Original citation:

Boyes, H. A., Norris, P., Bryant, I. and Watson, Tim (2014) Trustworthy Software :
lessons from “goto fail' & Heartbleed bugs. In: 9th IET International Conference on
System Safety and Cyber Security (2014), Manchester, United Kingdom, 15-16 Oct
2014. Published in: 9th IET International Conference on System Safety and Cyber
Security (2014) pp. 1-7.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/80082

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of
the University of Warwick available open access under the following conditions.
Copyright © and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility
before being made available.

Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge. Provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

Publisher’s statement:

This paper is a postprint of a paper submitted to and accepted for the 9th IET
International Conference on System Safety and Cyber Security and is subject to
Institution of Engineering and Technology Copyright. The copy of record is available
at IET Digital Library.

A note on versions:

The version presented here may differ from the published version or, version of
record, if you wish to cite this item you are advised to consult the publisher’s version.
Please see the ‘permanent WRAP URL’ above for details on accessing the published
version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

go.warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/80082
mailto:wrap@warwick.ac.uk

Trustworthy Software: lessons from ‘goto fail’ & Heartbleed bugs

H A Boyes*, P Norris', I Bryant*, T Watson*

* Cyber Security Centre, WMG, University of Warwick, UK. (hblibltw @warwick.ac.uk)
Y Cyber Security Centre. De Montfort University, UK (pdn@dmu.ac.uk)

Keywords: Heartbleed, trustworthy software, software de-
fect, embedded systems, cyber security.

Abstract

In the first four months of 2014, two major vulnerabilities were
announced affecting operation of the Transport Layer Security
(TLS) protocol, which is used by applications to secure Inter-
net communications. The ‘goto fail’ bug affected Apple’s iOS
and OS X software and the ‘Heartbleed’ bug affected versions
of the OpenSSL software. Whilst the Apple bug was serious
because it affected a wide range of Apple products, the Heart-
bleed bug was of greater significance due to widespread use of
the OpenSSL library. This paper considers the lessons to be
learned from these incidents. It examines how the use of the
Trustworthy Software Framework (TSF) developed by the au-
thors could have helped to reduce the risk of a major bugs like
‘goto fail’ and Heartbleed. It also examines the responsibilities
of developers where they use third party libraries and the need
for appropriate due diligence. The paper also makes recom-
mendations about how incidents like this should be handled to
avoid confusing and contradictory messages being given.

1 Introduction

Security of Internet communications, including message au-
thentication and message integrity, are key features required to
undertake many transactions. Without these features there are
risks of fraud, impersonation and loss of sensitive commercial
or personal information. The Transport Layer Security (TLS)
protocol [1] provides cryptographic protection of Internet com-
munications through the production and exchange of a session
key, which is then used to encrypt data between the two par-
ties. The protocol is in widespread use, protecting applications
such as web browsing, email, instant messaging, VOIP, en-
abling virtual private networks (VPNs) and protecting access
to embedded systems software.

In the first half of 2014, there were two serious cyber security
incidents related to errors in the software implementation of
the TLS protocol. The first, in February, related to Apple Inc’s
implementation of the protocol in its operating systems, this
defect was referred to by the media as the ‘goto fail’ bug. The
second, in April, concerned a defect in seven versions of the
OpenSSL implementation, this defect was widely referred to
in the media as the Heartbleed bug.

This paper examines both bugs and the failure of the devel-
opers to detect them before they were incorporated into live
systems or applications. Responses from the developer com-
munity are considered, as is coverage of the bugs in the me-
dia. Both bugs raise serious questions about software quality,
whether developed commercially as in Apple’s case or as part
of an open source project such as OpenSSL. The paper con-
siders the lessons to be learned from both incidents. It exam-
ines how use of the Trustworthy Software Framework (TSF)
could help developers to reduce the risk of a major bugs like
‘goto fail” and Heartbleed. It also examines the responsibilities
of developers where they use third party libraries, such as the
OpenSSL library, and the need for appropriate due diligence.
The paper makes some recommendations about how incidents
like this should be handled to avoid confusing and contradic-
tory messages being given.

2 The Transport Layer Security (TLS)
protocol

The Transport Layer Security (TLS) protocol was first defined
in 1999 [2] as Version 1.0, which was obsoleted by Version 1.1
in 2006 [3], which in turn was made obsolete by Version 1.2 in
August 2008 [1]. The protocol provides communications secu-
rity over the Internet by allowing client/server applications to
communicate in a way that is designed to prevent eavesdrop-
ping, tampering, or message forgery. The protocol is indepen-
dent of the application(s) using it, and is intended to deliver
both privacy and data integrity between the two communicat-
ing applications. The protocol comprises two layers: the TLS
Record Protocol and the TLS Handshake Protocol.

The TLS Record Protocol operates at the lowest level, provid-
ing connection security that has two basic properties, the con-
nection is private and reliable. It is used to encapsulate various
higher-level protocols. One such protocol is the TLS Hand-
shake Protocol, which allows the server and client to authenti-
cate each other, and to negotiate an encryption algorithm and
cryptographic keys before the application transmits or receives
any data.

The TLS Handshake Protocol provides connection security
that has three basic properties:
e The peer’s identity can be authenticated;

e The negotiation of a shared secret is secure, i.e. cannot be
accessed by an eavesdropper;

e The negotiation is reliable, i.e. cannot be modified with-
out detection.

The TLS protocol has a number of extensions [4], one of which
is the Heartbeat extension [5] that delivers keep-alive function-
ality without performing any renegotiation. This allows a se-
cure connection to be maintained for a period where there is
not continuous data transfer. For example, when a user is com-
pleting a secure web form there may be no traffic between the
server and the browser from the point where the form is dis-
played in the browser until the user submits the form. The
Heartbeat protocol runs on top of the Record Protocol and
consists of two message types: HeartbeatRequest and Heart-
beatResponse. When one of the communicating parties issues
a HeartbeatRequest message, the other party should immedi-
ately respond with a HeartbeatResponse message.

3 Apple’s ‘goto fail’ bug

A serious bug had been present in the Apple’s operating sys-
tem software for over a year affecting the implementation of
the TLS protocol, which prevented the checking of digital sig-
nature certificates, and thus prevented the authentication of
a peer’s identity. The Apple ‘goto fail’ bug became public
knowledge on 21 February 2014, when Apple posted a secu-
rity advisory [6,7] and issued an urgent security update for the
vulnerable i0S software. The affected software was running
on a number of Apple platforms, including iPhones 4 and 5,
iPod touch (5th generation), and iPad 2. The advisory stated
the impact was that "An attacker with a privileged network po-
sition may capture or modify data in sessions protected by SS-
L/TLS". The cause of the problem was described as the secure
transport protocol was failing to validate the authenticity of the
connection. This was being addressed in the update by restor-
ing the missing validation steps.

In addition to the impacted iOS software, the bug also affected
some versions of Apple TV, and versions of the Apple OS X
10.9.x, which runs on Mac Server and MacBook product lines.
The Mitre CVE filing [8] indicated that the cause of the vul-
nerability was that the software did "not check the signature
in a TLS Server Key Exchange message, which allows man-
in-the-middle attackers to spoof SSL servers by (1) using an
arbitrary private key for the signing step or (2) omitting the
signing step".

An analysis of the source of the defect published the following
day [9] included a quote from Apple’s published code [10], see
Listing 1. The bug was caused by the presence of the repeated
‘goto fail;’ line. The first ‘goto fail’ is correctly associated with
the ‘if” statement but the second is not conditional, therefore
causing the code to always jump to the ‘fail’ label from the
second ‘goto fail line’. At this point in the code, the SHAI
update operation will have been successful, and the value of the
‘err’ variable will therefore always contain a successful value
so the signature verification can never fail. As a consequence
of this error, there is no proof that the server possesses the
private key matching the public key in its certificate.

static OSStatus

SSLVerifySignedServerKeyExchange (
SSLContext xctx, bool isRsa, SSLBuffer
signedParams , uint8_t *xsignature ,

Ulntl6 signaturelLen)
{
OSStatus err;
if ((err = SSLHashSHA1.update(&
hashCtx , &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHAI1.update(&
hashCtx , &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1l. final(&

hashCtx , &hashOut)) != 0)
goto fail;
fail :
SSLFreeBuffer(&signedHashes) ;
SSLFreeBuffer(&hashCtx) ;
return err;
}

Listing1 - Partial listing of sslKeyExchange.c

On 25 February, Apple released OS X 10.9.2 [11, 12] to patch
the defect in this product range. The bug was widely covered,
explaining that it could result in snooping on sensitive transac-
tions through man-in-the-middle attacks, and consumers were
advised to download and install the updates [13—15]. Until
the patch was installed consumers were advised to avoid un-
trustworthy network and WiFi connections when undertaking
sensitive transactions, e.g. online banking. Reports highlighted
how it was "painfully easy" to mount such attacks on any pub-
lic network, e.g. the attacker could be in "the same Starbucks
as you" [11].

4 OpenSSL’s Heartbleed bug

Barely six weeks after the announcement of the ‘goto fail’ bug,
the Heartbleed bug was making news. The bug simultaneously
discovered by Codenomicon and Neel Mehta of Google Secu-
rity [16] was disclosed on 7 April. The bug even had its own
logo, see Figure 1, and received significant coverage [17-20].
Compared to the ‘goto fail’ bug the headlines were more dra-
matic. Security researchers highlighted a number of vulnerable
websites, including Twitter, GitHub, Yahoo, Tumblr, Steam,
Flickr, HypoVereinsbank, PostFinance, Regents Bank, Com-
monwealth Bank of Australia, and the anonymous search en-
gine DuckDuckGo [21]. It was reported that "around two-
thirds of websites are vulnerable to so-called ‘heartbleed hack-
ers’", and facilities to check websites for Heartbleed vulnera-
bility were reported in the mainstream media [22]. Conflicting

advice was offered to the public — either to change all their
passwords [23], or to wait until an affected website has been
fixed before logging in to change passwords [24-26]. There
was some confusion over the nature of Heartbleed, with some
news reports referring it as a virus [27]. The bug particularly
caught UK media attention when Mumsnet was hacked [28].

Figure 1 - Heartbleed logo (©Codenomicon

The Heartbleed bug affected the TLS implementation in
OpenSSL 1.0.1 before version 1.0.1g. These versions do not
properly handle Heartbeat Extension packets, which therefore
allows remote attackers to obtain sensitive information from
process memory via crafted packets that trigger a buffer over-
read [29]. The bug was caused by improper input validation
as a result of a missing bounds check in the handling of
the Transport Layer Security (TLS) Heartbeat extension. A
"Heartbeat Request" message comprises a payload, e.g. a
text string, and the payload’s length is represented as a 16-bit
integer. When the receiving computer receives a "Heartbeat
Request" message it should return the exact payload to the
sending computer. By creating a malformed payload where
the payload length was greater than the length of the actual
payload, due to the code’s failure to perform a failure to
bounds check, an attacker can read up to 64KB of memory.
This potentially allows retrieval of sensitive or privileged
information including encryption secret keys, usernames,
passwords and user data.

/% Read type and payload length first x/
if (1 + 2 + 16 > s—>s3—>rrec.length)
return 0; /x silently discard x/

hbtype = *p++;
n2s(p, payload);
if (1 + 2 + payload + 16 > s—>s3—>rrec.
length)
return 0; /x silently discard per RFC
6520 sec. 4 x/
pl = p;

Listing 2 - Code added to fix the Heartbleed bug

The problem occurred in two modules (ssl/d1_both.c and ss-
1/t1_lib.c) and was fixed by addition of six lines of code to

both, see Listing 2. This code does two things. The first check
stops zero-length heartbeats. The second check checks to make
sure that the actual record length is sufficiently long [30]. Ef-
fectively the fix ensures that the software will ignore Heartbeat
Request messages that deliver more data than provided by their
payload.

Unfortunately the Heartbleed problem was not limited to web-
sites as the OpenSSL code was embedded in a number of prod-
ucts, including IP phone systems, video conferencing equip-
ment, VPN software and consumer routers [31-33]. Possibly
the most serious systems vulnerabilities identified are in in-
dustrial control systems, with many major vendors impacted
by the bug [34].

5 The Trustworthy Software Framework

Through the Trustworthy Software Initiative (TSI) [35] the au-
thors developed the Trustworthy Software Framework (TSF)
[36], a reference to the existing body of knowledge, which in-
cludes functional safety, information security, and systems and
software engineering, which provides a consensus collation of
good practice for software trustworthiness. The TSI has de-
fined software trustworthiness in terms of five characteristics:

e Safety — the ability to operate without harmful states;

e Reliability — the ability to deliver functionality or services
as specified;

o Availability — the ability to deliver functionality or ser-
vices when required;

e Resilience — the ability to transform, renew and recover
in timely response to events;

e Security — the ability to remain protected against acciden-
tal or deliberate attacks.

The TSF recognises that the level of trustworthiness required
will vary according to the software’s planned or actual use.
It therefore requires the software to be considered in terms
of the role it plays in the overall system or service, and the
impact that any defect or deviation would have on the perfor-
mance of that system or service. A formal assessment should
be used to establish the required Trustworthiness Level (TL) of
the software [36]. For example, where a software component
has critical or significant impact on system functionality and its
role is paramount, i.e. the software provides the sole source of
trustworthiness in the component, sub-system or system, then
this would require the highest level of software trustworthiness
(TL4) to be delivered through predicable processes.

The TSF is based on four core concepts:

e Governance — the need to establish confidence in the trust-
worthiness of the software, which is achieved by having
appropriate governance and management arrangements in
place to address risk, control and compliance. The appro-
priateness of governance measures will be determined by

the stakeholders’ needs and the environment in which the
software is used.

e Risk — an assessment of the risk that the software will fail
to meet the users’ and stakeholders’ needs. This includes
scoping those risks that are influenced by external depen-
dencies, understanding the consequences of any software
failure, error or non-performance in view of the adver-
sities (risks and hazards) that may be faced and ways in
which the software may be susceptible.

e Controls — software trustworthiness is achieved through
the application of risk management, to enable identifica-
tion and, where practical, the elimination of risks through
the use of appropriate controls. These controls typically
fall into one of the following categories: personnel, phys-
ical, procedural and technical.

e Compliance — having adopted governance measures, un-
derstood the relevant risks and decided what control mea-
sures to adopt, developers and users of the software are
required to implement the governance regime and apply
the control measures.

The TSF has used these concepts to define a set of twenty nine
principles related to software engineering good practice [36].

6 Discussion

In any application where it is implemented, the TLS soft-
ware is a fundamental security component that provides se-
curity of communications and assurance of communications
integrity. When assessing the required trustworthiness level of
TLS software, it would be reasonable to assert that any fail-
ure of TLS functionality is likely to have a critical impact and
that it has a paramount role in maintaining communications
security. For example, when a customer purchases goods on-
line with a credit card or uses online banking services, the TLS
software provides the sole source of trust that exchanges be-
tween the user’s web browser and the relevant web server are
protected from interception and fraud. Given the high level of
trustworthiness required of this software, users would expect
the software developers to have delivered bug free code.

There has been public analysis and comment on the code qual-
ity and software development practices related to both bugs. Of
the twenty nine TSF principles referred to above, three controls
are of particular significance to both ‘goto fail’ and Heartbleed.
These are choice of appropriate tools, the practice of hygienic
coding and the performance of internal pre-release review.

6.1 Choice of appropriate tools

The software development tools used throughout the software
lifecycle should be appropriate for the level of trustworthiness
that needs to be achieved. For code that requires the highest
level of trustworthiness, the choice of programming language
and compilers, the use of integrated development environments

(IDEs) and test tools, and appropriate configuration of all the
tools used can contribute to improved code quality.

In the case of the Apple software, the code between the second
‘goto fail’ line and the ‘fail’ label statement was dead or un-
reachable code. This could have been detected when the code
was compiled if the compiler had been set up to warn about
unreachable code, i.e. the compiler needs to be correctly con-
figured to flag this type of issue [9].

Alternatively, if during unit and system level testing developers
had used appropriate test tools, e.g. a static analysis or cov-
erage analysis tools, they could have identified a lack of test
coverage of these unreachable lines. The use of an appropriate
development environment, such as the Eclipse IDE, could also
have helped with the formatting of the code, by automatically
enforcing code formatting when the code is saved [37].

Following notification of the Heartbleed bug and the subse-
quent increased scrutiny of the OpenSSL code, the OpenBSD
project team announced that they were going to fork and refac-
tor the code [38]. There were clearly serious issues with the
quality of the OpenSSL code, as within days the OpenBSD
team reported that they had "already removed 90,000 lines of
C code and 150,000 lines of content" [39]. This swift removal
of a large volume of redundant code and other content raises
serious questions about the governance regime and the quality
of the tools used to manage the code base. Indeed the presence
of such a large volume of extraneous code would hamper the
use of a number of test tools due to the ‘noise’ created by er-
rors or warnings from the unwanted code obscuring new errors
in recently written or modified code.

6.2 Practice of hygienic coding

To reduce the degree to which defects may occur or be ex-
ploited, production of software should be in accordance with
clear coding standards. Hygienic coding practice include for-
matting of code, initialisation of variables, validating inputs
and outputs, error handling, naming conventions, explicit man-
agement of resource access and removal of detritus.

The code affected by the ‘goto fail” bug was poorly formatted,
which made it easier for errors to be missed during code re-
views [9,37]. As illustrated in Listing 3, if the coding style
made proper use of white space, tabs, newlines and curly
braces "{ }", it would have been much easier to spot the re-
peated line. Code formatting is an important security feature,
which contributes to the readability and understanding of the
code. If done by hand, formatting of code can be tedious
and error prone, however with the right choice of development
tools it can be automated.

Whilst in the C programming language it is not mandatory
to use curly braces as part of an ‘if’ statement, applying
appropriate coding standards reduces the opportunity for this
type of bug. For example, if the coding standard require
that "Braces shall always surround the blocks of code (a.k.a.
compound statements), following if, else, switch, while, do

and for statements"” then the presence of the second ‘goto fail’
line would be much easier to spot during any code review [40].

if ((err =
hashCtx , &serverRandom))
goto fail;

SSLHashSHAI1 . update (&
1= 0) {

}

if ((err = SSLHashSHA1.update(&

hashCtx , &signedParams)) != 0) {
goto fail;

}

goto fail;

if ((err = SSLHashSHA1. final(&hashCtx
, &hashOut)) != 0) {
goto fail;

}

Listing3 - Illustrating improved formatting of code

The OpenSSL software suffered from a number of hygienic
coding issues, not least the volume of extraneous code men-
tioned in Section 6.1. The presence of this code represents a
serious issue, which led to the accusation that OpenSSL as a
project was "not developed by a responsible team" [41]. The
OpenBSD team also identified with the way that the OpenSSL
team had managed memory allocation, including the develop-
ment of code which bypassed or replaced core functionality
and therefore undermined the potential detection of the error.

The Heartbleed bug highlights a key security failure that un-
derpins a number of security vulnerabilities (e.g. SQL injection
and cross-site scripting), namely the need to validate inputs and
outputs. The concepts of out-of-bounds reads and buffer over-
reads are well known weaknesses in the C programming lan-
guage [42,43], which should therefore be explicitly addressed
when reading from buffers and memory. As illustrated in List-
ing 2, only a few lines of code were actually necessary to pre-
vent the bug.

6.3 Performance of internal pre-release review

To deliver trustworthy software the TSF recommends that or-
ganisations perform internal pre-release reviews. These re-
views should form part of an integration and test process,
which encompasses QA testing, load and performance testing,
regression and acceptance testing prior to release for customer
or public use. The sophistication and rigour of the testing will
depend upon the target trustworthiness level, and for the higher
level there may be a need for additional security or safety re-
lated tests.

The ‘goto fail” bug suggests there were serious inadequacies in
the testing regime Apple applied to the TLS software. Specif-
ically, there should have been a test case for a bad SSL cer-
tificate, which would have allowed the development team to

test the third condition. If the software failed to detect the bad
certificate this should have been investigated. As mentioned in
Section 6.1 there also appear to be failures to test code cover-
age and look for unreachable code.

With protocols like TLS there is clearly a need to ensure that
they are robustly engineered and can handle defective or ma-
licious inputs in a trustworthy fashion. The developer of the
faulty Heartbeat code is one of the authors of RFC6520 [5] and
therefore should have a good understanding of what was re-
quired to ensure that the Heartbeat extension was trustworthy,
The Heartbleed bug is not one that would have been detected
by simplistic pass/fail testing, which could have detected the
failure of the Apple code to detect an invalid certificate. The
Hearbleed bug required testing that was aimed at validating the
robustness of implementation of the Heartbeat protocol. Use of
techniques such as fuzz testing might in this case have helped
to identify the impact of malformed messages.

6.4 Handling the bugs

The ‘goto fail’ bug was handled moderately well, but there
was scope for improvement in the alerts that were conveyed
to the product users. The initial reports suggested that the bug
was confined to the iOS product range, i.e. iPhones, iPads and
iPods. It soon emerged that the bug also affected other Apple
products, most significantly from a cyber security perspective
the Mac Book and Mac Server ranges. This led to some con-
fusion over the impact of the bug and the necessary short term
measures to reduce the risk. In essence the key issue for many
Mac Book users was to avoid use of untrusted public network
connections, such as the WiFi networks in public coffee shops,
bars, etc. until the OS X patch was available and installed on
their Mac Book. From overall business risk, impact and dis-
ruption perspectives, this was a serious bug affecting a large
number of devices worldwide. Apple deployed a fix for i0S
systems on the day the bug was made public and within 4 days
thereafter had deployed a patch for the OS X operating sys-
tem. The fact that the bug only affected Apple products made
deployment of the fixes easier, with Apple using its software
update channels to push the updates to software end users.

From overall business risk, impact and disruption perspectives
the Heartbleed bug was was significantly more serious that the
‘goto fail’ bug. This is because of OpenSSL’s widespread use
within the Internet’s server infrastructure, its extensive use em-
bedded in products and the diverse nature of organisations that
have used the OpenSSL library within their products. From
a user perspective, the situation was complicated by the con-
flicting advice and the initial erroneous labelling of the bug as
a virus. Serious code quality issues were subsequently iden-
tified in the OpenSSL library raising concerns about the due
diligence applied by large companies when they chose to in-
corporate the library in their products. Given the issues identi-
fied by the OpenBSD team, it is unlikely that the code quality
of this library had been examined by any of the companies.
Three months after the bug was announced, a major manufac-
turer of industrial control systems was still working on patches

for the OpenSSL vulnerabilities [44]. Since these vulnerabili-
ties can be exploited remotely and there are publicly available
exploits, it is not until patches have been developed and users
have deployed them on live control systems, that this bug will
no longer be an issue.

7 Conclusions

The two bugs discussed in this paper represent major secu-
rity failures that could, if exploited, cause significant damage.
They are good examples of why software trustworthiness mat-
ters, and how failure of software developers to adopt trustwor-
thy development practices exposes software users to signifi-
cant cyber security risks. There is also widespread disruption
whilst patches are deployed to affected products and systems.
The bugs illustrate how software trustworthiness is an issue for
both commercially developed and free/open-source software.
The paper examined how the application of three of the TSF
principles could have reduced the risk of these bugs being de-
ployed. If the full TSF was applied to the development of this
critical software, it is very likely that these bugs would have
been spotted and fixed prior to software release.

The confusion during the period after announcement of the
Heartbleed bug illustrates the need for authoritative sources of
advice that can provide clear advice on appropriate actions or
measures consumers and businesses should take. This is an
area that should be addressed by the various warning and re-
porting organisations, e.g. UK-CERT, WARPs, etc.

The apparent failure of companies to exercise due diligence
on the quality of software libraries they incorporate into their
products is a serious concern. Belatedly a number of these
organisations are now providing funding to the OpenSSL to
enable investment in their development and testing. This action
is welcome and may pave the way to better support for the
open source community leading to the development of more
trustworthy software.

References

[1] Dierks, T., Rescorla, E. (August 2008). "RFC 5246: The
Transport Layer Security (TLS) Protocol, Version 1.2".
Auwailable: http://tools.ietf.org/html/rfc5246

[2] Dierks, T., Rescorla, E. (January 1999). "RFC 2246:
The Transport Layer Security (TLS) Protocol, Version
1.0". Available: http://tools.ietf.org/html/rfc2246

[3] Dierks, T., Rescorla, E. (April 2006). "RFC 4346: The
Transport Layer Security (TLS) Protocol, Version 1.1".
Auvailable: http://tools.ietf.org/html/rfc4346

[4] Blake-Wilson, S., Nystrom, M. et. al. (April 2006).
"RFC 4366: Transport Layer Security (TLS) Exten-
sions". Available: http://tools.ietf.org/html/rfc4366

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Seggelmann, R., Tuexen, M. and Williams, M. (Febru-
ary 2012) "Transport Layer Security (TLS) and Data-
gram Transport Layer Security (DTLS) Heartbeat Ex-
tension". Available: http://tools.ietf.org/html/rfc6520

Apple (2014). “About the security content of iOS
7.0.6". Available: http://support.apple.com/kb/HT6147

Crowdstrike (2014). "Details about Apple SSL
vulnerability and iOS 7.0.6 patch". Available:
http://www.crowdstrike.com/blog/details-about-

apple-ssl-vulnerability-and-ios-706-patch/index.html

Mitre (2014). "Vulnerability - CVE-2014-1266". Avail-
able: http://cve.mitre.org/

Langley, A. (2014). "Apple’s SSL/TLS bug (22 Feb
2014)" Available: https://www.imperialviolet.org/2014/
02/22/applebug.html

Apple (2014). "Partial listing of sslKeyEx-
change.c". Available: http://opensource.apple.com/
source/Security/Security-55471/libsecurity_ssl/lib/
ssIKeyExchange.c

Barrett, B. (2014). "Why Apple’s Recent Security
Flaw Is So Scary". Available" http://gizmodo.com/why-
apples-huge-security-flaw-is-so-scary- 1529041062

Apple (2014). “About the security content of OS X
Mavericks v10.9.2 and Security Update 2014-001".
Available: http://support.apple.com/kb/HT6150

Menn, J. (2014) "Apple security flaw could al-
low hackers to beat encryption”. Available:
http://www.reuters.com/article/2014/02/22/us-apple-
flaw-idUSBREA1L01Y20140222

Griffiths, S. (2014). "Was YOUR iPhone at risk of be-
ing hacked?". Available: http://www.dailymail.co.uk/
sciencetech/article-2566675/

Williams, C. (2014). "Update your iThings NOW: Ap-
ple splats scary SSL snooping bug in iOS". Avail-
able: http://www.theregister.co.uk/2014/02/21/apple_
patches_ios_ssl_vulnerability/

Codenomicon (2014). "The Heartbleed Bug". Available:
http://heartbleed.com/

Schneier, Bruce (2014). "Heartbleed". Available:
https://www.schneier.com/blog/archives/2014/04/
heartbleed.html

Curtis, Sophie (2014). "’ Heartbleed’ bug in web
technology threatens user data". The Telegraph.
Available: http://www.telegraph.co.uk/technology/
internet-security/10754169/Heartbleed-bug-in-web-

technology-threatens-user-data.html

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

(29]

(30]

Hern, Alex (2014). "Heartbleed: Hundreds of thousands
of servers at risk from catastrophic bug". The Guardian.
Available: http://www.theguardian.com/technology/
2014/apr/08/heartbleed-bug-puts-encryption-at-risk-
for-hundreds-of-thousands-of-servers

Steinberg, J. (2014). "Massive Internet Security
Vulnerability — Here’s What You Need To Do".
Forbes. Available: http://www.forbes.com/sites/
josephsteinberg/2014/04/10/massive-internet-security-
vulnerability-you-are-at-risk- what- you-need- to-do/

Prigg, M. (2014). "Major security alert over ‘heart-
bleed’ eavesdropping bug that could have infected TWO
THIRDS of sites". Available: http://www.dailymail.co.
uk/sciencetech/article-2599896/

Woollaston, V. (2014) "Are YOUR details at risk
from ‘heartbleed’ hackers?". Available: http://www.
dailymail.co.uk/sciencetech/article-2600701/

Evans, R. and Steere, T. (2014). "Internet users told to
change ALL passwords in security alert over ‘catas-
trophic’ Heartbleed bug". http://www.dailymail.co.uk/
sciencetech/article-2601096/

Hern, Alex (2014). "Heartbleed: don’t rush to update
passwords, security experts warn". The Guardian. Avail-
able: http://www.theguardian.com/technology/2014/
apr/09/heartbleed-dont-rush-to-update-passwords-
security-experts-warn

Curtis, Sophie (2014). "Heartbleed bug: which
passwords should you change?". The Telegraph. Avail-
able: http://www.telegraph.co.uk/technology/internet-
security/10756807/Heartbleed-bug-which-passwords-
should-you-change.html

Gibbs, Samuel (2014). "Heartbleed bug: what do you
actually need to do to stay secure?". The Guardian.
Available: http://www.theguardian.com/technology/
2014/apr/10/heartbleed-bug-everything-you-need-to-
know-to-stay-secure

Albert, M. (2014). "Heartbleed virus: Changing your
password may not eliminate risk". CBS Evening News.
Available: http://www.cbsnews.com/videos/heartbleed-
virus-changing- your-password-may-not-eliminate-
risk/.

MUMSNET (2014), "Mumsnet and Heartbleed as
it happened". Available: http://www.mumsnet.com/
features/mumsnet-and-heartbleed-as-it-happened

Mitre (2014). "CVE-2014-0160". Available: https://cve.
mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-0160

Cassidy, S. (2014) "Diagnosis of the OpenSSL Heart-
bleed Bug". Available: http://blog.existentialize.com/
diagnosis-of-the-openssl-heartbleed-bug.html

(31]

(32]

(33]

[34]

[35]
(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Cisco Security Advisory (2014). "OpenSSL Heartbeat
Extension Vulnerability in Multiple Cisco Products".
Available: http://tools.cisco.com/security/center/
content/CiscoSecurity Advisory/cisco-sa-20140409-
heartbleed

OpenVPN (2014). "OpenSSL vulnerability - Heart-
bleed". Available: https://community.openvpn.net/
openvpn/wiki/heartbleed

Hern, Alex (2014). "BT preparing to fix Heartbleed-
affected Home Hubs". The Guardian. Available:
http://www.theguardian.com/technology/2014/apt/16/
bt-heartbleed-home-hubs

ICS-CERT (2014). "Alert (ICS-ALERT-14-099-
01E)". Available: http://ics-cert.us-cert.gov/alerts/ICS-
ALERT-14-099-01E

TSI (2014). "About". Available: http://www.uk-tsi.org

BSI (2014). "PAS 754:2014 Software Trustworthiness.
Governance and management. Specification". BSI, Lon-
don.

van Deursen, A (2014). "Learning from Apple’s #goto-
fail Security Bug". Available http://avandeursen.com/
2014/02/22/gotofail-security/

LibreSSL (2014). "LibreSSL". Available: http://www.
libressl.org/

Seltzer, L. (2014). "OpenBSD forks, prunes, fixes
OpenSSL". Available; http://www.zdnet.com/openbsd-
forks-prunes-fixes-openssl-7000028613/

Barr, M. (2014). "Apple’s #gotofail Secu-
rity Bug was Easily Preventable". Available:
http://embeddedgurus.com/barr-code/2014/03/apples-
gotofail-ssl-security-bug- was-easily-preventable/.

McAllister, N. (2014). "OpenBSD founder wants to bin
buggy OpenSSL library, launches fork". The Regis-
ter. Available http://www.theregister.co.uk/2014/04/22/
openssl_fork_libressl/

Mitre (2014). "CWE-125: Out-of-bounds Read". Avail-
able: http://cwe.mitre.org/data/definitions/125.html

Mitre (2014). "CWE-126: Buffer Over-read". Avail-
able: http://cwe.mitre.org/data/definitions/126.html

ICS-CERT (2014) . "Siemens OpenSSL Vulnerabili-
ties". Available: http://ics-cert.us-cert.gov/advisories/
ICSA-14-198-03

Note: All websites were last accessed: 21 July 2014.

	WRAP_IET_07_12_2016.pdf
	IETSS2014_0014_final.pdf

