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The stability of charged-particle motion in
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(Received 20 November 2000)

Abstract. We consider the motion of charged particles in a static magnetic reversal
with a shear component, which has application for the stability of current sheets,
such as in the Earth’s geotail and in solar flares. We examine how the topology of
the phase space changes as a function of the shear component by. At zero by, the
phase space may be characterized by regions of stochastic and regular orbits (KAM
surfaces). Numerically, we find that as we vary by, the position of the periodic orbit
at the centre of the KAM surfaces changes. We use multiple-timescale perturbation
theory to predict this variation analytically. We also find that for some values of
by, all the KAM surfaces are destroyed owing to a resonance effect between two
timescales, making the phase space globally chaotic. By investigating the stability
of the solutions in the vicinity of the fixed point, we are able to predict for what
values of by this happens and when the KAM surfaces reappear.

1. Introduction
Particles moving in the current sheet will, in a collisionless plasma, carry the current
that supports it. Of relevance to the stability of current sheets under slow change is
an understanding of single-particle dynamics in static field reversals. Simple models
for such a field are magnetic reversals of the form

b = [f (z), by, bz], (1.1)

where f (z) is an odd function, usually taking the form either of the Harris field
(Harris 1962), for which f (z) = tanh z, or of the parabolic model, for which f (z) = z.
The parameters by and bz are non-vanishing constants. Most of the analytical work
in this paper gives the general treatment (any f ). However, in order to evaluate the
final integrals and to make predictions, we revert for simplicity to the parabolic
approximation. The two models converge inside the reversal, but diverge when
|z| > 1, with the parabolic model not allowing particles to escape. Since our results
deal mainly with trajectories lying in the vicinity of the reversal, for which |z| < 1,
the region of validity of the parabolic model is sufficient. A convective electric field
E can also be taken into account with a de Hoffman–Teller frame transformation
(de Hoffman and Teller 1950). For convenience, we work in the frame of reference
where E = 0. A schematic diagram of the field lines in the coordinate system used
is shown in Fig. 1.

The static by = 0 model has been studied extensively (see e.g. Sonnerup 1971;
Speiser 1978; Buchner and Zelenyi 1986; Chen and Palmadesso 1986; Wang 1994
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Figure 1. The coordinate system and the field lines used.

and references therein). For a comprehensive introduction to the subject, the reader
is referred to the review paper by Chen (1992). The time-dependent system has, for
the by = 0 case, also been studied elsewhere (Chapman 1994).

In the static case, it was found by Chen and Palmadesso (1986) and by Buchner
and Zelenyi (1986) that for non-zero bz, the system is non-integrable, having only
two global constants of the motion in involution, and that it can in general support
three types of trajectory, namely regular (lying on KAM surfaces), chaotic and
transient. Using Poincaré surfaces of section, it was shown that each family of
trajectories covers a distinct region in phase space, the geography of which varies
as a function of the field parameters and of the energy.

However, since both the geotail and solar flares have been reported to possess
a finite by field component (see e.g. Sergeev et al. 1993; Litvinenko 1996), it has
become necessary to understand how the resulting shearing of the field lines affects
the particle motion (see e.g. Karimabadi et al. 1990; Buchner and Zelenyi 1991;
Zhu and Parks 1993). Recently, Chapman and Rowlands (1998) also investigated
the finite-by problem and obtained expressions for the bounce period and the action
integral associated with the bouncing motion. They also showed that for certain by
intervals, all the regular trajectories are destroyed, making the phase space globally
chaotic. Ynnerman et al. (2000) demonstrated that the route to global chaos in the
by� 0 case is via repeated period doublings. In the same paper, it was shown that
by deforms the tori on which the regular trajectories lie, squashing them into a
Möbius-strip-like shape.

In this paper, we investigate numerically what effects lead to the bifurcation. We
also use a perturbation technique to find approximate solutions to the equations
of motion and to predict how the position of the centre of the near-integrable
region varies with by. Finally, by linearizing around the fixed point, we provide an
analytical estimate for the value of by at which the central orbit becomes unstable.
We compare these predictions with numerical results.
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2. The basic equations
For a charged particle moving in the magnetic field given by (1.1), the equations
of motion can be obtained from the Lorenz force law. In a suitable normalization,
they are

d2φ

dτ 2 = b2
z[F (z)− φ]− bybz dz

dτ
, (2.1)

d2z

dτ 2 =
by
bz

dφ

dτ
− f (z)[F (z)− φ], , (2.2)

and the energy equation is ,

h =
1
b2
z

(
dφ

dτ

)2

+
(
dz

dτ

)2

+ [F (z)− φ]2, , (2.3)

where F (z) =
∫
f (z) dz, φ = bzx − py (py is the y momentum, and the second

invariant of the motion) and we have used the y invariance of the field to reduce
it to a two-dimensional problem. The full derivation of these equations and the
normalization used can be found in Chapman and Rowlands (1998).

A convenient way to visualize the numerical solutions of these equations is the
z = 0 Poincaré surface of section, which consists of injecting into the field a large
number of particles, all with the same energy h and py, but each with a different
initial condition, such that all the phase space is explored. Every time the trajectory
crosses the z = 0 plane it leaves a trace. It should be noted that while for the by = 0
case, the ż > 0 and the ż < 0 surfaces of section are identical, this is no longer
the case when by � 0. However, since both surfaces of section sample the same
trajectories, it is sufficient to concentrate solely on one of the two. Here the ż > 0
surface of section is used.

Examples of z = 0 surfaces of section for by = 0 can be found in Chen and
Palmadesso (1986) and in Buchner and Zelenyi (1986). Their evolution as a function
of by is shown in Buchner and Zelenyi (1991) and in Chapman and Rowlands (1998),
where regions of global chaos are apparent for certain values of by. The bifurcation
sequence leading to the onset of global chaos can be found in Ynnerman et al.
(2000), where it is also shown that the position of the central periodic orbit on the
surface of section varies as a function of by.

Here we shall use as examples three values of h, namely h = 0.001, h = 0.01 and
h = 0.1. We shall investigate the effect of by both on single trajectories and on the
phase-space topology.

3. The effects of by on single trajectories
It is instructive to examine the effect of by on single trajectories. Figures 2 and 3
show the x, y and z components of two quasiperiodic trajectories in the vicinity of
the central periodic orbit – the first for by = 0 and the second for by = 0.005. For
both trajectories h = 0.01, py = 0 and bz = 0.1. In the corresponding power spectra
(Figs 4 and 5), we see that whilst for the by = 0 case the x and z oscillations are
distinct (exhibiting one fast oscillation and a slower modulation), when a finite by
is introduced they modulate each other, with the power spectra of each component
of the motion exhibiting two modulations (corresponding to the originally separate
x–z modulations) in addition to the fast one. The higher-frequency peaks corre-
spond to the harmonics of the main frequencies. In the next section, we show that
the behaviour of the slower modulations is crucial in determining the stability of
the KAM surfaces.
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Figure 2. The x, y and z coordinates of a quasiperiodic orbit initiated at x = 0.6849, z = 0,
vx = 0 for h = 0.01, py = 0, bz = 0.1 and by = 0.
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Figure 3. The x, y and z coordinates of a quasiperiodic orbit initiated at x = 0.72125, z = 0,
vx = 0 for h = 0.01, py = 0, bz = 0.1 and by = 0.005.



Particle stability in sheared magnetic reversals 335

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency

10°

Po
w

er

10°

Po
w

er

10°

Po
w

er

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency

Figure 4. The power spectra of the x, y and z components of the motion of the orbit shown
in Fig. 2 (by = 0).
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Figure 5. The power spectra of the x, y and z components of the motion of the orbit shown
in Fig. 3 (by = 0.005).
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Figure 6. z = 0 surface-of-section plots for h = 0.001 and for increasing by. The other
parameters are bz = 0.1 and py = 0.

4. The effect of by on the z = 0 surfaces of section

For h = 0.001, the evolution of the phase space for increasing by is shown in Fig. 6. At
this energy, there is initially no quasi-integrable region (see Chen and Palmadesso
1986). However, as by is increased, a quasi-integrable region appears via a pitchfork
bifurcation at around by ≈ 0.145 (see Ynnerman et al. 2000). As by is further
increased, the near-integrable region grows in size until it covers the whole of the
surface of section (the by →∞ limit is integrable). In addition, the x position of the
central periodic orbit varies as a function of by. This variation is shown in Fig. 7,
where the form of the bifurcation is shown, as determined numerically from the
surfaces of section. Superimposed are the analytical results obtained in the next
section.

In parallel to the surfaces of section, one can investigate how the periods in the
vicinity of the central periodic orbit (when it exists) vary with by. This is shown in
Fig. 8. The fast and slow periods were obtained by inspection of the power spectra
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Figure 7. Comparison between the numerical (∗) and analytical (—– for ż > 0; – – – for ż < 0)
results for the x(φ) position of the central periodic orbit on z = 0 as a function of by for
h = 0.001 and bz = 0.1.
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Figure 8. Comparison between numerical and analytical results for the observed periods in
the vicinity of the central periodic orbit as a function of by for h = 0.001. The numerically
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continuous line (—–) corresponds to Ts, the dashed line (– – –) to 1
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Figure 9. Comparison between the numerical (∗) and the analytical results for the observed
periods in the vicinity of the central periodic orbit as a function of by for h = 0.01. The
numerically observed periods (fast and slow) are shown with a (∗). For the analytical re-
sults, the continuous line (—–) corresponds to Ts, the dashed line (– – –) to 1

2Ts and the
dashed–dotted line (– · –) to T̄f .

of trajectories in the vicinity of the central periodic orbit for each value of by. At
the specific value of by corresponding to where bifurcation occurs, the two slow
frequencies become equal. Importantly, the value towards which they converge
is equal to twice the fast period. Thus it appears that the reason the fixed point
becomes unstable is that the higher-order harmonics of the slow periods overlap with
the fast period. This coupling leads to the destruction of all the regular trajectories.
One can also observe an additional periodicity in the motion that tends to infinity
near the bifurcation and is a clear signature that the periodic trajectory becomes
unstable. In addition, for values of by where the slow period is smaller than twice
the fast period, no regular trajectories exist.

A similar argument can be used for h = 0.01, the surfaces of section of which can
be found in Chapman and Rowlands (1998) and Ynnerman et al. (2000). Here we
show the evolution of the largest periods observed in Figs 4 and 5 as a function of
by (Fig. 9). In this case, a quasi-integrable region exists in the vicinity of by = 0,
but subsequently disappears via an inverse pitchfork bifurcation at by ≈ 0.017, and
reappears at by ≈ 0.178. In Fig. 10, we also show the position of the fixed point on
z = 0 as a function of by.

As a third example, we use h = 0.1, for which it is found (Fig. 11) that the
timescales always remain well separated and that the quasi-integrable region always
exists. The position of the fixed point on z = 0 as a function of by for this energy
level is shown in Fig. 12.

In the next section, we use perturbation theory to obtain approximate solutions
to the equations of motion (2.1)–(2.3), in order to try to predict the observed be-
haviour.
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Figure 10. Comparison between the numerical (∗) and the analytical (—– for ż > 0; – – – for
ż < 0) results for the x(φ) position of the central periodic orbit on z = 0 as a function of by
for h = 0.01 and bz = 0.1.
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periods in the vicinity of the central periodic orbit as a function of by for h = 0.1. The
numerically determined periods (fast and slow) are shown with a (∗). For the analytical
results, the continuous line (—–) corresponds to Ts and the dashed line (– – –) to T̄f .

5. The perturbation procedure

Equations (2.1)–(2.3) are nonlinear and non-integrable. To simplify them, one can
use multiple-timescale perturbation theory (see e.g. Rowlands 1990). This consists
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Figure 12. Comparison between numerical (∗) and the analytical (—– for ż > 0; – – – for
ż < 0) results for the x(φ) position of the central periodic orbit on z = 0 as a function of by
for h = 0.1 and bz = 0.1.

essentially of taking the oscillatory solution obtained by applying conventional
perturbation theory and making the phase slowly time-varying. The formal way of
doing this is to separate the timescales between the z motion, which is fast, and the
xmotion, which has a slower component. Thus one can think of a fast timescale (τf )
in which a particle oscillates up and down in the z axis, and a slow timescale (τs), in
which the particle rotates around the KAM surface in the (x, ẋ) plane. Then, using
bz as our expansion parameter (i.e. assuming that bz� 1), we can write τs = bzτf ,
and hence

d

dτ
=

d

dτf
+ bz

d

dτs
.

Thus, by expanding z and φ in the form (Chapman and Rowlands 1998)

φ = φ0(τs) + bzφ1(τf , τs) + b2
zφ2(τf , τs) + . . . , (5.1a)

z = z0(τf , τs) + bzz1(τf , τs) + b2
zz2(τf , τs) + . . . , (5.1b)

the equations of motion yield, to lowest order,

d2φ0

dτ 2
f

= 0, (5.2)

d2z0

dτ 2
f

= by

(
dφ0

dτs
+
dφ1

dτf

)
− f (z0)[F (z0)− φ0] (5.3)

and

h0 ≡ h =
(
dz0

dτf

)2

+
(
dφ0

dτs
+
dφ1

dτf

)2

+ [F (z0)− φ0]2. (5.4)
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To order bz,

d2φ1

dτ 2
f

= −by dz0

dτf
. (5.5)

And to order b2
z,

d2φ0

dτ 2
s

+ 2
d2φ1

dτfdτs
+
d2φ2

dτ 2
f

= [F (z0)− φ0]− by
(
dz0

dτs
+
dz1

dτf

)
. (5.6)

Chapman and Rowlands (1998) solved (5.2)–(5.6), by showing that the action inte-
gral

∮
(dz0/dτf ) dz0 is, to lowest order, a constant of the motion. In this paper, we

are primarily interested in the bifurcation process, so we can use linear perturbation
theory about the Chapman and Rowlands solution. Thus we can write

φ0(τs) = φ̄0 + δφ0(τs), (5.7a)

z0(τf , τs) = z̄0(τf ) + δz0(τf , τs), (5.7b)

where φ̄0 is now a strict constant during an oscillation, corresponding to the pos-
ition of the central periodic orbit, and z̄0(τf ) corresponds to z0 on φ̄0. The small el-
ement δφ0(τs) is the linearization about the central orbit. Expanding φ1, φ2, . . . and
z1, z2, . . . in the same way and substituting into (5.2)–(5.6) yields for φ̄0, φ̄1, φ̄2, z̄0

and z̄1

d2z̄0

dτ 2
f

= by
dφ̄1

dτf
− f (z̄0)[F (z̄0)− φ̄0], (5.8)

h̄0 ≡ h0 =
(
dz̄0

dτf

)2

+
(
dφ̄1

dτf

)2

+ [F (z̄0)− φ̄0]2, (5.9)

d2φ̄1

dτ 2
f

= −by dz̄0

dτf
(5.10)

and
d2φ̄2

dτ 2
f

= [F (z̄0)− φ̄0]− by dz̄1

dτf
. (5.11)

Similarly, for δφ0, δφ1, δφ2, δz0 and δz1, we obtain the equations

d2δz0

dτ 2
f

= by

(
dδφ0

dτs
+
dδφ1

dτf

)
− d

dz̄0
{f (z̄0)[F (z̄0)− φ̄0]} δz0 + f (z̄0) δφ0 (5.12)

d2δφ1

dτ 2
f

= −by dδz0

dτf
(5.13)

and

d2δφ0

dτ 2
s

+ 2
d2δφ1

dτfdτs
+
d2δφ2

dτ 2
f

= [f (z̄0) δz0 − δφ0]− by
(
dδz0

dτs
+
dδz1

dτf

)
. (5.14)

As a first remark, note in (5.10) and (5.13) that by couples the first-order component
of the φ(τ ) motion with the lowest-order component of the z motion. This explains
the coupling of the x and z power spectra that were found numerically.
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6. The position of the central periodic orbit
We first consider the solution to lowest order that corresponds to a periodic orbit
passing through the z̄0 = 0 plane on φ̄0. Equation (5.10) can be integrated once to
give

dφ̄1

dτf
= −by z̄0 + K̄, (6.1)

where K̄ is the constant of integration. Since we are looking for the periodic sol-
utions of z̄0 (period T̄f ), we demand that φ̄1 is also periodic with the same fast
period; that is, φ̄1(τf ) = φ̄1(τf + T̄f ). By integrating (6.1) over a period, we obtain
for K̄

K̄ =
by
T̄f

∫ T̄f

0
z̄0 dτf . (6.2)

It follows that if z̄0 is symmetric over a period then K̄ = 0. This symmetry can
be observed in the numerical integration of the full equations (Figs 2 and 3), and
is a feature only of the central periodic orbit, that is of z̄0(τf ), and not of any
near-integrable orbit z0(τf , τs). By substituting for dφ̄1/dτf into (5.9), we obtain

dτf = ± dz̄0√
h̄0 − b2

y z̄
2
0 − [F (z̄0)− φ̄0]2

, (6.3)

and the fast period will be twice the time the particle needs to go from one extreme
to the other:

T̄f = 2
∫ z̄c

−z̄0

dz̄0√
h̄0 − b2

y z̄
2
0 − [F (z̄0)− φ̄0]2

, (6.4)

where z̄c is the positive root of the denominator, that is, where dz̄0/dτf = 0. The
positive root of (6.3) is used, since the integration is in the positive dz̄0/dτf direc-
tion. To evaluate this integral, we choose the parabolic approximation, for which
f (z̄0) = z̄0. Then

z̄c =
√

2(
√
D + φ̄0 − b2

y), (6.5)

where

D = (φ̄0 − b2
y)

2 + h̄0 − φ̄2
0, (6.6)

and the integral in (6.4) can be evaluated to yield

T̄f = 8ḡK(k̄), (6.7)

where, as before, K(k̄) is the complete elliptic integral of the first kind,

k̄ =

√
1
2

+
φ̄0 − b2

y

2
√
D

(6.8)

and

ḡ =

√
1

4
√
D

(6.9)

In the same way, by integrating (6.3) from τf to τfc (corresponding to z̄c), we obtain

τfc − τf = 2ḡF
(

arccos
z̄0

zc
, k̄
)
, (6.10)
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and so

z̄0 = z̄c cn
(
τf − τfc

2ḡ
, k̄

)
, (6.11)

where τfc can be obtained by setting an initial condition for z. Choosing z̄0 = 0 on
τf = 0 yields

τfc = 2ḡK(k̄). (6.12)

Note that the solution of z̄0 is symmetric in time, which is consistent with taking
K̄ = 0.

Now, in order to obtain an expression for the position of the central periodic
orbit as a function of by, it is noted that (5.11) can be integrated over a period,
and by insisting that φ̄2 and z̄1 are periodic with period T̄f , we obtain the following
equation for φ̄0:

φ̄0 =
2
T̄f

∫ z̄c

−z̄c

F (z̄0) dz̄0√
h̄0 − b2

y z̄
2
0 − [F (z̄0)− φ̄0]2

. (6.13)

Again, for f (z̄0) = z̄0, the integral can be evaluated, and we find

φ̄0 = 2
√
D

[
E(k)
K(k)

− 1
2

]
+ (φ̄0 − b2

y). (6.14)

Unfortunately, it is not possible to solve this equation analytically for φ̄0. By solving
it numerically for the same three values of h̄0 used in the numerical simulations and
as a function of by, we obtain the dashed lines in Figs 7, 10 and 12.

Since we have demanded that φ̄0 be a strict constant, the difference between the
position of the particle as it crosses the z = 0 plane going up and going down is
not apparent. Therefore, in order to obtain a better approximation for the position
of the central orbit and to show the asymmetry between the ż > 0 and the ż < 0
diagrams, it is necessary to go to higher order, that is to look at φ̄1. By integrating
(6.1) over τf (for K̄ = 0), we obtain for φ̄1 the expression

φ̄1 = −by
∫ τf

z̄0 dτf + C̄, (6.15)

where C̄ is the constant of integration. The integral can be evaluated for f (z̄0) = z̄0,
to yield

φ̄1 = −2by arccos

[√
1− k2 sn2

(
τf − τfc

2ḡ
, k̄

)]
+ C̄. (6.16)

To obtain a value for the constant C̄, we observe from the form of the expected
trajectory (Fig. 13) that φ̄1(τf = 1

4 T̄f ) = 0, which yields C̄ = 0. After some simpli-
fications, we obtain for the value of φ̄1 on z̄0 = 0

φ̄1|z̄0=0 = −by arccos

(
− φ̄0 − b2

y√
D

)
. (6.17)

The continuous lines in Figs 7, 10 and 12 then correspond to φ̄0 + bzφ̄1|z̄0=0. We see
that they are in relatively good agreement (to order b2

z) with the numerical results.
It should also be noted that the position of the fixed point on the equivalent ż < 0
surfaces of section can also be obtained, being φ̄0 − bzφ1|z̄0=0. Of course, the agree-
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zc

φ0

φ1 φ1

φ

Figure 13. The path of integration used to calculate φ̄1|z̄0=0.

ment between numerical and analytical results is best far from the bifurcations,
since perturbation theory is no longer valid in their vicinity.

7. The stability of the central periodic orbit
To investigate the stability of the central periodic orbit, we must look at the slow
variation δφ0(τs). To do this, we integrate (5.6) over a fast period Tf (τs), insist-
ing that φ1(τf , τs), φ2(τf , τs) and z1(τf , τs) be periodic in the fast period; that is,
φ1(τf , τs) = φ1(τf + Tf (τs), τs), etc. We obtain the equation

d2φ0

dτ 2
s

=
1

Tf (τs)

∫ Tf (τs)

0
dτf

[
F (z0)− φ0 − by dz0

dτs

]
, (7.1)

and by linearizing as before, using (5.7), we obtain for φ̄0 equation (5.11), and for
δφ0 the expression

d2δφ0

dτ 2
s

+ δφ0 =
1
T̄f

∫ T̄f

0
dτf

[
f (z̄0) δz0 − by dδz0

dτs

]
− φ̄0

δTf
T̄f

, (7.2)

where

Tf (τs) = T̄f + δTf (τs). (7.3)

In order to evaluate the integral on the right-hand side, an expression for δz0 is
required. To obtain it, we begin by integrating (5.13) once. This gives

dδφ1

dτf
= −byδz0 + δK(τs), (7.4)

where δK(τs) is an integration constant given by

δK(τs) = by〈δz0〉 (7.5)

where from now on the notation used is

〈. . .〉 =
1
T̄f

∫ T̄f

0
. . . dτf .
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In addition, substituting (7.4) into (5.12) yields

Lδz0 = by

(
dδφ0

dτs
+ δK

)
+ f (z̄0) δφ0, (7.6)

where the operator L is defined as

L =
d2

dτ 2
f

+ b2
y +

d

dz̄0
{f (z̄0)[F (z̄0)− φ̄0]}. (7.7)

Thus we can write

δz0 = byA(τf )
(
dδφ0

dτs
+ δK

)
+B(τf ) δφ0, (7.8)

where A and B are fast-varying functions, independent of the slow timescale. To
obtain them, we must solve the following second-order differential equations:

LA = 1, (7.9)

LB = f (z̄0). (7.10)

Integrating (7.8) over a fast period yields

〈δz0〉 = by〈A〉
(
dδφ0

dτs
+ δK

)
+ 〈B〉 δφ0, (7.11)

and by combining this with (7.5) and rearranging for δK(τs), we obtain

δK(τs) =
(

b2
y〈A〉

1− b2
y〈A〉

)
dδφ0

dτs
+
(

by〈B〉
1− b2

y〈A〉
)
δφ0, (7.12)

Finally, by substituting for δK(τs) into (7.8), we obtain for δz0 the expression

δz0 = by

(
A +

b2
yA〈A〉

1− b2
y〈A〉

)
dδφ0

dτs
+
(
B +

b2
yA〈B〉

1− b2
y〈A〉

)
δφ0. (7.13)

By substituting for δz0 into (7.2) and using (7.9) and (7.10), we can write (7.2) in
the form

d2δφ0

dτ 2
s

(
1

1− b2
y〈A〉

)
+ δφ0

(
1− 〈f (z̄0)B〉 − b2

y〈B〉2
1− b2

y〈A〉
)

= −φ̄0
δTf
T̄f

. (7.14)

The details of how this form is obtained are given in Appendix A. To proceed, an
expression for δTf (τs) is required. A method to obtain it is given in Appendix B.
We find

δTf (τs) =
2K(k̄)
D5/4

[
b2
y +

φ̄0(h̄0 − b2
yφ̄0)

h̄0 − φ̄2
0

]
δφ0. (7.15)

In addition, the integrals 〈A〉, 〈B〉 and 〈f (z̄0)B〉 need to be evaluated. This is
done in Appendix C, where we find for the parabolic approximation

〈A〉 =
b2
y

D
, (7.16)

〈B〉 = 0 (7.17)

and

〈f (z̄0)B〉 =
h̄0

2(h̄0 − φ̄0b2
y)
. (7.18)
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By substituting these into (7.14), we obtain, after some simplifications,

d2δφ0

dτ 2
s

+ ω2
s δφ0 = 0. (7.19)

Thus, to lowest order, the variation of δφ0 is simple-harmonic, with frequency

ω2
s =

h̄0 − 2φ̄0b
2
y

2D

[
h̄0 − 2φ̄0b

2
y

h̄0 − φ̄0b2
y

+
φ̄0(h̄0φ̄0 − 2φ̄2

0b
2
y + h̄0b

2
y)

(h̄0 − φ̄2
0)D

]
. (7.20)

The slow period is then given by

Ts =
2π
bzωs

. (7.21)

The analytically obtained periods and their harmonics are shown in Figs 8–11,
superimposed on the numerical data. In all three cases, the analytical expression
for Ts is qualitatively accurate, but it predicts higher values than expected from
the numerical results. Also, the analytical predictions are more accurate for higher
energies.

There is a good explanation for these discrepancies. One should keep in mind the
fact that we had to linearize, a procedure that, as we saw in the by = 0 case, is not
very accurate in the vicinity of a bifurcation. Buchner and Zelenyi (1986) showed
for by = 0 that the value obtained for the slow period corresponds to the value
towards which the actual solution converges for large h. The fact that the accuracy
of our results increases with increasing h suggests that this is still true when a by
component is introduced. However, the growing discrepancy between analytical
and numerical values of Ts for increasing by suggests that the convergence rate is
slower for large values of by. In contrast, the prediction for T̄f is reasonable, with
the accuracy again increasing for increasing h.

Numerically, we found that the destruction of the near-integrable region via a
bifurcation occurs when the two slow periods (one of which we have obtained here,
the other one being of higher order, corresponding to the slow periods of z1 and φ2)
become equal to twice the fast period, leading to a resonance between the fast period
and a higher-order harmonic of the slow period. In Fig. 8, we see that T̄f ≈ 1

2Ts at
by ≈ 0.1108, and this is therefore where we should expect the bifurcation to occur.
The actual value where it occurs is by ≈ 0.145. The difference is mainly due to our
large error in the calculation of Ts.

For the h = 0.01 case, we see that our approximation does not allow us to find
the bifurcation, since, contrary to what is observed numerically, we find 1

2Ts to be
always greater than Tf . Again, this is due to our high estimate of Ts. The sudden
decrease in Ts observed numerically at by ≈ 0.01 is probably due to higher-order
effects that are not included in the lowest-order approximation.

Finally, in Fig. 11, we observe that for h = 0.1, the prediction for Ts is more
accurate than in the previous two cases and that all the timescales remain well
separated.

8. Conclusions
The effects of a by component on the motion of charged particles in a magnetic
reversal have been studied both numerically and analytically, and the effects lead-
ing to the bifurcation observed by Ynnerman et al. (2000) investigated. We have
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found that bifurcations occur when the fast and the slow timescales resonate. We
have also shown that as by increases, the x position of the central periodic orbit in
the Poincaré surface of section varies. This variation has been obtained here ana-
lytically by using a multiple-timescale perturbation technique around the bz = 0
solution. By linearizing around this fixed point, we have also provided analytical
estimates (in some cases) for the value of by at which quasiperiodic orbits reappear
via a bifurcation. These estimates correctly quantify the resonance effect leading
to the onset of global chaos.

Appendix A. Derivation of (7.14)
By inserting (7.13) into (7.2) and using (7.9) and (7.10), we obtain the following
coefficients for each term on the right-hand side of (7.2):

(a) for d2δφ0/dτ
2
s , the coefficient is〈

−by
(
byA +

b3
yA〈A〉

1− b2
y〈A〉

)〉
, (A 1)

which simplifies to

− b2
y〈A〉

1− b2
y〈A〉

; (A 2)

(b) for dδφ0/dτs, it is〈
LB

(
byA +

b3
yA〈A〉

1− b2
y〈A〉

)
− by

(
B +

b2
yA〈B〉

1− b2
y〈A〉

)〉
, (A 3)

which is equal to zero, since 〈LBA〉 = 〈LAB〉 = 〈B〉;
(c) finally, the coefficient for δφ0 is〈

LB

(
B +

b2
yA〈B〉

1− b2
y〈A〉

)〉
, (A 4)

which simplifies to

〈f (z̄0)B〉 +
b2
y〈B〉2

1− b2
y〈A〉

. (A 5)

By putting all these terms together in (7.2), we obtain

d2δφ0

dτ 2
s

+ δφ0 =

(
− b2

y〈A〉
1− b2

y〈A〉

)
d2δφ0

dτ 2
s

+

(
〈f (z̄0)B〉 +

b2
y〈B〉2

1− b2
y〈A〉

)
δφ0 − φ̄0

δTf
T̄f

,

(A 6)

which, after some simplifications, yields (7.14).

Appendix B. Obtaining an expression for δTf
By integrating (5.5) once and substituting the expression obtained for dφ1/dτf into
(5.4), we obtain, after some manipulations,

dτf =
dz0√

h0 − [byz0 − dφ0/dτs −K(τs)]2 − [F (z0)− φ0]2
, (B 1)
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where K(τs) is the integration constant obtained from the integration of (5.5).
From our linearization, we know that K(τs) ≈ δK(τs) (since K̄ = 0) and that
dφ0/dτs ≈ dδφ0/dτs. By substituting for these, we write

dτf =
dz0√

h0 − (byz0 − ε)2 − [F (z0)− φ0]2
, (B 2)

where the notation

ε =
dδφ0

dτs
+ δK(τs) =

1
1− b2

y〈A〉
dδφ0

dτs

has been used. We shall assume that ε is small and can be used as an expansion
parameter. For the parabolic approximation, (B 2) can be further simplified by
writing it in the form

dτf = 2
dz0√

(a2 − z2
0)(b2 + z2

0) + 8εbyz0
, (B 3)

where

a2 = 2
[√

(φ0 − b2
y)

2 + h0 − φ2
0 − ε2 + φ0 − b2

y

]
(B 4)

and

b2 = 2
[√

(φ0 − b2
y)

2 + h0 − φ2
0 − ε2 − φ0 + b2

y

]
. (B 5)

By expanding the denominator of (B 3) for small ε, we obtain

dτf = 2
dz0√

(a− z0 − εγ)(a + z0 + εγ)(z2
0 − 2εγz0 + b2)

+O(ε2), (B 6)

where

γ = − 4by
a2 + b2 . (B 7)

The two roots of the denominator, corresponding to the turning points of z0, are
−a− εγ and a− εγ. Note that in this more general case, z0 is no longer symmetric.
The fast period Tf (τs) is obtained by integrating twice from one turning point to
the other:

Tf (τs) = 4
∫ a−εγ

−a−εγ

dz0√
(a− z0 − εγ)(a + z0 + εγ)(z2

0 − 2εγz0 + b2)
+O(ε2). (B 8)

By writing y = z0 + εγ and expanding the non-singular term in the denominator of
(B 8), we obtain

Tf (τs) = 4
∫ a

−a

dy√
(a2 − y2)(b2 + y2)

[
1 +

2γy
b2 + y2 ε +O(ε2)

]
. (B 9)

This integral can be evaluated to give

Tf (τs) = 8gK(k) +O(ε2), (B 10)

where

k(τs) =
a√

a2 + b2
(B 11)

and

g(τs) =
1√

a2 + b2
. (B 12)
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By linearizing z0 and φ0 as before and writing k(τs) = k̄ + δk(τs) and g(τs) =
ḡ + δg(τs), we obtain for δk(τs) and δg(τs)

δk(τs) =
h̄0 − b2

yφ̄0

4k̄D3/2
δφ0 (B 13)

and

δg(τs) =
b2
y

4D5/4
δφ0, (B 14)

and δTf (τs) is given by

δTf (τs) = 8K(k̄)δg + 8ḡ
dK(k̄)
dk̄

δk, (B 15)

which, after some simplifications (and using (6.14)), becomes

δTf (τs) =
2K(k̄)
D5/4

[
b2
y +

φ̄0(h̄0 − b2
yφ̄0)

h̄0 − φ̄2
0

]
δφ0. (B 16)

Appendix C. Evaluating the integrals 〈A〉, 〈B〉 and 〈f (z̄0)B〉
By differentiating (5.8) over the fast timescale τf , we observe that

L
dz̄0

dτf
= 0. (C 1)

By writing

A = Ã
dz̄0

dτf
(C 2)

and substituting into (7.9), we obtain, after some simplifications (for f (z̄0) = z̄0),
the expression (

dz̄0

dτf

)−1
d

dτf

[
dÃ

dτf

(
dz̄0

dτf

)2
]

= 1, (C 3)

which yields, after integration,

dÃ

dτf

(
dz̄0

dτf

)2

= z̄0 + C1, (C 4)

or
dÃ

dτf
=

z̄0 + C1

(dz̄0/dτf )2 , (C 5)

where C1 is the constant of integration. By integrating over a fast period and
insisting that Ã is periodic with period T̄f , we obtain that C1 = 0, since the integral∫ T̄f

0

z̄0

(dz̄0/dτf )2 dτf = 0. (C 6)

We know z̄0 from (6.11), and therefore

dz̄0

dτf
= − z̄c

2ḡ
dn(s, k̄) sn(s, k̄), (C 7)
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where

s =
τf
2ḡ
−K(k̄). (C 8)

By integrating (C 5) from 0 to an arbitrary time τf < 2ḡK(k̄) (in order to avoid the
singularity that exists at τf = 2ḡK(k̄)), we obtain

Ã(τf )− Ã(0) =
∫ τf

0

z̄0

(dz̄0/dτf )2 dτf , (C 9)

and by substituting into this the expressions for z̄0 and dz̄0/dτf , we obtain, after
some simplifications,

Ã(τf )− Ã(0) =
8ḡ3

z̄c

∫ s

−K(k̄)

cn(s, k̄)

dn2(s, k̄) sn2(s, k̄)
ds. (C 10)

The integral on the right-hand side of (C 10) can be evaluated, and we find for
Ã(τf )

Ã(τf ) =
8ḡ3

z̄c

k̄2 sn2(s, k̄)− dn2(s, k̄)
sn(s, k̄) dn(s, k̄)

+G + Ã(0), (C 11)

where

G =
8ḡ3

z̄c

2k̄2 − 1√
1− k̄2

, (C 12)

and so

A(τf ) = −4ḡ2[k̄2 sn2(s, k̄)− dn2(s, k̄)] + PF(τf ), (C 13)

where PF is a periodic function with period T̄f that vanishes when integrated over
a period. Note that in this expression, the singularities at τf = 2ḡ(2n + 1)K(k̄) (n
integer) have disappeared and τf can proceed to 8ḡK(k̄) (that is, to cover a whole
period). Finally,

〈A〉 =
1
T̄f

∫ T̄f

0
Adτf = − ḡ2

K(k̄)

∫ 3K(k̄)

−K(k̄)
[k̄2 sn2(s, k̄)− dn2(s, k̄)] ds (C 14)

and, by evaluating the integral, we obtain

〈A〉 = 8ḡ2
[
E(k̄)
K(k̄)

− 1
2

]
. (C 15)

By using (6.14), the above expression can be simplified to the form

〈A〉 =
b2
y

D
. (C 16)

A similar argument can be used to find 〈B〉 and 〈f (z̄0)B〉. By writing

B = B̃
dz̄0

dτf
(C 17)

and substituting into (7.10), we obtain in the same way as before the relationship

dB̃

dτf
=

1
2 z̄

2
0 + C2

(dz̄0/dτf )2 , (C 18)

where C2 is the constant of integration. It can be found by integrating over a fast
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period and demanding periodicity for B̃. This gives

C2 = −1
2

∫ T̄f
0 z̄2

0(dz̄0/dτf )−2 dτf∫ T̄f
0 (dz̄0/dτf )−2 dτf

(C 19)

For f (z̄0) = z̄0, the integrals can be evaluated to give the following equation for C2:

C2 = − z̄
2
c

2
(1− k̄2)[2E(k̄)−K(k̄)]

(2k̄2 − 1)E(k̄) + (1− k̄2)K(k̄)
, (C 20)

and, in the same way as before, we find for 〈B〉 and 〈f (z̄0)B〉
〈B〉 = 0 (C 21)

and

〈f (z̄0)B〉 =
(1− k̄2)[1− 2E(k̄)/K(k̄)] + E(k̄)2/K(k̄)2

(2k̄2 − 1)E(k̄)/K(k̄) + (1− k̄2)
; (C 22)

again, by using (6.14), this can be simplified to yield

〈f (z̄0)B〉 =
h̄0

2(h̄0 − φ̄0b2
y)
. (C 23)
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