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Abstract

Lithium-ion batteries, suitable for Battery-electric vehicles (BEVs) due to their high energy and power densities,

and lifetime demonstrate deterioration in energy and power available at lower temperatures. It is attributed to

reduction in capacity and increase in internal resistance. Investigations are carried out to determine energy,

and power decline for four drive-cycles: FTP, NEDC, UDDS and US06. The minimum temperatures where the

battery meets the drive-cycles’ energy and power requirements are determined. The impact of regenerative-

braking and self-heating on battery performance is discussed. The minimum temperature where any drive-cycle

is met by the battery is directly proportional to its aggressiveness.

Keywords: Lithium Battery, BEV (Battery electric Vehicle), Power, Regenerative Braking, Internal Resistance

1 Introduction

Battery-electric vehicles (BEVs) are gaining prominence in providing solutions to the growing harms caused by the

increasing number of vehicles on the environment [1]. As an Internal Combustion Engine (ICE) is the key component

governing the efficiency and performance in a conventional vehicle; similarly in a BEV, it is the Energy Storage

System (ESS) [2]. An important factor in BEVs becoming commonplace is the quality of its ESS [3]. An ideal ESS

should have high energy and power density, excellent lifetime, and must be reliable for different C-rates and ambient

temperatures [4]. Batteries have been widely adopted due to their high energy and power densities, compact size and

reliability [2]. For batteries, the available energy is an indicator for the driving-range of the vehicle and the maximum

charge/discharge C-rates point to power (acceleration and regenerative-braking) performance [5]. Although Lithium-

ion batteries have become a major player in the BEV market, they suffer from severe power and energy losses at lower

ambient temperatures [6, 7]. In colder countries such as Canada, Norway, etc., where the temperatures drop down to

-30 oC, the benefits BEVs offer are offset by the effect of lower ambient temperatures [8]. It is primarily attributed to

decline in the energy and power available from the battery at such temperatures [7, 8] and can be quantified as a
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reduction in battery capacity, a lower maximum voltage (to avoid Lithium-plating [9]) and an increase in internal cell

resistance [6, 10]. The effect is amplified at the higher C-rates that are expected in legislative and real-world drive-

cycles. At lower temperatures due to a higher internal resistance, the cell/battery heats up faster [10]. This temperature

rise (self-heating) has the potential to improve battery power performance, albeit at a loss of the available energy [11].

The aim of this paper is to quantify the deterioration in energy and power available from a Lithium-ion cell/battery at

low temperature based on the change in battery capacity, voltage and internal resistance with ambient temperature.

This affects the driving-range and performance of a BEV. The analysis has been carried out on four legislative drive-

cycles such as UDDS, FTP, NEDC and US06. The paper comments on the impact of battery self-heating towards

improving charge/discharge power and its subsequent impact on available energy.

2 Li-Ion Cell at Low Temperature: Energy and Power Decline

The energy available from a battery or cell is directly proportional to the corresponding capacity [10]. During

either charge or discharge process, the rate at which voltage changes with capacity is higher at lower ambient

temperatures [9]. This is due to increase in internal cellular resistance [12] associated with slower rate of

chemical reactions taking place inside the cell [13].

Further, to prevent Lithium-plating, the maximum voltage that a cell can attain during charging is also lower at

low temperatures [14]. The power capability of a cell is strongly affected by its internal resistance and SOC

(dependent on the open-circuit voltage of the cell) [15]. Thus, the cell has limiting power capabilities

(charge/discharge) at varying ambient temperatures and SOCs [16].

2.1 Capacity, Voltage and Internal Resistance

As seen in Fig. 1, for a 40 Ah Lithium Polymer cell, for a discharge current of 40 A, its discharge capacity

declines from 40 Ah at 25 oC to ~35.5 Ah at 0 oC and eventually to ~13 Ah at -30 oC [6]. Apart from having an

impact on the energy available from a cell/battery (voltage drops faster with capacity leading to a smaller area

under the curve), a higher internal resistance at lower ambient temperature leads to lower power-capability. At

a median SOC (50%) for discharge, it is seen in Fig. 2 that the internal resistance although invariable at higher

ambient temperatures is twice the value at -30 oC (1.6 mΩ) as compared to at 25 oC (0.8 mΩ).  

Figure 1. Voltage versus Capacity for 1C Discharge at Different Ambient Temperatures [1]
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2.2 Energy and Power

The energy available from a cell/battery is defined as [10]:

� =
� ∫ � � �

� � � �
(1)

Here, ‘E’ is the energy available from the cell at the end of a charge/discharge operation, ‘V’ is the voltage of

the cell that is 3.7 V as advised by the manufacturer. ‘I’ is the instantaneous charge/discharge current for the

cell. Since, the unit for the energy available from the cell is in Ampere-hour (Ah), the value on the right-hand-

side is divided by 3600. This is based on Burke’s equation for maximum charge/discharge power [15]:

� � � � � � � � � � � � = �  (1 − � )
� � �

�

� �
(2)

Here, ‘Ptheoretical’ the theoretical maximum charge/discharge power in kW, Voc is the open-circuit voltage of the

cell, ‘R’ is the internal cellular resistance. ‘η’ is the efficiency of the cell which to maximize the value for 

‘Ptheoretical’ is taken as 0.5.

The cell cannot be discharged below the cut-off voltage (Vmin) for a particular application (2.9 V in this case)

and the maximum voltage (Vmax) allowed during charging is limited by the BMS to avoid Lithium-plating at a

particular temperature. Thus, from Fig. 1, Eqn. 2 is modified and actual Power (Pactual) is calculated as follows:

� � � � � � � =
� � �

� � � � � �
�

� �
(3)

Here, depending on whether the cell is charging or discharging, Vlim is Vmax or Vmin respectively. Also, charging

power is taken as negative and discharging power as a positive value.

3 Methodology

The energy and power demanded by a BEV has been calculated using a backward-facing model. This has been

carried out for four different legislative drive-cycles, viz. UDDS, FTP, NEDC and US06. The power-profiles

have then been modified into current-profiles to analyze the energy and power deterioration at a cell level. Based

on the formulae for available energy and maximum charge/discharge power, further analysis has been carried

Figure 2. Increase in Internal Cell Resistance al Lower Ambient Temperatures (50% SOC) [1]
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out to find out the minimum temperatures at which the cell is able to meet the four drive-cycles both in terms of

energy and power. Further, cell self-heating has also been included in the analysis to observe the impact it has

on performance. Finally comments shall be made on allowing managed regenerative-braking at subzero

temperatures and the need for a Supercapacitor-based HESS shall be evaluated.

3.1 Vehicle Model

From the speed (m/s) versus time (s) data available for different drive-cycles (UDDS, FTP, NEDC, and US06),

the power-profile is created. The following equation presents the force required to meet a particular driving

profile at every time-step (1s):

 � = ( � ∗ � ) + (0.5 ∗ � � ∗ � ∗ � ∗ � � ) + ( � ∗ � ∗ � � ) (4)

Here ‘F’ is the force required per second by the vehicle ‘v’ is the instantaneous speed of the vehicle and ‘a’ is

the instantaneous acceleration of the vehicle.

Gross Mass of the Vehicle, ‘m’ = 1945 kg, Coefficient of Drag, ‘CD’ = 0.28, Density of Air, ‘ρ’ = 1.225 kg/m3,

Frontal Area of Vehicle, ‘A’ = 2.744 m2, Gravitational Acceleration, ‘g’ = 9.81 m/s2, Friction Coefficient,‘f � ’ =

 0.01 ∗ � 1 +
�

� � �
� .

The force values ensure that the wheels are rotating at a particular angular velocity (ωw). Correspondingly, the

required torque at the wheels (τw) is also calculated. Here, ‘R’ is 0.316 m for a wheel (any) and the gear-box

ratio (G) is 7.9377.

� � =
�

�
(5) � � = � ∗ � (6)

Here R is the radii of the vehicle's wheels. Thus, using the gear-box ratio, the angular velocity and torque to be

generated by the 75 kW AC Motor can be calculated. The following equations have been used:

� � � � � � = � ∗ � �  (7) � � � � � � =
� �

�
(8)

Here, τw and ωw are the motor torque and motor angular-velocity respectively. Using the motor-efficiency map

for the 75 kW AC Motor (Figure 3), the corresponding efficiencies (η) for charge and discharge loads were 

defined.

Figure 3. Motor Efficiency Map for 75 kW A/C Motor
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Consequently, the power required and the power delivered (via regen-braking) every second from the battery is

calculated. The total energy required from the battery is calculated by adding all the instantaneous powers (both

charging and discharging) (Table 1). It has been assumed that the regenerative-braking efficiency (RE) is 100%. The

energy required is that for a single drive-cycle.

Table 1. Drive Cycle Analysis at Vehicular Level

Drive

Cycle

Energy

(kWh)

Max Accel.

(m/s2)

Maximum Discharge

Power (kW)

Max Decel.

(m/s2)

Maximum Charge

Power (kW)

FTP 2.38 1.60 47.56 -1.47 -46.69

NEDC 1.71 1.06 52.25 -1.39 -27.08

UDDS 1.56 1.47 47.56 -1.47 -27.62

US06 2.62 3.73 133.68 -3.07 -55.10

3.2 Cell/Battery Model

The cell chosen has a Lithium Polymer chemistry, has a nominal voltage of 3.7 Volts and maximum and

minimum operating voltages of 4.1 and 2.9 Volts respectively. It has a nominal capacity of 40 Ah. The pack

voltage is 380 Volts and 106 cells are arranged in series. A Lithium Polymer chemistry has been chosen as it has

one of the highest power densities amongst all Lithium chemistries [3]. The total energy available from the pack

is 15.2 kWh at 25 oC. The temperature effects on cell parameters (capacity, maximum voltage and internal

resistance) have been adopted as described in the previous sections. It has been assumed that even at lower

temperatures, all energy available from regenerative-braking can be absorbed, depending upon the efficiency of

the motor/generator. For quantifying the energy and power deterioration of the Lithium-ion cell, the energy and

power requirements for different drive-cycles shown in Table 1 are scaled down to cell level considering a serial

arrangement of cells (Table 2). The total energy available from a cell at 25 oC would be ~143.4 Wh.

Table 2. Drive Cycle Analysis at Cell Level

Drive Cycle Energy (Wh) D/C Power (W) Charge Power (W)

FTP 22.46 448.68 -440.47

NEDC 16.14 492.93 -255.47

UDDS 14.72 448.68 -260.57

US06 24.72 1261.13 -519.81
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3.3 Simulations

For energy considerations, it has been assumed that the cell/battery operates within SOC values of 75% and

25%. This entails roughly 71.7 Wh and 7.6 kWh of energy being correspondingly available from the cell or

battery. Based on the power profiles for the different drive-cycles calculated and the temperature-dependent data

available for the Lithium Polymer cell and Equation (3), a MATLAB/Simulink model has been designed to

facilitate the present analysis. The model has the current-profile as an input to the temperature-dependent cell

that calculates limiting charge/discharge power values based on Equation (3). Finally, the limiting power values

offered by the cell for a particular drive-cycle are matched with the power demanded by that drive-cycle to find

whether the cell can meet the power requirements of the drive-cycle. Also, based on the energy available from

the cell at different temperatures; the energy demanded by the drive-cycle is compared to the energy available

to find whether the battery is meeting the energy requirements of the drive-cycle. This analysis is carried out for

the NEDC, FTP, UDDS and US06 drive-cycles. Further, based on the current-profile of a drive-cycle and the

data available from the Lithium Polymer cell, the temperature rise at the end of a drive-cycle is calculated. This

temperature rise is utilized to calculate the improvement in cell operating temperature and thus increase in

charge/discharge power through self-heating. The ensuing impact on the energy available from the cell is also

analyzed. Self-heating is calculated as per the following equation:

∆ � = ∫
� � × �

� × �
� � (9)

Here, ‘ΔT’ is the cell temperature rise at the end of any single drive-cycle, ‘i’ is the instantaneous current-profile, 

‘R’ is the internal cell resistance, ‘m’ is the mass of the cell (1.01 kg), and ‘C’ is its specific heat capacity (~1000

J/kg/oC).

4 Results and Discussion

4.1 Battery Level Energy Decline at Lower Temperatures

The energy available from the battery at 25 oC using data from Fig. 1 and Equation (1) is calculated as 15.2 kWh.

As the SOC window is 50%, this gives 7.6 kWh of energy available from the battery. The energy drawn at

different temperatures (Fig. 4) is calculated based on data from Fig. 1. Initially, it is assumed that the

aggressiveness of the drive-cycle doesn’t impact the energy available from the battery pack. Based on data from

Table 1 and Figure 4, the minimum temperatures at which the battery is able to meet the energy demands of any

drive-cycle can be concluded (Table 3).

Table 3. Minimum Temperatures where Drive Cycle Energy Demands are met (Including 100% RE)

Drive Cycle FTP NEDC UDDS US06

Energy (kWh) 2.38 1.71 1.56 2.62

Temp. (oC) -21.6 -25.2 -26.4 -20.4
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For the drive-cycle with the highest energy demands (US06), 2.62 kWh, the battery fails to meet them at a higher

ambient temperature (-20.4 oC) than for the other drive-cycles. Thus, for energy considerations, the battery

performs well across all drive-cycles up to and above an ambient temperature of -20.4 oC. These results neglect

the fact that regenerative-braking is not permitted by manufacturers below 0 oC. That would lead to higher energy

demand from the battery. The corresponding effects are shown in Table 4.

Table 4. Effect of Regenerative Braking on Energy Required from Battery for Drive Cycles

Table 4 shows variation in the minimum temperatures where four drive-cycles are met for three RE values:

100%, 50% and 0%. It is seen that UDDS which has the lowest energy demand for 100% RE, has the highest

deviation between its energy demands (41%) for the three REs, while the NEDC that has least aggressive

deceleration values (Tables 1 and 2), has the lowest deviation between its corresponding energy requirements

(22%). The FTP has the greatest difference between its minimum temperature values (4.6 oC) for the three REs

evaluated as it spends the highest time amongst the four drive-cycles on braking (equivalent to maximum of 0.92

kWh of energy from regenerative-braking). The battery fails to meet the US06 drive cycle at -16.8 oC for 0%

regenerative-braking.

4.2 Cell Level Power Decline at Lower Temperatures

Based on Eq. 3 and the limiting voltage values (Vmax from Fig. 1 and Vmin being 2.9 V) for cell charging and

discharge, the charge and discharge profiles for the cell have been calculated for three SOCs (75%, 50% and

25%).

RE

(%)
100 50 0

Max Energy

Available from

Regenerative-

braking (kWh)

Energy

Difference

per Drive

Cycle (%)
Drive

Cycle

Energy

Req.

(kWh)

Min.

Temp.

(oC)

Energy

Req.

(kWh)

Min.

Temp.

(oC)

Energy

Req. (kWh)

Min.

Temp.

(oC)

FTP 2.38 -21.6 2.84 -19.2 3.30 -17.0 0.92 39

NEDC 1.71 -25.2 1.90 -24.2 2.09 -23.2 0.38 22

UDDS 1.56 -26.4 1.87 -24.4 2.19 -22.6 0.63 41

US06 2.62 -20.4 2.97 -18.6 3.33 -16.8 0.71 27
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In Fig. 5, it is seen that charging power from regenerative-braking has different values for the cell over the three

different SOCs and ambient temperatures. But, the trends, majorly dependent on the internal resistance and

maximum cell voltage, are similar. The maximum charging power from regenerative-braking is for 25% SOC

and 25 oC (-1200 W) ambient temperature. The cell is unable to provide any power below 5, -10 and -15 oC for

75%, 50% and 25% SOC respectively. Thus, for none of the drive-cycles, the cell will be able to meet the

charging power requirements below -15 oC. This leads to no regenerative-power being offered by the cell below

that temperature.

In Fig. 6, discharge power as expected is lowest for 25% SOC and highest for 75% SOC. The US06 drive-cycle

has a maximum discharge power of 1261.3 W (Table 2). The battery does not meet this requirement below -22.5

oC for 75% SOC but the corresponding values for 50% and 25% SOC are -5 and -15 oC respectively. The cell is

able to meet the discharge power requirements of the other three drive-cycles for all SOCs and ambient

temperatures. Thus, the SOC and in turn the energy demanded for a particular drive-cycle has a significant

impact on the power available from the cell/battery and vice-versa.

Since, it is challenging to conclusively predict the minimum temperatures at which the battery is able to meet

the power demands (either charge/discharge) of the different drive-cycles, the above data is fed into a

MATLAB/Simulink model to dynamically predict that temperature encompassing all SOC points and both

charging and discharge operations. This takes into consideration that charge/discharge pulses might occur at any

point during a particular drive-cycle and that the SOC might be variable. For this analysis, two regenerative-

Figure 4. Maximum Power Acceptable by Cell from Regenerative-Braking at Different Temperatures and SOCs

Figure 5. Maximum Discharge Power Offered by Cell at Different SOCs and Temperatures
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braking efficiencies (REs) have been considered, viz. 50% and 0%. Further, this method takes into consideration

the energy demanded in each drive-cycle and is thus more realistic.

Table 5. Minimum Temperatures where Battery meets Drive Cycle for Various REs

Drive Cycle Min. Temp. for 100% RE (oC) Min. Temp. for 50% RE (oC) Min Temp. for 0% RE (oC)

FTP -1.2 -4.2 -30.0

NEDC -8.4 -12.8 -30.0

UDDS -8.3 -12.4 -30.0

US06 2.2 -2.4 -12.1

Based on Table 1 and Figures 5 & 6, it can be seen in Table 5, that the FTP, NEDC and UDDS can be met by

the battery from a power standpoint till -30 oC for 0% RE. But, the US06 is not met for 0% RE at temperatures

below -12.1 oC. Based on the aggressiveness of the drive-cycles, the power demands of none of the drive-cycles

can be met below -12.8 oC and -8.4 oC for 50% and 100% RE respectively. Thus, considering both energy and

power demands of the four drive-cycles, for 0%, 50% and 100% REs, Table 6 can be summarized where ‘MinE’

is the minimum temperature at which the battery is able to meet a particular drive-cycle’s energy requirements

whereas ‘MinP’ is the corresponding value for its power demands.

It is seen in Table 6, that US06 is the worst affected by the low temperature performance of Lithium-ion batteries.

This can be attributed to its aggressiveness (high charge/discharge power) and greater energy demands. Table 6

concludes that a battery is limited from a power perspective at higher ambient temperature than it is for energy.

Table 4 indicates that greater regenerative-braking leads to more severe power decline at lower temperatures.

But, Table 3 shows that to improve the energy performance of batteries for different drive-cycles at lower

temperatures, greater regenerative-braking is ideal. Although, battery-charging including regenerative-braking

is not recommended by manufacturers below 0 oC, it is seen in Table 6, that above certain temperatures (above

-8.3 oC) and for particular drive-cycles (NEDC and UDDS), regenerative-braking is mathematically possible

and has the potential to improve the driving range considerably (From Table 4, by 22% and 41% respectively).

Table 6. Minimum Temperatures where Drive-cycles Energy and Power demands are met for various REs

Drive Cycle FTP NEDC UDDS US06

MinE (oC) -19.2 -24.2 -24.4 -18.6

MinP for 0% RE (oC) -30.0 -30.0 -30.0 -12.1

MinP for 50% RE (oC) -4.2 -12.8 -12.4 -2.4

MinP for 100% RE (oC) -1.2 -8.4 -8.3 2.2
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4.3 Impact of Self-heating on Battery Performance

Table 7. Self-heating at Different Ambient Temperatures

Ambient Temperature (oC) 10 0 -10 -20 -30

FTP

Temperature Rise (oC) 1.21 1.35 1.49 1.91 2.61

Self-Heating (kWh) 0.04 0.04 0.04 0.05 0.07

Energy Lost (%) 1.3 1.4 1.5 1.9 2.5

NEDC

Temperature Rise (oC) 0.85 0.93 1.01 1.27 1.69

Self-Heating (kWh) 0.03 0.03 0.03 0.04 0.05

Energy Lost (%) 1.3 1.4 1.6 2.0 2.6

UDDS

Temperature Rise (oC) 0.73 0.81 0.88 1.10 1.47

Self-Heating (kWh) 0.02 0.02 0.03 0.03 0.04

Energy Lost (%) 1.2 1.3 1.4 1.7 2.3

US06

Temperature Rise (oC) 2.95 3.25 3.55 4.43 5.91

Self-Heating (kWh) 0.09 0.10 0.11 0.13 0.18

Energy Lost (%) 2.9 3.3 3.5 4.4 5.9

In Table 6, for a single drive-cycle, self-heating and battery operating temperature rise has been calculated for

the four drive cycles at various ambient temperatures. Here, RE is taken as 50%. Further, cell internal resistance

is assumed to remain constant over each single drive-cycle and has been considered for the initial ambient

temperature. In Table 6, it is seen that the US06 being the most aggressive drive-cycle shows greater self-heating

and corresponding battery operating temperature rise. However, it loses the greatest available to self-heating. At

-30 oC, the battery operating temperature after a single US06 drive-cycle is -24.1 oC, a rise of 5.91 oC. This will

result in gain in battery power. But, the energy lost to self-heating is 5.9% of the total energy required by the

drive-cycle (2.97 kWh). Whereas at 10 oC for the UDDS only 1.2% of total energy required by the drive-cycle

is lost to self-heating to raise the battery operating temperature by 0.73 oC. The battery loses energy that can be

utilized to meet drive-cycle energy demands to increase its operating temperature with the goal to increase power

performance. This interdependence and any associated benefit depends upon the drive-cycle.

5 Conclusions

 The Battery is unable to meet the power demands of particular drive cycle at higher temperatures than

for corresponding energy requirements. The aggressiveness of the drive cycle increases this temperature

difference.

 Greater regenerative-braking leads to more severe battery power decline at lower temperatures.

Increased regenerative-braking improves the low temperature energy performance of batteries.

 Regenerative-braking even at subzero ambient temperatures should be employed for particular SOC

ranges to improve energy performance of the battery. The C-rate flow into and out of battery determines

its performance in terms of energy and power.
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 Self-heating can be used as a method to improve battery power performance at lower ambient

temperatures. But, this leads to potential loss in driving-range (available energy).

 Both regenerative-braking and self-heating as means to improve the low-temperature energy and power

performance are dependent on the levels of current being drawn in and out of the battery. Regenerative-

braking power should be limited based on the maximum current that can be drawn into the cell/battery

based on the operating temperature and SOC.

6 Further Work

 Analyzing temperature and SOC dependence of regenerative-braking and potential usage of high-power

devices (Pulse-batteries or Supercapacitors) to increase its efficiency.

 Quantifying interdependence of battery self-heating and regenerative-braking and their impact on the

energy and power performance.
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