leads to
positive correlations for release-site occupancy, we now show
that the delayed restock following release leads to negative
cross-correlations in the release events themselves. Let χ(t) and
χ′(t) be trains of delta pulses representing neurotransmitter
release from sites with occupancies defined by x(t) and x′(t),
respectively, so that:

χ(t) =
∑

k

!k(x)δ(t − tk) (11)

where k counts incoming action potentials at the contact with site
occupancy x. In the steady state we have 〈χ〉 = pRa 〈x〉 because
the rate of release is equal to the release rate pRa given vesicle
occupancy multiplied by the occupancy probability 〈x〉. The auto
and crosscorrelations can be straightforwardly calculated using
the general result of Equation (6) by setting ψ = χ′ and noting
that

〈
χ(T)χ′(0)

〉
= pRa

〈
x(T)χ′(0)

〉
. However, some care needs to

be taken when considering the case T = 0. The result of Equation
(6) is valid in the limit T → 0; but there is an additional delta
function in the crosscorrelation when T = 0 with an amplitude
equal to the rate of simultaneous events in χ and χ′ that arises
from the delta functions in Equation (11). The autocorrelation
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FIGURE 2 | Release-site occupancy is correlated,
neurotransmitter-release events are anticorrelated. (A) Autocorrelation
of a release-site occupancy and (B) autocorrelation in neurotransmitter
release. (C,D) Crosscorrelations for distinct release sites sharing the same
presynaptic cell. (E,F) Crosscorrelations for release sites with different
presynaptic cells. The parameters were N = 500, n = 10, and S = 10 giving
the probability of synchronous spikes c = 0.018.

function for χ therefore takes the form

Autocorr(χ) = pRa 〈x〉 δ(T) − (pRa 〈x〉)2e−|T|/τx (12)

where the rate of simultaneous events for the autocorrelation is
just the mean release rate pRa 〈x〉 and prefactor of the exponen-
tial is only − 〈χ〉2 because in the limit T → 0 the expectation
of 〈χ(T)χ(0)〉 is zero as there is no time for a restock. A similar
consideration gives the result for the crosscorrelation

Crosscorr(χ,χ′) = γp2Ra
〈
xx′〉

γ
δ(T)

+ R2
ap2((1 − γp)

〈
xx′〉

γ
− 〈x〉2)e−|T|/τx (13)

where we are treating cases for which the release is from dis-
tinct contacts sharing the same presynaptic neuron γ = 1 or from
distinct presynaptic neurons where γ = c. In Equation (13) the
prefactor of the delta function arises from the rate of simul-
taneous releases, which is equal to the arrival of simultaneous
spikes γRa multiplied by the probability that each contact releases
a vesicle p2

〈
xx′〉

γ
. The prefactor of the exponential shares the

same squared component − 〈χ〉2 = −(pRa 〈x〉)2 as the autocor-
relation, but also has a non-zero contribution from

〈
χ(T)χ′(0)

〉

in the limit T → 0. This quantity is equal to the probability that
both sites are occupied

〈
xx′〉

γ
multiplied by the probability of a

release from site x′ but no release from site x from a simulta-
neous presynaptic event, which is Rap(1 − γp) multiplied by a

subsequent release from site x just afterwards due to a second
presynaptic spike, pRa. This exact result is again identical to that
derived previously using a diffusion and additive-noise approx-
imation (Rosenbaum et al., 2012). Example autocorrelation and
crosscorrelation functions are plotted in Figures 2B,D,F.

3.3. MEMBRANE VOLTAGE MEAN AND VARIANCE
The tonic component of the presynaptic drive can be character-
ized by the mean voltage, which is straightforward to calculate
in the absence of a threshold. The dynamics of this quantity can
be found by taking the expectation of Equation (2) to yield the
steady-state result

〈V〉 = E + aMτpRa 〈x〉 = E + aMτpRaRr

Rr + pRa
. (14)

Note that the mean voltage is independent of the synchrony S
and is also independent of release-site number n when M = nN
is held fixed.

The effect of correlated synaptic fluctuations on the postsynap-
tic neuron can also be characterized by deriving the steady-state
variance of the postsynaptic voltage (again in the absence of
a threshold-reset mechanism). This quantity is derived in the
Appendix using the auto and crosscorrelations of χ (Equations
12, 13) and takes the form

Var(V) = a2τNnpRa

2

(〈x〉 + (n − 1)p
〈
xx′〉

1 + (N − 1)ncp
〈
xx′〉

c

)

+ Nn(aτpRa)
2

1 + τRr + pτRa

(
(n − 1)(1 − p)

〈
xx′〉

1

+ (N − 1)n(1 − cp)
〈
xx′〉

c − Nn 〈x〉2) . (15)

The first term arises from the δ-functions in Equations (12, 13)
and the second term comes from the negative correlations in
vesicle release due to short-term depression (the terms featuring
exponentials in the same equations). For a related model (de la
Rocha and Parga, 2005) it was demonstrated that on increasing
the presynaptic rate a maximum can be seen in the conductance
fluctuations. The exact result of Equation (15) allows for this
effect of fluctuations in depressing synapses on the voltage itself to
be analyzed. Example variances as a function of presynaptic rate
are shown in Figure 3 and, as expected from the previous anal-
ysis of conductance fluctuations (de la Rocha and Parga, 2005),
the variance also shows a maximum at intermediate presynaptic
rates.

Though the voltage variance measures one aspect of presy-
naptic fluctuations, it misses its increasing shot-noise nature as
the correlations increase. Shot noise causes a non-Gaussian com-
ponent in the tails of the membrane voltage distribution that,
because they extend to the region of action-potential initiation,
can significantly affect the post-synaptic firing rate (Richardson
and Swarbrick, 2010). The mean EPSP amplitude can be used
to see this effect: it is proportional to the mean of the vesicles
released by a spike given the occupancy levels already computed,
and so

〈EPSP〉 = apnS 〈x〉 = apSnRr

Rr + pRa
. (16)
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As correlations from increasing n or S become stronger, the
mean EPSP amplitude increases. However, as noted above, the
mean voltage (Equation 14) does not change under increasing
n or S. Taken together, the implications are that in the limit of
high correlations the synaptic drive becomes temporally sparse
with large amplitude EPSPs generated from correlated events.
This effect can be seen in simulations of the model with dif-
ferent parameter regimes (Figure 4). For parameters N = 125,
n = 1, and S = 1 (no presynaptic synchrony) the presynaptic

FIGURE 3 | Exact voltage variance for a postsynaptic neuron receiving
multiple depressing synaptic contacts from a presynaptic population.
Three examples are given with different numbers of neurostransmitter
release sites per presynaptic neuron. For each case the synchrony was
S = 10.

spikes (Figure 4A) and neurotransmitter release (Figure 4D) are
uncorrelated, and in the full system with M = 5000 the EPSPs are
relatively small (Figures 4G,H) and the resulting voltage distri-
bution is close to Gaussian (Figure 4I). Increasing n (Figure 4B)
or S (Figure 4C) to 25 leads to correlations in neurotransmit-
ter release (Figures 4E,F), larger EPSPs (Figures 4J,K,M,N) and
a more variable and skewed membrane voltage (Figures 4L,O).
Note the right-hand tails from the skewed membrane voltages
under conditions of presynaptic correlation that extend toward
voltages where action potentials would be initiated.

3.4. RELEASE SITE NUMBER AND POSTSYNAPTIC RATE
As the analyses of the previous section and examples in Figure 4
demonstrate, for the case of few release sites and low synchrony
the voltage distribution is close to Gaussian. However, for the
case of many release sites the synchronous release events gener-
ate large EPSPs that are reminiscent of shot noise. With this in
mind, approximations for the firing of the postsynaptic cell may
be found for the cases of low n, when the voltage distribution is
roughly Gaussian, and high n for which the EPSP amplitudes are
of-the-order-of or larger than threshold.

3.4.1. Few release sites
For the low n approximation we rely on a recent observation
(Alijani and Richardson, 2011) that the firing rate of integrate-
and-fire neurons is relatively insensitive to temporal correlations
as long as the subthreshold voltage mean and variance are
matched. To this end we approximate the firing rate of the neuron
by a white-noise equivalent that has a voltage mean µ equal to that

FIGURE 4 | Membrane voltage distributions become markedly
non-Gaussian as correlations increase. (A–C) Rasters of presynaptic firing
with: (A) N = 125, n = 1, and S = 1; (B) N = 5, n = 25, and S = 1; (C)
N = 125, n = 1, and S = 25. (D–F) Rasters of neurotransmitter release for
these firing patterns. (G,J,M) EPSP histograms for the above n and S values,
but with N adjusted so that M = nN = 5000. (H,K,N) Histograms of the total

synaptic drive over an interval of the membrane time constant for the same
parameters. (I,L,O) Voltage histograms for the same parameters. Note that,
whereas the voltage is close to Gaussian for the single release-site and
no-presynaptic-synchrony case, it develops a tail to the right when
correlations arise either from multiple release sites or presynaptic
synchrony.
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of Equation (14) and variance σ 2 equal to that of Equation (15).
The firing rate of a leaky-integrate-and-fire neuron with these
parameters is given (Brunel and Hakim, 1999) by the reciprocal of

τ

∫ ∞

0

dz

z
e−z2/2 (

ezzth − ezzre
)

(17)

where zth = (Vth − E − µ)/σ and in this case zre = −µ/σ .

3.4.2. Many release sites
For sufficiently large n the mean EPSPs are greater than that
required to bring the neuron to threshold apnS 〈x〉 ' Vth − E,
and so each synchronous presynaptic event is likely to cause the
postsynaptic cell to spike. The postsynaptic cell receives input at
a total rate of NRa/S and so we can approximate the rate in the
large n case by

r ∼ NRa

S
= MRa

nS
. (18)

Therefore, increasing the presynaptic synchrony S will reduce the
postsynaptic response when n is large.

3.4.3. Optimal release-site number
Under conditions of a fixed number of release sites onto the
postsynaptic cell M = nN, increasing n has no effect on the
voltage mean (Equation 14), but increases the voltage variance
(Equation 15). Therefore, as n increases from an initially small
value, the approximation given by Equation (17) predicts that the
postsynaptic cell will fire at an increasing rate. However, from
Equation (18), which is valid for high n, we see that the postsy-
naptic firing rate decreases as n increases. Hence, there must be
an intermediate n for which the response of the postsynaptic cell
is optimized. This effect can be clearly seen in the examples given
in Figure 5 in which the postsynaptic rate is plotted as a function
of n for fixed M. The intersections of the two approximations for

FIGURE 5 | The postsynaptic firing rate exhibits a maximum as a
function of the number of pre-to-post release sites n. Firing-rate
simulations (solid lines), low n approximation (Equation 17; blue dashed
lines) and high n approximation (Equation 18; red-dashed lines) for various
levels of presynaptic synchrony S as a function of the number of release
sites n per presynaptic cell. The maximal postsynaptic response is close to
the intersection of the approximate forms and the optimum n decreases
with increasing synchrony S. Note that the curves are limited on their right
because of the restriction S ≤ N (the maximal allowable synchrony is equal
to the number of presynaptic neurons) so that the maximum n is n = M/S.
This upper bound on n holds for similar curves in later figures.

each curve provide an estimate for the optimal n, which decreases
as the presynaptic synchrony increases. It should be noted that
this effect, which has a maximum as a function of release-site
number at constant presynaptic rate, is a distinct phenomenon
to the tuning curve as a function of presynaptic rate analyzed in
de la Rocha and Parga (2005).

3.5. LONG-TERM PLASTICITY AND RESPONSE TO SYNCHRONY
The post-synaptic firing rate is sensitive to correlations arising
from multiple release sites, as discussed above, as well as to
presynaptic synchrony (de la Rocha and Parga, 2005). In par-
ticular, the firing rate has a maximal response at an optimal n
that is a function of the presynaptic synchrony as can be seen
in Figure 6. When neurotransmitter release is too strongly cor-
related in the presynaptic population, the postsynaptic response
weakens because the quantity of neurotransmitter released is in
excess of that necessary to take the postsynaptic cell to thresh-
old and therefore this limited resource is wasted. The reduction
in response to over-strong correlations gives rise to the optimal
responses in the space of n and S seen in Figures 6A–C. Note that
the band of optimal postsynaptic response is linear with negative
gradient in the n, S log–log plot and so the optimal synchrony in
the presynaptic population has an inverse relation to the number
of release sites n each presynaptic cell makes onto the postsynaptic
target.

Analyses of long-term plasticity data (over a 12 h period)
by Loebel et al. (2013) demonstrated that connections between
thick-tufted layer-5 pyramidal cells in the rat somatosensory cor-
tex alter their efficacy by changing the binomial parameter n, in
preference to probability of release or quantal amplitude. Among
the experiments analyzed certain connections potentiated four-
fold, from an effective binomial n of ∼25 to ∼100. Assuming
that the mean excitatory drive remains constant, this potenti-
ation would lead to the postsynaptic cell becoming maximally
responsive to signals encoded by weaker presynaptic synchrony
(see Figure 6C). It would also cease to amplify strongly correlated
stimuli as effectively. Other connections showed four-fold reduc-
tions in n from ∼40 to ∼10 under protocols that cause long-term
depression. In this case the postsynaptic cell would now act as a
better amplifier of stimuli encoded with larger correlations.

3.6. OPTIMAL RESPONSE AND SYNCHRONY JITTER
The effects of fluctuations in a synchronous presynaptic popula-
tion can be modeled by adding a Gaussian-distributed jitter, of
timescale τj, to the timing of each action potential. When the
individual components of the synchronous MIP event are too
dispersed temporally, i.e., when the jitter is greater than the mem-
brane time constant τj > τ, the MIP event will fail to integrate
in the postsynaptic cell. Under these circumstances the effect of
correlations is diminished, as illustrated in Figure 7. When jitter
is absent (Figure 7A), different values of presynaptic synchrony
S produce distinct and clearly defined optimal response curves.
With a physiological jitter timescale of τj = 2 ms (Figure 7B) the
curves for different synchronies shift upwards in n and the peak
postsynaptic firing rate falls, particularly for larger synchrony.
When τj = τ (Figure 7C) only relatively strong synchrony values
are significantly different from the independent case (S = 1).
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FIGURE 6 | Long-term plasticity that alters release-site number n sets
the sensitivity to presynaptic synchrony. (A) Postsynatpic rate as a
function of release-sites per presynaptic neuron n for different examples of
presynaptic synchrony S. (B) Heat map of the postsynaptic rate as a
function of presynaptic release-site number n and presynaptic synchrony S.
(C) Postsynaptic rate as a function of presynaptic synchrony S for different
examples of release-site number n. For these figures population spikes
have been jittered with a standard deviation of 2 ms. Note that in panel B
the optimal synchrony has an inverse dependency on the release-site
number. Long-term potentiation makes the postsynaptic cell more sensitive
to weak synchrony, whereas long-term depression sensitizes the cell to
stronger synchrony.

3.7. OPTIMAL-RESPONSE CURVES ARE A ROBUST FEATURE OF
SYNAPTIC HOMEOSTASIS

Throughout much of the above analysis we held the total number
of release sites M = nN constant and demonstrated an optimal
response curve in which the postsynaptic rate peaks at an inter-
mediate n, which is dependent on the presynaptic synchrony
S. The rationale for this choice is that, under conditions of home-
ostasis, synaptic potentiation (increasing n) amongst a subpopu-
lation of presynaptic neurons will occur at the expense of pruning
neurons that do not contribute to postsynaptic firing. This will
lead to the postsynaptic neuron receiving afferent drive from
fewer presynaptic neurons, though each of these will make more
contacts (and vice-versa for long-term depression). The theoreti-
cal results and simulations are not predicated on the assumption
of constant M and so it is interesting to investigate whether the
optimal-response effect persists if this restriction is relaxed. Using
the example S = 10 we plotted the postsynaptic rate as a func-
tion of the presynaptic neuron N and release site number n (see
Figure 8A). As expected the postsynaptic rate increases with an
increasing number of presynaptic neurons N or release sites n.
Plotted on the same figure is the curve N = M/n with M = 5000
that, because of its reciprocal relation will have low rates at either
asymptotes, and an intermediate maximum (see Figure 8B). Also
plotted is the curve N = M0 where M0 is a constant. This corre-
sponds to a scenario in which the entire presynaptic population

FIGURE 7 | Impact of synchrony jitter on the optimal response curves.
(A–C) Postsynaptic firing rate as a function of the number of release sites
per presynaptic neuron n for increasing jitter standard deviations τj . (A) No
jitter τj = 0. (B) Physiological levels of jitter τj = 2 ms. (C) Response curves
converge on the unsynchronized S = 1 case, as expected, when jitter is of
the order of the postsynaptic membrane time constant τj = 10 ms.

has either potentiated or depressed their contacts, thereby chang-
ing the number of release sites n a presynaptic neuron makes
without altering the total number of presynaptic neurons N. For
this case, which is arguably an extremum from the point-of-view
of homeostatis, the intermediate maximum is lost: the postsynap-
tic rate increases monotonically and loses its n dependence when
n is sufficiently large, as expected from the first form of Equation
(18). However, for intermediate cases of homeostasis of the form
N = Mκ/nκ with κ = 3/4, 1/2, 1/4 a maximal postsynaptic rate
again occurs at some intermediate n (see Figure 8B). Given the
dependence of the postsynaptic rate on n and N in Figure 8A it
can be seen geometrically that any curve in which there is a recip-
rocal relation between N and n will likely feature a maximum at
intermediate n and so the optimal-response curves are a robust
feature of a postsynaptic neuron in which there is some degree of
homeostatic restriction on the total number of afferent contacts.

4. DISCUSSION
We considered the effects of afferent correlations arising
from multiple neurotransmitter release sites and a partially
synchronized presynaptic population. We derived exact forms for
the crosscorrelations of vesicle release site occupancy and vesi-
cle release, and demonstrated that these are identical to those
recently obtained from a diffusion and additive-noise approxi-
mation (Rosenbaum et al., 2012), validating that approach up
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FIGURE 8 | Curves with a maximal postsynaptic rate at intermediate n
are a robust feature. (A) Intensity plot of the postsynaptic rate as a
function of presynaptic release site n and neuron number N for an example
with S = 10. Also plotted are the relations N = Mκ/nκ for
κ = 0, 1/4, 1/2, 3/4, 1, where κ = 1 corresponds to the homeostatic
scenario principally considered in this paper for which there is a restriction
M = nN on the total number of afferent contacts. The case κ = 0
corresponds to a scenario with no such restriction, and the other values of
κ are intermediate cases with varying degrees of homeostasis. (B) The
postsynaptic rate as function of n for the curves in the upper panel. Cases
for all values of κ, except κ = 0 in which there is no homeostatic restriction,
show a maximal response at intermediate n. The example curves given
have Mκ chosen so that they all pass through the point n = 25 and
N = 200.

to second-order statistics and explaining their perfect agreement
between theoretical and simulational results. We further calcu-
lated the exact variance of the membrane voltage, in absence of
spike threshold. This quantity extends previous calculations (de la
Rocha and Parga, 2005) of synaptic conductance fluctuations and
allows for an estimation of the postsynaptic rate in the low-
correlation Gaussian regime. For the high-correlation regime, due
to multiple release sites n or strong synchrony S, we argued that
the EPSPs become increasingly large, the nature of the synaptic
fluctuations increasingly shot-noise like, and so the postsynaptic
rate tends to the rate of synchronous presynaptic events. Combing
these two results for the low and high correlation regimes, we
demonstrated that the postsynaptic response is maximal for an
intermediate number of release sites or synchrony. The system

therefore exhibits a tuning-curve response to synchrony that can
be modulated by long-term plasticity, which alters the number of
release sites n.

Neurons respond maximally to specific stimuli when pro-
cessing sensory input. A coordination of long-term plasticity,
afferent synchrony and short-term depression therefore provides
a potential tuning mechanism for cells to achieve this sensitivity.
Efficient responsiveness would then depend on historical changes
in synaptic connectivity (Taschenberger et al., 2002; Loebel et al.,
2013) and the transient correlations evoked by a particular stim-
ulus (Averbeck et al., 2006; Cohen and Kohn, 2011). More gen-
erally, neuronal networks balance fidelity of signal transmission
with the metabolic costs associated with neurotransmitter recy-
cling (Levy and Baxter, 2002; Savtchenko et al., 2012). Although
a release of neurotransmitter beyond that necessary to induce a
postsynaptic spike may have medium-term conductance impli-
cations or counteract strongly fluctuating inhibition, an efficient
network would not be expected to exceed the degree of pairwise
connectivity that maximizes response to common spike frequen-
cies and correlations. On the other hand, signals encoded by small
numbers of cells would require highly potentiated connections to
transmit information with any degree of consistency. This implies
that across a neuronal network the degree of clustering would be
optimally balanced with individual synaptic weights.

To investigate maximal firing rate response to a defined excita-
tory drive, we have neglected the effects of synaptic inhibition.
As in vivo network behaviors arise from a balance of excita-
tion and inhibition, a development of the ideas presented here
along the above lines would need to incorporate inhibitory effects
on the total synaptic conductance. By altering the timescales on
which excitatory inputs are integrated, inhibitory drive could
allow a more finely-tuned response to afferent sub-populations
with varying degrees of temporal dispersion. Another extension
of this work would be to incorporate different forms of short-
term synaptic plasticity into the model. This would be particularly
appropriate when studying connections between specific cell-
types where there is experimental evidence for other forms of
synaptic dynamics. It is also likely that effects moderating synap-
tic depression, such as the increasing facilitation in the maturing
neocortex (Reyes and Sakmann, 1999) would lead to qualitatively
different behavior as cortical networks develop.
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APPENDIX
DERIVATION OF THE VOLTAGE VARIANCE
The voltage equation can be written in the form

τ
dV

dt
= E − V + aτζ (19)

where ζ is the summation of the release trains across the N
presynaptic neurons and each of their n contacts

ζ =
N∑

i = 1

n∑

j = 1

χij (20)

where χij takes the form of Equation (11) for the ith presynaptic
neuron’s jth contact. The autocorrelation of ζ is therefore com-
prised of Nn autocorrelations of χ in the form of Equation (12),
Nn(n − 1) crosscorrelations of χ for distinct release trains shar-
ing the same presynaptic neuron given by Equation (13) with
γ = 1 and N(N − 1)n2 crosscorrelations of χ for release trains
with different presynaptic neurons given by Equation (13) with
γ = c.

Taking expectations of both side of Equation (19) in the steady
state gives

〈V〉 = E + aτ 〈ζ〉 = E + aMτRap 〈x〉 . (21)

We can now solve Equation (19) to give

V − 〈V〉 = a
∫ t

−∞
dt′e−(t−t′)/τ (

ζ(t′) − 〈ζ〉
)

(22)

so that the voltage variance can be written as an integral over the
autocorrelation of ζ, Autocorr(ζ) =

〈(
ζ(t′) − 〈ζ〉

) (
ζ(t′′) − 〈ζ〉

)〉

(V − 〈V〉)2 = a2
∫ t

−∞
dt′

∫ t

−∞
dt′′e−(t−t′)/τe−(t−t′′)/τAutocorr(ζ). (23)

As discussed above, the autocorrelation of ζ is the sum of the
various crosscorrelations of χ so that it must take the form

Autocorr(ζ) = αδ(t′ − t′′) + βe−|t′−t′′|/τx (24)

where α and β are obtained from the prefactors of the terms in
Equations (12, 13) multiplied by their respective contributions.
Inserting Equation (24) into (23) and performing the integration
gives

Var(V) = a2
(

ατ

2
+ βτ2τx

τ + τx

)
. (25)

On substituting the appropriate forms for α and β the result given
in Equation (15) is obtained.

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 2 | 11



Chapter 2. Postsynaptic response to correlated afferents 38

2.8 Additional Discussion

Since publication, a number of points about this paper have been raised that bear

discussion here.

2.8.1 Synaptic kernels

This chapter treats neurotransmitter release and the subsequent EPSP as point events:

χ and ζ are trains of delta functions. In reality, EPSPs take a form closer to a difference

of exponentials as neurotransmitter-gated channels open and close (Eccles et al. 1941;

Richardson and Silberberg 2008). It would be possible to include a synaptic kernel

accounting for a more physiologically accurate EPSP form. The effect of this is relatively

minor, the width of an excitatory synaptic kernel is a few milliseconds making it much

shorter than the other important timescales, and the key effects are preserved. On minor

effect is to make the postsynaptic response slightly less dependent on perfect synchrony

in vesicle release: the changing jitter in Figure 7 would have less of an impact.

2.8.2 Location of the maximum in the postsynaptic voltage variance

Eq. 15 gives the postsynaptic voltage variance as a function of the synaptic parameters,

and Figure 3 shows that it is non-monotonic as a function of the presynaptic firing rate

Ra. It is therefore of interest to find analytically where this maximum occurs. This

maximum occurs when ∂(Var(V ))
∂Ra

= 0. To solve this equation, it is useful to compute the

following derivatives

∂〈x〉
∂Ra

=
−pRr

(Rr + pRa)2

∂〈xx′〉γ
∂Ra

=
−2pR2

r

(
2p(2− γp)Ra +Rr(4− γp)

)
(Rr + pRa)2(2Rr + pRa(2− γp))2

∂

∂Ra

(
R2
a

1 + τRr + pτRa

)
=
Ra
(
pτRa + 2(1 + τRr)

)(
1 + τRr + pτRa

)2
(2.1)

Obtaining a general closed form solution is unfortunately impossible as it is equivalent

to solving an eighth-order polynomial in Ra.

However, in the case where release is reliable (p = 1) and there is only a single presynaptic

neuron (N = 1), the variance equation reduces to a more tractable form but still provides

some insight. In this case, the variance Var(V )) is given by

Var(V ) =
a2τnRa

2

(
〈x〉+ (n− 1)〈xx′〉1

)
−

(
aτnRa〈x〉

)2
1 + τ(Rr +Ra)

(2.2)
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Here, correlations in vesicle release from synchrony between cells is neglected, but cor-

relations arising from multiple release sites remain. Similarly, variance arising from

uncertain release is neglected, but variance from uncertain spike arrival and restock

events remain. This reduced case produces qualitatively similar behaviour to the full

model. We seek Ra such that

0 =
Rr

Rr +Ra
+ (n− 1)

2R2
r(

2Rr +Ra
)(
Rr +Ra

) − RaRr(
Rr +Ra

)2
− (n− 1)

2RaR
2
r

(
3Rr + 2Ra

)(
Rr +Ra

)2(
2Rr +Ra

)2 − 2τn
RaR

3
r

(
τR2

a + 3τRaRr + 2Rr(1 + τRr)
)(

Rr +Ra
)3(

1 + τ(Rr +Ra)
)2

(2.3)

Even solving the reduced model is equivalent to solving a sixth-order polynomial in Ra;

a final assumption is necessary to produce a tractable result. A useful assumption is that

the postsynaptic membrane time constant is very small, τ � 1. This means individual

EPSPs decay very rapidly. Then, we can linearise Eq. (2.2) in terms of τ so that

Var(V ) ≈ a2τnRa
2

(
〈x〉+ (n− 1)〈xx′〉1

)
(2.4)

and the maximum occurs when Ra satisfies

0 =
Rr

Rr +Ra
+ (n− 1)

2R2
r(

2Rr +Ra
)(
Rr +Ra

) − RaRr(
Rr +Ra

)2
− (n− 1)

2RaR
2
r

(
3Rr + 2Ra

)(
Rr +Ra

)2(
2Rr +Ra

)2 (2.5)

This is equivalent to a quadratic equation in Ra

0 = (3− 2n)R2
a + 4RrRa + 4(2n− 1)R2

r (2.6)

with positive solution (in the interesting case with multiple release sites, n ≥ 2)

Ra =
2Rr

2n− 3

(
1 +

√
1 + (2n− 1)(2n− 3)

)
(2.7)

This result holds for a reduction of the full model with no uncertainty in vesicle release

(p = 1), only one presynaptic neuron (n = 1), and very fast decay of voltage transients

(τ � 1). Nevertheless, it retains sources of stochasticity in uncertain spike arrival and

vesicle restock, as well as correlated vesicle release from different active sites. The feature

of a non-monotonic variance response to increasing presynaptic firing rates still holds for

the reduced model and the above gives some insight into what influences the location

of the peak. The presynaptic rate Ra that gives the highest variance response is an

increasing function of restock rate Rr, showing that resilience to the greater depression
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induced by high firing rates is key. It is also a decreasing function of release-site number

n, showing that stronger potential correlations increase the sensitivity to depression at

higher values of Ra.

2.8.3 Validity of the low n approximation

In Figure 5, the low release site number n approximation (blue dashed line) appears to

provide a relatively poor fit to the simulated firing rates. The major reason for this is that

non-zero firing rates in the low n regime depend on on shot-noise finite-size fluctuations

that are not captured by the long-term steady-state variance. The gaussian firing rate

provides a better estimate as the long-term variance becomes a better descriptor of the

short-term voltage behaviour when the firing rate increases, for example when synchrony

is higher (S = 25 curve).

2.8.4 The limit Rr →∞

The major qualitative result of this paper, the non-monotonic postsynaptic response

to presynaptic correlation, can arise even when synaptic depression is absent. As the

vesicle restock rate Rr increases the left-hand side of the firing rate tuning curves will

get taller, tending to a limiting curve as Rr → ∞. In this case the amount of neuro-

transmitter released is limited only by the presynaptic activity, but the postsynaptic

rate still displays a tuning curve response to changing presynaptic correlations. There

are a number of reasons to use the more complex depressing model discussed here over

a static synaptic model in this context. The first is physiological relevance: depression

occurs at real synapses and the shape and location of the tuning curves depend on the

parameter Rr. The machinery introduced here allows the tuning curve to be fixed for

realistic synaptic parameter sets. Secondly, the results discussed do depend on quantal

correlations and finite-size effects. A major contribution of this paper is to develop the

mathematics necessary to treat these factors together and variable restock is an impor-

tant component of the variance of the quantal synaptic model. Finally, in the absence

of depression, the postsynaptic firing rate could be taken to an arbitrarily high value

by increasing the presynaptic firing rate Ra. It is important to note the interaction of

the correlation-dependent tuning curve (Figs 5 and 6) with the rate-dependent tuning

curve seen by de la Rocha and Parga (2005) and further explained by the non-monotonic

variance curve (Fig. 3). Increasing the presynaptic rate Ra has the effect of reducing

neurotransmitter release correlations by leaving greater numbers of release sites empty,

flattening out the correlation tuning curves. Without a consideration of depression,

there would be no scope to study this further effect.
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2.8.5 Setting tuning curves with release probability p

The location of the correlation tuning curves are also set by the release probability p. For

lower release probabilities, stronger correlations are necessary to synchronously release

the same amount of neurotransmitter, but release sites do not depress as much. All

else being equal, reducing p pushes the tuning curves to the right and flattens them.

Increasing p has the opposite effect.



Chapter 3

Synaptic transmission of spike

trains with arbitrary interspike

interval statistics

3.1 Overview

T
his chapter quantifies how well spike trains with arbitrary ISI statistics acti-

vate depressing synapses. Approximating spike trains as a Poisson process

is a common approach; however, research has shown that approximating

the sum of several non-Poisson spike trains as a Poisson spike train is un-

sound (Lindner 2006) and that the feedforward properties of non-Poisson trains can be

qualitatively different to the Poisson case (Cateau and Reyes 2006). A more recent nu-

merical study combined spike train analysis with plastic synapses, finding that regular

spike trains are better at crossing depressing synapses than ‘bursty’ trains (Reich and

Rosenbaum 2013).

I now extend the models and methods introduced in Chapter 2 to consider non-Poisson

spike trains and derive exact results for the correlations in neurotransmitter release when

the spike train is a renewal process. Regular spike trains are shown to cause stronger

synaptic responses, and this is verified experimentally. However, when the release prob-

ability is low, ‘bursty’ trains are able to causes larger deviations in the postsynaptic

voltage. I accurately approximate the postsynaptic firing rate in the renewal and weakly-

correlated ISI case, allowing the future incorporation of temporally structured spiking

activity into studies of networks with dynamic synapses.

42
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Note that the application of this theory to networks driven with a non-constant rate

requires a very careful consideration of the timescales involved: it is, for example, hard to

distinguish between a ‘bursty’ neuron and one that rapidly transitions between high and

low firing rates. A number of caveats are needed to extend this theory to non-constant,

non-Poisson, rates; discussion of such results is beyond the scope of this chapter.

3.1.1 Author contributions

Conceived the study: MJER and ADB. Derived and solved equations: ADB and MJER.

Conducted experiments: MRF and MJW. Wrote code for simulations: ADB. Prepared

figures: ADB. Wrote the paper: ADB and MJER.

The majority of the first draft was written by ADB. The major exceptions to this are the

two experimental sections of the Methods, Preparation of neocortical slices and Patch-

clamp recordings from excitatory cells, which follow standard lab protocols. All equations

used in the final results were initially derived by ADB. The auto- and crosscorrelations

in vesicle release (Eqs (3.19) and (3.32))were initially written as an infinite series of

convolution integrals. The idea of writing these as inverse Fourier transforms, which

substantially simplifies the later voltage variance result, was introduced by MJER and

the correct Fourier form was derived by ADB.
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Abstract Short-term synaptic depression, caused by depletion of releasable neurotransmitter

vesicles, modulates the strength of neuronal connections in a history-dependent manner. Quan-

tifying the statistics of synaptic transmission therefore requires the development of stochastic

models linking probabilistic neurotransmitter release with the spike-train statistics of the presy-

naptic population. A common approach has been to model the presynaptic spike train as either

regular or a memory-less Poisson process: few analytical results are available that describe the

behaviour of a depressing synapse when the afferent spike train has more complex, temporally

correlated statistics. We have derived a series of results that allow for the fraction of occu-

pied release sites and the neurotransmitter release probability to be calculated for a presynaptic

spike train with arbitrary interspike interval (ISI) statistics and verified these with paired-cell

recordings. The results take a particularly compact form when the presynaptic spike times are

generated by a renewal process, i.e. when the ISIs are independent. This encompasses a broad

range of models that are currently used for circuit and network analyses, including the class of

integrate-and-fire models. Our approach allows for the postsynaptic voltage mean and variance

to be calculated, which in turn gives an accurate approximation of the firing rate of a neuron

driven by depressing synapses from non-Poissonian presynaptic neurons. These results allow

for the incorporation of more complex and physiologically relevant firing patterns into future

analytic studies of neuronal circuits and networks.

Key words: Synaptic depression, non-Poisson, renewal, adaptation, firing rate

3.2 Introduction

Variability in the nervous system arises from unreliability in processes ranging in scale

from ion channel dynamics to neurotransmitter vesicle release (Verveen et al. 1967;

Steinmetz et al. 2000; White et al. 2000; Faisal et al. 2008; Ribrault et al. 2011).

The activity of a cortical neuron is therefore stochastic; dependent on the statistical

properties of the incoming drive (Kuhn 2004; de la Rocha and Parga 2005). A common
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approach to treating this stochasticity analytically assumes that neuronal firing is un-

correlated, with a Poisson process used to model spike times (Stein 1965; Kuhn et al.

2003; Rosenbaum et al. 2012).

However, non-Poisson activity is regularly observed in vivo (Fellous et al. 2003; Reyes

1999; Buzsaki and Draguhn 2004; Shinomoto et al. 2009) and can have a substantial

effect on the propagation of activity (Lindner 2006; Cateau and Reyes 2006; Pipa et al.

2013; Dummer et al. 2014). The impact of non-Poisson spiking is compounded when

considered alongside vesicle-depletion depression, where synaptic transmission becomes

weaker and less reliable as the available packaged neurotransmitter is released (Eccles et

al. 1941; Tsodyks and Markram 1997; Zucker and Regehr 2002; Südhof 2004). Whilst

average rate effects under the influence of depression are well-known (Abbott 1997;

Tsodyks et al. 1998; Cortes et al. 2013), a recent study by Reich and Rosenbaum (2013)

has shown that a renewal firing pattern more regular than Poisson slightly increases the

rate of vesicle release, enhancing the fidelity and efficiency of signal transmission.

We present an analysis for quantifying synaptic transmission when the presynaptic ac-

tion potential train is a renewal process with an arbitrary interspike interval distribution

(ISI). This covers a wide variety of spiking neuron models such as the leaky, quadratic and

exponential integrate-and-fire receiving noisy drive with temporal correlations shorter

than the shortest ISI (Fourcaud-Trocmé et al 2003; Ostojic 2011), and is often used

to fit experimental data (Bennett and Kearns 2000; Fellous et al. 2003; Barbieri 2007;

Shinomoto et al. 2009). The resulting predictions for levels of vesicle occupancy under

renewal firing patterns are verified by paired-cell recordings from cortical layer-V pyra-

midal cells. We highlight the applications of our results in two situations: when the ISIs

are gamma-distributed, with a single parameter α continuously varying the regularity

of the spike train, and when the spikes are generated by white Gaussian and shot noise

drive to the presynaptic cell. Finally, we show that the results allow for an accurate

estimation of postsynaptic firing rates, allowing consideration of correlated behaviour in

studies of larger systems.

3.3 Methods and Models

Ethics statement. All experiments were performed in accordance with the UK Animals (Scientific

Procedures) Act (1986).

Synapse and neuron. A quantal model of synaptic dynamics is used. The binary variable x

represents the occupancy of an active site, taking the value 1 when a neurotransmitter vesicle

is present and 0 otherwise. As x is a binary variable taking only the values 0 and 1, x2 ≡ x
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and so var(x) = 〈x〉 − 〈x〉2. Empty sites are restocked as a Poisson process with rate Rr. On

arrival of an action potential at the site, a present vesicle will fuse and release neurotransmitter

with probability p. The train of neurotransmitter release events from a site is denoted χ. The

neurotransmitter contained in a single vesicle causes an increase in the postsynaptic voltage of

magnitude a. We initially consider the behaviour of a single release site, before looking at a

synapse consisting of n release sites receiving the same presynaptic train, but with independent

restock processes.

Neurons are treated as leaky integrators with time constant τ with the addition of a threshold-

reset mechanism to account for firing: when the membrane voltage V reaches a voltage Vth a

spike is recorded and the voltage is reset to Vre. The voltage therefore obeys

dV

dt
=
E0 − V

τ
+ a

∑
k

δ(t− tk) (3.1)

where δ is a Dirac delta and tk are the times of vesicle release at synapses onto the neuron.

Renewal processes. The firing of the presynaptic neuron is modelled as a renewal process with an

arbitrary distribution f of interspike intervals. This means that there is no correlation between

successive interspike intervals, although the shape of the ISI distribution will cause correlations

in the spike times themselves. The overall firing rate of the presynaptic neuron is the reciprocal

of the mean ISI µf . ‘Bursty’ neurons have positively autocorrelated, whereas periodic neurons

have negatively autocorrelated, spike trains. Integrate-and-fire neurons (LIF, EIF, QIF) receiving

short-time correlated drive will fire as a renewal process, with the degree of burstiness constrained

by the difference between resting and reset values. If Vre > E0, irregular activity will emerge

with positively correlated spike times and if Vre < E0 the firing will be more regular. The drive

can be either a Gaussian process modelling relatively weak drive at high rates (Gerstein and

Mandelbrot 1964; Brunel and Hakim 1999), or a shot-noise process (Stein 1965; Wilbur and

Rinzel 1983; Richardson and Swarbrick 2010) capturing finite size effects.

Gamma distributed ISIs provide a useful illustration of the results presented here as a single

shape parameter α continuously varies the ‘burstiness’ of the train.

f(t) =
(αRa)α

Γ(α)
tα−1e−αRat (3.2)

for Γ(α) =
∫∞

0
xα−1e−xdx the gamma function. When α = 1 this reduces to an exponential

distribution and the neuron fires as a Poisson process. For 0 < α < 1, firing is more irregular,

or ‘bursty’, than Poisson and for α > 1 it is more regular (see Figure 1).

Preparation of neocortical slices. Parasagittal slices of somatosensory neocortex (300µm) were

prepared from male Wistar rats, at postnatal day 14-16. Rats were kept on a 12 hour light-dark

cycle with slices made 90 minutes after entering the light cycle. In accordance with the UK

Animals (Scientific Procedures) Act (1986), rats were killed by cervical dislocation and then

decapitated. The brain was rapidly removed, cut down the midline and the two sides of the

brain stuck down. The brain was angled at 15◦ so that planar slices could be obtained with

the dendritic structure of the excitatory neurons intact. Slices were cut with a Microm HM
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650 V micro-slicer (Carl Zeiss) in cold (2-4◦C) high Mg2+ low Ca2+ artificial cerebrospinal fluid

(aCSF) consisting of 127 mM NaCl, 1.18 mM KH2PO4, 2.14 mM KCl, 26 mM NaHCO3, 8 mM

MgCl2, 0.5 mM CaCl2 and 10 mM glucose. Slices were stored at 34◦C for 1 hour in standard

aCSF (1 mM Mg2+and 2 mM CaCl2) and then at room temperature for 1-6 hours.

Patch-clamp recordings from excitatory cells. A slice was transferred to the recording cham-

ber and perfused at 2 ml/min with aCSF at 32◦C. Slices were visualised using an Olympus

BX51W1 microscope with IR-DIC optics and a Hitachi CCD camera (Scientifica, Bedford, UK).

Whole-cell recordings were made with patch pipettes (5-8 mΩ) manufactured from thick walled

glass (Harvard Apparatus Edenbridge UK) containing 135 mM K-gluconate, 7 mM NaCl, 10 mM

HEPES, 0.5 mM EGTA, 2 mM ATP, 0.3 mM GTP, and 10 mM phosphocreatine (290 mOSM,

pH 7.2). Voltage recordings were obtained using an Axon Multiclamp 700B amplifier and digi-

tised at 20 kHz with a Digidata 1440A (Molecular Devices, Sunnyvale, CA). Pyramidal neurons

were identified based on their location in the layered neocortex, somata size and dendritic ex-

tent. During recording, neurons were labelled either with the fluorescent dye Alexa Fluorr 488

hydrazide (12.5 mM, Life Technologies, Paisley, UK) or with biocytin (1 mg/mL, Sigma-Aldrich,

Dorset, UK) to allow confirmation of the cell type and to ensure an intact apical dendrite.

Stimulation protocols. Presynaptic cells were stimulated with square-pulse currents of 5ms dura-

tion and magnitude sufficient to reliably induce a single action potential without causing bursting.

Stimulation protocols were 8s long with stochastic activity from 0.5s to 4.5s and a recovery spike

at 7.75s. A rest period of 15s was applied between presentations of the stimulus. Spike times

in the stochastic portion were generated as a renewal process with interspike intervals following

a gamma distribution with mean 0.2s and various shape parameters α. Additional constraints

to allow for consistent results were that spikes must be more than 5ms apart and that the same

number (19) must occur between 0.5s and 4.5s. Stimulation protocols that did not satisfy these

constraints were discarded and replaced. Four α values were used: 1/3, 2/3, 1, and 10. A pro-

tocol was generated for each α value and these were successively applied to the presynaptic cell

until 30 repetitions of each were obtained.

EPSP amplitude analysis. EPSP magnitudes were extracted from the averaged postsynaptic

traces using the deconvolution method of Richardson and Silberberg (2008), so that each EPSP

represents the average over 30 repetitions of the same stimulus. Most traces exhibited a ‘sag’

due to Ih currents and it was necessary to account for this. Amplitudes were normalised to the

size of the first EPSP in each trace to allow for comparison between connections. Steady-state

was taken to be the period between the fourth and nineteenth EPSPs .

Parameter comparison between cells. Comparing mean EPSP amplitudes between different

synapses required normalisation of their dynamic parameters: release probability p and restock

rate Rr. These were extracted from the first three EPSPs in each trace, which were not used

to estimate the steady-state mean EPSP amplitude. Estimates for p and Rr were obtained by

minimising the squared difference between each EPSP and that predicted by Tsodyks-Markram

depression model (Tsodyks and Markram 1997). For the five synapses studied, this gives release

probability estimates of p = 0.65, 0.63, 0.59, 0.62, and 0.62. The corresponding restock rates

are found to be Rr = 2.64, 2.39, 1.56, 3.18, and 1.89Hz. The mean parameters across all sites
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Parameter Interpretation Value

a amplitude of EPSP induced by neurotransmitter released
from a single docked vesicle

0.25mV

ae mean amplitude of a presynaptic impulse
E0 resting membrane voltage −70mV
n number of vesicle release sites per presynaptic neuron Varies
N number of presynaptic neurons Varies
p probability of spike arrival inducing neurotransmitter release

at a site with a vesicle present
0.66

Ra rate of presynaptic spiking 10Hz
Re rate of excitatory shot noise drive to presynaptic cell
Rr rate at which empty vesicles are replaced at release sites 2Hz
V postsynaptic membrane voltage Varies
Vre voltage membrane resets to after an action potential Varies
Vth threshold at which action potentials are initiated −55mV
α shape parameter of gamma ISIs Varies
µf mean ISI 0.1s
σv strength of gaussian white noise to presynaptic cell
τ membrane time constant 10ms

Table 3.1: Typical parameter values used for figures.

are therefore release probability p̄ = 0.62 and restock rate R̄r = 2.33Hz. To allow for com-

parison, EPSPs from the five different synapses were scaled so that the mean EPSP amplitude

under Poisson drive (α = 1) was equivalent to the mean EPSP amplitude predicted by these

parameters.

3.4 Results

First, we present the formulae detailing the moments of vesicle occupancy for an arbi-

trary ISI distribution, before demonstrating applications to the cases when presynaptic

firing is given by a renewal process with gamma-distributed interspike intervals and

by the response of an LIF neuron to white-noise Gaussian- and shot-noise drive. The

predicted spike-triggered occupancies are validated experimentally for cortical layer-V

pyramidal cells. The autocorrelation in neurotransmitter release is derived exactly and

used to calculate the postsynaptic voltage variance. Crosscorrelations in release are

used to demonstrate that vesicle release probability underpins how far changing synap-

tic strength can tune synapses to respond to signals encoded with different temporal

correlations. Finally, it is shown that the voltage mean and variance alone can be used

to accurately approximate the postsynaptic firing rate.
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3.4.1 Prespike and overall occupancy means for a renewal process

To determine the mean vesicle occupancy under an arbitrary pattern of spike times

{t1, t2, ...tm}, consider the expected occupancy xm immediately before the mth spike at

time tm as a function of the occupancy xm−1 immediately before the m− 1th spike. xm

satisfies the recursion equation

xm =
[
(1− p) + p(1− e−Rr(tm−tm−1))

]
xm−1

+
[
1− e−Rr(tm−tm−1)](1− xm−1)

(3.3)

giving

xm = 1− p

1− p

m∑
k=1

(1− p)ke−Rr(tm−tm−k) (3.4)

under the initial condition x1 = 1. Taking expectations as m goes to infinity gives

〈x〉∞ = 1− p

1− p

∞∑
k=1

(1− p)k〈e−RrTk〉 (3.5)

where Tk is the kth ISI before 〈x〉∞. If {t1, t2, ...tm} are generated by a renewal process,

this simplifies to

〈x〉∞ = 1− p

1− p

∞∑
k=1

(1− p)k〈e−RrT 〉k

〈x〉∞ =
1− 〈e−RrT 〉

1− (1− p)〈e−RrT 〉

(3.6)

〈x〉∞ is the expected value of x immediately before a presynaptic spike; the mean oc-

cupancy in terms of spike times. The mean occupancy over all time 〈x〉 can be found

by integrating the expected occupancy 〈x(T )〉 at a time T since the last spike over the

probability that another spike has not arrived by time T . This entails integrating over

the complement of the ISI cumulative distribution P (T )

〈x〉 =
1

µf

∫ ∞
0
〈x(T )〉P (T )dT (3.7)

where µf is the mean of the ISI distribution f . The overall time-mean is then given by

〈x〉 = 1−
p
∫∞

0 e−RrT
∫∞
T f(σ)dσdT

µf (1− (1− p)〈e−RrT 〉)
(3.8)

The variances of the prespike occupancy and overall occupancy follow from the binary-

variable result 〈x2〉 ≡ 〈x〉 as described in Methods.



Chapter 3. Synaptic transmission with arbitrary ISIs 50

0 0.2 0.4 0.6 0.8 1
0

10

20

0 0.2 0.4 0.6 0.8 1
0

10

20

0 0.2 0.4 0.6 0.8 1
0

10

20

0 0.2 0.4 0.6 0.8 1
0

10

20

10
0

10
2

0

0.25

0.5

0.75

 

 

10
0

10
2

0

0.1

0.2

0.3

 

 

10
0

10
2

0

0.25

0.5

0.75

10
0

10
2

0

0.1

0.2

0.3

 

 

1s
5Hz

10Hz
25Hz

ISI (s)

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

α αα α

A

B C

〈x
〉 ∞

v
a

r(
x ∞

)

〈x
〉

v
a

r(
x)

α=0.5

α=1

 (Poisson)

α=10

α=100

Figure 3.1: Gamma interspike intervals demonstrate the effects of regularity on theoretical
vesicle occupancy. (A) Example spike trains and ISI distributions (inset) for Ra = 5Hz and
different values of α. From top to bottom α = 0.5 (‘bursty’), α = 1 (Poisson), α = 10
(regular), and α = 100 (very regular). (B, C) Mean (Eq. (3.9)) and variance (Eq. (3.10) of
prespike occupancy 〈x〉∞ (B) and overall occupancy 〈x〉 (C). Note that the curves for 〈x〉∞
and 〈x〉 for each instance of Ra take the same value when α = 1. Parameters as in Table
3.1 unless otherwise specified.

3.4.2 Gamma ISIs

When we consider ISIs drawn from a gamma distribution with mean 1
Ra

, the degree of

regularity in the presynaptic spike train is governed by the shape parameter α. Varying

α continuously allows a visualisation of the implications of Eqs (3.6) and (3.8) in relation

to the regularity of firing (see Figure 3.1). In addition, the occupancy results can be

written without integrals as

〈x〉∞ =
1− Λ

1− (1− p)Λ

〈x〉 =
Rr(1− (1− p)Λ)− pRa(1− Λ)

Rr(1− (1− p)Λ)

(3.9)

where Λ = ( αRa
αRa+Rr

)α. Λ approaches e−
Rr
Ra in the limit α → ∞ (perfectly periodic

spiking). In the limit of extreme bursting α → 0, 〈x〉 behaves as −α
p log(α), losing its

dependence on Rr and Ra.
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Using the binary variable result 〈x2〉 ≡ 〈x〉, the variances in x0 and x can similarly be

written.

var(x∞) =
pΛ(1− Λ)

(1− (1− p)Λ)2

var(x) =
pRa(1− Λ)

(
Rr(1− (1− p)Λ)− pRa(1− Λ)

)
Rr

2
(
1− (1− p)Λ

)2 (3.10)

Note that var(x∞) does not tend to zero as the regularity of the spike train increases,

even when release is perfectly reliable with p = 1, due to the variability in vesicle restock

events.

3.4.3 Experimental validation of predicted 〈x〉∞ values

Paired whole-cell patch-clamp recordings were carried out to verify the predictions made

above. Four different α values, 1/3, 2/3, 1 and 10 corresponding to two bursty, one

Poisson, and one regular, were used to generate patterns of action potentials at average

rate Ra = 5Hz (Fig. 3.2a). Five connected pairs of cortical layer-V pyramidal cells

were identified and each had stimulus protocols applied for all four values of α. The

postsynaptic voltage traces were averaged and the EPSP amplitudes were normalised to

the size of the first EPSP in each trace to allow for comparison between connections.

The distribution of normalised EPSP amplitudes in the steady-state has a pronounced

skew towards higher values, which is more noticeable for lower α (Fig. 3.2d). Eq. (3.9)

provides a good fit to the measured relative EPSP amplitudes for different α values (Fig.

3.2e).

3.4.4 Fluctuation-driven ISIs

If the external drive to an LIF presynaptic neuron is modelled by Gaussian white noise

of strength σv, the Fourier transform f̂ of the ISI distribution f of the presynaptic cell

is (Richardson and Swarbrick 2010)

f̂(w) =

∫∞
0 xiwτ d

dx

[
exxre−x

2/2
]
dx∫∞

0 xiwτ d
dx

[
exxth−x2/2

]
dx

(3.11)

with xth = Vth−E0
σv

and xre = Vre−E0
σv

. Now, as we have by definition that

f̂(w) =

∫ ∞
−∞

e−iwsf(s)ds (3.12)

we can proceed by analogy between the above and equation (3.8). Noting that f is 0 for

negative arguments, we can directly substitute this result into equations (3.6) and (3.8)
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Figure 3.2: Changes in mean EPSP amplitude for experimental paired-cell recordings.
(A) Irregular and regular presynaptic voltages with gamma-distributed interspike intervals
with shape parameter α = 1/3 (left, irregular) and α = 10 (right, regular). (B) Averaged
postsynaptic voltages for the above presynaptic traces. The steady-state is considered to be
the period from the fourth EPSP onwards, excluding the recovery spike. (C) Representative
individual postsynaptic voltage traces. (D) Distribution of steady-state amplitudes for the
fourth to nineteenth EPSPs in five stimulus protocols (normalised to the value of the first
EPSP) for four different shape parameters (from top-left α = 1/3, α = 2/3, α = 1, and
α = 10) (E) Mean steady-state EPSP amplitude as a function of spike-train regularity α.
Dots give mean normalised EPSPs; error bars show standard error of the mean. Solid line
gives fit from Eq. (3.9), with mean parameters of p̄ = 0.62, R̄r = 2.33Hz (see Methods).
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(Fig. 3.3). The prespike vesicle occupancy 〈x〉∞ for a Gaussian white-noise driven LIF

neuron is then

〈x〉∞ =

∫∞
0 xτRre−

x2

2 (exxth − exxre)dx∫∞
0 xτRre−

x2

2 (exxth − (1− p)exxre)dx
(3.13)

The distance between E0 and Vre determines the shape of the ISI distribution, with

negative values giving rise to regular and positive values to irregular firing (Ostojic

2011). The presynaptic firing rate can be kept constant by reducing the strength of

the noise σv as Vre increases above E0, allowing the effect of changing regularity to be

plotted (Fig. 3.3a and b).

A similar result applies to shot-noise drive, where excitatory impulses arrive at the

presynaptic neuron as a Poisson process with rate Re and exponentially distributed

magnitude with mean ae

〈x〉∞ =

∫ 1
ae

0 sτRr+1(1− aes)τRe
(
esvth
1−aes − e

svre
)
ds∫ 1

ae
0 sτRr+1(1− aes)τRe

(
esvth
1−aes − (1− p)esvre

)
ds

(3.14)

where vth = Vth − E0 and vre = Vre − E0. To calculate the overall mean 〈x〉 in this

case note that µf , the inverse of the neuron’s firing rate, is given by Richardson and

Swarbrick (2010) as

µf = τ

∫ 1/ae

0

1

s

(
esvth

1− aes
− esvre

)
(1− aes)τReds (3.15)

To keep the presynaptic firing rate 1
µf

constant, the rate of arrival of excitatory impulses

Re is adjusted as Vre changes. The mean impulse size ae is kept constant to maintain the

shot-noise finite-size effects. Figure 3.3 shows the effect of changing the threshold-reset

distance for different values of ae. Vesicle occupancy is less sensitive to the threshold-

reset distance in this case as shot-noise effects dominate.

3.4.5 Autocorrelations in vesicle release

To consider the postsynaptic voltage effects arising from non-Poisson presynaptic be-

haviour, we first derive the autocorrelation in vesicle release χ, 〈χ(T )χ(0)〉 − 〈χ〉2. Let

A(T ) be the probability density of a spike arriving whilst a vesicle is present at time T

given that there was a release at time 0. Let S(T ) be the probability density of a spike

arriving at time T given that there was a spike at time 0. Let R(T ) = 1− e−RrT be the

probability that a vesicle is restocked in the interval (0, T ). Then S(T ) satisfies

S(T ) = f(T ) +

∫ T

0
S(t)f(T − t)dt (3.16)
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Figure 3.3: Theoretical vesicle occupancy for noise-driven neurons. (A) Prespike vesicle
occupancy as a function of the distance between Vth and Vre for mean presynaptic firing
rates 5Hz, 10HZ, and 20Hz when the presynaptic cell receives Gaussian drive (Eq. (3.13)).
The resting voltage E0 lies 10mV below Vth in all cases. (B) Overall mean vesicle occupancy.
Note that in this case the two curves for each firing rate take the same value when Vre =
E0 mV (reset and rest coincide). (C, D) Prespike and overall mean vesicle occupancy
respectively as a function of the distance between Vth and Vre when the presynaptic cell
receives shot-noise drive (Eq. (3.14)). Parameters as in Table 3.1 unless otherwise specified.

where the first term accounts for the case of no spikes in the interval (0, T ) and the

second accounts for any non-zero number of spikes in the interval (0, t) for all 0 < t < T .

Similarly, A(T ) satisfies

A(T ) = f(T )R(T )

+

∫ T

0
A(t)[pf(T − t)R(T − t) + (1− p)f(T − t)]dt

+

∫ T

0
(S(t)−A(t))f(T − t)R(T − t)dt

(3.17)

where the first two terms mirror those in the equation for S(T ) and the third accounts

for the penultimate spike arriving at the site whilst it is unstocked. Taking a Fourier

transform S(T )→ Ŝ(ω), A(T )→ Â(ω) of the two equations gives

Ŝ(ω) =
f̂(ω)

1− f̂(ω)

Â(ω) =
f̂(ω)− f̂(ω − iRr)(

1− f̂(ω)
)(

1− (1− p)f̂(ω − iRr)
) (3.18)

Â(ω) can be inverted to give A(t). The autocorrelation in vesicle release at lag T is

then given by the probability that a spike arrives whilst the site is stocked and induces

vesicle release at time T given that neurotransmitter was released from the site at time
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Figure 3.4: Theoretical release autocorrelations and voltage variances. (A-D) Vesicle
release autocorrelations for gamma-distributed interspike intervals with shape parameters
A α = 0.75, B α = 1 (Poisson), C α = 10 and D α = 100 (Eq. 3.19). (E) Postsynaptic
voltage standard deviation for gamma ISIs as a function of α for different presynaptic firing
rates Ra (Eq. 3.24). (F, G) Voltage standard deviations as a function of the distance
between Vth and Vre under presynaptic Gaussian (F) and shot (G) noise drive for different
mean presynaptic firing rates. Parameters as in Table 3.1 unless otherwise specified.

0. As χ is a train of delta pulses, it is necessary to account for T = 0 with an additional

delta term.

Autocorr(χ) =
p〈x〉∞
µf

δ(T ) +
(p〈x〉∞)2

µf
A(T ) (3.19)

Figures 3.4a-d show the autocorrelation in release for gamma-distributed ISIs with dif-

ferent values of α. For the Poisson case α = 1, the autocorrelation decays exponentially

(Fig. 3.4b) as the presynaptic spike train itself is uncorrelated (with a flat autocorre-

lation) but neurotransmitter cannot be released until a fresh vesicle is trafficked to the

site. For the ‘bursty’ case α < 1, the presynaptic spike-train autocorrelation is pos-

itive at short lags and negative for longer lags; but the positive region of spike train

autocorrelation will typically overlap with the region where the site is unstocked. This

produces a shallower but broader negative release autocorrelation than the Poisson case

(Fig. 3.4a). For regular spike trains α > 1 the spiking autocorrelation is periodic, and

the release autocorrelation inherits this property with a larger initial decrease due to

depression (Fig. 3.4c and d).
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3.4.6 The postsynaptic response

We now consider the effect that non-Poisson spiking has on the postsynaptic voltage. A

postsynaptic neuron receives excitatory synaptic input from N independent presynaptic

cells, each initially with one release site, firing with the same ISI distribution given by

f(t). Then the subthreshold transmembrane voltage obeys

dV

dt
=
E0 − V

τ
+ a

N∑
i=1

χi(t) (3.20)

where χi(t) =
∑

Rel δ(t − tiRel) is the train of neurotransmitter release events from the

ith neuron and a is the magnitude of the voltage change induced by a single vesicle. The

steady-state voltage mean 〈V 〉 is given by

〈V 〉 = E0 +
apτN

µf
〈x〉∞ (3.21)

This is an increasing function of the prespike occupancy 〈x〉∞ and so increases with the

regularity of the presynaptic spike train. The second moment is

〈V 2〉 = a2e−
2t
τ

∫ t

−∞

∫ t

−∞
e
s
τ e

s′
τ 〈
( N∑
i=1

χi(s)
)( N∑

i=1

χi(s
′)
)
〉ds′ds (3.22)

As individual neurons are independent 〈χi(s)χj(s′)〉 = 0 for i 6= j and Eq. 3.22 can be

reduced to the form

〈V 2〉 = 2a2N

∫ ∞
0

e−
2t′
τ

∫ ∞
0

e−
t′′
τ 〈χ(t′′)χ(0)〉dt′′dt′ (3.23)

where the variables t′ = t− s, t′′ = t− s′ allow introduction of the form of neurotrans-

mitter release autocorrelation derived above (Eq. 3.19). Noting that the inner integral

corresponds to a Fourier transform on the autocorrelation allows us to use Eq. 3.18 to

write the voltage variance as

var(V ) =
a2Nτ

2

[
px0

µf
− Â(−i/τ)

]
var(V ) =

a2Nτ

2

[
px0

µf
− 〈e−T/τ 〉 − 〈e−(1/τ+Rr)T 〉

(1− 〈e−T/τ 〉)(1− (1− p)〈e−(1/τ+Rr)T 〉)

]
(3.24)
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〈e−T/τ 〉 and 〈e−(1/τ+Rr)T 〉 can be evaluated in both the gamma and white-noise driven

cases. For gamma ISIs (Fig. 3.4e),

〈e−T/τ 〉 =

(
αRa

1
τ + αRa

)α
, 〈e−(1/τ+Rr)T 〉 =

(
αRa

1
τ +Rr + αRa

)α
(3.25)

and for neurons driven by Gaussian white noise with strength σv (Fig. 3.4f) with a

presynaptic membrane time constant τ ′ and a postsynaptic membrane time constant τ ,

〈e−T/τ 〉 =

∫∞
0 x−

τ ′
τ
d
dx

[
exxre−x

2/2
]
dx∫∞

0 x−
τ ′
τ
d
dx

[
exxth−x2/2

]
dx

〈e−(1/τ+Rr)T 〉 =

∫∞
0 x−( 1

τ
+Rr)τ ′ d

dx

[
exxre−x

2/2
]
dx∫∞

0 x−( 1
τ

+Rr)τ ′ d
dx

[
exxth−x2/2

]
dx

(3.26)

with xth = Vth−E0
σv

and xre = Vre−E0
σv

. Similarly for shot noise driven neurons with

presynaptic membrane time constant τ ′ and excitatory impulses of mean size ae and

rate Re (Fig. 3.4g)

〈e−T/τ 〉 =

∫ 1/ae
0 s−

τ ′
τ
d
ds

[
(1− aes)τ

′Reesvre
]
ds∫ 1/ae

0 s−
τ ′
τ
d
ds

[
(1− aes)τ ′Re−1esvth

]
ds

〈e−(1/τ+Rr)T 〉 =

∫ 1/ae
0 s−( 1

τ
+Rr)τ ′ d

ds

[
(1− aes)τ

′Reesvre
]
ds∫ 1/ae

0 s−( 1
τ

+Rr)τ ′ d
ds

[
(1− aes)τ ′Re−1esvth

]
ds

(3.27)

where vth = Vth − E0 and vre = Vre − E0. Note that these only hold when τ ′Re > 1,

where excitatory impulses arrive more regularly than the membrane time constant, and

this is where shot noise driven neurons display interesting behaviour (Richardson and

Swarbrick 2010).

The voltage variance increases with the regularity of the presynaptic spike train for

single release sites (Fig. 3.4e-g).

3.4.7 Effect of multiple release sites

A single presynaptic neuron will typically have multiple vesicle release sites onto a post-

synaptic cell, with estimates of this parameter n varying from around 10 to 100 (Loebel

et al. 2009). It is conceivable that, as a ‘burst’ of presynaptic activity would release

many more vesicles from a single neuron in a short time than an isolated spike, large

values of n would counteract the reduced overall synaptic transmission caused by irreg-

ular spiking shown by Eqs 3.21 and 3.24. This would particularly be the case for low

release probabilities.
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To investigate this, we expanded our model to consider multiple release sites per neuron.

As each of these sites will receive all of the neuron’s action potentials, there will be

correlations in vesicle release. In particular, the cross-correlation 〈χ(T )χ′(0)〉 between

release from different sites will impact upon the postsynaptic response. The first quantity

to consider here is the joint prespike occupancy 〈xx′〉∞, the probability that both of a

pair of sites are occupied when a spike arrives. This can be calculated in a similar way

to 〈x〉∞ (Eqs 3.3 to 3.6); the expected joint occupancy xx′m of two sites before the mth

spike in a train at time tm in terms of the joint occupancy xx′m−1 immediately before

the (m− 1)th spike at time tm−1 obeys the recursion relation

xx′m =xx′m−1

[
(1− p)2 + 2p(1− p)(1− e−Rr(tm−tm−1)) + p2(1− e−Rr(tm−tm−1))2

]
+ 2(xm−1 − xx′m−1)

[
(1− p)(1− e−Rr(tm−tm−1)) + p(1− e−Rr(tm−tm−1))2

]
+ (1− xm−1)2

[
1− e−Rr(tm−tm−1)

]2
(3.28)

The first term on the right hand side accounts for the situation where both sites are

stocked at time tm−1, the second where only one is, and the third where neither is.

Rearranging and taking expectations as m→∞, as in the case of 〈x〉∞, gives

〈xx′〉∞ =
1 + 2((1− p)〈x〉∞ − 1)〈e−RrT 〉 − (2(1− p)〈x〉∞ − 1)〈e−2RrT 〉

1− (1− p)2〈e−2RrT 〉
(3.29)

To compute the full cross-correlation, Eq. (3.17) can be adapted to describe A′(T ), the

probability density that a spike arrives whilst a vesicle is present at time T given that

the site was stocked immediately after a spike at time 0

A′(T ) = f(T )

+

∫ T

0
A′(t)[pf(T − t)R(T − t) + (1− p)f(T − t)]dt

+

∫ T

0
(S(t)−A′(t))f(T − t)R(T − t)dt

(3.30)

Then

Â′(ω) =
f̂(ω)(1− f̂(ω − iRr))(

1− f̂(ω)
)(

1− (1− p)f̂(ω − iRr)
) (3.31)

The crosscorrelation in vesicle release is then a sum of A(T ) and A′(T ) weighted respec-

tively by the probabilities that the second site is unstocked and stocked immediately
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after the first releases

Crosscorr(χ, χ′) =

p2〈xx′〉∞
µf

[
δ(T ) +

(
p〈xx′〉∞ + (1− 〈xx′〉∞)

)
A(T )

+ (1− p)〈xx′〉∞A′(T )

] (3.32)

Cross-correlated vesicle release can be included in the calculation of the voltage vari-

ance (Bird and Richardson 2014). The term 〈
(∑N

i=1 χi(s)
)(∑N

i=1 χi(s
′)
)
〉 in Eq. 3.22

is replaced by 〈
(∑N

i=1

∑n
j=1 χij(s)

)(∑N
i=1

∑n
j=1 χij(s

′)
)
〉 as each neuron has n release

sites. Then there will be Nn autocorrelations given by Eq. 3.19 and Nn(n − 1) cross-

correlations given by Eq. 3.32, giving the voltage variance as

var(V ) =
a2Nτ

2

[
p〈x〉∞
µf

+ (n− 1)
p2〈xx′〉∞

µf

−
(
1 + (n− 1)(1− (1− p)〈xx′〉∞)

) 〈e−T/τ 〉 − 〈e−(1/τ+Rr)T 〉
(1− 〈e−T/τ 〉)(1− (1− p)〈e−(1/τ+Rr)T 〉)

− (n− 1)(1− p)〈xx′〉∞
〈e−T/τ 〉 − 〈e−T/τ 〉〈e−(1/τ+Rr)T 〉

(1− 〈e−T/τ 〉)(1− (1− p)〈e−(1/τ+Rr)T 〉
)

]
(3.33)

This formula represents the incorporation of novel details into the voltage variance in-

cluding: stochastic transmission, quantal effects, short-term plasticity, multiple contacts,

and non-Poisson input. Figure 3.5 shows the standard deviation in postsynaptic voltage

as a function of both the release site number n and gamma ISI shape parameter α for

different release probabilities p. For intermediate and high values of p, the standard

deviation increases as function of n for all values of α. However, if p is low, the standard

deviation decreases with α and the effect is stronger as n increases. This quantifies the

intuitive phenomenon of irregular trains driving stronger voltage deviations when n is

high and p is low as the vesicles are released temporally close together and can induce

relatively large fluctuations.

3.4.8 Postsynaptic firing rates estimated by the matched-variance method

It has been shown that the postsynaptic firing rate is relatively insensitive to temporal

correlations as long as the subthreshold mean and variance can be matched (Alijani and

Richardson 2011). Using the mean µ and variance σ2 derived above, the firing rate of

an LIF neuron is given by the reciprocal of (Brunel and Hakim 1999)

τ

∫ ∞
0

dz

z
e−z

2/2(ezzth−e
zzre

) (3.34)
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Figure 3.5: The theoretical effect of multiple release sites per presynaptic neuron. Postsy-
naptic voltage standard deviation as a function of the number of release sites n and gamma
ISI shape parameter α for different release probabilities (A) p = 0.25, (B) p = 0.5, (C)
p = 0.75, and (D) p = 1 (Eq. 3.33). The number of release sites is scaled down in proportion
to the release probability to maintain the same voltage mean. Parameters as in Table 3.1
unless otherwise specified.

with zth = (Vth−E − µ)/σ and zre = −µ/σ. Figure 3.6 shows the firing rates predicted

by this method compared to simulations.

The matched-variance method can underestimate the simulated result when n is large

and the presynaptic train is particularly bursty, as in this case the postsynaptic voltage

distribution can be notably non-Gaussian. In the gamma ISI case when n = 25 the

estimate only holds well for α > 0.3 (Fig. 3.6a). For shot-noise driven neurons with a

low firing rate (Fig. 3.6c, black line) a similar underestimation can occur. In general the

approximation provides a good estimate of the postsynaptic firing rate in the majority

of situations.

3.5 Discussion

We have presented a series of results which will allow for non-Poisson effects to be

incorporated into studies of neuronal populations and networks. Non-Poisson activity

is commonly seen in vivo and can have a substantial effect on neuronal activity. We

have derived exact results for the key properties of synaptic transmission when the spike

train can be modelled as a renewal process, with particular attention to the cases where

the ISIs form a gamma distribution or are generated by filtered Gaussian or shot noise.
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Figure 3.6: Simulated postsynaptic firing rates are well-approximated by the matched-
variance method. (A) Simulations (diamonds) against predictions (lines) of postsynaptic
firing rate as a function of the presynaptic ISI shape parametet α for different presynaptic
firing rates Ra with 25 release sites per presynaptic neuron. (B, C) Simulations against
predicted rates for Gaussian- (B) and shot- (C) noise driven presynaptic firing. Parameters
as in Table 3.1 unless otherwise specified.

Exact results for the voltage variance in the renewal case confirm that irregular firing

across depressing synapses typically causes weaker transmission (Ramcharan et al. 2000;

Reich and Rosenbaum 2013), although this is counteracted to some extent in strong,

mature synapses (Sherman 2001; Shinomoto et al. 2009; Jacob et al 2012); both aspects

can be captured by the theory introduced here. It is important to note that the effect

of spike train regularity on postsynaptic response are typically entirely dependent on

synaptic depression. Low release probability p and fast vesicle replenishment Rr can

reverse the phenomenon of reduced synaptic efficacy under irregular trains, leading to

qualitatively different behaviour. The developmental reduction in release probability
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(Reyes and Sakmann 1999; Frick et al. 2007; Kerr et al. 2013; Nakamura et al. 2015)

means that synaptic strength, mediated by changes in the release-site number n, will

become a better discriminator of temporal codes in spike trains with age.

The accuracy of the matched-variance method in estimating postsynaptic firing rates

will allow for a straightforward incorporation of complex spike-patterns into circuits

and feed-forward networks.

3.5.1 Extensions

To complete the incorporation of temporal spike-train structure into recurrent networks,

it would be necessary to obtain the output statistics of the postsynaptic spike train

beyond the firing rate. This is currently a problem of great interest (Ostojic 2011;

Dummer et al. 2014) given the strong effects non-Poissonian behaviour is acknowledged

to have even across static synapses (Cateau and Reyes 2006). To include the negative

components of vesicle-release autocorrelation arising from short-term depression would

increase physiological relevance and bring studies in this area into line with much of the

literature on neuronal networks (Abbott 1997; Tsodyks et al. 1998; Brunel and Wang

2003; Cortes et al. 2013).

Adaptation currents are present across the nervous system (Benda and Herz 2003) and

can modulate responses to persistent activity by high-pass filtering and response selec-

tivity (Wang 1998; Benda et al 2005; Peron and Gabbiani 2009). These functional roles

overlap with those attributed to synaptic depression (Furukawa et al. 1982; Abbott and

Regehr 2004; Hallermann and Silver 2013), and there have been a number of recent

studies on the interactions of short-term synaptic plasticity with slow adaptation mech-

anisms (Peterson et al. 2014; Moezzi et al. 2014; Nagel et al. 2015). A key feature of

adaptation currents is the creation of correlations between interspike intervals (Schwal-

ger et al. 2010), generating non-renewal spike trains. These correlations have recently

been shown to take the form of a geometric series (Schwalger and Lindner 2013) and

Eq. (3.5) presents a way of deriving approximate results for the synaptic transmission of

weakly correlated ISIs. This would link two key short-term adaptive processes in neural

circuits (Furukawa et al. 1982; Wang 1998; Abbott and Regehr 2004; Benda et al 2005;

Peron and Gabbiani 2009; Hallermann and Silver 2013).

Another area of interest would be relating the precise forms of spike-frequency adaptation

to short-term plasticity in experimental studies (Peterson et al. 2014; Moezzi et al.

2014; Nagel et al. 2015). As there is redundancy between the effects of these two

phenomena, it is likely that there will be relationships between neuronal adaptation and
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synaptic plasticity in systems displaying both. Describing these relationships would help

to elucidate the different functions of the two adaptation mechanisms across the brain.
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Chapter 4

Bayesian inference for the quantal

parameters of dynamic synapses

4.1 Overview

I
n this chapter I apply Bayesian inference to estimate synaptic parameters from paired-

cell patch-clamp data. Bayesian inference allows quantification of the probability

that model parameters will take certain values given a set of data. Two recent

studies have also taken a Bayesian approach to inferring synaptic parameters. Bhumbra

and Beato (2013) focussed on the static quantal properties of isolated vesicle release and

did not attempt to infer dynamic properties. Costa et al. (2013) considered synaptic

plasticity explicitly, defining optimal experimental stimulus protocols and identifying

pre- and postsynaptic cell classes from the dynamic parameters of the synapse; their

method used a Gaussian approximation to EPSP amplitudes and so does not account for

stochastic quantal effects, particularly at weak synapses, or for the negative correlations

between subsequent EPSPs arising from a quantal model.

The method introduced here allows computation of an exact likelihood function for both

dynamic and quantal properties and so allows direct estimation of the physiological pa-

rameters for four of the most commonly used models of synaptic function. The approach

is tested with simulated and real data.
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Conceived the study: MJER and ADB. Derived and solved equations: ADB and MJER.
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The majority of the first draft was written by ADB. The major exceptions to this are

the three experimental sections of the Methods, Preparation of neocortical slices, Patch-

clamp recordings from excitatory cells, and Adenosine application, which follow standard

lab protocols. All equations were initially derived by ADB.
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Bayesian inference for the quantal parameters of dynamic
synapses

Alex D. Bird 1,2,3, Michael R. Fisher2, Mark J. Wall2, and Magnus J. E. Richardson3

1Systems Biology Doctoral Training Centre, 2School of Life Sciences, and 3Warwick

Systems Biology Centre, University of Warwick, CV4 7AL, United Kingdom.

Abstract. Synapses mediate communication between neurons, but respond to activity in a way

that is both stochastic and plastic: varying between presentations of the same stimulus and due

to the immediate history of transmission. This complicates attempts to infer the parameters

behind synaptic transmission and a number of different approaches have been proposed to quan-

tify the properties of synaptic connections. Recently, Bayesian approaches have been applied to

make better use of the data collected in paired-cell experiments and provide estimates of the

probability distributions of the parameters involved. Though these approaches considered either

isolated stimulation or a regime in which synaptic strength is large and can be well-approximated

by a Gaussian, they have demonstrated considerably increased accuracy when compared to ex-

isting non-Bayesian techniques. Here we have extended these methods and present a Bayesian

inference method with an exact likelihood function that allows estimation of quantal and dy-

namic parameters at a synapse of any strength. Four common models of synaptic dynamics

are treated explicitly: vesicle-depletion depression, facilitation, augmented vesicle recovery, and

release-independent depression; the physiological parameters are directly estimated in each case.

Key words: Bayesian inference, EPSP data, synaptic depression, quantal, stochastic

4.2 Introduction

The dynamics of synaptic function are crucial to communication between neurons. An

action potential in the presynaptic cell triggers an influx of Ca2+ into synaptic terminals,

causing probabilistic release of neurotransmitter from vesicles docked at active sites on

the presynaptic membrane. The neurotransmitter binds to the postsynaptic cell, causing

a change in the membrane conductance that allows current to flow and the postsynaptic

neuron to depolarise with an excitatory postsynaptic potential (EPSP). Depletion of

vesicles available at active sites can cause an activity-dependent reduction in synaptic

efficacy, whilst a build-up of Ca2+ can increase the probability that docked vesicles

release neurotransmitter, causing an increase in efficacy. Synaptic transmission is thus

both fundamentally stochastic (Fatt and Katz 1954; del Castillo and Katz 1954; Stein
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1965) and plastic (Eccles et al. 1941; Furukawa et al. 1982; Abbott 1997; Tsodyks and

Markram 1997; Zucker and Regehr 2002).

A single EPSP is ‘built up statistically of small all-or-none units which are identical in

size with the spontaneous ‘miniature” postsynaptic potentials (del Castillo and Katz

1954) caused by the neurotransmitter released from individual vesicles. Initial analyses

of paired-cell data used the amplitude distribution of EPSPs to identify quantal ‘peaks’

corresponding to sums of similar ‘mini’ amplitudes (Boyd and Martin 1956; Liley 1956;

Bennett and Florin 1974; Kuno 1964; Kuno and Weakly 1972; Bekkers 1994) (see Ben-

nett and Kearns, 2000, for a review). Whilst very effective for neuromuscular synapses,

such as those considered by del Castillo and Katz (1954), the greater variation in ‘mini’

amplitudes at central synapses (Hanse and Gustafsson 2001; Franks et al. 2003; Hard-

ingham et al. 2010) necessitated different techniques to recover robust results in the

central nervous system.

Mean-variance analysis was developed to produce reliable estimates of the maximum

number of vesicles that can be released by a single stimulus (Silver et al. 1998; Clements

2003; Silver 2003). Initial applications relied on conducting experiments under a variety

of conditions, in particular varying the extracellular Ca2+ concentration to alter the

vesicle release probability (Foster and Regehr 2004; Birò et al. 2005). Brémaud et al.

(2007) and Loebel et al. (2009) increased the practicality of the method by exclusively

using short-term vesicle depletion to vary the effective release probability under a single

experimental condition. Their analysis shows that multiquantal release is the key to the

wide range of EPSP amplitudes observed (Song et al. 2005; Lefort et al. 2009); it is in

general not sufficient to consider the number of distinct anatomical contacts as being the

maximum number of vesicles that could be released under the ‘single-vesicle hypothesis’

(Kuno 1971; Korn et al. 1981).

More recent approaches have introduced techniques from Bayesian inference to bet-

ter estimate synaptic parameters. Bayesian inference determines how far experimental

evidence supports a given set of model parameters. This relies on the fact that the

probability of a certain model being correct given observed data is proportional to the

probability of observing that data given that the model is correct. As such it makes

better use of data, including every observation rather than extracting moments as in pre-

vious approaches. This framework was first applied to neurophysiological synaptic data

by Turner and West (1993) to extract the number of components in a unitary EPSP, but

their approach was not readily applicable to standard experimental protocols and was

not widely adopted (Bekkers 1994). A more influential Bayesian analysis was that by

McGuinness et al. (2010) to measure presynaptic Ca2+ concentrations. Bhumbra and

Beato (2013) used a Bayesian approach to analyse the quantal parameters underpinning
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isolated EPSPs, finding that accurate parameter estimates could be made from less data

than with existing mean-variance methods.

Inference on isolated EPSPs, however, does not allow recovery of the parameters behind

short-term plasticity. Costa et al. (2013) addressed this issue in a Bayesian frame-

work using the Tsodyks-Markram model of short-term plasticity (Tsodyks et al. 1998).

This proved accurate and informative, using a ‘slice’ sampling method (Neal 2003) to

approximate high-dimensional distributions and revealing experimental protocols that

maximised the effectiveness of the inference procedure. The amplitude of observed EP-

SPs was assumed to follow a Gaussian distribution. This makes the method unsuitable

for weak synapses where quantal effects from a small number of release sites and corre-

lations between subsequent EPSPs are significant (del Castillo and Katz 1954; Thomson

et al. 1993; Fuhrmann et al. 2002).

Here we extend these methods of Bayesian inference to extract quantal synaptic pa-

rameters from plastic synaptic connections with arbitrary vesicle release-site number.

This is an extension and continuation of previous Bayesian work (Bhumbra and Beato

2013; Costa et al. 2013) in that it allows recovery of both quantal synaptic parameters

and those governing short-term plasticity. The main barrier to this approach is that

the number of correlations between neurotransmitter releases from active sites grows

exponentially with the number of EPSPs; we use a Markovian property to compute the

exact likelihood function with a complexity that grows only linearly with EPSP number.

We demonstrate the application of our approach to common models of depression and

facilitation. We apply the analysis to a variety of experimental datasets and describe

possible generalisations to other models of plasticity.

4.3 Methods

Ethics statement. All experiments were performed in accordance with the UK Animals (Scientific

Procedures) Act (1986).

Preparation of neocortical slices. Parasagittal slices of somatosensory neocortex (300µm) were

prepared from male Wistar rats, at postnatal day 16-18. Rats were kept on a 12 hour light-dark

cycle with slices made 90 minutes after entering the light cycle. In accordance with the UK

Animals (Scientific Procedures) Act (1986), rats were killed by cervical dislocation and then

decapitated. The brain was rapidly removed, cut down the midline and the two sides of the

brain stuck down. The brain was angled at 15◦ so that planar slices could be obtained with

the dendritic structure of the excitatory neurons intact. Slices were cut with a Microm HM

650 V micro-slicer (Carl Zeiss) in cold (2-4◦C) high Mg2+ low Ca2+ artificial cerebrospinal fluid

(aCSF) consisting of 127 mM NaCl, 1.18 mM KH2PO4, 2.14 mM KCl, 26 mM NaHCO3, 8 mM
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MgCl2, 0.5 mM CaCl2 and 10 mM glucose. Slices were stored at 34◦C for 1 hour in standard

aCSF (1 mM Mg2+and 2 mM CaCl2) and then at room temperature for 1-6 hours.

Patch-clamp recordings from excitatory cells. A slice was transferred to the recording cham-

ber and perfused at 2 ml/min with aCSF at 32◦C. Slices were visualised using an Olympus

BX51W1 microscope with IR-DIC optics and a Hitachi CCD camera (Scientifica, Bedford, UK).

Whole-cell recordings were made with patch pipettes (5-8 mΩ) manufactured from thick walled

glass (Harvard Apparatus Edenbridge UK) containing 135 mM K-gluconate, 7 mM NaCl, 10 mM

HEPES, 0.5 mM EGTA, 2 mM ATP, 0.3 mM GTP, and 10 mM phosphocreatine (290 mOSM,

pH 7.2). Voltage recordings were obtained using an Axon Multiclamp 700B amplifier and digi-

tised at 20 kHz with a Digidata 1440A (Molecular Devices, Sunnyvale, CA). Pyramidal neurons

were identified based on their location in the layered neocortex, somata size and dendritic ex-

tent. During recording, neurons were labelled either with the fluorescent dye Alexa Fluorr 488

hydrazide (12.5 mM, Life Technologies, Paisley, UK) or with biocytin (1 mg/mL, Sigma-Aldrich,

Dorset, UK) to allow confirmation of the cell type and to ensure an intact apical dendrite.

Adenosine application. All drugs were prepared as concentrated stock solutions (1000mM),

stored frozen and then thawed and diluted in aCSF immediately before use. Adenosine, 8-

cyclopentyl-theophylline (8CPT; A1R antagonist) was purchased from Sigma (Poole, UK). Adeno-

sine acts via A1, A2 and A3 receptors, A1Rs being the principal neocortical subtype. Initial

experiments confirmed this by comparing transmission in 8CPT + adenosine and 8CPT only,

where any difference would be due to A2 or A3 activation. No significant difference was found,

with a mean ratio of 8CPT + adenosine/8CPT of 0.93 (SEM, 0.08).

Stimulation protocols. Presynaptic cells were stimulated with square-pulse currents of 5ms dura-

tion and magnitude sufficient to reliably induce a single action potential without causing bursting.

Stimulation consisted of either 8− 10 spikes at 20− 50Hz with 10s between traces or 20 spikes

generated by a Poisson process with a mean rate of 5Hz.

Data for the Bayesian algorithm. For each presentation of the presynaptic stimulus, the ampli-

tudes and times of the individual EPSPs are extracted from the postsynaptic voltage trace using

the voltage deconvolution method (Richardson and Silberberg 2008). The standard deviation

of external noise σD is extracted from a baseline period of the original individual traces. This

gives two vectors for each presentation: one of EPSP times and one of EPSP amplitudes. Note

that spike times do not have to be constant between trials, allowing usage of this method in vivo

when spiking is uncontrolled but monitored.

Bayesian principle. We seek to obtain an estimate of the probability that the synaptic parameters

take a particular value given the observed postsynaptic response. If the space of parameters is

Θ, then the probability of a set of parameter values θ ∈ Θ being true given an observed set of

EPSP times and amplitudes Data is proportional to the likelihood of that data being observed

if θ were the true parameter set:

P[Θ = θ|Data] ∝ P[Data|Θ = θ]P[Θ = θ] (4.1)
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Model Description Inferred parameters

DEP Vesicle depletion depression n, p0, τD, µa, and σa
FAC Facilitation n, p0, τD, p1, τf , µa, and αa
DAR Depression with augmented recovery n, p0, τD, R1, R∞, τR, µa, and

σa
FAR Facilitation with augmented recovery n, p0, τD, R1, R∞, τR, p1, τf ,

µa, and σa
RID Release independent depression n, p0, τD, p1, τI0 , µa, and σa
FDR Release independent depression and fre-

quency dependent recovery
n, p0, τD, p1, τI0 , τI1 , ττI , µa,
and σa

Table 4.1: Table of synaptic models used and their inferred parameters. Note that the
standard deviation of external noise σD is fixed from the raw traces.

Likelihoods are computed with respect to a synapse model. The models discussed here are

described below and summarised in Table 4.1. The probability P[Θ = θ] on the right-hand side

is the prior distribution, which is initially uniform but is updated with each presentation of the

presynaptic stimulus. This is often referred to as ‘Posterior ∝ Likelihood × Prior’. Defining

Datai to be the set of response times and amplitudes to the ith independent repeat (from N in

total), the probability of θ ∈ Θ given all of the data is

P[Θ = θ|{Datai}Ni=1] ∝
N∏
i=1

(
P[Datai|Θ = θ]

)
(4.2)

The prior distribution is taken to be flat (uninformative) in all cases over some range (Table

4.2). This could be adapted in future studies if stereotypical parameter distributions can be

established.

Synaptic models. It is possible to treat a broad class of synaptic models using the inference

presented here. The synapses this inference can be applied to are assumed to have a number n

of vesicle release sites to which neurotransmitter vesicles can dock. On arrival of a presynaptic

spike neurotransmitter is released independently from each docked vesicle with probability p.

This probability p can differ between spikes, but for a given spike should be identical across all

release sites; it should not depend on the history of release at individual sites but only on the

presynaptic action potential train. The ‘mini’ quantal amplitude, the influence on the voltage of

the postsynaptic cell from the neurotransmitter released by a single vesicle, should be modelled

by a random variable, with independent identical distribution between different vesicles. The

contribution from different vesicles should sum linearly. The ‘mini’ amplitude distribution could

differ between spikes. In an interval between spikes, empty release sites are independently stocked

with vesicles with a certain probability which depends on the length of the interval.

The models discussed below all display these properties. We explicitly consider cases where facil-

itation (Varela et al. 1997; Tsodyks et al. 1998) and release-independent depression (Fuhrmann

2004) alter the vesicle release probability between spikes, or augmented recovery (Hosoi et al.

2007) alters the rate of vesicle replenishment, but do not vary the ‘mini’ quantal amplitude

distribution. This covers the most common models of short-term plasticity in the cortex.
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(i) Depression. A synaptic connection between two cells consists of a number n of vesicle

release sites. When the presynaptic cell spikes, each vesicle present at a release site is released

with probability p0. The neurotransmitter in a single vesicle causes a voltage increase in the

postsynaptic cell treated as a gamma-distributed amplitude with mean µa(mV) and standard

deviation σa(mV). Between pulses, empty release sites are stocked with vesicles as a Poisson

process with rate 1/τD(Hz) so that the probability of an empty site being restocked in an interval

of length T is (1 − e−
T
τD ). This model is abbreviated to DEP in Table 4.1 and the basic five-

dimensional parameter space has ranges given in Table 4.2 (Tsodyks and Markram 1997).

(ii) Facilitation. The release probability p0 is at some synapses dependent on the history of

activity and is then a dynamic variable p(t). This model (Varela et al. 1997; Fuhrmann et al.

2002) includes facilitation: the influx of calcium into the synaptic terminal induced by an action

potential increases the release probability p(t) for subsequent spikes, this facilitation decays with

time constant τf (s). The magnitude of increase caused by a single spike saturates as p approaches

1 and the release probability immediately after the first spike is denoted p1. A special case is

when the release probability doubles after the first spike and so p1 = 2p0 (Tsodyks et al. 1998).

dp

dt
=
p0 − p
τf

+
(p1 − p0)(1− p)

1− p0

∑
δ(tSpike) (4.3)

The parameter space is now 7-dimensional (Varela et al. 1997; Fuhrmann et al. 2002), or 6-

dimensional in the case of the original Tsodyks model (Tsodyks et al. 1998). The model is

abbreviated to FAC in Table 4.1.

(iii) Augmented recovery. It has also been observed at some synapses that the rate at which

empty sites are restocked is increased by presynaptic activity (Wang 1998; Kittelmann et al.

2013; Hallermann and Silver 2013). The mechanism behind this is also related to calcium

influx. The model (Hosoi et al. 2007) used to describe this process augments the base restock

rate 1
τD

(Hz) with a dynamic component Ra(t) so that the total rate of recovery at time t is
1
τD

+Ra(t), matching the double exponential recovery observed experimentally. Ra is increased

to R1 after an isolated spike, saturates to a maximum of R∞ and decays back to zero with time

constant τR(s).
dRa
dt

= −Ra
τR

+
R1(R∞ −Ra)

R∞

∑
δ(tSpike) (4.4)

Augmented recovery is observed at both purely depressing and facilitating synapses; modelling

it adds three additional parameters. The depression with augmented recovery and facilitation

with augmented recovery are denoted DAR and FAR respectively in Table 4.1.

(iv) Release-independent depression (RID). This model (Fuhrmann 2004) is appropriate for

synapses that do not display facilitation and considers a different form of depression which

is uncorrelated with the preceding EPSP amplitudes. RID is a reduction in release probability p

caused by spiking activity which decays on a timescale τI0 . The release probability immediately

after an isolated pulse is p1, but in contrast to facilitation p1 < p0.

dp

dt
=
p0 − p
τI0

− p

p0
(p0 − p1)

∑
δ(tSpike) (4.5)

The parameter space is again 7-dimensional. The model is abbreviated to RID in Table 4.1.
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(v) Release-independent depression (RID) with frequency dependent recovery (FDR). RID is often

accompanied by frequency-dependent recovery (Fuhrmann 2004), a reduction in the timescale of

recovery from RID. The timescale τI(t) is a dynamic variable with initial value τI0 , magnitude

after an isolated spike τI1 , and decay timescale ττF

dp

dt
=
p0 − p
τI

− p

p0
(p0 − p1)

∑
δ(tSpike)

dτI
dt

=
τI0 − τI
ττF

− τI
τI0

(τI0 − τI1)
∑

δ(tSpike)

(4.6)

The parameter space is now 9-dimensional. The model is abbreviated to FDR in Table 4.1.

(v) Possible extensions. Any synaptic model with (potentially inhomogeneous) Poisson vesicle

replenishment and a release probability (dynamic or otherwise) that depends purely on the

presynaptic action potentials could be studied using this inference. A possible extension not

dealt with explicitly in this study, but that meets these criteria, is to consider postsynaptic

receptor desensitisation, where the ‘mini’ amplitude distribution is affected by the history of the

process (Otis et al. 1996; Jones and Westbrook 1996).

Sampling parameter space. It is possible to exhaustively search a discretisation of the parameter

space in a number of cases. This allows an exact calculation of the likelihood function evaluated at

a grid of points spanning the parameter space. Marginals and joint marginals for each parameter

and parameter pair can be found by successively integrating over the other dimensions.

In some cases, exhaustive computation of likelihoods is too computationally expensive time- and

memory-wise, necessitating use of a suitable Markov Chain Monte Carlo sampling method. A

Metropolis-Hastings sampler (Metropolis et al. 1953; Hastings 1970) is used here as a simple

and robust way of traversing parameter space. Convergence is optimised by tuning the step-size

during ‘burn-in’ as in Roberts et al. (1997).

Convergence of the sampler to the true distribution is determined (and computation speeded)

by running a number of samplers in parallel and comparing the resultant likelihoods.

Information gain. Information gain is measured by the Kullback-Leibler divergence DKL of a

posterior from a prior (Kullback and Leibler 1951). If f(x) is the posterior and g(x) is the

prior, then the Kullback-Leibler divergence quantifies the additional bits added by the posterior

f compared to the prior g

DKL =

∫ ∞
−∞

f(x)log2

(
f(x)

g(x)

)
dx (4.7)

For discrete distributions (for example regarding the number of vesicle release sites n), the

integrals are replaced by sums.

Goodness of fit. To determine how well a posterior distribution matches a dataset, it is necessary

to measure the goodness of fit GΘ. Here we use a measure of how well a posterior distribution

of parameters allows reproduction of a given dataset. GΘ is determined by a bootstrapping

procedure. Model parameters are sampled independently from their posterior distributions and

used to simulate a set of EPSPs with the same stimulation times and number of repeats as the

original data. The goodness of fit Gθ of this parameter set θ is given by the inverse root of the
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Parameter Interpretation Range (units)

n Number of release sites 1 to 100
τD Timescale of recovery from depression 0 to 1 (s)
p0 Initial release probability from a single site

(given that a vesicle is present)
0 to 1

µa Mean voltage response to neurotransmit-
ter from a single vesicle

0 to 0.5 (mV)

αa Shape parameter of voltage response dis-
tribution to neurotransmitter contained in
a single vesicle

0 to 0.25 (mV)

τf Timescale at which facilitation decays 0 to 0.25 (s)
p1 Release probability after a single isolated

spike
p0 to 1 (facilitation) or 0 to p0

(RID)
R1 Additional vesicle recovery rate after a sin-

gle isolated spike
0 to 10 (Hz)

R∞ Maximum additional vesicle recovery rate R1 to 100 (Hz)
τR Timescale at which augmented recovery

decays
0 to 0.25 (s)

τI0 Initial recovery timescale from RID 0 to 0.5 (s)
τI1 Recovery timescale from RID after a single

isolated pulse
0 to τI0 (s)

ττI Decay timescale from FDR 0 to 0.5 (s)

σD Standard deviation in postsynaptic volt-
age trace due to external noise (fixed by
raw traces)

0 to 0.2 (mV)

p Dynamic release probability 0 to 1
Ra Augmented component of vesicle restock

rate
0 to R∞ (Hz)

τI Dynamic RID recovery timescale 0 to 0.2 (s)

Table 4.2: Table of inferred (top), fixed (middle), and dynamic (bottom) synaptic param-
eters used in the model and their ranges. Usual ranges can be expanded on a case-by-case
basis.

sum of the squared differences between the simulated and observed mean EPSPs, weighted by

the variance of the measured sample mean, and the sum of the squared differences between the

simulated and observed variance in EPSPs, weighted by the variance of the experimental sample

variance.

Gθ = N4
EPSPs

[ ∑
EPSPs

[(
µData − µSim

σ2
µ

)2

+

(
σ2

Data − σ2
Sim

σ2
σ2

)2]]− 1
2

(4.8)

where NEPSPs is the number of EPSPs, µData is the measured mean EPSP, µSim is the simulated

mean EPSP, σData is the measured EPSP standard deviation, σSim is the simulated EPSP stan-

dard deviation, σµ is the standard deviation of the sample mean for the measured EPSPs, and

σσ2 is the standard deviation of the sample variance for the measured EPSPs. Higher values

indicate a better agreement between posterior and data.

This gives the goodness of fit for a single parameter set θ. Repeating the process and averaging

over a set of Gθs allows estimation of the goodness of fit of the model, GΘ. In practice, 105
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parameter sets are sampled to allow estimation of GΘ, and estimates are quoted ± the standard

error of the mean.

4.4 Results

We first describe a technique for the computation of the likelihood function for a single

trace occurring given a set of synaptic parameters, as required for the Bayesian inference

procedure. This is an important step as a naive likelihood calculation quickly becomes

intractable due to the number of correlations between release sites growing exponentially

with the number of presynaptic spikes. We have used the Markovian property of the

vesicle occupancy before a spike to substantially reduce the computational complexity

of this calculation so that the number of calculations grows linearly with the number of

spikes. We provide an illustrative example calculation with three spikes and two release

sites.

We then discuss the effects of different quantal parameters on identifiability for simulated

data and how this compares with previous approaches. We apply the technique to

experimental data for depressing juvenile synapses in control and in the presence of the

neuromodulator adenosine, which is implicated in altering synaptic dynamics (Kerr et

al. 2013).

4.4.1 Computing exact likelihoods

A key component of the exact likelihood is the probability that a number ki of vesicles

are released at the ith spike. The number of probabilities P[k1&k2&...&km] of releases

from n release sites with m spikes grows as (n + 1)m and therefore quickly becomes

intractable. To resolve this issue it is possible to use the fact that P[ki] is only dependent

on the probability distribution of the number of vesicles present before the ith spike and

the current release probability p. This Markovian property means that the number of

calculations can be reduced to only m(n+1)2. The procedure for doing this makes exact

computation practical and is now outlined (Fig. 4.1).

(i) Release probabilities. To determine the probabilities of releasing each possible number

of vesicles (from 0 to n) in response to a stimulus, note that if there are y vesicles present

beforehand then the number released k is binomially distributed k ∼ B(y, p). This is

true for all values of y from 0 to n. Thus the probability that k vesicles are released by
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a stimulus is given by

P[k] =

n∑
y=k

P[k|y]P[y]

=

n∑
y=k

(
y

k

)
pk(1− p)y−k P[y]

(4.9)

The black line in Figure 4.1b illustrates the probability distribution of vesicles released

k by each spike in a train.

(ii) Occupancy after a spike. The probability of the number of vesicles present taking a

value y⊕ immediately after an observed release of size k is given by

P[y⊕] = P[k|y⊕ + k]P[y⊕ + k]

=

(
y⊕ + k

k

)
pk(1− p)y⊕ P[y⊕ + k]

(4.10)

The brown line in Figure 4.1b illustrates the distribution of vesicles present immediately

after each spike y⊕ in a train.

(iii) Recovery between spikes. Between spikes, empty release sites are restocked as a

Poisson process. The probability that an individual empty site is restocked in an interval

of length T is (1 − e−T/τD). Given that the number of empty sites after the last spike

is n − y⊕, the number that restock in an interval of length T is binomially distributed

∼ B(n − y+, 1 − e−T/τD). This is true for all postspike occupancies y⊕ and so the

probability P[y] that there are y vesicles present before the next spike is

P[y] =

y∑
y⊕=0

P[y|y⊕]P[y⊕]

=

y∑
y⊕=0

(
n− y⊕
y − y⊕

)
(1− e−T/τD)y−y⊕e−T/τD(n−y) P[y⊕]

(4.11)

The green line in Figure 4.1b illustrates the distribution of vesicles present immediately

before each spike y in a train.

(iv) Matching amplitudes. The probability of each possible number m of vesicles released

matching the ith measured EPSP amplitude Ai is dependent on µa, σa, and the back-

ground noise strength σD. The distribution of the voltage changes induced by a single

vesicle is modelled by a gamma random variable. The gamma distribution for individual

vesicles is preferred over a Gaussian as the coefficient of variation of ‘mini’ amplitudes

is often large enough to otherwise imply that individual vesicles would regularly have a

hyperpolarising effect (Robinson 1976; Hanse and Gustafsson 2001; Bhumbra and Beato

2013). This is unphysiological and introduces the potential for the model to assign
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Figure 4.1: An illustration of the procedure for calculating exact likelihoods. (A) Simu-
lated postsynaptic voltage trace. (B) Inferred distributions of vesicles leading to observed
EPSPs. The green line gives the distribution of y, the number of vesicles present immediately
before each spike (initially all release sites are stocked), the black line gives the distribution
of k, the number of vesicles released by each spike, and the brown line gives the distribution
of y⊕, the number of vesicles present immediately after each spike. The likelihoods in B are
calculated with the same parameters used to simulate postsynaptic trace in A.

some portion of variability in total EPSP size to such ‘negative’ vesicles and so reduce

the robustness of the estimation. In addition, variability in response between different

anatomical contacts is likely to induce a skewed distribution that is best fit by a gamma

density (Markram et al. 1997; Franks et al. 2003).

Considering first the gamma case without background noise,

P[Ai] =
n∑
k=0

P[Ai|k]P[k]

P[Ai] =

n∑
k=0

(µa
σ2
a

)k µ2a
σ2a

Γ(k µ
2
a
σ2
a
)
A
k
µ2a
σ2a
−1

i e
−µaAi

σ2a P[k]

(4.12)

where P[k] comes from the release probabilities discussed above and Γ is the gamma

function Γ(t) =
∫∞

0 rt−1e−rdr. To include the external noise requires convolution of the

density P[Ai|k] with the Gaussian N(0, σD).

P[Ai] =

n∑
k=0

(µa
σ2
a

)k µ2a
σ2a

Γ(k µ
2
a
σ2
a
)

1√
2πσD

∫ ∞
0

s
k
µ2a
σ2a
−1
e
−µas
σ2a e

− (Ai−s)
2

2σ2
D dsP[k] (4.13)

For convenient evaluation, this integral can be mapped onto the range [0, 1) by the

transformation z = s
1+s .
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Figure 4.2: Identifiability of parameters in a quantal model with no uncertainty in ‘mini’
quantal size (simulated data). (A) Posterior distributions of three quantal parameters
under conditions of medium (black), low (purple), and high (brown) release probability p0.
Inference was conducted on five traces of five spikes, synthetically generated with parameters
indicated by dots. (B) Convergence of posterior distributions in the medium (black) and
high (brown) release probability p cases. Intermediate posteriors are indicated by dashed
lines. Inference was conducted on ten traces of five spikes, synthetically generated with the
same parameters as in A. (C) Kullback-Leibler (KL) divergence of posterior of n from a
flat prior for different inference methods. The black line corresponds to a method where
each trial adds an additional trace of five spikes; the red line corresponds to an alternative
procedure where each trial adds an additional spike to each of five traces with originally one
spike each and so initially doesn’t account for the correlation between EPSPs. Plotted lines
are the mean KL divergences after 1000 inferences on sets of EPSP amplitudes simulated
with parameters generated uniformly from the ranges in Table 4.2.

(v) Matrix formulation. The structure of the likelihood allows the above steps to be

written as a matrix product. Write Ri for the matrix determining vesicle release from

the ith presynaptic spike, M1i for the matrix determining the distribution of vesicles

remaining after the ith spike, and M2i for the matrix determining the number of vesicles

that recover in the interval following the ith spike. Ri depends on the release probability

pi at the ith spike, M1i depends on the release probability pi and observed amplitude

Ai of the ith spike, and M2i depends ith interspike interval Ti. Elements in the three

matrices are given by

Ri
j,l(pi) = P[ki = j + 1|y = l + 1]

M1i
j,l(pi, Ai) = P[Ai|ki]P[ki = j + 1|y⊕ = l + 1− ki]

M2i
j,l(Ti) = P[y = j + 1|y⊕ = l + 1]

(4.14)

where the probabilities on the right-hand side correspond to the probabilities defined

in the sections above. As every release site is assumed to be initially fully stocked, the

vector x giving the probability of any number site being occupied is given first by a

column vector of zeros except for the n + 1th (final) entry, which is equal to one. The
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Figure 4.3: Joint distribution of release-site number n and release probability p0 (Simulated
data). (A) Joint marginal distributions of release site number n and release probability p
for low and high values of both parameters for ten traces of five spikes with τD = 0.1s. (B)
Coefficient of variation (standard deviation divided by mean) of the posterior distribution
of the number of release sites n for different values of n and release probability p with trials
and τD as in A.

distribution of release probabilities ki, for the ith spike is then given by

ki =

R1x if i = 1

Ri
∏i−1
j=1[M1jM2j]x if i > 1

The likelihood of a trace of m measured amplitudes being generated by a parameter set

θ ∈ Θ is then the product
∏m
i=1 P[Ai] where each P[Ai] is computed from the probability

vector ki using Eq. (4.13).

4.4.2 Example likelihood calculation

To illustrate the procedure above, we will calculate the likelihood that EPSP amplitudes

[0.67, 0.23, 0.34]mV were observed for spikes at times [0, 0.1, 0.2]s under the DEP model

given that n = 2, τD = 0.1s, p0 = 0.6, µa = 0.3mV, σa = 0.1mV, and σD = 0.05mV. As

both sites are initially stocked the initial occupancy vector x is given by

x =


0

0

1

 (4.16)
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In the DEP model, the release probability is fixed at p0 = 0.6 for each spike and so the

release matrix for each spike is given by

R1 = R2 = R3 =


1 0.6 0.36

0 0.4 0.48

0 0 0.16

 (4.17)

The first release distribution k1 and likelihood P[A1] of the first spike having the observed

amplitude of 0.67mV (to four decimal places) are therefore

k1 =


0.16

0.48

0.36

 P[A1] = 0.2018 (4.18)

Given the observed amplitude of the first spike and the probability that an empty release

site being restocked in the interval [0, 0.1] is 1−e−
0.1
0.1 = 0.6321, the postspike occupancy

M11 and restock M21 matrices can be written

M11 =


1 0.4280 0.2199

0 0.5720 0.3920

0 0 0.3880

 M21 =


0.1353 0 0

0.4651 0.3679 0

0.3996 0.6321 1

 (4.19)

The second release distribution k2 and likelihood P[A2|A1] of the second spike having

amplitude 0.23mV can be written

k2 =


0.3030

0.4961

0.2009

 P[A2|A1] = 0.5032 (4.20)

As the second interspike interval is the same as the first, the restock matrices M22 and

M21 are the same, and M12 is given by

M12 =


1 0.4560 0.2502

0 0.5440 0.3980

0 0 0.3518

 (4.21)

The final release distribution can be calculated as above to give the final amplitude

probability P[A3|A2, A1] and trace likelihood P[A1 , A2 , A3]

P[A3|A2, A1] = 0.3447 P[A1 , A2 , A3] = 0.0350 (4.22)
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4.4.3 Identifiability of number of release site number n and release

probability p0

A major difficulty with estimating synaptic parameters is in distinguishing between the

number of release sites n when the release probability p0 is low. Considering a case where

there is no uncertainty in the size of a ‘mini’ EPSP so as to focus on the parameters n,

p0 and τD, Bayesian inference allows quantification of this difficulty (Fig. 4.2). When p0

is low, the relatively broad spread of the posterior distribution for all parameters (Fig.

4.2a) and slower convergence (Fig 4.2b) are in line with results seen in Bhumbra and

Beato (2013) and Costa et al. (2013); the additional consideration of synaptic dynamics

and correlated binomial release statistics in this paper do not substantially alter this

constraint.

Despite this, considering the correlations between spikes within a train is more infor-

mative than conducting an analysis on isolated spikes. Figure 4.2c shows the Kullback-

Leibler (KL) divergence between the posterior and prior of the marginal distribution of

the number of release sites n as a function of the number of trials used in the inference.

The black line shows the effect of adding an additional trace of five spikes for each trial,

whereas the red line shows the effect of adding an additional spike to each of five traces

for each trial. The former method, which accounts for the correlations between EPSPs

in earlier trials, has a higher divergence and so provides more information from the same

amount of data. The latter method also produces a KL divergence that fluctuates more,

revealing the artificial sensitivity to noise that comes from ignoring correlations.

A further issue with identifiability comes from dependencies between parameters. To

quantify this, Bayesian inference allows the full joint posterior distribution P[n, p0] to

be calculated (Fig. 4.3a). In cases of low p0, the joint distribution takes a characteristic

concave shape and it is difficult to infer one parameter without constraining the other.

If the release probability p0 is low, it is possible to reliably distinguish the release site

number n more easily if this number is large. Figure 4.3b plots the coefficient of variation

of the posterior marginal in n as a function of n and p0, giving a measure of precision by

measuring the relative width of the posterior. Whilst, in this case, it is always possible

to perfectly distinguish n when p0 is high (above 0.8), lower values of p0 require higher

values of n to achieve an equivalent precision.

4.4.4 Depression at juvenile synapses for noisy connections

Juvenile layer-V cortical synapses in juveniles are strongly depressing (Reyes and Sak-

mann 1999). A connection was stimulated with a Poisson train of action potentials to
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Figure 4.4: DEP model applied to a noisy juvenile synapse (experimental data). (A)
Poisson spike train in the presynaptic neuron. (B) Mean postsynaptic voltage over 30
traces with mean and standard deviation of individual EPSP amplitudes (inset bar graph).
(C) Example individual postsynaptic traces showing a high baseline variance. (D) Posterior
distributions for the DEP model parameters after 5000 Metropolis-Hastings samples.

test the inference procedure for the DEP model (Fig. 4.4). The connection was relatively

noisy (Fig. 4.4c), with a standard deviation in the baseline voltage of σD = 0.68mV.

This made interpretation difficult, and gave a particularly broad spread to the posterior

for the standard deviation in the ‘mini’ amplitude σa. The posteriors for release site

number n and, particularly, mean ‘mini’ amplitude µa are relatively well-constrained

(Fig 4.4d). The depression appears to be badly captured by the DEP model, however,

with the synapse depressing strongly at first, but then reaching a relatively stable state

with very slow recovery. This leads to a bimodal posterior for the release probability p0
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and high inferred values of the depression time constant τD (a factor of ten higher than

commonly reported). The low signal-to-noise ratio of this data makes more detailed

discussion difficult.

4.4.5 Adenosine at juvenile synapses

The neuromodulator adenosine is implicated in the developmental shift from dominant

depression at juvenile synapses to dominant facilitation at mature synapses (Kerr et al.

2013). An initially depressing connection was stimulated with periodic spikes at 20Hz

and the postsynaptic response was recorded as a control (Fig. 4.5a). Adenosine was

applied to the slice as described in Methods and the stimulus protocol was repeated.

The external voltage noise was much lower in this instance (σD = 0.1mV for control and

σD = 0.08mV under adenosine), making parameter inference more robust. Fitting the

DEP model to the data gathered under adenosine led to a broad spread in the posteriors

of most parameters (Fig. 4.5b, red line, GΘ = 0.9377 ± 0.0133), although it should be

noted that the parameters of the control are not particularly well-constrained by the

data either (Fig. 4.5b, blue line, GΘ = 1.5980 ± 0.0268). The parameters of the FAC

model are a good fit to the adenosine data (GΘ = 2.1068± 0.0331).

The inferred mean quantal amplitude µa changes substantially under application of

adenosine in Figure 4.5b and between the DEP and FAC models applied to the adenosine

data (Figs 4.5b and c). This is largely due to the inaccuracy of the DEP model applied

to a facilitating synapse: the posterior of µa shifts as the model is unable to account for

the true dynamic release probability. Note that the predicted quantal amplitudes of the

control data under the DEP model (Fig. 4.5b, blue line) and the adenosine data under

the FAC model (Fig. 4.5c, red line) are similar, in the region of 0.7mV.

The estimates for the number of release sites n and mean ‘mini’ amplitude µa appear

consistent between the DEP model of the control data and the FAC model of the adeno-

sine data.

The Bayesian inference reveals the changes in synaptic parameters after application of

adenosine, showing the major effect on initial release probability p0.

4.5 Discussion

We have presented a method for producing parameter distributions from single-vesicle

run-down experiments using an exact calculation of the quantal likelihood for a dynamic
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Figure 4.5: Change in synaptic dynamics after application of adenosine (experimental
data). (A) Mean and variance of EPSPs as a function of stimulus time in control (blue) and
after application of adenosine (red). (B) Posterior distributions of synaptic parameters un-
der the DEP model in control (blue) and under adenosine (red). (C) Posterior distributions
under the FAC model after the application of adenosine. All with 10000 Metropolis-Hastings
samples.
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synapse; the method is not dependent on repeated stimulus patterns and so is suitable for

situations in vivo where presynaptic firing is uncontrolled, but monitored. Calculation

of the exact likelihood function described here allows for Bayesian determination of

the distributions of the physiological parameters underpinning a synapse, extending

the recent work of Bhumbra and Beato (2013) and Costa et al. (2013). The major

contribution of our study is the consideration of correlations between EPSPs; these

will be most significant when the number of release sites n is low and release is most

variable (p ≈ 1
2). We have shown that the issues of parameter identifiability when release

probability is low highlighted by the two previous studies are not resolved by accounting

for EPSP correlations with an exact quantal likelihood function. We have also used

the joint posterior distribution of release site number n and release probability p0 to

quantify the relationship between these two parameters when it comes to identifiability.

The method has been applied to experimental data from a juvenile connection, where the

high level of external noise leads to relatively broad posterior distributions and makes

inference difficult for any method. Finally, we have applied the technique to a synapse

before and after the application of the neuromodulator adenosine, which is believed to

mediate the developmental shift in synaptic dynamics from depressing to facilitating

(Kerr et al. 2013). The inference is shown to capture the shift in synaptic properties

between control and adenosine states.

Inference of synaptic parameters is complex (Clements 2003; Silver 2003), and we believe

that a Bayesian approach, which allows quantification of the uncertainty in an estimate

is the best way to handle this complexity. Our work, alongside that of Bhumbra and

Beato (2013) and Costa et al. (2013), provides a principled way to infer physiological

parameters at a synaptic connections.

4.5.1 Extensions

To further demonstrate the practicality of the inference procedure described here it would

be necessary to apply it to a greater array of experimental data, allowing comparison of

the many synaptic models described.
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Chapter 5

Optimal current transfer in

dendrites

5.1 Overview

I
n this chapter I study how far dendrites are optimised to passively propagate synaptic

currents. This follows from a previous numerical study on dendritic optimality

that found a quadratic profile optimised current transfer (Cuntz et al. 2007). I

derive an accurate asymptotic approximation is made to the voltage in a passive cable

with arbitrary radius profile using the fact that voltage will change more quickly than

radius in a typical neurite. This analytical result allows derivation of the optimal taper

profile to propagate voltages proximally, matching the earlier non-parametric result.

The quadratic form is seen to predict the structure of dendrites from a variety of cell

classes, implying that passive propagation is an important factor in dendritic function.
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Abstract. Integration of synaptic currents across an extensive dendritic tree is a prerequisite

for computation in the brain. Dendritic tapering away from the soma has been suggested to both

equalise contributions from synapses at different locations and maximise the current transfer to

the soma. To find out how this is achieved precisely, an analytical solution for the current transfer

in dendrites with arbitrary taper is required. We derive here an asymptotic approximation

that accurately matches results from numerical simulations. From this we then determine the

diameter profile that maximises the current transfer to the soma. We find a simple quadratic

form that matches diameters obtained experimentally indicating a fundamental architectural

principle of the brain that links dendritic diameters to signal transmission.

Key words: neuron, dendrite, taper, voltage, optimal

5.2 Optimal current transfer in dendrites

Integration of synaptic inputs relies on the propagation of currents arising from sources

across the dendritic tree. Whilst active processes strongly contribute to current flow

in most neurons (Llinás 1988; Stuart and Sakmann 1994; London and Häusser 2005),

understanding the passive backbone to transmission is key to an intuitive grasp of den-

dritic function; the results of Wilfrid Rall in highlighting the properties of cylindrical

dendrites (Rall 1959; Rall 1969; Rall and Rinzel 1973) are of foundational importance

in compartmental modelling and computational neuroscience. Dendrites are, however,

not generally cylindrical. The distal taper seen in the majority of all cases appears to

both increase passive current flow towards the soma (Jaffe and Carnevale 1999; Williams

and Stuart 2002; Cuntz et al. 2007), thus reducing the energy requirements of active

compensatory processes, and contributes to the phenomenon of dendritic democracy,

where somatic voltage amplitudes are equalised between different synaptic sites (Magee

and Cook 2000; Häusser 2001; Rumsey and Abbott 2006).

Common approaches to modelling taper treat a dendritic cable as a series of cylinders

or linearly tapering frusta (Rall 1969; Butz and Cowan 1974; Koch et al. 1983; Holmes
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Figure 5.1: Cable theory with arbitrary diameters: Accuracy of the asymptotic approxima-
tion. (A) Sample radius profiles illustrating the accuracy of the analytical approximation.
(B) Comparison of numerical (red solid lines) and analytical (black dashed lines) voltages
in dendrites with varying radius profiles for currents injected at three points. As the ra-
dius changes more slowly, the first-order approximation becomes more accurate (from top
to bottom).

and Rall 1992; Zador et al. 1995; Hines and Carnevale 1997; Cuntz et al. 2010). Whilst

these techniques are accurate and powerful, there is still much to be gained from an

analytical solution to the voltage in terms of intuition and computational speed. A

number of solutions for the voltage in non-uniform cables exist (Goldstein and Rall

1974; Poznanski 1991; London et al. 1999), but these involve either the more tractable

cases of varying electrotonic properties with constant radius or are limited to a few forms

of radius taper.

We present an asymptotic approximation to the voltage in dendrites with an arbitrary

taper profile using the insight that voltage attenuation is substantially faster than radius

change in realistic morphologies. A particularly appealing prospect for such an approach

is that the optimal taper profile to transmit distal synaptic currents to the soma can

then be derived using variational calculus.

A length of passive dendrite tapers with radius at distance x given by r(x). The leak

conductance per unit area is denoted gl, the axial resistance ra, and the membrane time

constant τ . Then the voltage above equilibrium v(x, t) at location x and time t obeys
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Figure 5.2: Diameter profiles to optimise current transfer. Comparison of non-
parametrically optimised (red solid lines) and theoretical (black dashed lines) radius profiles
for different electrotonic lengths of dendritic branch. The theoretical profile is less strongly
tapering in the shortest case as it neglects the increase in distal input resistance from the
sealed end.

the generalised cable equation (see Section 5.4)

τ
∂v

∂t
= −v +

1

2raglr(x)

1√
1 + (r′(x))2

∂

∂x

[
r2(x)

∂v

∂x

]
(5.1)

The rate of voltage attenuation is generally significantly steeper than the rate of change of

dendritic radius, allowing use of the method of multiple scales (Hinch 1991) to accurately

approximate the voltage evolution. We introduce X = εx as the ‘slow’ taper variable

and treat it as independent of x. Large regions of most dendritic trees admit small

values of ε (∼ 0.001, Fig. 5.4).

Expanding in ε (see Section 5.5), gives the first-order steady-state solution

v(x) =
√
λ(x)

[
Ae

∫ x 1
λ(s)

ds
+Be

∫ x 1
λ(s)

ds]
(5.2)

for λ(x) =
√

r(x)
2ragl

the location-dependent electrotonic length and constants A and B

determined by the boundary constraints. This provides an accurate approximation to

the voltage in real dendritic cables (Fig. 5.1).

The simple form seen here allows for the usual features of cable theory to be recon-

structed. In particular, standard analytic results for voltage propagation in complex

dendritic structures and time-dependence have easy analogies in tapering cables. Greater
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accuracy can also be achieved, up to a point, by taking higher-order terms in ε. These

results are shown in the Supplementary Information.

This form of the first-order voltage allows for study of the optimal dendritic radius

profile to propagate synaptic currents towards the soma. Previous work in this direction

lacked a continuous representation of the voltage profile and used numerical methods

to explore optimality (Cuntz et al. 2007). Calculus of variations provides a framework

in which to define the optimal profile (for the leading-order component of the voltage)

continuously.

Given a dendritic cable of length L with volume Vol and distal (minimal) radius rL, the

goal is to maximise the voltage at the proximal end of a dendritic cable for synaptic

currents arising at all points along the cable. This means maximising the functional

J =

∫ L

0

1

λ
7
2 (x′)

e
−

∫ 0
x′

1
λ(s)

ds
dx′ (5.3)

where the effect of ‘reflected’ current at the distal end has been neglected due to the

relatively fast time course of excitatory potentials.

The maximisation gives an optimal radius profile of (see Section 5.8)

r(x) = α(L− x)2 + rL (5.4)

where α is fitted to match the volume of a segment. This profile matches the results of

numerical optimisation (Fig. 5.2).

Having found the optimal single cable for voltage propagation, it remains to be shown

how far real dendritic trees correspond to this optimality. Rall (Rall 1959) showed that if

the diameters of cylindrical sections at dendritic branch points satisfied the relationship

d
3/2
p = d

3/2
c1 + d

3/2
c2 , then the entire dendritic tree could be collapsed to a single cylinder;

the same relationship would allow for a tapering tree to be collapsed to a continu-

ous quadratically tapering cable. Rall’s relationship is rarely satisfied in real dendrites

(Poznanski 1991; Whitehead and Rosenberg 1993; Lindsay et al. 2003). Using a Rallian

diameter ratio at a branch, however, allows us ensure that the transition between parent

and daughter branches obeys the quadratic optimality condition. This makes it possible

to map quadratic radii onto complex dendritic morphologies by constraining dendrites

to locally obey optimality. The resulting predicted morphologies show how far dendritic

trees are globally optimised to transmit and equalise current transfer.

We have selected a number of neuronal classes with a broad array of functions to examine

the validity of our predictions (Fig. 5.3c). It should be noted here that obtaining

reliable measurements of dendritic radius is experimentally very challenging and this
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makes exact comparisons difficult. Different cell types satisfy the equivalent quadratic

criterion to different degrees. Of the cell classes studied, the best agreement was for fly

neurons, which might be considered genetically more hardwired. In terms of mammalian

neurons, the best agreement is was found for dentate gyrus granule cells. These cells

are known to both obey Wilfrid Rall’s branching criterion (Desmond and Levy 1984)

and undergo continuous replacement throughout life (Cameron and Mckay 2001). These

results suggest that our model might best match cells with a stereotypic morphology

and therefore an initially optimal passive backbone.

The diameter profiles of apical and basal dendrites in cortical pyramidal cells match op-

timality to different degrees. The apical tree appears well described in terms of quadratic

equivalent taper, despite differences specifically at the trunk of the apical dendrite. As

the apical trunk might be more strongly specialised in propagating dendritic spikes, de-

viations might not be surprising. The predicted diameter profile for the basal dendrites

was less accurate. Here there appear to be sections of the reconstruction that are much

more voluminous than their length relative to other branches would suggest. This might

imply that the relationship between nearby cells exerts a stronger influence than is seen

elsewhere and that local cortical microcircuits display preferential connections in some

directions.

No agreement was found for cerebellar Purkinje cells, where the general taper profile

is much shallower than would be expected and dendrites often exhibit alternate bulges

and narrower regions. The distinctive layered structure of the cerebellum means that

excitatory synaptic inputs arrive in distinct locations, strong synapses from climbing

fibres proximally and individually weaker, but much more numerous, synapses from

parallel fibres distally. These two types of inputs are implicated in different spiking

patterns, complex and simple spikes respectively, and the functional relationship between

the two is beyond the scope of our general optimality principle.

Structurally, the agreement between ideal and observed morphologies therefore varies

with specific function, but the model seems to provide a good fit to large regions of

many dendritic trees. We can, however, show how well the quadratic taper performs for

all classes studied (Fig. 5.3b). Plotting the current transfer from all nodes to the soma

illustrates the advantages of quadratic taper against a constant diameter and provides

a slight advantage over observed morphologies. Our results highlight the importance of

a specific form of taper in maximising current transfer and equalising synaptic inputs.

Dendrites perform an array of non-linear computations involving active processes and

local inhibition. The general principle of global passive optimality does not explain ev-

ery facet of dendritic function, but does provide a new intuition. Interestingly, for the

dendrites where current transfer loss was largest because of either the size (the apical
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Figure 5.3: Real dendrites are constrained by current transfer optimality. (A) Scatter
plots of measured radius against optimal radius and correlation coefficients for different cell
classes. (B) Average current transfer to the root from different cell classes with (from left
to right) constant, measured, and optimal radii. (C) Examples of reconstructed sample
morphologies (black) and the same morphologies with optimal diameter profiles (red). The
neurons shown in this figure are two types of fly neurons (HS cell and VS cell with specific
membrane conductance of gl = 5 × 10−4 S cm−2) and three mammalian neurons (dentate
gyrus granule cells with gl = 4× 10−5 S cm−2, and cerebellar Purkinje cells and neocortical
Layer V neurons with gl = 5× 10−5 S cm−2).
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dendrite of the pyramidal cell) or because of a high membrane conductivity (as was the

case in the fly neurons), the diameters tended to be better predicted by optimal current

transfer. Where cells deviate substantially from passive optimality, for example specifi-

cally along the trunk of the apical dendrite of a pyramidal cell or across a Purkinje cell,

there is evidence that these sections of dendrite favour functions other than the unidi-

rectional propagation of excitatory synaptic currents towards the soma. Futhermore, in

active tissue distal inputs may be additionally filtered by the membrane conductance

changes induced by activation of proximal excitatory and inhibitory synapses. A full

study of temporal effects would account for this and may be able to explain more aspects

of dendritic optimality.

We have used the fact that voltages in dendrites typically decay much more quickly

than radii to make a simple and accurate approximation to the propagation of currents

across real dendritic trees. The compact form of the voltage approximation allows for

a straightforward reproduction of the standard results of cable theory (Rall 1959; Rall

1969; Rall and Rinzel 1973). Further, this result allows the continuous optimum taper

profile for transmitting synaptic currents to the soma to be deduced. The optimal

voltage profile tallies with notions of both dendritic democracy (Magee and Cook 2000;

Häusser 2001; Timofeeva et al. 2008) and energy optimisation (Cuntz et al. 2007) and

provides a close match to reconstructed dendritic morphologies across a range of cell

classes. The simple forms of both voltage and optimal radius allow a clearer intuitive

understanding of the function of dendritic trees.
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5.3 Supplementary material: Overview

The body of the paper gives the key results and their implications, the derivations and

justifications are given below. Firstly, we give a derivation of the cable equation for an

arbitrary radius profile. The resulting generalised cable equation is well known, but this

derivation is rarely stated. We then define the multiple scales approximation allowing

a solution in steady state and derive the approximate response to an injected synaptic

current in a cable with a closed boundary. We discuss the regions of real dendrites where

this approximation holds and demonstrate that is a general phenomenon.

We demonstrate the utility of the approximation in more general situations: showing

how to produce a higher-order approximation, resolve transients and compute the voltage

in a complex dendritic structure. The penultimate section gives the derivation of the

optimal radius profile as a perfect-square quadratic taper and describes the algorithm

for constructing a quadratic equivalent cable from a real dendritic morphology. Finally,

we describe the data and numerical techniques used.

5.4 Derivation of the cable equation for an arbitrary den-

dritic radius profile

Consider a section of dendrite with continuously varying radius r(x). Take a section of

cable from x to x + ∆ with voltages V (x) and V (x + ∆) at the respective ends. Then

Ohm’s Law gives that the current I flowing through this segment obeys

V (x+ ∆)− V (x) = −IR (5.5)

where the resistance R is the resistance of the segment given by

R =
ra∆

2∫ x+∆
x Ac(s)ds

(5.6)

for ra the axial resistance and Ac(x) = πr2(x) the cross-sectional area of the dendrite

at x. Rearranging the first equation to solve for I gives

I = −
∫ x+∆
x Ac(s)ds

ra∆

V (x+ ∆)− V (x)

∆
(5.7)

and taking the limit ∆ ↓ 0 gives the current-voltage relationship

I(x) = −Ac(x)

ra

∂V

∂x
(5.8)
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The capacitative and leak currents over the region (x, x+ ∆) obey respectively

IC(x) = CAs(x, x+ ∆)
∂V

∂t

Il(x) = glAs(x, x+ ∆)(V − El)
(5.9)

for C the capacitance and gl the conductance per unit area and

As(x, x+ ∆) = 2π

∫ x+∆

x
r(s)

√
1 + (r′(s))2ds (5.10)

the surface area of the region. Using conservation of current, we have

IC + Il = I(x)− I(x+ ∆) (5.11)

So

C
∂V

∂t
= gl(E0 − V (x))− ∆

As(x, x+ ∆)

I(x+ ∆)− I(x)

∆

C
∂V

∂t
= gl(E0 − V (x))− 1

2πr(x)
√

1 + (r′(x))2

∂I

∂x

(5.12)

where in the second equation we have again taken the limit ∆ ↓ 0. Combining this with

the axial current equation Eq (5.8) (and dividing by the conductance gl) gives

τ
∂V

∂t
= E0 − V +

1

2raglr(x)
√

1 + (r′(x))2

∂

∂x

[
r2(x)

∂V

∂x

]
(5.13)

This is the cable equation for an arbitrary radius function r(x). Sealed end boundary

conditions with non-negligible terminal area (at x = L) imply(
V + τl

∂V

∂t
+

1

ragl

∂V

∂x

)∣∣∣∣
x=L

= 0 (5.14)

At the proximal end, assume that an isopotential soma gives

V |x=0 = E0 (5.15)

or we allow the cable to be semi-infinite with voltages decaying as x→ −∞. The cable

is initially at rest, with

Vt=0 = E0 (5.16)

We seek to consider the propagation of a δ current injection at any point x′ proximally

towards the somatic end.
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5.5 First-order multiple scales approximation

5.5.1 Homogenous solution

Consider the homogeneous steady-state equation for v = V − El

d

dx

[
r2(x)

dv

dx

]
− 2raglr(x)

√
1 + (r′(x))2v = 0 (5.17)

with
dv

dx

∣∣∣∣
x=L

= 0 lim
x→−∞

v = 0 (5.18)

r changes more slowly as a function of x than v does, specifically r(x) = ρ(εx) for ε� 1.

It is possible to treat the ‘fast’ voltage length variable x and the ‘slow’ radius length

variable εx as independent using the method of multiple scales. Then dr
dx = ε dρdx and the

steady-state voltage equation becomes

0 = ρ2 d
2v

dx2
+ 2ερρ′

dv

dx
− 2raglρ

√
1 + (ερ′)2v (5.19)

Introducing the new variable

w = ρεv (5.20)

allows us to write the voltage equation as

0 =
d2w

dx2
−
(

2ragl

√
1 + (ερ′)2

ρ
+
ε2(ρ2ρ′′′ − 3ρρ′ρ′′ + 2(ρ′)3)

2ρ3
+

(ερ′)2

4ρ2

)
w

0 =
d2w

dx2
− f(εx)w

(5.21)

Note that
√

1 + (ερ′)2 ≈ 1+ (ερ′)2

2 and that f , the coefficient of w, will always be positive,

making the solution appropriately non-oscillatory. We seek solutions of the form

w(x) = µ(εx)e
∫ x σ(εs)ds (5.22)

for µ and σ real. Substituting this into the above equation gives at first order

w(x) =
ρ(x)1/4

(2ragl)1/4

[
Ae

∫ x√ 2ragl
ρ(s)

ds
+Be

−
∫ x√ 2ragl

ρ(s)
ds
]

(5.23)

for some constants A and B. Then v(x) is given by

v(x) =
ρ(x)1/4−ε

(2ragl)1/4

[
Ae

∫ x√ 2ragl
ρ(s)

ds
+Be

−
∫ x√ 2ragl

ρ(s)
ds
]

(5.24)
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Writing λ(x) =
√

ρ(x)
2ragl

as the distance-dependent electrotonic length gives the leading-

order form

v(x) ≈
√
λ(x)

[
Ae

∫ x 1
λ(s)

ds
+Be

−
∫ x 1

λ(s)
ds
]

(5.25)

5.5.2 Current injection

We will take an approach analogous to Green’s functions to determine the response to

a current injection of magnitude Iapp at site x′. The Green’s function g(x, x′) solves the

equation
d

dx

[
r2(x)

dg

dx

]
− 2raglr(x)

√
1 + (r′(x))2g = δ(x− x′) (5.26)

with a given set of boundary conditions. Away from x′, the solution is given by the

homogenous voltage above (Eq. 5.25), namely for x < x′

g(x, x′) =
√
λ(x)B1e

−
∫ x′
x

1
λ(s)ds (5.27)

using the fact that voltages are required to decay towards the soma. For x > x′, the

sealed-end condition gives the constants as

B2 = A2

[
2 + λ′(L)

2− λ′(L)

]
e

2
∫ L
x′

1
λ(s)

ds
(5.28)

Continuity of voltage at x′ ensures

B1 = A2(1 + k) (5.29)

for k the ratio between A2 and B2 given by the sealed end condition. Conservation of

current at the point of injection gives

g′x<x′(x
′) +

ra
πρ2(x′)

Iapp = g′x>x′(x
′)

B1

(
λ′(x′)− 2

)
+

2ra
√
λ(x′)

πρ2(x′)
Iapp = A2

(
λ′(x′) + 2 + k(λ′(x′)− 2))

) (5.30)

giving the coefficients in terms of the initial parameters as

B1 =
ra
√
λ(x′)

2πρ2(x′)

[
1 +

(
2− λ′(L)

2 + λ′(L)

)
e
−2

∫ L
x′

1
λ(s)

ds

]
Iapp

A2 =
ra
√
λ(x′)

2πρ2(x′)

[
2− λ′(L)

2 + λ′(L)

]
e
−2

∫ L
x′

1
λ(s)

ds
Iapp

B2 =
ra
√
λ(x′)

2πρ2(x′)
Iapp

(5.31)
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Figure 5.4: Regions of reconstructed dendrites where the asymptotic approximation holds
strongly. (A) Example reconstructions where ε > 0.001 highlighted in red. (B) Distribution
of ε by cell class for the morphologies described in the online material

Note that B1(x′) gives the input resistance at site x′.

5.5.3 Proximal voltage propagation

As we are primarily interested in voltage at the proximal terminal of the dendrite, we

focus on the solution in the region x < x′ and evaluate the voltage at x = 0. The

first-order approximation holds for a region of size ε−1 away from the site of current

injection.
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5.6 Validity of approximation in real dendrites

We have studied where ε � 1 in reconstructed dendritic morphologies (Fig. 5.4). Cur-

rent injection was simulated numerically across the dendritic tree and the highest ratio of

voltage change to radius change at each location was determined. The majority of recon-

structed dendrites admit very low values of ε, although termination points and branch

points can have higher values. At branch points the radius can change sharply between a

parent and daughter branch, whereas towards the end of dendrites the sealed-end effect

can cause shallower voltage attenuation.

5.7 Extending the approximation

5.7.1 Higher-order terms

To obtain approximations valid for larger values of ε, it is possible to employ a higher-

order approximation. We seek solutions of the form

w(x) = Re{µ(εx)ei
∫ x σ(εs)ds

}
(5.32)

for µ and σ real. Substituting this into the above equation and comparing real and

imaginary parts gives

2µ′σ + µσ′ = 0

ε2µ′′ + µ(f − σ2) = 0
(5.33)

The first equation gives µ2σ = A for some constant A, the second can be solved by

expanding µ and σ in powers of ε2 such that µ = µ0 + ε2µ1 and σ = σ0 + ε2σ1. Similarly,

f can be written as f0 + ε2f1 where f0 = 2ragl
ρ and f1 makes up the rest. Comparing

coefficients of ε gives

σ0 = f
1
2

0

µ0 = Af
− 1

4
0

σ1 =
µ′′0 + µ0f1

2σ0µ0

µ1 = −µ0σ1

2σ0

(5.34)

where we have derived the equations for µ from expanding the µ2σ = A equation in

each case. A comes from matching the boundary conditions as above. The second-

order approximation can give a substantially better result when ε is not very small, for

example where there is sharp taper in a narrow region of dendrite (Fig. 5.5).
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Figure 5.5: Second-order approximation provides better results when ε is larger. Simulated
(red), leading-order (black), and second-order (blue) voltage profiles for currents injected
at two different points (solid and dashed lines respectively) in the linearly tapering cable
(inset).

5.7.2 Transient solution

Consider again the full equation

τL
∂v

∂t
= −v +

1

raglr(x)
√

1 + (r′(x))2

∂

∂x

[
r2(x)

∂v

∂x

]
(5.35)

where v = V − E0 is the voltage above rest. The transform w = ρεv gives

τL
∂w

∂t
= −w +

1

f(εx)

∂2w

∂x2
(5.36)

and introducing θ such that w = θe−t/τl gives

τL
∂θ

∂t
=

1

f(εx)

∂2θ

∂x2
(5.37)

Seeking separable solutions of the form θ(x, t) = X(x) T (t) gives the relationship

τL
T

∂T

∂t
=

1

Xf(εx)

∂2X

∂x2
= −k2 (5.38)

for some constant k. Then

Tk = e
− k

2t
τl Wk ≈

√
λ(x)

ik

[
Ake

∫ x ik
λ(s)

ds
+Bke

−
∫ x ik

λ(s)
ds
]

(5.39)

with Ak and Bk determined by the boundary conditions. The voltage profile at different

times after current injection into a tapering cable is given in Figure 5.6a.
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5.7.3 Complex dendritic structures

It is possible to compute the propagation of voltage in more complex dendritic structures.

This can be done recursively from the distal points of the dendritic tree. When two child

branches with proximal conductances GC1 and GC2 respectively meet a parent dendrite

at x = L, the distal conductance of the parent will be GE = GC1 + GC2. To proceed,

we require the proximal conductance of the parent dendrite G0. The general voltage

solution in the parent dendrite can be written in terms of hyperbolic functions as

v(x) =

√
λ(x)

λ(L)

[
cosh

(∫ L

x

1

λ(s)
ds

)
+

(
λ(L)

GE
Gλ(L)

− λ′(L)

2

)
sinh

(∫ L

x

1

λ(s)
ds

)]
vL

(5.40)

where vL is the distal voltage and Gλ(L) = πρ2(L)
ra

is the cross-sectional conductance of

the distal end itself. Then the voltage at the proximal end will be v0

v0 =

√
λ(0)

λ(L)

[
cosh

(∫ L

0

1

λ(s)
ds

)
+

(
λ(L)

GE
Gλ(L)

−λ
′(L)

2

)
sinh

(∫ L

0

1

λ(s)
ds

)]
vL (5.41)

and the current flowing here will be

I0 =
vLGλ(0)√
λ(L)λ(0)

[(
λ(L)

GE
Gλ(L)

− λ′(L)

2
+
λ′(0)

2

)
cosh

(∫ L

0

1

λ(s)
ds

)
+

(
λ(L)λ′(0)

GE
2Gλ(L)

− λ′(L)λ′(0)

4
+ 1

)
sinh

(∫ L

0

1

λ(s)
ds

)] (5.42)

where Gλ(0) = πρ2(0)
ra

. Then G0 = I0
v0

, giving

G0 =
Gλ(0)

λ(0)

[λ(L) GE
Gλ(L)

− λ′(L)
2 + λ′(0)

2 +

(
λ(L)λ′(0) GE

2Gλ(L)
− λ′(L)λ′(0)

4 + 1

)
tanh

(∫ L
0

1
λ(s)ds

)
1 +

(
λ(L) GE

Gλ(L)
− λ′(L)

2

)
tanh

(∫ L
0

1
λ(s)ds

) ]

(5.43)

This allows analytic determination of the conductance across a complex dendritic struc-

ture. To determine the corresponding voltage, consider an injection of current Iapp at

a site on some section at x = x′. Along this section, the voltage can be determined in

terms of hyperbolic functions with constants fixed by the current-voltage relationships

at each end of the segment and continuity of voltage and conservation of current at the

injection site. This gives

vx>x′(x) =
√
λ(x)

[
A2cosh

(∫ x

x′

1

λ(s)
ds

)
+B2sinh

(∫ x

x′

1

λ(s)
ds

)]
vx<x′(x) =

√
λ(x)

[
A1cosh

(∫ x′

x

1

λ(s)
ds

)
+B1sinh

(∫ x′

x

1

λ(s)
ds

)] (5.44)
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with

A2 =
ra
√
λ(x′)

πρ2(x′)

[
1

ΩL − Ω0

]
Iapp = A1

B2 =
ra
√
λ(x′)

πρ2(x′)

[
ΩL

ΩL − Ω0

]
Iapp

B1 =
ra
√
λ(x′)

πρ2(x′)

[
Ω0

ΩL − Ω0

]
Iapp

Ω0 =

(
λ′(0)

2 − λ(0) G0
Gλ(0)

)
cosh

(∫ x′
0

1
λ(s)ds

)
+ sinh

(∫ x′
0

1
λ(s)ds

)
(
λ(0) G0

Gλ(0)
− λ′(0)

2

)
sinh

(∫ x′
0

1
λ(s)ds

)
− cosh

(∫ x′
0

1
λ(s)ds

)

ΩL =

(
λ′(L)

2 − λ(L) GE
Gλ(L)

)
cosh

(∫ L
x′

1
λ(s)ds

)
+ sinh

(∫ L
x′

1
λ(s)ds

)
(
λ(L) GE

Gλ(L)
− λ′(L)

2

)
sinh

(∫ L
x′

1
λ(s)ds

)
− cosh

(∫ L
x′

1
λ(s)ds

)

(5.45)

The voltage attained at the two ends of the section can be used to provide a simple

initial condition for voltages in neighbouring dendrites. The voltage profile in a simple

branched morphology is shown in Figure 5.6b.

5.8 Optimality of current transfer

It is possible to use calculus of variations to study the functions r(x) that give extremal

values of a functional J [x, r, r′]. We seek to define the radius profile that maximises

current transfer. In this case we seek to maximise the total current transfer to the

proximal end x = 0 from all injection sites x′ = 0 to x′ = L under constraints of fixed

terminal radii or total cable volume. Writing the voltage at 0 due to current injection

at x′ as v(0, x′) such that

v(0, x′) =
ra
√
λ(x′)

2πρ2(x′)

[
1 +

(
2− λ′(L)

2 + λ′(L)

)
e
−2

∫ L
x′

1
λ(s)

ds

]
Iapp

√
λ(0)e

−
∫ x′
0

1
λ(s)ds (5.46)

We seek to maximise the functional

J =

∫ L

0
v(0, x′)dx′

=

∫ L

0
Kdx′

(5.47)

where J is a functional of the functions λ(x) and
∫ x 1

λ(s)ds.
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It would be possible to consider other functionals here, for example an explicit minimi-

sation of the variance of the proximal voltage induced by current injection at different

points. This would be a more direct acknowledgement of dendritic democracy, but

would limit the strength of the energy minimisation argument. Another possible exten-

sion would be to constrain the total dendritic surface area rather than the volume due

to the added metabolic cost of constructing and maintaining neuronal membrane.

It is convenient to write Λ(x) =
∫ x 1

λ(s)ds so that Λ′(x) = 1
λ(x) and K = K[Λ,Λ′]. For

J to take a maximal or minimal value, it is necessary for the integrand K to satisfy the

Euler-Lagrange equation

0 =
∂K

∂Λ
− d

dx

∂K

∂Λ′
(5.48)

with boundary conditions following from the original constraints. Introducing the con-

stants C1 =
ra
√
λ(0)

2π(2ragl)2
and C2 = 2−λ′(L)

2+λ′(L)e
−2

∫ L
0

1
λ(s)

ds
(and noting that this requires the

total electrotonic length of the dendrite
∫ L

0
1

λ(s)ds to be conserved) allows us to write

K[Λ(x),Λ′(x)] =
C1

Λ′(x)
7
2

[
e−Λ(x) + C2e

Λ(x)
]

(5.49)

The Euler-Lagrange equations give that J will not be maximised unless Λ satisfies

0 =
9

7

[
C2e

Λ(x) − e−Λ(x)
]
− 9

2

Λ′′(x)

(Λ′(x))2

[
C2e

Λ(x) + e−Λ(x)
]

(5.50)

To solve this in terms of elementary functions we introduce a further assumption that

current is injected sufficiently far from the distal end for the contribution of ‘reflected’

current to the input resistance to be negligible (This applies more generally when consid-

ering responses to transient current injection). This assumption is equivalent to making

C2e
Λ(x) vanishingly small, giving the equation

Λ′′(x)

(Λ′(x))2
= −2

7

d

dx

[
− 1

Λ′(x)

]
= −2

7

(5.51)

Using the definitions Λ(x) =
∫ x 1

λ(s)ds, λ(x) =
√

r(x)
2ragl

, and the boundary conditions

gives (for a constant C3) √
r(x)

2ragl
= ±2

7
x+ C3

r(x) = α(L− x)2 + rL

(5.52)

where rL is the distal (minimal) radius and α is determined by matching volumes or

proximal radii.
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5.8.1 Algorithm for optimising an arbitrary dendritic tree

The final comparison of optimal dendritic taper to real morphologies requires an algo-

rithm for mapping a quadratic taper onto complex branched structures. In particular it

requires a principled consideration of the way to distribute dendritic radius at branch

points. We seek to equalise conductance at branch points using Rall’s 3
2 power relation-

ship; that for a parent radius r0, and daughter radii r1 and r2, then r
3
2
0 = r

3
2
1 + r

3
2
2 . The

ratio between r1 and r2 is defined by the lengths l1 and l2 of the two daughter branches

such that r1/l
3/2
1 = r2/l

3/2
2 . The two daughter branches appear to the parent branch to

be a single branch with length l0 = (l
3/2
1 + l

3/2
2 )2/3. The algorithm for applying these

principles to a real dendritic morphology with complex branching structure is described

below.

i. Obtaining apparent lengths. Starting at the distal termination points of the tree, path

lengths are found to the most distal branch points. The ‘apparent length’ distal to these

branch points is calculated and the process is repeated for every branch point heading

towards the root of the tree. This gives an ‘apparent length’ for the entire tree and for

the daughter branches at each brach point.

ii. Distributing radii. The initial radius taper is defined by Eq. (5.52) with L given by

the apparent length, rL by the minimal dendritic radius anywhere on the tree and an

initial estimate of the proximal radius from the physiological maximum. At every branch

point the parent radius r0 is already defined by construction and daughter radii r1 and

r2 are determined using the ‘apparent lengths’ into each branch. This is continued until

radii are assigned everywhere on the tree.

iii. Matching volumes. This procedure may produce a predicted tree with volume higher

or lower than the original morphology. The proximal radius is scaled down or up and

step ‘ii ’ is repeated until the volumes are matched and an optimal tree with identical

volume to the original tree is found.

5.9 Morphological data and numerical methods

5.9.1 Dendritic morphologies and passive parameters

Five cell classes are discussed in the paper, covering an array of functions and species.

All morphologies are publicly available. Blowfly calliphora vicina HS (25 examples)

and VS (30 examples) neuron morphologies are published with the TREES toolbox

(Cuntz et al. 2010). The passive parameters used are axial resistance ra = 60Ωcm and
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Figure 5.6: Asymptotic approximation allows recovery of classical cable properties. (A)
Time course of voltage at 5, 7.5, and 10 ms after current injection at two different sites (solid
and dashed lines respectively) on a quadratically tapering cable (inset) with τ = 20ms. (B)
Steady-state voltage profile in a simple branched structure for current injection at the site
with the highest voltage.

membrane conductance gl = 5 × 10−4 S cm−2 for both. Mouse dentate gyrus granule

cells (3 examples) are published on ModelDB (Accession no. 95960)(Schmidt-Hieber

et al. 2007). The passive parameters used are ra = 210Ωcm , gl = 4 × 10−5 S cm−2.

Rat Purkinje cells (2 examples) are published on NeuroMorpho (IDs NMO 00891 and

NMO 0892)(Vetter et al. 2001), with ra = 150Ωcm and gl = 5×10−5 S cm−2. Rat Layer

V pyramidal cells (3 examples) are published on ModelDB (Accession no. 139653)(Hay

et al. 2011), with ra = 150Ωcm and gl = 5 × 10−5 S cm−2 for both basal and apical

dendrites.

5.9.2 Numerical methods

Simulations are carried out in MATLAB using the TREES toolbox package (Cuntz et al.

2010). The numerical simulations in Figures 5.1, 5.3, 5.4, and 5.5 use standard functions

described in the toolbox. The non-parametric numerical optimisation in Figure 5.2

follows an algorithm adapted from an earlier study (Cuntz et al. 2007). The algorithm

assigns radii to seven segments of a cable modelled using the TREES toolbox and uses

the MATLAB function ‘fminsearch’ to maximise the current transfer to the proximal

end. This is repeated 50 times to produce an overall maximum. The radii of the six

distal segments are fitted to a continuous quadratic equation ax2 + bx+ c (as described

in Cuntz et al. 2007) to produce the numerical section of Figure 2.



Chapter 6

Discussion

A
s each results chapter is self-contained with its own discussion, the remarks

here will assess links between chapters and the thesis as a whole.

6.1 Introduction

In this thesis I have considered factors affecting synaptic transmission in cortex. Tem-

poral factors in the form of short-term plasticity are shown to have a number of novel

effects; the modulation of correlations in neurotransmitter release by both transient

synchrony and long-term plasticity leads to a tuning-curve in the postsynaptic firing re-

sponse. Regular spike trains are able to cross depressing synapses more efficiently than

irregular ones, but in conditions of low release probability irregular trains can induce

stronger deviations in the postsynaptic voltage. Further, this thesis provides a number

of exact analytical results and accurate approximations that clarify the functional effects

seen and form a robust foundation for further study of stochastic synaptic transmission.

The Bayesian inference described in this thesis allows direct estimation of the quantal

and dynamic parameters governing synaptic transmission from data, enabling a more

accurate understanding of synaptic function in different physiological situations. I have

also derived an accurate analytical approximation to the cable equation for arbitrary

radius profile and used this to demonstrate the optimal form of taper to passively max-

imise and equalise the propagation of synaptic currents towards the soma. That this

form predicts the radius profile of a variety of cell classes suggests that maximisation of

current transfer is a genuine constraint for the architecture of individual neurons.

The functional results have wider implications for the propagation of signals in neuronal

networks. Synchrony in a population can arise either from joint sensory inputs (de

105
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Charms and Merzenich 1996; Baker et al. 2001) or intrinsically, through the connectivity

of the neurons (Aertsen et al. 1989). The finding that individual synaptic weights

optimally balance synchrony suggests that, alongside being tuned to inputs encoded

by synchrony, there will be a trade-off between the degree of clustering in a network

and the strength of connections; potentially relating network motifs (Perin et al. 2011)

with the known distribution of cortical synaptic weights (Markram et al. 1997). The

fact that bursty spike trains are particularly suited to inducing large deviations in the

postsynaptic voltage when the initial vesicle release probability is low is intuitive, but

the effect is also highly dependent on the release site number. Indeed the developmental

decrease in release probability with maturity (Reyes and Sakmann 1999; Frick et al.

2007) means that synapses will become better discriminators of correlations in input

statistics with age, making them more ‘tunable’ via long-term plasticity. Together these

two sets of results provide a robust analytical description of the effects of long-term

plasticity in modulating the postsynaptic response to correlations both between neurons

and within spike trains.

The description of synaptic function in these two chapters has a qualitative dependence

on the model parameters; n determines the postsynaptic sensitivity to crosscorrelations,

p influences the effect of autocorrelations, and a and τD determine the sharpness of

the tuning. Obtaining accurate and reliable estimates of these parameters is therefore

crucial to determining which synaptic features are most salient in different cortical re-

gions and different developmental states. The Bayesian approach presented in this thesis

allows recovery of the probability distribution of these parameters given the available

data. This allows accurate estimation of the parameters and quantifies the uncertainty

in these estimates. The novel derivation of a method for calculating the exact likeli-

hood function means that physiological parameters can be directly inferred for the most

common synaptic models (Abbott 1997; Tsodyks et al. 1998; Fuhrmann et al. 2002;

Fuhrmann 2004), and extends the overall utility of other Bayesian approaches (Bhumbra

and Beato 2013; Costa et al. 2013).

The spatial distribution of anatomical contacts in the postsynaptic dendritic tree is

another major factor in understanding synaptic transmission. The coefficient of variation

of somatic ‘mini’ EPSPs is large enough to suggest that there may be a large difference

between EPSPs evoked at different anatomical contacts (Robinson 1976; Hanse and

Gustafsson 2001; Franks et al. 2003). It is therefore important to distinguish distance-

based attenuation from potential variation in the synaptic parameters at an individual

anatomical contact (Koch et al. 1983; Koch et al. 1990). The result in my final

chapter that dendritic trees appear to passively optimise and equalise somatic current

flow falls in line with the idea of ‘synaptic democracy’ (Jaffe and Carnevale 1999; Häusser

2001; Timofeeva et al. 2008) and is further evidence that somatic EPSPs from different
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presynaptic neurons, or at least those that come from a similar source, may generally be

treated as equivalent at the level of the assumptions in the first two chapters. Whilst the

complexity of individual neurons, with active dendritic processes and complex patterns

of inhibition, means that such an assumption is far too crude to work for individual cells,

it represents a step towards extracting the spatial features of neuronal transmission most

salient at the mesoscopic level of thousands to tens of thousands of neurons (Pinsky and

Rinzel 1994; Herz et al. 2006). This can be seen in the context of other attempts to

better describe specific physiological features of neuronal function in a way that is both

mathematically tractable and capable of generating new insights into the behaviour of

brain circuits (Fourcaud-Trocmé et al 2003; Brette and Gerstner 2005; Harrison et al.

2015).

6.2 Extensions

In addition to the extensions mentioned individually in each chapter, the thesis as a

whole presents a number of further possibilities. The thesis separately addresses corre-

lations between neurons and within a spike train. As the higher-order correlations within

a presynaptic population are an important determinant of neuronal response (Kuhn et

al. 2003), it is critical to define the correlation structure correctly. When individual

neurons display autocorrelated spike times, the number of correlations between neurons

to study is so large that any choice appears arbitrary. One notable example is the phase-

locked periodic stimulus used in the numerical study of de la Rocha and Parga (2005)

to generate a presynaptic spiking activity that displays both forms of correlation. This

technique can, however, only be applied to the entirety of a population (or to a defined

and unchanging subsection of that population) and generalisation is difficult. To define

a physiological correlation structure containing both aspects is likely to require analy-

sis of spiking data at a scale that is not readily obtainable with current experimental

techniques.

Applying Bayesian inference to synaptic datasets reveals that there can be considerable

uncertainty in synaptic parameters under normal experimental protocols. As differ-

ent regions of parameter space can imply qualitatively different responses to different

stimulus patterns, there is an opportunity to assign broader probabilities of synaptic

behaviour alongside the original parameters. Costa et al. (2013) used the full distri-

butions of their inferred parameters to accurately cluster synaptic connections between

different cell classes. The results in chapters 2, 3, and 4 would allow such methods to

be extended into clustering synapses functionally, particularly as the quantal inference

elucidates the effect of the release site number in tuning sensitivity to correlation.
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There is the direct possibility of incorporating a spatial component into the Bayesian

analysis; recovering the possible number of anatomical contacts as well as their distance

from the soma and any interference effects due to one synapse lying ‘on-path’ between

another and the soma (Koch et al. 1983). This would involve resolving the somatically

recorded EPSPs into separate components arising from separate contacts and applying

a spatial analysis to resolve the likely pattern of anatomical connections. Such a so-

matically based technique could by easily verified by cellular reconstructions and would

provide a simple and more scalable counterpart to current experimental manipulations

of individual contacts (Trigo et al. 2012; Park et al. 2012).

Finally, the research described here provides the opportunity to investigate both spatial

and temporal synaptic effects at a single neuron level (Poirazi et al. 2003; de Sousa

et al. 2015). The negative correlations in vesicle release caused by synaptic depression

have the potential to induce a rich and complex array of somatic voltage responses to

distal stimulation (Fox 1985; Fox and Chan 1985; Banitt et al. 2005; Frick et al. 2008).

The range of responses would be strongly influenced by factors such as active dendrites

(Llinás 1988; London and Häusser 2005) and time- (Koch et al. 1983) and location-

(Gidon and Segev 2012) dependent inhibition, as well as the intrinsic complexity of a

branched dendritic tree. To gain an intuitive and scalable mathematical description of

a neuron receiving temporally complex and spatially distributed inputs would require

accurately estimating physiological parameters and extracting the salient factors that

lead to spiking outputs.

6.3 Concluding Remarks

The human brain is a hugely complex organ, containing hundreds of trillions of cortical

synapses, each of which has an effect dependent upon its history and the location of

its contacts in the postsynaptic dendritic tree. In this thesis I have presented research

revealing novel aspects of synaptic function and derived exact quantitative models de-

scribing previously known phenomena. I have developed mathematical tools to infer

and describe the stochastic, quantal, and plastic nature of synaptic transmission and

accurately approximated the voltage in passive dendrites. Together these results make

some progress towards understanding the temporal and spatial factors that underpin

the fiendish complexity of synaptic transmission in cortex.
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Hay E, Hill S, Schürmann F, Markram H, and I Segev. Models of neocortical layer 5b pyramidal

cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational

Biology 7(7), 2011.

Hebb D. The organization of behavior: A neuropsychological theory. Wiley, 1949.



Bibliography 114
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